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Abstract

Biological systems are complex, diverse and dynamic in nature and these features make

them difficult to study. Thus, an easy way is to abstract them in the form of sim-

ple regulatory networks. Qualitative modeling approaches based on the work of René

Thomas are used extensively in the domain of computational systems biology to explore

the dynamics of biological regulatory networks. Modeling and analysis on the basis of

qualitative modeling framework reveals several behaviors of biological systems in the

form of state graphs. These behaviors are driven by certain sets of parameters which

are unknown and are very crucial to understand the dynamics of biological systems.

There are several approaches which are meant for parameters estimation however, one

important problem in these approaches is the exponential number of model parameters.

Model checking is one of these approaches based on qualitative modeling framework. It

has exponential complexity which when added to complexity of parameters estimation,

aggravates the situation in case of large networks; moreover, complex file management

and CTL formulas required by model checking approach are difficult to write by people

with no programming background, thus, in this work, a simple but scalable approach is

proposed to address this challenge by extending the use of betweenness centrality with

René Thomas logical formalism to the selection of suitable model parameters. It has lin-

ear complexity as compared to that of model checking and it is easy to use for everyone

(with or without programming background). The developed approach is executed on

reported biological regulatory networks for bench marking purpose. This work has been
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validated by running the approach on a case study of Cerebral Malaria, and comparing

its results with those already published in the literature.
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Chapter 1

Introduction

Most of the research and efforts being made by scientists in the stream of life sciences

converge at one major goal of identifying the factors responsible for dynamic behavior

of the living systems, in order to develop solutions for health problems and to improve

the ecosystem. Scientists from different fields are developing their techniques and using

their own methods to fulfill this aim. Systems Biology having a multidisciplinary ap-

proach brings scientists from different domains like Physics, Engineering, Mathematics,

Computer Sciences, and Chemistry etc. at the same page to help achieve the goal. It

provides complete understanding of all biological systems as it focuses on gene expres-

sions, molecular interactions between proteins, and external cues not only in one process

but between several processes taking place inside a living organism. But this intercon-

nection of several biological processes due to cross talks between proteins makes the

biological systems complicated to study, thus making it difficult to identify the underly-

ing factors responsible for different behaviors. Therefore, different approaches are used

in Systems Biology which not only decrease the difficulty level of this study but also

help to highlight important parameters (factors). Systems under study are abstracted

in the form of networks; models are prepared, parameters are shortlisted and analyzed

using different modeling frameworks.
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Chapter 1: Introduction

1.1 Biological Regulatory Networks

There are different ways to study the biological systems but an easy way is their ab-

straction in the form of networks i.e. Biological Regulatory Networks (BRNs). A BRN

comprises of macromolecules as its biological entities; mainly RNAs and proteins, whose

interactions control the expression level of certain genes, provided in a genome. Systems

Biology models biological systems, mathematically and computationally; using their re-

spective regulatory networks. BRNs make it very easy and simple to understand the

biological processes by providing a clear picture to Systems Biologists which unveils the

different dynamics of the system under study.

1.2 Modeling Frameworks

In order to study BRNs, continuous, discrete and hybrid modeling frameworks have

been used so far [16] .Continuous modeling is a quantitative modeling framework which

refers to the use of ODEs and PDEs, but it requires precise expression values which

are unknown most of the time [42]. This limitation was overcome by Boolean logic

formalism where expression levels are represented with 0s and 1s depicting inhibition

and activation of entities respectively [31, 32, 57]. It was further extended by Thomas

to kinetic logic formalism, where expression levels are represented by discrete values

instead of 0s and 1s. Both Boolean and Kinetic logic formalisms form the basis of

qualitative modeling framework. Discrete formalism jumps in when enough information

isn’t available about parameters and conditions [16]. Hybrid formalism incorporates

both continuous and discrete changes in a system [1]. As BRNs are meant to model

the interactions, mostly between proteins and genes; a graph can help to represent the

static part of such model. Whereas, vertices and edges of graph represent the biological

entities and interactions respectively. Negative sign - shows inhibition and positive sign

+ shows activation. Changes in numerical values assigned to the corresponding entities

4



Chapter 1: Introduction

with respect to time; constitutes the dynamic part of model, which relies on temporal

evolution of concentration of these values. Initially, this dynamic behavior was studied

using differential equation approaches, but later on Thomas came up with kinetic logic

approach in order to study the qualitative nature of the dynamic behavior of regulatory

networks [58].

1.3 Parameters Estimation of BRNs

Models are abstractions of real systems, and the values which are responsible in deter-

mining how close a model is to a real system are known as parameters. Estimation of

parameters is a challenging task because it is difficult to get the right ones from the

huge set of parameter values. Likewise, parameters estimation of biological regulatory

networks to study the dynamical changes in biological systems is as challenging as it

is important. Parameters estimation using qualitative modeling framework is preferred

over quantitative modeling as expression levels are represented using discrete values,

which decreases the difficulty for parameters computation job keeping the parameter

state space finite; whereas, in the case of quantitative modeling where expression levels

have continuous values, the difficulty for parameters computation is high as parame-

ter state space is infinite. Moreover, qualitative modeling framework unveils important

properties of Biological systems i.e., bifurcation points, cyclic behavior in the form of

feedback loops [58] and stable or steady states [56] etc. Parameters estimation is not

only helpful in the analysis of systems level diseases like Parkinson’s disease, Alzheimer’s

disease, and cancer etc., but also advantageous in identification of potential therapeutic

drug targets [54].
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Chapter 1: Introduction

1.4 Network Centrality and Biological Circuits

Network centrality aims at ranking network elements. It also helps to identify interesting

facts about these elements and brings the key players in a certain pathway to notice.

Centrality refers to a function C which is meant to assign a numerical value to each vertex

v of the graph i.e. C(v). In order to rank the vertices, Koschutzki et al [36] chose a

convention where a vertex v carries more importance than w, iff C(v)> C(w). Likewise,

network centrality measures when applied on biological networks, extract important

information. Jeong et al [27] has explained that a protein which is highly connected in

a particular protein-protein interaction network is functionally very important most of

the time. Removal of such proteins (i.e. vertices) leads to lethality in the whole network.

Network centrality analysis is done using different centrality measures depending upon

the kind of information required. There are several centrality measures but some major

and related measures constitute degree centrality, closeness centrality, harmonic central-

ity, betweenness centrality, and cross-clique centrality.

Degree centrality of a node is the total sum of its edges. If the edges are outgoing,

then it is out-degree centrality and if the edges are ingoing then it is in-degree centrality

[36]. Degree centrality of a node u is:

D(u) = deg(u) (1.4.1)

Closeness centrality of a node is the average of the sum of shortest paths from that

node to all the other nodes in a network. It is only applicable to strongly connected net-

works. This measure was defined by [8] as reciprocal of farness, i.e. closeness centrality

of v is:

C(v) = 1
Σw∈V dis(v, w) (1.4.2)

where dis(v, w) is the shortest distance between two nodes v and w.

6



Chapter 1: Introduction

Harmonic centrality just reverses the reciprocal and sum operations in closeness

centrality. Moreover, it isn’t just limited to strongly connected networks only. Harmonic

centrality of a node v can be found as:

H(v) = Σ 1
dis(v, w) (1.4.3)

where v 6= w; and 1
dis(v,w) = 0 if v and w doesn’t connect with each other [41].

Betweenness centrality is a measure of node within a network. It accounts for the

number of times a certain node has served as a bridge between two nodes on their

shortest paths. According to Freeman et al. [22] nodes exhibiting highest probabil-

ity of occurrence on a shortest path chosen randomly between two nodes depict high

betweenness. Betweenness of a node v is defined as:

B(v) = Σxvy(σxy(v)
σxy

) (1.4.4)

where x 6= v 6= y; and σxy is the total number of shortest paths between x and y; while

σxy(v) represents the number of paths which pass through v.

Cross-clique centrality of a given node determines its connectivity to different cliques

in a complex graph. Clique is a sub-graph where each node is connected to all the

other nodes in that sub-graph. A node having high cross-clique centrality eases the

dissemination of information in the graph. For a node u, it is defined as X(u), which

gives the number of cliques constituting u [19].

1.5 Problem Statement

The estimation of logical parameters for modeling biological networks is a computa-

tionally intensive task. The formal approaches that utilize Model Checking to compute

parameters use exhaustive state space search that leads to State Space Explosion. More-

7
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over, use of CTL makes it limited to be used by Computer scientists only. Therefore, a

potential solution to cater this issue is by extending the concept of betweenness central-

ity with René Thomas logical formalism, which will not only reduce state space but will

also decrease processing time and providing the users with an easy to use approach.

1.6 Aims and Objectives

This study aims at developing a new and easy approach by extending the concept of

betweenness centrality with René Thomas logical formalism to estimate parameters for

BRNs with a reduced computation cost. Following are the objectives of the study;

• Study existing approach for parameters estimation with respect to Qualitative

Modeling

• Develop a more user friendly and easy to use approach

• Benchmark developed algorithm using data sets of existing regulatory networks

• Validate the developed approach

1.7 Formulation of Thesis

Thesis is divided in three major parts. First one is the literature review of the pioneer-

ing work in this domain which focuses on gradual evolution of modeling stream and

how the concept of parameters estimation originated. The second one elaborates the

methodology flow used for the development of this approach, and the last one focuses

on the results and discussions regarding the future prospective of developed approach.

In the end supplementary files and bibliography formally close the thesis.
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Chapter 2

Literature Review

Biological system as a whole is difficult to study; therefore, an easy way is to abstract

them in the form of networks, where nodes of the network represent the biological entities

and edges are responsible for communication between nodes. As biological systems are

non-linear systems thus, a good approach to study their dynamics is qualitative modeling

framework.

2.1 Qualitative Modeling Approach

Kauffman [30] proposed Boolean logic for regulatory networks; according to this logic,

activations are represented with 1 and inhibitions are represented with 0. In order to

add more meanings to the analysis based on this approach Thomas et al. [61] proposed

kinetic logic formalism which represents the expression levels with multiple discrete

values; rather than just 0 and 1.

This makes qualitative study of regulatory networks more dynamic and versatile; to

make it more detailed Thomas [59] introduced the concept of feedback circuits and

highlighted their importance in generating sustained oscillatory and multiple states be-

havior. Feedback circuits have two types; degenerative or negative circuits and regenera-

tive or positive circuits. The degenerative circuit is responsible for generating sustained

9



Chapter 2: Literature Review

oscillatory behavior and the regenerative one generates multiple steady state behavior.

Feedback circuits alone cannot give a proper and better insight to the dynamics of

systems, thus, Snoussi [56] introduced the idea of logical parameters also known as

model parameters. This notion of feedback loops leads to the concept of singular logical

states and loop-specific state [60]. It helped in providing further insights to the study of

regulatory systems by formally demonstrating that only the states involved in positive

feedback loops lead towards steady states or fix points [56].

2.2 Model Checking

Model checking is one of the formal verification techniques, which was designed with the

aim of checking the desired specifications of hardware circuits or computer programs.

It permits the modeler to test all the possible upshots of the system kept under study.

This is done in an exhaustive manner. Thus, conclusions made on the predictions

coming from model checking are definite. This approach is used in different domains;

hence, it is considered as a standard method in industrial sector to ensure correctness in

complex software, hardware and embedded systems, security protocols, digital circuits

and what not. It evolved gradually with the contribution of several scholars making it

more reliable day by day. Devloo [17] used constraint programming in order to detect all

the steady states of large regulatory networks. It is a form of declarative programming

where relation between entities exists in the form of constraints. This approach was used

to identify all the stable states in a system, where stable states are derived as a solution

to the system of stable state equations. In the same year Peres et al. [47] applied model

checking in Biological Regulatory Networks to understand the system dynamics, which

is explained in article 2.2.1. Dynamics and complexity of biological systems mark them

similar to parallelism in software systems distinguished by non-deterministic behavior

[21] . Due to this similar behavior shown by concurrent systems as well; model checking

10



Chapter 2: Literature Review

is used for the analysis of huge state space of all possible outcomes of the biological

model under study. For this purpose the required behavior and the details of the model

M are given in the form of a formula φ and transition system respectively. Model checker

exhaustively explores the state space to check the correctness of formula φ.

2.2.1 Parameters Estimation of Biological Regulatory Networks Using

Model Checking

For the analysis of BRNs, model checking is used by numerous tools. In this approach,

information of the system under study is expressed as a transition system which has

all the possible states with their transitions. Behavior (to be verified) of the system is

expressed in the form of a temporal logic formula. Temporal logic formula is comprised

of temporal logic quantifiers which depict the system’s behavior. Model checker takes the

system model and temporal logic formula as input and then via brute force technique it

starts exploring the complete state space of entered model exhaustively. If the property

is satisfied, the model is validated and it gives the set of parameters and if it is not

satisfied, then it generates a counter example and whole process is repeated.

According to René Thomas logical formalism, state graphs represent the dynamic be-

havior of biological systems. The factors (parameters) responsible for these behaviors

are unknown and their estimation is the most important step in the qualitative model-

ing of BRNs [11]. Bernot used model checking for parameters estimation of Biological

Regulatory Networks. It is differentiated on how the time is interpreted; whether linear

(Linear Temporal Logic) [50] or branching (Computation Tree Logic) [15]. As Biological

systems are dynamic and non-deterministic in nature; thus, CTL is suitable for BRNs

because it is branching time logic. The already known experimental observations are

converted to the formula φ, which is actually a CTL. Model checker evaluates several pa-

rameter combinations and ultimately selects only those parameters against which CTL

observations are satisfied.
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State graph of a Boolean network having n nodes has 2n numbers of states; each of

which have a maximum of n outgoing transitions. Asynchronous state graphs may or

may not have n2n possible transitions, thus, the total number of state graphs (asyn-

chronous) corresponding to Boolean networks with n number of nodes turn out to be

2n2n . If an interaction graph having n vertices along with a certain property p is in-

put while estimating parameters via model checking, then the output comprises of all

those asynchronous state graphs which satisfy property p. Therefore, complexity for

parameters estimation is O(2n2n) [13].

2.2.2 Complexity of Model Checking

In biological systems, regulatory functions are performed when biological entities i.e.

genes or proteins interact with each other. These interactions make a biological network

simple or complex or highly complex. The complexity of model checking approach is

O(2n) and this complexity increases when the number of interacting entities increases

followed by an increase in computational cost required for the analysis of such biological

networks. This cost is large even for small and simple networks as it requires model

building for huge set of parameters, and evaluation of each model; to meet the required

properties. Model checking looks for all of this in the complete state space of the mode.

The length of the state space for simple to complex and from complex to highly complex

network starts from hundreds and thousands to trillions and so on. Therefore, adding

difficulties to the approach in estimating parameters.

2.2.3 Existing Tools

Several tools have been developed in this domain on the basis of model checking ap-

proach. Four major tools are GINSim [23], SMBioNet [33], GenoTech and Parallel

SMBioNet [54]. Usually CTL formulas are written corresponding to the properties of

system under study and models are generated with respect to those formulas and param-
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eters are computed. GINSim is Gene Interaction Network Simulator which aims at BRN

construction and supports its export in different file formats to establish compatibility

with other tools like NuSMV, snoopy etc. SMBioNet uses NuSMV to estimate logical

parameters of Biological models which satisfy known observations [29]. It is applicable

to small BRNs only. GenoTech helps in BRN construction, specifying logical parameters

and generation of state graphs and their analysis. Parallel SMBioNet is the extension

and parallel implementation of SMBioNet, which helps in parameters estimation of big-

ger BRNs. Moreover, Paulevé et al. [46] developed a π-Calculus framework known as

Process Hitting. It is a stochastic framework which highlights the set of dynamics of a

BRN which are highly functional. Sheikh et al. [55] incorporated time delays in this

framework to model large BRNs dynamically.

2.3 Network Centrality

Network centrality is a local measure in order to determine the position of a certain node

in the network with respect to the other nodes. It is a quantitative measure that helps in

estimating the role of the node in the network. The concept of network centrality comes

from social network analysis when Bavelas applied this idea on human communication

to explore the relationship between their behavior and patterns of communication in

small groups. It was concluded that the behavior is affected by communication patterns

in which the groups operate; and network centrality is pertinent to this [38]. Cohan and

applied network centrality to study how such large and heterogeneous Indian nation

is administered; and it came out that these are the network centers that knit all the

attributes of Indian social life into a refined, intertwined and well-coordinated structure.

This approach further got boom when it was applied on communication paths by Pitts

[49] for urban development. From social networks to urban development and establishing

inter-organizational relations idea of network centrality is used in every manner [9].

Apart from this, the concept of network centrality has been extended to study the

13
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computer networks, electrical circuits, and the regulatory networks of biological systems

etc. to extract desired information. Thus, different centrality measures exist depending

upon the type of the role that is expected from the node [3].

Network centrality plays an eminent role in the study of regulatory networks of bio-

logical systems. On the basis of graph spectral properties, centrality measures help in

distinguishing important proteins in Protein Protein Interaction (PPI) networks. More-

over, in order to select potential drug targets; proteins if ranked as per their centrality

measure can be of great help [18].

2.3.1 Betweenness Centrality in Selection of Trajectories

According to the directed graph theory, a path is made when distinct nodes are connected

by directed edges in the form of a chain. These paths in the study of biological networks

are transformation pathways from one entity to a certain other entity in the network

[5]. Redundancy of such pathways in biological networks, accounts for their robustness.

Betweenness centrality helps in measuring the effect caused by node perturbation on

the pathway redundancy. The length of the paths determines the response time of

perturbations [45, 51].

2.3.2 Complexity of Betweenness Centrality

Different algorithms are used for betweenness centrality calculations and they usually

have a time and space complexity of O(n3) and O(n2) respectively. The algorithm used

in Python language for computation of betweenness centrality is Brandes algorithm. It

is named after Ulrik Brandes who proposed it. It has a space complexity of O(n + m)

and time complexity for unweighted graphs is O(nm) and for weighted graphs is O(nm+

n2logn) [12].

14



Chapter 2: Literature Review

F
ig
ur
e
2.
1:

T
im

e
lin

e
of

m
aj
or

co
nt
rib

ut
io
ns

in
th
e
pr
ev
io
us

st
ud

ie
s

15



Chapter 3

Methodology

3.1 Methodology Overview

This chapter focuses on the methodology used to develop the approach. Python language

with its several libraries is used in the development process where BRN abstracted from

the actual pathway is written in a SIF format. From that information parameters

are computed and are used for the state graph generation. Betweenness centrality

calculations are performed on the nodes of all state graphs. Centrality values are sorted

and are used to trace back the state graphs and their parameters to generate results in

the form of heat maps which are further analyzed. Figure 3.1 shows the methodology

work flow of the approach. Every step is discussed one by one in detail.
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Figure 3.1: Methodology work flow. Work flow starts by inputting a BRN, which is processed
with the help of several libraries and in the end results are produced in the form
of heat map which is then further analyzed.
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3.2 Proposed Approach

In this work, a new and easy to use approach is developed by extending the concept of

betweenness centrality on qualitative modeling framework proposed by René Thomas to

estimate parameters for BRNs with a reduced computation cost. It is free from all kinds

of difficult file inputs and CTL formulas, which makes it easy to be used by everyone

without having any programming background.

Figure 3.2: Comparison of the model checking work flow with the proposed approach. (a)
Work flow for model checking approach. (b) Generic work flow of the proposed
approach.
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3.3 Qualitative Modeling

Qualitative modeling highlights the qualitative properties of a dynamic system by mod-

eling its behaviors. These behaviors are driven by model parameters also known as

logical parameters. In a biological system, biological entities are influencing each other;

and most of the time it is impossible to measure this influence. Thus, finding the set

of logical parameters which are suitable enough to describe a certain regulatory be-

havior occurring strictly in an intracellular process is pivotal in qualitative modeling

of these biological systems. It helps in modeling the diseased systems in a way that

these parameters point towards the responsible factors in causality of the disease; and

once such factors are determined it is easy to predict potential drug targets via several

computational models.

Qualitative modeling depicts the chemical concentrations of biological entities in BRN

with discrete values. As already mentioned these biological entities influence each other;

this influence can be positive or negative i.e. activation or inhibition respectively. This

influence is described by change in their expression level by one discrete level. Posi-

tive influence (activation) means that the expression level of source entity causes an

increase in the production or rate of activation of sink (target) entity. Contrary to this

negative influence (inhibition) occurs when expression level of source entity causes the

degradation of sink (target) entity.

These regulations can be represented using step functions; if entity A positively influ-

ences entity B, then A is known as the activator of B. A activates B only when its

expression level reaches a certain threshold value. Whereas, if A negatively influences

B; then A is known as its inhibitor. Expression level of B starts decreasing when ex-

pression level of A hits a certain threshold value. These changes in expression levels of

both activator and inhibitor are shown in figure 3.3 [7].
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Figure 3.3: Dummy tendency graph of biological regulation. (a) Step function of activation of
B by A. (b) Step function of inhibition of B by A.

3.3.1 Network Modeling

Graph Theory plays a pivotal role in modeling and analysis of biological regulatory

systems as it represents them in the form of graphs (networks) to model their behaviors.

For this purpose a directed graph is very useful and easy to understand data structure.

A BRN is mapped onto a graph in a way that its biological entities make the vertices of

graph and its interactions (positive and negative) make the edges of the graph, which

are directed.

Graph based approaches are used to determine topological and structural parameters

to discern important properties of biological networks. Structural properties of a graph

appear very helpful in making biological predictions. Thus, a lot of operations are

performed on graphs for this purpose; like degree and centrality measurement. These

bring out important information about nodes a.k.a. biological entities. Betweenness

centrality is the back of this study to characterize the nodes of different biological models

in order to understand the dynamics of biological systems to which these models belong.

Given below are the formal definitions and properties of graphs taken from [28].
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Definition 1 (Graph). Graph G is an ordered pair i.e. G = (V, E) where, V represents

the set of vertices i.e. biological entities and E represents the set of edges which marks

the interactions between vertices.

Definition 2 (Degree). Degree is the total sum of edges a vertex v has. If the edges are

originating from vertex v then it is known as out degree and if the edges are terminating

towards vertex v then it is known as out degree.

Definition 3 (Bipartite Graph). Graph G = (V, E) is said to be bipartite iff: v =

(A ∪B) | A ∩B = φ and E ⊂ (AXB) ∪ (BXA) .

3.3.2 Semantics of Qualitative Modeling

This section constitutes semantics of René Thomas qualitative modeling framework

taken from [2, 10].

Definition 4 (Directed Graph). A directed graph D is an ordered pair D = (N, I);

where N represents finite set of all nodes or vertices and I represents set of ordered pair

of nodes i.e., I ⊆ N X N. Nodes are connected to each other via arcs, such that arc a =

(x, y) connects x to y; where x is the head (source node) and is known as the tail (sink

node).

Definition 5 (Biological Regulatory Network). A Biological Regulatory Network

(BRN) is a labeled directed graph D = (N, I); where set of nodes N model the biological

entities (genes, proteins etc.) and set of I subset N X N models interactions. Each

interaction (ni, nj) is labeled by a pair (τ, σ), where τ depicts the threshold value x

attains in order to regulate y; and σ = {+, -} represents the sign of interaction where

+ shows activation and - shows inhibition.

Definition 6 (State). A qualitative state of BRN is n-tuple S = {sn1 ... snj}, ∀sni ∈

Eni where sni is the abstract expression level of ni.

The dynamics of BRN are dependant on model parameters (set of positive integers)
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and resources. Different dynamics are shown by same BRN when model parameters are

changed.

Definition 7 (Resources). In D, availability or absence of an activator or inhibitor

respectively for each biological entity is known as a resource; and resource set is Cartesian

product of these activators and inhibitors.

Definition 8 (Logical Parameters). These are the set of parameters responsible for

discrete evolution of biological entities in the BRN. Let D = (N,I,π) be the BRN and

Para(D) the set of parameters of D,

Para(D) = {Kx,A,B|A ⊆ D+(x), B ⊆ D−(x)}

Valuation of Para(D) is a mapping κ : Para(D) =⇒ such that ∀ x ∈ N, A ⊆ D+(x),

B ⊆ D−(x), κ(Kx,A,B) ∈ Sx.

Definition 9 (State Graph). Let D = (N, I) denotes a BRN and sni represents the

expression level of ni in a state s ∈ S. Then its state graph G = (S, T) is a directed

graph, where S is the set of states and T ⊆ S X S is the transition relation; such that s

→ ś ∈ T iff: ∃ unique p ∈ N such that snp 6= śnp and śnp = snp ∆ Kp (Wnp), and ∀q ∈

V \ {x} śnq = snq

3.4 Parameters Estimation of Biological Regulatory Net-

works

As per René Thomas Logical Formalism, dynamics of a biological system are studied by

converting its regulatory network into a state graph on the basis of logical parameters.

These logical parameters are unknown and a huge challenge for Qualitative Modeling

is their estimation. Thus, a new approach has been introduced in this study which

somehow eases the way for Biologists to estimate parameters without getting caught

into CTL formula and complex file preparations. This approach constitutes of following
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steps:

1. SIF Preparation

2. All Possible Parameters Combinations

3. State Graphs Generation

4. Betweenness Centrality Calculation

5. Parameters Profiling and Analysis

3.4.1 SIF Preparation

Different file formats exist for storing BRN information like GraphML, XML, and dot

etc. but this study requires a SIF format for storing BRN information. SIF stands for

Simple Interaction File; it is a file format which specifies nodes and their interactions.

Unlike other file formats SIF file is easy to prepare in notepad. It is a tab separated file

where each line corresponds to an interaction which takes three tab separated things i.e.

source node, threshold value with + or - sign and sink node.

3.4.2 All Possible Parameters Combinations

In order to compute all the possible parameter combinations of the BRN, resources of

each entity (node) are found first. This is done by using Definition 4. On the basis

of threshold values i.e. expression level values, ranges (from minimum to maximum

expression level value) are assigned to each resource of each entity; this leads to the

computation of sets of all possible parameter combinations of BRN by assigning different

values from the deputed ranges of each resource.
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3.4.3 State Graphs Generation

State Graphs are generated corresponding to all sets of these possible parameter com-

binations of the entire BRN. State graphs represent different dynamics of the system

under study. These parameter combinations are actually different factors that are play-

ing their role in driving the system and state graphs generated on their basis depict

the different behaviors that arise when these driving factors are changed. Out of all of

these sets of possible parameter combinations, there are two types of sets one if followed

keeps the system in healthy condition and the other if followed diverts the system from

healthy condition to the pathogenic one.

Figure 3.4: State graphs (6 out of 324) of pseudomonas aeruginosa constructed on the basis of
all possible parameter combinations.
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3.4.4 Betweenness Centrality Calculation

Definition 10 (Betweenness Centrality). Let D = (N, I) denotes a state graph

having a, b and c as three disparate states in D. Let P represents the set of all ordered

pairs of all distinct states and Îÿa,b represents the total number of shortest paths from

a to b; also, θa,b (c) be the total number of shortest paths from a to b passing through c.

Then, the betweenness centrality B for state c is computed from the following:

B(c) = Σab∈P (θab(c)
θab

) (3.4.1)

The nub of this study is to get a bigger picture of all such factors and to categorize

them on the basis of betweenness centrality. This is done by calculating the betweenness

centrality of each node of each state graph. Each state can be analyzed individually,

as the parameter sets of desired state in all the state graphs where its betweenness

centrality value is highest or lowest are grouped together respectively. State graphs

of states showing highest or lowest betweenness centrality are traced back to sets of

parameter combinations which are making them, and then the parameters are displayed

in the form a heat map.

3.4.5 3.4.5. Parameters Profiling and Analysis

Parameters profiling for the given qualitative BRN is done on the basis of normal and

pathogenic states of corresponding state graph of the system, which user should know.

It will yield the respective parameters sets, which if followed (for good states) keep the

system in healthy state; and, the other if followed (for bad states), diverts the system to

pathogenesis or diseased state. Analysis is done on the basis of the biological significance

of state of interest.
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3.5 Implementation in Python

Whole approach has been developed in Python version 3.7.0. Python was developed by

Guide Van Rossum in 1991. It is a multi-purpose, high level, interpreted, procedural,

functional and object oriented programming language. It is enriched with built in pack-

ages/libraries that are easily installed using "pip install" command. Thus, it is highly

preferred by most of the organizations and institutions due to its various programming

paradigms. Apart from this it also serves with automatic memory management [37].

In order to endue this approach with life, several python libraries are used which are

explained in detail in section 3.6. While implementing the approach, only SIF format

is considered as input for the retrieval of BRN information (Figure 3.5 line: 8). All the

necessary information (i.e. source nodes, resource sets, threshold values) of each node is

processed and a BRN is generated upon reading the respective file. Then all the possible

parameter combinations of that particular BRN are computed on the basis of which all

state graphs are generated (Figure 3.5 line: 9), this is achieved by using Pyrthomas

library. A built in function supported by NetworkX is used for calculating betweenness

centrality of each node (state) of each state graph (Figure 3.5 line: 11). All the centrality

values are stored in a list of dictionaries, where each dictionary corresponds to each node

for storing it’s all betweenness centrality values in all state graphs in a way that the key

refers to the node and values refer to its all centrality values (Figure 3.5 line: 11).

The time required by the system to calculate betweenness centrality varies from network

to network. The denser a network is, more time it requires for calculation. After the

betweenness centrality values are calculated and stored, the next step is input of state

under study (Figure 3.5 line: 14). It can be any state of state graph. Following the

input of state of interest is the retrieval of its centrality values which are stored in the

list of dictionaries. Once the values are retrieved they are sorted in both ascending and

descending manner (Figure 3.5 line: 17). Betweenness centrality of the state (node) in
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the former manner points towards its deadlock behavior, because minimum centrality

values mean that state is least visited and less connected and it depicts its stability.

So if the entered state is a pathogenic state, then it means it is hard for the system

to recover from that phase. If entered state is a healthy (good) state, then it means

system will remain in a healthy condition or will show most ideal behavior. Whereas,

betweenness centrality value in the later manner shows an oscillatory behavior, because

a state having a high betweenness centrality value is highly connected and reachable

state. So if the entered state is a pathogenic one, then it means it can come out of

that phase or if the driving factors (parameter) are repeated it may fluctuate between

healthy and diseased condition. Likewise, if the entered state is a healthy (good) one,

it will persevere the healthy condition.

After sorting, a CSV file is made which contains three columns i.e. state graph reference

number to track the parameter sets, resource sets of all the nodes in the BRN, and the

parameter values which are making the respective state graphs (Figure 3.5 line: 34).

This data is used to make the heat map for a clearer view and better understanding.

Heat map is generated by using built in Pandas and Seaborn libraries (Figure 3.5 line:

35). Interface of developed approach has been created by using Tkinter. It incorporates

all the above mentioned functionalities. Pseudo code of developed approach is given in

figures 3.5.
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Figure 3.5: Pseudo code for parameters estimation of BRNs using betweenness centrality.
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3.6 Software and Libraries Used

This approach has been developed in Python language using some of its very famous

libraries like NetworkX, Math, Matplotlib, Itertools, Pyrthomas, CSV, Pandas, Seaborn,

and Tkinter. The IDE used for programming is Spyder.

3.6.1 Software

3.6.1.1. Spyder

It is an open source IDE (Integrated Development Environment) for Python language. It

was developed in 2009 by Pierre Raybaut. It is mainly used for scientific programming.

It is integrated with a lot of Python libraries, and those not available can easily be

downloaded using "pip install package name" command.

3.6.2 Libraries

3.6.2.1. NetworkX

NetworkX is meant for dealing with complex networks, it helps in their creation and

studying the dynamics, structure and functions.

3.6.2.2. Math

This library makes access easy to all Mathematical methods, defined as per C standard.

But it doesn’t deal with complex numbers.

3.6.2.3. Matplotlib

Matplotlib is a 2D plotting library, which helps in visualizations. Visualizations can be

of graphs, networks or plots.

3.6.2.4. Itertools

This library comprises of the collection of tools required to handle iterators i.e. for loop.

It is used for iterating lists, dictionaries and other data structures.
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3.6.2.5. Pyrthomas

This library corresponds to the Python implementation of René Thomas Logical For-

malism. It helps in incorporating all the semantics of Thomas’s Formalism.

3.6.2.6. CSV

CSV in Python is used for import and export of databases and spreadsheets. CSV

stands for Comma Separated Values.

3.6.2.7. Pandas

Pandas is a BSD licensed library. Its name has been derived from âĂĲpanel dataâĂİ,

which is a famous term of Econometrics. It helps in data manipulation and its analysis.

3.6.2.8. Seaborn

Seaborn is based on Matplotlib and it is a data visualization library which helps to draw

attractive and informative statistical graphs.

3.6.2.9. Tkinter

It is a Python library for development of standard graphical user interface. It provides

an interface to Tk GUI toolkit. It is fast and easy to use and holds a lot of functionalities.

3.7 Example: Mucoidy in Pseudomonas aeruginosa

Pseudomonas aeruginosa is a mucus producing bacterium. It is a non-fermenting, oxi-

dase positive, gram negative aerobic rod which is ubiquist in nature, but in some lung

diseases it turns to an opportunistic pathogen. It has been frequently found associated

in nosocomial infections and its mucus production is the huge cause of mortality in pa-

tients suffering from cystic fibrosis. Figure 3.6 shows the regulatory network responsible

for mucus production in pseudomonas aeruginosa. AlgU is its main regulator which not

only activates its own production but also that of several other structural genes present

in the operon. It activates mucB which in turn translates into an anti-AlgU protein.
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Figure 3.6: Operon model of pseudomonas aeruginosa and regulation of its mucus production.

This regulatory network comprises of two feedback circuits; the first one is a regenerative

circuit responsible for excessive mucus production (where AlgU is activating itself) and

the second one is a degenerative circuit for controlled mucus production (where AlgU is

activating mucB and in turn expression of mucB is inhibiting it, resulting in decreased

mucus production). In this case, if we consider the state graphs, (2,1) is a stable and

pathogenic (mucoid) state. The first element represents the expression of AlgU (x) and

the second one for anti-AlgU (y). This state marks itself as a part of regenerative circuit

where AlgU when expresses itself up to threshold of 2, starts producing excessive mucus

and being shown multistationary behavior its expression value will only be increased

hence, producing more and more mucus. Contrary to this (0,0), (1,0), (1,1), (0,1), (0,0)

are non-pathogenic (non-mucoid) states as they control mucus production. The expres-

sion of AlgU (x) is constantly kept under control by anti-AlgU (y) thus, maintaining a

homeostasis or a stable oscillatory behavior [53].

31



Chapter 3: Methodology

Figure 3.7: Heat map of all the parameter values for state (2,1) in state graphs (along x-axis)
where its betweenness centrality value is maximum

Heat map shown in the figure 3.7 is a result of trace back of the state graphs where

the centrality value is highest to get the parameter values responsible for these sate

graphs. The continuous patterns (highlighted) of parameter values in the heat map are

the factors responsible for system to converge at a particular state; i.e. (2,1) in this

case. The parameter values in this highlighted chunk corresponds to resources of y and

x respectively i.e. ky[ ], ky[x], kx[ ] and kx[y]. ky[ ] means that x is absent and thus y is

not expressed, ky[x] means that x is activating y, kx[ ] means that x has no activators

and it is being inhibited by y, whereas, kx[y] means x is not activating itself and y

is absent thus, x is not being inhibited and maintaining its current expression. The

pivotal of all of these is kx[ ], because here y (anti-AlgU) is inhibiting x (AlgU), yet x

reaches an expression level of 2. These values are making the system to converge at (2,

1) which being a pathogenic state is leading the system to mucoidy. Whereas, rest of

the resources have either no effect or mild effect in causing mucoidy; therefore, they are

not picked for further analysis. This can help in devising a treatment plan from mucoid

to normal behavior of bacterium either by decreasing concentrations of AlgU directly or
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by injecting the system with anti-AlgU.
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Results and Discussion

4.1 Results

This section of the thesis provides with the results obtained by running the developed

approach explained in the previous section on an already proposed case study to explain

our results in correspondence to the literature and to evaluate the developed approach.

4.1.1 Case Study: MAL Associated BRN

The case study chosen to be run under this developed approach is that of cerebral malaria

focusing on MAL (MyD88-adapter-like) protein, which has been found, associated with

the onset of disease.

Cerebral Malaria is an aggravated form of Malaria. Usually in Malaria, a pathogen

plasmodium infects red blood cells. It enters the human body from the bite of female

Anopheles mosquito. It is present in its saliva [43]. As a response to infection, human

body shows inflammation by producing proinflammatory cytokines like INF-γ (Inter-

feron gamma) and TNF-α (Tumor Necrosis Factor alpha), which help in destroying the

pathogen. But, when this pathogenesis becomes grave in its nature, persistent produc-

tion of cytokines causes an increase in the rate of production of cellular messengers
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like iNOS (induced Nitric Oxide Synthase). This produces nitric oxide in brain tissues.

An increase in the production of nitric oxide along with ischemic hypoxia caused by

plasmodium leads the body to a state of hyper inflammation, which in turn onsets the

Cerebral Malaria also known as Diffuse Encephalopathy [6, 14, 26].

In Malaria, proinflammatory cytokines are produced by a signaling pathway which ini-

tiates when GPIs (glycosylphosphatidylinositols) are recognized by TLR2/4 (Toll Like

Receptors 2 and 4) and it starts forming dimers. Innate immune system of human body

uses TLRs to recognize the PAMPS (Pathogen Associated Molecular Patterns). As a re-

sult several kinases and primary response protein MyD88 (it differentiates myeloid) are

recruited. This signaling cascade comes to its climax when NFκβ is activated producing

inflammatory cytokines [4, 20, 25, 34, 52]. It points towards the role of MAL protein in

the pathogenesis followed by hyper inflammation. There are chances that MAL in its

wild type can cause the host to develop Cerebral Malaria; whereas, in its mutated form,

it can control the inflammation. Thus, it is considered as a potential therapeutic target

while fighting against the Cerebral Malaria pathogenesis [39, 44, 64].

Focusing on MAL, there are some proteins associated with it like BTK, INCY, and

SOCS-1. BTK is a kinase that falls in the Tec family of proteins. It positively regulates

MAL by phosphorylating it [24, 48].

Contrary to this SOCS-1 negatively regulates phosphorylated MAL via polyubiquiti-

nation. It is induced by INCY, which apart from this causes inflammation as well.

Moreover, it also blocks NFκβ and thus, it is considered as the negative regulator of

this signaling pathway [40, 63].
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Figure 4.1: Pathway for Cerebral Malaria [2] (i) Pathway is initiated when PAMPS are rec-
ognized by TLR2/4. (ii) It leads to activation of BTK. (iii) This in turn phos-
phorylates MAL and activates it. (iv) Kinases and MyD88AP are recruited and
are activated around MAL. (v) Followed by degradation and activation of Iκβ and
NFκβ respectively. (vi) INCY is produced after activation of cytokine genes. (vii)
INCY activates its regulators. (viii) Meanwhile, INCY produces inflammation as
well. (ix) Again NFκβ gets activated. (x) NFκβ induces SOCS-1 production via
an alternate pathway. (xi) SOCS-1 inhibits MAL via polyubiquitination. (xii)
SOCS-1 blocks expression of NFκβ.
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Figure 4.2: This is the MAL associated BRN abstracted from TLR2/4 signal transduction
pathway. The nodes represent the proteins involved in this pathway and the arrow
heads direct the flow of pathway. Integers (-1, +1, +2) depict the threshold values
of expressions which these proteins have to attain in order to have their influence
on the targeting one. The positive and negative signs show the type of influence,
i.e. activation and inhibition respectively [2]

.

4.1.2 Parameters Estimation of MAL Associated BRN

Graphical User Interface for proposed approach has been developed using Tkinter li-

brary of Python. It simply takes the BRN in SIF format; shows the BRN on interface

and generates the state graphs and calculates the betweenness centralities at the back

end. The text box gets enabled to take input once all the calculations have been done.

After that, the desired stable state can be input to get heat maps either for its highest

betweenness centrality values or for lowest.
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Figure 4.3: Graphical User Interface for developed approach.

In the case of MAL associated BRN, there are two stable states i.e. 00000 and 00121.

The former one shows normal behavior where the disease has been cured and the later

one shows pathogenic behavior leading to severe hyper inflammation. The order of states

owing to the concentrations of expression levels of entities is like this: BTK, MAL, NFκβ,

INCY and SOCS-1. For normal state the expression level values for all the entities are

zero; whereas, for pathogenic state it is zero for BTK and MAL, 1 or NFκβ, 2 for INCY

and 1 for SOCS-1. Both states exist simultaneously and depict two distinct behaviors of

the system. System attains the first stable state (00000) after an inflammatory response

has been generated against infection and has caused its elimination, whereas, it attains

the second state (00121) when infection has been prolonged and cytokines (INCY) are

kept on releasing, turning inflammation to hyper inflammation. System has this capacity

to maintain its stability after perturbations iff the concentration of INCY remains 1 for

any state in the system. If the concentration of INCY reaches level 2 which is the

threshold concentration for pathogenic state, then most of the trajectories encountered
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by system will only take it to pathogenic/diseased state i.e. 00121.

This syllogism is supported and backed up with experimental observations which were

made in a bacterial sepsis case study, where the onset of disease was associated with the

hyper inflammation caused by over production of INCY [35, 62].

According to [2] concentration of expression level for INCY is already elevated as an

aftermath of prior inflammation due to infection, which increases the chance of system

to enter pathogenic state. A reported and clear indication is state 00111, which diverts

the system towards pathogenic state with one transition only. Analysis of the underlying

system and validation of the developed approach has been done by studying and ana-

lyzing the stable states with respect to both their high and low betweenness centrality

values.

4.1.2.1. Analysis on the Basis of Low Betweenness Centrality

Lowest betweenness centrality value of a particular node (state) in a network (state

graph) means it is the least visited node by other neighboring nodes in the same network.

There are total 294912 state graphs of MAL associated BRN as per René Thomas Logical

Formalism. Betweenness centrality of each node of each state graph has been calculated

and sorted in ascending order. Due to large state space and for the ease of manual

analysis only the first 1000 centrality values are retrieved for both states (00000 and

00121). The first 1000 centrality values for both the states are zero. To narrow down

further, analysis is performed on first 10 sets of parameters corresponding to first 10

state graphs.
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Figure 4.4: Heat map for estimated parameters of state 00000 sorted on the basis of low be-
tweenness centrality.
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Figure 4.5: Heat map for estimated parameters of state 00121 sorted on the basis of low be-
tweenness centrality.

41



Chapter 4: Results and Discussion

Stable states (00000 and 00121) appeared as deadlock states in their corresponding state

graphs. Both sets of state graphs for 00000 and 00121 respectively, are analyzed and

the outcomes are matched with those reported in literature. The states reported in [2]

are responsible for taking the system to normal state are 10000, 00001, 00011, 00111,

01111, 01110, 01100, 01000, 11000 and 11100; and those responsible for diverting the

system to pathogenic state are 00111, 01111, 11111, 11110, 11100, 11120, 11121, 01120

and 01121. These states are exactly the same as the states isolated by analysis using

the developed approach.

Table 4.1: Occurrence of reported states in state graphs generated by parameter sets for 00000
sorted on the basis of low betweenness centrality.

Parameter
Sets 10000 00001 00011 00111 01111 01110 01100 01000 11000 11100

P0 X X X X X X X X X X
P1 X X X X X X X X X X
P2 X X X X X X X X X X
P3 X X X X X X X X X X
P4 X X X X X X X X X X
P5 X X X X X X X X X X
P6 X X X X X X X X X X
P7 X X X X X X X X X X
P8 X X X X X X X X X X
P9 X X X X X X X X X X

Table 4.2: Occurrence of reported states in state graphs generated by parameter sets for 00121
sorted on the basis of low betweenness centrality.

Parameter
Sets 00111 01111 11111 11110 11120 11121 01120 01121 11100

P0 X X X X X X X X X
P1 X X X X X X X X X
P2 X X X X X X X X X
P3 X X X X X X X X X
P4 X X X X X X X X X
P5 X X X X X X X X X
P6 X X X X X X X X X
P7 X X X X X X X X X
P8 X X X X X X X X X
P9 X X X X X X X X X
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4.1.2.2. Analysis on the Basis of High Betweenness Centrality

High betweenness centrality value of a particular node (state) in a network (state graph)

means it is the most visited node by the neighboring nodes in the same network. In state

graphs where stable state has high betweenness centrality value, it is a part of certain

cycles. Moreover, it means there exist trajectories which are responsible for taking the

system towards that state, but such behavior won’t last because it is a part of cycle; so

this behavior comes and goes in a cyclic manner.

In case of a diseased state, parameter sets responsible for the generation of state graphs

where the diseased state has high betweenness centrality values unveil the basic informa-

tion regarding expression levels of entities required to avoid pathogenesis. Likewise, in

case of normal stable state, parameter sets responsible for the generation of state graphs

where the diseased state has high betweenness centrality values highlight the factors that

can help in cure if kept under consideration. Parameter sets in both scenarios help in

the identification of potential therapeutic targets.

During the analysis of both the states (00000 and 00121) with high betweenness cen-

trality values, cyclic behavior is observed which is sure to occur. Like low betweenness

centrality analysis, 1000 centrality values are retrieved and analysis is performed on first

10 sets of parameters corresponding to first 10 state graphs.
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Figure 4.6: Heat map for estimated parameters of state 00000 sorted on the basis of high
betweenness centrality.
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Figure 4.7: Heat map for estimated parameters of state 00121 sorted on the basis of high
betweenness centrality.
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Several cycles existed for both the states corresponding to each parameter set. While

studying 00000, 00121 appeared in some of its cycles and likewise for 00121, 00000

appeared in a lot of its cycles. Details are mentioned in tables 4.3 and 4.4.

Table 4.3: Information of cycles generated in state graphs due to parameter sets sorted on the
basis of high betweenness centrality of state 00000

Parameter
Sets for
00000

Total No.
of Cycles

Cycles for
00000

Cycles for
00121

P0 40 32 13
P1 40 32 13
P2 40 32 13
P3 40 32 13
P4 57 49 18
P5 57 49 18
P6 57 49 18
P7 57 49 18
P8 40 32 18
P9 40 32 13

Table 4.4: Information of cycles generated in state graphs due to parameter sets sorted on the
basis of high betweenness centrality of state 00121

Parameter
Sets for
00121

Total No.
of Cycles

Cycles for
00000

Cycles for
00121

P0 106 10 83
P1 106 12 83
P2 106 94 85
P3 106 94 85
P4 106 94 85
P5 106 94 85
P6 152 72 117
P7 152 72 117
P8 45 9 36
P9 45 9 36

Similar states are responsible for the cyclic behavior of both the stable states. These

states include 00100, 00101, 00111, 00110, 00120, 00020, 00010, 00011, 01011, 01010,

01000, 01111, 01110, 01120, 01021, 01020, 01101, 00021 and 01121.

For 00121, three states are identified which are responsible for diverting the system from

normal behavior to diseased behavior. These include 00111 as reported in [2], 00021 and
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01121. 00111 and 00021 have shown a huge responsibility in diverting the system towards

pathogenesis. 01121 has also played role in it but it’s not that significant. Thus, the

parameter sets which are responsible for 00111 → 00121 and 00021 → 00121 carry high

importance as they make these states as potential therapeutic targets in order to avoid

hyper inflammation.

4.2 Discussion

Parameter sets sorted on the basis of high betweenness centrality are responsible for

generating cycles. In case of pathogenic states, these parameters are responsible for

diverging the system from normal behavior to diseased behavior. Likewise for normal

states, they tell how system can be cured and reverted back to a normal path. Contrary

to high betweenness centrality, parameter sets sorted on the basis of low betweenness

centrality yield deadlocks. In short, parameter estimation on the basis of betweenness

centrality will always yield valuable information and this has been validated in the

previous section.

4.2.1 Limitations

The developed approach works well as per its proposed concept but nothing is perfect

and limitations always exist. Limitation of this approach is the processor and RAM of

computer system. As faster the system is, efficient the approach is. The case study of

MAL associated BRN took approximately 22 minutes of processing time on a computer

system of 3.6 GHz processor and 16 GB RAM whereas, it took approximately 80-90

minutes on a system having 2.4 GHz processor and 4 GB RAM. Moreover, the approach

works efficiently on simple and partially dense networks but as the density and size of

the network increases then it becomes problematic causing the system to freeze.
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Conclusion and Future Work

5.1 Conclusion

As mentioned in the chapters 1 and 2, parameters estimation of BRNs is a challenging

task which has been done using several techniques out of which model checking is one.

This study focuses on the development of a new approach for parameter estimation of

BRNs using concept of network centrality with René Thomas logical formalism. It is not

as exhaustive as model checking because the complexity of parameters estimation using

model checking is O(2n2n +2n) and that of using betweenness centrality is O(2n2n +nm).

Moreover, it is easy to use for Biologists as model checking requires properties to be

written in CTL formulas, which is not an easy job specifically for people having no

programming background. This approach has been developed using Python 3.7.0 by

incorporating its several libraries. It works efficiently on small to medium size networks.

The work is validated correctly by executing the approach on a case study of MAL

associated BRN and then comparing its results with already published results. The

estimated parameters are helpful in unveiling different kinds of information, especially

for the study of mutagenesis and drug designing.
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5.2 Future Work and Extension

Parameters are very crucial to understand the dynamics of biological systems. Thus,

their estimation is very important. Pioneer work of Thomas and other scientists in this

domain has benefited biologists a lot. Excessive experiments are replaced by compu-

tational tools to decrease the resource and time cost required by the experiments, as

these tools predict the behaviors and provide with specific sets particular to the prob-

lem to perform wet lab experiments. It is difficult to understand and use programming

and computational tools based on it thus, there is a dire need to develop sophisticated

softwares which are user friendly and easy to use by biologists. As mentioned in the

section 4.2.1, that developed approach works well and efficiently with fast processor and

bigger RAM, but not so efficient in the case of computer systems with slow processor

and small RAM; therefore, it can be extended in the future to make it parallel in order

to make it work efficiently on not so fast computer systems. Moreover, functionality

of identification of stable states can be added to this and the manual post parameter

estimation analysis can be automated in the future to lessen the difficulty of user.
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Supplementary Content

A.1 State Graphs of Pseudomonas aeruginosa
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