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SUMMARY 

Atmospheric entry is a critical phase for mission that seeks to return astronauts or 

scientific payloads back to Earth or explore the surface of a planet with an appreciable 

atmosphere. This project aims at the comprehensive investigation of the dynamic stability of 

blunt body atmospheric entry vehicles. As blunt vehicle enters a planetary atmosphere, the 

aerodynamic moments acting upon it can result in unstable pitching motions and divergence of 

oscillation amplitude. Typically, these instabilities are found in the low or mid supersonic regime 

of the trajectory just prior to parachute deployment. The amplitude envelope of a planetary probe 

as it enters an atmosphere can play an important role in terminal events like the deployment of 

parachutes and entry/reentry trajectories. Most analysis considers the case of constant or linear 

aerodynamic coefficients. In many cases the aerodynamic coefficients exhibit nonlinear 

behavior. In this research, the nonlinearities of various stability coefficients are correlated with 

the system response by generating approximate closed form analytical solutions. For this 

purpose, the Multiple Time Scales method in conjunction with bifurcation theory is used to 

obtain the approximate solutions of the multiple degree-of- freedom nonlinear equations of 

motion. The explicit analytical results obtained are useful to identify the key parameters affecting 

the dynamics and stability of the blunt body atmospheric entry vehicle. The conditions leading to 

limit cycle responses in the vicinity of loss of damping regime are discussed. The analytical 

solution is duly validated with the numerical solution in the end. Such research endeavors will 

help the Government of Pakistan to realize the goals of “Space Programme 2040” and bring the  

benefits of the complete spectrum of space technology to the people of Pakistan. 
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Chapter 1 

INTRODUCTION 

 

1.1 Background 

Space exploration was an impetus of scientific and technological growth during last 

century. It is envisioned that this century will see human landing on Martian soil. For this 

purpose, an atmospheric entry vehicle with human-on-board will be used to enter Martian 

atmosphere. Atmospheric entries are of critical standing for the missions which aim to bring 

scientific payloads from space to the planets with appreciable atmospheres.  

The design of atmospheric entry vehicles have evolved over the years. In 1953 Allen and 

Eggers [1] from National Advisory Committee of Aeronautics (NACA) proposed that the blunt 

nose made the most effective heat shield as shown in Figure 1.1. Blunt bodies protect the vehicle 

from heating and play an important role in landing and reentering the atmosphere. In this  

discovery, it was shown that the drag coefficient is inversely proportional to the heat load 

experienced by the blunt body vehicles. The blunt nose forces the oblique shock waves to detach 

from the nose and form a curved shock wave distant from the vehicle. Since, majority of the hot 

gases does not directly influence the vehicle; the total heat energy will not cross the shock wave 

and simply deviate in surrounding of the vehicle and later will dissipate in the air.  
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Figure 1.1    Concept evolution of shapes for atmospheric entry vehicles  [2] 

During the design of atmospheric entry vehicles, it is meaningful to understand the 

nonlinear phenomena occurring at the time of atmospheric entry. Interestingly, the dynamic 

response of blunt bodies is unstable in low supersonic regimes. When a blunt entry probe enters 

into atmosphere of a planet, at a supersonic Mach number, undesirable self-sustained limit-cycle 

oscillations are born because of nonlinear aerodynamic moment acting upon it. Mostly, such 

instabilities came into birth due to the maximum dynamic pressure and reaches to peak in the 

low or mid supersonic reign of the flight trajectory, preceding to parachute opening [3]. It is 

critical at the time of parachute deployment that the amplitude of oscillation be less than 

approximately 10° for safe deployment [4].  

1.2 Pakistan Space Program 

The Government of Pakistan promotes space exploration program. To synergize these 

efforts, Space and Upper Atmospheric Research Commission, (SUPARCO), a space exploration 

institute is working since 1960’s. The commission is responsible to promote peaceful research in 

space technology and to conduct research in technology for socio-economic uplift of country. 

SUPARCO has achieved success in multiple projects. The first successful flight of expendable 

rocket, Rehbar-I [5] was recorded in 1961. Moreover, the first satellite, Badr-I was constructed 

by SUPARCO and launched with the cooperation of China [6].   
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The Government of Pakistan initiated the “Space Programme 2040” in 2011 with the aim 

to bring the benefits of the full spectrum of space technology to the people of Pakistan. Earlier 

space expeditions from Pakistan demonstrated lack-luster performance compared to other 

technologically advanced countries. The field of space and planetary astrophysics remained 

relatively obscure amongst academic disciplines taught in Pakistan, but with India’s recent 

launch of its Mars Orbiter Mission (MOM), the onus is now on the second- largest country in 

South Asia to make similar steps.  

In pursuance of Space Program 2040, Pakistan will launch five GEO satellites and six 

LEO satellites between 2011 and 2040 [7]. The program intends to develop the military and 

space technologies and conduct experiments on fundamental sciences in space frontier. The 

research pertaining to atmospheric entry vehicles is also an integral part of space exploration 

program. Such research endeavors will help the Government of Pakistan to realize the goals of 

“Space Programme 2040”. 

1.3 Area of Research 

 Blunt body entry vehicle is an important research area. Its significance can be judged 

from the fact that all MARS expeditions intending to enter Martian atmosphere are blunt body 

entry vehicles. Once entered into Martian atmosphere, the blunt body initially reduces its 

velocity with the help of atmospheric resistance. Subsequently, in low supersonic regime, the 

drag chute is deployed to further decelerate it to subsonic speeds. In the final phase before 

touchdown/deployment of scientific payload, it jettisons its drag chute and becomes airborne 

with thrusters. Finally, the deployment of payload via sling on the Martian land culminates the 

mission of entry vehicle as shown in Figure 1.2. 
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Figure 1.2    The trajectory of MARS entry vehicle famously known as seven minutes of terror [8] 

These entry vehicles are highly prone to aerodynamic instabilities. Specifically, a 

nonlinear dynamic phenomenon of limit-cycle oscillations is a feature of such vehicles that is 

studied during the design of all atmospheric entry vehicles. The limit-cycle oscillations generally 

emerge in low or mid supersonic regime of the trajectory just prior to parachute deployment. The 

cause of these oscillations is generally attributed to the development of unsteady pressure forces 

on the aft body of the blunt body entry vehicle. The dynamic stability is a function of vehicle 

design and mission trajectories. The vehicle design considerations that govern the dynamic 

stability are overall geometry and mass distribution. From the mission trajectory perspective, the 

magnitude of oscillations should be less than 10o where entry vehicle deploys the parachute. All 

these design and mission considerations are fundamentally transferred to aerod ynamics and 

stability coefficients graphs. These graphs depict the trend of stability coefficients as a function 

of kinematic variables (angle of attack, pitch rate etc). The designers use these graphs to 

understand the dynamic behavior of atmospheric entry vehicles. However, the interactions are 
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generally less understood and for that purpose, designers move towards experimental, numerical 

or analytical approaches. 

In this work, a systematic evaluation will be carried out to decipher the phenomenon of 

blunt body atmospheric entry vehicles dynamic stability. Analytical and numerical techniques 

will be used to accurately predict the dynamic response of this class of vehicles. 

1.4 Research Objectives 

The goal of this work is to obtain an analytical solution from the planar differential 

equations and validate it with the numerical simulations. This work aims to fulfill the following 

objectives: 

 Understand the dynamics of blunt-body atmospheric entry vehicles through 

analytical techniques  

 Develop the analytical model that can relate the design aspects with the dynamic 

response of the vehicle 

 Parameterize the equations of motion and express its solutions explicitly in terms 

of amplitude and frequency 

 Validate the analytical solution with established numerical approach 

1.5 Methodology 

In today’s world, Modeling and Simulation (M&S) has become an intrinsic part of any 

engineering discipline. M&S enable the engineers to translate their creative thinking into 

practical designs with minimal time and less chances of error. The M&S field also circumvents 

actual testing and experimentation thereby cutting down the project cost in multiple folds.  

Characterizing the dynamic stability performance of an entry configuration is an area of 

research that has been plagued with experimental difficulties, contradictory observations, and 
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large uncertainties. A few studies [3, 9] have tried to generate numerical predictions or generic 

analytical solutions. The experimental studies are either too expensive or very complex to 

conduct. Recently, Kazemba [10] proposed the analytical model using the time- lagged aft-body 

moment for limit cycle oscillations. Using these analytical solutions the effects of the boundary 

conditions for each setup on the equilibrium energy behavior and equilibrium oscillation 

amplitude were determined. The study though has shown the direction of analytical handling of 

such problems but lacks the integration of analytical aspects with design considerations.  

The behavioral change of the stability is primarily because of the change in 

slope/magnitude of different static and dynamic stability curves. The static stability der ivatives 

include pitching moment coefficient and lift coefficient variations with change in angle of attack. 

The dynamic stability derivatives include pitch moment damping coefficients. These coefficients 

can be modeled as cubic/quadratic polynomials. The coefficients of these polynomials govern 

the stability characteristics. In this research work, a generalized model of flight dynamic 

equations of motion will be generated using these polynomial coefficients. The goal is to 

generate an integrated model that can predict the nonlinear interaction between different 

coefficients.  

For this purpose, the nonlinear analytical technique identified to solve this issue is known 

as Multiple Time Scales (MTS) method. The development of this technique is based on the work 

of Ramnath [11, 12]. The MTS method belongs to the family of perturbation methods. It is an 

asymptotic approach to approximate the physical problems that involve perturbations about 

nominal states specifically in limiting cases. One example is the separation of phugoid mode 

(slow varying manifold) and short-period mode (fast varying manifold) in aircraft longitudinal 
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dynamics. The MTS method is extensively used by Go [13-16] and Maqsood [17] for studying 

wing rock problem and UAV longitudinal dynamics respectively.  

The analytical treatment from MTS analysis will be in a closed form solution. The 

approach will yield solutions in parametric forms and leads to the separation of fast and slow 

dynamics. Such solutions will have an advantage over usual numerical solutions in that the 

important parameters and their effects on limit-cycle characteristics, such as amplitude and 

frequency, can be easily seen in explicit functional relationships. The results will be duly 

validated with the numerical solutions in the end. The methodology adopted in this research is 

somewhat same as below described in Figure 1.3. 

 

Figure 1.3 Research methodology 

 

1.6 Contribution of the Thesis 

During last five decades, technology protagonists investigated the flow structure around 

the blunt vehicle. The dynamics of a blunt body have nonlinear characteristics due to which 

modeling of the governing flow physics is very crucial. Most analysis had considered the case of 

Literature Review

Problem Formulation

Application of Multiple Time Scales 
Method on Oscillations of Blunt Body

Bifurcation Analysis

Comparison with Numerical Simulations
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constant or linear aerodynamic coefficients but unfortunately atmospheric entry exhibits highly 

nonlinear phenomenon. The focus of this study is to use higher order polynomials for 

aerodynamic coefficients. In this study, the nonlinearities of various stability coefficients are 

correlated with the system response by generating approximately closed form solution. 

This work extends the usage of analytical methods to solve the planar differential 

equations. Analytical method is used to study the oscillations of the blunt entry vehicle. The 

approach utilizes Multiple Time Scales (MTS) technique in conjunction with bifurcation theory 

to find the approximate solution of nonlinear differential equation.  

1.7 Organization of the Thesis 

This thesis document has six (06) chapters. A brief description of each chapter is 

presented below: 

1.7.1 Chapter 1 – Introduction 

This is the starting chapter of thesis. It gives the summary of background, problem 

physics, area of interest, objectives and methodology of the research. 

1.7.2 Chapter 2 – Literature Review 

This chapter presents brief summary of the literature studies. Moreover, the effects of 

design and environmental parameters on the dynamic stability are also presented. 

1.7.3 Chapter 3 – Problem Formulation 

Starting from planar model, establishment of governing equation is presented.  

1.7.4 Chapter 4 – Application of Multiple Time Scales Analysis 

In this chapter Multiple Time Scales (MTS) technique is applied on the second order 

ordinary differential equation. Bifurcation analysis is also employed for the stability 
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characterization. Closed-form solution is obtained for the oscillations of atmospheric entry 

probe. 

1.7.5 Chapter 5 – Numerical Validation 

This chapter focuses on the numerical solution obtained from the application of fourth 

order Runge-Kutta method. The comparison of numerical and analytical solutions are also 

presented. 

1.7.6 Chapter 6 – Conclusions and Future Work 

This chapter documents crux of findings as well as chalk potential directions of future 

research endeavors.  
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Chapter 2 

REVIEW OF LITERATURE  

 

2.1 Introduction 

In this chapter, a comprehensive review of available literature is done to understand the 

underlying physics of the subject problem. A brief literature survey is done in two stages. In the 

first stage, an understanding is developed towards the dynamic stability characteristics. The 

second stage focuses on the study Multiple Time Scales technique. 

2.2 Effects of Design and Environmental Parameters on Dynamic Stability  

 The remarkable study of Bibb et al. [18] described the development of Orion Crew 

Module. They examined the uncertainties associated with the module for Mach number less than 

eight. The database for the aerodynamic coefficients was obtained from the wind tunnel data and 

the numerical simulations. The geometry of the Orion crew module is shown in Figure 2.1 

 

Figure 2.1    Moments, forces and axis for Orion crew module  [18] 
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 In the past half century the aerodynamic analysis was analyzed for the blunt shapes. It 

has become clear that the blunt body dynamic stability is highly prone to design and 

environmental parameters. The effects of design and environmental parameters are discussed as: 

2.2.1 Effects of Center of Gravity Location and Roll Rate  

By changing the location of CG, the dynamic stability can also be varied. Study 

conducted in the past have analyzed that improvement is seen in damping as the center of gravity 

which is shifted towards the nose. In [19] and [20], it was examined that damping improve at low 

angles of attack by moving the CG forward and moving rearward CG may improve damping at 

higher angles of attack (Figure. 2.2). 

 

 

Figure. 2.2    Stardust capsule, pitch damping coefficient for different CG locations at M=2 [19] 

In literature the considerable need of dynamic response of blunt probe was effected by 

the roll rate. Static stability can be improved in pitch and yaw directions by introducing a roll 

motion on a blunt probe at the time of entry.  Jaffe [21] performed drop test, his results suggested 

that damping would increase as roll rate increases. 

2.2.2 Effects of Forebody Cone Angle and Nose Radius 

In the literature, the effect of forebody cone angle on dynamic stability demonstrates  

contradictory results. Most of the researchers seems to believe that the dynamic stability can be 
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improved by decreasing cone angle. Fletcher [22, 23] performed experimental investigations 

found contradictory results, related to the effects of geometric parameter variation on dynamic 

stability. 

The great work of Allen and Eaggers [1] proposed that to protect the vehicle from heating 

it requires to be blunt. Fletcher [22] studies are compiled in Figure 2..,  

 

Figure 2.3    Bluntness effects [22], [23] 

It seems to be that the slender body will be more dynamically stable. However, Ericsson 

[24] presented contradictory results and showed that the blunt nosed cones were more stable than 

the sharp nose. 

2.2.3 Effects of Shoulder Geometry and Boundary Layer Strips 

The body with sharped corners has more defined bow shock flow features relative to the 

body with rounded shoulder. The body with slender shoulder gives a discontinuity that will 

provide a fixed separation point as the flow accelerates over the body. Teramoto [25] deciphered 

that for the steady flow field, the recompression shock become strong due to pressure, thereby 

recirculation region may experience larger pressure fluctuations due to interaction between the 

base flow and recompression shock wave. 
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Wiley [26] and Ericsson [27] investigated the use of sharp shoulder geometry to establish 

a fixed separation point and to trip the boundary layer roughness strip s on the fore-body. In 

Figure 2.4, the effect of roughness strip found in transonic speed is shown for a vehicle with 

sphere cone. It can be observed that at subsonic speeds, the roughness strip terribly reduces the 

dynamic stability. However, above Mach=1.1, it is seen that the stability is improved with the 

inclusion of roughness strip. 

 

Figure 2.4    Forebody roughness effects [27] 

The vehicle experiences the separation and reattachment at supersonic speeds. The effect 

of the reattachment occurs further aft for the smooth body having larger moment due to the 

unsteady pressure forces and results in reduced dynamic stability, relative to roughness strip of 

the body [28]. 

2.2.4 Aftbody Effects 

In the past studies of the blunt body dynamics, researchers have noticed that the aftbody 

geometry of the vehicle affects the stability characteristics. The presence of aftbody decreases 

damping for all Mach numbers with the effect being more pronounced at lower Mach numbers 

for the parabolic body and consistent across all Mach numbers for the sphere cone with the small 

aftbody. 
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Figure 2.5   Aftbody effect on damping with Mach number on top and angle of attack on bottom [29], [30] 

From Figure 2.5, it can be seen that with increase in angle-of-attack the vehicle with the 

aftbody becomes stable. The study in the aftbody flare by Fletcher and Wolhart [22] reveals that 

the addition of flare to vehicle somewhat decreased dynamic stability.  

2.2.5 Mach Number 

In hypersonic regime, damping increases favorably with Mach number. Loss of damping 

characteristics is observed between hypersonic and subsonic regimes. The onset of unstable 

mode generally appears from Mach 3 and lasts sonic conditions as shown in Figure 2.6. In 

subsonic regime, however, the blunt body regains damped behavior and fosters dynamically 

stable modes. Such a behavior results in an oscillatory envelope history that gradually starts 

converging towards zero from atmospheric integrate to high supersonic Mach numbers, after that 

it starts to grow promptly before it converges again subsonically through the transonic regime. 
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 Figure 2.6    Simulated oscillations, vertical lines indicating Mach number [31] 

2.2.9 Reynolds Number 

The effect of Reynolds number is reported but with unconvincing and contradictory 

results. In Figure 2.7, results from Stardust [32] and Orion [33] were taken. It is seen that, with 

the change in Reynolds number the location and the degree of flow separation as well as the 

characteristics of the boundary and shear layers change and thereby variation in associated 

damping characteristics also occur.   

 

Figure 2.7    Reynolds number effects for Orion [33] and Stardust [32]  
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2.3 Multiple Time Scales (MTS) Method and Limit Cycle Oscillations 

Blunt body atmospheric entry vehicles exhibit nonlinear behavior. The behavior 

manifests itself as self-sustained oscillations also known as Limit Cycle Oscillations (LCOs). 

The analytical modeling of LCOs is generally carried out through perturbation techniques. 

In this research, Multiple Time Scales (MTS) method, a class of perturbation techniques 

is used to develop approximate closed-form analytical solution from governing flight dynamic 

equations of motion. Nayfeh [34-37] explained the fundamentals and presented multiple dynamic 

problems through this technique. Ramnath [38] gave the basics and limitations of this technique 

and proposed generalized MTS method. Ramnath and Go [39] applied MTS along with 

bifurcation analysis to obtain analytical solution of aircraft wing rock dynamics. 

Chapman and Yates [19] presented a study of limit cycle analysis, applied to blunt body 

aerodynamics. Planar model is used in the development of governing equations. Third order 

polynomials are used for aerodynamic coefficient to develop the analytical solution of amplitude 

of the limit cycle. However, the coefficients of third order polynomials were equated to zero. By 

doing this, the problem was reduced to linear approximation. 

Schoenenbeger and Queen [9] presented an overview to help the researchers to 

understand influence of different forces and nonlinear pitching moments acting on blunt vehicles 

which result in limit cycle motions.  Dynamic wind tunnel testing is used to measure the 

aerodynamic coefficients. In a vertical spin tunnel, terminal velocity is measured, dynamically 

scaled model of vehicle is used to obtain dynamics alike as flight conditions. Due to extreme 

variations in drag, manipulation of the freestream velocity is required to balance the drag with 

model weight.  
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2.4 Missing Links in Literature  

The complex phenomenon behind the atmospheric entry of blunt probe is not fully 

discussed in literature. The dynamic stability characteristic of blunt entry vehicle is one of the 

less understood phenomenon. Experimental and computational techniques are presented 

extensively in literature but analytical treatment of the instabilities occurring at the time of entry 

is not dealt in detail. The atmospheric entry of blunt probe as modeled by the Planar Model has 

not yet been addressed by MTS method. Moreover, in literature, only first or second order 

polynomials were used for aerodynamic coefficients whereas in this work third order 

polynomials are employed to grasp the underlying dynamical phenomena. 
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Chapter 3 

PROBLEM FORMULATION 

3.1 Introduction 

 In this chapter governing equations are developed using planar model. Second order 

ordinary differential equations are used to model the dynamic system. By taking some 

appropriate assumptions a nonlinear differential equation is developed. In previous studies 

constant and second order polynomials are used. In this study third order polynomials are used 

for lift and moment coefficients and second order polynomial is used for damping coefficient. By 

this improvement the nonlinearities present in the system can be analyzed more accurately. 

These polynomials are obtained from different studies with the help of graph digitizer.  

3.2 Derivation of Governing Equations 

 Consider the planar differential equations of motion for a body flying in a gravity field  

over a spherical, non-rotating planet. Equation (3.1) to Equation (3.3) [9] describe the planar 

motions. Equation (3.1) is describing the sum of all the forces acting on a body in the direction of 

motion. Equation (3.2) represents the change in flight path angle ‘γ’ due to forces normal to the 

direction of motion, gravity and centrifugal forces. These equations are valid at angles-of-attack 

less than 30° for blunt shapes [9]. The coordinate system for the planar differential Equation 

(3.1) through Equation (3.3) is shown in Figure 3.1. 
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Figure 3.1    Coordinate system [9] 

𝑉̇ = −
𝜌𝑉2 𝑆𝐶𝑑

2𝑚
− 𝑔𝑠𝑖𝑛𝛾0         (3.1) 

𝛾̇ =
𝜌𝑉𝑆𝐶𝑙

2𝑚
− (

𝑔

𝑉
−

𝑉

𝑅
) 𝑐𝑜𝑠𝛾0         (3.2) 

𝜗̈ =
𝜌𝑉2 𝑆𝑑

2𝐼
(𝐶𝑚𝑞

𝜃̇𝑑

2𝑉
+ 𝐶𝑚𝛼̇

𝛼̇𝑑

2𝑉
+ 𝐶𝑚𝛼

𝛼)       (3.3) 

Relative to the mean local flight path angle, the angular orientation can be defined as, 

𝜃 = 𝛼 + 𝛾          (3.4) 

where m is mass of the vehicle, ρ is the density of air, I is the vehicle inertial moment about the 

pitch axes, g is gravity, S is a surface area of vehicle, V is the velocity, R is the radius of the 

planet, and , , , and 
qd l m m mC C C C C

&
are drag, lift, moment, pitch damping and damping due to 

plunging coefficients which are nonlinear in angle-of-attack, α.  

3.3 Assumptions 

 The simplifying assumptions must be kept in mind before proceeding to the derivation of 

the model description of the motion. 

(i) Motions should be restricted to a plane 

(ii) Body have small lift-to-drag ratio  

(iii) Angle-of-attack is less than 30° 

(iv) Constant acceleration due to gravity field  
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(v) Spherical and non-rotating planet  

(vi) Mass of vehicle remain constant  

(vii)  No effects of cross winds or atmospheric winds  

(viii) Contribution of gravitational and centrifugal forces are negligible 

3.4 Equations of Motion 

Based on aforesaid assumptions, RHS of Equation (3.2) is simplified to only contribution 

due to lift. Flight path angle variation due to lift coefficient is only valid for ballistic range 

flights, spin tunnel flight and some wind tunnel testing with free to oscillate condition. Using 

these assumptions, first and second derivatives of Equation (3.2) and Equation (3.4) can be 

taken. Using Equation (3.1) in Equation (3.2), also neglecting 0  term in Equation (3.2) and then 

finally using these derivatives, expressing Equation (3.3) only in terms of angle of attack, 

𝛼̈ + (
𝜌𝑉𝑆

2𝑚
)

2

𝐶𝑑𝐶𝑙𝛼
𝛼 +

𝜌𝑉𝑆

2𝑚
𝐶𝑙𝛼

𝛼 =
𝜌𝑉2 𝑆𝑑

2𝐼
(𝐶𝑚𝑞

𝜃̇𝑑

2𝑉
+ 𝐶𝑚𝛼̇

𝛼̇𝑑

2𝑉
+ 𝐶𝑚𝛼

𝛼)  (3.5) 

The second term on the LHS of the Equation (3.4) is small in present case and can be 

neglected. The first term on the RHS of the Equation (3.5) can be expressed in terms of 𝛾̇ and 𝛼̇. 

Therefore it becomes, 

𝐶𝑚𝑞

𝜃̇𝑑

2𝑉
= 𝐶𝑚𝑞

(
𝜃̇𝑑

2𝑉
+

𝜌𝑆𝑑𝐶𝑙

4𝑚
)        (3.6) 

Now, the second term on the RHS of the Equation (3.6) can be neglected, because 

4
L

Sd
C

m


 is small compared to the 𝛼̇ term. In Equation (3.5) the terms associated with Drag 

Coefficient are very small, can be neglected in the present case.      

𝛼̈ −
𝜌𝑉𝑆

2𝑚
(−𝐶𝑙𝛼

+
𝑚𝑑2

2𝐼
(𝐶𝑚𝑞

+ 𝐶𝑚𝛼̇
)) 𝛼̇ −

𝜌𝑉2 𝑆𝑑

2𝐼
𝐶𝑚𝛼

𝛼 = 0    (3.7) 
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Several studies [3,9] have used this equation for the starting point for the analysis. After 

applying further conditions for each of the technique that changes form of the equation. To 

obtain analytical solution of Equation (3.7), the density and aerodynamic coefficients are held 

constant. But the case presented here is not considering constant aerodynamic coefficients. In 

this lift and pitching moment coefficients are expanded through third order polynomials and 

damping.  

3.5 Development of Parametric Governing Equations 

The aerodynamic data used in this work is taken from different papers. In Pakistan there 

is no facility of wind tunnel testing or any experimental testing. With the help of ‘GetData’ 

Graph Digitizer software data is extracted from the plots of experimental testing of blunt probes.  

3.5.1 Lift Coefficient  

Here the data used for the lift coefficient is taken from the remarkable work of Karen et 

al. [18]. There work on the development of Crew Module gives good understanding of 

atmospheric entry at supersonic speeds. For Mach number 2.5, the lift coefficient plot is of our 

interest. The lift coefficient after extracting data with software is shown in Figure (3.2) as shown 

below, dotted line in the plot is third order polynomial fitted i.e. Equation (3.8).  

𝐶𝑙 = 𝐶𝑙𝛼,0
𝛼 + 𝐶𝑙𝛼2𝛼2 + 𝐶𝑙𝛼3𝛼3        (3.8) 
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Figure 3.2    Lift coefficient [18]

 3.5.2 Moment Coefficient  

 Moment coefficient plot is shown in Figure (3.9) and the data is taken from the same 

source , Karen et al. [18] as for the lift coefficient. 

𝐶𝑚 = 𝐶𝑚𝛼,0
𝛼 + 𝐶𝑚𝛼2 𝛼2 + 𝐶𝑚𝛼3 𝛼3        (3.9) 

 

Figure 3.3    Moment coefficient [18] 
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3.5.3 Damping Coefficient  

The second order polynomial for the damping coefficient is used in this work, was taken 

from Schoenenberger and Queen [9] remarkable work.   

 

Figure 3.3    Damping coefficient [9]

  

(𝐶𝑚𝑞
+ 𝐶𝑚𝛼̇

) = (𝐶𝑚𝑞
+ 𝐶𝑚𝛼̇

)
0

+ (𝐶𝑚𝑞
+ 𝐶𝑚𝛼̇

)
𝛼

+ (𝐶𝑚𝑞
+ 𝐶𝑚𝛼̇

)
𝛼2

      (3.10) 

Substituting the values of  ,  and 
ql m m mC C C C




&
 in Equation (3.5), we get; 

𝛼̈ −
𝜌𝑉2 𝑆𝑑

2𝐼
𝐶𝑚𝛼,0

𝛼 =
𝜌𝑉𝑆

2𝑚
(−𝐶𝑙𝛼.0

+
𝑚𝑑2

2𝐼
(𝐶𝑚𝑞

+ 𝐶𝑚𝛼̇
)

0
) 𝛼̇ +

𝜌𝑉2 𝑆𝑑

𝐼
𝐶𝑚

𝛼2
𝛼2 +

3𝜌𝑉2 𝑆𝑑

2𝐼
𝐶𝑚

𝛼3
𝛼3 +

𝜌𝑉𝑆

2𝑚
(−2𝐶𝑙

𝛼2
+

𝑚𝑑2

2𝐼
(𝐶𝑚𝑞

+ 𝐶𝑚𝛼̇
)

𝛼
) 𝛼𝛼̇ +

𝜌𝑉𝑆

2𝑚
(−3𝐶𝑙

𝛼3
+

𝑚𝑑2

2𝐼
(𝐶𝑚𝑞

+ 𝐶𝑚𝛼̇
)

𝛼2
) 𝛼2 𝛼̇  

                  (3.11) 

Equation (3.11) can be written as:  

𝛼̈ + 𝜔2𝛼 = 𝜇𝛼̇ + 𝐶1̃𝛼2 + 𝐶2̃𝛼3 + 𝐶3̃𝛼𝛼̇ + 𝐶4̃𝛼2 𝛼̇     (3.12) 

The coefficients in Equation (3.12) are derived from the coefficients in Equation (3.11) 

where  and    are the pitch angle and pitch rate respectively. 
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𝜔2 = −
𝜌𝑉2 𝑆𝑑

2𝐼
𝐶𝑚𝛼,0

         (3.13) 

𝜇 =
𝜌𝑉𝑆

2𝑚
(−𝐶𝑙𝛼.0

+
𝑚𝑑2

2𝐼
(𝐶𝑚𝑞

+ 𝐶𝑚𝛼̇
)

0
)      (3.14) 

𝐶1 =
𝜌𝑉2 𝑆𝑑

𝐼
𝐶𝑚

𝛼2
         (3.15) 

𝐶2 =
3𝜌𝑉2 𝑆𝑑

2𝐼
𝐶𝑚

𝛼3
         (3.16) 

𝐶3 =
𝜌𝑉𝑆

2𝑚
(−2𝐶𝑙

𝛼2
+

𝑚𝑑2

2𝐼
(𝐶𝑚𝑞

+ 𝐶𝑚𝛼̇
)

𝛼
)      (3.17) 

𝐶4 =
𝜌𝑉𝑆

2𝑚
(−3𝐶𝑙𝛼3 +

𝑚𝑑2

2𝐼
(𝐶𝑚𝑞

+ 𝐶𝑚𝛼̇
)

𝛼2
)       (3.18) 

 

3.6 Concluding Remarks  

The derivation of Equation (3.7) is taken from Schoenenberger and Queen [9] work, 

started from planar model they have derived the governing Equation (3.7). Third order 

polynomial is used for pitching moment and lift coefficients. With this improvement Equation 

(3.12) is achieved. In the next chapter, further analysis will start from this equation. 
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Chapter 4 

Application of Multiple Time Scales Analysis 

 

4.1 Introduction to Multiple Time Scales Method 

A vast class of complex dynamical systems exhibit phenomena that are described by a 

mixture of slow and fast variations. To look deeply into the behavior of such dynamical systems, 

a separation of slow and fast variations is helpful. The intrinsic idea behind this extension is to 

expand the domain of independent variable to a higher dimension space.  

MTS is a powerful perturbation technique to obtain approximate solution of dynamical 

systems involving a mixed behavior of rapid and slow variations. This technique was developed 

from the work of Poincare [40] on the secular expansion in celestial mechanics. Nayfeh [34-37] 

has briefly studied the perturbation techniques. Ramnath [38] give a brief view of MTS 

technique applied to the several problems. The analytical approximation developed for the 

application of MTS technique in the present study is mainly based on the work of Go & Ramnath 

[39] and Maqsood & Go [41].  

The main concept behind the MTS technique is to select the appropriate time scales 

depending on the behavior of the system. The quality of solution can be determined by the 

selection of the appropriate time scales.  
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Figure 4.1    Concept of Multiple Time Scales analysis [38]

  

 Go and Ramnath (2001) [39] applied the MTS method combining with the bifurcation 

theory to develop the analytical solution of the wing rock dynamics on a rigid aircraft with 

multiple rotational degrees-of- freedom. MTS technique was successfully applied to the two 

degree-of- freedom wing rock dynamics. They obtained the analytical solution which yields in 

parametric forms and leads to the separation of rapid and slow dynamics.  

Maqsood and Go [41] have analyzed longitudinal dynamics at sustained high angle-of-

attack flights observed by Unmanned Aerial Vehicle (UAV) equipped with versatile features 

such as aerodynamic vectoring. In their work, the derivative expansion method is used to analyze 

the longitudinal dynamics of UAV. Experimental data is obtained from wind tunnel testing of 

UAV with aerodynamic vectoring. Bifurcation theory is used to develop closed-form solution 

which is further validated with numerical solutions.   

In this chapter, the MTS method is applied to a single degree of freedom atmospheric 

entry of blunt probe. Equation (3.19), highly nonlinear in α, is solved by MTS perturbation 

technique to reach the closed-form solution. Bifurcation analysis is also carried out in this 

chapter to bifurcate between stable and unstable solutions.  
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4.2 Application of MTS Method 

 During the atmospheric entry of blunt probe, highly oscillatory behavior occurs and body 

starts to decelerate and aerodynamic moments acting upon it can result in unstable pitching 

motions and divergence of oscillation amplitude. Due to the finite convection velocity in the 

flow, the huge wake arises behind the forebody motion. A hysteresis effect on the pitching 

motion and aftbody come into birth. This will make wake structure become more complex.   

Parameterizing the equation of motion i.e. Equation (3.12) as follows: 

𝛼̈ + 𝜔2𝛼 = 𝜀(𝜇𝛼̇ + 𝐶1𝛼2 + 𝐶2𝛼3 + 𝐶3𝛼𝛼̇ + 𝐶4𝛼2𝛼̇)     (4.1) 

where, 0 < 𝜖 ≪ 1. Application of MTS method is now invoked to Equation (4.1). In this work, 

two time scales are used for the analysis. The fundamental concept behind the method is defined 

as: 

𝑡 → {𝜏0 , 𝜏1} ; 𝜏0 = 𝑡 

𝜏1 = 𝜖𝑡 

𝛼(𝑡) → 𝛼0(𝜏0, 𝜏1) + 𝜀𝛼1(𝜏0, 𝜏1) + ⋯ 

In above expansion, 𝜏0  and 𝜏1 represent fast and slow time scales, respectively. Then the 

equation of motion i.e. Equation (4.1) becomes: 

𝜕2𝛼0

𝜕𝜏0
2 + 𝜔2𝛼0 + 𝜀 [

𝜕2𝛼1

 𝜕𝜏0
2 + 𝜔2𝛼1 + 2

𝜕2 𝛼0

 𝜕𝜏0𝜕𝜏1
] = 𝜀 [𝜇

𝜕𝛼0

𝜕𝜏0
+ 𝐶1𝛼0

2 + 𝐶2𝛼0
3 + 𝐶3𝛼0

𝜕𝛼0

𝜕𝜏0
+ 𝐶4𝛼2 𝜕𝛼0

𝜕𝜏0
]  

                             (4.2) 

The above equation only terms up to O(ε) are shown, so that these equations are 

appropriate to obtain both zeroth and first order approximation of the solution. Now equating the 

like powers of ε from Equation (4.2), we get two equations of O(1) and O(ε). 

𝑂(1):    
𝜕2𝛼0

 𝜕𝜏0
2 + 𝜔2 = 0         (4.3) 
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𝑂(𝜖):    
𝜕2𝛼1

 𝜕𝜏0
2 + 2

𝜕2𝛼0

 𝜕𝜏0𝜕𝜏1
= 𝜇

𝜕𝛼0

𝜕𝜏0
+ 𝐶1𝛼0

2 + 𝐶2𝛼0
3 + 𝐶3𝛼0

𝜕𝛼0

𝜕𝜏0
+ 𝐶4𝛼2 𝜕𝛼0

𝜕𝜏0
   (4.4) 

From literature [28], solution of Equation (4.3) is found as, 

𝛼0 = 𝐴(𝜏1)𝑠𝑖𝑛Ψ   ;    Ψ = 𝜔𝝉𝟎 + 𝐵(𝝉𝟏)       (4.5) 

In above equation ψ is the phase angle, A  is amplitude and B is phase correction. It can be 

seen in the Equation (4.5), the amplitude and the phase correction of the solution vary with the 

slow time scale 𝜏1. To find the solution of the Equation (4.4), substituting Equation (4.5) into 

Equation (4.4) we get: 

𝜕2 𝛼1

 𝜕𝜏0
2 + 2𝜔

𝑑𝐴

𝑑𝜏1
𝑐𝑜𝑠Ψ − 2𝜔𝐴

𝑑𝐵

𝑑𝜏1
𝑠𝑖𝑛Ψ =  𝜇𝜔𝐴𝑐𝑜𝑠Ψ + 𝐶1𝐴2𝑠𝑖𝑛2 Ψ+𝐶2𝐴3𝑠𝑖𝑛3 Ψ +

𝐶3𝜔𝐴2𝑠𝑖𝑛Ψ𝑐𝑜𝑠Ψ + 𝐶4𝜔𝐴3𝑠𝑖𝑛2 Ψ𝑐𝑜𝑠Ψ       (4.6) 

By using sin and cos cubic identities, and simplifying further, 

𝜕2 𝛼1

 𝜕𝜏0
2 − 𝐶1𝐴2𝑠𝑖𝑛2 Ψ − 𝐶3𝜔𝐴2𝑠𝑖𝑛Ψ𝑐𝑜𝑠Ψ = (−2𝜔

𝑑𝐴

𝑑𝜏1
+ 𝐶4𝜔

𝐴3

4
+ 𝜇𝜔𝐴) 𝑐𝑜𝑠Ψ +

(2𝜔𝐴
𝑑𝐵

𝑑𝜏1
+

3

4
𝐶2𝐴3) 𝑠𝑖𝑛Ψ − 𝐶4𝜔

𝐴3

4
𝑐𝑜𝑠3Ψ        (4.7) 

The terms associated with cosψ and sinψ are destroying uniformity of the solution of 

Equation (4.7). These terms are contributing in terms of 0 sin  and 0 cos  , which are known 

as secular terms that are growing without any bound with time. Results are shown in the 

following equation: 

𝑑𝐴

𝑑𝜏1
= 𝜇

𝐴

2
+ 𝜉1𝐴3    ;    

𝑑𝐵

𝑑𝜏1
= 𝜉2 𝐴2        (4.8) 

where, 

𝜉1 =
𝐶4

8
=

1

8
(

𝜌𝑉𝑆

2𝑚
(−3𝐶𝑙

𝛼3
+

𝑚𝑑2

2𝐼
(𝐶𝑚𝑞

+ 𝐶𝑚𝛼̇
)

𝛼
2
)) 

𝜉2 = −
3

8

𝐶2

𝜔
=

3

8𝜔
(

3𝜌𝑉2𝑆𝑑

2𝐼
𝐶𝑚

𝛼3
) 



 
 

39 
 

4.3 Limit Cycle Analysis 

The dynamical systems having self-sustained oscillations give birth to the finite 

amplitude oscillations i.e. limit cycle oscillation. Mathematically, the limit cycle is a closed 

trajectory for which energy of the system remains constant over the cycle. Three kinds of limit 

cycles are shown in Figure 2.8. 

 

Figure 4.2    Kinds of Limit Cycle [42]

  

 Limit cycle analysis provides aid to demonstrate the nonlinearities of pitch damping 

characteristics of blunt probe. For the planetary atmospheric entry, knowledge of limit cycle is 

significant for important affairs like parachute deployment during landing.  

4.4 Bifurcation Analysis 

Bifurcation analysis has its importance in understanding the properties of ordinary 

differential equations as the numerical values of some specific parameters are varied. 

Specifically, the stability of Equation (4.8) and changes in the topological properties of the 

solution can be described with help of bifurcation analysis. 

The equilibria of amplitude Equation (4.8), are 𝐴 = 0 and 𝐴 = √−
𝜇

2𝜉1
 . Plot of equilibria 

is shown in 𝐴1 − 𝜇  diagram. The stability of these equilibria is of our interest and can be 

determined through examining the eigenvalues of the linearized system around the equilibria of 
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Figure 4.3    Bifurcation Diagram for 1 0 

 

 

interest. In this case, the first equilibria of interest is at 𝜇 − 𝑎𝑥𝑖𝑠 (𝐴 = 0). After linearization 

around this equilibrium, we have: 

𝑑𝐴

𝑑𝜏1
= 𝜇

𝐴

2
         (4.9) 

The eigenvalue can be seen in Equation (4.9) is 
2


. The sign of µ governs the stability 

properties. Furthermore, the stability of second equilibrium of interest is about the parabola i.e. 

𝐴 = √−
𝜇

2𝜉1
 . The stability properties of these equilibria for 1 0  and 1 0  are shown in 

Figure (4.3) and Figure (4.4). 

These bifurcation diagrams signify that there occur limit cycle (finite amplitude 

oscillations) appearing and disappearing in the system by varying µ across 0  . This anomaly 

is recognized as Hopf bifurcation. The Hopf bifurcation is subcritical for 1 0  , although for 

the values of µ below the onset of bifurcation, the new branch of equilibria will occur. The Hopf 

bifurcation is supercritical for 1 0  , as the new branch of equilibria exist only for values of µ 

larger than the bifurcation onset.   
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Figure 4.4    Bifurcation diagram for 1 0 

 

 

 

It can be seen from the bifurcation diagram that, only for 1 0   the limit cycle is 

possible. This bifurcation study signifies that the sustained oscillation can only occur when 

1 0   and the amplitude of limit cycle is given by: 

𝐴 = √−
𝜇

2𝜉1
         (4.10) 

The amplitude only depends on µ and 1 . 

𝜇 =
𝜌𝑉𝑆

2𝑚
(−𝐶𝑙𝛼.0

+
𝑚𝑑2

2𝐼
(𝐶𝑚𝑞

+ 𝐶𝑚𝛼̇
)

0
) 

𝜉1 =
1

8
(

𝜌𝑉𝑆

2𝑚
(−3𝐶𝑙

𝛼3
+

𝑚𝑑2

2𝐼
(𝐶𝑚𝑞

+ 𝐶𝑚𝛼̇
)

𝛼2
)) 

It is seen from the Figure (4.3) and (4.4) that finite amplitude oscillations are possible 

only when 1 0  . These bifurcation diagrams show that limit cycle appearance and 

disappearance in the system is due to the variation of µ. In Figure (4.4) it can be seen that when 
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µ<0 the amplitude of equilibria is unstable but after crossing µ=0 the amplitude of equilibria 

become stable and a limit cycle is obtained.  

4.5 Solution of Amplitude and Phase-Correction Equations 

To obtain a closed-form solution, it is required to solve the amplitude and phase-

correction equations i.e. Equation (4.9). Recall the amplitude differential equation first, moreover 

using separation of variables technique, equation can be written as: 

𝑑𝜏1 =
𝑑𝐴

𝐴(𝜉1 𝐴2+
𝜇

2
)
        (4.11) 

Carrying out partial fraction expansion, we have: 

𝑑𝜏1 =
2

𝜇𝐴
𝑑𝐴 −

2𝜉1 𝐴

(𝜇𝜉1 𝐴2+
𝜇2

2
)

𝑑𝐴       (4.12) 

Integrating on both sides of Equation (4.12), we have: 

𝜏1 =
2

𝜇
𝑙𝑛|𝐴| −

1

𝜇
𝑙𝑛 |𝜇𝜉1𝐴2 +

𝜇2

2
| + 𝑆0     (4.13) 

By taking exponential and simplifying further, we have: 

𝑒𝑥𝑝(𝜇𝜏1) =
𝐴2 𝑒𝑥𝑝(𝑆0)

𝜇𝜉1 𝐴2+
𝜇2

2

        (4.14) 

Rearranging the Equation (4.14), 

𝐴2 = −
𝜇2

2
𝐴2𝑒𝑥𝑝(𝜇𝜏1)

𝑒𝑥𝑝(𝑆0)+𝜇𝜉1
2

𝑒𝑥𝑝(𝜇𝜏1)
       (4.15) 

By letting 𝑆1 = √
𝜇

𝑒𝑥𝑝(𝑆0 )
 , Equation (4.15) can be written as: 

𝐴 =
√

𝑆1𝜇

2
𝑒𝑥𝑝(

𝜇𝜏1
2

)

√1−𝑆1 𝜉1 𝑒𝑥𝑝(𝜇𝜏1)
        (4.16) 
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The constant 1S in above Equation (4.16) can be determined with the help of initial conditions. 

Furthermore, the steady state solution in Equation (4.16) matches with Equation (4.10). Now, substituting 

Equation (4.16) into the phase-correction equation, we get: 

𝑑𝐵 = (
𝑆1𝜇

2
𝜉2𝑒𝑥𝑝(𝜇𝜏1)

1−𝑆1 𝜉1𝑒𝑥𝑝(𝜇𝜏1)
)       (4.17) 

Integrating on both sides of Equation (4.17), we get: 

𝐵 = −
𝜉2

𝜉1
ln |1 − 𝑆1𝜉1𝑒𝑥𝑝(𝜇𝜏1)| + 𝑆2

∗     (4.18) 

where, 𝑆2
∗ = 𝑙𝑛|𝑆2|, is a constant. Now putting the Equation (4.16) and Equation (4.18) in 

Equation (4.5), we get: 

𝛼0 = (
√𝑆1𝜇

2
𝑒𝑥𝑝 (𝜇𝜏1

2
)

√1−𝑆1𝜉1𝑒𝑥𝑝(𝜇𝜏1
)
) 𝑠𝑖𝑛 (√(−

𝜌𝑉2 𝑆𝑑

2𝐼
𝐶𝑚𝛼,0

) 𝜏0 + (−
𝜉2

𝜉1
ln |1 − 𝑆1𝜉1𝑒𝑥𝑝(𝜇𝜏1

)| + 𝑆2
∗))     (4.19) 

4.6 Concluding Remarks  

The technique Multiple Time Scales is successfully applied to Equation (3.12), an 

analytical approach is utilized to approximate the closed-form solution. In the next chapter the 

numerical validation is performed.   
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Chapter 5 

NUMERICAL VALIDATION 

 

5.1 Introduction 

 The closed-form solution was obtained for the oscillations of the decelerating blunt probe 

using MTS technique in the previous chapter. In this chapter the application of numerical 

validation will be carried out. A simulation of oscillations of the decelerating blunt body entry 

vehicle at the time of atmospheric entry was performed. The results obtained from this 

simulation are compared with the analytical solution developed earlier.  

5.2 Numerical Solution 

 Our need is to solve Equation (4.12) numerically. For this purpose MATLAB® ordinary 

differential equation solver ode45 is used to integrate the governing equations i.e. Equation 

(3.12). This solver is based on fourth-order Runge-Kutta method. Before we apply ode45 

technique, we need two initial conditions, as the differential equation is second order ODE.  

𝛼0(𝑡 = 0) = 13°        (6.1a) 

𝛼0̇(𝑡 = 0) = 0 𝑟𝑎𝑑/𝑠        (6.1b) 

The model properties are taken from the experimental work of the Schoenenberger and 

Queen [9]:  

𝑚 = 0.584𝑘𝑔         (6.2a) 

𝐼 = 1.55 × 10−4𝑘𝑚 ∗ 𝑚2       (6.2b) 

𝑉 = 0.584 𝑚/𝑠         (6.2c) 

𝑑 = 0.07 𝑚         (6.2d) 
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𝑆 = 0.00385 𝑚2        (6.2e) 

𝜌 = 1.20 𝑘𝑔/𝑚3        (6.2f) 

𝐶𝑚3 = 0.0206         (6.2g) 

𝐶𝑚2 = 0.0776         (6.2h) 

𝐶𝑚𝛼,0
= 0.1619        (6.2i) 

𝐶𝑙3 = 0.925         (6.2j) 

𝐶𝑙2 = −2.84         (6.2k) 

𝐶𝑙𝛼,0
= 2.15           (6.2l) 

(𝐶𝑚𝑞
+ 𝐶𝑚𝛼

)
𝛼2

= −7.6816       (6.2m) 

(𝐶𝑚𝑞
+ 𝐶𝑚𝛼

)
𝛼

= −0.1578       (6.2n) 

(𝐶𝑚𝑞
+ 𝐶𝑚𝛼

)
0

= 0.3804       (6.2o) 

𝑆0 = 9.976083         (6.2p) 

𝑆2 = 3.8         (6.2q) 
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Figure 5.1    Comparison of Analytical And Numerical Solution for the Limit Cycle Case

 
 

5.3 Comparison of Analytical Solution with Numerical Simulations 

It can be recognized in Figure 5.1 that the limit cycle amplitude and frequency concluded 

by the MTS method are in decent arrangement with numerical simulation.  

 

5.4 Concluding Remarks  

RK-4 method is utilized in MATLAB® to validate approximate closed-form solution. A 

satisfactory agreement with analytical solution is obtained. 
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Chapter 6 

CONCLUSIONS  

 

6.1 Introduction 

 This chapter includes the conclusions drawn from this research. Moreover, 

recommendations for future work are also listed. 

6.2 Conclusions 

 The phenomenon of dynamic stability in blunt-body atmospheric entry vehicles is among 

the least understood. This work describes the stability analysis of a generic blunt body 

atmospheric entry vehicle in low supersonic regime, just before the parachute dep loyment. This 

work presents an approximate analysis that provides the amplitude of limit cycle in terms of 

nonlinearities associated with aerodynamic coefficients. The driving forces for oscillation growth 

are the cubic nonlinearities associated with the lift-curve slope and quadratic nonlinearity 

associated with pitch damping characteristic curve.   

The analytical findings are validated with numerical simulations based on Runge-Kutta 

methods. A decent agreement between approximate closed-form analytical solutions and 

numerical results is demonstrated.  
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Appendix A 

MATLAB Codes of Analytical and Numerical Solutions 

I. Numerical Solution 

(i) M-File-1 

function xp=nv(t,x) 

rho=1.2; 

v=343; 

i=0.000155; 

d=0.07; 

m=0.584; 

s=0.00385; 

    %% Aerodynamic Coefficients %% 

cmx3(1)=0.0206;    %AIAA M-2.5 

cmx2(1)=0.0776;   %AIAA  M-2.5 

cmx0(1)=-0.1619;  %AIAA  M-2.5 

clx3(1)=0.925;   %AIAA   M-2.5 

clx2(1)=-2.84;   %AIAA   M-2.5 

clx0(1)=2.15;    %AIAA%  M-2.5 

         % DAMPING MACH# 2.5 %% 

cmqcmx2(1)=-7.6816; %CMqCMalpha-M-2.5 

cmqcmx1(1)=-0.1578; %CMqCMalpha-M-2.5 

cmqcmx0(1)=0.3804; %CMqCMalpha-M-2.5 

    %% Dynamic Coefficients %% 

omega2=-((rho*(v^2)*s*d)/(2*i))*(cmx0(1)); 
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mu=((rho*v*s)/(2*m))*(-clx0(1)+((m*(d^2))/(2*i))*cmqcmx0(1)); 

c1=((rho*(v^2)*s*d)/i)*cmx2(1); 

c2=((3*rho*(v^2)*s*d)/(2*i))*(cmx3(1)); 

c3=((rho*v*s)/(2*m))*(-2*clx2(1)+(m*(d^2)/(2*i))*cmqcmx1(1)); 

c4=(rho*v*s/(2*m))*(-3*clx3(1)+(m*(d^2)/(2*i))*cmqcmx2(1)); 

    %% System of ODEs %% 

        xp=zeros(2,1); 

        xp(1)=x(2); 

        xp(2)=-
(omega2)*x(1)+mu*xp(1)+c1*(x(1).^2)+c2*(x(1).^3)+c3*x(1).*xp(1)+c4*(x(1).^2).*xp(1); 

end; 

(ii) M-File-2 

function readnv() 

[T,Y] = ode45('nv',[0 2],[0.227 0]); 

% [t,x]=ode45('F',[t0,tf],[x10,x20]) 

plot(T,Y(:,1)*180/pi,'-'); 

grid on; 

II. Numerical Solution 

rho=1.2; 

v=343; 

i=0.000155; 

d=0.07; 

m=0.584; 

s=0.00385; 

   %% Aerodynamic Coefficients %% 

    % AIAA MACH# 2.5 %% 

cmx3(1)=0.0206;    %AIAA M-2.5 
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cmx2(1)=0.0776;   %AIAA  M-2.5 

cmx0(1)=-0.1619;  %AIAA  M-2.5 

clx3(1)=0.925;   %AIAA   M-2.5 

clx2(1)=-2.84;   %AIAA   M-2.5 

clx0(1)=2.15;    %AIAA%  M-2.5 

         % DAMPING MACH# 2.5 %% 

cmqcmx2(1)=-7.6816; %CMqCMalpha-M-2.5 

cmqcmx1(1)=-0.1578; %CMqCMalpha-M-2.5 

cmqcmx0(1)=0.3804; %CMqCMalpha-M-2.5 

     %% Dynamic Coefficients %% 

c4=((rho*v*s)/(2*m)*(((-3*clx3(1))+(m*(d^2)/(2*i))*(cmqcmx2(1))))); 

% c4=-100; 

c2=((3*rho*(v^2)*d*s)/(2*i))*(cmx3(1)); 

omega=(-((rho*(v^2)*d*s)/(2*i))*(cmx0(1)))^(0.5); 

exi1=(c4/8); 

exi2=-(3/8)*(c2/omega); 

mu=(rho*v*s/(2*m))*((-clx0(1))+((m*(d^2))/(2*i))*cmqcmx0(1)); 

 s0= 9.976083;  

s1=((mu)/exp(s0))^0.5; 

s2=3.8;     

epsilon=0.42; 

tau=0:0.003349:4.76; 

 t=epsilon*tau; 

  %% Closed Form Solution %% 

 a=((((s1*mu)/2)^(0.5))*exp((mu*t)./2))./((1-(s1*exi1*exp(mu*t))).^0.5); 

 b=-(exi2/(2*exi1))*log(1-s1*exi1*exp(mu*t)) + log(s2); 
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% alpha0=(((((s1*mu)/2)^(0.5))*exp((mu*t)/2))./((1-
(s1*exi1*exp(mu*t))).^0.5)).*sin((omega*t)+(-(exi2/(2*exi1))*log((1-(s1*exi1*exp(mu*t))) + 

log(s2)))); 

 alpha0 = a.*sin(omega*t + b); 

    plot(t,(alpha0)*(180/pi),':'); 

end; 

 


