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Abstract

Traditionally, differential equations are solved using paper-and-pencil proof methods, com-

puter based numerical methods or computer algebra systems. All these methods are error-

prone and thus the analysis cannot be termed as accurate, which poses a serious threat to

the accuracy of the safety-critical systems that involve differential equations. To guarantee

the correctness of analysis, we propose to use higher-order-logic theorem proving to reason

about the correctness of solutions of differential equations. This thesis presents a formal-

ization framework to express homogeneous linear differential equation of arbitrary order

and formally verify their solutions within the sound core of a higher-order-logic theorem

prover HOL4. In order to illustrate the usefulness of the proposed formalization, we utilize

it to formally verify the solutions of a couple of safety-critical biomedical systems, namely

a heart pacemaker and a fluid-filled catheter, which are one of the most safety-critical

systems as their bugs could eventually result in the loss of human lives. We also show

the utilization of our work by formally verifying Analog and Mixed Signals (AMS) designs

which are widely being used in many integrated circuits. Due to their continuous nature,

their analysis has primarily been done with informal techniques, like simulation, or formal

methods with abstracted discrete models. This fact makes AMS designs error prone, which

may lead to disastrous consequences given the safety and financial critical nature of their

applications. Leveraging upon the high expressiveness of higher-order logic, we propose to

use higher-order-logic theorem proving to analyze continuous models of AMS designs. To

take an example of our foundational AMS design analysis formalization, we present the

formal analysis of a classical RLC circuit using the HOL4 theorem prover.
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Chapter 1

Introduction

1.1 Differential Equations and their Historical Back-

ground

An equation involving one dependent variable and its derivatives with respect to one or more

independent variables, is called a differential equation. Differential equations differ from

algebraic equations of mathematics because in addition to variables and constants they also

contain derivatives of one or more of the variables involved. Scientists and mathematicians

discovered differential equations in the middle of the 17th century. It was Isaac Newton an

english physicist, who solved his first differential equation in 1676 and was working with

what he called ”fluxional equations”. In 1693, German mathematician Gottfried Leibniz

solved his first differential equation and that same year Newton published the results of

previous differential equation solution methods, a year that is said to mark the inception

for the differential equations as a distinct field in mathematics.

1.2 Motivation

Most engineering and physiological systems exhibit a deterministic relationship between

continuously changing quantities and their rates of change. Such systems are mathemat-

ically analyzed by first capturing their behaviors by differential equations [40], where a

variable’s rate of change is modeled by an appropriate derivative function. These differen-

tial equations are then solved to obtain interesting design parameters for the underlying
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physical system. Solving a differential equation means to find the set of values that, when

substituted into the equation, satisfy it. Differential equations may have more than one

solution or no solution at all. However, it is a general consensus that a correctly speci-

fied engineering or a physiological system always has a unique solution, which is usually

obtained using initial conditions for each order of an ordinary differential equation [11].

1.3 Techniques used for Solving Differential Equations

1.3.1 Paper-and-Pencil Method

Traditionally, differential equations are solved using paper-and-pencil proof methods. How-

ever, considering the complexity of present age engineering and physiological systems, such

kind of analysis is notoriously difficult, if not impossible, and is quite error prone due to the

human error factor. Moreover, it is quite often the case that mathematicians forget to pen

down all the required assumptions that are required for the validity of their analysis. This

fact may lead to erroneous designs as well. For example, one of the recent paper-and-pencil

based analysis bugs can be found in [7] and its identification and correction is reported in

[30].

1.3.2 Computer based Softwares for solving Differential Equa-

tions

With the advent of computers, many computer based software tools based on the principle

of numerical methods have been introduced for finding the solutions of differentials equa-

tions [3, 4]. Due to the reliable and efficient bookkeeping characteristic of computers, much

larger systems can be analyzed using these methods. However, these methods cannot attain

100% accuracy due to the associated high memory and computation requirements for an-

alyzing real-world systems and the inherent usage of finite precision computer arithmetic.

Similarly Constraint Logic programming (CLP), which is an interval-based constraint lan-
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guage, has been used to model differential equations and find their solutions [20]. However,

due to the usage of interval arithmetics, this method cannot guarantee the absolute accu-

racy of the results. Another alternative to determine the solutions of differential equations

is a computer algebra system [13, 35], which is very efficient for computing mathemati-

cal solutions symbolically, but it is also unreliable [16] due to the presence of unverified

huge symbolic manipulation algorithms in its core, which are quite likely to contain bugs.

Thus, these traditional techniques should not be relied upon for the analysis of systems

involving differential equations, especially when they are used in safety-critical areas, such

as medicine and transportation, where inaccuracies in the analysis could result in system

design bugs that in turn may even lead to the loss of human lives in worst cases.

1.3.3 Formal Methods

In the past couple of decades, formal methods have emerged as a successful verification

technique for both hardware and software systems. The rigorous exercise of developing a

mathematical model for the given system and analyzing this model using mathematical

reasoning usually increases the chances for catching subtle but critical design errors that

are often ignored by traditional techniques like paper-and-pencil based proofs or numerical

methods. Given the extensive usage of differential equations in safety-critical systems,

there is a dire need of using formal methods support in this domain. However, due to the

continuous nature of the analysis and the frequent involvement of transcendental functions,

pure automatic state-based approaches, like model checking [24], cannot be used in this

domain. In order to overcome this limitation, hybrid model-checking and theorem proving

based approaches, e.g, [1] have been used for the verification of hybrid systems having

both discrete and continuous components. Moreover, safety properties of hybrid systems

have also been formally verified using differential invariants [32, 33] based on fixed point

algorithms. The higher-order logic theorem prover PVS has also been used in the context

of verifying parallel composition of hybrid systems [2]. Similarly, the Coq theorem prover

has been used to formally verify the convergence of numerical solutions for a widely used
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partial differential wave equation [5]. However, to the best of our knowledge, none of

these existing formal approaches allow us to verify the solutions of differential equations.

We believe that higher-order-logic theorem proving [14, 17] offers a promising solution for

overcoming this limitation. The high expressiveness of higher-order logic can be leveraged

upon to essentially model any system that can be expressed in a closed mathematical form.

In fact, most of the classical mathematical theories behind elementary calculus, such as

differentiation, limit, etc., and transcendental functions, which are the most fundamental

tools for solving differential equations, have been formalized in higher-order logic [16].

1.4 Related Work

Formal methods are widely being used these days for the verification of hardware and soft-

ware systems due to their extensive usage in safety-critical applications, such as medicine

and transportation. However, to the best of our knowledge, the usage of formal methods

for analyzing dynamic systems, whose behavior can be modeled by differential equations, is

very rare. The main challenge being the continuous nature of the system behavior, which

cannot be modeled precisely in computer-arithmetic systems like floating point numbers.

Traditionally, differential equations are solved using paper-and-pencil proof methods.

However, considering the complexity of present age engineering and physiological systems,

such kind of analysis is notoriously difficult, if not impossible, and is quite error prone

due to the human error factor. Moreover, it is quite often the case that mathematicians

forget to pen down all the required assumptions that are required for the validity of their

analysis. This fact may lead to erroneous designs as well. For example, one of the recent

paper-and-pencil based analysis bugs can be found in [7] and its identification and correc-

tion is reported in [30]. With the advent of computers, many computer based software tools

based on the principle of numerical methods have been introduced for finding the solutions

of differentials equations [3, 4]. Due to the reliable and efficient bookkeeping character-

istic of computers, much larger systems can be analyzed using these methods. However,
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these methods cannot attain 100% accuracy due to the associated high memory and com-

putation requirements for analyzing real-world systems and the inherent usage of finite

precision computer arithmetic. Similarly Constraint Logic programming (CLP), which is

an interval-based constraint language, has been used to model differential equations and

find their solutions [20]. However, due to the usage of interval arithmetics, this method

cannot guarantee the absolute accuracy of the results. Another alternative to determine

the solutions of differential equations is a computer algebra system [13, 35], which is very

efficient for computing mathematical solutions symbolically, but it is also unreliable [16]

due to the presence of unverified huge symbolic manipulation algorithms in its core, which

are quite likely to contain bugs. Thus, these traditional techniques should not be relied

upon for the analysis of systems involving differential equations, especially when they are

used in safety-critical areas, such as medicine and transportation, where inaccuracies in the

analysis could result in system design bugs that in turn may even lead to the loss of human

lives in worst cases.

The main principle behind formal analysis of a system is to construct a computer based

mathematical model of the given system and formally verify, within a computer, that this

model meets rigorous specifications of intended behavior. Two of the most commonly

used formal verification methods are model checking [24] and higher-order-logic theorem

proving [14]. Model checking is an automatic verification approach for systems that can be

expressed as a finite-state machine. Higher-order-logic theorem proving, on the other hand,

is an interactive approach but is more flexible in terms of tackling avariety of systems.

In model checking the basic idea is to represent the system behavior as a finite-state

concurrent model and the system properties as temporal logic formulas. Then, efficient

symbolic algorithms are used to automatically traverse the finite-state model of the system

and check if a given temporal logic specification holds or not. However, model checking

is not very suitable for analyzing the pure continuous models of a system. The biggest

limitation associated with model checking in this regard is the state-space explosion problem

[24]. The state space of a system with continuous components is usually very very large or
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infinite. Thus, at the outset, it becomes impossible to explore the entire state space with

limited resources of time and computer memory.

Higher-order logic is a system of deduction with a precise semantics and is expres-

sive enough to be used for the specification of almost all classical mathematics theories.

Interactive theorem proving is the field of computer science and mathematical logic con-

cerned with precise computer based formal proof tools that require some sort of human

assistance. Due to the high expressive nature of the underlying logic, higher-order-logic

theorem proving can be utilized to analyze any system, irrespective of its continuous na-

ture, as long as it can be expressed in a closed mathematical form. In fact, most of the

classical mathematical theories, such as real numbers, differentiation, limits [16], which are

the most fundamental tools for analyzing continuous systems, have already been formalized

in higher-order-logic. Given the availability of this foundational formalization, we utilize

higher-order-logic theorem proving for developing a formal framework to reason about ho-

mogeneous linear differential equations. In particular, we use the HOL4 theorem prover,

which is an LCF style theorem prover mainly to have access to Harrison’s seminal work on

real analysis[16] .

Other notable higher-order-logic formalizations related to differential equations include

verification of the convergence of numerical solutions for differential equations [5] and the

approximate numerical solution of ordinary differential equations using the one-step method

[23]. However, to the best of our knowledge, none of these existing formal approaches

allow us to verify the solutions of differential equations that are obtained via traditional

informal analysis techiques. In this thesis, we provide this capability by leveraging upon

the high expressiveness of higher-order logic. The main idea is to construct pure continuous

models of differential equations and their solutions as functions in higher-order logic and

formally verify their correspondence using theorem proving [14, 17]. This way the exact

solutions obtained from traditional techniques can be verified and the error-bounds on the

approximate solutions can also be formally judged. Moreover, the current thesis presents

the formal verification of solutions of differential equations of arbitrary order, which to the

6



best of our knowledge is a novelty.

1.5 Proposed Methodology

The main purpose of this thesis is to formally verify the solutions of homogeneous linear

differential equation with constant coefficients. Particularly, developed framework is char-

acterized as :

1. The formal definitions of the derivative, n-order derivative and differntial equation in

HOL theorem prover.

2. The ability to formally verify the theorems and properties of the homogeneous linear

differential equations in a higher-order logic theorem prover. These properties play

a very important role for the formal analysis of the systems that involve differential

equations.

3. The ability to formally reason about the theorems, formalized in step 2, using a

theorem prover.

4. The ability to utilize the above mentioned capabilities to formally model and reason

about real world problems that can be modeled using differential equations.

The proposed methodology, given in Figure 1.1, outlines the main idea behind the theorem

proving based analysis of systems involving differential equations. The grey shaded boxes

in this figure represent the key contributions of the thesis that serve as basic requirements

for conducting formal analysis of the systems involving differential equations in a theorem

prover. The input to this framework, depicted by two rectangles with curved bottoms,

is the formal description of the system involving differential equations that needs to be

analyzed and a set of constraints (properties) that are required to be checked for the given

7



Figure 1.1: Proposed Methodology

system. The first step in conducting formal analysis of the systems involving differential

equations is to construct a formal model of the given system in higher-order-logic. For

this purpose, our formalization primarily builds upon the higher-order-logic formailzation

of the derivative function and its associated propertties. Our work is based on Harrison’s

formalization [16] that is available in HOL4 theorem prover. The second step is to represent

the interesting properties of the system as higher-order-logic proof goals.

The third step for conducting analysis of system involving differential equations in a theo-

rem prover is to formally verify the higher-order-logic theorems developed in the previous

step using a theorem prover. For this verification, it would be quite handy to have access to

a library of some pre-verified theorems corresponding to some commonly used properties of

the differential equations. To fullfill this requirment, this thesis presents the formal verifi-

cation of properties related to differential equations such as linearity for n-order derivative

and homogeneous property. Building on such a library of theorems would minimize the
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interactive verification efforts and thus speed up the verification process. Finally, the out-

put of the theorem proving based framework of the system involving differential equations,

depicted by the rectangle with dashed edges, is the formal proofs of system properties that

certify that the given system properties are valid for the given system involving differential

equations.

1.6 Thesis Contributions

This thesis presents a set of formal definitions that allow us to formalize any homogeneous

linear differential equation. We also provide a couple of formally verified properties that

facilitate reasoning about the solutions of these differential equations within the sound core

of a higher-order-logic theorem prover HOL4. The almost automatic reasoning process

makes our methodology very useful for industrial usage as its users do not have to very

proficient with the cumbersome real-theoretic formal reasoning process. More specifically,

this thesis makes the following contributions:

1. It provides the formal definitions related to solution of general order homogeneous

linear differential equations.

2. The above definitions provide a framework to formally describe and verify solutions

of homogeneous linear differential equation.

3. In this thesis, For illustration purpose, we applied the proposed methodology for ver-

ifying the solutions of differential equations related to a couple of biomedical systems

and Analog and Mixed Signal designs. To the best of our knowledge, this is the first

formal reasoning support for verifying solutions of homogeneous linear differential

equations that has been reported in the open literature.

9



1.7 Organization of the Thesis

The rest of the thesis is organized as follows: Chapter 2 presents a brief introduction to

the HOL4 theorem prover and its formalization of the derivative function. In Chapter 3,

we present the formalization of the second order homogeneous linear differential equation

and then we utilize this formalization to formally verify its general solution. Chapter 4

describes the formalization of the general order homogeneous linear differential equation

and similarly as in chapter 3, we utilize this formalization to formally verify its general

solution. The analysis of the couple of biomedical applications and AMS designs such as

series RLC circuit is presented in Chapter 5. Finally, Chapter 6 concludes the thesis and

gives directions for some future work.
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Chapter 2

Preliminaries

In this chapter, we give a brief introduction to the HOL4 theorem prover and the formal-

ization of the derivative function in HOL4 function to facilitate the understanding of the

rest of the thesis.

2.1 HOL4 Theorem Prover

HOL4 is an interactive theorem prover developed by Mike Gordon at the University of

Cambridge for conducting proofs in higher-order logic. It utilizes the simple type theory of

Church [6] along with Hindley-Milner polymorphism [29] to implement higher-order logic.

HOL4 has been successfully used as a verification framework for both software and hardware

as well as a platform for the formalization of pure mathematics.

2.2 Theorem Proving

In order to ensure secure theorem proving, the logic in the HOL4 system is represented

in the strongly-typed functional programming language ML [31]. An ML abstract data

type is used to represent higher-order logic theorems and the only way to interact with the

theorem prover is by executing ML procedures that operate on values of these data types.

The HOL4 core consists of only 5 basic axioms and 8 primitive inference rules, which are

implemented as ML functions.
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2.3 Terms

There are four types of HOL4 terms: constants, variables, function applications, and

lambda-terms (denoted function abstractions). Polymorphism, types containing type vari-

ables, is a special feature of higher-order logic and is thus supported by HOL4. Semantically,

types denote sets and terms denote members of these sets. Formulas, sequences, axioms,

and theorems are represented by using terms of Boolean types.

2.4 Theories

A HOL4 theory is a collection of valid HOL4 types, constants, axioms and theorems, and

is usually stored as a file in computers. Users can reload a theory in the HOL4 system

and utilize the corresponding definitions and theorems right away. The concept of HOL4

theory allows us to build upon existing results in an efficient way without going through the

tedious process of regenerating these results using the basic axioms and primitive inference

rules.

HOL4 theories are organized in a hierarchical fashion. Any theory may inherit types,

definitions and theorems from other available HOL4 theories. The HOL4 system prevents

loops in this hierarchy and no theory is allowed to be an ancestor and descendant of a

same theory. Various mathematical concepts have been formalized and saved as HOL4

theories by the HOL4 users. These theories are available to a user when he first starts

a HOL4 session. We utilized the HOL4 theories of Booleans, lists, positive integers and

real analysis in our work. In fact, one of the primary motivations of selecting the HOL4

theorem prover for our work was to benefit from these built-in mathematical theories.

2.5 Writing Proofs

HOL4 supports two types of interactive proof methods: forward and backward. In forward

proof, the user starts with previously proved theorems and applies inference rules to reach

12



the desired theorem. In most cases, the forward proof method is not the easiest solution

as it requires the exact details of a proof in advance. A backward or a goal directed proof

method is the reverse of the forward proof method. It is based on the concept of a tactic;

which is an ML function that breaks goals into simple sub-goals. In the backward proof

method, the user starts with the desired theorem or the main goal and specifies tactics to

reduce it to simpler intermediate sub-goals. Some of these intermediate sub-goals can be

discharged by matching axioms or assumptions or by applying built-in decision procedures.

The above steps are repeated for the remaining intermediate goals until we are left with

no further sub-goals and this concludes the proof for the desired theorem.

The HOL4 theorem prover includes many proof assistants and automatic proof proce-

dures to assist the user in directing the proof. The user interacts with a proof editor and

provides it with the necessary tactics to prove goals while some of the proof steps are solved

automatically by the automatic proof procedures.

2.6 Derivatives in HOL4

Harrison [16] formalized the real number theory along with the fundamentals of calculus,

such as real sequences, summation series, limits of a function and derivatives and verified

most of their classical properties in HOL4. The limit of a function f , which takes a real

number and returns a real number, is defined in HOL4 using the operator → as follows

[16]:

Definition 1: Limit of a Function

` ∀ f y0 x0. (f → y0)(x0) =

∀e. 0 < e ⇒

∃d. 0 < d ∧ ∀x. 0 < |x - x0| ∧ |x - x0| < d ⇒

|f(x) - y0| < e

where (f → y0)(x0) can be written mathematically as lim(x→x0)f(x) = y0, i.e., the func-

tion f approaches y0 as its real number argument approaches x0. Based on this definition,
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the derivative of a function f is defined as follows [16]:

Definition 2: Derivative of a Function (Relational Form)

` ∀ f l x. (f diffl l) x = ((λ h.(f (x + h) - f x) / h) → l) (0)

Definition 2 provides the derivative of a function f at point x as the limit value of f(x+h)−f(x)
h

when h approaches 0, which is the standard mathematical definition of the derivative

function. Now, the differentiability of a function f is defined as the existence of its derivative

[16].

Definition 3: Differentiability of a Function

` ∀ f x. f differentiable x = ∃l. (f diffl l) (x)

A functional form of the derivative, which can be used as a binder, is also defined using

the Hilbert choice operator @as follows [16]:

Definition 4: Derivative of a Function (Functional Form)

` ∀ f x. deriv f x = @l. (f diffl l) x

The function deriv accepts two parameters f and x and returns the derivative of function

f at point x.

The above mentioned definitions associated with the derivative function have been ac-

companied by the formal verification of most of their classical properties, such as unique-

ness, linearity and composition [16].

2.6.1 HOL Notations

Table 2.1 provides the mathematical interpretations of some frequently used HOL symbols

and functions in this thesis.

14



Table 2.1: HOL Symbols and Functions

HOL Symbol Standard Symbol Meaning
/\ and Logical and
\/ or Logical or
∼ not Logical negation

==> −→ Implication
<==> = Equality

!x.t ∀x.t for all x : t
?x.t ∃x.t for some x : t
λx.t λx.t Function that maps x to t(x)
num {0, 1, 2, . . .} Positive Integers data type
real All Real numbers Real data type
suc n (n+ 1) Successor of natural number
ln x loge(x) Natural logarithm function
abs x |x| Absolute function
min x y min(x, y) Minimum of x and y
max x y max(x, y) Maximum of x and y
FACT n n! Factorial of n
inv x 1/x Inverse of x
SUC n n+ 1 Successor of a num
m ∗ ∗ n mn num m raised to num exponent n
inv x x−1 Multiplicative inverse of a real x
λx.t λx.t Function that maps x to t(x)

lim(λn.f(n)) lim
n→∞

f(n) Limit of a real sequence f

{x|P (x)} {λx.P (x)} Set of all x that satisfy the condition P
(a, b) a x b A mathematical pair of two elements
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Chapter 3

Formalization of Second-order

Homogeneous Linear Differential

Equation in HOL4

This chapter presents the higher-order-logic formalization of second-order homogenous lin-

ear differential equation and the formal verification of its general solution using the HOL4

theorem prover. This chapter consists of two sectioms. In the first section we have veri-

fied solution of second-order homogenous linear differential equation with real and distinct

roots while in second section we have verified solution of second-order homogenous linear

differential equation with real and repeated roots

3.1 Second-order Homogeneous Linear Differential Equa-

tions

A second-order homogeneous linear differential equation can be mathematically expressed

as follows:

p2(x)
d2y(x)

dx
+ p1(x)

dy(x)

dx
+ p0(x)y(x) = 0 (3.1)

where terms pi represent the coefficients of the differential equation defined over a function

y. The equation is linear because (i) the function y and its derivatives appear only in

their first power and (ii) the products of y with its derivatives are also not present in the
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equation. By finding the solution of the above equation, we mean to find functions that

can be used to replace the function y in the above equation and satisfy it.

We proceed to formally represent the above equation by first formalizing an nth-order

derivative function as follows:

Definition 1: Nth-order Derivative of a Function

` (∀ f x. n order deriv 0 f x = f x) ∧

(∀f x n.n order deriv (n+1) f x = n order deriv n (deriv f x) x)

The function n order deriv accepts an integer n that represents the order of the derivative,

the function f that represents the function that needs to be differentiated, and the variable

x that is the variable with respect to which we want to differentiate the function f . It

returns the nth-order derivative of f with respect to x. Now, based on this definition, we

can formalize the left-hand-side (LHS) of an nth-order differential equation in HOL4 as the

following definition.

Definition 2: LHS of a Nth-order Differential Equation

` ∀ P y x. diff eq lhs P y n x =

sum(0,n)(λm.(EL m P x) * (n order deriv m y x))

The function diff eq lhs accepts a list P of coefficient functions corresponding to the

pi’s of Equation (3.1), the differentiable function y, the order of differentiation n and the

differentiation variable x. It utilizes the HOL4 functions sum (0,n) f and EL n L, which

correspond to the summation (
∑n−1

i=0 fi) and the nth element of a list Ln, respectively. It

generates the LHS of a differential equation of nth order with coefficient list P . The second-

order differential equation of Equation (3.1) can now be formally modeled by instantiating

variable n of Definition 2 by number 3, since n = 0 returns 0.
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3.1.1 Solution of Second-order Homogeneous Linear Differential

Equations with Real and Distinct roots

If the coefficients pi’s of Equation (3.1) are constants then, using the fact that the derivative

of the exponential function y = erx (with a constant r) is a constant multiple of itself

dy/dx = rerx, if the roots of Equation (3.1) are real and distinct then we can obtain the

following solution:

Y (x) = c1e
r1x + c2e

r2x (3.2)

where c1 and c2 are arbitrary constants and r1 and r2 are the real and distinct roots of the

auxiliary equation p2r
2 + p1r

1 + p0 = 0 [40]. In this section, we formally verify this result

which plays a key role in formal reasoning about the solutions of second-order homogeneous

linear differential equations in a higher-order-logic theorem prover.

Theorem 1: General Solution of a Second-order Homogeneous Linear Differential

Equation with real and distinct roots

` ∀ a b c c1 c2 r1 r2 x.

(c + (b * r1) + (a * (r1 pow 2)) = 0) ∧

(c + (b * r2) + (a * (r2 pow 2)) = 0) ⇒

(diff eq lhs (const list [c; b; a])

(λx. c1 * (exp (r1 * x)) + c2 * (exp (r2 * x))) 3 x = 0)

where [c; b; a] represents the list of constants corresponding to the coefficients p0, p1 and

p2 of Equation (3.1), r1 and r2 represent the roots of the corresponding auxiliary equation

as given in the assumptions, c1 and c2 are the arbitrary constants and x is the variable

of differentiation. The function const fn list used in the above theorem transforms a

constant list to the corresponding constant function list recursively as follows:

Definition 3: Constant Function List

` (const fn list [] = []) ∧

(∀ h t. const fn list (h::t) = (λ(x:real). h) :: (const fn list t))
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The function diff eq lhs permits coefficients that are functions of the variable of differ-

entiation but Theorem 1 is valid only for constant coefficients. Thus, using const fn list

we provide the required type for the coefficient list of the function diff eq while fulfilling

the requirement of Theorem 1. The formal reasoning about Theorem 1 is primarily based

on differential of exponential function which has been verified in Theorem 3 and the linear-

ity property of higher-order derivatives, which has been verified in our work for class Cn

functions, i.e., the functions for which the first n derivatives exist for all x as the following

higher-order-logic theorem:

Theorem 2: Linearity of nth-order Derivative

` ∀ f g x a b.

(∀m x. m ≤ n ⇒ (λx. n order deriv m f x) differentiable x) ∧

(∀m x. m ≤ n ⇒ (λx. n order deriv m g x) differentiable x) ⇒

(n order deriv n (λx. a * f x + b * g x) x =

a * n order deriv n f x + b * n order deriv n g x)

where variables a and b represent constants with respect to variable x. The formal rea-

soning about Theorem 2 involves induction on variable n, which represents the order of

differentiation, and is primarily based on the linearity property of the first order derivative

function [16]. The derivatives of some commonly used transcendental functions have also

been verified. For example, the derivative of the Exponential function has been verified as

follows:

Theorem 3: Differential of the Exponential Function

` ∀ g m x. ((g diffl m) x ⇒

((λ x. exp (g x)) diffl (exp (g x) * m)) x)

where exp x represents the exponential function ex and (λx.f(x)) represents the lambda

abstraction function which accepts a variable x and returns f(x).

Similarly, the Gauge integral has been formalized as a function Dint (a, b) f k [16], which

mathematically describes
∫ b

a
f(x) dx = k. The corresponding function form is
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Definition 4: Integral of a Function (Functional Form)

` ∀ a b f.integral (a,b) f = @k.Dint (a,b) f k

Many interesting properties of integration have been formally verified in [16] and, for the

current work, we also extended the formal reasoning support for integrals as part of the

reported work. One of the most useful formally verified property in our development being

the first fundamental theorem of calculus (FTC) [15], according to which if f is a continuous

real-valued function defined on a closed interval [a, b] and

F (x) =

∫ x

a

f(t) dt then
dF (x)

dx
= f(x) (3.3)

for all x in (a, b). We verified this in HOL4 as follows:

Theorem 4: First Fundamental Theorem of Calculus

` ∀ f a b x. (a < x) ∧ (x < b) ∧ (∀ y. (a≤y) ∧ (y≤b)

⇒ (g y = integral (a,y) f)) ∧ (∀ z. (a≤z) ∧ (z≤b)

⇒ (f contl z)) ⇒ ((g diffl (f x)) x)

We build upon the above mentioned results to develop the higher-order-logic foundations

for AMS circuit analysis.

3.1.2 Solution of Second-order Homogeneous Linear Differential

Equations with Real and Repeated roots

If the roots of Equation (3.1) are real and repeated then we can obtain the following

solution:

Y (x) = c1e
rx + c2xe

rx (3.4)

where c1 and c2 are arbitrary constants and r is the real and repeated root occurring twice

of the auxiliary equation p2r
2 + p1r

1 + p0 = 0 [40]. Just like Theorem 3, we also formally

verified that this solution satisfies Equation (3.1).

20



Theorem 5: General Solution of a Second-order Homogeneous Linear Differential

Equation with real and repeated roots

` ∀ a b c c1 c2 r1 r2 x.

(c + (b * r) + (a * (r pow 2)) = 0) ∧

((b pow 2) - (4 * a * c) = 0) ∧ b <> 0

⇒ (diff eq lhs (const list [c; b; a])

(λx. c1 * (exp (r * x)) +

c2 * (x * exp (r * x))) 3 x = 0)

where r represents the real and repeated root of the corresponding auxiliary equation and

the rest of the variables are the same as Theorem 1. The formal reasoning about Theorem

4 is also mainly based on Theorems 2 and 3 and the well-known quadratic formula which

we formally verified as follows:

Theorem 6: Quadratic Formula

` ∀ a b c x.

((a*(x pow 2)) + (b*x)+c = 0) ∧ a <> 0 ⇒

(x=(-b+sqrt(b pow 2 - 4*a*c))/(2 * a)) ∧

(x=(-b-sqrt(b pow 2 - 4*a*c))/(2 * a))
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Chapter 4

Formal Verification of Solutions of

General-order Homogeneous Linear

Differential Equation in HOL4

In the last chapter we have formally verified solutions of second-order homogeneous linear

differential equations. In this chapter we have enhanced our work to the general order and

formally verified solutions of homogeneous linear differential equations of general order.

This chapter also consists of two sections. In the first section we have formally verified

solutions of homogeneous linear differential equations of general order with real and distinct

roots while in second section we have formally verified solutions of homogeneous linear

differential equations of general order with real and repeated roots.

4.1 Homogeneous Linear Differential Equations

An nth-order homogeneous linear differential equation can be mathematically expressed as

follows:

pn(x)
dny(x)

dx
+ pn−1(x)

dn−1y(x)

dx
+ · · ·+ p0(x)y(x) = 0 (4.1)

where terms pi(x) represent the coefficients of the differential equation defined over a func-

tion y. The equation is linear because (i) the function y and its derivatives appear only in

their first power and (ii) the products of y with its derivatives are also not present in the
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equation. By finding the solution of the above equation, we mean to find functions that

can be used to replace the function y in Equation (4.1) and satisfy it. In the next section,

we utilize Definition 2 and Theorem 2 which are explained in chapter 3 to verify generic

solutions of Equation (4.1).

4.2 Solution of Homogeneous Linear Differential Equa-

tions

It is a well-known mathematical fact that if y1(x), y2(x), · · · , yn(x) are independent solu-

tions of Equation (4.1) then their linear combination

Y (x) = c1y1(x) + c2y2(x) + · · ·+ cnyn(x) (4.2)

also forms a solution of Equation (4.1), where c1, c2, · · · , cn are arbitrary constants [40].

This result plays a vital role in solving differential equations as it allows us to find the

solution of a differential equation if its n independent solutions are known.

We formalized the first property, corresponding to Equation (4.2), as the following

higher-order-logic theorem:

Theorem 1: General Solution of a Homogeneous Linear Differential Equation

` ∀ Y C P x.

(n order differentiable fn list Y (LENGTH P)) ∧

(n order diff eq soln list Y P x) ⇒

(diff eq lhs P (λx. linear sol C Y x) x = 0)

where Y represents the list of solutions y1(x), y2(x), · · · , yn(x) of the given differential

equation, C represents the list of arbitrary constants c1, c2, · · · , cn, P represents the list of

functions corresponding to the coefficients p1(x), p2(x), · · · , pn(x) of the differential equa-

tion and x is the variable of differentiation. The first predicate in the assumptions of
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Theorem 1, i.e, n order differentiable fn list, ensures that each element of the list

Y is nth-order differentiable, where n ranges from 0 to LENGTH P. It is defined in HOL4

recursively as follows:

Definition 1: Nth-order Differentiable List of Functions

` (∀ n. n order differentiable fn list [] n = True) ∧

∀ h t n. n order differentiable fn list (h::t) n =

(∀m x. m ≤ n ⇒ (λx. n order deriv m h x) differentiable x) ∧

n order differentiable fn list t n

where :: represents the list cons operator in HOL4.

The second predicate in the assumptions of Theorem 1, i.e., n order diff eq soln list,

ensures that each element of the list Y is a solution of the given differential equation with

coefficients P . This predicate is recursively defined in HOL4 as follows:

Definition 2: List of Solutions of a Nth-order Differential Equation

` (∀ P x. n order diff eq soln list [] P x = True) ∧

∀ h t P x. n order diff eq soln list (h::t) P x =

(diff eq lhs P h x = 0) ∧ n order diff eq soln list t L x

Finally the function linear sol, used in the conclusion of Theorem 1, models the linear

solution represented by Equation (4.2) using the lists of solution functions Y and arbitrary

constants C as follows:

Definition 3: Linear Combination of Solutions

` (∀ C x. linear sol C [] x = 0) ∧

∀ C h t x. linear sol C (h::t) x =

EL (LENGTH C - LENGTH (h::t)) C * h x + linear sol C t x

The looping variable of the above definition is instantiated with the list Y in Theorem 1

and the expression EL (LENGTH C - LENGTH (h::t)) C picks the corresponding constant
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from list C for each yi. Thus, using the functions linear sol and diff eq lhs, we have

formally specified the intended property in the conclusion of Theorem 1.

We verified Theorem 1 by performing induction on the the variable Y . The proof is

primarily based on the linearity properties of the nth-order derivative, given in Theorem

2 of chapter 3, the linearity properties of the summation function along with arithmetic

reasoning [34].

4.3 Solution of Homogeneous Linear Differential Equa-

tion with Real and Distinct Roots

A particular case of interest arises when the coefficients pi’s of Equation (4.1) are constants

in terms of the differentiation variable x. In this case, using the fact that the derivative

of the exponential function y = erx (with a constant r) is a constant multiple of itself

dy/dx = rerx, we can obtain the following solution of Equation (4.1):

Y (x) = c1e
r1x + c2e

r2x + · · ·+ cne
rnx (4.3)

where c1, c2, · · · , cn are arbitrary constants and r1, r2, · · · , rn are the real and distinct roots

of the auxiliary equation

pnr
n + pn−1r

n−1 + · · ·+ p0 = 0 (4.4)

with constant pi’s [40]. The above mentioned results play a key role in solving homogeneous

linear order differential equations and the main focus of this thesis is the formal verification

of these results, which in turn would facilitate formal reasoning about the solutions of

differential equations in a higher-order-logic theorem prover.

The second property of interest, described using Equation (4.3), can be expressed in

HOL4 as the following theorem:
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Theorem 2: General Solution of a Homogeneous Linear Differential Equation with Real

and Distinct Roots

` ∀ C P R x.

(aux eq roots list R (const fn list P) x) ⇒

(diff eq lhs (const fn list P)

(λx. linear sol C (exp list R) x) x = 0)

where C represents the list of arbitrary constants c1, c2, · · · , cn, P represents the list of

constants corresponding to the coefficients p1, p2, · · · , pn of the differential equation, R

represents the list of roots r1, r2, · · · , rn of the auxiliary equation, given in Equation (5.1),

and x is the variable of differentiation. The function const fn list used in the above

theorem transforms a constant list to the corresponding constant function list recursively

as follows:

Definition 4: Constant Function List

` (const fn list [] = []) ∧

(∀ h t.const fn list (h::t) = (λ(x:real).h) :: (const fn list t))

The function diff eq lhs permits coefficients that are functions of the variable of differen-

tiation but Theorem 2 is valid only for constant coefficients. Thus, using const fn list we

provide the required type for the coefficient list of the function diff eq lhs while fulfilling

the requirement of Theorem 2.

The assumption predicate, i.e, aux eq roots list, ensures that each element of the

list R is a valid root of the auxiliary equation, like the one given in Equation (5.1), with

constant coefficients given by list P . It is defined in HOL4 recursively as follows:

Definition 5: Auxiliary Equation Roots

` ∀ P r x. aux eq root P r x =

(sum(0,LENGTH P)(λn.((EL n P x)) * (r pow n)) = 0)

(∀ P x. aux eq roots list [] P x = True) ∧
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(∀ h t P x. aux eq roots list (h::t) P x =

(aux eq root P h x) ∧ (aux eq roots list t P x))

The first function aux eq root ensures that its argument r is a valid root of the auxiliary

equation formed by coefficients given in list P . The function aux eq roots list recursively

calls function aux eq root for each entry of the looping variable and thus ensures that all

the entries of the looping list are valid roots of the auxiliary equation formed by coefficients

given in list P .

Finally, the function exp list is used in Theorem 2 to model a list of exponential

functions that are used to form the solution of the main differential equation, like the one

given in Equation (4.3). This function is defined as follows:

Definition 6: List of Exponential Functions

` (exp list [] = []) ∧

(exp list (h::t) = (λx. exp (h * x)) :: (exp list t))

It is important to note that the function linear sol is used to express the conclusion of

Theorem 2 as has been then case for Theorem 1. This way, the formally verified result of

Theorem 1 can be used in formally verifying Theorem 2. The formal reasoning about The-

orem 2 is conducted by performing induction on variable Y and the reasoning is primarily

based on Theorem 2 and the following lemma that allows us to express the left-hand-side

of the step case subgoal of Theorem 2 in terms of real summation [34].

Lemma 1:

` ∀ P h x. (diff eq lhs P (λx. exp (h * x)) x =

(exp (h * x) * (sum (0,LENGTH P) (λn. EL n P x * h pow n))))
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4.4 Solution of Homogeneous Linear Differential Equa-

tion with Real and Repeated Roots

Now, If the roots of an auxiliary equation are real and repeated then the solution of

Equation (4.1) can be written as

Y (x) = c1e
rx + c2xe

rx + · · ·+ cnx
n−1erx (4.5)

where c1, c2, · · · , cn are arbitrary constants and r is the real and repeated root of the

auxiliary equation given below

pnr
n + pn−1r

n−1 + · · ·+ p0 = 0 (4.6)

The solution of Equation (4.1) , described using Equation (4.5), can be expressed in

HOL4 as the following theorem:

Theorem 3: Solution of a Homogeneous Linear Differential Equation with Real and

Repeated Roots

` ∀ C R r. (∀n. EL n R = r) ∧

(∀m. m < LENGTH R ⇒

(diff eq lhs (const fn list C) (λx. x pow m * exp (r * x)) x =0))

⇒ (diff eq lhs (const fn list C)

(λx. linear sol C (polynomial function R) x) x = 0)

Where C and R are lists of constants and roots, respectively, just like the distinct roots

theorem.

The assumptions of Theorem 3 ensure that all the roots of the auxiliary equation are the

same and equal to r and erx, xerx, x2erx, · · · , xLENGTH R −1erx are all solutions of the given

differential equation. The conclusion of the theorem specifies that Equation 5 is a solution
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of the given differential equation using the functions polynomial function and linear sol,

which are defined as follows::

Definition 7: List of Polynomial Functions

` (polynomial function [] = []) ∧

(polynomial function (h::t) n =

(λx.(x pow (LENGTH t)) * exp (h * x)) :: (polynomial function t))

Definition 8: Linear Combination of Solutions

` (∀ C x. linear sol C [] x = 0) ∧

∀ C h t x. linear sol C (h::t) x =

EL (LENGTH C - LENGTH (h::t)) C * h x + linear sol C t x

The formal reasoning about Theorem 3 is conducted by performing induction on variable

R and the reasoning is primarily based on Theorem 1 and the following lemma that tells us

that all derivatives of exponential with multiple of increasing power of x are differentiable.

Lemma 2:

` ∀ R n h x.

(λx. n order deriv n (λx. x pow LENGTH R * exp(h * x)) x)

differentiable x

Besides the above mentioned key results, we also verified the famous quadratic formula,

which plays a vital role in reasoning about the auxiliary equations of second degree and

also provides some support for reasoning about auxiliary equations of higher order. The

quadratic formula is verified as the following theorem in our development.

Theorem 4: Quadratic Formula

` ∀ a b c x. (a 6= 0) ∧ (4 * a * c < b pow 2) ⇒

aux eq roots list [((-b + sqrt (b pow 2 - 4 * a * c)) / (2 * a));

((-b - sqrt (b pow 2 - 4 * a * c)) / (2 * a))]

(const fn list [a; b; c]) x
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where the functions sqrt and pow represent the square-root and square of a real number,

respectively. The theorem essentially says that the roots of the auxiliary equation ax2+bx+c

are given by the first list argument of the function aux eq roots list. The assumption

(4 * a * c < b pow 2) guarantees that the roots are always real.

30



Chapter 5

Applications

In order to illustrate the usefulness of the proposed formalization, we show usefulness of our

work by formally verifying analog and mixed signal (AMS) designs such as classical RLC

circuit and an second-order Op Amp circuit. We utilize it to reason about the correctness of

a couple of safety-critical biomedical systems, namely a heart pacemaker and a fluid-filled

catheter.

5.1 Analog and Mixed Signal Circuits Applications

The analog and mixed signal (AMS) circuits [26] are characterized by having both analog

and digital components on a single semiconductor die and are usually used to connect

the electronic systems with their continuous real-world environments. These days, AMS

circuits are widely used in many applications ranging from smart sensors, low data rate

RF devices, medical monitoring devices, cellular telephones, software radios and network

routers. The continuous nature of the AMS circuits makes their design and analysis quite

challenging as we have to guarantee that the circuit generates a correct and stable output

for all continuously changing inputs, in-die variations and noise parameters. AMS circuits

are usually analyzed by first capturing their behaviors by appropriate differential equations

[40] and then solving these differential equations to obtain the required design constraints.

Traditionally, AMS circuits are analyzed using paper-and-pencil proof methods. How-

ever, considering the complexity of present age AMS circuits, such kind of analysis is

notoriously difficult, if not impossible, and is error prone due to the human error factor.

Moreover, it is quite often the case that many key assumptions of the results obtained
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using paper-and-pencil proof methods are in the mind of the mathematician and are not

documented. These missing assumptions may also lead to erroneous AMS designs. With

the advent of computers, many computer-aided design tools based on the principles of

numerical methods and simulation have been introduced for finding the solutions of differ-

ential equations and have been used to analyze AMS designs (See e.g. [28]). Due to the

reliable and efficient bookkeeping characteristic of computers, complex AMS circuits can

be analyzed using these methods. However, these methods cannot attain 100% accuracy

due to the memory and computation limitations. Another alternative for analyzing AMS

circuits is computer algebra systems [27, 21]. These methods are very efficient for comput-

ing mathematical solutions symbolically, but they are not reliable as well [18] due to the

presence of unverified huge symbolic manipulation algorithms in their core, which are quite

likely to contain bugs. Thus, given the above mentioned inaccuracies, these traditional

techniques should not be relied upon for the analysis of AMS circuits, especially when they

are used in safety-critical areas, such as medicine and transportation, where inaccuracies

in the analysis could result in system design bugs that in turn may even lead to the loss of

human life.

In the past couple of decades, formal methods have been successfully used for the precise

analysis of a variety of digital circuits. The rigorous exercise of developing a mathematical

model for the given system and analyzing this model using mathematical reasoning usually

increases the chances for catching subtle but critical design errors that are often ignored by

traditional techniques like paper-and-pencil based proofs or numerical methods. Given the

extensive usage of AMS circuits in safety-critical systems, formal methods have also been

utilized in this domain [38]. However, due to the continuous nature of the analysis and

the frequent involvement of transcendental functions, automatic state-based approaches,

like model checking [24], and automatic theorem provers [17] can only be used to analyze

abstract discrete models of AMS circuits (See e.g., [10, 8]). In order to overcome this

limitation, we propose to use higher-order-logic theorem proving [14] for conducting the

formal analysis of AMS circuits since the high expressiveness of higher-order logic can be
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leveraged upon to model elements of continuous nature and thus have a more realistic

formal analysis. The formalization of circuit analysis fundamentals, i.e., KVL, KCL and

basic circuit components, is provided here.

5.1.1 Kirchhoff’s Voltage and Current Laws

Kirchhoff’s Voltage law (KVL) and Kirchhoff’s current law (KCL) [9] form the most foun-

dational circuit analysis laws. The KVL and KCL state that the directed sum of all the

voltage drops around any closed network (loop) of an electrical circuit and the directed sum

of all the branch currents leaving an electrical node is zero, respectively. Mathematically:

n∑
k=1

Vk = 0,
n∑

k=1

Ik = 0 (5.1)

where Vk and Ik represent the voltage drops across the kth component in a loop and the

current leaving the kth branch in a node, respectively. The formalization is as follows:

Definition 1: Kirchhoff’s Voltage and Current Law

` ∀ V t. kvl V t = (∀ x. 0 < x ∧ x < t ⇒

(sum (0,LENGTH V) (λn. EL n V x) = 0))

` ∀ V t. kcl I t = (∀ x. 0 < x ∧ x < t ⇒

(sum (0,LENGTH I) (λn. EL n I x) = 0))

The function kvl accepts a list V of functions of type (real→ real), which represents

the behavior of time-dependant voltages in the given circuit and a time variable t as a real

number. It return the predicate that guarantees that the sum of all the voltages in the

loop is zero for all time instants in the interval (0, t). Similarly, the function kcl accepts a

list I, which represents the behavior of time-dependant currents and a time variable t and

returns the predicate that guarantees that the sum of all the currents leaving the node is

zero for all time instants in the interval (0, t).
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The AMS circuits are analyzed using their corresponding differential equations. The

first step in this regard is to capture the behavior of the given circuit mathematically

using KVL or KCL. This mathematical expression may not be in the form of a differential

equation as it may contain integrals. Thus, the equation is differentiated as many times

as required to obtain an equivalent differential equation. In order to facilitate the formal

reasoning about this transformation, we formally verified the following theorem.

Theorem 1: KVL/KCL to Differential Equation

` ∀ V I t.(∀x. 0 < x ∧ x < t ⇒

(EVERY (λf. f differentiable x) V) ∧ (EVERY (λf. f differentiable x) I) ∧

(kvl V t) ∧ (kcl I t) ⇒ (kvl(deriv list V) t) ∧ (kcl(deriv list I) t)

The function EVERY P L ensures that every element of list L satisfies the predicate P. Thus,

Theorem 6 allows us to differentiate all the terms in the mathematical equation obtained via

KVL or KCL once as long as all the functions in the list of functions are differentiable. The

proof of Theorem 6 is primarily based on the linearity property of a differential equation,

given in Theorem 4.

Besides the above results, we also formalized the voltage expressions for a resistor,

capacitor and inductor, which are the most commonly used analog circuit components as

the following higher-order-logic functions:

Definition 2: Resistor, Inductor and Capacitor

` ∀ R i.resistor voltage R i = (λt.i t * R)

` ∀ R v.resistor current R v = (λt.v t / R)

` ∀ L i.inductor voltage L i = (λt. L * deriv i t)

` ∀ L v Io.inductor current = (λt. Io + 1/L * integral (0,t) v)

` ∀ C i Vo. capacitor voltage C i Vo = (λt. Vo + 1/C * integral (0,t) i)

` ∀ C v. capacitor current = (λt. C * deriv v t)

The variables i and v represents the time dependant current and voltage variables, re-

spectively, in the above function definitions. While the variables R, L and C represent the
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constant resistance, inductance and the capacitance of their respective components, respec-

tively. The variables Io and V o are used in the definitions of inductance and capacitance

to model the initial current in the inductor and the initial voltage across the capacitor [9],

respectively. All these functions return a (real→ real) type function that models the

corresponding time dependant voltage or current. As a case studies, we present the formal

analysis of a classical RLC circuit and an second-order Op Amp circuit.

5.1.2 RLC Series Circuit

Serially connected resistor (R), inductor (L) and capacitor (C), or the RLC, circuit is one

of the classical examples of an AMS circuit. It is also widely used in modeling parasitics in

the metal interconnect of sub-micrometer ICs [37]. We utilize the foundational formaliza-

tion for analyzing AMS circuits, described in the last two sections, to formally verify the

electrical current flow relationship in the RLC circuit, shown in Figure 1, with the intent to

demonstrate the proposed methodology for formally analyzing AMS circuits. The first step

Figure 5.1: RLC Series Circuit with constant Voltage

in the proposed methodology is to model the behavior of the given circuit in higher-order

logic. The behavior of the given circuit can be captured using the KVL as follows:

Definition 3: RLC Series Circuit Model

`∀ R L C V Vo i t.rlc ckt R L C V Vo i t =

kvl [resistor voltage R i; inductor voltage L i;

capacitor voltage C i Vo; (λt. -V)] t

The list input of the function kvl is composed of all the elements of the circuit that have

a voltage drop. The dc voltage source V is modeled in this list as a time independent
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constant. The next step in the proposed methodology is to obtain a differential equation

representation of the given AMS circuit. We formally verified this relationship as follows:

Theorem 2: Differential Equation for the RLC Circuit

` ∀ R L C V Vo i t y.(0 < y) ∧ (y < t) ∧

(∀x. 0≤x ∧ x≤t ⇒ i differentiable x) ∧

(∀x. 0≤x ∧ x≤t ⇒ ((λt.deriv i t)) differentiable x) ∧

(rlc ckt R L C V Vo i t) ⇒ (diff eq lhs(const list[1/C;R;L]) i y = 0)

The conclusion of Theorem 2 describes the second-order differential equation corresponding

to the RLC circuit given in the assumption using the function rlc ckt. The theorem is

verified under the assumptions that both the current function i and its first derivative are

differentiable. It is also important to note that the theorem is valid for all time y in the

interval (0, t), where t represents the upper bound of the time for which the behavior of

the function rlc ckt is valid. Theorem 2 has been primarily verified using Theorem1 and

Theorems 2 and 4 of Chapter 3.

Now, we have the differential equation, corresponding to our given circuit, and the next

step in the proposed theorem proving based analysis of AMS circuits is to formally verify

its solution. We consider the real and distinct roots of the given differential equation and

verified the following theorem for the current of the given RLC circuit.

Theorem 3: Current of the RLC Circuit

` ∀ L R C c1 c2 x.(L6=0) ∧ (4*L/C<R2) ⇒

(diff eq lhs (const list [1/C;R;L])

(λx.c1*exp((-R+sqrt(R2-4*L/C))/(2*L)*x)+

c2*exp((-R-sqrt(R2-4*L/C))/(2*L)*x)) x = 0)

The conclusion of the above theorem provides us the solution (c1e
−

−R+

√
R2− 4L

C
2L

x+c2e
−

−R−
√

R2− 4L
C

2L
x)

of the differential equation obtained from Theorem 2. It is formally verified primarily using

Theorem 3 of chapter 3 and some simple arithmetic reasoning. The assumptions of The-

orem 3 declare the relationships between the various parameters that are required for the
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solution to hold. This is one of strengths of the proposed theorem proving based verifica-

tion as all the assumptions have to be explicitly stated besides the theorem for its formal

verification. Thus, there is no chance of missing a critical assumption which often occurs

in paper-and-pencil proof methods. It is also important to note the generic and contin-

uous nature of Theorem 3 as all the variables are of type real and they are universally

quantified. Such results cannot be obtained via state-based formal methods tools.

5.1.3 RLC Parallel Circuit

Now we formally verify the voltage drop in the RLC circuit, shown in Figure 2, with the

intent to demonstrate the proposed methodology for formal analyzing AMS circuits. The

Figure 5.2: RLC Parallel Circuit

first step in the proposed methodology is also to model the behavior of the given circuit

in higher-order logic. The behavior of the given circuit can be captured using the KCL as

follows:

Definition 4: RLC Parallel Circuit Model

` ∀ R L C I Io v t. rlc parallel circuit R L C I Io v t = kcl [resistor

current R v; inductor current L v Io;

capacitor current C v; (λt. -I)] t

The list input of the function kvl is composed of all the elements of the circuit that

have a current flow. The current source I is modeled in this list as a time independent
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constant. The next step in the proposed methodology is to obtain a differential equation

representation of the given AMS circuit. We formally verified this relationship as the

following theorem for the RLC circuit.

Theorem 4: Differential Equation for the Parallel RLC Circuit

` ∀ R L C I Io v t y. (0 < y ) ∧ (y < t) ∧

(∀x. 0 ≤ x ∧ x ≤ t ⇒ v differentiable x) ∧

(∀x. 0 ≤ x ∧ x ≤ t ⇒ ((λt. deriv v t)) differentiable x) ∧

(rlc pararllel circuit R L C I Io v t) ⇒

(diff eq lhs (const list [(1/L); (1/R); C]) v (3:num) y = 0))

The conclusion of the above theorem describes the second-order differential equation corre-

sponding to the Paralllel RLC circuit given in the assumption using the function rlc parallel circuit.

The theorem is verified under the assumptions that both the voltage drop v and its first

derivative are differentiable. It is also important to note that the theorem is valid for all

time y in the interval (0, t), where t represents the upper bound of the time for which the

behavior of the function rlc parallel circuit is valid. Theorem 14 has been verified

using Theorems 4 and 11 along with some arithmetic reasoning.

Now, same as like series RLC circuit we have the differential equation, corresponding

to our given circuit, and the next step in the proposed theorem proving based analysis of

AMS circuits is to formally verify its solution. We verified the following theorem for the

voltage of the given RLC circuit.

Theorem 5: Voltage of the RLC Circuit

` ∀ L R C c1 c2 x. (L 6= 0) ∧ (C 6= 0) ∧

(1/(R pow 2 * C) = 4/L) ⇒

(diff eq (const list [1 / (L*C); 1/(R*C); 1])

(λx. c1 * exp ((-1/2*R*C) * x) +

c2 * (x * exp ((-1/2*R*C) * x)) 3 x = 0)
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The conclusion of the above theorem provides us the solution (c1e
− 1

2RC
x +c2xe

− 1
2RC

x) of the

differential equation obtained from Theorem 4. It is verified primarily using Theorem 5 of

chapter 3 and some simple arithmetic reasoning. The assumptions of Theorem 5 same as

like Theorem 3 declare the relationships between the various parameters that are required

for the solution to hold. This is one of strengths of the proposed theorem proving based

verification as all the assumptions have to be explicitly stated besides the theorem for

its formal verification. Thus, there is no chance of missing a critical assumption which

often occurs in paper-and-pencil proof methods where there is no such guarantee that the

mathematician who worked out the proof has written down all the assumptions for the

readers. It is also important to note the generic and continuous nature of Theorem 5 as all

the variables are of type real and they are universally quantified. Such results cannot be

obtained via state-based formal methods tools.

5.1.4 Second-order Op-Amp

As a second example, consider a second-order op-amp circuit (Figure 2), which has a wide

range of applications in oscilators, filters, audio buffers and line drivers [25, 36].

Figure 5.3: Second-order Op-Amp Circuit

The behavior of this circuit can be modeled as follows:

Definition 5: Second-order Op-Amp Model

` ∀ R1 R2 C1 C2 v t.op amp ckt R1 R2 C1 C2 v t =

(kcl [resistor current R1 v; capacitor current C1 v] t)∧

(kcl [resistor current R2 v; capacitor current C2 v] t)
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The function kcl is applied at the input of both op-amp and thus two predicates are required

in the above definition, which distinguishes this application from the previous one. The

functions capacitor current and resistor current provide the current expressions in

terms of voltages for a capacitor and resistor, respectively, as given in Definition 3. The

next step in the proposed methodology is to obtain a differential equation representation

of the given AMS circuit. While doing so we take into consideration that both the resisters

and the capacitors have the same value, respectively, as shown in Figure 2. Moreover, the

input terminals of the op-ams are connected to the ground resulting in v2 = −vo.

Theorem 6: Differential Equation for the Second-order OP-Amp

` ∀ R C vo v1 v2 t y.

(vo = -v2) ∧ (op amp ckt R R C C v t)⇒

(diff eq lhs (const list [-1/(R2 * C2); 0; 1])vo y = 0)

The proof steps of this theorem are quite similar to Theorem 2. The next step is to formally

verify its solution, i.e., an expression for the voltage vo, which is verified as the following

theorem.

Theorem 7: Solution of Second-order Op-Amp Circuit Differential Equation

` ∀ R L c1 c2. (R * C 6= 0) ⇒

(diff eq lhs (const list [-1/(R2 * C2);0;1])

(λx. c1 * exp ((1/R*C) * x) + c2 * (x * exp ((1/R*C) * x)) x = 0))

The proof of the above theorem is based on Theorem 5 of chapter 3, which presents the

formally verified solution of the homogeneous linear differential equation with real and

repeated roots, along with some arithmetic reasoning, which can be done in an automatic

manner using the HOL4 arithmetic simplifiers.

5.2 Biomedical Applications

Biomedical applications are one of the most safety-critical systems as their bugs could

eventually result in the loss of human lives. Differential equations form the core foundation
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of modeling almost all biomedical applications [11]. Due to a lack of formal reasoning

support for differential equation solutions, most of the biomedical system analysis have

been conducted using informal analysis techniques so far. Our work tends to fill this gap

and thus facilitates the usage of formal methods in this safety-critical domain. We present

two simple case studies, i.e., the analysis of a heart pacemaker and a fluid-filled catheter,

to illustrate the usefulness and effectiveness of our work in this section.

5.2.1 Heart Pacemaker

Electronic heart pacemakers are widely used these days for supplementing or replacing

heart’s natural pacing mechanism in humans. Their main principle is to store electrical

energy in a capacitor and then discharge this energy in short pulses through the heart

to provide it with the required sudden electrical stimulus. Besides the capacitor, they

include a battery, which provides the energy source, and a switch to govern the charging

and discharging of the capacitor. Figure 1 illustrates the connections between these main

components and their working [11]. The capacitor is charged via the battery when the

switch S is moved to position A, while the capacitor provides the short and intense pulses

to the heart when the switch S is in position B.

Figure 5.4: Equivalent Circuit of an Electronic Pacemaker

Based on Figure 1, the behavior of an electronic heart pacemaker can be described in

terms of the following differential equation [11]:
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dV

dt
+

1

RC
V = 0, V (0) = E (5.2)

since the current through the capacitor (CdV/dt) equals the current through the heart

(V/R), which behaves as a resistor R, when the switch S is in position B. Moreover, the

capacitor is allowed to charge to its full capacity when the switch is in position A and thus

we obtain the initial condition V (0) = E. This simplistic but realistic mathematical model

of a heart pacemaker has been extensively used in the literature to analyze the underlying

properties of interest (See e.g., [39, 11]. In this thesis, we utilize our formalization described

in the previous two sections to formally reason about the solution of Equation (5.2). The

first step in this regard is to specify the theorem stating the solution (Ee−
t

RC ) of Equation

(5.2) as follows:

Theorem 1: Solution of Heart Pacemaker Differential Equation

` ∀ R C V E t.

(((λx. linear sol [C] (exp list [-(1/(R*C))]) x) 0) = E) ⇒

(diff eq lhs (const fn list [(1/(R*C)); 1])

(λx. linear sol [C] (exp list [-(1/(R*C))]) x) t = 0) ∧

(C = E)

The assumption of the above theorem declares the given initial condition V (0) = E. The

consequence of the goal is a conjunction of two propositions, where the first one defines the

general solution of the given differential equation and the second one provides the value of

the constant C for the particular solution.

Our formalized definitions facilitated the formal specification of the above theorem and

our formally verified Theorem 4 allowed us to verify the above theorem in a few reasoning

steps where we just had to provide the definitions of the functions used in Theorem 6 and

some primitive list theory functions, like EL and LENGTH, along with invoking an auto-

matic arithmetic simplifier. The straightforward reasoning process about the correctness
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of solution of the given differential equation in the sound environment of HOL4 clearly

demonstrates the effectiveness of our work.

5.2.2 Fluid-Filled Catheter

As a second case study of our work, consider the dynamic analysis of a fluid-filled catheter,

which allows physicians to measure the pressure of the internal organs and fluids of a human

body without inserting a pressure transducer in the body. The main idea is to insert a

long and small-bore fluid-filled tube or catheter in the body and thus bring the pressure

of the pressure measuring site outside and then use a conventional pressure transducer to

measure it. However, mechanical parameters like the mass of the catheter fluid and the

friction of this fluid with the catheter wall may introduce some discrepancies in the pressure

measurements. Therefore, it is very important to analyze the effects of such mechanical

parameters on the pressure measurements as a wrong reading may endanger a patient’s life.

A number of studies, e.g. [22, 12], have analyzed this aspect by considering the following

second-order linear differential equation with constant coefficients

1

ω2
n

d2p

dt2
+

2ζ

ωn

dp

dt
+ p = 0 (5.3)

where p is the applied pressure, ωn =
√
k/ρLA represents the undamped natural angular

frequency (radians per unit time) in terms of a constant k, catheter fluid density ρ, length

L and cross-sectional area A, and ζ = c/2
√

1/ρkLA is the damping factor with a constant

c. Equation (5.3) allows us to find the pressure in response to any force function given that

the coefficients ωn and ζ are known. The solution of this equation can be formally verified

as the following theorem:

Theorem 2: Solution of Fluid-Filled Catheter Differential Equation

` ∀ g A L k c C1 C2.

(4 * g * L * A * k < c pow 2 ∧ 0 < g ∧ 0 < L ∧ 0 < A ⇒

(diff eq lhs (const fn list [k / (g * L * A); c / (g * L * A); 1])
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(λx.

linear sol [C1; C2]

(exp list

[(-(c / (g * L * A)) +

sqrt

((c / (g * L * A)) pow 2 -

4 * (k / (g * L * A)))) / 2;

(-(c / (g * L * A)) -

sqrt

((c / (g * L * A)) pow 2 -

4 * (k / (g * L * A)))) / 2]) x) x =

0))

The assumptions of the above theorem declare the relationships between the various pa-

rameters that are required for the solution to hold. This is one of strengths of the proposed

theorem proving based verification as all the assumptions have to be explicitly stated be-

sides the theorem for its formal verification. Thus, there is no chance of missing a critical

assumption which often occurs in paper-and-pencil proof methods where there is no such

guarantee that the mathematician who worked out the proof has written down all the

assumptions for the readers.

Formal reasoning about Theorem 2 is primarily based on Theorems 2 and 3 of chapter

4 along with some arithmetic reasoning, which can be done in an automatic manner using

the HOL arithmetic simplifiers. The straightforward proof scripts for of Theorems 1 and

2 are available at [34] and clearly indicate the usefulness of our foundational formalization

presented in Chapter 3 and Chapter 4 of this thesis. Just like these case studies our

formalization results can be utilized to formally reason about solution of any homogeneous

linear differential equation and the results would be guaranteed to be correct due to the

inherent soundness of theorem proving.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, we presented a set of formal definitions that allow us to formalize any homo-

geneous linear differential equation. We also provide a couple of formally verified properties

that facilitate reasoning about the solutions of these differential equations within the sound

core of a higher-order-logic theorem prover HOL4. The almost automatic reasoning process

makes our methodology very useful for industrial usage as its users do not have to very

proficient with the cumbersome real-theoretic formal reasoning process. For illustration

purpose, we applied the proposed methodology for verifying the solutions of differential

equations related to a couple of biomedical systems. To the best of our knowledge, this is

the first formal reasoning support for differential equations that has been reported in the

open literature.

we also propose to use higher-order-logic theorem proving to analyze AMS circuits.

Due to the high expressiveness of the underlying logic, we can formally analyze the AMS

circuits along with their continuities and the soundness of theorem proving guarantees

correctness of results. To the best of our knowledge, these features are not shared by

any other existing AMS circuit analysis technique. The main challenge in the proposed

approach is the enormous amount of user intervention required due to the undecidable

nature of the logic. We propose to overcome this limitation by formalizing AMS circuit

foundations and verifying associated properties that aid formal reasoning about the AMS

circuit foundations. As a first step towards illustrating the proposed approach, this thesis

presents the formalization of homogenous linear differential equations, Kirchhoff’s voltage
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law and some basic components and some of their associated properties. Based on this

work, we are able to formally verify the current relationship for a classical RLC circuit in

a very straightforward way.

It is important to note that the formal framework, presented in this thesis, can verify

solutions of differential equations but cannot guess solutions by itself. So the main objective

of the work is to formally verify already obtained solutions via paper-and-pencil proof

methods, numerical methods or computer algebra systems. Due to the inherent soundness

of mechanical theorem proving this verification is guaranteed to be correct, i.e., a feature

that cannot be attained by the above mentioned informal analysis techniques.

6.2 Future Work

Our work opens the doors to many new directions of research. By building upon the

reported formalization, we are working on extending the support for formal reasoning

about complex roots of homogeneous linear differential equations. Moreover, we also plan

to develop reasoning support for non-homogeneous linear differential equations. To broaden

the scope of AMS circuit verification and analyze a large variety of AMS circuits, other

foundations, like the Kirchhoff’s Current Law (KCL), and other frequently used analog

components, like diodes and transistors, have to be formalized. The reported formalization

can be used in many other domains besides the biomedical systems and Analog and Mixed

Signal circuits presented in this thesis. Formal methods have been used in the verification

of electronic circuits [38] and optical systems [19] but due to the lack of formal reasoning

support for differential equations the solutions of differential equations have been handled

by informal techniques in these efforts. Our work can be used to develop a complete formal

methods based analysis methodology for these domains. For the cases where closed form

mathematical solutions of differential equations cannot be obtained, our formalization can

be used to formally verify error bounds for the numerical methods based solutions.
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[10] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ripado,

A. Girard, T. Dang, and O. Maler. Spaceex: Scalable Verification of Hybrid Systems.

In Computer Aided Verification, volume 6806 of LNCS, pages 379–395. Springer, 2011.

[11] S. A. Glantz. Mathematics for Biomedical Applications. University of California Press,

1979.

[12] S.A. Glantz and J. V. Tyberg. Determination of Frequency Response from Step Re-

sponse: Application to Fluid-Filled Catheters. The American Journal of Physiology,

236:376–378, 1979.

[13] U. Goktas and D. Kapadia. Methods in Mathematica for Solving Ordinary Differential

Equations. Mathematical and Computational Application, 16(4):784–796, 2011.

[14] M.J.C. Gordon and T.F. Melham. Introduction to HOL: A Theorem Proving Environ-

ment for Higher-Order Logic. Cambridge Press, 1993.

[15] G.Strang. Calculus. Wellesley College, second edition, 2009.

[16] J. Harrison. Theorem Proving with the Real Numbers. Springer-Verlag, 1998.

[17] J. Harrison. Handbook of Practical Logic and Automated Reasoning. Cambridge Uni-

versity Press, 2009.
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