Table of Contents

Aknowledgementiii				
List of Figuresxii				
List o	List of Tablesxvii			
Nome	enclatuı	e xix		
ABS	ГRACT	XX		
1.	INTR	RODUCTION1		
	1.1	Motivation1		
	1.2	Micro Aerial Vehicle1		
	1.3	Significance of Reynolds number2		
	1.4	Insects Flapping Cycle		
	1.5	Corrugations on Insect Wings4		
	1.6	Delayed Stall and Formation of Leading Edge Vortex5		
	1.7	Objectives of Present Work		
	1.8	Work Presented in the thesis7		
		1.8.1 Detailed Literature Review7		
		1.8.2 Computational Setup7		
		1.8.3 Grid Study and Validation7		
		1.8.4 Steady State Aerodynamic Force Production at Re		
		3500 and Re 340008		
		1.8.5 Parametric Study of Corrugated Wing in Unsteady		
		Motion		
		1.8.6 Effect of Wing Geometry on Aerodynamic Force		
		Production		

		1.8.7 Effect of Reynolds Number on Formation of Leading
		Edge Vortex9
		1.8.8 Conclusion and Recommendation9
2.	LITI	ERATURE REVIEW10
	2.1	Introduction10
	2.2	Research Approaches10
	2.3	Effect of corrugations in insect wing10
	2.4	Corrugated wing for MAV application14
	2.5	Aerodynamic Lift and the Role of LEV16
	2.6	Relevance to Present Research
3.	COM	IPUTATIONAL SETUP21
	3.1	Geometry
		3.1.1 Selection of Airfoil21
		3.1.2 Selection of Wing Planform
	3.2	The Numerical Method24
		3.2.1 Introduction to Pressure Based Solver24
		3.2.2 Spatial Discretization
		3.2.3 Temporal discreetization27
		3.2.4 Pressure Velocity Couping
		3.2.5 Boundary Conditions
		3.2.6 Turbulance model
		3.2.7 Selection of y ⁺ 30
		3.2.8 Dynamic Meshing31

4.	GRI	D STUDY AND VALIDATION	33
	4.1	Introduction	33
	4.2	Wing Kinematic	33
	4.3	Grid Generation	34
	4.4	User Defined Function	36
	4.5	Validation for 3D Case with Sweeping Motion	38
		4.5.1 Grid Independence	38
		4.5.2 Domain Independence	38
		4.5.3 Time independence	39
		4.5.4 Comparison of Results	42
	4.6	Effect of Turbulance at Higher Re	43
	4.7	Validation for 2D Steady State Calculations	.46
	4.8	Conclusion	49
5.	STE	ADY STATE AERODYNAMIC FORCE PRODUCT	ION
AT I	Re 3500	AND Re 34000	50
	5.1	Introduction	50
	5.2	Comparison of Steady State Results at Re 3500 & 34000)50
	5.3	Steady state calculations for 3D wing at Re 34000	54
	5.4	Conclusion	57
6.	PAR	AMETRIC STUDY OF CORRUGATED WING	IN
UNS	TEADY	Y MOTION	58
	6.1	Introduction	58
	6.2	Effect of Angle of Attack	59
	6.3	Effect of Acceleration Duration in Azimuth Rotation	63

	6.4	Effect of Aspect Ratio in Sweeping Motion	68
	6.5	Effect of Wing planform in Sweeping Motion	73
	6.6	Conclusion	79
7.	EFFE	CCT OF WING GEOMETRY ON AERODYNAMIC	
FOR	CE PR(DDUCTION	80
	7 .1	Introduction	80
	7.2	Comparsion of Flat plate, Profiled and Corrugated Wing	in
	Sweep	ping Motion	81
		7.2.1 At $\alpha = 10^{\circ}$	81
		7.2.2 At $\alpha = 40^{\circ}$	82
	7.3	Comparsion of Flat plate, Profiled and Corrugated Wing	in
	Pitchi	ng Motion	90
	7.4	Effect of Geometry Modification on Sweeping Motion	97
		7.4.1 Effect of Corrugation Height	98
		7.4.2 Effect of Geometry Variation	98
	7.5	Conclusion	103
8.	EFFE	CT OF REYNOLDS NUMBER ON FORMATION	OF
LEAI	DIGN E	DGE VORTEX	.104
	8.1	Introduction	
	8.2	Sweeping Motion at $\alpha = 10^{\circ}$	
	8.3	Sweeping Motion at α =40°	
	8.4	Role of Spanwise Flow in Delayed Stall	
	8.5	Comparison of Pure Translation and Azimuth Rotation	
	0.5	Comparison of Fure Translation and Azimuth Rotation	. 1 4 1

8.6	Conclusion	127
-----	------------	-----

9.	CONCLUSION	AND RECOMMENDATION	128
REFE	RENCES		131

List of Figures

Figure 1.1	Schematic of laminar separation bubble on low Reynolds number		
	airfoil		
Figure 1.2	Insect flapping cycles4		
Figure 1.3	Corrugated airfoil of dragonfly at 0.3, 0.5 and 0.7 of span length.4		
Figure 1.4	Delayed stall in insects		
Figure 2.1	Recirculation region in valleys of corrugations12		
Figure 2.2	Effect of variation of wing planform on aerodynamic force		
	coefficients		
Figure 2.3	Comparison of C_l and C_d for flat plate, profiled airfoil and		
	corrugated airfoil		
Figure 2.4	Stable attachment of leading edge vortex		
Figure.3.1	Airfoil modelled with triangular wave		
Figure 3.2	Dragonfly airfoil		
Figure 3.3	Rectangular planform of triangular wave modeled wing and		
	dragonfly wing		
Figure 4.1	Motion setup for wing		
Figure 4.2	O type grid topology for 2D airfoil		
Figure 4.3	Grid on airfoil & corrugated wing modeled with triangular wave35		
Figure 4.4	3D close up of corrugated wing modeled with triangular wave35		
Figure 4.5	3D close up of corrugated wing modeled with triangular wave36		
Figure 4.6	(a) $C_l vs \psi$. Grid independence		
	(b) $C_d vs \psi$. Grid independence		

Figure 4.7	(a)	C_l vs ψ . Domain independence40		
	(b)	C_d vs ψ . Domain independence40		
Figure 4.8	(a)	C_l vs ψ . Time independence		
	(b)	C_d vs ψ . Time independence41		
Figure 4.9	(a)	C_l vs ψ . Plot of Validation44		
	(b)	C_d vs ψ . Plot of Validation		
Figure 4.10	(a)	C_l vs ψ . Comparison of turbulence models at Re 3400045		
	(b)	C_d vs ψ . Comparison of turbulence models at Re 3400045		
Figure 4.11	2D close up of dragonfly airfoil for validation46			
Figure 5.1	Airfoil shapes considered (a) Corrugated airfoil (b) Inverted			
	corrugated airfoil			
Figure 5.2	(a)	C_l vs α . Comparison of corrugated and inverted corrugated		
	airfoil			
	(b)	C_d vs α . Comparison of corrugated and inverted corrugated		
	airfoil			
Figure 5.3	(a)	C_l vs α . Steady state lift coefficient for corrugated wing54		
	(b)	C_d vs α . Steady state drag coefficient for corrugated wing55		
Figure 5.4	Mid-s	pan stream traces and velocity vectors for steady state		
	calcul	ations at different angles of attack at Re 3400056		
Figure 6.1	(a)	C_l vs ψ . Comparison of α at Re 3400061		
	(b)	$C_d vs \psi$. Comparison of α at Re 3400061		
Figure 6.2	(a)	C_l vs ψ . Comparison of α at Re 100,00062		
	(b)	C_d vs ψ . Comparison of α at Re 100,00062		

Figure 6.3	Stream traces for different values of ψ at Re 34000
	(a) $\alpha = 10^{\circ}$ (b) $\alpha = 20^{\circ}$ (c) $\alpha = 30^{\circ}$ (d) $\alpha = 40^{\circ}$
Figure 6.4	(a) $C_l vs \psi$. Comparison of acceleration duration at Re 3400066
	(b) $C_d vs \psi$. Comparison of acceleration duration at Re 34000.66
Figure 6.5	Stream traces at Re 34000 with sweeping angle for acceleration
	phase set at (a) $\psi_a = 10^\circ$ (b) $\psi_a = 20^\circ$ (c) $\psi_a = 30^\circ$ 67
Figure 6.6	Aspect ratio of corrugated rectangular wing. (a) $R/c= 1.5$ (b) $R/c= 3$
	(c) $R/c= 4.5$ (d) $R/c= 668$
Figure 6.7	(a) $C_l vs \psi$. Comparison of aspect ratio at Re 3400070
	(c) $C_d vs \psi$. Comparison of aspect ratio at Re 3400070
Figure 6.8	Stream traces for different values of ψ (a) R/c= 1.5 (b) R/c= 3 (c)
	R/c 4.5 (d) R/c= 6 (Re 34000 and α =40°)71
Figure 6.9	Spanwise stream traces (a) $R/c=1.5$ (b) $R/c=3$ (c) R/c 4.5
	(d) R/c= 6 (Re 34000, ψ =150° and α =40°)72
Figure 6.10	Cp contours for different values of R/c73
Figure 6.11	Aspect ratio of corrugated rectangular wing (a) $R/c= 1.5$ (b) $R/c= 3$
	(c) $R/c= 4.5$ (d) $R/c= 674$
Figure 6.12	(a) $C_l vs \psi$. Comparison of wing planform at Re 3400075
	(b) $C_d vs \psi$. Comparison of wing planform at Re 3400075
Figure 6.13	Stream traces for different values of ψ (a) taper ratio= 0.5 (b) taper
	ratio= 0.75 (c) taper ratio= 1 (Re 34000 and α =40°)76
Figure 6.14	Spanwise stream traces (a) taper ratio= 0.5 (b) taper ratio= 0.75 (c)
	taper ratio= 1 (Re 34000, ψ =150° and α =40°)77
Figure 6.15	Cp contours for different values of taper ratio78

Figure 7.1	Pictorial view of flat plate, profiled and corrugated airfoil81		
Figure 7.2	(a) $C_l vs \psi$ for Re 34000 and $\alpha = 10^{\circ}$		
	(b) $C_d vs \psi$ for Re 34000 and $\alpha = 10^{\circ}$		
Figure 7.3	C_p distribution of flatplate profiled and corrugated wing at mid span		
	(Re 34000, $\psi = 150^{\circ}$ and $\alpha = 10^{\circ}$)		
Figure 7.4	(a) $C_l vs \psi$ for Re 34000 and $\alpha = 40^{\circ}$		
	(b) $C_d vs \psi$ for Re 34000 and $\alpha = 40^{\circ}$		
Figure 7.5	C_p distribution of flatplate profiled and corrugated wing at mid span		
	(Re 34000, ψ =150° and α =40°)		
Figure 7.6	Stream traces and velocity vectors on flatplate wing for different		
	values of ψ (Re 34000 and α =40°)		
Figure 7.7	Stream traces and velocity vectors on profiled wing for different		
	values of ψ (Re 34000 and α =40°)		
Figure 7.8	Stream traces and velocity vectors on corrugated wing for different		
	values of ψ (Re 34000 and α =40°)		
Figure 7.9	(a) $C_l vs \alpha$ at Re 34000 and $\dot{\alpha}_0^+ = 1$		
	(b) $C_d vs \alpha$ at Re 34000 and $\dot{\alpha}_0^+ = 1$		
Figure 7.10	(a) $C_l vs \alpha$ at Re 34000 and $\dot{\alpha}_0^+ = 2$		
	(b) $C_d vs \alpha$ at Re 34000 and $\dot{\alpha}_0^+ = 2$		
Figure 7.11	Stream traces for different values of α at Re 34000 and $\dot{\alpha}_0^+ = 1$		
	(a) Flatplate wing (b) profiled wing (c) corrugated wing95		
Figure 7.12	Stream traces for different values of α at Re 34000 and $\dot{\alpha}_0^+=2$		
	(a) Flatplate wing (b) profiled wing (c) corrugated wing96		

Figure 7.13	Geometry modifications on corrugated airfoil (a) Corrugated
	dragonfly wing (b) Reduced corrugation height (c) Upper half
	profiled wing (d) Lower half profiled wing (e) Upper profiled
	wing (f) Lower profiled wing97
Figure 7.14	(a) $C_l vs \psi$. Effect of corrugation height (Re 34000 & $\alpha = 40^\circ$)99
	(b) $C_d vs \psi$. Effect of corrugation height (Re 34000 & $\alpha = 40^\circ$)99
Figure 7.15	(a) $C_l vs \psi$. Effect of geometry modification
	(Re 34000 and $\alpha = 40^{\circ}$)101
	(b) $C_d vs \psi$. Effect of geometry modification
	(Re 34000 and $\alpha = 40^{\circ}$)
Figure 7.16	Stream traces for different shapes at mid span (Re 34000, ψ = 150°
	and $\alpha = 40^{\circ}$)
Figure 8.1	(a) $C_l vs \psi$. Comparison of Re at $\alpha = 10^{\circ}$ 105
	(b) $C_d vs \psi$. Comparison of Re at $\alpha = 10^{\circ}$ 106
Figure 8.2	(a) $C_l vs \psi$. Comparison of Re at $\alpha = 40^{\circ}$
	(b) $C_d vs \psi$. Comparison of Re at $\alpha = 40^{\circ}$
Figure 8.3	Stream traces and velocity vectors for different values of ψ
	(Re 3500 and α =40°)109
Figure 8.4	Stream traces and velocity vectors for different values of ψ
	(Re 34000 and α =40°)110
Figure 8.5	Stream traces and velocity vectors for different values of ψ
	(Re 100,000 and α =40°)111
Figure 8.6	Stream traces at Re 3500, 34000 and 100000 at (a) $\psi=20^{\circ}$

	(b) $\psi = 150^{\circ}$	112
Figure 8.7	Stream traces on wing section at different span locations	
	(Re 3500, ψ =150° and α =40°)	114
Figure 8.8	Stream traces on wing section at different span locations	
	(Re 34000, ψ =150° and α =40°)	115
Figure 8.9	Stream traces on wing section at different span locations	
	(Re 100,000, ψ =150° and α =40°)	116
Figure 8.10	Spanwise velocity vectors at the core of LEV (a) Re 3500 (b)	Re
	34000 (c) Re 100,000	118
Figure 8.11	spanwise velocity distributions	120
Figure 8.12	C_l and C_d for sweeping motion and pure translation at Re 350)0,
	34000 and 100,000	122
Figure 8.13	Stream traces for pure translation at different time instants	
	(Re 3500 and α =40°)	124
Figure 8.14	Stream traces for pure translation at different time instants	
	(Re 34000 and α =40°)	125
Figure 8.15	Stream traces for pure translation at different time instants	
	(Re 100,000 and $\alpha = 40^{\circ}$)	126

List of Tables

Table 3.1	Triangular wave modelled airfoil parameters	
Table 3.2	Coordinates of dragonfly airfoil	
Table 4.1	Grid independence at $\alpha = 7^{\circ}$	
Table 4.2	Domain independence at $\alpha = 7^{\circ}$	
Table 4.3	Time independence at $\alpha = 7^{\circ}$	
Table 4.4	Turbulence model sensitivity at $\alpha = 7^{\circ}$	
Table 4.5	Results of 2D validation	
Table 5.1	Comparison of C_l and C_d for corrugated airfoil at Re 3500	
	and Re 34000	
Table 5.2	Comparison of C_l and C_d for inverted corrugated airfoil at Re 3500	
	and Re 34000	
Table 5.3	Steady state lift to drag ratio (L/D) variation with α	
Table 6.1	Comparison of force coefficients for steady state and unsteady state	
	results63	
Table 6.2	Comparative lift to drag ratio at different angle of attack for wing in	
	azimuth rotation and wing in steady state64	
Table 7.1	Comparison of aerodynamic force coefficients for flat plate, profiled	
	and corrugated wing in sweeping motion at $\alpha = 10^{\circ}$	
Table 7.2	Comparison of aerodynamic force coefficients for flat plate, profiled	
	and corrugated wing in sweeping motion at $\alpha = 40^{\circ}$	
Table 7.3	Comparison of aerodynamic force coefficients in pitching motion	
	at $\dot{\alpha}_0^+ = 1$	
Table 7.4	Comparison of aerodynamic force coefficients in pitching motion	

Table 7.5	Comparison of aerodynamic force coefficients for different	
	geometries100	
Table 8.1	Spanwise velocity from wing root to tip at different chord lengths at	
	Re 34000	
Table 8.2	Comparison of spanwise velocity and chordwise velocity120	

Nomenclature

Re	Reynolds number
MAV	Micro aerial vehicle
Cfd	Computational fluid dynamics
UDF	User defined function
LEV	Leading edge vortex
R	Wing length
с	chord length
\mathbf{C}_p	Pressure coefficient
C_l	Coefficient of lift
C_d	Coefficient of drag
α	Angle of attack
ψ	Azimuth angle or sweeping angle
$\dot{\psi}$	Angular velocity during sweeping motion
ά	Angular velocity during pitching motion
r_2	Radius of second moment of wing area
rc	root chord
t	taper ratio
AR	aspect ratio
MAC	Mean aerodynamic chord

ABSTRACT

Leading edge vortex (LEV) formation is considered a dominant factor for high lift production during insect flapping. Previous studies suggest that LEV occupies the separation zone on suction side of the wing and does not shed even after many chords of travel. The development of micro aerial vehicle (MAV) inspired from nature is an active area of research. MAV operates at Reynolds number 10⁴-10⁵; slightly higher than the insects Re range. The motivation behind present research is to investigate whether "stall-absent" phenomenon manifests at Re 34000, representative of MAV. Corrugated dragonfly airfoil with rectangular wing planform is used and wing motion kinematics is restricted to azimuth rotation. Three dimensional finite volume method Fluent is used to numerically solve time dependent incompressible Navier-Stokes equations using pressure based solver.

Computed results at Re 34000 and 100,000, reveal the same phenomena of leading edge vortex formation, as observed in case of insects. There is an intense spanwise flow, comparable to chordwise velocity that ensures that the LEV does not grow in size and sheds. Furthermore, parametric study is also conducted to see the effect of angle of attack, acceleration duration, aspect ratio, and wing planform on corrugated wing in sweeping motion. It was also observed that there is no noticeable difference in aerodynamic efficiency of the wing, subjected to geometric variation.