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ABSTRACT 

 Leading edge vortex (LEV) formation  is considered a dominant factor for 

high lift production during insect flapping. Previous studies suggest that LEV 

occupies the separation zone on suction side of the wing and does not shed even 

after many chords of travel.  The development of micro aerial vehicle (MAV) 

inspired from nature is an active area of research. MAV operates at Reynolds 

number 10
4
-10

5
; slightly higher than the insects Re range. The motivation behind 

present research is to investigate whether “stall-absent” phenomenon manifests at 

Re 34000, representative of MAV. Corrugated dragonfly airfoil with rectangular 

wing planform is used and wing motion kinematics is restricted to azimuth rotation. 

Three dimensional finite volume method Fluent is used to numerically solve time 

dependent incompressible Navier-Stokes equations using pressure based solver. 

 

 Computed results at Re 34000 and 100,000, reveal the same phenomena of 

leading edge vortex formation, as observed in case of insects. There is an intense 

spanwise flow, comparable to chordwise velocity that ensures that the LEV does 

not grow in size and sheds. Furthermore, parametric study is also conducted to see 

the effect of angle of attack, acceleration duration, aspect ratio, and wing planform 

on corrugated wing in sweeping motion. It was also observed that there is no 

noticeable difference in aerodynamic efficiency of the wing, subjected to geometric 

variation.  

 

 


