# This Is To Certify That

# SHEAR OPTIMIZATION OF PRESTRESSED BRIDGE GIRDERS

# Submitted by

# MAJOR MANSOOR KHALID

Has been accepted towards partial fulfillment

of

the requirements

for

Master of Science in Civil Engineering (Structures)

Lieutenant Colonel Dr Gulfam Alam Military College of Engineering National University of Science and Technology, Pakistan

# SHEAR OPTIMIZATION OF PRESTRESSED BRIDGE GIRDERS

BY

# MAJOR MANSOOR KHALID

A Thesis

Of

**Master of Science** 

Submitted to the

Military College of Engineering

National University of Science and Technology

In partial fulfillment of the requirements for the degree of

**Master of Science** 

2001

DEDICATED TO MY PARENTS AND WIFE

# CONTENTS

| List of Figures                                          | i          |
|----------------------------------------------------------|------------|
| List of Tables                                           | <b>iii</b> |
| List of Notations                                        | vi         |
| Chapter 1: Introduction                                  |            |
| 1.1 General                                              | 1          |
| 1.2 Purpose of research                                  | 3          |
| 1.3 Scope                                                | 4          |
| 1.4 Aim                                                  | 7          |
| 1.5 Objective                                            | 7          |
| 1.6 Research methodology                                 | 8          |
| Chapter 2: Review of Literature                          |            |
| 2.1 General                                              | 10         |
| 2.2 Historical Development of Shear Design Provisions    | 10         |
| 2.3 Compression Field Approaches                         | 13         |
| 2.4 Truss Approaches With Concrete Contribution          | 19         |
| Chapter 3: Work Methodology and Materials                |            |
| 3.1 General                                              | 27         |
| 3.2 Design Variables                                     |            |
| 3.3 Design Loads                                         | 29         |
| 3.4 Analysis models                                      | 30         |
| 3.5 Assumptions                                          |            |
| 3.6 Permissible Stresses                                 | 40         |
| 3.7 Materials                                            | 40         |
| Chapter 4: Shear Design by AASHTO/ACI Standard Procedure |            |
| 4.1 General                                              | 42         |
| 4.2 Design Basis                                         | 43         |
| 4.3 Nominal Shear Strength Provide By the Concrete       |            |
| 4.4 Required Area of Web Reinforcement                   | 45         |
| 4.5 Minimum Web Reinforcement                            | 46         |

| Chapter 5: Shear Design by LRFD Approach                                  |
|---------------------------------------------------------------------------|
| 5.1 General                                                               |
| 5.2 LRFD Bridge Design Specifications                                     |
| 5.3 Shear Design by LRFD Approach                                         |
| 5.4 Shear Design Methodology for Prestressed Bridge Girders76             |
| Chapter 6: Analysis of Current Design Practices                           |
| 6.1 General                                                               |
| 6.2 Case Study- Existing Bridge on Dina Nullah                            |
| 6.3 Case Study- Hisara Drain Bridge On Islamabad-Peshawar Motorway M-197  |
| 6.4 Observation and Findings107                                           |
| Chapter 7: Comparison of LRFD and ASD                                     |
| 7.1 Development of Design Procedures108                                   |
| 7.2 Variability of Loads108                                               |
| 7.3 Shortcomings of ASD109                                                |
| 7.4 Advantages of LRFD109                                                 |
| 7.5 Disadvantages of LRFD Method110                                       |
| 7.6 Comparison between AASHTO Standard Specifications and LRFD Code110    |
| 7.7 Comparison between Shear Design Procedures113                         |
| 7.8 Salient conclusions117                                                |
| 7.9 Simplified Method of Shear Design for Prestressed Concrete Girders118 |
| Chapter 8: Development of Design Tables                                   |
| 8.1 General                                                               |
| 8.2 Adoption of Code of Practice                                          |
| 8.3 Development of Design Aid (Design Tables)120                          |
| 8.3.1 Shear Capacity Tables121                                            |
| 8.3.2 Stirrup Design / Detailing Tables121                                |
| Chapter 9: Discussion on Results, Conclusion and Recommended Design       |
| Considerations                                                            |
| 9.1 Discussion on results123                                              |
| 9.2 Conclusions124                                                        |
| 9.3 Recommendations125                                                    |
| 9.3.1 Recommended Design Considerations                                   |

| LIST OF REFRENCES                             |     |
|-----------------------------------------------|-----|
| 9.3.2 Recommendations for future work         | 134 |
| 9.3.1.5 Important Parameter Influencing Shear | 133 |
| 9.3.1.4 Effect of Concrete Strength           | 132 |
| 9.3.1.3 Short and Medium Span Bridges         | 130 |
| 9.3.1.2 Girders with Curved Tendons           | 127 |
| 9.3.1.1 Girders with Straight Tendons         | 126 |

# LIST OF FIGURES

| Figure 1.1: Geometrical Properties of Modified G 36-I Girder136      |
|----------------------------------------------------------------------|
| Figure 1.2: Geometrical Properties of Modified G 42-I Girder136      |
| Figure 1.3: Geometrical Properties of Modified G 48-I Girder137      |
| Figure 1.4: Geometrical Properties of Modified G 54-I Girder137      |
| Figure 1.5: Geometrical Properties of Modified G 63-T Bulb Girder138 |
| Figure 1.6: Geometrical Properties of Modified G 72-T Bulb Girder138 |
| Figure 2.1: Example of Cracked Web of Beam Failing in Shear211       |
| Figure 2.2: Compression Field Theory211                              |
| Figure 2.3: Aspects of Modified Compression Field Theory212          |
| Figure 2.4: Comparison of Predicted Shear Strengths of Two Series    |
| of Reinforced Concrete Element                                       |
| Figure 2.5: Influence of Shear on Tension in Longitudinal            |
| Reinforcement                                                        |
| Figure 2.6: Shear-Moment Diagram for Rectangular Section213          |
| Figure 2.7: Free Body Diagram of B Region at End Support and         |
| Forces at Crack Due to Friction214                                   |
| Figure 2.8: Shear Force Carried by the Crack Friction Verses         |
| Ultimate Shear Force Plotted in Dimensionless Diagram214             |
| Figure 2.9: Design Diagram with Simplified Shear Force               |
| Component Due to Friction214                                         |
| Figure 2.10: Simplified Design Diagram for Members Subjected         |
| to Shear and Axial Forces as Proposed by Reineck (1991)215           |
| Figure 2.11: Forces and Stress Fields in Discrete Concrete           |
| Struts between Cracks (Kumpfer 1983, Reineck)215                     |
| Figure 2.12: Smeared Truss Models Corresponding to Principal         |
| Stress in Struts Between Cracks as Proposed by Reineck               |
| (1991a): (A) Truss with Uniaxial Compression Field: (B)              |
| Truss with Biaxial Tension-Compression Field216                      |
| Figure 5.1: Bridge, Cross Section and Tendon Layout217               |

| Figure 7.1:   | Comparison between AASHTO Standard and       |
|---------------|----------------------------------------------|
|               | LRFD code Procedure for Calculation of Vc114 |
| Figure 7.2:   | Comparison of Vs-Dina Nullah Bridge115       |
| Figure 7.3:   | Comparison of Nominal Shear Resistance       |
|               | Vn = Vc + Vs for Dina Nullah Bridge115       |
| Figure 7.4:   | Comparison of Vc – Hisara Drain Bridge11     |
| Figure 7.5:   | Comparison of Vs - Hisara Drain Bridge11     |
| Figure 7.6: 0 | Comparison of Nominal Shear Resistance       |
| ١             | Vn = Vc +Vs Hisara Drain Bridge117           |
|               |                                              |

# LIST OF TABLES

| Table 8.3.1.1a:       Shear Capacity Table for G 36-1 girder |
|--------------------------------------------------------------|
| with feet girders pacing                                     |
| Table 8.3.1.1b:       Shear Capacity Table for G 36-I girder |
| With 6 feet girder spacing141                                |
| Table 8.3.1.1c:       Shear Capacity Table for G 36-I girder |
| with 7 feet girder spacing143                                |
| Table 8.3.1.1d:       Shear Capacity Table for G 36-I girder |
| with 8 feet girder spacing145                                |
| Table 8.3.1.1e:       Shear Capacity Table for G 36-I girder |
| with 9 feet girder spacing147                                |
| Table 8.3.1.2a:       Shear Capacity Table for G 42-I girder |
| with 5 feet girder spacing149                                |
| Table 8.3.1.2b:       Shear Capacity Table for G 42-I girder |
| with 6 feet girder spacing151                                |
| Table 8.3.1.2c:       Shear Capacity Table for G 42-I girder |
| with 7 feet girder spacing153                                |
| Table 8.3.1.2d:       Shear Capacity Table for G 42-I girder |
| with 8 feet girder spacing155                                |
| Table 8.3.1.2e:       Shear Capacity Table for G 42-I girder |
| with 9 feet girder spacing157                                |
| Table 8.3.1.3a:       Shear Capacity Table for G 48-I girder |
| with 5 feet girder spacing159                                |
| Table 8.3.1.3b:       Shear Capacity Table for G 48-I girder |
| with 6 feet girder spacing161                                |
| Table 8.3.1.3c:       Shear Capacity Table for G 48-I girder |
| with 7 feet girder spacing163                                |

| Table 8.3.1.6d:   | Shear Capacity Table for G 72-T Bulb girder              |     |
|-------------------|----------------------------------------------------------|-----|
| with 8 feet gird  | er spacing1                                              | .95 |
| Table 8.3.1.6e:   | Shear Capacity Table for G 72-T Bulb girder              |     |
| with 9 feet girde | er spacing1                                              | .97 |
| Table 8.3.2.1: S  | Stirrup Design / Detailing Table for G 36-I Girder       | 199 |
| Table 8.3.2.2: S  | Stirrup Design / Detailing Table for G 42-I Girder       | 201 |
| Table 8.3.2.3: S  | Stirrup Design / Detailing Table for G 48-I Girder       | 203 |
| Table 8.3.2.4: S  | Stirrup Design / Detailing Table for G 54-I Girder       | 205 |
| Table 8.3.2.5: S  | Stirrup Design / Detailing Table for G 63-T Bulb Girder  | 207 |
| Table 8.3.2.6: S  | Stirrup Design / Detailing table for G 72-T Bulb Girder2 | 209 |

# LIST OF NOTATIONS

 $\mathbf{f'_c}$  = concrete compressive strength at 28 days

 $A_v$  = area of shear reinforcement at section

 $\mathbf{f}_{\mathbf{v}}$  = allowable tensile stress in shear reinforcement

 $\mathbf{V'}$  = total shear – 0.02 f'c b jd

 $\alpha$  = Angle of inclination of the web reinforcement w.r.t horizontal axis of the beam

**jd** = flexural lever arm

 $\mathbf{b} = \mathbf{b}\mathbf{w} = \text{width of web}$ 

 $\mathbf{s} =$ spacing of shear steel

v = shear stress at factored load level

 $V_s$  = shear force resisted by the stirrups

 $\mathbf{d} = \mathbf{d}\mathbf{v}$  = distance from extreme compression fiber to the centroid of longitudinal tensile steel

 $V_c$  = nominal shear strength of concrete

 $V_u$  = shear force applied at factored loads

 $V_n$  = nominal shear strength of section

 $\phi$  = Strength reduction factor for shear

 $V_d$  = shear due to self weight of member without load factor

 $V_i$  = factored shear at section

 $M_{max} =$  factored moment at section

 $\mathbf{y}_{t}$  = distance of neutral axis from compression fiber

 $\mathbf{f}_{\mathbf{pe}} = \text{stress}$  due to effective prestress force

 $\mathbf{f}_{d}$  = flexural stress at bottom face of the beam due to self weight without load factor

 $V_p$  = vertical component of effective prestress force at the section

 $\mathbf{f}_{pc}$  = compressive stress in concrete (after losses) at centroid of section resisting externally applied loads or at junction of web and flange

 $V_{ci}$  = normal shear strength provided by concrete when diagonal cracking results from combined shear and moment

 $\mathbf{f}_{\mathbf{y}} =$ yield stress of stirrup steel

 $M_u$  = factored moment at section

 $\mathbf{V}_{cw}$  = normal shear strength provide by concrete when cracking is due to shear alone

 $M_{cr}$  = moment causing flexural cracking at section

 $N_u$  = factored axial force

 $A_s$  = area of longitudinal steel

 $A_g$  = gross concrete area at section

**ld** = development length

**la** = additional embedment length at point of inflection

 $\beta$  = Ratio of tension reinforcement cutoff to total area of tension steel at section/

concrete tensile stress factor indicating the ability of diagonally cracked concrete to resist shear (for MCFT)

 $\rho$  = Percentage of reinforcement/steel ratio

 $\rho_v$  = percentage of vertical reinforcement

 $\rho_x$  = percentage of longitudinal reinforcement

 $\theta$  = angle of inclination of cracks with longitudinal axis of beam

 $\mathbf{f}_{sx}$  = tensile stress in longitudinal steel

 $\mathbf{f}_{sy}$  = tensile stress in transverse steel

 $\epsilon_x$  = strain in x-direction

 $\epsilon_y$  = strain in y-direction

 $\epsilon_1$  = principal tensile strain

 $\epsilon_2$  = principal compressive strain

 $\mathbf{f_1} = \text{principal tensile stress}$ 

 $\mathbf{f}_2 = \text{principal compressive stress}$ 

 $\gamma_m$  = diameter of strain circle

 $\epsilon' c$  = stain at which the concrete in a cylinder test reaches the peak stress

 $\mathbf{n} = \mathrm{Es/Ec} = \mathrm{modular ratio}$ 

w =crack width

**a** = aggregate size

 $f_{po}$  = stress in pre-stressing tendon when the surrounding concrete is at zero stress  $A_{ps}$  = area of pre-stressing steel  $S_x = crack$  spacing parameter

 $S_{xe}$  = equivalent crack spacing parameter

 $\mathbf{f}_{\mathbf{ps}}$  = ultimate strength of pre-stressing steel

 $\mathbf{T}$  = tension in longitudinal reinforcement

 $\mathbf{K}$  = factor representing the effect of pre-stress force on the concrete diagonal tensile strength

 $\mathbf{f}_t$  = principal diagonal tension stress

 $T_f$  = tangential frictional force at crack

 $N_f = normal force at crack$ 

 $\mathbf{fd}_{\mathbf{max}} = \mathbf{effective \ concrete \ strength \ of \ struts}$ 

 $\lambda = size reduction factor$ 

*v***cr** = shear stress resulting in first diagonal tension cracking

 $V_f$  = vertical component of combined frictional forces Tf and Nf across the

inclined crack in the web

 $A_g$  = Gross cross sectional area of the girder

 $\gamma_c$  = Density of concrete

**G** = Gravitational acceleration

**H**= Height of end diaphragm

 $\mathbf{W} =$ Width of end diaphragm

Wtrib = Tributary width of the slab

 $\mathbf{E}$  = Moment arm – Distance from C.G. of diaphragm to C.L Bearing

**H**= Height of the interior diaphragm

**W**=Width of the interior diaphragm

 $\mathbf{T}_{web}$  =Width of the girder web

S = Spacing of the exterior girders

 $W_{cc}$  =Width of the deck from curb to curb. In PG Super this is the distance

between the insides of the traffic barriers

 $\mathbf{t}_{olay} = \text{Depth of the overlay}$ 

 $\gamma_{olay}$  =Density of the overlay

Ngirders = Total number of girders

**BR** = Vehicular braking force

**CE** = Vehicular centrifugal force

**CR** =Creep

- **CT** = Vehicular collision force
- **CV** = Vessel collision force

**FR** = Friction

IC = Ice load

**IM** = Vehicular dynamic load allowance

**LL** = Vehicular live load

**LS**= Live load surcharge

**PL** = Pedestrian live load

SE = Settlement

**SH** = Shrinkage

**TG** = Temperature gradient

**TU** = Uniform temperature

**WA** = Water load and stream pressure

WL = Wind on live load

WS = Wind load on structure

# Chapter 1

## **INTRODUCTION**

## **1.1 GENERAL**

Communication infrastructure is primary ingredient in scientific, economical and social development of a country. Amongst various modes of transportation, roads network is a major component. Bridges and roads are complementary to each other of which bridges take maximum toll of resources.

History of bridge engineering can be termed, as the history of evolution of civil engineering .It is all but impossible to date humanity's conception and creation of first bridge or the art of spanning space by artificial construction. Bridges were evolved as the basic need for transportation continually grew, owing to people mobile and nomadic lifestyle .The history of development of bridges is intertwined with the evolution of stronger materials.

Over the years, design procedures have been developed by the engineers to provide satisfactory margins of safety with economy. These procedures were based on the confidence of the engineer in the analysis of the load effects and the strength of the materials being provided. As the analysis techniques improved and quality control of materials improved, the design procedures, too changed. A general statement for assuring safety in engineering design is that the resistance provided by the materials and cross sections used should exceed the demands put on them by the applied loads, that is;

Resistance  $\geq$  Effects of loads

Using this simple principle, it is essential that both sides of inequality are evaluated for the same conditions. In other words, the evaluation of inequality must be done for a specific loading condition that links together resistance and the effect of loads. Evaluating both sides at that limit state provides this common link. When a particular loading condition reaches its limit state, failure is the assumed result, that is, the loading condition become a failure mode such a condition is referred to as a limit state. Examples of limit states for girder type bridges include deflection, cracking, fatigue, shear, torsion, buckling, settlement, bearing and sliding. Well-defined limit states are established so that a designer knows what is considered to be acceptable.

An important goal of design is to prevent a limit state from being reached. However, it is not the only goal, the other goals that must be considered and balanced in the overall design scheme are the functionality, economy and appearance. As it is not economical to design a bridge so that non-of its component could ever fail. Therefore, it becomes necessary to determine what is an acceptable level of risk and probability of failure. The determination of an acceptable margin of safety (how much greater resistance should be compared to the affects of load) is the responsibility of experts.

Pakistan with weak economic coefficient cannot afford to build expensive bridges. Choice is to be made for efficient yet economical bridge structures. Various agencies involved in construction in Pakistan do not review the National Highway Authority (NHA) design specifications for different bridge components, which involve over safety at the cost of economy. This practice is more pronounced in prestressed bridges, which are considered to be most economical for short a This would assist design engineers in detailing of shear reinforcement and site engineers in inspection.

nd medium span range (less than 164 feet). This study would focus on shear design aspect of short and medium span pre-stressed bridges in order to present an optimized shear design in the form of shear strength and stirrup detailing tables covering span lengths of 35 feet to 145 feet with different strand and girder spacing for NHA bridge girders. This would assist design engineers in detailing of shear reinforcement and site engineers in inspection.

## **1.2 PURPOSE OF RESEARCH**

Pakistan with limited resources lack a single standard code of practice available to the design engineers. Though NHA had published the code in 1962 and revised in 1998, however, it is not being practiced in its true spirit.

Design specifications/codes are developed to suit own peculiar environments including construction practices, type of vehicular traffic and overload factors etc. Weak standards of testing, quality and lack of incorporating necessary upto date changes in design and construction practices results in uneconomical design.

Presently, a combination of different design specifications is being used because of which subjective FOS (as used in working stress design approach) is stretched without a rationale for our loading rates and the result is an over conservative design thus jeopardizing the very essence of economy.

Former research [27] was carried out on "evaluation of existing short and medium span prestressed girder bridges constructed on Grand Trunk road (Peshawar-Kharian section) with a view to economize flexural design". In this study a number of prestressed girders fabricated and used as part of existing bridges superstructure (as per NHA Specifications) were analyzed for over design aspect from standpoint of flexural design. Based on these analyses, AASHTO standard girders were modified, analyzed and designed. These designed "I" sections besides giving desired structural capacity, presented an economical design.

An overall economical design is based on optimizing materials and their combinations against external loads and various load combinations. Since flexure alone is seldom a problem in bridge girders, effect of other forces/load effects including shear, torsion and axial forces must also form part of the overall design for purpose of its validation for implementation/use.

Keeping in view the economic factor without foregoing the safety concerns, it is intended through this study to carryout initial study of prevalent NHA specifications and design practices employed on existing and newly constructed prestressed bridges regarding shear design of prestressed "I" girders. After the analysis of various existing pre-stressed bridges for the over design aspects, shear design would be optimized using AASHTO modified section with varying girder spacing, strand patterns and span lengths so as to recommend safe and economical design. Design tables will be developed which would assist design engineers in selection of optimized shear reinforcement ensuring safety and economy in the design.

#### **1.3 SCOPE**

The effects of external loading on structures seldom leads to flexure alone other action include shear, torsion and axial forces. Shear is most commonly encountered in combination with flexure .Its consideration in design logically follows that of flexure and represents a major step in designing the structure. Shear stresses produce diagonal tension that induces cracking in concrete. To ensure that such cracking does not lead to failure, transverse reinforcement resisting shear and /or torsion is generally provided in the form of stirrups or ties.

In earlier codes the design for shear was based on limiting the magnitude of diagonal tension under working loads thus providing a safety factor against cracking. However in prestressed concrete an overload may induce substantial changes in compressive stresses thus leading to disproportionately high increase in diagonal tension at some points of the section thus seriously jeopardizing the margin of safety.

Various types of cracking occur in prestressed concrete members namely, flexural cracking due to moments in mid span region, flexural shear cracking which is developed towards support from centerline of girder and web shear which is developed near the support region .To arrest such cracking, transverse reinforcement is provided. To achieve this it must be kept in mind that depending upon the zones of different crack pattern, distribution/spacing of reinforcement will vary along the span. Shear optimization, thus, would be based on development of transverse reinforcement at different zones of cracking without compromising safety yet ensuring economy in detailing of transverse reinforcement.

Former research [27] was carried out and six standard "I" sections were proposed based on flexural design using AASHTO/ACI working stress design approach. In order to validate the design for use, shear analysis of these sections would be carried out using AASHTO working stress and LRFD approaches (state of the art method) and after comparison of results, shear design tables will be based on economical method.

It is evident from current practices that in Pakistan, most of the designers have more faith in prestressed I-girder bridges. This is obvious from the fact that out of 50 bridges, 45 fall in this category only on Peshawar-Kharian section of Grand Trunk Road. Keeping the general trend in mind, following parameter of the bridges will be considered in the study:

a) Pre-stressed I-girder and T-bulb bridges.

b) Simply supported.

c) RCC slab of uniform thickness.

d) Overhang to accommodate sidewalks and railing of standard weight.

e) Outer wheel of truck is placed 2 feet from the curb.

f) Barriers and diaphragms will not be considered.

In the absence of standard design aids, coupled with fear of weak construction practices along with lack of quality control systems and equipment, the designer tends to increase the safety margins thereby over stepping the safety ranges resulting in an over conservative design. Presently a combination of British and AASHTO standards is being practiced. The effort should be to improve our weak construction practices. Considering present trend, it is intended through this work, first to analyze the selected bridges so as to highlight the weakness in the present highway bridge practices. The analysis is based on AASHTO procedures. In the second phase, the bridges, which are over safe and more conservative, will be subjected to revised design. While considering the revised design only the standard sections will be used which are 36, 42, 48, 54 inches deep I-girders and 63 and 72 inches deep T-bulb girders. Cross section and non-composite properties of these girders are shown in from Figure 1.1 to Figure 1.6. The revised design will be based on AASHTO standard (1996 edition) and LRFD bridge design specifications. For comparison of design procedures and in order to present design variations between the original and proposed designs two case studies, one for the existing bridge on Grand Trunk road and other for construction on motorway M-1, would be presented.

In the last phase of this study, design tables for shear capacity (to be provided by the shear reinforcement) and shear design tables for short span to medium span highway prestressed bridges will be developed. The base line for these tables will be to get maximum detailing output by economizing the effort and resources and at the same time not compromising the safety aspects. These design tables will certainly help in the design, detailing and inspection of shear reinforcement of any prestressed bridge, having span ranges from 35 feet to 145 feet.

### **1.4 AIM**

To evaluate the NHA standard pre-stressed "I" and "T" girders being used in bridge superstructure with a view to present an optimized shear design in the form of design tables.

### **1.5 OBJECTIVES**

To develop shear capacity and stirrups design/detailing tables for provision of optimized shear reinforcement in prestressed "I" and "T" girder bridges to include:

- a) Flexural shear.
- b) Web shear.

### **1.6 RESEARCH METHODOLOGY**

Keeping in view the multi-dimensional scope of this research, a preliminary survey was carried out. The survey was aimed at ascertaining the common type of prestressed bridges presently in vogue. The survey was carried out in consultation with NHA, NLC, and KINGCRETE for selected section of Grand Trunk road and with Pakistan Motorway Consultant (PMC) for bridges on Peshawar-Islamabad Motorway (M-1). After procurement of relevant data, analysis of these bridges was carried out to ascertain whether the design was conservatives or otherwise. For this purpose design guidelines of ACI and AASHTO codes were used.

Prestressed concrete construction requires high quality materials, precise workmanship and careful design. The decision to use prestressing imposes on the designer the responsibility to check behavior of the girders carefully at all the critical locations and stages in the life of the structure. Keeping these aspects in mind, designs will be proposed for only those bridges, which are over conservative, as established earlier.

The proposed shear capacity design tables and stirrups/detailing design tables for six standard interior girder sections are prepared with following parameters as variables;

- a) Girder spacing.
- b) Strand pattern.
- c) Span length

Research methodology would be as follows:

- a) Literature review of shear theories and hypothesis with detailed coverage of Modified Compression Field Theories (MCFT) for pre-stressed concrete, as state of the art method for shear design.
- b) Collection and collation of data from NHA and other sources on existing design details.
- c) Design procedure based on currently used AASHTO bridge design specifications 1996 and ACI procedure and development of design tables.
- d) Design procedure based on AASHTO LRFD Bridge design specification 1998/2000.
- e) Case studies on shear design of an existing bridge and an under construction bridge on motorway (M-1).
- f) Comparison of Allowable/Working stress design (WSD) and Load and Resistance Factor Design (LRFD) approaches for design variations and economic analysis.
- g) Discussion on results, conclusion and recommendations.

# Chapter 2

## **REVIEW OF LITERATURE**

#### 2.1 GENERAL

Regulatory standards encompassing various design procedures should be safe, simple to understand, easy to implement and should not add to either design or construction costs. These procedures can be most effective if they are based on relatively simple conceptual models rather than on complex empirical equations. This review introduces some approaches for the shear design of concrete beams. Although the approaches explained in the subsequent details of this review are relatively new, some of them have reached a sufficiently mature state that they have been implemented in codes of practice.

The objective is to refresh some of the new design approaches. Truss model approaches and related theories are discussed. These new approaches provide a unified, rational, and safe design framework for structural concrete under combined actions, including the effects of axial load, bending, torsion, and prestressing.

## 2.2 HISTORICAL DEVELOPMENT OF SHEAR DESIGN PROVISIONS

Most codes of practice use sectional methods for design of conventional beams under bending and shear. ACI Building Code 318-95M assumes that flexure and shear can be handled separately for the worst combination of flexure and shear at a given section. The interaction between flexure and shear is addressed indirectly by detailing rules for flexural reinforcement cutoff points. In addition, specific checks on the level of concrete stresses in the member are introduced to ensure sufficiently ductile behavior and control of diagonal crack widths at service load levels.

#### 2.2.1 Truss Models

In the early 1900s, truss models were used as conceptual tools in the analysis and design of reinforced concrete beams. Ritter (1899) postulated that after a reinforced concrete beam cracks due to diagonal tension stresses, it can be idealized as a parallel chord truss with compression diagonals inclined at 45° with respect to the longitudinal axis of the beam. Morsch (1920, 1922) later introduced the use of truss models for torsion. These truss models neglected the contribution of the concrete in tension. Withey (1907, 1908) introduced Ritter's truss model into the American literature and pointed out that this approach gave conservative results when compared with test evidence. Talbot (1909) confirmed this finding.

Historically, shear design in the United States has included a concrete contribution, Vc, to supplement the 45° sectional truss model to reflect test results in beams and slabs with little or no shear reinforcement and to ensure economy in the practical design of such members.

#### 2.2.2 Standard and Modified Truss Models

More recently, several design procedures were developed to economize on the design of the stirrup reinforcement. One approach has been to add a concrete contribution term to the shear reinforcement capacity obtained, assuming a 45° truss (for example, ACI Building Code 318-95). Another procedure has been the use of a truss with a variable angle of inclination of the diagonals. The inclination of the truss diagonals is allowed to differ from 45° within certain limits suggested on the basis of the theory of plasticity. This approach is often referred to as the "Standard Truss Model with no concrete contribution," and is explained by the existence of aggregate interlock and dowel forces in the cracks, which allow a lower inclination of the compression diagonals and the further mobilization of the stirrup reinforcement. A combination of the variable-angle truss and a concrete contribution has also been proposed. This procedure has been referred to as the Modified Truss Model approach.. In this approach, in addition to a variable angle of inclination of the diagonals, the concrete contribution for non prestressed concrete members diminishes with the level of shear stress. For pre-stressed concrete members, the concrete contribution is not considered to vary with the level of shear stress and is taken as a function of the level of pre-stress and the stress in the extreme tension fiber.

As mentioned previously, the truss model does not directly account for the components of the shear failure mechanism, such as aggregate interlock and friction, dowel action of the longitudinal steel, and shear carried across uncracked concrete. For prestressed beams, the larger the amount of prestressing, the lower the angle of inclination at first diagonal cracking.

Therefore, depending on the level of compressive stress due to prestress, pre-stressed concrete beams typically have much lower angles of inclined cracks at failure than non pre-stressed beams and hence require smaller amounts of stirrups. In more recent design codes modified truss models are used. Attention was focused on the truss model with diagonals having a variable angle of inclination as a viable model for shear and torsion in reinforced and pre-stressed concrete beams. Further development on plasticity theories extended the applicability of the model to non yielding domains.

## 2.2.3 Strut And Tie Models (STM)

Extending the truss model for beams with uniformly inclined diagonals, all parts of the structure in the form of STM. This approach is particularly relevant in regions where the distribution of strains is significantly nonlinear along the depth. By analyzing a truss model consisting of linearly elastic members and neglecting the concrete tensile strength, Kupfer (1964) provided a solution for the inclination of the diagonal cracks. Collins and Mitchell (1980) abandoned the assumption of linear elasticity and developed the compression field theory (CFT) for members subjected to torsion and shear..

#### 2.2.4 The ACI Design Procedures [10]

The ACI 318-95M sectional design approach for shear in beams is based on a parallel truss model with 45° constant inclination diagonals supplemented by an experimentally obtained concrete contribution. The contribution from the shear reinforcement, Vs, for the case of vertical stirrups (as is most often used in North American practice), can be derived from basic equilibrium considerations on a 45° truss model with constant stirrup spacing, and effective depth. The truss resistance is supplemented with a concrete contribution, for both reinforced and prestressed concrete beams.

#### 2.3 COMPRESSION FIELD APPROACHES[28]

## 2.3.1 General

The cracked web of a reinforced concrete beam transmits shear in a relatively complex manner. As the load is increased, new cracks form while preexisting cracks spread and change inclination. Because the section resists moment as well as shear, the longitudinal strains and the crack inclinations vary over the depth of the beam (Figure 2.1). The early truss models of Ritter (1899) and Morsch (1920, 1922) approximated this behavior by neglecting tensile stresses in the diagonally cracked concrete and by assuming that the shear would be carried by diagonal compressive stresses in the concrete, inclined at 45° to the longitudinal axis. The diagonal compressive concrete stresses push apart the top and bottom faces of the beam, while the tensile stresses in the stirrups pull them together. Equilibrium requires that theses two effects be equal. According to the 45° truss model, the shear capacity is reached when the stirrups yield and will correspond to a shear stress of:

$$v = Av fy / bw s = \rho fy$$
(2.1)

The reason why the 45° truss equation is often very conservative is that the angle of inclination of the diagonal compressive stresses measured from the longitudinal axis,  $\theta$ , is typically less than 45°. The general form of (1.2) is:

$$v = \rho v \text{ fy } \cot \theta \tag{2.2}$$

Most of the inclined cracks shown in Figure 2.1 are not so flat. Before the general truss equation can be used to determine the shear capacity of a given beam, or to design the stirrups to resist a given shear, it is necessary to know the angle  $\theta$ .

Shear design procedures for reinforced concrete that determine the angle  $\theta$  by considering the deformations of the transverse reinforcement, the longitudinal reinforcement, and the diagonally stressed concrete have become known a compression field approaches. With these methods, equilibrium conditions, compatibility conditions, and stress-strain relationships for both the reinforcement and the diagonally cracked concrete are used to predict the load-deformation response of a section subjected to shear.

Methods for determining  $\theta$  applicable over the full loading range were developed by Collins and Mitchell (1974) for members in torsion, and were applied to shear design by Collins (1978). This procedure is called the Compression Field Theory (CFT).

### 2.3.2 Compression Field Theory (CFT) [15]

 $fs = v(tan\theta + cot\theta)$ 

Figure 2.2 summarizes the basic relationships of the CFT. The shear stress, v, applied to sx, and fsy, and  $f_2$ , inclined at angle  $\theta$  to the longitudinal axis. The equilibrium relationships between these stresses can be derived from Figures 2.2(a and b) as:

$$ρvfsy = fcy = v tanθ$$
(2.3)
  
 $ρx fsx = fcs = v cotθ$ 
(2.4)

(2.5)

If the longitudinal reinforcement elongates by a strain of  $\in \mathbf{x}$ , the transverse reinforcement elongates by  $\in \mathbf{y}$ , and the diagonal  $\mathbf{y}$  compressed concrete shortens by  $\in_2$ , then the direction of principal compressive strain can be found from Wagner's (1929) equation, which can be derived from Mohr's circle of strain Figure 2.2(d) as:

$$\tan^2 \theta = (\epsilon x + \epsilon_2) / (\epsilon y + \epsilon_2)$$
(2.6)

Before this equation can be used to determine  $\boldsymbol{\theta}$ , stress-strain relationships for the reinforcement and the concrete are required. It is assumed that the reinforcement strains are related to the reinforcement stresses by the usual simple bilinear approximations shown in Figures 2.2(e and f). Thus, after the,  $\in \mathbf{y}$ , exceeds the yield strain of the stirrups, the stress in the stirrups is assumed to equal the yield stress **fy** and (2.3) becomes identical to (2.2).

It was suggested that the diagonally cracked concrete fail at a low compressive stress because this stress must be transmitted across relatively wide cracks. If the initial cracks shown in Figure 2.2(a) formed at 45° to the longitudinal reinforcement, and if  $\theta$  is less than 45°, then significant shear stresses must be transmitted across these initial cracks, Figure 2.2(b). The ability of the concrete to transmit shear across cracks depends on the width of the cracks, which, in turn, is related to the tensile straining of the concrete. The  $\epsilon_1$ , can be derived from Figure 2.2(d) as:

$$\epsilon_1 = \epsilon_X + (\epsilon_X + \epsilon_2) \cot^2 \theta \tag{2.7}$$

#### 2.3.3 Stress-Strain Relationships for Diagonally Cracked Concrete

Since the CFT was published, a large amount of experimental research aimed at determining the stress-strain characteristics of diagonally cracked concrete has been conducted. These experimental statues provide strong evidence that the ability of diagonally cracked concrete to resist compression decreases as the amount of tensile straining increases.

For typical reinforced concrete beams  $\rho x$ , will greatly exceed the  $\rho v$ . In this situation there will be a substantial reduction in the inclination,  $\theta$ , of the principal compressive stresses after cracking. For elements with both longitudinal and transverse reinforcement, the directions of principal stress in the concrete typically deviated by less than 10° from the directions of the principal strain (Vecchio and Collins 1986). It was found (Vecchio and Collins 1986; Belarbi and Hun 1994) that after cracking, the average principal tensile stress in the concrete decreases as the principal tensile strain increases.

### 2.3.4 Modified Compression Field Theory (MCFT)

**2.3.4.1** The MCFT (Vecchio and. Collins 1986)[23] is a further development of the CFT that accounts for the influence of the tensile stresses in the cracked concrete. It is recognized that the local stresses in both the concrete and the reinforcement vary from point to point in the cracked concrete, with high reinforcement stresses but low concrete tensile stresses occurring at crack locations. Failure of the reinforced concrete element maybe governed not by average stresses, but rather by local stresses that occur at a crack.

It can be seen that the  $v_{ci}$ , on the crack face reduces the stress in the transverse reinforcement but increases the stress in the longitudinal reinforcement. The maximum possible value of  $v_{ci}$ , is taken (Bhide and Collins 1989) to be related to w, and a, by the relationship illustrated in Figure 2.3 (f) and given by:

$$Vci \le 0.18 \sqrt{f'c} / [0.3 + (24w / a + 16)]$$
 (MPa, mm) (2.8)

The *w*, is taken as the crack spacing times the principal tensile strain,  $\in_1$ . At high loads, the average strain in the stirrups,  $\in y$ , will typically exceed the yield strain of the reinforcement. If tensile stresses in the cracked concrete are ignored, as is done in the CFT, elements with no stirrups ( $\rho v = 0$ ) are predicted to have no shear strength.

When these tensile stresses are accounted for, as is done in the MCFT, even members with no stirrups are predicted to have significant post cracking shear strengths. Figure 2.4 shows that predicted shear strengths are a function not only of the amount of stirrup reinforcement, but also of the amount of longitudinal reinforcement. Increasing the amount of longitudinal reinforcement increases the shear capacity. Increasing the amount of longitudinal reinforcement also increases the difference between the CFT prediction and the MCFT prediction. When the total longitudinal reinforcements is 10% of the web area, this longitudinal reinforcement remains well below yield stress, and the failure, for larger amounts of stirrups, is then governed by crushing of the concrete. The tensile stresses in the cracked concrete stiffen the element, reduce the concrete strains, and make it possible to resist larger shear stresses prior to failure. The predicted shear strength of elements that contain relatively small amounts of stirrups are influenced by the spacing of the diagonal cracks, **s**<sub>0</sub>. If this spacing is increased, *w*, associated with a given value of  $\epsilon_1$ , increases, and hence the tension can be transmitted through the cracked concrete decreases. It can be seen that the predicted shear capacity becomes more sensitive to crack spacing as the amount of stirrup reinforcement ( $\rho v$ ) is reduced.

#### 2.3.4.2 Design Considerations [17]

Shear causes tensile stresses in the longitudinal reinforcement as well as in the stirrups. If a member contains an insufficient amount of longitudinal reinforcement, its shear strength may be limited by yielding of this reinforcement. To avoid this type of failure, the longitudinal reinforcement on the flexural tension side of the member must satisfy the following requirement:

$$Asfy+Apsfps \ge (M/\phi dv) + (0.5Nu/\phi) + [(Vu/\phi) - (0.5Vs) - Vp]$$
(2.9)

Figure 2.5 illustrates the influence of shear on the tensile force required in the longitudinal reinforcement. Whereas the moment is zero at the simple support, there still needs to be considerable tension in the longitudinal reinforcement near this support. The required tension (T), at a simple support can be determined from the free-body diagram in Figure 2.5 as:

$$T = [(Vu/\phi) - 0.5 Vs - Vp] \cot\theta$$
(2.10)

but

$$T \ge 0.5 \left[ (Vu/\phi) - Vp \right] \cot \theta \tag{2.11}$$

The reinforcement provided at the support must be detailed in such a manner that this tension force can be safely resisted and that premature anchorage failure do not occur.

For sections at least a distance **dv**, away from the maximum moment locations, the MCFT predicts that increasing the moment decreases the shear strength while increasing the shear decreases the flexural strength. This point is illustrated in Figure 2.6, which gives the shear-moment interaction diagram for section B of the beam described in Figure 2.1.

### 2.4 TRUSS APPROACHES WITH CONCRETE CONTRIBUTION

#### 2.4.1 General

The traditional truss models assume that the compression struts are parallel to the direction of cracking and that no stresses are transferred across the cracks. This approach has been shown to yield conservative results when compared with test evidence. More recent theories consider one or both of the following two resisting mechanisms: (1) tensile stresses in concrete that exist transverse to the struts; or (2) shear stresses that are transferred across the inclined cracks by aggregate interlock or friction. Both mechanisms are interrelated and result in: (I) the angle of the principal compression stress in the web being less than the crack angle; and (2) a vertical component of the force along the crack that contributes to the shear strength of the member. The resisting mechanisms give rises to Vc. Theories typically assume that there is no transfer of tension across cracks.

#### 2.4.2 Modified Sectional Truss Model Approach

In the so-called "modified sectional-truss model' approach (Ramirez and Breen 1991) the nominal shear strength of non pre-stressed or pre-stressed concrete beams with shear reinforcement is: Vn = Vc + Vs,

For non pre-stressed concrete beams, the additional concrete contribution. Vc has been suggested (Ramirez and Breen 1991) as:

$$Vc = 0.5(3vcr - v)$$
 bw d (2.12)

For pre-stressed concrete beams (Ramirez and Breen 1991), the additional concrete contribution takes the form of

$$Vc = K(\sqrt{f'c/6}) bw 0.9 d$$
 (2.13)

With f'c in Mpa.

The expression for the K factor can be derived from a Mohr circle analysis of an element at the neutral axis of a prestressed concrete beam prior to cracking, and is:

$$K = [1 + fpc/ft]$$
 (2.14)

This expression is the one used in ACI 318-95M as the basis for the web cracking criteria, **Vcw**. The factor K is usually limited to 2.0, and is set equal to 1.0 in those sections of the member where the ultimate flexural stress in the extreme tension fiber exceeds the concrete flexural tensile strength. This limitation is similar to the provision in 318-95M that limits the concrete contribution to the smaller of the two values, Vci and Vcw.

The strength provided by the shear reinforcement Vs, for beams with vertical stirrups represents the truss capacity in shear derived from the equilibrium condition by summing the vertical forces on an inclined crack free-body diagram. According to Ramirez and Breen (1991), the lower limit of angle of inclination,  $\theta$ ,

for the truss diagonals is  $30^{\circ}$  for nonprestressed concrete and  $25^{\circ}$  for prestressed beams.

#### 2.4.3 Truss Models with Crack Friction

#### 2.4.3.1 Equilibrium of Truss Models with Crack Friction [21]

The truss model with crack friction starts with basic assumptions for the spacing and shape of cracks in a B region of a structural concrete member subjected to shear. It is assumed that forces are transferred across the cracks by friction, which depends on the crack displacements (slips and crack widths); hence, the strains in the member have to be calculated.

This approach was developed for the shear design of webs by several researchers, including Gambarova (1979), Dei Poli et al. (1987, 1990), Kupfer et al. (1979, 1983), Kirmair (1987), and Kupfer and Bulicek (1991), and Reineck (1990, 1991a). The approach uses the free-body diagram in Figure 2.7, which is obtained by separating the member along an inclined crack in the B region of a structural concrete member with transverse reinforcement. Vertical equilibrium of this body gives the basic equation:

$$Vn = Vs + Vc + Vp \tag{2.15}$$

The dowel force of the longitudinal reinforcement, which has a role in members without transverse reinforcement, is neglected, Figure 2.7. This is also the case for all design methods with a concrete contribution such as ACI Building Code 318-95 M, with either the standard method or the modified truss model approach.

#### 2.4.3.2 Inclination and Spacing of Inclined Cracks

In the use of the truss model with crack friction, a necessary condition is that the crack inclination and the crack spacing must be assumed or determined by nonlinear analysis. The angle of the inclined cracks is normally assumed at 45° for non prestressed concrete members. Kupfer et al. (1983) has pointed out that this angle could be up to 5° flatter. Flatter angles will appear for pre-stressed concrete members or for members with axial compression, and steeper angles will occur for members with axial tension.

The spacing of the inclined cracks is primarily determined by the amount and spacing of reinforcement, and relevant formulas have been proposed by Gambarova (1979), Kupfer and Moosecker (1979), Kirmair (1987), and Dei Poli et al. (1990).

#### 2.4.3.3 Constitutive Laws For Crack Friction

The truss model with crack friction requires constitutive laws for the transfer of forces across cracks by friction or interface shear. Others have often used the constitutive law proposed by Watraven (1980) because it describes not only the shear stress-slip relation for different crack widths but also the associated normal stresses. It was based on a physical model for the contact areas between crack surfaces, and the proposed laws were corroborated with tests on concrete with normal as well as lightweight aggregates.

## 2.4.3.4 Determining Shear Resistance Vf = Vc due to Crack Friction

The shear force component Vf = Vc in (2.15) transferred by friction across the cracks depends on the available slip and on the crack width, requiring that the strains in the chords and in the web be determined. In addition, the displacements and the strains must be compatible with the forces in the model according to the constitutive laws for the shear force components. Often the capacity of the crack friction mechanism is reached before crushing of the concrete struts between the cracks. Figure 2.8 gives the results of different calculations of the shear force component Vf =Vc in terms of stress from Dei Poli et al. (1987) and Kupfer and Bulicek (1991), but similar results have been obtained by Leonhardt (1965) and Reineck (1990, 1991a).

In many codes crack friction governs the design for low and medium shear. For very high shear, the strength of the compression struts governs, which is characterized by the quarter circle in Figure 2.9. The crack friction approach considers the influence of axial forces (tension and compression) as well as prestress, as shown in Figure 2.10.

#### 2.4.3.5 Stresses and Strength of Concrete between Cracks

The main function of the concrete between the cracks is to act as the struts of a truss formed together with the stirrups as described by Morsch (1920, 1922), Figure 2.11(a) The additional friction forces acting on the crack surfaces, result in a biaxial state of stress with a principal compression field at a flatter inclination than the crack angle **\betacr**. The minor principal stress is tensile for small shear forces, so the two trusses shown in Figure 2.12 may visualize the state of stress. The usual truss model with uniaxial compression inclined at the angle **\theta** in Figure 2.12(a) is superimposed on a truss with concrete tension ties perpendicular to the strata [Figure 2.12(b)]. Thus, there are two load paths for the shear transfer, as defined by Schlaich et al. (1987) and as also earlier shown by Reineck (1982), and with different explanations by Lipski (1971, 1972) and Vecchio and Collins (1986) in their MCFT.

The model in Figure 2.12(b) is the same as that proposed by Reineck (1989; 1991a,b) for members without transverse reinforcement, so that the transition from members with to members without transverse reinforcement is consistently covered.

## 2.4.4 Truss Models

Since the early 1900s, engineers have used truss models to follow the flow of internal forces in structural concrete members and to provide structural systems made out of concrete and reinforcement that ensure equilibrium. The original 45° truss model of Ritter (1899) and Morsch (1920, 1922) been adopted either explicitly or implicitly by most the codes as the basis for their shear and torsion design specifications.

More modern versions of design specifications for concrete structures have extended this concept by recognizing the capability for redistribution of internal forces of reinforced and prestressed concrete beams containing stirrup reinforcement. This approach has been set up as a variable-angle truss with some established semi empirical limits for the angle of inclination supplemented with a concrete contribution. The concrete contribution included the presence of prestressing as well as the possibility of a diminished contribution after significant redistribution of the internal forces.

Vechio and Collins (1986) introduced the MCFT based on the assumption that tensile stresses in the concrete between the cracks contribute significantly to the shear resistance. The basic assumption was that these tensile stresses transverse to the axis of the strut exist at points between the inclined cracks, but are zero at the cracks. In their derivation, the tensile strength of the concrete strut diminishes as the principal strain  $\epsilon_1$ , increases. The explanation is that the tensile strength of the concrete may be limited by the ability of the crack surfaces to transmit shear stresses that will depend on the crack width and the maximum size of the aggregate.

Refined methods have attempted to supplement the truss model strength with a concrete contribution term. An example of such approaches has been called the truss analogy with crack friction. In this approach, shear stresses are transferred across the cracks by friction. It can be regarded as a development based on the shear-friction theory.

Truss models approaches have been generalized to all parts of the structure in the form of strut-and-tie models. Structural concrete members with an adequate distribution of minimum transverse and longitudinal reinforcement can be designed using the simple strut-and-tie models. Three key advantages of this approach are that:

- (a) The flow of internal forces is clearly visualized by the designer.
- (b) The effects of both shear and moment are accounted for simultaneously and directly in the design.
- (c) The design of (Beam) B and (Distributed) D type regions and the transitions between them can be conducted in a unified and consistent manner. Thus, the design can be carried out for the entire member using a full-member truss model as a generalized strut-and-tie model. Alternatively, the design of B regions can be carried out using a sectional model.

(d) The use of strut-and-tie models is especially advantageous in the design of D region characterized by a complex flow of internal forces resulting in significant nonlinear distribution of strains.

## Chapter 3

## WORK METHODOLOGY AND MATERIALS

#### **3.1 GENERAL**

Girder must be safe against premature failures of other types than flexure. These premature failures maybe more dangerous than flexural failure in the sense that, should catastrophic overloading and collapse occur, it might take place suddenly and without warning. Flexural shear is an example. Pre-stressed concrete flexural members contain special shear reinforcement to ensure that flexural failure, which can be predicted accurately and is usually preceded by obvious cracking and large deflections, will occur before shear failure, which is abrupt and more difficult to predict accurately. Contrary to reinforced concrete where commonly the most critical section for shear is near the support, in pre-stressed concrete several sections along the span maybe more critical than the support section. That is why shear is to be investigated at several section (tenth points) along the span.

Former work [27] was carried out by analyzing the existing pre-stressed bridges for flexure only. A total of sixteen bridges were analyzed and six girder sections were suggested. The design outcome was in the form of modified AASHTO standard sections with reduced moment of inertia yet giving same flexural capacity as of existing bridge girders. For designing the prestressed bridge girders both strength and serviceability requirements are to be satisfied. Effect of external loads produces flexure, shear and torsion, all of which must be accounted for in the design therefore flexural design alone cannot be termed as complete design. As torsion is not of concern in simply supported bridges therefore it leaves shear design aspect to be looked in to.

In order to supplement the former work for use, analysis of same sixteen bridges was carried out for flexure as well as for shear. With the same flexural capacity, shear analysis was carried out at every tenth point along the span up to mid span. To investigate shear at every tenth point, geometrical and mechanical properties of girder section along with some basic loads are known. Rest all the design inputs is to be determined through an iterative process so as to arrive at an optimized solution. As it depend on many variables, a change in one may effect some or all the parameters, therefore designer has to restrict to certain assumptions and design parameters leading to an optimized design.

#### **3.2 DESIGN LOADS**

The engineer must consider all the loads that are expected on the bridge during its service life. Such loads may be divided in to two categories; permanent loads and transient loads. Permanent loads remain on the bridge for an extended period, usually for the entire service life. Transient loads typically include gravity loads due to vehicular, railway and pedestrian traffic as well as the lateral loads. For the purpose of this study following loads are considered;

- (a) Weight of the girder.
- (b) Weight of the slab.
- (c) Asphalt concrete or topping weight.
- (d) Impact load.

At present, universally accepted critical truck load is AASHTO'S HS20-44, having a total weight of 72 kips distributed over three axles as 8 kips at front axle

and 32 kips each at rear two axles. The axle spacing between front and middle axle is variable between 14 feet to 30 feet between middle and rear axle.

For the purpose of this study a fix axle spacing of 14 feet between middle and rear axle is used. It is obvious that 3 axle tendon is most critical combination. AASHTO also uses 3 axle truck having a load of 16 ton each for the rear two axle. It should be remembered that for spans less than 37 feet, alternate military loading would control the design with 70 tons of gross weight. For spans greater than 37 feet HS20-44 will be used being more critical. While considering the lane load, when more than one lane is loaded, the live load effects are reduced because of improbability of all lanes having their maximum loading at the same time, because of which a reduction in loading intensity is suggested by AASHTO. Roughness of riding surface cause dynamic variation in axle loads for which a dynamic load allowance commonly known as impact factor is applied to the design truck loads. The impact factor is I = 50 / L + 125 where I not greater than 30 % and L is span in feet.

## **3.3 DESIGN VARIABLES**

Design tables would base on following variables:

#### **3.3.1** Span Lengths

35feet-145feet

## **3.3.2** Loads

Besides self-weight and superimposed dead loads standard AASHTO HS20-44 OR HL-93 truck with 14ft axle spacing shall be considered.

## 3.3.3 Strand/Tendon Profiles/Patterns

Following patterns will be used:

(1) Straight tendons (S).

(2) One point/two point draped tendons (D1/D2).

(3) Parabolic or draped tendons (D).

## 3.3.4 Girder Types

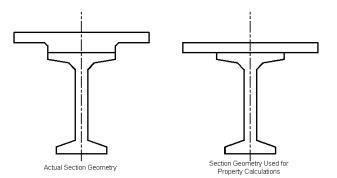
Following AASHTO modified girders are considered (see Figure 1.1 to 1.6):

- (1) G –36" I GIRDER
- (2) G-42" I GIRDER
- (3) G-48" I GIRDER
- (4) G-52" I GIRDER
- (5) G-63" T-BULB GIRDER
- (6) G-72" T-BULB GIRDER

## **3.4 ANALYSIS PROCEDURE**

#### 3.4.1 General

A designer should be able to comprehend the complexities involved in modeling the structure he wants to design. Modeling of bridge structures involves a number of variables in the form of structural components and applied loads so as to justify the inequality (resistance to be greater than or equal to the effect of applied loads) to be experienced during the lifetime of the structure.

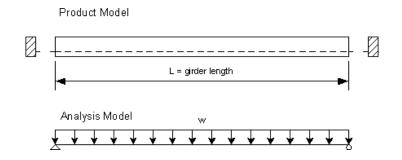

A correct model generates correct results of analysis and leads to a refined design. In order to assess the accuracy of the software's, sixteen existing bridges on Grand Trunk road (Rawalpindi-Kharain section) were modeled and analyzed besides the manual calculations and the selection was made on the convergence of results.

## 3.4.2 PG Super (WSDOT) [26]

**3.4.2.1.** It is commercial software for analysis and design of pre-cast/pre-stressed bridges developed by Washington State Department Of Transportation (WSDOT). It has following salient features:

- a) Based on AASHTO and Washington State Department Of Transportation (WSDOT) Load and Resistance Factor Design (LRFD)
   Bridge design specifications 1994 and 1998.
- b) Girders are analyzed and designed.
- c) Considers dead loads and live loads (HL-93) which is equivalent to HS20-44 used in AASHTO conventional design approach. Outputs are given for stresses, reactions, shears and moments from casting yard stage to lifting, hauling/handling and all service loads stages.

## **3.4.2.2. Modeling Details**



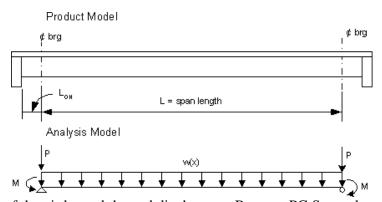

#### **3.4.2.2.1** Composite Section Properties

PG Super ignores the slab haunch and fillets when calculating composite section properties. The reason we do this is two folds. This provides the least-stiff section so it is likely to be conservative for computing stresses and deflections, and it makes structural modeling easy because it we have a prismatic section. Also, if camber in the field comes out too high, we may not actually have the slab pad we designed for at mid-span.

## 3.4.2.2.2 Structural Analysis Models

Generally the section describes the analytical models to calculate structural analysis results.




## 3.4.2.2.2.1 Casting Yard Stage

## $W = Ag \gamma c g$

Material properties for concrete are based on the release strength.

## 3.4.2.2.2.2 Bridge Site Stage 1

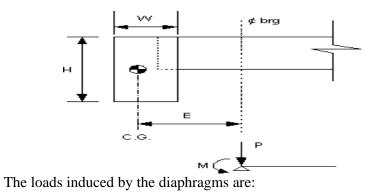
The concentrated loads P and M are the loads induced by the cantilever



portion of the girder and the end diaphragms. Because PG Super does not impose a

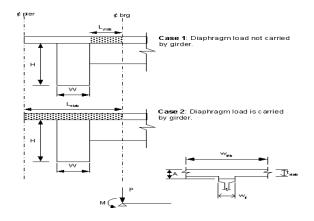
restriction on the length of the overhangs or the size of the girders or diaphragms,

the induced moments and reactions can be significant, therefore they will be modeled.


## (1) Girder Cantilever Loads

Loads induced by the cantilever portion of the girder are:

 $W = Ag \gamma c L_{OH}$ 


 $M = P (L_{OH} / 2)$ 

# (2) Diaphragm Cantilever Loads



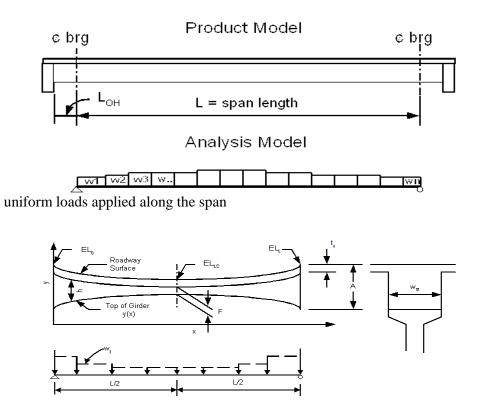
# $P = H W \gamma c g W trib$

 $\mathbf{M} = \mathbf{P} \mathbf{E}$ 



## (3) Slab cantilever loads

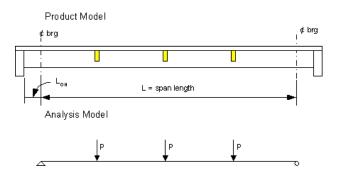
The loads induced by the cantilever portion of the girder are:


 $P = [Wtrib tslab + (A - tslab) Wtf] (Lslab) \gamma cg$ 

 $\mathbf{M} = \mathbf{P} \left( \mathbf{Lslab} / 2 \right)$ 

## (4) Slab Load in Main Span

Loads from the main slab on interior girders are uniform along the entire length of the girder. However, if the bridge is curved, the tributary width of the slab can change along the length of the girder as the bridge curves in or out. Hence, loads from the main slab for exterior girders are approximated with segments of uniform loads applied along the span. The load value for each segment is equal to the average tributary width taken at the ends of the segment.


For both types of girders, the main slab load is approximated as segments of



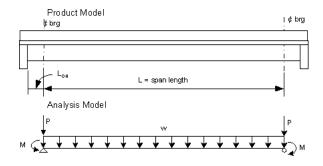
## (5) Slab Pad Load in Main Span

The camber of the girder and the vertical curve form an hourglass shape. The top of girder is assumed to form a parabolic shape. The depth of the slab pad is A-t<sub>s</sub> at the centerline of bearing and the fillet depth (F) at the centerline of span. The slab pad is approximated with segments of uniform loads.

## (6) Intermediate Diaphragm Loads



For interior girders,  $P = H W \gamma cg (W trib - t web)$  and for exterior girders, P = H

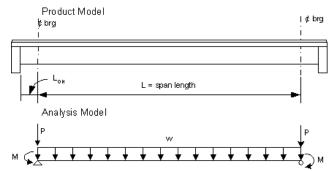

W  $\gamma$ cg (S/2 – tweb/2)

## 3.4.2.2.3 Bridge Site Stage 2

Superimposed dead loads are applied to the bridge in the stage 2

model. The superimposed dead loads consist of the traffic barrier and the overlay.

## (1) Traffic Barrier Load




The basic traffic barrier load is  $\mathbf{W} = \mathbf{Asb} \gamma \mathbf{cg}$ . The traffic barrier load is distributed over *n* exterior girders, if there are 2*n* or more girders, otherwise the weight of the traffic barrier per girders is  $\mathbf{W} = 2\mathbf{W}/\mathbf{N}$ , where N is the number of girders in the span. The cantilever portions of the load are:

 $\mathbf{P} = W \ (\mathbf{W} + \mathbf{L}_{\mathbf{OH}})$ 

 $M = P (W + L_{OH}) / 2$ 

(2) Overlay Load



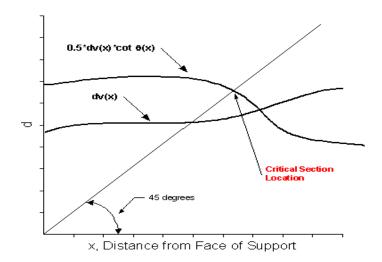
The LRFD Specifications, Section 4.6.2.2.1, states that the overlay load may be evenly distributed over all the girders. This is what PG Super does. Hence for any girder:

 $\mathbf{w} = (\mathbf{W}_{cc} \mathbf{t}_{olay \gamma olay}) / \mathbf{N}_{girders}$ 

## 3.4.2.2.2.4 Bridge Site Stage 3

The live load is applied to stage 3. The HL93 live load model will be used and applied between the centerlines of bearings as per the LRFD specifications.

## 3.4.2.2.3 Locating the Critical Section for Shear


The LRFD Specification has made the determination of the critical section for shear a daunting calculation. This Section provides a discussion of the requirements, and assumptions for the algorithm to determine this location.

Article 5.8.3.2 states that the critical section for shear may be taken as the larger of dv or 0.5dv cot  $\theta$ . The LRFD Specification does not provide any information as to where  $d_v$  and  $\theta$  are to be taken. WSDOT believes it should be at the location of the critical section. This makes the determination of the critical section for shear an iterative process since dv and  $\theta$  vary based on location and Limit State.

The algorithm used to locate the critical section is as follows:

- (a) Guess the location of the critical section X.
- (b) Find d<sub>v</sub> at X from the face of the support. Call this value X1
- (c) Find  $\theta$  at X from the face of the support.
- (d) Using θ from Step 3 and d<sub>v</sub> from Step 2, compute 0.5d<sub>v</sub>cot(θ). Call this value X2.
- (e) If X is not equal to the maximum of X1 and X2, go to Step 1 and repeat. Otherwise, X is the location of the critical section for shear.
- (f) Repeat for each limit state used for shear design.

A graphical solution would look as follows:



Although accurate and true to the Specifications, this method is impractical because of the large computational cost of calculating force envelopes at each guessed location in order to determine  $\theta(X)$  (a complete live load analysis would have to be run for every point). However, examination of many **dv** and **\theta** graphs reveals that their shape is well behaved. Hence, it is practical to approximate the d<sub>v</sub> and **\theta** near the support. PG Super's implementation uses piecewise linear interpolation. The control points used to create the curves will be at the 0.00, 0.05, and 0.10 points along the girder. It is believed that the critical section for shear should always fall within this range.

## 3.4.3 COM-4 (89) [29]

ACI Educational Committee E705 developed this software in Fortran language with following features:

- (a) Based on AASHTO working/allowable stress design specifications 1989 and 1992/1996.
- (b) Both flexure and shear are considered in the program in addition to check for service load stresses and ultimate strength.
- (c) Girders are analyzed and designed for dead load and live load (HS20-44).
- (d) Outputs are given in terms of moments and shear envelopes based on which different design details are proposed.
- (e) Beam line theory of composite section is used for structural model.

## **3.5 ASSUMPTIONS**

For solution of engineering problem, certain assumptions enable the designer to focus his work on arriving at correct solution of the problem in hand by limiting the number of variables to be selected. In this study following assumptions are made;

#### **3.5.1 Basic Assumptions**

With reference to AASHTO 1996 section 9.13.2, following assumption are used;

- (a) Strains vary linearly over the depth of the member.
- (b) Before cracking, stress is linearly proportional to strain.
- (c) After cracking, tension in the concrete is neglected. However, for MCFT tension in concrete is considered in the form of aggregate interlock by taking in to account the aggregate size.

## 3.5.2 Design Assumptions

For design it is imperative to make certain assumptions. These are made to simplify the problem. Some of assumptions used here are:

- (a) Standard I and T-bulb girder sections of homogeneous, elastic and isotropic material.
- (b) Bridge slab is of homogeneous, elastic and isotropic material.
- (c) Bridge slab has a thickness of 7.5 inches.
- (d) Asphalt layer is assumed to have a density of  $125 \text{ lbs/ft}^3$ .
- (e) Parapet wall and railing is assumed to have a weight of 400 lbs/ft<sup>3</sup>.
- (f) All the girders are identical and equally spaced in a bridge.
- (g) Girders are simply supported.

The reason for selecting 7.5-inch standard slab thickness is that the slab it should be capable of performing its intended role of load distribution to the girders. Only the selfweight of the parapet will be considered as they add to the over all

dead weight of the structure. However, once poured monolithically with deck slab, it will add to the stiffness of the member. However, its stiffening effect will not be considered, thereby increasing the safety margin. [13]

## **3.5.3 Other Assumptions**

- (a) Vertical deflection and rotations are zero at supports. Stiffening effect of barrier and curb is ignored, because when the curb is monolithic with slab, they do have effect on the bending moment of edge/exterior girder, but the effect is too small and can be neglected.
- (b) Barriers and diaphragms are not considered.
- (c) No extreme event loads are considered.
- (d) Limitation of AASHTO on strength of concrete for girder spacing and span are not considered.

#### **3.6 PERMISSIBLE STRESSES [10]**

AASHTO defined permissible stresses are considered, as;

- (a) strand allowable stress = fsi = 0.75 fpu (low relaxation)
- (b) Normal weight pre-stressed concrete with 6 ksi strength at 28 days with 80 % of design strength.
- (c) Other stresses are as per AASHTO 1996.

## **3.7 MATERIALS**

#### 3.7.1 Steel

## **3.7.1.1 Pre-stressing steel**

For the purpose of proposed design charts tables pre-stressing steel is 0.5 inch diameter, comprising uncoated 7-wire low relaxation grade 270 strand (as

used in normal practice). The ultimate strength (fpu) of steel is 270 ksi and Modulus of Elasticity (Ep) is 28000 ksi.

## 3.7.1.2 Shear steel

The design tables proposed are based on using 2 # 3 bars U legged stirrups with yield strength (fy) of 40 ksi.

## 3.7.2 Concrete

Compressive strength of pre-stressed concrete at 28 days, in case of girder is 6 ksi and in case of deck slab is 3.6 ksi. Normal weight concrete with a density of 150 lbs/ft<sup>3</sup> is used for both girder and the deck slab.

## Chapter 4

# SHEAR DESIGN BY AASHTO/ACI STANDARD PROCEDURE

## **4.1 GENERAL**

Shear stresses in regular beams are caused, not by direct shear or pure torsion, but by a combination of external loads and moment. In the regions of large bending moments, at about middle third of the beam span cracks develop almost perpendicular to the axis of the beam, called flexural cracks at about 50 % of the failure load in flexure. In the regions of high shear due to diagonal tension, inclined cracks develop as an extension of flexural cracks, called flexure shear cracks. The shear span to depth ratio in this case is of intermediate range varying between 2.5 and 5.5 for concentrated load. [5]

Beams that are most subject to shear compression (web shear) failure have smalls span to depth ratio of magnitude 2.5 for concentrated load and less than 5.0 for distributed loading. The inclined cracks are steeper than in the diagonal tension case. The shear compression type of failure, with the resulting crushing of the top compressive area of the concrete and failure to resist the flexural forces, leads to separation of the tension flange from the web in the flanged sections as the inclined cracks extend towards the support. Crushing of the web causes the beam to resemble a tied arch. This type of failure in pre-stressed beams can be better described as web shear failure. It is important to evaluate both the flexure shear capacity "Vci" and web shear capacity "Vcw" at each critical section in order to determine which predominates in determining the shear strength of the concrete section.

In flanged sections because of abrupt change of section at flange-web junction, a check of the section at the critical locations along the span becomes necessary particularly for web shear.

#### 4.2 DESIGN BASIS [4]

The shear provision of the ACI Code correlate directly with the development of design based on conditions in the member at a hypothetical overload stage, with calculated dead loads and service live loads multiplied by the usual overload factors, except where otherwise noted. The design of cross sections subject to shear is to be based on the relation:

$$\mathbf{Vu} \le \emptyset \, \mathbf{Vn} \tag{4.1}$$

The nominal shear strength Vn is calculated from the equation

$$Vn = Vc + Vs \tag{4.2}$$

The first critical section for shear assumed to be at a distance h/2 from the face of a support, and section located a distance less then h/2 are designed for the shear computed at h/2. This provision recognizes the beneficial effect of vertical compression in the concrete caused by the reaction. In special circumstances, those benefits are not obtained, and the shear at the support face may become critical.

## 4.3 NOMINAL SHEAR STRENGTH PROVIDED BY THE CONCRETE [4]

In (4.2), the value of Vc is to be taken equal to the smaller of  $V_{ci}$  and  $V_{cw}$ , determined by flexure-shear cracking and web-shear cracking respectively. These values are based on Equations (4.3) and (4.4).

First, in Equation (4.3) for flexure-shear cracking the term d/2 may be deleted, for the sake of simplicity. This has the effect of relating flexure-shear cracking to the load that causes flexural cracking at the section considered, rather than at a distance d/2 from the section considered, and makes the equation somewhat more conservative. Then, with slight notational changes,

$$V_{ci} = 0.6\sqrt{f'_c} b_w d + V_0 + V_i^* Mcr/M_{max}$$
 (4.3)

Where  $\mathbf{b}_{\mathbf{w}}$  is the width of a rectangular section or the web width of a fanged section, and **d** is the depth from the compression face of the member to the centroid of the prestressing steel. On the basis of tests, the later value need not be taken less than 0.80h for this and all other code provisions relating to shear, except as specifically noted otherwise.

In Equation (4.3), Vi and  $M_{max}$  are, respectively, the factored\* shear and bending moment at the section considered resulting from the superimposed dead load and live load and  $M_{cr}$  is the moment causing flexural cracking, computed by Equation (4.4):

$$M_{cr} = I_c/C_2 (6\sqrt{f'_c} + f_{2p} - f_0)$$
(4.4)

(Note that load factors, which are applicable identically to numerator and denominator here, will cancel; unfactored Vi and  $M_{max}$  can be used.)

In Equation (4.3), Vd is the shear due to the self-weight of the member and is computed without load factor. In Equation (4.5),  $f_0$  is the flexural stress at the bottom face of the beam, resulting from the self-weight of the member and is computed without load factor. The reason for separate consideration of self-weight was explained earlier. In applying Equation (4.3) V<sub>ci</sub> need not be taken less than  $1.7\sqrt{f'_c}$  b<sub>w</sub> d, according to the code. The nominal shear strength corresponding to web-shear cracking is computed from Equation (4.5) without modification:

$$V_{cw} = (3.5\sqrt{f_c} + 0.3f_{cc}) b_w d + V_p$$
(4.5)

Where  $V_p$  is the vertical component of the effective prestress force at the section:

## $V_p = P_e sin\theta$

In which  $\theta$  is the slope of the tendon centroid line at the section.

Instead of using Equation (4.5),  $V_{cw}$  may be computed as the shear force corresponding to the dead load plus live load that results in a principal tensile stress of  $4\sqrt{f'_c}$  at the centroid of the member, or at the intersection of the flange and web when the centroidal axis is in the flange.

For members with an effective pre-stress force not less than 40 percent of the tensile strength of the flexural reinforcement, an alternative to the use Equations (4.3) and (4.5) is permitted. The shear force  $V_c$  may be taken equal to

$$V_{c} = (0.6\sqrt{f'_{c}} + 700*V_{u}d/M_{u})b_{w}d$$
(4.6)

In this equation,  $V_u$  and  $M_u$  are the factored shear and moment resulting from all loads, at the section considered, and the quantity  $V_u d/M_u$  is not to be taken greater than 1.0. If Equation (4.6) is used,  $V_c$  need not be taken less than  $2\sqrt{f'_c} b_w d$ and must not be taken larger than  $5\sqrt{f'_c} b_w d$ . In this equation, the actual effective depth "d" to the controid of the prestressing tendon is to be used in computing the term  $V_u d/M_u$ , according to ACI code. The usual lower bound for "d" or "0.80h" may be used in the final term "b<sub>w</sub>d", which merely translates the nominal average shear stress  $V_c$  to shear force  $V_c$ . Equation (4.6) is simple to use compared with the more accurate Equations (4.3) and (4.5), but it may give very conservative and uneconomical results for certain classes of members.

#### 4.4 REQUIRED AREA OF WEB REINFORCEMENT [4]

When shear reinforcement perpendicular to the axis of the member is used, its contribution to shear strength is:

$$\mathbf{V}_{\mathbf{s}} = \mathbf{A}_{\mathbf{u}} \mathbf{f}_{\mathbf{y}} \mathbf{d} / \mathbf{s} \tag{4.7}$$

But the value of  $V_s$  is not to be taken larger than  $8\sqrt{f'_c} \mathbf{b}_w \mathbf{d}$ .

The total nominal shear strength  $V_n$  is found by summing the contributions of the steel and the concrete:

$$\mathbf{V}_{n} = \mathbf{A}_{u} \mathbf{f}_{v} \mathbf{d} / \mathbf{s} + \mathbf{V}_{c} \tag{4.8}$$

From Equation (4.1), in the limiting case, and Equation (4.2):

$$V_{u} = \emptyset Vn$$
$$= \emptyset (V_{s} + V_{c})$$
(4.9)

From which:

$$V_{u} = \mathcal{O}(A_{u}f_{y}d/s + V_{c})$$
(4.10)

The required cross-sectional area of one stirrup " $A_v$ " may be calculated by suitable transposition of Equation (4.10):

$$\mathbf{A}_{\mathbf{v}} = (\mathbf{V}_{\mathbf{u}} - \boldsymbol{\varnothing} \mathbf{V}_{\mathbf{c}}) \mathbf{s} / \boldsymbol{\varnothing} \mathbf{f}_{\mathbf{y}} \mathbf{d}$$
(4.11)

Normally, in practical design, the engineer will select a trial stirrup size, for which the required spacing is found. Thus, a more convenient from of Equation (4.10) is:

$$\mathbf{S} = \boldsymbol{\varnothing} \mathbf{A}_{\mathbf{v}} \mathbf{f}_{\mathbf{y}} \mathbf{d} / \mathbf{V}_{\mathbf{u}} - \boldsymbol{\varnothing} \mathbf{V}_{\mathbf{c}}$$
(4.12)

If the spacing determined for the trial stirrup size is to close for placement economy or practicality, or if it is so large that maximum spacing requirement control over too great a part of the beam spans, than a revised bar size is selected and the calculation repeated.

## 4.5 MINIMUM WEB REINFORCEMENT [4]

At least a certain minimum area of shear reinforcement is to be provided in all pre-stressed concrete members, where the total factored shear force  $V_u$  is greater than one half of the shear strength  $\emptyset V_c$  provided by the concrete. Based on successful performance, the following types of members are excepted from this requirement:

- a. Slabs and footing.
- b. Concrete joist construction (including ribbed members such as double –T beam).
- c. Beams with a total depth not greater than the largest of 10 in; two and onehalf times the thickness of the flange, and one-half of the web width.

The minimum area of shear reinforcement to be provided in all other causes is to be taken equal to the to the smaller of the following values:

$$A_u = 50 b_{ws}/f_y$$
 (4.13)

And

$$A_u = A_p f_{pu} s^* \sqrt{d/b_w} / 80 \text{ fy } d$$
 (4.14)

In which  $A_{p}$  is the cross-sectional area of the pre-stressing steel, fy is yield stress of the stirrup steel;  $f_{pu}$  is the ultimate tensile strength of the pre-stressing steel. All other terms are as previously defined.

Note that a decrease in  $b_w$  will result in a decrease in  $A_v$ , according to Equation (4.13), but in increase in  $A_v$ , according to Equation (4.14). The first equation was originally based on studies of reinforced concrete beams with web reinforcement, having a ratio of depth-to-web width of about two. The second equation was derived specifically for pre-stressed concrete beam, and was intended

to ensure that in section with narrow webs, the ratio of web reinforcement would be greater than in thick-webbed sections. Equation (4.14) will generally require less shear reinforcement that Equation (4.13); however according to ACI code, it may be used only if the effective pre-stress is not less than 40 percent of the tensile strength of the pre-stressed reinforcement. The ACI code contain, in addition certain restrictions on the maximum spacing of web reinforcement to ensure that any potential diagonal crack will be crossed by at least a minimum amount of web steel. For pre-stressed members, this maximum spacing is not to exceed the smaller of 0.75h or 24 in. If the value of V<sub>s</sub> exceeds  $4\sqrt{f'_c} \ b_w d$ , these limits are reduced by one-half.

## Chapter 5

## SHEAR DESIGN BY LRFD APPROACH

#### **5.1 GENERAL**

In the design procedure domain, the design procedures based on Limit State were applicable to steel structures. Later on, with improvement in statistic and probability, this domain extended towards the concrete structures thereby presenting much reliable analysis solutions. This procedure enables analysis of response of the structure at each loading stage, thus, allowing suitable safety margin (FOS) at each stage and finally resulting in a realistic figure of FOS. Examples of limit states for girder type bridges include deflection, cracking, fatigue, shear, torsion, buckling, settlement, bearing and sliding. Well-defined limit states are established so that a designer knows what is considered to be acceptable FOS.

The determination of an acceptable margin of safety (how much greater resistance should be compared to the affects of load) is the responsibility of experts. AASHTO developed new specifications for highway bridges based on Load and Resistance Factor Design (LRFD) in 1994 and now all of US State Department of Transportation (SDOT) has resorted to this code of practice.

#### **5.2 LRFD BRIDGE DESIGN SPECIFICATIONS [2]**

#### **5.2.1 Introduction**

This is a very brief introduction to the LRFD Specifications. It covers only a few general topics and a light treatment of concrete design. The objective is to provide an overall perspective of what LRFD is all about. Detailed information and in-depth technical discussions are included only for shear design of prestressed bridges. Following abbreviation will be used during this overview:

LRFD AASHTO LRFD Bridge Design Specifications

SS AASHTO Standard Specifications for Highway Bridges

STM Strut and Tie Model (see shear and torsion design)

MCFT Modified Compression Field Theory

#### 5.2.2 Background

In 1986, the AASHTO Subcommittee on Bridges and Structures, sensing that the Standard Specifications for Highway Bridges may contain some inconsistencies and may not represent the state-of-the-art in bridge design, took what was essentially the first step in replacing it. The load and resistance factor design (LRFD) philosophy, which is considered to his the state-of-the-art in bridge design was completed in 1993, and the LRFD Specifications were adopted by AASHTO as a parallel specification to the Standard Specifications. Currently, several US States Department of Transportation (SDOT) has adopted or are very near to adopting the LRFD Specifications.

#### 5.2.3 LRFD Philosophy

The LRFD Specifications embody the philosophy that bridges should be designed with the objectives of constructability, safety and serviceability in mind with due regard to issues of inspectability, economy and aesthetics. To achieve these objectives in the design of a bridge, certain specified limit states must be met: the structure must be exhibit significant ductility, the structure must have multiple load paths (i.e., be redundant), and the operational importance of the structure must be recognized.

## **5.2.4 Notation and Units**

While some of the notations used in LRFD are similar to that of the Standard Specifications, some of it is actually quite different. In those instances where the notation in LRFD does differ from that of the Standard Specifications, the notation is generally the same as that used in ACI 318, the code for reinforced concrete building-type structures. With regard to the Customary US Units version, the units of "lb" and "psi" have been replaced by 'KIP' and 'KSI', respectively (note convention of using capital letters). Consequently, many of the familiar coefficients in equations have changed although the equations themselves are actually the same.

## 5.2.5 Load Types

The engineer must consider all the loads that are expected to be applied to the bridge during its service life. The LRFD Specifications separates loads into two categories: permanent loads and transient loads. Within each of these two broad categories are many sub-categories, and several additional load types have been defined. Each load type is now uniformly identified with a two-letter code.

#### **5.2.5.1 Permanent Loads**

With regard to permanent loads, several types are specified. Note that, previously, the structural dead load of a bridge was lumped into a single category. Now however, it is separated in to two categories, DC and DW, which allows different load factors to be applied to each type.

| <u>Symbol</u> | Description                        |
|---------------|------------------------------------|
| DD            | Downdrag                           |
| DC            | Dead load of structural components |

and non structural attachments DW Dead load of wearing surfaces and utilities EH Horizontal earth pressure ES Earth surcharge load EV Vertical pressure from dead load Of earth fill.

## **5.2.5.2 Transient Loads**

As the name implies, these loads change with time and may be applied from several directions and/or locations. Typically such loads are highly variable. The transient load types defined in LRFD are:

| <u>Symbol</u> | Description                      |
|---------------|----------------------------------|
| BR            | Vehicular braking force          |
| CE            | Vehicular centrifugal force      |
| CR            | Creep                            |
| СТ            | Vehicular collision force        |
| CV            | Vessel collision force           |
| FR            | Friction                         |
| IC            | Ice load                         |
| IM            | Vehicular dynamic load allowance |
| LL            | Vehicular live load              |
| LS            | Live load surcharge              |
| PL            | Pedestrian live load             |

| SE | Settlement                     |
|----|--------------------------------|
| SH | Shrinkage                      |
| TG | Temperature gradient           |
| TU | Uniform temperature            |
| WA | Water load and stream pressure |
| WL | Wind on live load              |
| WS | Wind load on structure         |

## 5.2.5.2.1 Live Load

One of the most significant changes introduced into bridge design with the new specifications is the vehicular live load model. In LRFD, there are three components of load which are as follows:

Design Truck: An 8-kip axle followed by two 32-kip axles. The distance between the first pair of axles is fixed at 14 feet while the back axles are variably spaced between 14 and 32 feet.

Design Tandem: Consists of a pair of 25-kip axles with a fixed spacing of 4 feet.

Design Lane: A uniform distributed load of 0.64-kips per foot (KLF).

From a configuration standpoint the LRFD design truck is identical to the axle load portion of the HS2O-44 truck of the Standard Specifications. It should be noted, however, that the LRFD design truck is not scaleable like the HS2O. That is, there is no, for example, HS25 equivalent under LRFD.

## 5.2.5.2.2 Application of Vehicular Live Load.

Generally, two combinations of the vehicular live load components must be investigated for all bridge types to determine the worst-case live load effects. Collectively, these combinations are termed HL-93 and are as follows: Design truck + design lane

Design tandem + design lane

For continuous bridges, between the points of dead load contra flexure and for determining the worst-case reactions at interior piers, a special provision is made. In this case, 90% of the effect of two design trucks and 90% of the design lane are considered. The axle spacing of the trucks in this case is fixed at 14.0 ft and distance between the front axle of one truck and the rear axle of the other need not be less than 50.0 ft. When determining the worst-case loading, skip loading and other techniques should be used to cause the extreme force effect. Axles that do not contribute to the extreme force effect should be neglected.

## 5.2.5.2.4 Fatigue Load

A special vehicle is used for fatigue analysis. It consists of one design truck, as specified above, but with the rear (32-kip) axle spacing fixed at 32.0 ft and without an accompanying uniform load.

#### 5.2.5.2.4 Pedestrian Load

The railing for pedestrian and/or bicycle must be designed for a load of 0.73 N/mm both transversely and vertically on each longitudinal element in the railing system. In addition the railing must be designed to sustain a single concentrated load of 980 N applied to top rail at any location and any direction.

#### 5.2.5.3 Multiple Presence Factor

Trucks will be present in the adjacent lanes on roadways with multiple design lanes but it is unlikely that three adjacent lanes will be loaded simultaneously with heavy loads. Therefore, some adjustments in the design loads are necessary. To account for the effects of multiple lanes on a bridge, multiple presence factors are given. They are provided for the cases of one lane, two lanes, three lanes, and three or more lanes. It should be noted that the effects of multiple presence factors have been factored into the approximate live distribution factor equations given in the LRFD Specifications. However, for fatigue analysis, where one lane is considered, the distribution factored obtained using the approximate method must be divided by the one-lane multiple presence factor of 1.2. Table for Multiple presence factors "m" (LRFD Table 3.6.1.1.2-1).

| Number of loaded lanes | Multiple Presence Factors "m" |
|------------------------|-------------------------------|
| 1                      | 1.2                           |
| 2                      | 1.00                          |
| 3                      | 0.85                          |
| > 3                    | 0.65                          |

## **5.2.5.4 Dynamic Affects**

The roadway surface is not perfectly smooth; thus the vehicle suspension must react to the roadway roughness by compression and extension of the suspension system. This oscillation creates axle forces the exceed the static weight during the time the acceleration is upwards and is less when the acceleration is downwards, commonly called impact or Dynamic Load Allowance (DLA). This DLA is illustrated as under;

| Component                         | IM(DLA) % |
|-----------------------------------|-----------|
| Deck joints- all limit states     | 75        |
| All other components              |           |
| Fatigue and fracture limit states | 15        |
| All other limit states            | 33        |

These factors to be applied to the static load as  $U_{L+1} = U_L (1+IM)$ 

Where, U<sub>L+1</sub> is live load effect plus allowance for dynamic loading.

#### **5.2.6 Load Modifiers/ Modification Factors**

Load modification factor 'h' is a factor which takes in to account the ductility, redundancy and operational importance of the bridge is given by ;

$$h = h_D h_R h_I \ge 0.95$$

Where,  $h_D$  is for ductility,  $h_R$  is for redundancy and  $h_I$  for operational importance.

The first two factors refer to the strength of the bridge and third refer to the consequence of a bridge being out of service. Reinforced concrete can be made ductile by limiting flexural reinforcement and providing confinement with hoops or stirrups.

(a) Ductility Factor 'h<sub>D</sub>'

= 1.05 for non ductile components and connections

= 0.95 for ductile components and connections

(b) Redundancy Factor 'h<sub>R</sub>'

It significantly affects the safety margin of bridge structure. An indeterminate structure is redundant because it has multiple load paths and a single path structure is non-redundant.

= 1.05 for non redundant members

= 0.95 for redundant members

(c) Operational Importance Factor "hi

A bridge can be considered of operational importance if it is on the shortest path between residential areas and a hospital or school or provide access for police, fire and rescue vehicles to homes, businesses and industrial plants. Following requirement apply to extreme and strength limit states;

= 1.05 for a bridge of operational importance

= 0.95 for a non important bridge

## 5.2.7 Load Combination and Load Factors

The load factors for each of limit states are entirely different from those of the SS. LRFD Tables 3.4.1-1 and 3.4.1-2 give the load factors and load combinations for each limit state. For example, for a simple-span prestressed concrete girder, Strength Limit State I is defined as follows:

#### Q= 1.25DC+ 1.5DW+ 1.75LL

Where Q is the total force effect and DC, DW, and LL are as defined above

Load factors for various load combination, as given in LRFD Table 3.4.1-1 are;

| Load         | DC  | LL   |    |     |     |    | TU      |     |     | Use of one these<br>at a time |    |    | iese |
|--------------|-----|------|----|-----|-----|----|---------|-----|-----|-------------------------------|----|----|------|
| combination  | DD  | IM   | WA | WS  | WL  | FR | CR      | ΤG  | SE  |                               |    |    |      |
|              | D   | CE   |    |     |     |    | SH      |     |     |                               |    |    |      |
|              | W   |      |    |     |     |    |         |     |     |                               |    |    |      |
|              | EH  | BR   |    |     |     |    |         |     |     |                               |    |    |      |
| Limit State  | ΕV  | PL   |    |     |     |    |         |     |     | EQ                            | 1C | CT | CV   |
|              | ES  | LS   |    |     |     |    |         |     |     |                               |    |    |      |
| Strength I   | gp  | 1.75 | 1  |     |     | 1  | 0.5/1.2 | gtg | gse |                               |    |    |      |
| Strength II  | gp  | 1.35 | 1  |     |     | 1  | 0.5/1.2 | gtg | gse |                               |    |    |      |
| Strength III | gp  |      | 1  | 1.4 |     | 1  | 0.5/1.2 | gtg | gse |                               |    |    |      |
| Strength IV  | gp/ |      |    |     |     |    |         |     |     |                               |    |    |      |
| EH,EV,       | 1.5 |      |    |     |     |    |         |     |     |                               |    |    |      |
| ES,DW and    | DC  |      | 1  |     |     | 1  | 0.5/1   | /2  |     |                               |    |    |      |
| ONLY         |     |      |    |     |     |    |         |     |     |                               |    |    |      |
| Strength V   | gp  | 1.35 | 1  | 0.4 | 0.4 | 1  | 0.5/1.2 | gtg | gse |                               |    |    |      |
| Exterme      | gp  | geq  | 1  |     |     | 1  |         |     |     | 1                             |    |    |      |
| Event I      |     |      |    |     |     |    |         |     |     |                               |    |    |      |
| Extreme      | gp  | 0.5  | 1  |     |     | 1  |         |     |     |                               | 1  | 1  | 1    |
| Event II     |     |      |    |     |     |    |         |     |     |                               |    |    |      |
| Service I    | 1   | 1    | 1  | 0.3 | 0.3 | 1  | 1/1.2   | gtg | gse |                               |    |    |      |
| Service II   | 1   | 1.3  | 1  |     |     | 1  | 1/1.2   |     |     |                               |    |    |      |
| Service III  | 1   | 0.8  | 1  |     |     | 1  | 1/1.2   | gtg | gse |                               |    |    |      |
| Fatigue      |     | 0.75 |    |     |     |    |         |     |     |                               |    |    |      |

• Load factors for permanent loads, gp

# 5.2.8 Load Factors for Permanent Loads "gp"

| Type of Load            | Load Factor "gp" |      |
|-------------------------|------------------|------|
|                         | Max              | Min  |
| DC: component and       | 1.25             | 0.9  |
| attachment              |                  |      |
| DD: down drag           | 1.8              | 0.45 |
| DW:wearing surface      | 1.5              | 0.65 |
| and utilities           |                  |      |
| EH:horizor              | ntal earth press | sure |
| active                  | 1.5              | 0.9  |
| rest                    | 1.35             | 0.9  |
| EV:vertical earth       |                  |      |
| overall stability       | 1.35             | N/A  |
| Retaining structure     | 1.35             | 1    |
| rigid burried structure | 1.3              | 0.9  |
| rigid frame             | 1.35             | 0.9  |
| flexible burried        | 1.95             | 0.9  |
| structure               |                  |      |
| Flexible metal box      | 1.5              | 0.9  |
| culverts                |                  |      |
| ES:earth surcharge      | 1.5              | 0.75 |

# **5.2.9 Resistance Factor**

Resistance factors, f, are statistically based multipliers which are applied to

the nominal resistance of the member. For concrete, these factors are as follows:

| Application            |      | Resistance Factor"f" |
|------------------------|------|----------------------|
| Flexure and Tension    |      |                      |
| reinforced concrete    |      | 0.90                 |
| prestressed concrete   |      | 1.00                 |
| Shear and Torsion      |      |                      |
| normal weight concrete |      | 0.90                 |
| light-weightconcrete   |      | 0.70                 |
| Axial Compression      | 0.75 |                      |
| Bearing on Concrete    |      | 0.70                 |

| Compression in Strut-and-Tie Models | 0.70 |
|-------------------------------------|------|
| Compression in Anchorage Zones      |      |
| Normal weight concrete              | 0.80 |
| light-weight concrete               | 0.65 |
| Tension Steel in Anchorage Zones    | 1.00 |

# 5.2.10 Limit States

In LRFD, the design framework consists of satisfying what are called

limit states. All limit states shall satisfy:  $h gi Q_1 f Rn = Rr$ 

where:

h = Load modifier

- gi = Load factors
- Qi = Force effects
- f= Resistance factors

Rn = Nominal resistance

Rr = Factored resistance

To obtain an understanding of this concept, it is helpful to refer to the actual definition of "limit state" contained in the LRFD Specifications:

5.2.10.1 Limit State. "A condition beyond which the bridge or component

ceases to satisfy the provisions for which it was designed." (LRFD 1.2)

# 5.2.10.1.1 Strength Limit State

The strength Limit State refers to providing sufficient strength or resistance to satisfy the inequality of  $\mathbf{h} \leq \mathbf{gi} \ \mathbf{Qi} \leq \mathbf{f} \ \mathbf{Rn}$ . The load modifier, which for all non strength limit states is 1.00 for the statistically significant load combinations that a bridge is expected to experience in its design life. Strength limit states include the evaluation of resistance to bending, shear, torsion and axial load. The resistance factor "f" will usually be less than 1.00. There are five strength limit states and fortunately not all apply in every situation and some can be eliminated by inspection. These are;

- (a) **Strength I**. Basic load combination relating to normal vehicular use of the bridge without wind.
- (b) Strength II. Relating to use of bridge by special or permit vehicle without wind.
- (c) **Strength III**. Relating to bridge exposed to wind velocity greater than 55 MPH or 90 KMPH.
- (d) **Strength IV**. Relating to very high dead load/ live load force effects ratios.
- (e) **Strength V**. Relating to load combination relating to normal vehicular use of bridge with wind of 55MPH or 90KMPH.

# 5.2.10.1.2 Extreme Event

This state refers to the structural survival of a bridge during a major earthquake or flood or when collided by a vessel, vehicle or ice flow. The probability of these events occurring simultaneously is very low; therefore they are specified to be applied separately. Extreme events are described as;

- (a) **ExtremeEvent I**. Load combination including earthquake.
- (b) Extreme Event II. Ice vessel and vehicle collision.

## 5.2.10.1.3 Service Limit State.

Service limit states refer to restriction on stresses, deflections and crack width of bridge components that occur normal service condition. For this state resistance factor "f" = 1.0. There are three service limit state load combinations as under:

- (a) Service I. Refers to the load combination relating to the normal operational life of the bridge with 55MPH or 90KMPH wind, and with all loads taken at their normal values. It is used to investigate compressive stresses in prestressed concrete components.
- (b) **Service II**. Refers to the load combination relating only to steel structures so as to control yielding.
- (c) Service III. Refers to the load combination relating only to the tension in prestressed concrete structures with the objective of crack control. The statistical significance of the 0.80 factor on live load is that the event is expected to occur about once a year for bridges with two lanes less often for bridges with more than two lanes and about once a day for bridges with a single traffic lane.

#### **5.2.10.1.4 Fatigue and Fracture Limit State**

Refers to a set of restriction on stresses ranges caused by a design truck. The restrictions depend on the number of stress range excursions expected to occur during the design life of the bridge. They are intended to limit crack growth under repetitive loads and to prevent fracture due to cumulative stress effects in steel elements, components and connections. For fatigue limit state and fracture limit state "f" =1.0. Under the SS, these same types of design checks are performed. However, they are performed in a different framework.

# 5.2.11 Analysis

#### 5.2.11.1 General

The LRFD Specifications state that any reasonable method of analysis may be used for the analysis of a bridge, provided that the method satisfies the requirements of equilibrium and compatibility and utilizes stress-strain relationships for the proposed material. Among the types of analyses specifically mentioned as acceptable in the Specifications are:

- Classical force and displacement method
- Finite difference method
- Finite element method
- ➢ Folded plate method
- Finite strip method
- ➤ Grillage analogy method
- Series or other harmonic methods
- Yield line method

As a side note, the Specifications caution the engineer about the use of computer programs, which are based on the above methods. It clearly states that the designer is the one who is responsible for the results when a program is used. The implication is that a program is merely a design aid and that the engineer can use whatever tools are at his or her disposal. However, he or she takes full responsibility for their use. It suggests that when a software is used, that the name, version number, and release date of the program be indicated in the contract documents.

### 5.2.11.2 Approximate Method

In lieu of detailed analyses, if certain criteria are met, the approximate methods of analysis given in the LRFD Specifications can be used. These methods are, of course, empirical, but can save considerable time over more refined methods: If the approximate methods can be used, only a few relatively simple equations need to be processed. Compared to the amount of effort required to perform, for example, a finite element analysis or even a simple frame analysis, the amount of work saved by using the approximate method can be considerable.

# 5.2.11.3 Strip Method for Decks

Decks can be designed by either the empirical method or by the so-called traditional method. As the name implies the empirical method is not a rational method; there is no analysis involved. Rather, reinforcement is specified in terms of a required area of steel per foot for the top and bottom layers of reinforcement in the deck, which is the same in both directions. However, to be able to use the empirical method, several criteria must first be met which are outlined in Chapter 9 of specifications.

The traditional method involves dividing the deck up into transverse strips that are of different widths depending what is being investigated. Strip widths are specified for positive moment, negative moment and the design of the overhang.

## **5.2.11.4 Distribution Factors for Beam-Slab Bridges**

With regard to the so-called simplified analysis of beam-slab bridges, the live load distribution equations are still considerably more complex in the LRFD Specifications than those of the Standard Specifications. Previously, there was only a single distribution factor, which was applicable to both shear and moment which, was usually computed with a very simple equation (e.g., S/5.5). Now, however, there are separate equations for the distribution factors for shear and moment, and these equations are functions of several parameters. Nevertheless, if applicable, it is certainly more practical to use the distribution factor equations rather than having to resort to the alternative which is to do a grillage or finite element analysis. To be able to use the live load distribution factors specified in the LRFD Specifications, however, the following conditions must first be met.

- a. Constant cross section
- b. Number of beams is four or more.
- c. Beams are parallel
- d. Beams have same stiffness
- e. Roadway portion of overhang does not exceed 3.0 ft (910mm).
- f. The plan curvature is small. (Art 4.6.1.2)
- g. Cross section is similar to cases covered

Other restrictions may also apply for each individual distribution factor case. These are generally stated in terms of a range of applicability in the tables.

#### 5.2.11.5 Distribution Factor for Moment

To determine the applicable distribution factor equation, the correct LRFD classification of bridge type must first be determined. For a typical prestressed I-girder bridge with a composite deck, the bridge type is Type "k" (case covered). For moment in interior beams, Table 4.6.2.2.2b-1 is referenced. For two or more lanes loaded, the distribution factor is:

 $DF = 0.075 + (S/9.5)^{0.6} (S/L)^{0.2} (Kg/12Lts^3)^{0.1}$ 

where,

$$Kg = n(l + A eg^2)$$
 (LRFD 46221-1)1

Provided that:

- $\succ$  3.5 ≤ S ≤ 16
- ▶  $4.5 \le \text{ts} \le 12.0$
- ►  $20 \le L \le 240$
- ▶ Number of beams  $\geq 4$
- $\triangleright$  30° ≤ θ ≤ 60°

slab (in), L =span length (ft)

# 5.2.11.6 Distribution Factor for Shear

The distribution factor equation for shear for an interior beam of a type (k) bridge (prestressed I girder bridge with cast in place deck slab) with two or more lanes loaded (LRPD 4.6.2.2.3a-1) is:

$$\mathbf{DF} = \mathbf{0.2} + \mathbf{S}/12 - (\mathbf{S}/35)^{2.0}$$

## 5.2.11.7 The Lever Rule

For cases where the beam spacing exceeds the maximum spacing given in the tables, the lever rule is to be used for determining the live load distribution factor. As with the Standard Specifications, this involves assuming the deck to be hinged at interior supports, in which case the live load distribution factor is the reaction of the supported member at the support. When lever rule is used, multiple presence factors (Art 3.6.1.1.2) must be applied to the loads. (Note: For the cases covered in the tables, multiple presence factors are already accounted for in the equations).

#### 5.2.11.8 Distribution of Superimposed Dead Load to Stringers

Permanent loads may be uniformly distributed among all beams if the conditions required for applicability are met (Art. 4.6.2.2.1). That is, the superimposed dead load can be equally distributed to each beam provided that the criteria for use of the live load distribution factors are met. This corresponds to the provision in the Standard Specifications that allows equal distribution of the weight of curbs, railing and wearing surface to all roadway stringers or beams if they are placed after the slab has cured.

#### **5.2.12** Concrete Design

#### **5.2.12.1 Overview**

What is contained in Chapters 8 and 9 in the SS is now combined into a single chapter, Chapter 5 of the LRFD. This supports the LRFD notion of structural concrete rather than having separate treatments of reinforced concrete and prestressed concrete. The goal is to provide one chapter that provides a smooth transition between reinforced concrete and fully prestressed concrete, including all degrees of partial prestress.

#### **5.2.12.2 Prestress Losses**

As with the SS, there are four components of prestress loss; elastic shortening, shrinkage, creep, and steel relaxation. The procedures and equations given in the LRFD Specs for the computation of these losses are essentially the same as in the Standards Specifications. The nomenclature, however, has been changed to the following:

$$\Delta \mathbf{f} \mathbf{p}_{\mathrm{T}} = \Delta \mathbf{f} \mathbf{p}_{\mathrm{ES}} + \Delta \mathbf{f} \mathbf{p}_{\mathrm{SR}} + \Delta \mathbf{f} \mathbf{p}_{\mathrm{CR}} + \Delta \mathbf{f} \mathbf{p}_{\mathrm{R}}$$

Only two minor changes have been introduced into the actual computations, both of which relate to steel relaxation. First, steel relaxation loss now consists of two components, one that represents loss at transfer and the other that represents loss after transfer (i.e., long-term). The other change is that relaxation is put in terms of stress-relieved strands. For low-relaxation strands, 30% of the stress-relieved value is taken. Recall that in the SS, two separate equations were used for long-term steel relaxation whereby relaxation for low-relaxation steel is 25% of the value for stress-relieved.

# 5.2.12.3 Transfer Length

The distance from the terminal point of a pretension seven-wire strand to the point where the full amount of prestress has been transferred to the concrete is assumed to be 60 strand diameters. Note that this is slightly longer than the 50strand diameter that is assumed under the Standard Specifications.

#### **5.2.12.4 Flexural Strength**

The strength Limit State requires that the following relationship be satisfied:

#### $Mr = \phi Mn > Mu$

where,

f = 1.0 for flexure of prestrèssed concrete (LRFD 5.5.4.2), = 0.90 for flexure of reinforced concrete, For cases of partially prestressed components, f may be taken as:

$$f = 0.90 + 0.10 (PPR)$$
 (LRFD 5.5.4.2.1-1)

Where the partial prestress ratio, PPR (LRFD 5.5.4.2.1-2), is defined as:

$$PPR = Aps fpy / (Aps fpy + As fy)$$
(5.1)

### **5.2.12.5 Rectangular Sections**

To evaluate Mn, the nominal flexural resistance of a beam cross section, it must first be determined whether the section acts as a rectangular beam or as a Tbeam. For the section to act as a rectangular section, the neutral axis must be located within the flange of the beam. For a rectangular beam, the depth of the neutral axis, measured from the extreme compression fiber of the beam, is:

$$\mathbf{C} = (\mathbf{Apsfpu} + \mathbf{Asfy} - \mathbf{A'sf'y}) / (\mathbf{0.85f'c\beta_1 b} + \mathbf{kApsfpu/dp})$$
(5.2)

where,

 $\beta_1$  = Ratio of the depth of equivalent uniformly stressed compression zone assumed in the strength limit state to the depth of the actual compression zone (LRFD 5.7.2.2).

$$k=2(1.04-fpy/fpu)$$
 (5.3)

Note that "k" is essentially the same as the "g" parameter of the standard specifications, which is a factor for the type of prestressing steel used.

For low-relaxation prestressing steel k = 0.28 and for stress-relieved steel, k = 0.35.

If the section functions as a rectangular beam the strength is given as follows;

$$Mn = Apsfps(dp-a/2) + Asfy(ds-a/2) - A's f'y(d's-a/2)$$
(5.4)

where,

fps =Average stress in the strands at:

$$Mn = fpu(1-k c/dp)$$
 (5.5)

Provided fpe  $\leq 0.5$ fpu

 $a=\beta_1c$ 

# 5.2.12.5.1 Flanged Sections

If the neutral axis drops outside of the flange, then the section acts as a T-beam in which case the depth of the neutral axis is computed by:

$$C = [Apsfps + Asfy - A'sf'y - 0.85\beta_1f'c(b-bw)hf] / [0.85f'c\beta_1bw + kApsfpu/dp]$$
(5.6)

The flexural strength of a T-section is then given by:

 $Mn = Apsfps(dp-a/2) + Asfy(ds-a/2) - A'sf'y(d's-a/2) + 0.85f'c(b-w)\beta_1hf(a/2-hf/2)$ (5.7)

## 5.2.12.5.2 Other Cross Sections

For sections that do not behave as a rectangular or a simple T-section, or for cases in which fpe< 0.5fpu the idealized formulae given in the LRFD Specifications cannot be used. A more general approach to evaluating the nominal flexural resistance is required. In such cases, a strain compatibility procedure is most often employed. The beam cross section is divided into trapezoidal-shaped layers of different material type and each layer of reinforcing is modeled separately.

### 5.2.12.6 Limits of Reinforcement

#### 5.2.12.6.1 Maximum Steel

The limitation on the amount of steel at a particular cross section is expressed in terms of a limiting depth of neutral axis. The maximum amount of steel that can be contained within in a section is such that the depth to the neutral axis of the section can be no more than 42% of the depth to the centroid of the tensile reinforcement That is,

### de = (Apsfpsdp + Asfyds) / (Apsfps + Asfy)(5.8)

If the above ratio is exceeded, then the section is deemed to be over-reinforced. Reinforced concrete sections, as indicated by a PPR <0.50, are not permitted to be over-reinforced. However, if the section is prestressed or partially prestressed (PPR 0.50), then the section is permitted to be over-reinforced provided that the section is sufficiently ductile.

## 5.2.12.6.2 Minimum Steel

At every section, the flexural resistance of a member must be at least 20% greater than the moment required to crack the section (LRFD 5.7.3.3.2). The cracking moment Mcr, is the moment required causing first cracking based on the modulus of rupture as specified in Article 5.4.2.6. That is,

## **Mr** ≥ 1.2 Mcr

If a section contains so pre-stressing steel, the cracking ratio may be considered satisfied if the following ratio of steel is satisfied (LRFD 5.7.3.3.2-1):

#### $\rho$ min $\geq$ 0.03 f'c/ fy

#### 5.2.12.7 Crack Control

The tensile stress in mild steel at the service limit state, fsa, cannot exceed the following (LRFD 5.7.3.41):

# $fsa \le z / (dc A)^{1/3} \le 0.6 fy$

where,

Z = Crack width parameter (Kips/in) = 170 Kips/in for moderate exposure conditions = 130 Kips/in for severe exposure conditions

#### 5.2.12.8 Fatigue Limit State

#### 5.2.12.8.1 Prestressing Tendons

Stress range limitations are imposed on prestressing tendons. For radii of curvature greater than 30.0 ft, the stress range must be limited to 18.0 KSl, and for radii of curvature less than or equal to 12.0 ft, the stress range may not exceed 30.0 ft (LRFD 5.5.3.3). When the radius of curvature is between 12.0 ft and 30.0 ft, a linear interpolation between these limits is performed.

For pretension girders with draped strands, the drape point is assumed to be a point of curvature. At that point, the radius of curvature is assumed to be less than or equal to 12.0 ft. The allowable stress range under fatigue loading is, therefore, 10 ksi . The strands that will experience the greatest change in stress will be those in the bottom-most row of the strand pattern. Assuming the lowest level of strands to be located 2.00 in from the bottom of the girder, the stress range caused by the fatigue loading at that level is.

$$D_f = M_f(Y_{bc} - 2.00)(Ep/Ec) / Ic$$
 (5.9)

#### 5.2.12.8.2 Reinforcing Bars

The stress range in straight reinforcing bars is not permitted to exceed:

$$f_t-21-0.33f_{min}+8(r/h)$$
 (5.10)

# 5.2.12.9 Shear and Torsion

With the LRFD Specifications, a completely new method Called Modified Compression Field Theory (MCFT), of shear design has been adopted. The new method is a simple, unified method that is applicable to both prestressed and nonprestressed members. Unlike the previous empirical method, however, MCFT is a rational method that gives physical significance to the parameters being calculated.

# 5.2.12.9.1 Design of Stirrups

For shear design, as before, the following basic relationship must be satisfied at each section:

$$Vu \le \phi Vn$$
Where; 
$$Vn=Vc+Vs+Vp \qquad (5.11)$$

This relationship is similar to the method of shear design prescribed in the

AASHTO Standard Specifications. However, with LRFD, Vu is computed in an entirely different manner. The equation for Vc is now

$$Vc = 0.0316\beta \sqrt{f'c^* b_v^* d_v}$$
(5.12)

The value of " $\beta$ " at a given section must be obtained through an iterative process. The following two parameters must be computed as part of this process.

$$\mathbf{v} = (\mathbf{V}\mathbf{u} \cdot \mathbf{\phi}\mathbf{V}\mathbf{p})/\mathbf{\phi} \mathbf{b}_{\mathbf{v}} \mathbf{d}_{\mathbf{v}}$$
(5.13)

 $\epsilon \mathbf{x} = (\mathbf{Mu/dv} + \mathbf{0.5Nu} + \mathbf{0.5Vu} \cot\theta - \mathbf{Aps} \mathbf{fpo}) / (\mathbf{Es} \mathbf{As} + \mathbf{Ep} \mathbf{Aps})$ (5.14) where,

fpc = Net stress at c.g of composite section at final conditions (KSI). If  $\in x$  is negative,  $\in x$  must be reduced by multiplying by the following factor:

$$\mathbf{F} = (\mathbf{EsAs} + \mathbf{EpAps}) / \mathbf{EcAc} + \mathbf{EcAs} + \mathbf{EpAps}$$
(5.16)

where,

Ac = Area of concrete on flexural tension side = Area of beam below h/2 (in<sup>2</sup>), Aps = Area of strand on tension side (in<sup>2</sup>).

A first trial value of " $\theta$ " is assumed in order to compute the initial value of  $\in x$ . Then, knowing v and  $\in x$ , LRFD Table 5.8.3.4.2-1 is used to look up The corresponding values of " $\beta$ " and " $\theta$ ". If " $\theta$ " is not within a reasonable tolerance of the assumed " $\theta$ " then the current value of " $\theta$ " is used to compute a new  $\in x$ , and a new look-up in The table performed. When convergence is reached, Vc can be then be calculated.

The critical section for shear, the section closest to The support that must be considered, is the greater of:

- (a) 0.5 dv cotq or (LRFD 5.8.3.2)
- (a) dv

where,

dv = Effective shear depth = distance between resultants of tensile and compressive forces. But dv need not be taken less than the greater of:

(a) O.9de (LRFD 5.8.2.7)(a) O.72h

The maximum shear capacity of a section is given by :

$$Vn = 0.25 f'c bv dv + Vp$$
 (5.17)

Assuming vertical stirrups, the contribution from the stirrups is:

$$Vs = Av fy dvcot\theta / S$$
(5.18)

The minimum transverse reinforcement is:

$$Av = 0.0316 \sqrt{f'c} bvs/fy$$
 (5.19)

#### 5.2.12.9.2 Longitudinal Reinforcement.

One of the cornerstone principles of modified compression field theory is the recognition that shears causes tension in longitudinal steel. At each section of the beam not subjected to torsion, the capacity of the longitudinal reinforcement must be checked for sufficiency. To determine the required tensile capacity of the longitudinal reinforcement the following expression is used:

#### $Asfy+Apsfps \ge [Mu/dv\phi=0.5Nu/\phi+(Vu/\phi-0.5Vs-Vp)cot\theta]$ (5.20)

In the above expression, Aps, is the amount of prestressing steel on the flexural tension side of the cross section. The flexural tension portion of the cross section is the region from the mid-height of the cross section to the extreme tension fiber. At the ends of beams with draped strand patterns, generally only the straightstrand portion of the strand pattern will be effective as Aps. Note that the effects of partial strand development must considered when computing Aps. For the special case of the inside edge of the bearing area at simple-end supports, the longitudinal reinforcement on the flexural tension side of the member must resist a force of:

$$Asfy + Aps \ge (Vu/\phi - 0.5Vs - Vp) \cot\theta$$
(5.21)

# 5.2.12.9.3 Interface Shear

Shear acting at the interface of the beam and deck is given by;

$$Vuh = Vu Q / I$$
(5.22)

$$Vn = c Acv + \mu (Avf fy + Pe)$$
(5.23)

Solving for Avf;

$$Avf = Vn - c Acv / \mu fy$$
(5.24)

The LRFD Specifications limits by to 36.00 in.

For a roughened surface; c = 0.100 ksi,  $\mu = 1.000$ 

The minimum steel that must be provided is:

$$Avf \ge 0.05 \text{ bv s} / fyy \tag{5.25}$$

### **5.3 SHEAR DESIGN BY LRFD APPROACH**

### 5.3.1 General

LRFD specifications employ a different approach for shear design of prestressed concrete members, called as Modified Compression Field Theory (MCFT). It is a simple and unified method unlike empirical method used in AASHTO standard specifications.

#### 5.3.2 Shear Design Procedure [9]

The shear design of members with web reinforcement consists of following steps.

- a. Step 1. Determine the factored shear "Vu" and moment "Mu" envelopes due to the strength I limit state. Values are determined at the tenth points to each span. Interpolation can easily be made for vales at critical sections such as a distance "dv" from the face of a support. In the derivation of the MCFT, "dv" is defined as the lever arm between the resultant compressive force and the resultant tensile force in flexure. The AASHTO [A5.8.2.7] adds that "dv" need not be less than 0.9de or 0.72h, where "de" is the distance from extreme compression fiber to the centroid of the tensile reinforcement and "h" is the overall depth of the member.
- b. Step 2. Estimate a value of  $\theta$ , say 40°, and the longitudinal strain " $\in$ x" from equation 4.14. For a prestressed beam fpo = fpe + fpc/Ep/Ec.
- c. Step 3. Use the calculated values of "v/f'c" and ∈x, to determine θ from [29] and compare with the value estimated in step 3. If different, recalculate "∈x" and repeat step 4 until the estimated value of θ agrees with the value from [29]. When it does, select β from the chart. This chart is for shear design of members with web reinforcement.
- d. Step 4. Calculate  $Vc = 0.083\beta\sqrt{f'c}$  by dv

- e. Step 5. Calculate prestress contribution to shear resistance "Vp". Check for transfer length = 60 strand diameters and critical section for shear ≥ 0.5dv cotθ or dv [AASHTO A5.8.3.2]. If dv > transfer length so full value of Vp can be used.
- f. Step 6. Calculate the required web reinforcement strength  $Vs = Vu/\phi Vp 0.083\beta\sqrt{f'c}$  bv dv.
- g. Step 7. Calculate the required spacing of stirrups as, s ≤ Av fy dv cotθ / Vs. the spacing must not exceed the value limited by the minimum transverse reinforcement of AASHTO [A5.8.2.5] that is, s ≤ Av fy / 0.083√f'c bv. It also must satisfy the maximum spacing requirements of AASHTO [A5.8.2.7] that is, if Vu < 0.1f'c bv dv, then s ≤ 0.9dv ≤ 600mm and if Vu ≥ 0.1f'c bv dv, then s ≤ 0.4dv ≤ 300mm.</li>
- h. Step 8. Check the adequacy of the longitudinal reinforcement [AASHTO A5.8.3.5] by Asfy + Aps  $\geq$  Mu/dv $\phi_f$  + 0.5Nu/ $\phi_{\alpha}$  + (Vu/ $\phi_V$  – 0.5Vs – Vp) cot  $\theta$ , where  $\phi f$ ,  $\phi \alpha$  and  $\phi v$  are the resistance factors for flexure, axial load and shear. If the inequality is satisfied, either add more longitudinal reinforcement or increase the amount of stirrups.

# 5.4 SHEAR DESIGN METHODOLOGY FOR PRESTRESSED BRIDGE GIRDERS

# 5.4.1 Problem Statement [3]

A simply supported pretension concrete bridge girder (Figure 5.1) of "K" type bridge [AASHTO table 4.6.2.2.1-1] with a span length of 82 feet center to center of bearings is to be designed for shear for HL-93 live load (HS20-44 equivalent). The roadway width is 48 feet with 7.5" thick deck slab and allow for

future wearing surface of 3" thick bituminous overlay. There are total of 5 girders spaced at 8 feet center to center. Other relevant details for shear design are as under:

- a) fc girder = 6 ksi
- b) fc deck slab = 4 ksi
- c) Prestressing steel = 28, <sup>1</sup>/<sub>2</sub> in, G 270 low relaxation strands (Aps = 4.284 in2)
- d) 12 strands harped at third points (Figure 5.1)
- e) End eccentricity Ee = 10.2 in
- f) Eccentricity at center Ec = 20.9 in
- g) Diaphram and barrier weight are not considered
- h) Density of overlay = 125 pcf
- i) Ag = 685 in 2
- j) fpu = 270 ksi
- k) fps = 263 ksi at critical section
- l) fpc = fpo = 164 ksi
- m) Pe = 702.58
- n) Ep = 28000 ksi
- o) Ec = 4570.12 ksi

# 5.4.2 Solution Methodology [9]

5.4.2.1 Load and resistance factors [A5.5.4.2.1]

- a. Resistance factor for shear and torsion for a normal weight concrete fv = 0.90
- b. Load modifier / modification factor for strength I limit state (as applicable) h = 0.95

# 5.4.2.2 Applicable Load Combination [Table A3.4.1-1]

Shear is to be investigated for strength I limit state U = h [1.25 DC + 1.50]

DW + 1.75 (LL + IM)]

# 5.4.2.3 Live Load Distribution Factor for Shear "DF"

- a. Distribution factors for moments and shears are calculated for one design lane load or two or more design lane loads, for both interior and exterior girders separately. In this case exterior girder is being considered for which whichever gives the higher value so shall be applied for calculations of shear forces.
- b. For "K" type cross section [Table A4.6.2.2.1-1] and considering exterior girder with deck [TableA4.6.2.2.3b, Table A4.6.2.2.3b-1] (ref [9] P- 610,611,639 and Table 6.5)
- c. Applying lever rule, for one design lane loaded R = P/2(0.92 + 8 / 8) = 0.558 P. [9]
- d. With multiple presence factor for one lane "m" = 1.2, distribution factor "DF"
- e. becomes = 1.2 \* 0.558 = 0.670

# 5.4.2.4 Loads at exterior girder

# a. DC

Weight of overhang =  $[{(4*12) * 7.5}/ 144] * 150/1000 = 0.375 k/ft$ 

Weight of girder = (685/144) \* 150/1000 = 0.714 k/ft

Weight of slab

For exterior girder effective flange width [A4.6.2.6-1]

be 
$$1/8$$
 effective span =  $1/8(82) = 10.25$  ft  
6 ts +  $\frac{1}{4}$  bf =  $6(7.5) + \frac{1}{4}(22) = 4.21$  ft

Width of overhang = 4 ft (governs)

so be = S/2 + 4 = 8 \* 12/2 + 4 \* 12 = 96 in

Weight of slab = {(96 \* 7.5)/144} \* 150/1000 = 0.75 k/ft

### DC = 0.375 + 0.714 + 0.75 = 1.84 k/ft

# b. DW

Load taken by the composite member = 3 in overlay

DW = (96 \* 3/144) \* 125/1000 = 0.250 k/ft

#### DW = 0.250 k/ft

# 5.4.2.4 Impact Factor for Live Load (IM)

Impact factor or dynamic load allowance (DLA) as per AASHTO

A3.6.2.1 for other than deck joints and fatigue is IM = 0.33

# 5.4.2.5 Effective Depth of Prestressing Steel "dv" [9].

dp = from top of deck slab to the centroid of prestressing steel

a. At mid span: dp = (54 + 7.5) - 3.7 = 57.80 in

Dv = dp - a/2 0.9 dp = 0.9 (57.80) = 52.02 in

0.72 h = 0.72 (61.50) = 44.28 in governs

a = B c where B for 6 ksi concrete = 0.75

and from c = [Aps fpu +As fy +As fy - 0.85 Bfc (b-bw) hf ]/ [0.85 fc B bw + k Aps (fpu/dp)] c = 5.39 in so a = 0.75 \* 5.39 = 4.04 in therefore dv = 57.80 - 4.04/2 = 55.78 in [A5.8.2.7] b. At girder end : dp = (54 + 7.5) - 14.40 = 47.10 in and by max of 0.9dp = 0.9(47.10) = 43.39 in or 0.72h =

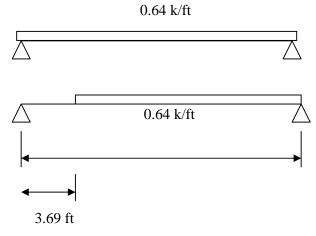
0.72(61.5) = 44.28 in (governs)

## 5.4.2.6 Prestress Contribution to Shear Resistance "Vp"

Transfer length [A5.8.2.3] = 60 strands diameters = 60 \* 0.5 = 30 in

Critical section for shear  $\ge 0.5$  dv cot  $\theta$  or dv [A5.8.3.2]. Since dv > transfer length therefore full value of Vp will be used. Critical section for shear at dv = 44.28 in or 3.69 ft from the support [9].

$$\theta = \tan -1 (14.40 / 23.64 * 12) = 2.906^{\circ}$$
  
Vp = Pe sin  $\theta = 702.58 \sin 2.906^{\circ} = 35.618$  kips


# <u>Vp = 35.618 kips</u>

### 5.4.2.7 Determinition of Concrete Nominal Shear Strength "Vc"

Shear design would be at the critical section at distance dv = 3.69 ft from support and at tenth points along the span. For other places necessary interpolation between tenth points can be done.

- a. Live load placement for maximum shear at "dv"
  - (1) <u>Truck load (HL-93)</u> 32kips 32 kips 8 kips 3.69 14  $14 \times 50.310$

(2) <u>Lane load</u>. Design lane load consists of uniformly distributed load of 0.64 k/ft and it is assume to occupy a region of 9.84-ft transversely.



b. Shear due to truck load "Vtr"

Vtr = [ 32 (64.310 + 78.310)/ 82 + (50.310 / 82) = 60.57 kips

c. Shear due to design lane load "Vlane"

Vlane =  $\frac{1}{2}$  (63.62) (78.310/82)<sup>2</sup> = 29.01 kips

d. Maximum ultimate shear force "Vu"

Vu = h [1.25 DC + 1.50 DW + 1.75 \* DF \* (LL + IM)]

Now considering dv = 3.69 ft = 44.28 in

X = dv / L = 44.28 / 82 \* 12 = 0.045

For a unit load of w = 1 k/ft, shear at x = Vx = w \* L(0.5 - X) =

W \* 82 (0.5 – 0.045)

Vx = 37.310 w, Substituting the values in general equation

 $Vu = 0.95 [\{1.25(1.84)(37.310)\} + \{1.5(0.250)(37.310)\} +$ 

 $\{1.75 * 0.670 * (60.57)(1+0.33)\} + 29.01\}$ 

# <u>Vu = 223.27 kips</u>

# e. Maximum ultimate moment "Mu"

As above for moment at x = Mx = 0.5 w L2 (x - x2)

 $= 0.5 \text{ w} (82)^2 (0.045 - 0.045^2)$ 

Mx = 144.82 w for unit moment

(1) Moment due to truck load Mtr = 3.69(Vtr) = 3.69(60.57) =

223.5 k-ft

(2) Moment due to lane load M lane = 115.22 k-ft

Substituting the values in general equation

 $Mu = 0.95 \left[ \left\{ 1.25(1.84)(144.482) \right\} + \left\{ 1.5(0.250)(144.482) \right\} + \left\{ 1.5(0.250)(1$ 

 $\{1.75 * 0.670 * (223.50)(1+0.33)\} + 115.22\}$ 

# Mu = 785.224 k-ft

f. Calculating "Vc"

(1) <u>Shear stress</u>  $v = (Vu/\phi - Vp) / bv dv$  where bv = 7 in and  $\phi = 0.9$ 

So v = (223.27 / 0.9 – 35.618) / (7 \* 44.28) = 0.685 ksi

And v/f'c = 0.685/6 = 0.114

(2) <u>Longitudinal strain " $\in$ x"</u>

 $\in x = [(Mu/dv) + 0.5 Nu + 0.5 Vu \cot\theta - Aps fpo] / [EsAs +$ 

EpAps]

where Mu = 785.224 k-ft = 9422.69 k-in, Vu = 223.27 kips, Nu

= 0, dv = 44.28 in

Es and As = 0, Ep = 28000 ksi, fpo = fpe = 164 ksi

Substituting the values

 $\in x = [(9422.69/44.28) + 0.5 * 223.27 * \cot \theta - 4.284 * 164] /$ [28000 \* 4.28]  $\in x = -0.00408 + 0.00093 \cot \theta$ Assuming  $\theta = 36^{\circ}$ ,  $\in x = -0.0028$  (pre-compression). Since  $\in x$ is negative, so it shall be reduced by a factor  $F \in = (EpAs + EpAps) / (EcAc + EsAs + EpAps).$ Ac = 371 in<sup>2</sup>  $F \in = (28000 * 4.284) / [(4570.12 * 371) + (28000 * 4.284) =$ 0.06624  $F \in = 0.06624$ So  $\in x = -0.0028 * 0.06624 = -0.00019$ 

# $\epsilon x = -0.00019$

Now using v/ f'c = 0.114 and  $\in x = -0.00019$  and making a look up on chart [29] gives

$$\theta = 22^{\circ}$$

Since assumed value and obtained value do not converge so making a second iteration and assuming  $\theta = 20^{\circ}$  giving  $\in x = -$ 0.001525 being negative, reduced to  $\in x = 0.06624 * (-0.001525) = -0.00101$ Now with v / f'c = 0.114 and  $\in x = -0.00101$ , obtained a value  $\theta$ = 21°  $\cong$  20°, so values converged. Value of "Vc" Vc =  $\beta \sqrt{f'c^*}$  bv\* dv, with v/f'c = 0.114 and  $\theta$  = 20° value of  $\beta$ 

obtained from chart (figue 5.3) is  $\beta = 2.85$  so Vc = 2.85  $\sqrt{6000}$ 

\* 7 \* 44.28 / 1000 = 68.43 kips

#### <u>Vc = 68.43 kips</u>

# 5.4.2.8 Stirrups Spacing "s"

 $Vs = Vu/\phi - Vc - Vp = (223.27/0.9) - 68.43 - 35.18 = 144.47$  kips

# <u>Vs = 144.47 kips</u>

Using # 4 bars (Ab = 0.20) double legged stirrups with fy = 60 ksi, the

required stirrup spacing at critical section is

 $s = Av fy dv \cot \theta / Vs = (2 * 0.20 * 60 * 44.28 * \cot 20^{\circ}) / 144.47 =$ 

20.21 in. s = 20.21 in

## Use # 4 bar double-legged stirrups @ 20 in c/c up to 3.69 ft from

#### <u>support</u>

# 5.4.2.9 Check For Longitudinal Steel [A5.8.3.5]

Asfy + Apsfps  $\geq$  [(Mu/\operator f dv) + (0.5 Nu/\operator a) + (Vu/\operator v - 0.5 Vs - Vp) cot  $\theta$ ]

fps = 266 ksi at mid span and 263 ksi at critical section

so  $4.284*263 \ge [(9422.69/1.0*44.28) + (223.27/0.9 - 0.5*144.27 - 0.5*144.27)]$ 

35.62) cot 20°

 $1126.69 \ge 355.77$  kips (No longitudinal steel is required).

# Chapter 6

# **ANALYSIS OF CURRENT DESIGN PRACTICES**

#### **6.1 GENERAL**

In order to present certain analysis procedures or design details, it is customary to develop an insight of behavior or response of various structural components against external loads, which requires its integration with prevailing design practices making a virtual structural model. This whole system is well understood when certain case studies are undertaken and thoroughly investigated / analyzed to see various design details, variation in design and reasons for such variation.

Foregoing in view, two case studies are taken, one for an existing bridge and other for under construction bridge so a to assess the variations in previous and present design practices/details. Salients of these bridges are as under:

| Type of Bridge                                                   | Span(ft) | No of<br>Girders | Girder Type          | Girder<br>Spacing(ft) |
|------------------------------------------------------------------|----------|------------------|----------------------|-----------------------|
| Dina Nullah bridge<br>on Rawalpidi-<br>Kharian section           | 98.43    | 4                | 80.71" I-<br>section | 8.86                  |
| Hisara Drain bridge<br>on Peshawar-<br>Islamabad Motorway<br>M-1 | 98.59    | 6                | 70.86" I-<br>Section | 15.73                 |

The reasons for the selection and making comparison of the two are as under:

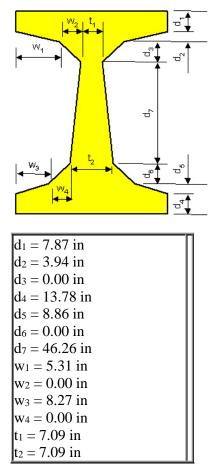
a) Girder span lengths are almost equivalent, so span length effect is not considered.

- b) Assessment of effect of variation in concrete contribution to resist shear "Vc" because of variation in the cross sectional depth which is almost 10 inches and in shear area which is about 62 inch<sup>2</sup>.
- c) Difference in girder spacing is about 8.87 feet. Since it is the most sensitive parameter-influencing shear so its variation will be assessed.
- d) To assess the effect of girders concrete strength and cross-section properties on shear resistance.
- e) Variations and deficiencies if any, of shear design details will be addressed so as to propose a new design.
- f) To assess economic effects of implementation of LRFD Bridge Design Specification.

# **6.2 CASE STUDY- EXISTING BRIDGE ON DINA NULLAH 6.2.1 General Bridge Information**

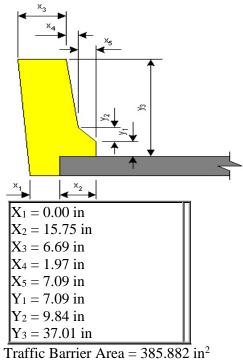
| Number of Spans       | 1                                        |
|-----------------------|------------------------------------------|
| Girder Type           | DINA NULLAH<br>INTERIOR GIRDER           |
| Girder Concrete       | 5 KSI                                    |
| Slab Concrete         | 3 KSI                                    |
| Pre-stressing Strands | 0.50 in Dia. Grade 270<br>Low Relaxation |

**6.2.2 Spans** 

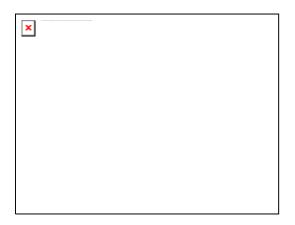

| Span # | # Girder<br>Lines | Girder<br>Spacing<br>(ft) |
|--------|-------------------|---------------------------|
| 1      | 4                 | 8.858 ft                  |

# 6.2.3 Slab Geometry

| × |  |  |    |
|---|--|--|----|
|   |  |  |    |
|   |  |  |    |
|   |  |  |    |
|   |  |  | 86 |


 $\frac{\text{Dimensions}}{\text{Gross Depth} = 7.87 \text{ in}}$   $\frac{\text{Gross Depth} = 4.757 \text{ ft}}{\text{A} = 9.09 \text{ in}}$   $\frac{\text{Fillet} = 1.22 \text{ in}}{\text{Fillet} = 1.22 \text{ in}}$   $\frac{\text{Surfacing}}{\text{Overlay Depth} = 1.97 \text{ in}}$   $\frac{\text{Overlay Density} = 125 \text{ lbf/ft}^3}{\text{Sacrificial Depth} = 0.50 \text{ in}}$   $\frac{\text{Material}}{\text{Concrete DINA 3 KSI}}$ 

# **6.2.4 Girder Dimensions**




GirderLength=98.43ft

# **6.2.5 Barrier Dimensions**



6.2.6 Connection Details



| Connection                 | Girder End<br>Distance<br>(ft) | Girder<br>Bearing<br>Offset<br>(ft) | End<br>Diaphragm<br>Width (W)<br>(in) | End<br>Diaphragm<br>Height (H)<br>(in) | End<br>Diaphragm<br>C.G.<br>Distance<br>(ft) |
|----------------------------|--------------------------------|-------------------------------------|---------------------------------------|----------------------------------------|----------------------------------------------|
| DINA End<br>Type<br>AASHTO | 0.246                          | 0.246                               | 23.62                                 | 80.71                                  | 0.246                                        |

# 6.2.7 Intermediate Diaphragms

Diaphragm Height = 80.71 in

Diaphragm Width = 23.62 in

# of Diaphragms (spaced evenly over flexible span length) = 3

# **6.2.8 Section Properties**

|                                      | Girder     | Composite   |
|--------------------------------------|------------|-------------|
| Area (in <sup>2</sup> )              | 977.664    | -           |
| $I_x$ (in <sup>4</sup> )             | 709501.231 | 1591947.466 |
| $I_y$ (in <sup>4</sup> )             | 24344.151  | -           |
| Yt girder (in)                       | 46.14      | 28.07       |
| Y <sub>t slab</sub> (in)             | -          | 35.45       |
| Y <sub>b</sub> (in)                  | 34.57      | 52.63       |
| St girder (in <sup>3</sup> )         | 15377.775  | 56704.787   |
| $\mathbf{S}_{b}$ (in <sup>3</sup> )  | 20523.298  | 30245.428   |
| St slab (in <sup>3</sup> )           | -          | 44908.967   |
| Q <sub>slab</sub> (in <sup>3</sup> ) | -          | 17660.308   |
| Eff Flg Width (in)                   | -          | 97.35       |
| Perimeter (in)                       | 214.63     | -           |

# 6.2.9 Materials

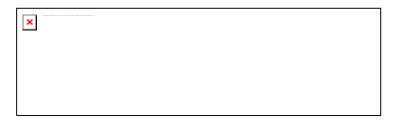
# Girder 5 ksi Concrete

| f'c                                     | 5.000 KSI               |
|-----------------------------------------|-------------------------|
| Density for Weight<br>Calculations gc   | 150 lbf/ft <sup>3</sup> |
| Density for Strength<br>Calculations gc | 150 lbf/ft <sup>3</sup> |
| Max Aggregate Size                      | 0.75 in                 |

# Slab 3ksi Concrete

| f'c                                     | 3.000 KSI               |
|-----------------------------------------|-------------------------|
| Density for Weight<br>Calculations gc   | 150 lbf/ft <sup>3</sup> |
| Density for Strength<br>Calculations gc | 150 lbf/ft <sup>3</sup> |
| Max Aggregate Size                      | 0.75 in                 |

# 6.2.10 Prestressing Force and Strand Stresses


Prestressing for this girder Number of straight strands  $(N_s) = 0$  (P<sub>jack</sub> = 0.00 kip) Number of harped strands  $(N_h) = 40$  (P<sub>jack</sub> = 1091.78 kip) Number of temporary strands  $(N_t) = 0$  (P<sub>jack</sub> = 0.00 kip)  $A_{ps}$  (with temporary strands) = 5.760 in<sup>2</sup>  $A_{ps}$  (without temporary strands) = 5.760 in<sup>2</sup> P<sub>jack</sub> (with temporary strands) = 1091.78 kip

 $P_{jack}$  (without temporary strands) = 1091.78 kip

Prestress Transfer Length = 30.00 in

# 6.2.11 Comparison of Shear Capacity and Design of Original and Proposed

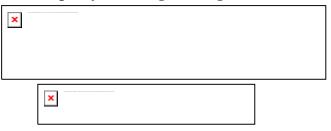




# 6.2.11.1 Effective Shear Dimensions

|--|--|

| Location from<br>Left Support<br>(ft) | b <sub>v</sub><br>(in) | Moment<br>Arm<br>(in) | de<br>(in) | h<br>(in) | dv<br>(in) |
|---------------------------------------|------------------------|-----------------------|------------|-----------|------------|
| (0.0L) 0.00                           | 7.09                   | 51.07                 | 53.93      | 88.08     | 63.42      |
| (CS) 5.28                             | 7.09                   | 55.01                 | 57.89      | 88.08     | 63.42      |
| (H) 6.73                              | 7.09                   | 56.11                 | 58.99      | 88.08     | 63.42      |
| (0.1L) 9.79                           | 7.09                   | 58.44                 | 61.32      | 88.08     | 63.42      |
| (1.5H) 10.09                          | 7.09                   | 58.67                 | 61.55      | 88.08     | 63.42      |
| (0.2L) 19.59                          | 7.09                   | 65.91                 | 68.79      | 88.08     | 65.91      |
| (0.3L) 29.38                          | 7.09                   | 73.39                 | 76.27      | 88.08     | 73.39      |


| (HP) 39.17   | 7.09 | 80.87 | 83.75 | 88.08 | 80.87 |
|--------------|------|-------|-------|-------|-------|
| (0.5L) 48.97 | 7.09 | 80.87 | 83.75 | 88.08 | 80.87 |
| (HP) 58.76   | 7.09 | 80.87 | 83.75 | 88.08 | 80.87 |
| (0.7L) 68.55 | 7.09 | 73.39 | 76.27 | 88.08 | 73.39 |
| (0.8L) 78.35 | 7.09 | 65.91 | 68.79 | 88.08 | 65.91 |
| (1.5H) 87.84 | 7.09 | 58.67 | 61.55 | 88.08 | 63.42 |
| (0.9L) 88.14 | 7.09 | 58.44 | 61.32 | 88.08 | 63.42 |
| (H) 91.21    | 7.09 | 56.11 | 58.99 | 88.08 | 63.42 |
| (CS) 92.65   | 7.09 | 55.01 | 57.89 | 88.08 | 63.42 |
| (1.0L) 97.93 | 7.09 | 51.07 | 53.93 | 88.08 | 63.42 |

6.2.11.2 Shear Parameter Summary - Strength I Limit State

×

| Location from<br>Left Support<br>(ft) | f <sup>°</sup> c<br>(KSI) | v/f'c  | e <sub>x</sub> x 1000 | b    | θ<br>(deg) |
|---------------------------------------|---------------------------|--------|-----------------------|------|------------|
| (0.0L) 0.00                           | 5.000                     | 0.182  | 2                     | 1.08 | 36.00      |
| (CS) 5.28                             | 5.000                     | 0.146  | 0.164                 | 2.49 | 27.48      |
| (H) 6.73                              | 5.000                     | 0.142  | 0.44                  | 2.35 | 31.08      |
| (0.1L) 9.79                           | 5.000                     | 0.134  | 0.211                 | 2.5  | 27.73      |
| (1.5H) 10.09                          | 5.000                     | 0.133  | 0.251                 | 2.48 | 28.33      |
| (0.2L) 19.59                          | 5.000                     | 0.103  | 1.98                  | 1.45 | 38.85      |
| (0.3L) 29.38                          | 5.000                     | 0.0606 | 2                     | 1.69 | 42.58      |
| (HP) 39.17                            | 5.000                     | 0.0533 | 2                     | 1.71 | 42.87      |
| (0.5L) 48.97                          | 5.000                     | 0.0335 | 2                     | 1.72 | 43.00      |
| (HP) 58.76                            | 5.000                     | 0.0518 | 2                     | 1.71 | 42.93      |
| (0.7L) 68.55                          | 5.000                     | 0.0578 | 2                     | 1.7  | 42.69      |
| (0.8L) 78.35                          | 5.000                     | 0.0975 | 1.93                  | 1.51 | 39.14      |
| (1.5H) 87.84                          | 5.000                     | 0.126  | 0.225                 | 2.51 | 27.63      |
| (0.9L) 88.14                          | 5.000                     | 0.127  | 0.184                 | 2.53 | 27.02      |
| (H) 91.21                             | 5.000                     | 0.135  | 0.401                 | 2.39 | 30.39      |
| (CS) 92.65                            | 5.000                     | 0.139  | 0.135                 | 2.53 | 26.70      |
| (1.0L) 97.93                          | 5.000                     | 0.174  | 2                     | 1.12 | 36.05      |

6.2.11.3 Shear Capacity and Design of Original Girder



# (3) Nominal Shear Resistance - Strength I Limit State

| Locatio<br>n from<br>Left<br>Suppor<br>t<br>(ft) | f'c<br>(KSI) | b <sub>v</sub><br>(in) | dv<br>(in) | V <sub>p</sub><br>(kip) | Vc<br>(kip) | Vs<br>(kip) | V <sub>n1</sub> <sup>1</sup><br>(kip) | V <sub>n2</sub> <sup>2</sup><br>(kip) | Vn<br>(kip) | φ   | φVn<br>(kip) |
|--------------------------------------------------|--------------|------------------------|------------|-------------------------|-------------|-------------|---------------------------------------|---------------------------------------|-------------|-----|--------------|
| (0.0L)<br>0.00                                   | 5.000        | 7.09                   | 63.42      | 5.20                    | 34.28       | 289.38      | 328.85                                | 566.98                                | 328.85      | 0.9 | 295.97       |
| (CS)<br>5.28                                     | 5.000        | 7.09                   | 63.42      | 52.81                   | 79.23       | 404.30      | 536.33                                | 614.59                                | 536.33      | 0.9 | 482.70       |
| (H)<br>6.73                                      | 5.000        | 7.09                   | 63.42      | 52.81                   | 74.53       | 348.77      | 476.11                                | 614.59                                | 476.11      | 0.9 | 428.50       |
| (0.1L)<br>9.79                                   | 5.000        | 7.09                   | 63.42      | 52.81                   | 79.49       | 260.91      | 393.20                                | 614.59                                | 393.20      | 0.9 | 353.88       |
| (1.5H)<br>10.09                                  | 5.000        | 7.09                   | 63.42      | 52.81                   | 78.90       | 254.37      | 386.07                                | 614.59                                | 386.07      | 0.9 | 347.46       |
| (0.2L)<br>19.59                                  | 5.000        | 7.09                   | 65.91      | 52.81                   | 47.77       | 176.94      | 277.51                                | 636.66                                | 277.51      | 0.9 | 249.76       |
| (0.3L)<br>29.38                                  | 5.000        | 7.09                   | 73.39      | 52.81                   | 62.13       | 86.35       | 201.29                                | 702.88                                | 201.29      | 0.9 | 181.16       |
| (HP)<br>39.17                                    | 5.000        | 7.09                   | 80.87      | 0.00                    | 69.30       | 94.19       | 163.48                                | 716.33                                | 163.48      | 0.9 | 147.13       |
| (0.5L)<br>48.97                                  | 5.000        | 7.09                   | 80.87      | 0.00                    | 69.67       | 93.75       | 163.42                                | 716.33                                | 163.42      | 0.9 | 147.08       |
| (HP)<br>58.76                                    | 5.000        | 7.09                   | 80.87      | 0.00                    | 69.46       | 93.99       | 163.45                                | 716.33                                | 163.45      | 0.9 | 147.11       |
| (0.7L)<br>68.55                                  | 5.000        | 7.09                   | 73.39      | 52.81                   | 62.42       | 86.02       | 201.24                                | 702.88                                | 201.24      | 0.9 | 181.12       |
| (0.8L)<br>78.35                                  | 5.000        | 7.09                   | 65.91      | 52.81                   | 49.73       | 175.09      | 277.62                                | 636.66                                | 277.62      | 0.9 | 249.86       |
| (1.5H)<br>87.84                                  | 5.000        | 7.09                   | 63.42      | 52.81                   | 79.80       | 261.97      | 394.58                                | 614.59                                | 394.58      | 0.9 | 355.12       |

| (0.9L)<br>88.14 | 5.000 | 7.09 | 63.42 | 52.81 | 80.46 | 268.95 | 402.21 | 614.59 | 402.21 | 0.9 | 361.99 |
|-----------------|-------|------|-------|-------|-------|--------|--------|--------|--------|-----|--------|
| (H)<br>91.21    | 5.000 | 7.09 | 63.42 | 52.81 | 76.00 | 358.50 | 487.31 | 614.59 | 487.31 | 0.9 | 438.58 |
| (CS)<br>92.65   | 5.000 | 7.09 | 63.42 | 52.81 | 80.29 | 418.10 | 551.20 | 614.59 | 551.20 | 0.9 | 496.08 |
| (1.0L)<br>97.93 | 5.000 | 7.09 | 63.42 | 5.20  | 35.48 | 288.82 | 329.49 | 566.98 | 329.49 | 0.9 | 296.54 |

$$\label{eq:var_star} \begin{split} ^1 &V_{n1} = V_c + V_s + V_p \\ &V_{n2} = 0.25 f'_c b_v d_v + V_p \end{split}$$

# (2) Ultimate Shears for Strength I Limit State

| Location from<br>Left Support<br>(ft) | Stirrups<br>Required | Stirrups<br>Provided | V <sub>u</sub>  <br>(kip) | φVn<br>(kip) | Status | Actual<br>design<br>section |
|---------------------------------------|----------------------|----------------------|---------------------------|--------------|--------|-----------------------------|
| (0.0L) 0.00                           | Yes                  | Yes                  | 343.01                    | 295.97       | Fail - | ▶ failed                    |
| (CS) 5.28                             | Yes                  | Yes                  | 343.01                    | 482.70       | Pass   | because                     |
| (H) 6.73                              | Yes                  | Yes                  | 334.95                    | 428.50       | Pass   | of lower                    |
| (0.1L) 9.79                           | Yes                  | Yes                  | 317.84                    | 353.88       | Pass   | bar size<br>i.e # 3         |
| (1.5H) 10.09                          | Yes                  | Yes                  | 316.20                    | 347.46       | Pass   | used                        |
| (0.2L) 19.59                          | Yes                  | Yes                  | 263.88                    | 249.76       | Fail   | instead                     |
| (0.3L) 29.38                          | Yes                  | Yes                  | 189.37                    | 181.16       | Fail - | ▶of using #                 |
| (HP) 39.17                            | Yes                  | Yes                  | 137.42                    | 147.13       | Pass   | 4 bar                       |
| (0.5L) 48.97                          | Yes                  | Yes                  | 86.48/85.47               | 147.08       | Pass   |                             |
| (HP) 58.76                            | Yes                  | Yes                  | 133.65                    | 147.11       | Pass   |                             |
| (0.7L) 68.55                          | Yes                  | Yes                  | 182.83                    | 181.12       | Fail   |                             |
| (0.8L) 78.35                          | Yes                  | Yes                  | 252.56                    | 249.86       | Fail   |                             |
| (1.5H) 87.84                          | Yes                  | Yes                  | 302.18                    | 355.12       | Pass   |                             |
| (0.9L) 88.14                          | Yes                  | Yes                  | 303.74                    | 361.99       | Pass   |                             |
| (H) 91.21                             | Yes                  | Yes                  | 319.98                    | 438.58       | Pass   |                             |
| (CS) 92.65                            | Yes                  | Yes                  | 327.64                    | 496.08       | Pass   |                             |
| (1.0L) 97.93                          | Yes                  | Yes                  | 327.64                    | 296.54       | Fail   |                             |

# (3) Stirrup Detailing Check

| Location from<br>Left Support<br>(ft) | Bar Size | S<br>(in) | S <sub>max</sub><br>(in) | S <sub>min</sub><br>(in) | A <sub>v</sub> /S<br>(in <sup>2</sup> /in) | $\begin{array}{c} A_v\!/S_{min} \\ (in^2\!/in) \end{array}$ | Status |
|---------------------------------------|----------|-----------|--------------------------|--------------------------|--------------------------------------------|-------------------------------------------------------------|--------|
| (0.0L) 0.00                           | #4 (13M) | 6.89      | 12.00                    | 1.00                     | 0.0571                                     | 0.0086                                                      | Pass   |
| (CS) 5.28                             | #4 (13M) | 6.89      | 12.00                    | 1.00                     | 0.0571                                     | 0.0086                                                      | Pass   |
| (H) 6.73                              | #4 (13M) | 6.89      | 12.00                    | 1.00                     | 0.0571                                     | 0.0086                                                      | Pass   |
| (0.1L) 9.79                           | #3 (10M) | 5.91      | 12.00                    | 1.00                     | 0.0373                                     | 0.0086                                                      | Pass   |

| (1.5H) 10.09 | #3 (10M) | 5.91  | 12.00 | 1.00 | 0.0373 | 0.0086 | Pass |
|--------------|----------|-------|-------|------|--------|--------|------|
| (0.2L) 19.59 | #3 (10M) | 5.91  | 12.00 | 1.00 | 0.0373 | 0.0086 | Pass |
| (0.3L) 29.38 | #3 (10M) | 11.81 | 24.00 | 1.00 | 0.0186 | 0.0086 | Pass |
| (HP) 39.17   | #3 (10M) | 11.81 | 24.00 | 1.00 | 0.0186 | 0.0086 | Pass |
| (0.5L) 48.97 | #3 (10M) | 11.81 | 24.00 | 1.00 | 0.0186 | 0.0086 | Pass |
| (HP) 58.76   | #3 (10M) | 11.81 | 24.00 | 1.00 | 0.0186 | 0.0086 | Pass |
| (0.7L) 68.55 | #3 (10M) | 11.81 | 24.00 | 1.00 | 0.0186 | 0.0086 | Pass |
| (0.8L) 78.35 | #3 (10M) | 5.91  | 12.00 | 1.00 | 0.0373 | 0.0086 | Pass |
| (1.5H) 87.84 | #3 (10M) | 5.91  | 12.00 | 1.00 | 0.0373 | 0.0086 | Pass |
| (0.9L) 88.14 | #3 (10M) | 5.91  | 12.00 | 1.00 | 0.0373 | 0.0086 | Pass |
| (H) 91.21    | #4 (13M) | 6.89  | 12.00 | 1.00 | 0.0571 | 0.0086 | Pass |
| (CS) 92.65   | #4 (13M) | 6.89  | 12.00 | 1.00 | 0.0571 | 0.0086 | Pass |
| (1.0L) 97.93 | #4 (13M) | 6.89  | 12.00 | 1.00 | 0.0571 | 0.0086 | Pass |

# (4) Transverse Reinforcement Stirrup Zones

Top flange stirrups are #4 (13M) at 9.84 in spacing. Bottom flange confinement stirrups are #4 (13M) ending in Zone 4

| Zone | Zone Start<br>(ft) | Zone End<br>(ft) | Bar<br>Spacing<br>(in) | Bar Size | <u>Number of</u><br><u>stirrups</u>             |
|------|--------------------|------------------|------------------------|----------|-------------------------------------------------|
| 1    | 0.00               | 8.45             | 6.89                   | #4 (13M) | 15                                              |
| 2    | 8.45               | 19.93            | 5.91                   | #3 (10M) | 24                                              |
| 3    | 19.93              | 28.13            | 7.87                   | #3 (10M) | 13                                              |
| 4    | 28.13              | 70.29            | 11.81                  | #3 (10M) | 22                                              |
| 3    | 70.29              | 78.49            | 7.87                   | #3 (10M) | $\frac{\text{Total at } L/2 =}{74 \text{ NOs}}$ |
| 2    | 78.49              | 89.98            | 5.91                   | #3 (10M) | <u>74 NOs</u>                                   |
| 1    | 89.98              | 98.43            | 6.89                   | #4 (13M) |                                                 |

# 6.2.11.4 Proposed Shear Design of Girder

(1) Ultimate Shears for Strength I Limit State

| Location from<br>Left Support<br>(ft) | Stirrups<br>Required | Stirrups<br>Provided | V <sub>u</sub>  <br>(kip) | φVn<br>(kip) | Status |
|---------------------------------------|----------------------|----------------------|---------------------------|--------------|--------|
| (0.0L) 0.00                           | Yes                  | Yes                  | 343.01                    | 361.78       | Pass   |
| (CS) 5.28                             | Yes                  | Yes                  | 343.01                    | 553.13       | Pass   |
| (H) 6.73                              | Yes                  | Yes                  | 334.95                    | 507.82       | Pass   |
| (0.1L) 9.79                           | Yes                  | Yes                  | 317.84                    | 344.56       | Pass   |
| (1.5H) 10.09                          | Yes                  | Yes                  | 316.20                    | 338.38       | Pass   |
| (0.2L) 19.59                          | Yes                  | Yes                  | 263.88                    | 277.42       | Pass   |

| (0.3L) 29.38 | Yes | Yes | 189.37          | 189.86 | Pass |
|--------------|-----|-----|-----------------|--------|------|
| (HP) 39.17   | Yes | Yes | 137.42          | 156.62 | Pass |
| (0.5L) 48.97 | Yes | Yes | 86.48/85.4<br>7 | 156.52 | Pass |
| (HP) 58.76   | Yes | Yes | 133.65          | 156.58 | Pass |
| (0.7L) 68.55 | Yes | Yes | 182.83          | 189.78 | Pass |
| (0.8L) 78.35 | Yes | Yes | 252.56          | 277.23 | Pass |
| (1.5H) 87.84 | Yes | Yes | 302.18          | 345.76 | Pass |
| (0.9L) 88.14 | Yes | Yes | 303.74          | 352.38 | Pass |
| (H) 91.21    | Yes | Yes | 319.98          | 520.11 | Pass |
| (CS) 92.65   | Yes | Yes | 327.64          | 553.13 | Pass |
| (1.0L) 97.93 | Yes | Yes | 327.64          | 362.22 | Pass |

(2) Nominal Shear Resistance - Strength I Limit State

| Locatio<br>n from<br>Left<br>Suppor<br>t<br>(ft) | f'c<br>(KSI) | b <sub>v</sub><br>(in) | d <sub>v</sub><br>(in) | V <sub>p</sub><br>(kip) | V <sub>c</sub><br>(kip) | V <sub>s</sub><br>(kip) | V <sub>n1</sub> <sup>1</sup><br>(kip) | V <sub>n2</sub> <sup>2</sup><br>(kip) | V <sub>n</sub><br>(kip) | φ   | φV <sub>n</sub><br>(kip) |
|--------------------------------------------------|--------------|------------------------|------------------------|-------------------------|-------------------------|-------------------------|---------------------------------------|---------------------------------------|-------------------------|-----|--------------------------|
| (0.0L)<br>0.00                                   | 5.000        | 7.09                   | 63.42                  | 5.20                    | 34.28                   | 362.50                  | 401.98                                | 566.98                                | 401.98                  | 0.9 | 361.78                   |
| (CS)<br>5.28                                     | 5.000        | 7.09                   | 63.42                  | 52.81                   | 79.23                   | 506.46                  | 638.49                                | 614.59                                | 614.59                  | 0.9 | 553.13                   |
| (H)<br>6.73                                      | 5.000        | 7.09                   | 63.42                  | 52.81                   | 74.53                   | 436.90                  | 564.24                                | 614.59                                | 564.24                  | 0.9 | 507.82                   |
| (0.1L)<br>9.79                                   | 5.000        | 7.09                   | 63.42                  | 52.81                   | 79.49                   | 250.55                  | 382.84                                | 614.59                                | 382.84                  | 0.9 | 344.56                   |
| (1.5H)<br>10.09                                  | 5.000        | 7.09                   | 63.42                  | 52.81                   | 78.90                   | 244.27                  | 375.97                                | 614.59                                | 375.97                  | 0.9 | 338.38                   |
| (0.2L)<br>19.59                                  | 5.000        | 7.09                   | 65.91                  | 52.81                   | 47.77                   | 207.67                  | 308.25                                | 636.66                                | 308.25                  | 0.9 | 277.42                   |
| (0.3L)<br>29.38                                  | 5.000        | 7.09                   | 73.39                  | 52.81                   | 62.13                   | 96.02                   | 210.96                                | 702.88                                | 210.96                  | 0.9 | 189.86                   |
| (HP)<br>39.17                                    | 5.000        | 7.09                   | 80.87                  | 0.00                    | 69.29                   | 104.73                  | 174.02                                | 716.33                                | 174.02                  | 0.9 | 156.62                   |
| (0.5L)<br>48.97                                  | 5.000        | 7.09                   | 80.87                  | 0.00                    | 69.67                   | 104.25                  | 173.91                                | 716.33                                | 173.91                  | 0.9 | 156.52                   |
| (HP)<br>58.76                                    | 5.000        | 7.09                   | 80.87                  | 0.00                    | 69.46                   | 104.51                  | 173.97                                | 716.33                                | 173.97                  | 0.9 | 156.58                   |
| (0.7L)<br>68.55                                  | 5.000        | 7.09                   | 73.39                  | 52.81                   | 62.42                   | 95.64                   | 210.87                                | 702.88                                | 210.87                  | 0.9 | 189.78                   |

| (0.8L)<br>78.35 | 5.000 | 7.09 | 65.91 | 52.81 | 49.73 | 205.50 | 308.03 | 636.66 | 308.03 | 0.9 | 277.23 |
|-----------------|-------|------|-------|-------|-------|--------|--------|--------|--------|-----|--------|
| (1.5H)<br>87.84 |       | 7.09 | 63.42 | 52.81 | 79.80 | 251.57 | 384.18 | 614.59 | 384.18 | 0.9 | 345.76 |
| (0.9L)<br>88.14 | 5.000 | 7.09 | 63.42 | 52.81 | 80.46 | 258.28 | 391.54 | 614.59 | 391.54 | 0.9 | 352.38 |
| (H)<br>91.21    | 5.000 | 7.09 | 63.42 | 52.81 | 76.00 | 449.09 | 577.90 | 614.59 | 577.90 | 0.9 | 520.11 |
| (CS)<br>92.65   | 5.000 | 7.09 | 63.42 | 52.81 | 80.29 | 523.74 | 656.84 | 614.59 | 614.59 | 0.9 | 553.13 |
| (1.0L)<br>97.93 | 5.000 | 7.09 | 63.42 | 5.20  | 35.48 | 361.79 | 402.47 | 566.98 | 402.47 | 0.9 | 362.22 |

 $\frac{^{1}V_{n1} = V_{c} + V_{s} + V_{p}}{^{2}V_{n2} = 0.25f'_{c}b_{v}d_{v} + V_{p}}$ (3) Stirrup Detailing Check

| Location from<br>Left Support<br>(ft) | Bar Size | S<br>(in) | S <sub>max</sub><br>(in) | S <sub>min</sub><br>(in) | A <sub>v</sub> /S<br>(in <sup>2</sup> /in) | A <sub>v</sub> /S <sub>min</sub><br>(in <sup>2</sup> /in) | Status |
|---------------------------------------|----------|-----------|--------------------------|--------------------------|--------------------------------------------|-----------------------------------------------------------|--------|
| (0.0L) 0.00                           | #4 (13M) | 5.50      | 12.00                    | 1.00                     | 0.0716                                     | 0.0086                                                    | Pass   |
| (CS) 5.28                             | #4 (13M) | 5.50      | 12.00                    | 1.00                     | 0.0716                                     | 0.0086                                                    | Pass   |
| (H) 6.73                              | #4 (13M) | 5.50      | 12.00                    | 1.00                     | 0.0716                                     | 0.0086                                                    | Pass   |
| (0.1L) 9.79                           | #4 (13M) | 11.00     | 12.00                    | 1.00                     | 0.0358                                     | 0.0086                                                    | Pass   |
| (1.5H) 10.09                          | #4 (13M) | 11.00     | 12.00                    | 1.00                     | 0.0358                                     | 0.0086                                                    | Pass   |
| (0.2L) 19.59                          | #4 (13M) | 9.00      | 12.00                    | 1.00                     | 0.0437                                     | 0.0086                                                    | Pass   |
| (0.3L) 29.38                          | #4 (13M) | 19.00     | 24.00                    | 1.00                     | 0.0207                                     | 0.0086                                                    | Pass   |
| (HP) 39.17                            | #4 (13M) | 19.00     | 24.00                    | 1.00                     | 0.0207                                     | 0.0086                                                    | Pass   |
| (0.5L) 48.97                          | #4 (13M) | 19.00     | 24.00                    | 1.00                     | 0.0207                                     | 0.0086                                                    | Pass   |
| (HP) 58.76                            | #4 (13M) | 19.00     | 24.00                    | 1.00                     | 0.0207                                     | 0.0086                                                    | Pass   |
| (0.7L) 68.55                          | #4 (13M) | 19.00     | 24.00                    | 1.00                     | 0.0207                                     | 0.0086                                                    | Pass   |
| (0.8L) 78.35                          | #4 (13M) | 9.00      | 12.00                    | 1.00                     | 0.0437                                     | 0.0086                                                    | Pass   |
| (1.5H) 87.84                          | #4 (13M) | 11.00     | 12.00                    | 1.00                     | 0.0358                                     | 0.0086                                                    | Pass   |
| (0.9L) 88.14                          | #4 (13M) | 11.00     | 12.00                    | 1.00                     | 0.0358                                     | 0.0086                                                    | Pass   |
| (H) 91.21                             | #4 (13M) | 5.50      | 12.00                    | 1.00                     | 0.0716                                     | 0.0086                                                    | Pass   |
| (CS) 92.65                            | #4 (13M) | 5.50      | 12.00                    | 1.00                     | 0.0716                                     | 0.0086                                                    | Pass   |
| (1.0L) 97.93                          | #4 (13M) | 5.50      | 12.00                    | 1.00                     | 0.0716                                     | 0.0086                                                    | Pass   |

| Bot  | Bottom flange confinement stirrups are #4 (13M) ending in Zone 4 |                  |                        |          |                               |  |  |  |  |  |
|------|------------------------------------------------------------------|------------------|------------------------|----------|-------------------------------|--|--|--|--|--|
| Zone | Zone Start<br>(ft)                                               | Zone End<br>(ft) | Bar<br>Spacing<br>(in) | Bar Size | Number of<br>stirrups         |  |  |  |  |  |
| 1    | 0.00                                                             | 8.50             | 5.50                   | #4 (13M) | 19                            |  |  |  |  |  |
| 2    | 8.50                                                             | 19.50            | 11.00                  | #4 (13M) | 12                            |  |  |  |  |  |
| 3    | 19.50                                                            | 27.70            | 9.00                   | #4 (13M) | 11                            |  |  |  |  |  |
| 4    | 27.70                                                            | 70.73            | 19.00                  | #4 (13M) | 14<br>Total stimung           |  |  |  |  |  |
| 3    | 70.73                                                            | 78.93            | 9.00                   | #4 (13M) | Total stirrups<br>at L/2 = 56 |  |  |  |  |  |
| 2    | 78.93                                                            | 89.93            | 11.00                  | #4 (13M) | ut 1/2 – 50                   |  |  |  |  |  |
| 1    | 89.93                                                            | 98.43            | 5.50                   | #4 (13M) |                               |  |  |  |  |  |

# (4) Transverse Reinforcement Stirrup Zones

Top flange stirrups are #4 (13M) at 9.84 in spacing. Bottom flange confinement stirrups are #4 (13M) en nding in 70

#### 6.3 CASE STUDY-HISARA DRAIN BRIDGE "ISLAMABAD-PESHAWAR MOTORWAY" (M-1)

#### **6.3.1 General Bridge Information**

| Number of Spans      | 1                          |
|----------------------|----------------------------|
| Girder Type          | G-1800 M1                  |
| Girder Concrete      | MI-5KSI                    |
| Slab Concrete        | MI-3KSI                    |
| Prestressing Strands | 0.50 in Dia. Grade 270 Low |
|                      | Relaxation                 |

## 6.3.2 Spans

| Span # | # Girder<br>Lines | Girder<br>Spacing<br>(ft) |
|--------|-------------------|---------------------------|
| 1      | 6                 | 15.730 ft                 |

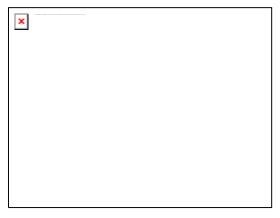
#### 6.3.3 Slab Geometry

| × |  |  |
|---|--|--|
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |

 $\frac{\text{Dimensions}}{\text{Gross Depth} = 7.87 \text{ in}}$   $\frac{\text{Overhang} = 6.562 \text{ ft}}{\text{A} = 9.53 \text{ in}}$  Fillet = 1.22 in  $\frac{\text{Surfacing}}{\text{Overlay Depth} = 2.00 \text{ in}}$   $\frac{\text{Overlay Density} = 150 \text{ lbf/ft}^3}{\text{Sacrificial Depth} = 0.50 \text{ in}}$   $\frac{\text{Material}}{\text{Concrete MI-3KSI}}$ 

6.3.4 G-1800 M1 Dimensions

| ×                |    |
|------------------|----|
|                  |    |
|                  |    |
|                  |    |
|                  |    |
|                  |    |
|                  |    |
|                  |    |
|                  |    |
|                  |    |
| $d_1 = 7.87$ in  | Π  |
| $d_2 = 5.91$ in  | 1  |
| $d_3 = 0.00$ in  | 11 |
| $d_4 = 11.81$ in | 11 |
| $d_5 = 7.87$ in  | 11 |
| $d_6 = 0.00$ in  | 11 |
| $d_7 = 37.40$ in | 11 |
| $w_1 = 6.30$ in  | 11 |
| $w_2 = 0.00$ in  | 11 |
| $w_3 = 8.27$ in  | 11 |
| $w_4 = 0.00$ in  | 11 |
| $t_1 = 7.09$ in  |    |
| $t_2 = 7.09$ in  |    |


GirderLength=98.59ft

# **6.3.5 Section Properties**

|                                         | Girder     | Composite   |
|-----------------------------------------|------------|-------------|
| Area (in <sup>2</sup> )                 | 899.001    | -           |
| $I_x$ (in <sup>4</sup> )                | 524601.538 | 1152153.468 |
| $I_y$ (in <sup>4</sup> )                | 23593.643  | -           |
| Yt girder (in)                          | 38.83      | 22.48       |
| Y <sub>t slab</sub> (in)                | -          | 29.86       |
| Y <sub>b</sub> (in)                     | 32.03      | 48.38       |
| St girder (in <sup>3</sup> )            | 13508.884  | 51244.112   |
| $S_b (in^3)$                            | 16377.256  | 23813.427   |
| $S_{t \text{ slab}}$ (in <sup>3</sup> ) | -          | 38588.227   |
| Q <sub>slab</sub> (in <sup>3</sup> )    | -          | 14698.841   |
| Eff Flg Width (in)                      | -          | 98.33       |
| Perimeter (in)                          | 197.58     | -           |

# **5.2.6 Barrier Dimensions**

## **6.3.7** Connection Details



| Connection Gin | Cindon End                     | Girder  | End       | End        | End           |  |
|----------------|--------------------------------|---------|-----------|------------|---------------|--|
|                | Girder End<br>Distance<br>(ft) | Bearing | Diaphragm | Diaphragm  | Diaphragm     |  |
|                |                                | Offset  | Width (W) | Height (H) | C.G. Distance |  |
|                |                                | (ft)    | (in)      | (in)       | (ft)          |  |
| M-1            | 2.323                          | 3.340   | 9.06      | 62.99      | 3.340         |  |

### **6.3.8 Intermediate Diaphragms**

Diaphragm Height = 60.28 in

Diaphragm Width = 9.06 in

# of Diaphragms (spaced evenly over flexible span length) = 3

#### **6.3.9** Materials

#### **Girder Concrete-5ksi**

| f'c                                                 | 5.000 KSI               |
|-----------------------------------------------------|-------------------------|
| Density for Weight<br>Calculations g <sub>c</sub>   | 150 lbf/ft <sup>3</sup> |
| Density for Strength<br>Calculations g <sub>c</sub> | 150 lbf/ft <sup>3</sup> |
| Max Aggregate Size                                  | 0.75 in                 |

#### Slab Concrete-3KSI

| f'c                                               | 3.000 KSI               |
|---------------------------------------------------|-------------------------|
| Density for Weight<br>Calculations g <sub>c</sub> | 150 lbf/ft <sup>3</sup> |
| Density for Strength<br>Calculations gc           | 150 lbf/ft <sup>3</sup> |
| Max Aggregate Size                                | 0.75 in                 |

#### **6.3.10 Prestressing Force and Strand Stresses**

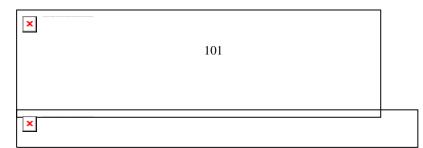
Prestressing for this girder

Number of straight strands  $(N_s) = 0$  (P<sub>jack</sub> = 0.00 kip)

Number of harped strands ( $N_h$ ) = 36 ( $P_{jack}$  = 1125.76 kip)

Number of temporary strands  $(N_t) = 0$  (P<sub>jack</sub> = 0.00 kip)

 $A_{ps}$  (with temporary strands) = 5.508 in<sup>2</sup>


 $A_{ps}$  (without temporary strands) = 5.508 in<sup>2</sup>

 $P_{jack}$  (with temporary strands) = 1125.76 kip

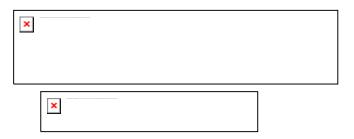
P<sub>jack</sub> (without temporary strands) = 1125.76 kip

Prestress Transfer Length = 30.00 in

# **6.3.11** Comparison of Shear Capacity and Design of Original and Proposed Girder



| 6.3.11.1 | Effective | Shear | Dimensions |
|----------|-----------|-------|------------|
|----------|-----------|-------|------------|


| Location from<br>Left Support<br>(ft) | b <sub>v</sub><br>(in) | Moment<br>Arm<br>(in) | de<br>(in) | h<br>(in) | d <sub>v</sub><br>(in) |
|---------------------------------------|------------------------|-----------------------|------------|-----------|------------------------|
| (0.0L) 0.00                           | 7.09                   | 52.04                 | 54.98      | 78.24     | 56.33                  |
| (CS) 4.69                             | 7.09                   | 54.33                 | 57.27      | 78.24     | 56.33                  |
| (H) 5.91                              | 7.09                   | 54.92                 | 57.86      | 78.24     | 56.33                  |
| (1.5H) 8.86                           | 7.09                   | 56.35                 | 59.30      | 78.24     | 56.35                  |
| (0.1L) 9.39                           | 7.09                   | 56.62                 | 59.56      | 78.24     | 56.62                  |
| (0.2L) 18.79                          | 7.09                   | 61.20                 | 64.14      | 78.24     | 61.20                  |
| (0.3L) 28.18                          | 7.09                   | 65.78                 | 68.73      | 78.24     | 65.78                  |
| (HP) 37.58                            | 7.09                   | 70.37                 | 73.32      | 78.24     | 70.37                  |
| (0.5L) 46.97                          | 7.09                   | 70.37                 | 73.32      | 78.24     | 70.37                  |
| (HP) 56.36                            | 7.09                   | 70.37                 | 73.32      | 78.24     | 70.37                  |
| (0.7L) 65.76                          | 7.09                   | 65.78                 | 68.73      | 78.24     | 65.78                  |
| (0.8L) 75.15                          | 7.09                   | 61.20                 | 64.14      | 78.24     | 61.20                  |
| (0.9L) 84.55                          | 7.09                   | 56.62                 | 59.56      | 78.24     | 56.62                  |
| (1.5H) 85.08                          | 7.09                   | 56.35                 | 59.30      | 78.24     | 56.35                  |
| (H) 88.03                             | 7.09                   | 54.92                 | 57.86      | 78.24     | 56.33                  |
| (CS) 89.22                            | 7.09                   | 54.34                 | 57.28      | 78.24     | 56.33                  |
| (1.0L) 93.94                          | 7.09                   | 52.04                 | 54.98      | 78.24     | 56.33                  |

6.3.11.3 Shear Parameter Summary - Strength I Limit State

|                                       | . State      | 1      |                       |      |            |
|---------------------------------------|--------------|--------|-----------------------|------|------------|
| ×                                     |              |        |                       |      |            |
|                                       |              |        |                       |      |            |
|                                       |              |        |                       |      |            |
| Location from<br>Left Support<br>(ft) | f'c<br>(KSI) | v/f'c  | e <sub>x</sub> x 1000 | b    | θ<br>(deg) |
| (0.0L) 0.00                           | 5.000        | 0.256  | -0.187                | 2.36 | 28.13      |
| (CS) 4.69                             | 5.000        | 0.234  | -0.0302               | 2.36 | 28.97      |
| (H) 5.91                              | 5.000        | 0.229  | 0.127                 | 2.32 | 30.59      |
| (1.5H) 8.86                           | 5.000        | 0.216  | 1.2                   | 1.37 | 35.07      |
| (0.1L) 9.39                           | 5.000        | 0.212  | 1.4                   | 1.26 | 35.48      |
| (0.2L) 18.79                          | 5.000        | 0.158  | 2                     | 1.2  | 36.66      |
| (0.3L) 28.18                          | 5.000        | 0.108  | 2                     | 1.42 | 38.70      |
| (HP) 37.58                            | 5.000        | 0.0832 | 2                     | 1.58 | 41.02      |
| (0.5L) 46.97                          | 5.000        | 0.0523 | 2                     | 1.71 | 42.91      |
| (HP) 56.36                            | 5.000        | 0.0814 | 2                     | 1.6  | 41.24      |
| (0.7L) 65.76                          | 5.000        | 0.104  | 2                     | 1.43 | 38.84      |

| (0.8L) 75.15 | 5.000 | 0.152 | 2       | 1.23 | 36.91 |
|--------------|-------|-------|---------|------|-------|
| (0.9L) 84.55 | 5.000 | 0.203 | 1.36    | 1.31 | 35.01 |
| (1.5H) 85.08 | 5.000 | 0.207 | 1.15    | 1.44 | 34.77 |
| (H) 88.03    | 5.000 | 0.219 | 0.102   | 2.35 | 29.88 |
| (CS) 89.22   | 5.000 | 0.224 | -0.0331 | 2.39 | 28.46 |
| (1.0L) 93.94 | 5.000 | 0.246 | -0.194  | 2.37 | 27.79 |

# 6.3.11.4 Shear Capacity and Design of Original Girder



# (3) Ultimate Shears for Strength I Limit State

| Location from<br>Left Support<br>(ft) | Stirrups<br>Require<br>d | Stirrups<br>Provided | V <sub>u</sub>  <br>(kip) | φVn<br>(kip) | Status |
|---------------------------------------|--------------------------|----------------------|---------------------------|--------------|--------|
| (0.0L) 0.00                           | Yes                      | Yes                  | 452.35                    | 413.17       | Fail   |
| (CS) 4.69                             | Yes                      | Yes                  | 452.35                    | 404.27       | Fail   |
| (H) 5.91                              | Yes                      | Yes                  | 442.66                    | 383.43       | Fail   |
| (1.5H) 8.86                           | Yes                      | Yes                  | 419.14                    | 313.13       | Fail   |
| (0.1L) 9.39                           | Yes                      | Yes                  | 414.89                    | 307.95       | Fail   |
| (0.2L) 18.79                          | Yes                      | Yes                  | 341.12                    | 317.34       | Fail   |
| (0.3L) 28.18                          | Yes                      | Yes                  | 257.52                    | 216.84       | Fail   |
| (HP) 37.58                            | Yes                      | Yes                  | 186.68                    | 191.07       | Pass   |
| (0.5L) 46.97                          | Yes                      | Yes                  | 117.28/116<br>.76         | 186.12       | Pass   |
| (HP) 56.36                            | Yes                      | Yes                  | 182.61                    | 190.45       | Pass   |
| (0.7L) 65.76                          | Yes                      | Yes                  | 249.91                    | 216.53       | Fail   |
| (0.8L) 75.15                          | Yes                      | Yes                  | 328.92                    | 315.95       | Fail   |
| (0.9L) 84.55                          | Yes                      | Yes                  | 399.14                    | 313.44       | Fail   |
| (1.5H) 85.08                          | Yes                      | Yes                  | 403.18                    | 317.76       | Fail   |
| (H) 88.03                             | Yes                      | Yes                  | 425.59                    | 392.61       | Fail   |
| (CS) 89.22                            | Yes                      | Yes                  | 434.59                    | 411.74       | Fail   |
| (1.0L) 93.94                          | Yes                      | Yes                  | 434.59                    | 418.09       | Fail   |

| Location<br>from<br>Left<br>Support<br>(ft) | f <sup>c</sup><br>(KSI) | b <sub>v</sub><br>(in) | dv<br>(in) | V <sub>p</sub><br>(kip) | Vc<br>(kip) | Vs<br>(kip) | V <sub>n1</sub> <sup>1</sup><br>(kip) | V <sub>n2</sub> <sup>2</sup><br>(kip) | Vn<br>(kip) | φ   | φVn<br>(kip) |
|---------------------------------------------|-------------------------|------------------------|------------|-------------------------|-------------|-------------|---------------------------------------|---------------------------------------|-------------|-----|--------------|
| (0.0L)<br>0.00                              | 5.00                    | 7.09                   | 56.33      | 32.84                   | 66.59       | 359.64      | 459.07                                | 531.86                                | 459.07      | 0.9 | 413.17       |
| (CS)<br>4.69                                | 5.00                    | 7.09                   | 56.33      | 35.35                   | 66.54       | 347.30      | 449.19                                | 534.36                                | 449.19      | 0.9 | 404.27       |
| (H) 5.91                                    | 5.00                    | 7.09                   | 56.33      | 35.35                   | 65.50       | 325.18      | 426.03                                | 534.36                                | 426.03      | 0.9 | 383.43       |
| (1.5H)<br>8.86                              | 5.00                    | 7.09                   | 56.35      | 35.35                   | 38.64       | 273.93      | 347.92                                | 534.55                                | 347.92      | 0.9 | 313.13       |
| (0.1L)<br>9.39                              | 5.00                    | 7.09                   | 56.62      | 35.35                   | 35.72       | 271.10      | 342.16                                | 536.87                                | 342.16      | 0.9 | 307.95       |
| (0.2L)<br>18.79                             | 5.00                    | 7.09                   | 61.20      | 35.35                   | 36.66       | 280.59      | 352.60                                | 577.46                                | 352.60      | 0.9 | 317.34       |
| (0.3L)<br>28.18                             | 5.00                    | 7.09                   | 65.78      | 35.35                   | 46.78       | 158.81      | 240.93                                | 618.07                                | 240.93      | 0.9 | 216.84       |
| (HP)<br>37.58                               | 5.00                    | 7.09                   | 70.37      | 0.00                    | 55.85       | 156.45      | 212.30                                | 623.35                                | 212.30      | 0.9 | 191.07       |
| (0.5L)<br>46.97                             | 5.00                    | 7.09                   | 70.37      | 0.00                    | 60.40       | 146.39      | 206.80                                | 623.35                                | 206.80      | 0.9 | 186.12       |
| (HP)<br>56.36                               | 5.00                    | 7.09                   | 70.37      | 0.00                    | 56.36       | 155.25      | 211.61                                | 623.35                                | 211.61      | 0.9 | 190.45       |
| (0.7L)<br>65.76                             | 5.00                    | 7.09                   | 65.78      | 35.35                   | 47.25       | 157.99      | 240.59                                | 618.07                                | 240.59      | 0.9 | 216.53       |
| (0.8L)<br>75.15                             | 5.00                    | 7.09                   | 61.20      | 35.35                   | 37.65       | 278.05      | 351.05                                | 577.46                                | 351.05      | 0.9 | 315.95       |
| (0.9L)<br>84.55                             | 5.00                    | 7.09                   | 56.62      | 35.35                   | 37.04       | 275.87      | 348.26                                | 536.87                                | 348.26      | 0.9 | 313.44       |
| (1.5H)<br>85.08                             | 5.00                    | 7.09                   | 56.35      | 35.35                   | 40.65       | 277.07      | 353.07                                | 534.55                                | 353.07      | 0.9 | 317.76       |
| (H)<br>88.03                                | 5.00                    | 7.09                   | 56.33      | 35.35                   | 66.26       | 334.63      | 436.24                                | 534.36                                | 436.24      | 0.9 | 392.61       |
| (CS)<br>89.22                               | 5.00                    | 7.09                   | 56.33      | 35.35                   | 67.50       | 354.64      | 457.49                                | 534.36                                | 457.49      | 0.9 | 411.74       |
| (1.0L)<br>93.94                             | 5.00                    | 7.09                   | 56.33      | 32.84                   | 67.00       | 364.71      | 464.55                                | 531.86                                | 464.55      | 0.9 | 418.09       |

# (3) Nominal Shear Resistance - Strength I Limit State

 $\overline{ {}^{1}V_{n1} = V_{c} + V_{s} + V_{p} }$  ${}^{2}V_{n2} = 0.25f'_{c}b_{v}d_{v} + V_{p}$ 

# (3) Stirrup Detailing Check

| Location from<br>Left Support<br>(ft) | Bar Size | S<br>(in) | S <sub>max</sub><br>(in) | S <sub>min</sub><br>(in) | A <sub>v</sub> /S<br>(in <sup>2</sup> /in) | $\begin{array}{c} A_{v}\!/S_{min} \\ (in^{2}\!/in) \end{array}$ | Status |
|---------------------------------------|----------|-----------|--------------------------|--------------------------|--------------------------------------------|-----------------------------------------------------------------|--------|
| (0.0L) 0.00                           | #4 (13M) | 6.69      | 12.00                    | 1.00                     | 0.0588                                     | 0.0086                                                          | Pass   |
| (CS) 4.69                             | #4 (13M) | 6.69      | 12.00                    | 1.00                     | 0.0588                                     | 0.0086                                                          | Pass   |
| (H) 5.91                              | #4 (13M) | 6.69      | 12.00                    | 1.00                     | 0.0588                                     | 0.0086                                                          | Pass   |
| (1.5H) 8.86                           | #4 (13M) | 6.69      | 12.00                    | 1.00                     | 0.0588                                     | 0.0086                                                          | Pass   |
| (0.1L) 9.39                           | #4 (13M) | 6.69      | 12.00                    | 1.00                     | 0.0588                                     | 0.0086                                                          | Pass   |
| (0.2L) 18.79                          | #4 (13M) | 6.69      | 12.00                    | 1.00                     | 0.0588                                     | 0.0086                                                          | Pass   |
| (0.3L) 28.18                          | #4 (13M) | 11.81     | 12.00                    | 1.00                     | 0.0333                                     | 0.0086                                                          | Pass   |
| (HP) 37.58                            | #4 (13M) | 11.81     | 24.00                    | 1.00                     | 0.0333                                     | 0.0086                                                          | Pass   |
| (0.5L) 46.97                          | #4 (13M) | 11.81     | 24.00                    | 1.00                     | 0.0333                                     | 0.0086                                                          | Pass   |
| (HP) 56.36                            | #4 (13M) | 11.81     | 24.00                    | 1.00                     | 0.0333                                     | 0.0086                                                          | Pass   |
| (0.7L) 65.76                          | #4 (13M) | 11.81     | 12.00                    | 1.00                     | 0.0333                                     | 0.0086                                                          | Pass   |
| (0.8L) 75.15                          | #4 (13M) | 6.69      | 12.00                    | 1.00                     | 0.0588                                     | 0.0086                                                          | Pass   |
| (0.9L) 84.55                          | #4 (13M) | 6.69      | 12.00                    | 1.00                     | 0.0588                                     | 0.0086                                                          | Pass   |
| (1.5H) 85.08                          | #4 (13M) | 6.69      | 12.00                    | 1.00                     | 0.0588                                     | 0.0086                                                          | Pass   |
| (H) 88.03                             | #4 (13M) | 6.69      | 12.00                    | 1.00                     | 0.0588                                     | 0.0086                                                          | Pass   |
| (CS) 89.22                            | #4 (13M) | 6.69      | 12.00                    | 1.00                     | 0.0588                                     | 0.0086                                                          | Pass   |
| (1.0L) 93.94                          | #4 (13M) | 6.69      | 12.00                    | 1.00                     | 0.0588                                     | 0.0086                                                          | Pass   |

# (4) Transverse Reinforcement Stirrup Zones

Top flange stirrups are #4 (13M) at 10.00 in spacing.

Bottom flange confinement stirrups are #4 (13M) ending in Zone 3

| Zone | Zone<br>Start<br>(ft) | Zone<br>End<br>(ft) | Bar<br>Spacing<br>(in) | Bar Size | Number of stirrups    |
|------|-----------------------|---------------------|------------------------|----------|-----------------------|
| 1    | 0.00                  | 4.43                | 6.69                   | #4 (13M) | 8                     |
| 2    | 4.43                  | 24.51               | 6.69                   | #4 (13M) | 36                    |
| 3    | 24.51                 | 74.08               | 11.81                  | #4 (13M) | 25                    |
| 2    | 74.08                 | 94.16               | 6.69                   | #4 (13M) | Total stirrups at L/2 |
| 1    | 94.16                 | 98.59               | 6.69                   | #4 (13M) | <u>= 64 NOs</u>       |

6.3.11.4 Proposed Shear capacity and shear design

(1) Ultimate Shears for Strength I Limit State

| Location from<br>Left Support<br>(ft) | Stirrups<br>Required | Stirrups<br>Provided | V <sub>u</sub>  <br>(kip) | φV <sub>n</sub><br>(kip) | Status |
|---------------------------------------|----------------------|----------------------|---------------------------|--------------------------|--------|
| (0.0L) 0.00                           | Yes                  | Yes                  | 452.35                    | 468.97                   | Pass   |
| (CS) 4.69                             | Yes                  | Yes                  | 452.35                    | 480.93                   | Pass   |
| (H) 5.91                              | Yes                  | Yes                  | 442.66                    | 480.93                   | Pass   |
| (1.5H) 8.86                           | Yes                  | Yes                  | 419.14                    | 421.77                   | Pass   |
| (0.1L) 9.39                           | Yes                  | Yes                  | 414.89                    | 415.47                   | Pass   |
| (0.2L) 18.79                          | Yes                  | Yes                  | 341.12                    | 428.63                   | Pass   |
| (0.3L) 28.18                          | Yes                  | Yes                  | 257.52                    | 264.48                   | Pass   |
| (HP) 37.58                            | Yes                  | Yes                  | 186.68                    | 191.07                   | Pass   |
| (0.5L) 46.97                          | Yes                  | Yes                  | 117.28/1<br>16.76         | 186.12                   | Pass   |
| (HP) 56.36                            | Yes                  | Yes                  | 182.61                    | 190.45                   | Pass   |
| (0.7L) 65.76                          | Yes                  | Yes                  | 249.91                    | 263.93                   | Pass   |
| (0.8L) 75.15                          | Yes                  | Yes                  | 328.92                    | 426.23                   | Pass   |
| (0.9L) 84.55                          | Yes                  | Yes                  | 399.14                    | 422.85                   | Pass   |
| (1.5H) 85.08                          | Yes                  | Yes                  | 403.18                    | 427.65                   | Pass   |
| (H) 88.03                             | Yes                  | Yes                  | 425.59                    | 480.93                   | Pass   |
| (CS) 89.22                            | Yes                  | Yes                  | 434.59                    | 480.93                   | Pass   |
| (1.0L) 93.94                          | Yes                  | Yes                  | 434.59                    | 474.68                   | Pass   |

(2) Nominal Shear Resistance - Strength I Limit State

| Location<br>from<br>Left<br>Support<br>(ft) | f <sup>c</sup><br>(KS<br>I) | b <sub>v</sub><br>(in) | dv<br>(in) | V <sub>p</sub><br>(kip) | Vc<br>(kip) | Vs<br>(kip) | V <sub>n1</sub> <sup>1</sup><br>(kip) | V <sub>n2</sub> <sup>2</sup><br>(kip) | Vn<br>(kip) | φ   | φVn<br>(kip) |
|---------------------------------------------|-----------------------------|------------------------|------------|-------------------------|-------------|-------------|---------------------------------------|---------------------------------------|-------------|-----|--------------|
| (0.0L)<br>0.00                              | 5.0                         | 7.09                   | 56.33      | 32.84                   | 66.59       | 421.64      | 521.08                                | 531.86                                | 521.08      | 0.9 | 468.97       |
| (CS)<br>4.69                                | 5.0                         | 7.09                   | 56.33      | 35.35                   | 66.54       | 500.35      | 602.24                                | 534.36                                | 534.36      | 0.9 | 480.93       |
| (H) 5.91                                    | 5.0                         | 7.09                   | 56.33      | 35.35                   | 65.50       | 468.48      | 569.33                                | 534.36                                | 534.36      | 0.9 | 480.93       |
| (1.5H)<br>8.86                              | 5.0                         | 7.09                   | 56.35      | 35.35                   | 38.64       | 394.65      | 468.64                                | 534.55                                | 468.64      | 0.9 | 421.77       |
| (0.1L)<br>9.39                              | 5.0                         | 7.09                   | 56.62      | 35.35                   | 35.72       | 390.56      | 461.63                                | 536.87                                | 461.63      | 0.9 | 415.47       |
| (0.2L)<br>18.79                             | 5.0                         | 7.09                   | 61.20      | 35.35                   | 36.66       | 404.25      | 476.25                                | 577.46                                | 476.25      | 0.9 | 428.63       |
| (0.3L)<br>28.18                             | 5.0                         | 7.09                   | 65.78      | 35.35                   | 46.78       | 211.74      | 293.87                                | 618.07                                | 293.87      | 0.9 | 264.48       |

| (HP)<br>37.58   | 5.0 | 7.09 | 70.37 | 0.00  | 55.85 | 156.45 | 212.30 | 623.35 | 212.30 | 0.9 | 191.07 |
|-----------------|-----|------|-------|-------|-------|--------|--------|--------|--------|-----|--------|
| (0.5L)<br>46.97 | 5.0 | 7.09 | 70.37 | 0.00  | 60.40 | 146.39 | 206.80 | 623.35 | 206.80 | 0.9 | 186.12 |
| (HP)<br>56.36   | 5.0 | 7.09 | 70.37 | 0.00  | 56.36 | 155.25 | 211.61 | 623.35 | 211.61 | 0.9 | 190.45 |
| (0.7L)<br>65.76 | 5.0 | 7.09 | 65.78 | 35.35 | 47.25 | 210.65 | 293.25 | 618.07 | 293.25 | 0.9 | 263.93 |
| (0.8L)<br>75.15 | 5.0 | 7.09 | 61.20 | 35.35 | 37.65 | 400.58 | 473.59 | 577.46 | 473.59 | 0.9 | 426.23 |
| (0.9L)<br>84.55 | 5.0 | 7.09 | 56.62 | 35.35 | 37.04 | 397.44 | 469.83 | 536.87 | 469.83 | 0.9 | 422.85 |
| (1.5H)<br>85.08 | 5.0 | 7.09 | 56.35 | 35.35 | 40.65 | 399.16 | 475.17 | 534.55 | 475.17 | 0.9 | 427.65 |
| (H)<br>88.03    | 5.0 | 7.09 | 56.33 | 35.35 | 66.26 | 482.09 | 583.70 | 534.36 | 534.36 | 0.9 | 480.93 |
| (CS)<br>89.22   | 5.0 | 7.09 | 56.33 | 35.35 | 67.50 | 510.93 | 613.77 | 534.36 | 534.36 | 0.9 | 480.93 |
| (1.0L)<br>93.94 |     | 7.09 | 56.33 | 32.84 | 67.00 | 427.59 | 527.43 | 531.86 | 527.43 | 0.9 | 474.68 |

$$\label{eq:Vn1} \begin{split} ^1 & \mathbf{V}_{n1} = \mathbf{V}_c + \mathbf{V}_s + \mathbf{V}_p \\ ^2 & \mathbf{V}_{n2} = \mathbf{0.25} \mathbf{f'}_c \mathbf{b}_v \mathbf{d}_v + \mathbf{V}_p \end{split}$$

# (3) Stirrup Detailing Check

| Location from<br>Left Support<br>(ft) | Bar Size | S<br>(in) | S <sub>max</sub><br>(in) | S <sub>min</sub><br>(in) | A <sub>v</sub> /S<br>(in <sup>2</sup> /in) | A <sub>v</sub> /S <sub>min</sub><br>(in <sup>2</sup> /in) | Status |
|---------------------------------------|----------|-----------|--------------------------|--------------------------|--------------------------------------------|-----------------------------------------------------------|--------|
| (0.0L) 0.00                           | #4 (13M) | 5.71      | 12.00                    | 1.00                     | 0.0690                                     | 0.0086                                                    | Pass   |
| (CS) 4.69                             | #4 (13M) | 4.65      | 12.00                    | 1.00                     | 0.0847                                     | 0.0086                                                    | Pass   |
| (H) 5.91                              | #4 (13M) | 4.65      | 12.00                    | 1.00                     | 0.0847                                     | 0.0086                                                    | Pass   |
| (1.5H) 8.86                           | #4 (13M) | 4.65      | 12.00                    | 1.00                     | 0.0847                                     | 0.0086                                                    | Pass   |
| (0.1L) 9.39                           | #4 (13M) | 4.65      | 12.00                    | 1.00                     | 0.0847                                     | 0.0086                                                    | Pass   |
| (0.2L) 18.79                          | #4 (13M) | 4.65      | 12.00                    | 1.00                     | 0.0847                                     | 0.0086                                                    | Pass   |
| (0.3L) 28.18                          | #4 (13M) | 8.86      | 12.00                    | 1.00                     | 0.0444                                     | 0.0086                                                    | Pass   |
| (HP) 37.58                            | #4 (13M) | 11.81     | 24.00                    | 1.00                     | 0.0333                                     | 0.0086                                                    | Pass   |
| (0.5L) 46.97                          | #4 (13M) | 11.81     | 24.00                    | 1.00                     | 0.0333                                     | 0.0086                                                    | Pass   |
| (HP) 56.36                            | #4 (13M) | 11.81     | 24.00                    | 1.00                     | 0.0333                                     | 0.0086                                                    | Pass   |
| (0.7L) 65.76                          | #4 (13M) | 8.86      | 12.00                    | 1.00                     | 0.0444                                     | 0.0086                                                    | Pass   |
| (0.8L) 75.15                          | #4 (13M) | 4.65      | 12.00                    | 1.00                     | 0.0847                                     | 0.0086                                                    | Pass   |
| (0.9L) 84.55                          | #4 (13M) | 4.65      | 12.00                    | 1.00                     | 0.0847                                     | 0.0086                                                    | Pass   |
| (1.5H) 85.08                          | #4 (13M) | 4.65      | 12.00                    | 1.00                     | 0.0847                                     | 0.0086                                                    | Pass   |
| (H) 88.03                             | #4 (13M) | 4.65      | 12.00                    | 1.00                     | 0.0847                                     | 0.0086                                                    | Pass   |
| (CS) 89.22                            | #4 (13M) | 4.65      | 12.00                    | 1.00                     | 0.0847                                     | 0.0086                                                    | Pass   |
| (1.0L) 93.94                          | #4 (13M) | 5.71      | 12.00                    | 1.00                     | 0.0690                                     | 0.0086                                                    | Pass   |

#### (4) Transverse Reinforcement Stirrup Zones

Top flange stirrups are #4 (13M) at 10.00 in spacing. Bottom flange confinement stirrups are #4 (13M) ending in Zone 4

| Zone | Zone Start<br>(ft) | Zone<br>End<br>(ft) | Bar<br>Spacing<br>(in) | Bar Size | Number of stirrups                       |
|------|--------------------|---------------------|------------------------|----------|------------------------------------------|
| 1    | 0.00               | 4.43                | 5.71                   | #4 (13M) | 10                                       |
| 2    | 4.43               | 24.51               | 4.65                   | #4 (13M) | 52                                       |
| 3    | 24.51              | 31.07               | 8.86                   | #4 (13M) | 9                                        |
| 4    | 31.07              | 67.52               | 11.81                  | #4 (13M) |                                          |
| 3    | 67.52              | 74.08               | 8.86                   | #4 (13M) | <u>Total stirrups at L/2</u><br>= 90 NOs |
| 2    | 74.08              | 94.16               | 4.65                   | #4 (13M) | <u>- 70 mus</u>                          |
| 1    | 94.16              | 98.59               | 5.71                   | #4 (13M) |                                          |

#### 6.4 OBSERVATIONS AND FINDINGS

- a) Use of lower bar size.
- b) Use of low strength class D concrete i.e. 5ksi, as per NHA specifications.
- c) No specifications provided or adhered with respect to detailing of shear reinforcement in different zones along the span.
- d) Dina nullah case, with girder spacing of about 9 feet have 40 strands, whereas Hisara Drain case, with 16 feet of girder spacing has 36 strands. Besides flexural failure of second case, there is no longitudinal steel contribution to shear as defined in MCFT.
- e) In slab-girder bridges, Load distribution depends on girder spacing and so is the resistance, which is related to increase or decrease in the cross sectional area of the girders. Dina nullah with 80.71 inch deep and 7.1 inch web width has 9 feet of girder spacing whereas Hisara Drain Bridge with 70.86 inch deep and 7.1 inch web width has 16 feet girder spacing thus offset the girder spacing-cross section compatibility.

#### Chapter 7

#### **COMPARISON OF ASD/LFD AND LRFD METHODS**

#### 7.1 DEVELOPMENT OF DESIGN PROCEDURES [9]

Over the year, design procedures have been developed by engineers to provide satisfactory margins of safety. These procedures were based on the engineer's confidence in the analysis of the load effects and the strength of the material being provided. As analysis techniques improved and quality control on materials became better, the design procedure changed. To understand were we are today, it is helpful to look at the design procedure of earlier AASHTO specifications.

#### 7.2 VARIABILITY OF LOADS

In regard to uncertainties in design, one other point, concerning the ASD method, needs to be emphasized. Allowable stress design does not recognize that different loads have different levels of uncertainly. Dead, live, and wind loads are all treated equally in ASD. The safety factor is applied to the resistance side of the design inequality, and the load side is not factored. In ASD, safety is determined by:

#### Resistance, R / Safety Factor, $F \ge$ effect of loads. Q

For ASD, fixed values of design loads are selected, usually from a specification or design code. The varying degree of predictability of the different load types is not considered. Finally, because the safety factor chosen is based on experience and judgment, quantitative measure of risk cannot be determined for ASD.

Only the trend is known: If the safety factor is higher, the number of failures is lower. However, if the safety factor is increased by a certain amount, it is known by how much this increases the probability of survival. Also, it is more meaningful to decision-makers to say. "This bridge has a probability of in 10,000 of failing in 75 years of service," than to say, "This bridge has a safety factor of 2.3."

#### 7.3 SHORTCOMINGS OF ASD [9]

As just shown, ASD is not well suited for design of modern structures. Its major shortcomings can be summarized as follows:

- a. The resistance concepts are based on elastic behavior of isotropic, homogeneous materials.
- b. It does not embody a reasonable measure of strength, which is a more fundamental measure of resistance than is allowable stress.
- c. The safety factor is applied only to resistance. Loads are considered to be deterministic (without variation).
- d. Selection of a safety factor is subjective, and it does not provide a measure of reliability in terms of probability of failure.

What is needed to overcome these deficiencies is a method that is (a) based on the strength of material, (b) consider variability not only in resistance but also in the effect of loads, and (c) provides a measure of safety related to probability of failure. Such a method is incorporated in the AASHTO 1998/2000 LRFD Bridge Specifications.

#### 7.4 ADVANTAGE OF LRFD METHOD [9]

- a. Account for variability in both resistance and load.
- b. Achieves fairly uniform levels of safety for different limit states and bridge types without involving complex probability or statistical analysis.
- c. Provides a rational and consistent method of design.

#### 7.5 DISADVANTAGE OF LRFD METHOD

- a. Requires a change in design philosophy (from previous ASHTO methods).
- b. Requires an understanding of the basic concepts of probability and statistics.
- c. Requires availability of sufficient statistical data and probability design algorithms to make adjustments and resistance factors to meet individual situations.

#### 7.6 COMPARISON [24]

The basic explanation of the differences between ASD and LRFD methods is the common concept of comparison of applied forces with available resistance to ensure that a certain level of reserve capacity is available to account for the uncertainty in both the loads and resistance. This reserve capacity provides confidence to the engineer that his design is safe against poor performance or worse, catastrophic failure. The method of defining and quantifying these uncertainties is the fundamental difference between these two methods of design.

Structural elements such as structural foundations, bridge beams and girders, or earth-retaining walls are designed to support, or resist, anticipated service loads, including vehicular live loads, superstructure dead loads, or lateral soil loads. In ASD, to account for the possibilities that structural elements are overloaded during their service life and that the materials providing resistance to the load are not as strong as expected, engineers apply a global safety factor on the resistance side of the design equation to ensure that the structural elements are large enough to account for all uncertainties in design. In this way, global factors of safety account for the uncertainty in both loads and resistance. The general forms of the equation appear as follows:

Resistance provided (R) > Loads applied (G L)

ASD: R / F.S. > G L, where the Factor of Safety (F.S.) = 1.5 to 3.5

Although the ASD approach ensures that the supporting design element is sufficient to carry potential overloads, the approach does not supply the designer with two vital pieces of information. The total capacity of the supporting element cannot be ascertained with ASD, and therefore, the mode of failure cannot be predicted with certainty. Often, this means that the global factors of safety are set at overly conservative levels.

In some cases, global factors of safety are not conservative. This may be difficult to imagine since structural elements do not frequently fail. However, rather than attributing this to the quality of the analytical method, this can, in large part, be attributed to the fact that engineers employ judgment and experience in the design process. The ASD method does not provide a rational means to define the level of safety of the design element.

In LRFD, uncertainties in both applied loads and structural and material resistance can be better discerned when they are separated and studied individually. Likewise, if safety factors can be applied in the design equation, both on the load and resistance sides, the designer can better use analytical tools to establish the total capacity of design elements. The designer can more accurately predict dead loads such as the weight of concrete and steel in the superstructure; however, they may apply a more conservative load factor to transient or vehicular

live loads. The general form of the LRFD equation takes on the following simplified appearance:

#### LRFD: N R > G m L

In this equation, resistance factors (N) are values less than one to account for the uncertainty that the materials providing resistance may not be as strong as anticipated. Load factors (m) are values greater than one to account for the possibility that overloads will be applied to the element during its service life. With the LRFD approach, the designer can better assign margins of safety to each portion of the design equation as suited to the level of confidence with which each load and resistance can be predicted. Therefore, designs can be based on risk and reliability concepts. By calibrating the load and resistance factors to an overall margin of safety, designers can ensure that all designs have prescribed margins of safety against failure.

Designer of reinforced concrete structures have realized this for some time, and adopted strength design procedure many years ago. Would designers also go toward strength design procedures. Both concrete and wood are nonlinear materials whose properties change with time and with changes in ambient conditions. In concrete, the initial stress state is unknown because it varies with placement method, temperature gradient, restrain to shrinkage, water content, and degree of consolidation. The only values that can be well defined are the strengths of concrete at its limit states. The ultimate strength is independent of pre-stress and stresses associated with numerous manufacturing and constructions processes, all of which are difficult to predict and are highly variable. In short, the ultimate strength is easier and more reliably predicted than behavior at lower load levels.

That is the rational for the adoption of the strength design procedures".

#### 7.7 COMPARISON OF SHEAR DESIGN APPROACHES

a. Dina Nullah bridge

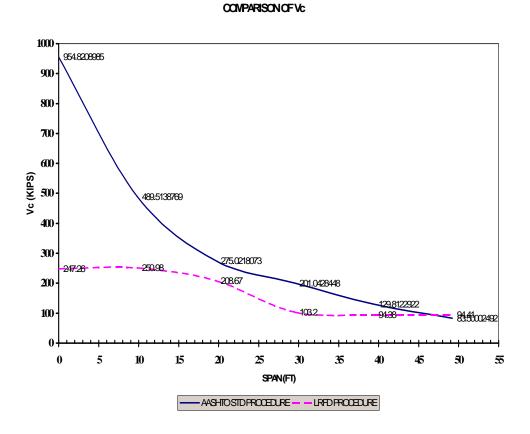
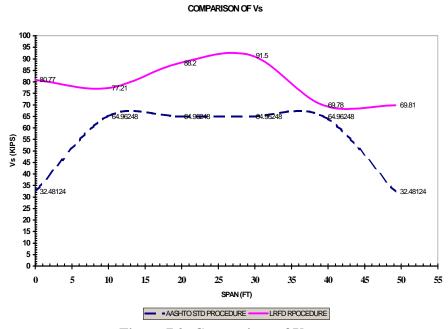
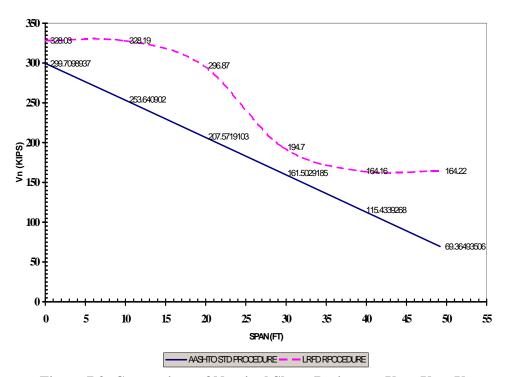
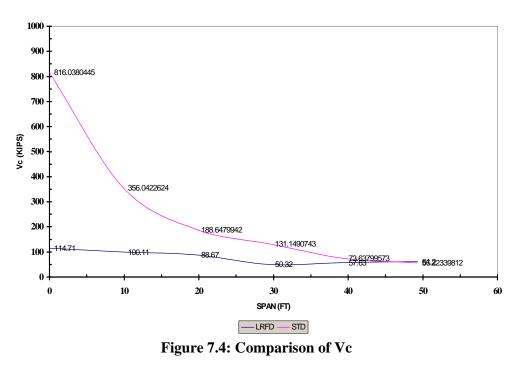



Figure 7.1: Comparison between AASHTO Standard and LRFD code Procedure for Calculation of Vc



Figure 7.2: Comparison of Vs





**Figure 7.3: Comparison of Nominal Shear Resistance Vn = Vc + Vs** 

b. Hisara Drain Bridge



COMPARISON OF Vc

COMPARISON OF Vs

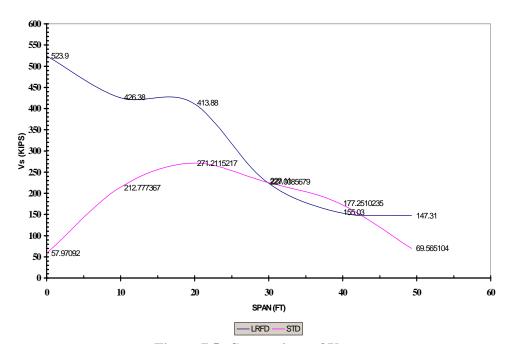
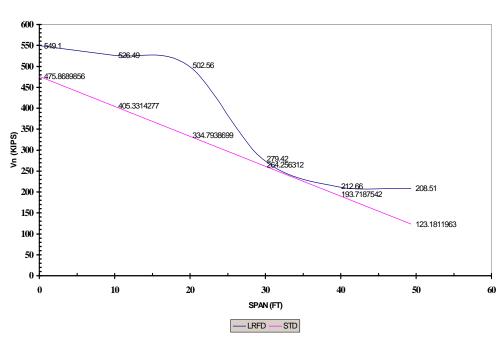




Figure 7.5: Comparison of Vs



**COMPARISON OF Vn** 

Figure 7.6: Comparison of Nominal Shear Resistance Vn = Vc +Vs

c. In both the cases the uniform behavior is observed as under:

- In case of LRFD procedure for estimating shear resistance provided by concrete Vc demonstrates a lower bound curve because of measuring the actual cracking angle at all tenth points along the span whereas in case of AASHTO Standard procedure the cracking angle is assumed to constant.
- 2) Providing stirrup steel covers the deficiency in shear strength of concrete. Therefore the requirement of stirrups is increased in case of LRFD procedure than AASHTO Standard procedure. This can be seen by observing Vn curves which in both the cases present an upper bound and therefore are over conservative.

#### 7.8 SALIENT CONCLUSIONS

- a. ACI code 318-95 and AASHTO standard design procedure in predicting shear capacity of prestressed beams is less conservative.
- b. Shear span to depth ratio affects the shear strength of the concrete. More is the ratio lesser is the strength.
- c. LRFD approach for shear based on MCFT is more realistic and over conservative in predicting the concrete strength in resisting shears. This is because of measuring actual crack angle at the section under investigation (to be intercepted by shear reinforcement) rather than empirical equations assuming angle of crack as 45 degree, which is a remote possibility.
- d. For prestressed bridge girders, shear strength is influenced by the percentage of prestressing reinforcement so as to resist tensile stresses developed at the crack parallel to the longitudinal axis of the member.
- e. Above case studies demonstrate a lesser contribution from concrete in case of LRFD approach. This is because of calculating Vc by using actual cracking angle (lesser than 45 degrees). This consequently leads to using fewer stirrups so as to compensate for the nominal capacity of the section under investigation.
- f. From foregoing inference can be drawn that the LRFD shear design approach is more conservative therefore less economical than AASHTO/ACI standard design approach. Shear capacity and stirrup design/detailing tables are therefore based on AASHTO/ACI Standard Design procedure.

# 7.9 SIMPLIFIED METHOD FOR SHEAR DESIGN OF PRESTRESSED CONCRETE GIRDERS BASED ON LRFD [30]

The new AASHTO LRFD Bridge Design Specifications incorporate the MCFT for shear design of prestressed and non-prestressed concrete members. This method is based on the variable-angle truss analogy model and takes into account the inclination of diagonal shear cracks, strain in longitudinal steel and the applied shear stress on a section. This is a realistic approach to predict the shear resistance of any section of a concrete member. However, for pre-stressed concrete sections, an iterative process is required to determine the shear resistance of the sections. In an effort to simplify the process, a parametric study can be undertaken resulting in a simplified method using fixed shear design parameters for NHA standard girders. The simplified method saves significant time in shear design of pre-stressed girders, especially when it is applied to standardize the shear reinforcement in a series of standard pre-stressed concrete girders. The LRFD Specifications predict the shear resistance of pre-stressed girders more accurately than the Standard Specification.

The LRFD requires more shear reinforcement in pre-stressed girders than LFD. A simplified method using fixed shear design parameters of  $\theta$  and  $\beta$  may be utilized to simplify the LRFD shear design of pre-stressed girders. The vertical components of harped or draped strands contribute as much as 10% of the total shear resistance of the section.

# **Chapter 8**

#### **DEVELOPMENT OF DESIGN TABLES**

#### **8.1 GENERAL**

- a. As it has been said earlier that the optimization is a process of saving cost and time involved in designing a bridge structure or its components so is the development of standard design aids based on certain parameters and assumptions. Each of the bridge structural components can be designed with the variety of combinations in terms of girder spacing, span lengths and girder cross section which are the controlling design parameters in slab-girder bridges.
- b. In Pakistan, slab-girder bridges have prestressed girders, which are critical for cracking either because of preloading or due to the service load effects. These condition warrants meticulous shear investigation/analysis during each load stage and the design which vary with the controlling design parameters. For example, the parabolic profile of prestressing steel contributes ten percent to offset the shear force effect which if considered results in economizing the shear reinforcement at the section under investigation.
- c. Another aspect, which is to be considered for optimization, is the adoption of design procedure that is based on (different code of practice) simplicity, safety and economy. In Pakistan, most of the designers are using AASHTO Standard Specifications for highway bridges alongwith British code for certain bridge components. Before developing the design aid it is

essential to consider the state of the art design procedure which should be compared with the existing practices for simplicity, safety and economy.

#### **8.2 ADOPTION OF DESIGN PROCEDURE**

- a. Without jeopardizing the safety and economy, the accuracy and simplicity of the design procedure depends upon the tools available for analysis and design that is the softwares. As mentioned earlier for accuracy and simplicity sixteen existing bridges were analyzed alontwith the manual calculations. Once the accuracy of the software was ascertained the economic comparison/analysis between the AASHTO Standard and LRFD design procedures (for shear) was carryout. Which reflected results favorable to AASHTO standard procedure for shear design of prestressed bridge girders, as under:
  - It is more economical as compared to LRFD design procedure because the LRFD procedure demands more shear steel at the section.
  - The AASHTO standard procedure is simpler and safer since it is being practiced with a negligible rate of probable failure.
  - Presently the issue of adoption of design procedure for shear design of prestressed bridge girders is controversial between the researchers and the designers.

#### **8.3 DEVELOPMENT OF DESIGN AID (DESIGN TABLES)**

a. After ascertaining the accuracy of the software, simplicity, safety and economy of design procedure it was established to base the design tables on existing AASHTO Standard Specifications 1996.

b. For the development of design tables a total of 405 bridge girders were modeled, analyzed and designed with four types of strand patterns, six types of girder cross sections and five types of girder spacing covering span lengths of 35 to 145 feet.

#### **8.3.1 Shear Capacity Tables**

- a. Shear capacities tables [Table 8.3.1.1(a-e) to Table 8.3.1.6(a-e)], are developed for six type of girders with girder spacing ranging between 5 to 9 feet, 5 tables for each girder (one for each girder spacing) and a total of 30 tables are developed.
- b. These tables are developed, considering above stated variables, giving nominal shear resistance required (obtained from shear investigation) and provided/actual at the section (as part of the design) at tenth points along the span. Considering # 3 U legged stirrups with Av = 0.22 in<sup>2</sup> using Grade 40 steel and AASHTO/ACI equations, area of shear reinforcement required and/or stirrup spacing at the section or number of stirrups is calculated.
- c. Where Vs has a negative values, implies that no shear reinforcement is required and concrete can withstand shear at the section. However, keeping code restriction of minimum spacing of 24 in, stirrups are provided. The data given in these tables can be used to determine spacing, area of steel and consequently the number of stirrups required, using different bar size and steel grade.

#### **8.3.2 Stirrup Design / Detailing Tables**

- a. Stirrup design tables [Table 8.3.2.1 to Table 8.3.2.6] are the outcome of shear capacity tables. One table for each girder type and a total of six tables are developed. Keeping in view the economy in the design the figures representing the number of stirrups are rounded to next number instead of rounding up the spacing in the shear capacity tables.
- b. All possible strand patterns for girder lengths of 35 to145 feet are covered with girder spacing varying from 5 to 9 feet.
- c. Noting of "FAILED" implies that the girder cross-sections with the specified strand pattern, girder spacing and span length have failed at initial stress level.
- d. In order to investigate shear between the two given sections (e.g. 0.1 L and 0.2 L) necessary interpolation can be done.

### Chapter 9

# DISCUSSION, CONCLUSIONS AND RECOMMENDATIONS

#### 9.1 DISCUSSION ON RESULTS (DESIGN TABLES)

- a. Development of design tables is based on the variables stated earlier with the specified material strength. Shear capacity tables can be used to alter the material i.e. the bar size and grade of stirrups so as to increase or decrease the stirrup spacing at section under consideration.
- b. Stirrup design/detailing tables, based on the girder spacing range of 5 to 9 feet and four different strand patterns, presenting number of stirrups in five zones along the span. The detail investigation of the data presented in the tables' gives the following outcome:
  - For any girder spacing, it is more economical (in terms of number of stirrups), to use parabolic/draped (D) or one point draped (D-1) strand pattern.
  - 2) With the increase in girder spacing, span length reduces and the number of stirrups increases, indicating increase in shear. For example, 5 feet of girder spacing and 12D strand pattern gives 51.5 feet of span with 22 stirrups whereas with 7 feet of the girder spacing and same strand pattern gives 47.5 feet of span with 26 stirrups.

- 3) Considering same strand pattern, for every one foot increase in the girder spacing, there is a span reduction of about 2 to 5 feet.
- 4) Assessment of the effect of girder depth (H) in providing shear resistance can be noted by a significant decrease in the number of the stirrups with increase in the girder depth while keeping other variables (girder spacing and strand pattern) as constant. The details are as under:

| Girder<br>Spacing(ft) | Girder<br>Type | Girder<br>depth<br>H(in) | Strand<br>Pattern | Span<br>Length(ft) | Stirrups<br>(Nos) | Variations   |
|-----------------------|----------------|--------------------------|-------------------|--------------------|-------------------|--------------|
| 5                     | G 36-I         | 36                       | 14 D-1            | 61                 | 33                | Span=6feet   |
| 5                     | G 42-I         | 42                       | 14 D-1            | 67                 | 35                | Stirrups=2   |
| 5                     | G 42-I         | 42                       | 18 D              | 79.5               | 30                | Span=7feet   |
| 5                     | G 48-I         | 48                       | 18 D              | 86.5               | 31                | Stirrups=1   |
| 5                     | G 48-I         | 48                       | 18 D              | 86.5               | 31                | Span=0       |
| 5                     | G 54-I         | 54                       | 18 D              | 86.5               | 31                | Stirrups=0   |
| 5                     | G 54-I         | 54                       | 18 D              | 86.5               | 31                | Span=8.5feet |
| 5                     | G 63-TB        | 63                       | 18 D              | 95                 | 31                | Stirrups=0   |
| 5                     | G 63TB         | 63                       | 30 D              | 118                | 38                | Span=9feet   |
| 5                     | G 72TB         | 72                       | 30 D              | 127                | 42                | Stirrups=4   |

5) It is clear from the above data that by keeping girder spacing and the strand pattern constant, the effect of girder depth is insignificant in reducing shear, from which inference can be drawn that the shear controlling parameter is girder spacing.

#### 9.2 CONCLUSIONS

- a. ACI code 318-95 and AASHTO standard design procedure in predicting shear capacity of prestressed girders/beams is less conservative.
- b. Shear span to depth ratio effects the shear strength of the concrete. More is the ratio lesser is the strength.

- c. The girder spacing predominantly influences shear capacity of the prestressed bridge girders, which is the shear controlling parameter. More the girder spacing lesser is the shear capacity and vice versa.
- d. Vertical component of prestressing force contributes only 10 percent of shear capacity.
- e. LRFD approach for shear based on MCFT is more realistic and more conservative. This is because of measuring actual crack angle at the section under investigation (to be intercepted by shear reinforcement) rather than empirical equations assuming angle of crack as 45 degree, which actually is a remote possibility.lesser angle of crack means lesser concrete contribution resulting in more stirrup steel requirement.
- f. It is more practical and economical to use parabolic/draped and one point draped prestressing strand than other configurations.
- g. For girder spacing greater than 7 feet, the girder concrete strength and cross sectional properties contributes only 5 percent of shear capacity.
- h. For prestressed bridge girders, shear strength is influenced by the percentage of prestressing reinforcement so as to resist tensile stresses developed at the crack parallel to the longitudinal axis of the member.

#### 9.3 RECOMMENDATIONS

#### 9.3.1 RECOMMENDED DESIGN CONSIDERATIONS

#### 9.3.1.1 Shear Cracking in Pre-Stressed Concrete [8]

a. The designer may elect do make a more detailed analysis for the shear design of pre-stressed concrete flexural members in conformance with ACI 318, by determining the amount of shear reinforcement required to guard against failure as the result of flexural shear or web shear cracking. Two separately analysis is required because flexural shear cracking is a function of moment and shear while web shear cracking is not a function of moment. In the case of member designed for moving loads because maximum moment and maximum shear do not necessarily occur at any one section under the same loading condition, more effort is required to make a complete analysis than is the case of a member subjected to non moving loads.

- b. Due to the compression reduced by pre-stressing, the diagonal tension is smaller in pre-stressed concrete than is reinforcement concrete. Further more its angle of inclination with respect to beam axis is reduced. This implies that if cracking occurs and if, for safe design, the inclined cracked is assumed to cross at least one stirrup, the stirrup spacing is pre-stressed concrete is larger and their required area smaller than in reinforced concrete. Thus a more economical solution (for shear) is obtained.
- c. For most commonly used simple span bridges, the webs thickness of post tensioned I and T girders are increased gradually towards the end, for a distance of 0.15L to 0.2L from the girder ends, to enhanced shear capacity and to provide post tensional anchorage in these regions.

#### 9.3.1.2 Straight and Draped Tendons [8]

It should be clear that, for each characteristic load arrangement that there is a "best" tendon profile in the sense, that it produces a pre-stress moment diagram that corresponds to that of the applied load. It is of further interest to note that if the pre-stress counter moment should be made exactly equal and opposite to the moment from the loads all along the span, the result is a beam that is subject only to uniform axial compressive stress throughout for the particular loading. The beam would not only be free of cracking but also (neglecting the influence of concrete shrinkage and creep) would deflect neither up nor down when that load is in place, compared to its unstressed position. This condition is referred to as the balanced load stage.

#### 9.3.1.3 Limitation of Section Prestressed with Straight Tendons [8]

- a. It should be apparent that fully bonded straight pre-tensioned tendons can only be used in prismatic beams is which maximum flexural stresses at the bottom fibers, due to total load does not exceed the arithmetic sum of either the allowable compressive stress.
- b. In a similar manner the top fiber stress may limit the capacity of a prismatic beam section if the maximum flexural stress in the top fiber, due to the total dead load is greater than the arithmetic sum of allowable compressive stress in the completed member and the top fiber tensile stress due to final pre-stressing.
- c. As the result of these limitations the designer can normally determine if the specific concrete section can be used with straight tendons without calculating the magnitude and eccentricity of the prestressing force. It is only necessary to determine the stresses in the section due to the total load and compare these values with sum of the appropriate allowable stresses.

#### 9.3.1.4 Curved or Draped Tendons

- a. When a beam is pre-stressed by a straight tendon, it deflects upward or cambers. It is apparent, that the dead weight of the beam itself is acting at the time of the pre-stressing since, as the beam cambers, the soffit of the beam is no longer in contact with the soffit form, except at the extremities of beam. From this consideration, it is concluded that actual stress existing in concrete at any point in the beam at the time of pre-stressing is equal to the algebraic sum of stressed caused by the pre-stressing and the dead weight of the beam itself.
- b. If the tendons more placed in the member on a parabolic curve such that the eccentricity were maximum at mid span of the beam and minimum at the ends of the beam, the stress in the top and bottom fibers would very along span / length of the beam. By careful selection of the magnitude and eccentricity of the pre-stressing force it is possible to eliminate reduction is the capacity of the beam to withstand a super imposed load due to the dead weight of the beam itself.
- c. It is axiomatic in structural engineering that the dead load of structures become progressively important and greater in respect to the total load as the span length is increased. It is important consideration influencing the normal practice of using straight tendons for short members and using tendons with variable eccentricity either prestressed or post-tensioned for longer members.
- d. It should be recognized that deflected or draped pre-tensioned tendons couldn't be placed on smooth curves. They are often placed on

trajectories consisting of a series straight lines that approximate a parabolic or other curve form.

- e. Another beneficial effect of curving of pre-stressing tendons is the reduction of the shear force that must be carried by the concrete section. This can be illustrated by considering a beam having curved prestressing tendon that is sloped at an angle " $\alpha$ " to the horizontal at the point under consideration.
- f. It will reveal that prestressing force can be resolved is to the components "psin α", acting vertically upward and "pcos α" acting horizontally. If total shear due to external loads is (V) the concrete must resist the amount V-psin α, since the tendon is exerting an upward force equal to psin α, between center of the span and the end. If the tendon were not curved, the concrete section would carry the entire shear force (V).

#### 9.3.1.5 Limitations of Sections Prestressed with Curved Tendons [8]

- a. In considering the stress is the bottom fiber at any specific section of a simple beam pre-stressed with curved tendon, it should be apparent that the maximum stress due to external loads must not exceed the arithmetic sum of the stresses due to effective pre-stressing force and allowable tensile stress in the completed structure.
- b. The initial tensile stress in the top fibers of the beam prestressed with curved tendon is not normally critical at the section of maximum moment in the beam of good proportions. If the top fiber stresses limit the design of beam with curved tendon it is usually due to excessive

compressive stress under maximum loading conditions. Top fiber stresses are much more apt to be a problem as a beam with a narrow top flange that is a beam with a wide top flange.

#### 9.3.1.6 Short Span and Moderate Span Bridges [8]

- a. Short span bridges are made using composite girder construction.
   There is a little advantage in using composite construction for short spans (up to 450 ft) from the standpoint of flexural stresses, since the flexural stresses are not normally critical.
- b. The shear stresses in short span bridges of composite construction are frequently very high and large quantities of web reinforcement may be required in order to ensure that adequate factor of safety against ultimate shear failure is provided in the structure.
- c. When composite construction is used for spans between 30 and 45 ft, it is generally considered better practice to use girders with web thickness of from 7 to 10 inches, in order to reduce unit shear stresses and the required amount of web reinforcing. In addition the girder spacing used in this type of construction generally restricted to from 4 to 6 ft, for short spans. When larger spacing is used the shear stresses become excessive.
- d. Moderate span as defined from 45 to 80ft, for which normally AASHTO type II and type III girders are used. These girders are used at spacing of from 5 to 6 ft.
- e. A large girder depth does result in a small pre-stressing force being required for a specific girder spacing and in some instance girders with

wide/larger flanges can be used at spacing of from 6 to 8 ft, with significantly larger depth of construction.

- f. Another important consideration is the size of the top flange. The dead weight of a structure as well as the girder alone becomes greater as the span is increased. The significance of this can be best understood if a girder with a smaller top flange then bottom flange is analyzed for various girder spacing on a span of 70 to 80ft with composite construction.
- g. It will be found that bottom flange is adequate and that the capacity and spacing of the member is limited by the compressive stresses is the smaller top flange. If the span was only 50 ft and the same procedure is followed it would be found that the bottom flange limits the design. The difference is due to the difference in the ratio of dead load to live load, which occurs as the span is increased. This restriction can be avoided by selecting girder shapes that are well proportioned.

#### 9.3.1.7 Tendon Layout for Simply Supported Girder [6]

a. Whenever possible, tendons in simply supported girder should extend from one of the girder to the other. Provided both ends are accessible for jacking, it is preferable to alternate stressing and dead-end anchors. If the girder extends only a short distance past the supports, the tendons should be anchored in the lower portions of the section. This result is a direct flow of forces and good protection against diagonal cracking immediately above the support since the tendons are horizontal at the critical section for shear, increased shear reinforcement will often be required.

- b. When the girder extends a sufficient distance beyond the support, the tendon can be anchored at the centriod of the section. The inclined tendons then contribute to the shear resistance at the critical section.
- c. Tendon should be anchored away from the supports only if the girder ends are not accessible for stressing. In such cases, stressing anchored can be located at the intersection of web and top flange.

#### 9.3.1.8 Effect of Concrete Strength [32]

- a. For concrete strength in the 6000-14000 psi ranges for AASHTO type IV girders using 0.5 in diameter strands commonly used for bridges in the 100 ft range. It shows that for the span of 110 ft, a 6000 psi concrete would required a girder spacing of 6 ft. However for the same span, an 8000 psi concrete would require a girder spacing of 10 ft. Effectively this means that, for a typical 40 ft wide bridge (two 12 ft traffic lanes plus two 8ft wide shoulders) designed for HS 20-44 loading (with an impact factor of 1.25 and a distribution factor of S/5.5). The number of girders is reduced from seven to four by using 8000 psi concrete instead of 6000 psi concrete.
- b. Use of high strength concrete for the same girder spacing also increases the span capabilities. For example an AASHTO type IV girder, which has a span capabilities of 112 ft at 6 ft spacing when made from 6000 psi concrete, can span 129 ft if made from 8000 psi concrete-an increase of over 15 percent.

- c. The cost savings that accrue from using high strength concrete can be attributed to several factors. The increased flexural capacity of high strength concrete girders lends then to lager girder spacing (and hence a smaller number of girder) for a bridge superstructure for a given span, leading to economical construction.
- d. Although the basic with cost of concrete is higher for high strength concrete it may be partially or fully offset by the reduced quantities of concrete as a result of smaller number of girder used. Although high strength concrete girders have more pre-stressing stands per girder, the total number of stands for all the girders is less then that required for the larger number of normal strength concrete girders.

#### 9.3.1.9 Important Parameter Influencing Shear [9]

- a. Hundreds of analyses on bridges of different types, geometric end stiffness using various computer programs and experimental result were performed. The programs that yielded the most accurate result were selected for further analyses in developing the AASHTO LRFD formulas.
- b. Database of actual bridges was used to determine "an average bridge" for each type. Within each type the parametric studies were made to establish the distribution factor equation. For slab Girder Bridge type shown the most sensitive parameter is girder spacing. It is important to note that the span length and girder stiffness effect the load distribution but to a lesser extent.

c. For a particular span and loading there is always a limiting girder spacing beyond which the material and geometrical properties of various components of bridge superstructure have insignificant effect in providing resistance against external loads.

#### 9.3.2 Recommendations for Future Work

- a. In order to determine the overall economic effect of employing LRFD procedure for design of prestressed bridges it is imperative to conduct parametric study by incorporating the entire bridge substructure and superstructure components.
- b. Standard design details of other superstructure and substructure bridge components should also be developed which would save cost and time involve in the design process.
- c. Torsion and stability analysis of these bridge girders should be carryout.

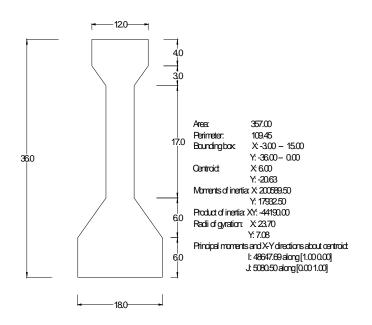



Figure 1.1: Cross Section of G36-I Girder

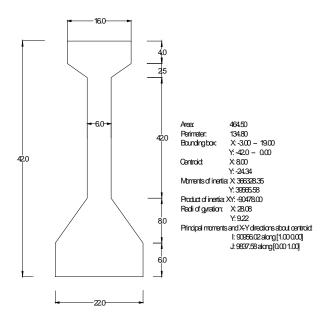



Figure 1.2: Cross Section of G42- I Girder

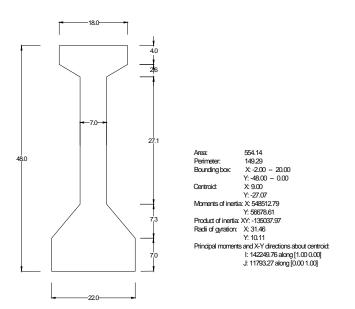



Figure 1.3: Cross Section of G 48- I Girder

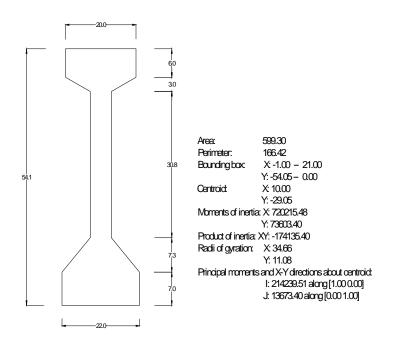



Figure 1.4: Cross Section of G 58- I Girder

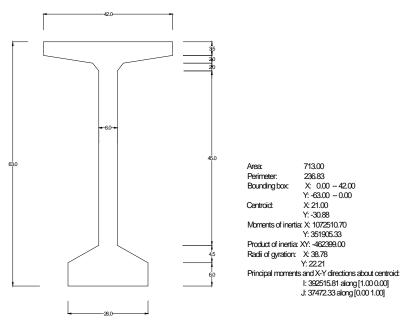



Figure 1.5: Cross Section of G63-T Girder

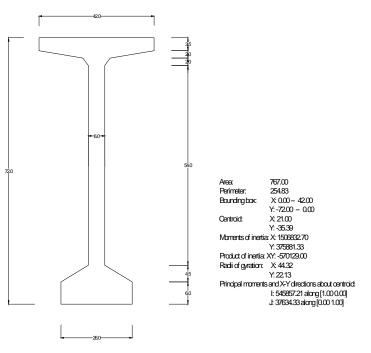



Figure 1.6: Cross Section of G72-T Girder

## SHEAR CAPACITY TABLES FOR G 36-I GIRDER

## Table 8.3.1.1a: Girder Spacing = 5 feet

|           | 5.1.1a. Ol | uer Spac  | ing = 5 ieei  | 1        |          |          |
|-----------|------------|-----------|---------------|----------|----------|----------|
|           |            |           | <u>8D</u>     |          |          |          |
| x (ft) =  | 0.00       | 4.35      | 8.70          | 13.05    | 17.40    | 21.75    |
| Vs.req =  | -106.5     | -42.8     | 3.0           | 9.7      | 8.2      | 3.3      |
| Vs.act =  | 9.57       | 19.14     | 19.14         | 19.14    | 19.14    | 9.57     |
| S =       | 24         | 24        | 24            | 24       | 24       | 24       |
| stirrups= | 2.175      | 2.175     | 2.175         | 2.175    | 2.175    | 2.175    |
|           |            |           | <u>8S</u>     |          |          |          |
| x (ft) =  | 0          | 4.3       | 8.6           | 12.9     | 17.2     | 21.5     |
| Vs.req =  | 58.84826   | 30.45284  | 4.75105755    | 5.91457  | 8.136503 | 3.9819   |
| Vs.act =  | 60.544     | 33.61319  | 18.92         | 18.92    | 18.92    | 9.46     |
| s =       | 3.75       | 9.4       | 24            | 24       | 24       | 24       |
| stirrups= | 13.76      | 5.489362  | 2.15          | 2.15     | 2.15     | 2.15     |
|           |            |           | <u>10 D-1</u> |          |          |          |
| x (ft) =  | 0          | 5         | 10            | 15       | 20       | 25       |
| Vs.req =  | -131.13    | -37.23504 | 7.878382152   | 14.35397 | 12.06316 | 5.898383 |
| Vs.act =  | 11         | 22        | 24.64341085   | 24.64341 | 22       | 11       |
| S =       | 24         | 24        | 24            | 18.04    | 22.52    | 24       |
| stirrups= | 2.5        | 2.5       | 2.5           | 3.325942 | 2.664298 | 2.5      |
|           |            |           | 10 D-2        |          |          |          |
| x (ft) =  | 0          | 5         | 10            | 15       | 20       | 25       |
| Vs.reg =  | -128.3276  | -36.15094 | 8.869190373   | 15.23886 | 12.79609 | 6.214418 |
| Vs.act =  | 11         | 22        | 25.63414634   | 26.35706 | 22.72291 | 11       |
| S =       | 24         | 24        | 11.74         | 11.15    | 11.99    | 24       |
| stirrups= | 2.5        | 2.5       | 5.110732538   | 5.381166 | 5.00417  | 2.5      |
|           |            |           | 12D           |          |          |          |
| x (ft) =  | 0          | 5.6       | 11.2          | 16.8     | 22.4     | 28       |
| Vs.req =  | -151.2595  | -32.42261 | 12.45492165   | 18.85406 | 15.7559  | 7.213451 |
| Vs.act =  | 12.32      | 26.84973  | 34.74025605   | 36.3151  | 28.42458 | 12.32    |
| S =       | 24         | 24        | 20.35         | 14.63    | 18.36    | 24       |
| stirrups= | 2.8        | 2.8       | 3.302211302   | 4.593301 | 3.660131 | 2.8      |
|           |            |           | 12S           |          |          |          |
| x (ft) =  | 0          | 5.45      | 10.9          | 16.35    | 21.8     | 27.25    |
| Vs.req =  | 68.94048   |           |               | 14.72957 |          | 8.281813 |
| Vs.act =  | 71.94      | 45.21864  | 27.17522427   | 31.46124 |          | 11.99    |
| S =       | 4          | 8.66      | 24            | 18.95    | 17.68    | 24       |
| stirrups= | 16.35      | 7.551963  | 2.725         | 3.451187 | 3.699095 | 2.725    |
| 0         |            |           | 14 D-1        | 0.101101 | 0.000000 | 0        |
| x (ft) =  | 0          | 6.1       | 12.2          | 18.3     | 24.4     | 30.5     |
| Vs.req =  | -98.43502  | -13.53856 | 27.41220793   | 29.95719 |          | 8.536561 |
| Vs.act =  | 13.42      | 52.50738  | 77.98592937   | 65.25534 | 39.77679 | 13.42    |
| S =       | 24         | 24        | 8.24          | 8.28     | 12.22    | 24       |
| stirrups= | 3.05       | 3.05      | 8.883495146   | 8.84058  | 5.99018  | 3.05     |
|           | 0.00       | 0.00      | 14 D-2        | 0.01000  | 0.000.0  | 0.00     |
| x (ft) =  | 0          | 6.05      | 12.1          | 18.15    | 24.2     | 30.25    |
| Vs.reg =  | -97.21589  | -14.6997  | 26.7824866    | 29.53721 | 26.9608  | 11.89609 |
| Vs.act =  | 13.31      | 51.33857  | 76.28485885   | 73.20596 | 50.36666 | 15.41699 |
| S =       | 24         | 24        | 8.4           | 8.35     | 9.14     | 20.72    |
| stirrups= | 3.025      | 3.025     | 8.642857143   | 8.694611 | 7.943107 | 3.503861 |
| continued |            | 0.020     | 5.012001140   | 0.007011 | 1.010107 | 0.000001 |
|           | ~          |           |               |          |          |          |

Table 8.3.1.1a: page 2

| I ubic oici | 1.1a. page |           |               |          |          |          |
|-------------|------------|-----------|---------------|----------|----------|----------|
|             |            |           | <u>16 D-1</u> |          |          |          |
| x (ft) =    | 0          | 6.4       | 12.8          | 19.2     | 25.6     | 32       |
| Vs.req =    | -111.6017  | -16.80044 | 26.52999144   | 29.76199 | 22.07878 | 9.446176 |
| Vs.act =    | 14.08      | 53.9761   | 80.80651552   | 68.60877 | 41.77836 | 14.08    |
| S =         | 24         | 24        | 8.47          | 8.26     | 12.2     | 24       |
| stirrups=   | 3.2        | 3.2       | 9.06729634    | 9.297821 | 6.295082 | 3.2      |
|             |            |           | <u>16 D-2</u> |          |          |          |
| x (ft) =    | 0          | 6.35      | 12.7          | 19.05    | 25.4     | 31.75    |
| Vs.req =    | -110.4546  | -17.97709 | 25.88585025   | 29.33182 | 27.0981  | 12.507   |
| Vs.act =    | 13.97      | 52.77556  | 79.0069944    | 77.33101 | 54.27067 | 17.1411  |
| S =         | 24         | 24        | 8.64          | 8.34     | 9.03     | 19.56    |
| stirrups=   | 3.175      | 3.175     | 8.81944444    | 9.136691 | 8.438538 | 3.895706 |
|             |            |           | <u>16 S</u>   |          |          |          |
| x (ft) =    | 0          | 6.1       | 12.2          | 18.3     | 24.4     | 30.5     |
| Vs.req =    | 70.89547   | 29.24284  | -6.564811891  | 15.1368  | 16.77815 | 10.42724 |
| Vs.act =    | 84.31414   | 48.16434  | 31.41329609   | 37.93633 | 33.36303 | 13.42    |
| S =         | 3.82       | 9.27      | 24            | 17.9     | 16.15    | 24       |
| stirrups=   | 19.1623    | 7.89644   | 3.05          | 4.089385 | 4.532508 | 3.05     |
|             |            |           | <u>18 D-1</u> |          |          |          |
| x (ft) =    | 0          | 6.6       | 13.2          | 19.8     | 26.4     | 33       |
| Vs.req =    | -121.8204  | -21.91889 | 24.61429807   | 28.87045 | 21.68582 | 10.37678 |
| Vs.act =    | 14.52      | 53.15415  | 80.21887188   | 70.43241 | 43.36768 | 14.52    |
| s =         | 24         | 24        | 9.02          | 8.38     | 12.08    | 24       |
| stirrups=   | 3.3        | 3.3       | 8.780487805   | 9.451074 | 6.556291 | 3.3      |
|             |            |           | <u>18 D-2</u> |          |          |          |
| x (ft) =    | 0          | 6.55      | 13.1          | 19.65    | 26.2     | 32.75    |
| Vs.req =    | -118.1571  | -22.662   | 24.40587278   | 28.85275 | 26.93957 | 12.87669 |
| Vs.act =    | 14.41      | 52.709    | 79.91633184   | 80.51947 | 57.48569 | 18.58356 |
| S =         | 24         | 24        | 9.03          | 8.31     | 8.89     | 18.61    |
| stirrups=   | 3.275      | 3.275     | 8.704318937   | 9.458484 | 8.841395 | 4.223536 |
|             | 1          |           |               | 1        |          |          |

1. fc girder-6 ksi, fc slab-3.6 ksi

Prestressing steel-0.5 in grade 270 low relaxation
 Stirrup steel-two # 3 U legged grade 40(40ksi)

Table 8.3.1.1b: Girder Spacing = 6 feet

|                  |           | uel opac  | iiig = 0 leet | 1        |            |            |
|------------------|-----------|-----------|---------------|----------|------------|------------|
|                  |           |           | <u>8D</u>     |          |            |            |
| x (ft) =         | 0         | 3.95      | 7.9           | 11.85    | 15.8       | 19.75      |
|                  | -98.22094 |           | 3.895086732   | 11.22242 | 9.328989   | 3.824456   |
| Vs.act =         | 8.69      | 17.38     | 17.38         | 17.38    | 17.38      | 8.69       |
| s =              | 24        | 24        | 24            | 24       | 24         | 24         |
| stirrups=        | 1.975     | 1.975     | 1.975         | 1.975    | 1.975      | 1.975      |
|                  |           |           | <u>8 S</u>    |          |            |            |
| x (ft) =         | 0         | 3.9       | 7.8           | 11.7     | 15.6       | 19.5       |
| Vs.req =         | 76.32594  | 45.71656  | 17.79691641   | 6.906897 | 9.110649   | 4.463838   |
| Vs.act =         | 82.368    | 45.69258  | 21.37801119   | 17.16    | 17.16      | 8.58       |
| s =              | 2.5       | 6.26      | 16.09         | 24       | 24         | 24         |
| stirrups=        | 18.72     | 7.476038  | 2.908638906   | 1.95     | 1.95       | 1.95       |
|                  |           |           | <u>10 D-1</u> |          |            |            |
| x (ft) =         | 0         | 4.55      | 9.1           | 13.65    | 18.2       | 22.75      |
| Vs.req =         | -121.0448 | -39.3196  | 10.73090042   | 17.32514 | 14.69015   | 8.258525   |
| Vs.act =         | 10.01     | 20.21127  | 25.34881487   | 27.39843 | 22.26089   | 10.01      |
| s =              | 24        | 24        | 23.55         | 15.86    | 19.61      | 24         |
| stirrups=        | 2.275     | 2.275     | 2.318471338   | 3.442623 | 2.784294   | 2.275      |
|                  |           |           | <u>10 D-2</u> |          |            |            |
| x (ft) =         | 0         | 4.6       | 9.2           | 13.8     | 18.4       | 23         |
| Vs.req =         | -122.1973 | -38.08081 | 11.29212514   | 17.64659 | 14.89395   | 8.396435   |
| Vs.act =         | 10.12     | 20.87642  | 26.18717129   | 27.84158 | 22.53083   | 10.12      |
| S =              | 24        | 24        | 22.58         | 15.74    | 19.57      | 24         |
| stirrups=        | 2.3       | 2.3       | 2.444641275   | 3.506989 | 2.820644   | 2.3        |
|                  |           |           | 12D           |          |            | -          |
| x (ft) =         | 0         | 5.15      | 10.3          | 15.45    | 20.6       | 25.75      |
| Vs.req =         |           | -32.97063 | 16.28331205   | 22.69069 | 19.07922   | 11.51322   |
| Vs.act =         | 11.33     | 28.79435  | 39.82619663   | 40.29852 | 29.75928   | 11.82261   |
| S =              | 24        | 24        | 15.57         | 12.16    | 15.16      | 23         |
| stirrups=        | 2.575     | 2.575     | 3.969171484   | 5.082237 | 4.076517   | 2.686957   |
| 0                |           |           | <u>12S</u>    | 0.00220. |            |            |
| x (ft) =         | 0         | 5         | 10            | 15       | 20         | 25         |
| Vs.req =         |           | 50.27056  | 15.13621022   | 17.743   | 18.80631   | 12.28201   |
| Vs.act =         | 94.28571  | 61.88427  | 31.0999196    | 34.57297 | 29.40948   | 11.61972   |
| S =              | 2.8       | 5.55      | 18.44         | 15.73    | 14.84      | 22.72      |
| stirrups=        | 21.42857  | 10.81081  | 3.253796095   | 3.814367 | 4.043127   | 2.640845   |
| ounapo           | 21112001  | 10.01001  | 14 D-1        | 0.011001 | 110 10 121 | 210 100 10 |
| x (ft) =         | 0         | 5.65      | 11.3          | 16.95    | 22.6       | 28.25      |
| Vs.req =         | -89.35443 | -10.58934 | 33.89974884   | 35.95646 | 26.87084   | 13.75042   |
| Vs.act =         | 12.43     | 57.15564  | 87.96041979   | 72.91836 | 43.72878   | 14.0452    |
| S =              | 24        | 24        | 6.67          | 6.9      | 10.05      | 21.24      |
| stirrups=        | 2.825     | 2.825     | 10.16491754   | 9.826087 | 6.746269   | 3.19209    |
|                  | 2.020     | 2.020     | 14 D-2        | 0.020001 | 511 10200  | 0.10200    |
| x (ft) =         | 0         | 5.6       | 11.2          | 16.8     | 22.4       | 28         |
| Vs.req =         | -88.22379 | -12.00694 | 33.10715033   | 35.403   | 32.13765   | 17.54688   |
| Vs.act =         | 12.32     | 55.80235  | 85.96511156   | 81.03295 | 59.59504   | 21.04484   |
| s =              | 24        | 24        | 6.8           | 6.96     | 7.67       | 14.05      |
| s =<br>stirrups= | 2.8       | 2.4       | 9.882352941   | 9.655172 | 8.761408   | 4.782918   |
| continued        |           | 2.0       | 3.002332341   | 9.00017Z | 0.701400   | 4.102910   |
| continue         | 4         |           |               |          |            |            |

Table 8.3.1.1b, page 2

| Tuble ole | 1.10, page |           |               |          |          |          |
|-----------|------------|-----------|---------------|----------|----------|----------|
|           |            |           | <u>16 D-1</u> |          |          |          |
| x (ft) =  | 0          | 5.9       | 11.8          | 17.7     | 23.6     | 29.5     |
| Vs.req =  | -103.9358  | -15.32913 | 32.17913146   | 35.19199 | 26.42036 | 13.37437 |
| Vs.act =  | 12.98      | 57.61037  | 89.1968961    | 75.34913 | 45.2182  | 14.43559 |
| s =       | 24         | 24        | 6.98          | 6.99     | 10.12    | 21.58    |
| stirrups= | 2.95       | 2.95      | 10.14326648   | 10.12876 | 6.996047 | 3.280816 |
|           |            |           | <u>16 D-2</u> |          |          |          |
| x (ft) =  | 0          | 5.9       | 11.8          | 17.7     | 23.6     | 29.5     |
| Vs.req =  | -101.3067  | -14.80224 | 32.69476253   | 35.6789  | 32.69919 | 18.42565 |
| Vs.act =  | 12.98      | 58.52386  | 90.95493837   | 87.05814 | 65.10489 | 23.45783 |
| S =       | 24         | 24        | 6.84          | 6.86     | 7.48     | 13.28    |
| stirrups= | 2.95       | 2.95      | 10.35087719   | 10.3207  | 9.465241 | 5.331325 |
|           |            |           | <u>16 S</u>   |          |          |          |
| x (ft) =  | 0          | 5.7       | 11.4          | 17.1     | 22.8     | 28.5     |
| Vs.req =  | 94.13825   | 48.6181   | 8.534526613   | 20.73993 | 21.8606  | 14.60078 |
| Vs.act =  | 104.5      | 66.57232  | 35.56677888   | 47.29775 | 40.48648 | 16.21552 |
| S =       | 2.88       | 5.57      | 24            | 13.07    | 12.4     | 18.56    |
| stirrups= | 23.75      | 12.28007  | 2.85          | 5.233359 | 5.516129 | 3.685345 |
|           |            |           | <u>18 D-1</u> |          |          |          |
| x (ft) =  | 0          | 6.15      | 12.3          | 18.45    | 24.6     | 30.75    |
| Vs.req =  | -112.5234  | -18.47977 | 31.75543714   | 35.56396 | 27.06882 | 14.00878 |
| Vs.act =  | 13.53      | 59.98494  | 94.2078768    | 81.2984  | 49.6766  | 16.13115 |
| s =       | 24         | 24        | 6.99          | 6.8      | 9.68     | 20.13    |
| stirrups= | 3.075      | 3.075     | 10.55793991   | 10.85294 | 7.623967 | 3.66617  |
|           |            |           | <u>18 D-2</u> |          |          |          |
| x (ft) =  | 0          | 6.1       | 12.2          | 18.3     | 24.4     | 30.5     |
| Vs.req =  | -108.8098  | -19.42314 | 31.4363523    | 35.46679 | 32.78135 | 18.95448 |
| Vs.act =  | 13.42      | 59.36579  | 93.59076214   | 91.70516 | 69.5412  | 25.48101 |
| S =       | 24         | 24        | 7.01          | 6.76     | 7.31     | 12.64    |
| stirrups= | 3.05       | 3.05      | 10.44222539   | 10.8284  | 10.01368 | 5.791139 |
|           |            |           |               |          |          |          |

1. fc girder-6 ksi, fc slab-3.6 ksi

2. Prestressing steel-0.5 in grade 270 low relaxation

3. Stirrup steel-two # 3 U legged grade 40(40ksi)

Table 8.3.1.1c: Girder Spacing = 7 feet

| x (ft) =         | 0         | 3.7       | <u>8D</u><br>7.4 | 11.1                 | 14.8      | 18.5     |
|------------------|-----------|-----------|------------------|----------------------|-----------|----------|
|                  |           | -46.38499 | 7.727826554      | 15.10352             |           | 5.548831 |
|                  | 8.14      |           | 18.7921265       |                      |           | 8.14     |
| Vs.act =         |           | 16.28     |                  | 18.79213             | 16.28     |          |
| S =              | 24        | 24        | 24               | 18.34                | 24        | 24       |
| stirrups=        | 1.85      | 1.85      | 1.85             | 2.420938             | 1.85      | 1.85     |
| (6)              |           |           | <u>8 S</u>       | 40.0                 |           | 10       |
| x (ft) =         | 0         | 3.6       | 7.2              | 10.8                 | 14.4      | 18       |
| Vs.req =         | 92.91091  | 59.9848   | 29.75807518      | 8.522401             | 10.19901  | 4.951898 |
| Vs.act =         | 95.04     | 59.60789  | 27.67883576      | 15.84                | 15.84     | 7.92     |
| S =              | 2         | 4.77      | 9.62             | 24                   | 24        | 24       |
| stirrups=        | 21.6      | 9.056604  | 4.490644491      | 1.8                  | 1.8       | 1.8      |
|                  |           |           | <u>10 D-1</u>    |                      |           |          |
| x (ft) =         | 0         | 4.2       | 8.4              | 12.6                 | 16.8      | 21       |
| Vs.req =         | -112.6285 | -41.485   | 12.9629103       | 19.84461             | 16.7555   | 9.535025 |
| Vs.act =         | 9.24      | 20.61231  | 27.38386004      | 28.90458             | 22.13302  | 9.24     |
| s =              | 24        | 24        | 19.5             | 13.85                | 17.2      | 24       |
| stirrups=        | 2.1       | 2.1       | 2.584615385      | 3.638989             | 2.930233  | 2.1      |
|                  |           |           | <u>10 D-2</u>    |                      |           |          |
| x (ft) =         | 0         | 4.25      | 8.5              | 12.75                | 17        | 21.25    |
| Vs.req =         | -113.4959 | -39.91507 | 13.73703657      | 20.33558             | 17.10728  | 9.795757 |
| Vs.act =         | 9.35      | 21.44052  | 28.51804286      | 29.59654             | 22.51901  | 9.35     |
| S =              | 24        | 24        | 18.56            | 13.66                | 17.04     | 24       |
| stirrups=        | 2.125     | 2.125     | 2.747844828      | 3.733529             | 2.992958  | 2.125    |
|                  |           |           | <u>12D</u>       |                      |           |          |
| x (ft) =         | 0         | 4.75      | 9.5              | 14.25                | 19        | 23.75    |
| Vs.req =         | -136.2831 | -34.86957 | 18.91076406      | 25.28352             | 21.36131  | 13.28411 |
| Vs.act =         | 10.45     | 29.16642  | 41.70450224      | 41.51098             |           | 13.93333 |
| S =              | 24        | 24        | 13.4             | 10.91                | 13.54     | 18       |
| stirrups=        | 2.375     | 2.375     | 4.253731343      | 5.224565             | 4.209749  | 3.166667 |
|                  |           |           | <u>12S</u>       |                      |           |          |
| x (ft) =         | 0         | 4.6       | 9.2              | 13.8                 | 18.4      | 23       |
| Vs.req =         | 108.8307  | 67.17884  | 29.8215196       | 19.49829             | 20.77612  | 13.84895 |
| Vs.act =         | 110.4     | 84.47402  | 42.92146428      | 35.05763             |           | 12.0536  |
| S =              | 2.2       | 4.15      | 9.36             | 14.31                | 13.43     | 20.15    |
| stirrups=        | 25.09091  | 13.3012   | 5.897435897      | 3.857442             |           | 2.739454 |
| 0                | _0.0000.  |           | <u>14 D-1</u>    | 0.001 1.2            |           |          |
| x (ft) =         | 0         | 5.2       | 10.4             | 15.6                 | 20.8      | 26       |
| Vs.req =         | -82.75938 | -10.95779 | 37.86209389      | 39.71869             | 29.78807  | 15.65017 |
| Vs.act =         | 11.44     | 57.42995  | 89.98994975      | 74.30464             | 45.99378  | 15.68914 |
| S =              | 24        | 24        | 5.97             | 6.24                 | 9.06      | 17.5     |
| s =<br>stirrups= | 2.6       | 2.6       | 10.45226131      | 10                   | 6.887417  | 3.565714 |
|                  | 2.0       | 2.0       | 14 D-2           |                      | 5.007 117 | 0.000111 |
| x (ft) =         | 0         | 5.2       | 10.4             | 15.6                 | 20.8      | 26       |
| Vs.req =         | -79.99025 | -10.35141 | 38.45572325      | 40.28695             | 36.46599  | 23.28229 |
| Vs.act =         | 11.44     | 58.37333  | 91.79607843      | 40.20093<br>85.47813 | 66.54173  | 25.92635 |
| s =              | 24        | 24        | 5.85             | 6.12                 | 6.76      | 10.59    |
| s =<br>stirrups= | 24        | 24        | 10.666666667     | 10.19608             | 9.230769  | 5.892351 |
| · ·              |           | 2.0       | 10.0000007       | 10.19000             | 3.230109  | 3.032331 |
| continued        | l l       |           |                  |                      |           |          |

Table 8.3.1.1c, page 2

| - 4810 0101 | 1.10, page |           |               |          |          |          |
|-------------|------------|-----------|---------------|----------|----------|----------|
|             |            |           | <u>16 D-1</u> |          |          |          |
| x (ft) =    | 0          | 5.55      | 11.1          | 16.65    | 22.2     | 27.75    |
| Vs.req =    | -93.79792  | -10.79815 | 39.62893785   | 41.87343 | 31.71012 | 16.92082 |
| Vs.act =    | 12.21      | 63.89254  | 101.6041751   | 84.6832  | 51.93859 | 17.17702 |
| S =         | 24         | 24        | 5.67          | 5.87     | 8.43     | 17.06    |
| stirrups=   | 2.775      | 2.775     | 11.74603175   | 11.34583 | 7.900356 | 3.903869 |
|             |            |           | <u>16 D-2</u> |          |          |          |
| x (ft) =    | 0          | 5.5       | 11            | 16.5     | 22       | 27.5     |
| Vs.req =    | -92.83795  | -12.49369 | 38.65263477   | 41.16989 | 37.5541  | 24.03503 |
| Vs.act =    | 12.1       | 62.25544  | 99.0443293    | 93.49718 | 73.13482 | 28.52652 |
| s =         | 24         | 24        | 5.79          | 5.94     | 6.51     | 10.18    |
| stirrups=   | 2.75       | 2.75      | 11.39896373   | 11.11111 | 10.13825 | 6.483301 |
|             |            |           | <u>16 S</u>   |          |          |          |
| x (ft) =    | 0          | 5.3       | 10.6          | 15.9     | 21.2     | 26.5     |
| Vs.req =    | 115.3753   | 67.03949  | 24.23974492   | 24.40065 | 25.39863 | 17.34034 |
| Vs.act =    | 119.0809   | 94.29774  | 50.21853026   | 51.41492 | 44.13083 | 17.90403 |
| s =         | 2.35       | 4.04      | 11.18         | 11.11    | 10.67    | 15.63    |
| stirrups=   | 27.06383   | 15.74257  | 5.688729875   | 5.724572 | 5.960637 | 4.069098 |
|             |            |           | <u>18 D-1</u> |          |          |          |
| x (ft) =    | 0          | 5.75      | 11.5          | 17.25    | 23       | 28.75    |
| Vs.req =    | -103.852   | -15.7758  | 38.1398441    | 41.49339 | 31.79134 | 17.08048 |
| Vs.act =    | 12.65      | 64.81495  | 52.68570317   | 37.36541 | 55.23352 | 18.38886 |
| s =         | 24         | 24        | 5.82          | 583      | 8.24     | 16.51    |
| stirrups=   | 2.875      | 2.875     | 11.8556701    | 0.118353 | 8.373786 | 4.179285 |
|             |            |           | <u>18 D-2</u> |          |          |          |
| x (ft) =    | 0          | 5.7       | 11.4          | 17.1     | 22.8     | 28.5     |
| Vs.req =    | -100.1181  | -16.94237 | 37.69283131   | 41.29923 | 37.93796 | 24.61982 |
| Vs.act =    | 12.54      | 63.98615  | 103.335809    | 99.50991 | 78.55139 | 30.93114 |
| S =         | 24         | 24        | 5.85          | 5.8      | 6.32     | 9.73     |
| stirrups=   | 2.85       | 2.85      | 11.69230769   | 11.7931  | 10.82278 | 7.029805 |
|             |            |           |               |          |          |          |

1. fc girder-6 ksi, fc slab-3.6 ksi

2. Prestressing steel-0.5 in grade 270 low relaxation

3. Stirrup steel-two # 3 U legged grade 40(40ksi)

Table 8.3.1.1d: Girder Spacing = 8 feet

|                  |           | uer opac          | iiig = 0 leet | 1         |                  |                |
|------------------|-----------|-------------------|---------------|-----------|------------------|----------------|
|                  |           |                   | <u>8D</u>     |           |                  |                |
| x (ft) =         | 0         | 3.45              | 6.9           | 10.35     | 13.8             | 17.25          |
| Vs.req =         | -77.52125 |                   | 9.539293267   | 17.31767  | 13.28417         | 5.931019       |
| Vs.act =         | 7.59      | 15.18             | 18.975        | 19.71041  | 15.91541         | 7.59           |
| S =              | 24        | 24                | 24            | 16        | 21.88            | 24             |
| stirrups=        | 1.725     | 1.725             | 1.725         | 2.5875    | 1.892139         | 1.725          |
|                  |           |                   | <u>8 S</u>    |           |                  |                |
| x (ft) =         | 0         | 3.4               | 6.8           | 10.2      | 13.6             | 17             |
| Vs.req =         | 109.4454  | 73.82712          | 41.41669825   | 13.19083  | 12.79037         | 6.396325       |
| Vs.act =         | 119.68    | 81.7437           | 42.14069857   | 16.28687  | 15.49787         | 7.48           |
| s =              | 1.5       | 3.75              | 5.3           | 21.71     | 22.39            | 24             |
| stirrups=        | 27.2      | 10.88             | 7.698113208   | 1.879318  | 1.822242         | 1.7            |
|                  |           |                   | <u>10 D-1</u> |           |                  |                |
| x (ft) =         | 0         | 3.95              | 7.9           | 11.85     | 15.8             | 19.75          |
| Vs.req =         | -101.5444 | -40.08501         | 17.46308262   | 24.09609  | 20.04308         | 11.69464       |
| Vs.act =         | 8.69      | 23.10327          | 32.69197172   | 32.78218  | 26.09014         | 11.58667       |
| s =              | 24        | 24                | 14.47         | 11.41     | 14.38            | 18             |
| stirrups=        | 1.975     | 1.975             | 3.275742916   | 4.154251  | 3.296245         | 2.633333       |
|                  |           |                   | <u>10 D-2</u> |           |                  |                |
| x (ft) =         | 0         | 4.15              | 8.3           | 12.45     | 16.6             | 20.75          |
| Vs.req =         | -97.40337 | -29.27315         | 24.48583324   | 29.48344  | 24.42383         | 15.19328       |
| Vs.act =         | 9.13      | 30.17899          | 44.31013785   | 41.61291  | 34.00319         | 15.65143       |
| S =              | 24        | 24                | 10.41         | 9.42      | 11.94            | 14             |
| stirrups=        | 2.075     | 2.075             | 4.783861671   | 5.286624  | 4.170854         | 3.557143       |
|                  |           |                   | 12D           |           |                  |                |
| x (ft) =         | 0         | 4.4               | 8.8           | 13.2      | 17.6             | 22             |
| Vs.req =         |           | -37.71347         | 20.63179001   | 27.28738  | 23.08879         | 14.37227       |
| Vs.act =         | 9.68      | 28.58317          | 41.8824018    | 41.52033  | 33.0611          | 14.52          |
| S =              | 24        | 24                | 12.29         | 10.11     | 12.53            | 16             |
| stirrups=        | 2.2       | 2.2               | 4.296175753   | 5.222552  | 4.213887         | 3.3            |
| 0                |           |                   | <u>12S</u>    | 000       |                  | 0.0            |
| x (ft) =         | 0         | 4.3               | 8.6           | 12.9      | 17.2             | 21.5           |
| Vs.req =         |           | 83.25561          | 43.47212574   | 22.4802   | 23.52166         | 15.73599       |
| Vs.act =         | 129.7371  | 103.1376          | 53.65940943   | 37.43826  | 31.94875         | 12.80541       |
| S =              | 1.75      | 3.35              | 6.42          | 12.41     | 11.86            | 17.73          |
| stirrups=        | 29.48571  | 15.40299          | 8.037383178   | 4.157937  | 4.350759         | 2.910321       |
| Surrup3-         | 20.40071  | 10.40200          | <u>14 D-1</u> | 4.107.007 | 4.000700         | 2.010021       |
| x (ft) =         | 0         | 4.85              | <u>9.7</u>    | 14.55     | 19.4             | 24.25          |
| Vs.req =         | -75.02539 | -10.01339         | 42.46311698   | 43.77871  | 32.88761         | 17.73252       |
| Vs.act =         | 10.67     | 58.80534          | 93.3791546    | 76.02266  | 48.43954         | 17.66069       |
| s =              | 24        | 24                | 5.32          | 5.66      | 8.32             | 14.5           |
| s =<br>stirrups= | 2.425     | 2.425             | 10.93984962   | 10.28269  | 6.995192         | 4.013793       |
| surups=          | 2.423     | 2.423             | 14 D-2        | 10.20209  | 0.330182         | 4.013733       |
| x (ft) =         | 0         | 4.85              | 9.7           | 14.55     | 19.4             | 24.25          |
|                  | -72.17523 | 4.05<br>-9.356501 | 43.10619392   | 44.39971  | 40.11147         | 24.25 28.64387 |
| Vs.req =         |           | 59.72747          |               |           |                  |                |
| Vs.act =         | 10.67     |                   | 95.1980118    | 95.86481  | 79.46643<br>5.15 | 29.74216       |
| S =              | 24        | 24                | 5.22          | 5.55      | 5.15<br>11.30097 | 8.61           |
| stirrups=        | 2.425     | 2.425             | 11.14942529   | 10.48649  | 11.30097         | 6.759582       |
| continued        | l I       |                   |               |           |                  |                |

Table 8.3.1.1d, page 2

|           | ning, puge |           |                |          |          |          |
|-----------|------------|-----------|----------------|----------|----------|----------|
|           |            |           | <u>16 D-1</u>  |          |          |          |
| x (ft) =  | 0          | 5.2       | 10.4           | 15.6     | 20.8     | 26       |
| Vs.req =  | -85.5308   | -8.689962 | 45.20494197    | 46.8876  | 35.61304 | 19.61385 |
| Vs.act =  | 11.44      | 66.68346  | 107.5406036    | 88.90514 | 55.27285 | 18.66485 |
| S =       | 24         | 24        | 4.97           | 5.25     | 7.5      | 14.71    |
| stirrups= | 2.6        | 2.6       | 12.55533199    | 11.88571 | 8.32     | 4.242012 |
|           |            |           | <u>16 D-2</u>  |          |          |          |
| x (ft) =  | 0          | 5.2       | 10.4           | 15.6     | 20.8     | 26       |
| Vs.req =  | -82.72137  | -8.076022 | 45.80622194    | 47.4635  | 42.92938 | 29.85898 |
| Vs.act =  | 11.44      | 67.7023   | 109.5749164    | 101.481  | 81.69223 | 33.52381 |
| s =       | 24         | 24        | 4.88           | 5.15     | 5.7      | 8.19     |
| stirrups= | 2.6        | 2.6       | 12.78688525    | 12.1165  | 10.94737 | 7.619048 |
|           |            |           | <u>16 S</u>    |          |          |          |
| x (ft) =  | 0          | 5         | 10             | 15       | 20       | 25       |
| Vs.req =  | 136.0441   | 84.65411  | 38.94029677    | 29.00271 | 29.55474 | 20.59411 |
| Vs.act =  | 138.9474   | 120.431   | 66.19655911    | 57.05506 | 48.85032 | 20.06079 |
| s =       | 1.9        | 3.2       | 6.96           | 9.34     | 9.17     | 13.16    |
| stirrups= | 31.57895   | 18.75     | 8.620689655    | 6.423983 | 6.543075 | 4.559271 |
|           |            |           | <u>18 D-1</u>  |          |          |          |
|           |            | F         | FAILED IN FLEX | URE      |          |          |
|           |            |           | <u>18 D-2</u>  |          |          |          |
| x (ft) =  | 0          | 5.35      | 10.7           | 16.05    | 21.4     | 26.75    |
| Vs.req =  | -91.7318   | -14.84899 | 43.45150468    | 46.56494 | 42.5769  | 30.30406 |
| Vs.act =  | 11.77      | 67.48598  | 110.5664618    | 105.0246 | 85.88582 | 35.71176 |
| S =       | 24         | 24        | 5.07           | 5.15     | 5.63     | 7.91     |
| stirrups= | 2.675      | 2.675     | 12.66272189    | 12.46602 | 11.4032  | 8.116308 |

1. fc girder-6 ksi, fc slab-3.6 ksi

2. Prestressing steel-0.5 in grade 270 low relaxation 3. Stirrup steel-two # 3 U legged grade 40(40ksi)

| Table 8.3.1.1e: Gi | irder Spacing = | 9 feet |
|--------------------|-----------------|--------|
|                    |                 |        |

|           |           | uer opue  |               |          |          |          |
|-----------|-----------|-----------|---------------|----------|----------|----------|
| (6)       | 0         | 0.05      | <u>8D</u>     | 0.75     | 10       | 10.05    |
| x (ft) =  | 0         | 3.25      | 6.5           | 9.75     | 13       | 16.25    |
|           |           | -47.61392 | 12.82401856   | 20.39919 | 15.39862 | 6.632893 |
| Vs.act =  | 7.15      | 15.79919  | 21.2854233    | 21.72521 | 16.23898 | 7.15     |
| S =       | 24        | 24        | 19.84         | 13.58    | 18.88    | 24       |
| stirrups= | 1.625     | 1.625     | 1.965725806   | 2.87187  | 2.065678 | 1.625    |
|           |           |           | <u>8 S</u>    |          |          |          |
| x (ft) =  | 0         | 3.2       | 6.4           | 9.6      | 12.8     | 16       |
| Vs.req =  | 122.5482  | 85.12945  | 51.9343727    | 21.92214 | 14.77639 | 7.013201 |
| Vs.act =  | 135.168   | 92.52571  | 55.17721286   | 21.65548 | 15.75827 | 7.04     |
| S =       | 1.25      | 3.36      | 4             | 13.06    | 19.38    | 24       |
| stirrups= | 30.72     | 11.42857  | 9.6           | 2.940276 | 1.981424 | 1.6      |
|           |           |           | <u>10 D-1</u> |          |          |          |
| x (ft) =  | 0         | 3.7       | 7.4           | 11.1     | 14.8     | 18.5     |
| Vs.req =  | -93.29721 | -41.68516 | 19.28446272   | 26.33176 | 21.32425 | 12.24663 |
| Vs.act =  | 8.14      | 23.0416   | 33.61424551   | 33.17304 | 22.63788 | 8.17748  |
| S =       | 24        | 24        | 13.11         | 10.44    | 13.51    | 23.89    |
| stirrups= | 1.85      | 1.85      | 3.386727689   | 4.252874 | 3.286454 | 1.858518 |
|           |           |           | <u>10 D-2</u> |          |          |          |
| x (ft) =  | 0         | 3.7       | 7.4           | 11.1     | 14.8     | 18.5     |
| Vs.req =  | -95.63738 | -43.20588 | 17.91675856   | 25.10885 | 20.27706 | 11.40338 |
| Vs.act =  | 8.14      | 21.86874  | 31.3923949    | 31.24919 | 25.0773  | 11.49176 |
| s =       | 24        | 24        | 14.23         | 11.06    | 14.38    | 17       |
| stirrups= | 1.85      | 1.85      | 3.120168658   | 4.014467 | 3.087622 | 2.611765 |
|           |           |           | <u>12D</u>    |          |          |          |
| x (ft) =  | 0         | 4.15      | 8.3           | 12.45    | 16.6     | 20.75    |
| Vs.req =  | -119.4233 | -36.3861  | 24.81227591   | 31.16492 | 26.16704 | 16.40115 |
| Vs.act =  | 9.13      | 30.57031  | 46.19963515   | 44.58919 | 36.68525 | 16.85538 |
| s =       | 24        | 24        | 10.22         | 8.85     | 11.05    | 13       |
| stirrups= | 2.075     | 2.075     | 4.872798434   | 5.627119 | 4.506787 | 3.830769 |
|           |           |           | <u>12S</u>    |          |          |          |
| x (ft) =  | 0         | 4.05      | 8.1           | 12.15    | 16.2     | 20.25    |
| Vs.req =  | 143.8451  | 97.72015  | 55.84831642   | 25.79463 | 26.37803 | 17.64081 |
| Vs.act =  | 147.4759  | 117.5372  | 62.53140111   | 39.97512 | 38.03172 | 17.82    |
| S =       | 1.45      | 2.86      | 5             | 10.82    | 10.58    | 12       |
| stirrups= | 33.51724  | 16.99301  | 9.72          | 4.491682 | 4.593573 | 4.05     |
|           |           |           | <u>14 D-1</u> |          |          |          |
| x (ft) =  | 0         | 4.55      | 9.1           | 13.65    | 18.2     | 22.75    |
| Vs.req =  | -67.27967 | -8.380787 | 47.12990732   | 47.78899 | 35.94445 | 19.66732 |
| Vs.act =  | 10.01     | 60.16449  | 96.44350586   | 78.27836 | 52.00935 | 20.02    |
| s =       | 24        | 24        | 4.79          | 5.19     | 7.51     | 12       |
| stirrups= | 2.275     | 2.275     | 11.39874739   | 10.52023 | 7.270306 | 4.55     |
|           |           |           | <u>14 D-2</u> |          |          |          |
| x (ft) =  | 0         | 4.55      | 9.1           | 13.65    | 18.2     | 22.75    |
| Vs.req =  | -64.3654  | -7.679211 | 47.81656731   | 48.45536 | 43.68404 | 31.38797 |
| Vs.act =  | 10.01     | 61.12489  | 98.31332191   | 89.79417 | 74.62774 | 32.032   |
| S =       | 24        | 24        | 4.7           | 5.09     | 5.64     | 7.5      |
| stirrups= | 2.275     | 2.275     | 11.61702128   | 10.72692 | 9.680851 | 7.28     |
| Continue  |           |           |               | •        |          |          |

Table 8.3.1.1e, page 2

|           |                   |           | <u>16 D-1</u>  |          |          |          |  |  |
|-----------|-------------------|-----------|----------------|----------|----------|----------|--|--|
| x (ft) =  | 0                 | 4.9       | 9.8            | 14.7     | 19.6     | 24.5     |  |  |
| Vs.req =  | -77.15784         | -5.724909 | 50.96921757    | 51.82739 | 39.39858 | 22.2522  |  |  |
| Vs.act =  | 10.78             | 69.44667  | 113.1340351    | 92.62666 | 58.10686 | 19.94757 |  |  |
| S =       | 24                | 24        | 4.41           | 4.75     | 6.78     | 12.97    |  |  |
| stirrups= | 2.45              | 2.45      | 13.33333333    | 12.37895 | 8.672566 | 4.533539 |  |  |
|           |                   |           | <u>16 D-2</u>  |          |          |          |  |  |
| x (ft) =  | 0                 | 4.9       | 9.8            | 14.7     | 19.6     | 24.5     |  |  |
| Vs.req =  | -74.27277         | -5.071517 | 51.60911987    | 52.44482 | 47.18718 | 34.02686 |  |  |
| Vs.act =  | 10.78             | 70.53058  | 115.2698907    | 105.4653 | 85.92926 | 35.98331 |  |  |
| S =       | 24                | 24        | 4.33           | 4.66     | 5.18     | 7.19     |  |  |
| stirrups= | 2.45              | 2.45      | 13.57967667    | 12.61803 | 11.35135 | 8.178025 |  |  |
|           |                   |           | <u>16 S</u>    |          |          |          |  |  |
| x (ft) =  | 0                 | 4.75      | 9.5            | 14.25    | 19       | 23.75    |  |  |
| Vs.req =  | 154.506           | 100.6626  | 52.50051415    | 34.06409 | 33.93828 | 24.01549 |  |  |
| Vs.act =  | 156.75            | 141.8389  | 80.11218885    | 62.93611 | 53.66261 | 22.23404 |  |  |
| S =       | 1.6               | 2.69      | 5.16           | 7.96     | 7.98     | 11.28    |  |  |
| stirrups= | 35.625            | 21.18959  | 11.04651163    | 7.160804 | 7.142857 | 5.053191 |  |  |
|           |                   |           | <u>18 D-1</u>  |          |          |          |  |  |
|           | FAILED IN FLEXURE |           |                |          |          |          |  |  |
|           |                   |           | <u>18 D-2</u>  |          |          |          |  |  |
|           |                   |           | FAILED IN FLEX | URE      |          |          |  |  |

1. fc girder-6 ksi, fc slab-3.6 ksi

2. Prestressing steel-0.5 in grade 270 low relaxation 3. Stirrup steel-two # 3 U legged grade 40(40ksi)

## SHEAR CAPACITY TABLES FOR G 42-I GIRDER

|                      |           | uer Spac  | ing = 5 ieei         |          |          |                          |
|----------------------|-----------|-----------|----------------------|----------|----------|--------------------------|
| v (ft)               | 0         | 5.4       | <u>10 D</u><br>10.8  | 16.2     | 21.6     | 27                       |
| x (ft) =             |           | -53.12453 |                      | 11.69458 | 10.17143 |                          |
| Vs.req =<br>Vs.act = | 11.88     | 23.76     | 2.161787492<br>23.76 | 23.76    | 23.76    | <u>1.894296</u><br>11.88 |
|                      | 24        | 23.76     | 23.76                | 23.76    | 23.76    | 24                       |
| S =                  |           |           | 24 2.7               | 24       |          |                          |
| stirrups=            | 2.7       | 2.7       |                      | 2.7      | 2.7      | 2.7                      |
| · ( <b>f</b> t)      | 0         | 6.4       | <u>12 D-1</u>        | 10.0     | 04.4     | 20 F                     |
| x (ft) =             | 0         | 6.1       | 12.2                 | 18.3     | 24.4     | 30.5                     |
| Vs.req =             |           | -28.34223 | 20.87046575          | 25.9579  | 18.81536 | 3.348758                 |
| Vs.act =             | 13.42     | 38.40681  | 53.23944306          | 47.02186 | 32.18923 | 13.42                    |
| S =                  | 24        | 24        | 12.89                | 11.4     | 17.16    | 24                       |
| stirrups=            | 3.05      | 3.05      | 5.678820791          | 6.421053 | 4.265734 | 3.05                     |
| (6.)                 |           |           | <u>12 D-2</u>        | 10.15    |          | ~~~~                     |
| x (ft) =             | 0         | 6.05      | 12.1                 | 18.15    | 24.2     | 30.25                    |
| Vs.req =             | -90.61673 |           | 20.12015242          | 25.45394 | 23.71305 | 8.10366                  |
| Vs.act =             | 13.31     | 37.31     | 51.63321799          | 53.39451 | 39.07129 | 13.31                    |
| s =                  | 24        | 24        | 13.31                | 11.56    | 12.4     | 24                       |
| stirrups=            | 3.025     | 3.025     | 5.454545455          | 6.280277 | 5.854839 | 3.025                    |
|                      |           |           | <u>12 S</u>          |          |          |                          |
| x (ft) =             | 0         | 5.9       | 11.8                 | 17.7     | 23.6     | 29.5                     |
| Vs.req =             | 61.3282   | 26.02731  | -5.710661989         | 12.12002 | 13.93437 | 4.48825                  |
| Vs.act =             | 62.304    | 37.39379  | 25.96                | 26.04711 | 26.04711 | 12.98                    |
| s =                  | 5         | 12.76     | 24                   | 24       | 23.84    | 24                       |
| stirrups=            | 14.16     | 5.548589  | 2.95                 | 2.95     | 2.969799 | 2.95                     |
|                      |           |           | <u>14 D-1</u>        |          |          |                          |
| x (ft) =             | 0         | 6.7       | 13.4                 | 20.1     | 26.8     | 33.5                     |
| Vs.req =             |           | -22.52414 | 25.90326704          | 30.26704 | 22.21705 | 4.669292                 |
| Vs.act =             | 14.74     | 48.91971  | 70.50003869          | 60.78506 | 39.20473 | 14.74                    |
| s =                  | 24        | 24        | 10.35                | 9.74     | 14.46    | 24                       |
| stirrups=            | 3.35      | 3.35      | 7.768115942          | 8.25462  | 5.560166 | 3.35                     |
|                      |           |           | <u>14 D-2</u>        |          |          |                          |
| x (ft) =             | 0         | 6.65      | 13.3                 | 19.95    | 26.6     | 33.25                    |
| Vs.req =             | -100.3514 | -23.80522 | 25.18535005          | 29.78275 | 27.27481 | 9.258914                 |
| Vs.act =             | 14.63     | 47.72331  | 68.77623503          | 68.34525 | 47.29233 | 14.63                    |
| s =                  | 24        | 24        | 10.61                | 9.84     | 10.75    | 24                       |
| stirrups=            | 3.325     | 3.325     | 7.521206409          | 8.109756 | 7.423256 | 3.325                    |
|                      |           |           | <u>16 D</u>          |          |          |                          |
| x (ft) =             | 0         | 7.1       | 14.2                 | 21.3     | 28.4     | 35.5                     |
| Vs.req =             |           | -41.86736 | 12.91559835          |          | 18.30805 | 5.437796                 |
| Vs.act =             | 15.62     | 31.81352  | 41.30269667          | 45.24237 | 35.75319 | 15.62                    |
| S =                  | 24        | 24        | 23.15                | 14.93    | 18.62    | 24                       |
| stirrups=            | 3.55      | 3.55      | 3.680345572          | 5.706631 | 4.575725 | 3.55                     |
|                      |           |           | <u>16 S</u>          |          |          |                          |
| x (ft) =             | 0         | 6.8       | 13.6                 | 20.4     | 27.2     | 34                       |
| Vs.req =             | 65.5884   | 24.23266  | -6.766418459         | 16.51323 | 17.85566 | 6.951931                 |
| Vs.act =             | 79.78667  | 41.79408  | 33.25037188          | 38.07219 | 34.74182 | 14.96                    |
| S =                  | 4.5       | 13.38     | 24                   | 19.63    | 18.15    | 24                       |
| stirrups=            | 18.13333  | 6.098655  | 3.4                  | 4.156903 | 4.495868 | 3.4                      |
| continue             |           | 5.000000  | 0.7                  | 1.100300 | 1.40000  | 0.7                      |

Table 8.3.1.2a: Girder Spacing = 5 feet

Table 8.3.1.2a: page 2

| Table 0.3.                       | 1.2a: page     |                  |               |          | ,        |          |
|----------------------------------|----------------|------------------|---------------|----------|----------|----------|
|                                  |                |                  | <u>18 D</u>   |          |          |          |
| x (ft) =                         | 0              | 7.5              | 15            | 22.5     | 30       | 37.5     |
| Vs.req =                         | -220.6136      | -43.10748        | 13.47651111   | 22.42678 | 18.92215 | 6.091029 |
| Vs.act =                         | 16.5           | 34.39426         | 45.29910547   | 49.46613 | 38.56128 | 16.5     |
| s =                              | 24             | 24               | 22.13         | 14.45    | 17.95    | 24       |
| stirrups=                        | 3.75           | 3.75             | 4.066877542   | 6.228374 | 5.013928 | 3.75     |
|                                  |                |                  | <u>20 D</u>   |          |          |          |
| x (ft) =                         | 0              | 7.8              | 15.6          | 23.4     | 31.2     | 39       |
| Vs.req =                         | -243.8311      | -47.29866        | 11.92913415   | 21.52768 | 18.33531 | 6.540117 |
| Vs.act =                         | 17.16          | 34.32            | 44.57944075   | 49.70516 | 39.44571 | 17.16    |
| S =                              | 24             | 24               | 24            | 15.02    | 18.48    | 24       |
| stirrups=                        | 3.9            | 3.9              | 3.9           | 6.231691 | 5.064935 | 3.9      |
|                                  |                |                  | <u>20 S</u>   |          |          |          |
| x (ft) =                         | 0              | 7.35             | 14.7          | 22.05    | 29.4     | 36.75    |
| Vs.req =                         | 65.09338       | 20.06272         | -9.438956953  | 15.98622 | 17.98684 | 8.512024 |
| Vs.act =                         | 80.85          | 40.82565         | 35.81962025   | 41.74985 | 38.27023 | 16.17    |
| S =                              | 4.8            | 15.74            | 24            | 19.75    | 17.56    | 24       |
| stirrups=                        | 18.375         | 5.603558         | 3.675         | 4.465823 | 5.022779 | 3.675    |
| •                                |                |                  | <u>24 D-1</u> |          |          |          |
| x (ft) =                         | 0              | 8.35             | 16.7          | 25.05    | 33.4     | 41.75    |
| Vs.req =                         | -166.5687      | -32.0319         | 25.83528578   | 31.26747 | 23.05365 | 7.511509 |
| Vs.act =                         | 18.37          | 61.38268         | 90.57255348   | 79.85877 | 50.6689  | 18.37    |
| S =                              | 24             | 24               | 10.25         | 9.27     | 13.65    | 24       |
| stirrups=                        | 4.175          | 4.175            | 9.775609756   | 10.80906 | 7.340659 | 4.175    |
| •                                |                |                  | 24 D-2        |          |          |          |
| x (ft) =                         | 0              | 8.25             | 16.5          | 24.75    | 33       | 41.25    |
| Vs.req =                         | -161.3721      | -33.92696        | 24.96503117   | 30.86386 | 23.06086 | 7.941185 |
| Vs.act =                         | 18.15          | 59.59624         | 88.43653294   | 79.40101 | 50.56071 | 18.15    |
| S =                              | 24             | 24               | 10.51         | 9.27     | 13.44    | 24       |
| stirrups=                        | 4.125          | 4.125            | 9.419600381   | 10.67961 | 7.366071 | 4.125    |
| •                                |                |                  | <u>26 D-1</u> |          |          |          |
| x (ft) =                         | 0              | 8.5              | 17            | 25.5     | 34       | 42.5     |
| Vs.req =                         | -173.5899      | -37.05225        | 24.0656442    | 30.38359 | 22.70353 | 8.298102 |
| Vs.act =                         | 18.7           | 59.91212         | 89.00764837   | 80.77128 | 51.67575 | 18.7     |
| S =                              | 24             | 24               | 10.89         | 9.39     | 13.61    | 24       |
| stirrups=                        | 4.25           | 4.25             | 9.366391185   | 10.86262 | 7.494489 | 4.25     |
|                                  |                |                  | <u>26 D-2</u> |          |          |          |
|                                  |                |                  | 17            | 25.5     | 34       | 42.5     |
| x (ft) =                         | 0              | 8.5              | 17            |          |          |          |
| x (ft) =<br>Vs.req =             | 0<br>-171.7207 | 8.5<br>-36.74528 | 24.35856258   | 30.65738 | 29.23355 | 11.59156 |
| x (ft) =<br>Vs.req =<br>Vs.act = |                |                  |               |          |          |          |
| Vs.req =                         | -171.7207      | -36.74528        | 24.35856258   | 30.65738 | 29.23355 | 11.59156 |

1. fc girder-6 ksi, fc slab-3.6 ksi

Prestressing steel-0.5 in grade 270 low relaxation
 Stirrup steel-two # 3 U legged grade 40(40ksi)

| Table | e 8.3. | 1.2b: | Girder | Spac | ing = | 61 | ieet |
|-------|--------|-------|--------|------|-------|----|------|
|-------|--------|-------|--------|------|-------|----|------|

|           |           | •         | 10 D          |           |          |          |
|-----------|-----------|-----------|---------------|-----------|----------|----------|
| x (ft) =  | 0         | 4.95      | 9.9           | 14.85     | 19.8     | 24.75    |
|           |           | -57.46947 |               | 13.80868  |          | 5.922492 |
| Vs.act =  | 10.89     | 21.78     | 21.89926706   | 21.89927  | 21.78    | 10.89    |
| S =       | 24        | 24        | 24            | 23.74     | 24       | 24       |
| stirrups= | 2.475     | 2.475     | 2.475         | 2.502106  | 2.475    | 2.475    |
| ounapo    | 20        | 20        | <u>12 D-1</u> | 2.002.100 | 20       | 20       |
| x (ft) =  | 0         | 5.55      | 11.1          | 16.65     | 22.2     | 27.75    |
| Vs.req =  | -85.38637 |           | 23.18770756   | 28.78585  | 21.1578  | 8.795737 |
| Vs.act =  | 12.21     | 37.47207  | 53.76790554   | 47.70898  | 31.41315 | 12.21    |
| S =       | 24        | 24        | 11.6          | 10.28     | 15.26    | 24       |
| stirrups= | 2.775     | 2.775     | 5.74137931    | 6.478599  | 4.364351 | 2.775    |
|           |           |           | 12 D-2        |           |          |          |
| x (ft) =  | 0         | 5.56      | 11.12         | 16.68     | 22.24    | 27.8     |
| Vs.req =  | -82.69933 | -31.11903 | 23.97442071   | 29.49426  | 27.55118 | 13.67709 |
| Vs.act =  | 12.232    | 38.51383  | 55.72696173   | 56.93278  | 41.13562 | 13.64798 |
| S =       | 24        | 24        | 11.17         | 9.97      | 10.68    | 21.51    |
| stirrups= | 2.78      | 2.78      | 5.973142346   | 6.692076  |          | 3.101813 |
|           |           |           | 12 S          |           |          |          |
| x (ft) =  | 0         | 5.4       | 10.8          | 16.2      | 21.6     | 27       |
| Vs.req =  | 81.49647  | 43.69143  | 9.509744213   | 14.09397  | 16.29274 | 9.852802 |
| Vs.act =  | 81.46286  | 49.39579  | 23.97673314   | 26.08006  | 25.86333 | 11.88    |
| S =       | 3.5       | 7.6       | 24            | 23.57     | 20.39    | 24       |
| stirrups= | 18.51429  | 8.526316  | 2.7           | 2.749258  | 3.178028 | 2.7      |
|           |           |           | 14 D-1        |           |          |          |
| x (ft) =  | 0         | 6.1       | 12.2          | 18.3      | 24.4     | 30.5     |
| Vs.req =  | -95.6916  | -25.81633 | 28.65428466   | 33.63658  | 25.02014 | 10.48751 |
| Vs.act =  | 13.42     | 47.83026  | 71.1773797    | 61.85124  |          | 13.42    |
| S =       | 24        | 24        | 9.36          | 8.76      | 12.84    | 24       |
| stirrups= | 3.05      | 3.05      | 7.820512821   | 8.356164  | 5.700935 | 3.05     |
| •         |           |           | 14 D-2        |           |          |          |
| x (ft) =  | 0         | 6.1       | 12.2          | 18.3      | 24.4     | 30.5     |
| Vs.req =  | -109.0437 | -28.60541 | 25.9283887    | 30.82005  | 22.25242 | 9.134092 |
| Vs.act =  | 13.42     | 43.89114  | 63.16962191   | 54.19914  | 34.92067 | 13.42    |
| S =       | 24        | 24        | 10.57         | 9.85      | 14.98    | 24       |
| stirrups= | 3.05      | 3.05      | 6.92526017    | 7.431472  | 4.886515 | 3.05     |
|           |           |           | <u>16 D</u>   |           |          |          |
| x (ft) =  | 0         | 6.65      | 13.3          | 19.95     | 26.6     | 33.25    |
| Vs.req =  | -190.0488 | -39.99742 | 18.99691126   | 28.04843  | 23.71042 | 11.88777 |
| Vs.act =  | 14.63     | 37.08013  | 52.74520984   | 54.71233  | 39.04725 | 14.63    |
| S =       | 24        | 24        | 15.64         | 11.59     | 14.38    | 24       |
| stirrups= | 3.325     | 3.325     | 5.10230179    | 6.885246  | 5.549374 | 3.325    |
|           |           |           | <u>16 S</u>   |           |          |          |
| x (ft) =  | 0         | 6.35      | 12.7          | 19.05     | 25.4     | 31.75    |
| Vs.req =  | 88.50333  | 43.48746  | 3.360256061   | 21.80069  | 22.8044  | 13.20979 |
| Vs.act =  | 95.79429  | 58.97403  | 36.51741089   | 46.14206  | 37.56465 | 13.97    |
| s =       | 3.5       | 7.45      | 24            | 14.87     | 14.21    | 24       |
| stirrups= | 21.77143  | 10.22819  | 3.175         | 5.124412  | 5.362421 | 3.175    |
| continue  |           |           |               | •         | •        |          |

Table 8.3.1.2b, page 2

| 1 abic 0.5. | 1.20, page | - 4       |               | 1        | · · · · · · · · · · · · · · · · · · · |          |
|-------------|------------|-----------|---------------|----------|---------------------------------------|----------|
|             |            |           | <u>18 D</u>   |          |                                       |          |
| x (ft) =    | 0          | 7         | 14            | 21       | 28                                    | 35       |
| Vs.req =    | -213.3591  | -42.44876 | 18.51165951   | 28.26238 | 24.02039                              | 12.67319 |
| Vs.act =    | 15.4       | 38.34227  | 55.16546281   | 58.3618  | 41.53861                              | 15.4     |
| s =         | 24         | 24        | 16.11         | 11.47    | 14.14                                 | 24       |
| stirrups=   | 3.5        | 3.5       | 5.2141527     | 7.323452 | 5.940594                              | 3.5      |
|             |            |           | <u>20 D</u>   |          |                                       |          |
| x (ft) =    | 0          | 7.25      | 14.5          | 21.75    | 29                                    | 36.25    |
| Vs.req =    | -238.7673  | -48.37304 | 15.92257045   | 26.62891 | 22.89268                              | 13.19398 |
| Vs.act =    | 15.95      | 36.43154  | 52.01366614   | 57.39699 | 41.81486                              | 15.95    |
| s =         | 24         | 24        | 18.69         | 12.14    | 14.8                                  | 24       |
| stirrups=   | 3.625      | 3.625     | 4.654895666   | 7.166392 | 5.878378                              | 3.625    |
|             |            |           | <u>20 S</u>   |          |                                       |          |
| x (ft) =    | 0          | 6.85      | 13.7          | 20.55    | 27.4                                  | 34.25    |
| Vs.req =    | 88.80274   | 40.04266  | -3.175289776  | 20.89503 | 22.73457                              | 15.01015 |
| Vs.act =    | 103.3371   | 60.9103   | 39.00646592   | 49.97534 | 43.22899                              | 17.19011 |
| S =         | 3.5        | 7.89      | 24            | 15.11    | 13.89                                 | 21.04    |
| stirrups=   | 23.48571   | 10.41825  | 3.425         | 5.440106 | 5.917927                              | 3.906844 |
|             |            |           | <u>24 D-1</u> |          |                                       |          |
| x (ft) =    | 0          | 7.8       | 15.6          | 23.4     | 31.2                                  | 39       |
| Vs.req =    | -158.8729  | -30.33214 | 32.27420231   | 38.01666 | 28.60932                              | 14.1981  |
| Vs.act =    | 17.16      | 67.32322  | 104.2104597   | 91.48724 | 54.65739                              | 17.21739 |
| S =         | 24         | 24        | 8.21          | 7.62     | 11                                    | 23.92    |
| stirrups=   | 3.9        | 3.9       | 11.40073082   | 12.28346 | 8.509091                              | 3.913043 |
|             |            |           | <u>24 D-2</u> |          |                                       |          |
| x (ft) =    | 0          | 7.7       | 15.4          | 23.1     | 30.8                                  | 38.5     |
| Vs.req =    |            | -32.62686 | 31.15530211   | 37.4533  | 28.50418                              | 14.34033 |
| Vs.act =    | 16.94      | 65.16776  | 101.4424177   | 90.61668 | 54.87345                              | 17.47142 |
| S =         | 24         | 24        | 8.43          | 7.64     | 10.87                                 | 23.27    |
| stirrups=   | 3.85       | 3.85      | 10.96085409   | 12.09424 | 8.50046                               | 3.970778 |
|             |            |           | <u>26 D-1</u> |          |                                       |          |
| x (ft) =    | 0          | 7.95      | 15.9          | 23.85    | 31.8                                  | 39.75    |
| Vs.req =    | -165.8112  | -35.51651 | 30.54786589   | 37.21295 | 28.34513                              | 14.12684 |
| Vs.act =    | 17.49      | 66.41308  | 103.6505867   | 93.2376  | 56.34945                              | 17.83935 |
| S =         | 24         | 24        | 8.58          | 7.67     | 10.9                                  | 23.53    |
| stirrups=   | 3.975      | 3.975     | 11.11888112   | 12.43807 | 8.752294                              | 4.054399 |
|             |            |           | <u>26 D-2</u> |          |                                       |          |
| x (ft) =    | 0          | 7.9       | 15.8          | 23.7     | 31.6                                  | 39.5     |
| Vs.req =    | -165.4596  | -37.07682 | 29.60117541   | 36.57137 | 34.82446                              | 18.49445 |
| Vs.act =    | 17.38      | 64.61896  | 100.853354    | 104.6695 | 78.15839                              | 27.10331 |
| s =         | 24         | 24        | 8.83          | 7.78     | 8.17                                  | 15.39    |
| stirrups=   | 3.95       | 3.95      | 10.73612684   | 12.18509 | 11.60343                              | 6.159844 |
| Notes:      |            |           |               |          |                                       |          |

1. fc girder-6 ksi, fc slab-3.6 ksi

2. Prestressing steel-0.5 in grade 270 low relaxation

Stirrup steel-two # 3 U legged grade 40(40ksi)
 Slab thickness- 7.5 in

|           |           |           | 10 D          |          |          |          |
|-----------|-----------|-----------|---------------|----------|----------|----------|
| x (ft) =  | 0         | 4.6       | 9.2           | 13.8     | 18.4     | 23       |
|           |           | -60.31949 |               | 16.2842  | 14.46719 | 7.576893 |
| Vs.act =  | 10.12     | 20.24     | 22.18557377   | 22.2835  | 20.33792 | 10.12    |
| S =       | 24        | 24        | 24            | 20.13    | 23.77    | 24       |
| stirrups= | 2.3       | 2.3       | 2.3           | 2.742176 | 2.322255 | 2.3      |
| oundpo    |           |           | 12 D-1        |          |          |          |
| x (ft) =  | 0         | 5.15      | 10.3          | 15.45    | 20.6     | 25.75    |
| Vs.req =  | -77.10119 |           |               | 32.5025  | 24.13655 | 10.93517 |
| Vs.act =  | 11.33     | 38.60382  | 57.15514015   | 50.20419 | 31.65287 | 11.33    |
| S =       | 24        | 24        | 9.97          | 9.1      | 13.38    | 24       |
| stirrups= | 2.575     | 2.575     | 6.198595787   | 6.791209 | 4.618834 | 2.575    |
| •         |           |           | <u>12 D-2</u> |          |          |          |
| x (ft) =  | 0         | 5.1       | 10.2          | 15.3     | 20.4     | 25.5     |
| Vs.req =  | -76.40169 | -35.16548 | 25.80553514   | 31.6576  | 29.86993 | 19.21449 |
| Vs.act =  | 11.22     | 37.1622   | 54.92820299   | 56.32408 | 44.92658 | 17.5885  |
| s =       | 24        | 24        | 10.38         | 9.29     | 9.85     | 15.31    |
| stirrups= | 2.55      | 2.55      | 5.895953757   | 6.587729 | 6.213198 | 3.997387 |
|           |           |           | <u>12 S</u>   |          |          |          |
| x (ft) =  | 0         | 5         | 10            | 15       | 20       | 25       |
| Vs.req =  | 100.8107  | 60.58047  | 24.01013143   | 16.04117 | 18.53241 | 11.67414 |
| Vs.act =  | 105.6     | 67.25033  | 31.8226095    | 27.47139 | 25.72393 | 11       |
| S =       | 2.5       | 5.48      | 13.84         | 20.71    | 17.93    | 24       |
| stirrups= | 24        | 10.94891  | 4.335260116   | 2.897151 | 3.346347 | 2.5      |
|           |           |           | <u>14 D-1</u> |          |          |          |
| x (ft) =  | 0         | 5.7       | 11.4          | 17.1     | 22.8     | 28.5     |
| Vs.req =  | -86.58444 | -24.6578  | 34.08978142   | 38.87615 | 29.24114 | 14.58926 |
| Vs.act =  | 12.54     | 50.83008  | 77.99456182   | 67.11432 | 40.034   | 12.62416 |
| s =       | 24        | 24        | 7.86          | 7.58     | 10.98    | 23.84    |
| stirrups= | 2.85      | 2.85      | 8.702290076   | 9.023747 | 6.229508 | 2.869128 |
|           |           |           | <u>14 D-2</u> |          |          |          |
| x (ft) =  | 0         | 5.65      | 11.3          | 16.95    | 22.6     | 28.25    |
| Vs.req =  |           | -30.09723 |               | 34.52898 |          | 10.90561 |
| Vs.act =  | 12.43     | 44.54195  | 66.01194833   | 56.48289 | 35.01289 | 12.43    |
| S =       | 24        | 24        | 9.29          | 8.8      | 13.21    | 24       |
| stirrups= | 2.825     | 2.825     | 7.298170075   | 7.704545 | 5.132475 | 2.825    |
|           |           |           | <u>16 D</u>   |          |          |          |
| x (ft) =  | 0         | 6.2       | 12.4          | 18.6     | 24.8     | 31       |
| Vs.req =  | -182.6285 | -40.9377  | 23.04086565   | 32.5078  | 27.65089 | 17.55551 |
| Vs.act =  | 13.64     | 38.87978  | 57.97578412   | 59.28588 | 43.15028 | 16.60041 |
| s =       | 24        | 24        | 12.97         | 10       | 12.33    | 19.72    |
| stirrups= | 3.1       | 3.1       | 5.736314572   | 7.44     | 6.034063 | 3.772819 |
|           |           |           | <u>16 S</u>   |          |          |          |
| x (ft) =  | 0         | 5.95      | 11.9          | 17.85    | 23.8     | 29.75    |
| Vs.req =  | 110.1702  | 62.00157  | 18.88976265   | 26.43154 | 27.17759 | 18.2544  |
| Vs.act =  | 116.3556  | 78.37653  | 43.93248839   | 51.95841 | 44.81361 | 18.48    |
| S =       | 2.7       | 5.23      | 17.16         | 12.26    | 11.93    | 17       |
| stirrups= | 26.44444  | 13.65201  | 4.160839161   | 5.823817 | 5.984912 | 4.2      |
| continue  | d         |           |               |          |          |          |

### Table 8.3.1.2c, page 2

|           | 5.1.20, pa | ge z      |                |          |          |          |
|-----------|------------|-----------|----------------|----------|----------|----------|
|           |            |           | <u>18 D</u>    |          |          |          |
| x (ft) =  | 0          | 6.55      | 13.1           | 19.65    | 26.2     | 32.75    |
| Vs.req =  | -206.2489  | -42.64566 | 23.16783208    | 33.298   | 28.44    | 18.26562 |
| Vs.act =  | 14.41      | 41.28179  | 62.41547421    | 64.48427 | 47.25838 | 18.3178  |
| S =       | 24         | 24        | 12.87          | 9.73     | 11.95    | 18.88    |
| stirrups= | 3.275      | 3.275     | 6.107226107    | 8.078109 | 6.577406 | 4.163136 |
|           |            |           | <u>20 D</u>    |          |          |          |
| x (ft) =  | 0          | 6.8       | 13.6           | 20.4     | 27.2     | 34       |
| Vs.req =  | -232.17    | -48.42454 | 20.49529393    | 31.88492 | 27.50754 | 17.6374  |
| Vs.act =  | 14.96      | 39.68727  | 60.13555675    | 64.55114 | 47.55516 | 18.41231 |
| S =       | 24         | 24        | 14.52          | 10.14    | 12.32    | 19.5     |
| stirrups= | 3.4        | 3.4       | 5.619834711    | 8.047337 | 6.623377 | 4.184615 |
|           |            |           | <u>20 S</u>    |          |          |          |
| x (ft) =  | 0          | 6.45      | 12.9           | 19.35    | 25.8     | 32.25    |
| Vs.req =  | 111.6822   | 59.34192  | 12.79086035    | 26.24665 | 27.72872 | 18.98753 |
| Vs.act =  | 121.6286   | 78.20504  | 42.49922693    | 58.20914 | 50.37857 | 20.47865 |
| s =       | 2.8        | 5.32      | 24             | 12.03    | 11.39    | 16.63    |
| stirrups= | 27.64286   | 14.54887  | 3.225          | 6.433915 | 6.795435 | 4.654239 |
|           |            |           | <u>24 D-1</u>  |          |          |          |
| x (ft) =  | 0          | 7.3       | 14.6           | 21.9     | 29.2     | 36.5     |
| Vs.req =  | -152.0459  | -29.70879 | 37.61357303    | 43.87856 | 33.4204  | 17.43783 |
| Vs.act =  | 16.06      | 70.81     | 113.15         | 99.3172  | 60.71381 | 19.79661 |
| s =       | 24         | 24        | 7.04           | 6.6      | 9.42     | 19.47    |
| stirrups= | 3.65       | 3.65      | 12.44318182    | 13.27273 | 9.299363 | 4.49923  |
|           |            |           | <u>24 D-2</u>  |          |          |          |
| x (ft) =  | 0          | 7.25      | 14.5           | 21.75    | 29       | 36.25    |
| Vs.req =  | -145.0632  | -30.26978 | 37.69367709    | 44.23142 | 34.05586 | 18.17861 |
| Vs.act =  | 15.95      | 70.95     | 114.1653787    | 101.2313 | 62.91561 | 20.84967 |
| s =       | 24         | 24        | 6.96           | 6.47     | 9.1      | 18.36    |
| stirrups= | 3.625      | 3.625     | 12.5           | 13.44668 | 9.56044  | 4.738562 |
|           |            |           | <u>26 D-1</u>  |          |          |          |
|           |            | F         | FAILED IN FLEX | URE      |          |          |
|           |            |           | <u>26 D-2</u>  |          |          |          |
| x (ft) =  | 0          | 7.45      | 14.9           | 22.35    | 29.8     | 37.25    |
| Vs.req =  | -156.8493  | -34.62792 | 36.33493467    | 43.52393 | 41.10313 | 25.24829 |
| Vs.act =  | 16.39      | 71.02333  | 114.7801223    | 116.9087 | 91.66519 | 34.90328 |
| s =       | 24         | 24        | 7.2            | 6.54     | 6.93     | 11.27    |
| stirrups= | 3.725      | 3.725     | 12.41666667    | 13.66972 | 12.90043 | 7.932564 |
| Notoci    |            |           |                |          |          |          |

Notes:

1. fc girder-6 ksi, fc slab-3.6 ksi

Prestressing steel-0.5 in grade 270 low relaxation
 Stirrup steel-two # 3 U legged grade 40(40ksi)

| Table 8.3.1.2d: | Girder S | Spacing = | 8 feet |
|-----------------|----------|-----------|--------|
|-----------------|----------|-----------|--------|

|           |           | •         | 10 D          |          |          |           |
|-----------|-----------|-----------|---------------|----------|----------|-----------|
| x (ft) =  | 0         | 4.25      | 8.5           | 12.75    | 17       | 21.25     |
|           |           | -66.71627 |               |          | 15.04608 | 7.711707  |
| Vs.act =  | 9.35      | 20.43148  | 22.66640662   | 21.40549 | 19.17057 | 9.35      |
| S =       | 24        | 24        | 20.25         | 19.37    | 22.85    | 24        |
| stirrups= | 2.125     | 2.125     | 2.518518519   | 2.632938 | 2.231947 | 2.125     |
|           |           |           | 12 D-1        |          |          |           |
| x (ft) =  | 0         | 4.8       | 9.6           | 14.4     | 19.2     | 24        |
| Vs.req =  | -69.09117 |           | 30.07867286   |          | 26.45218 | 12.41019  |
| Vs.act =  | 10.56     | 38.90899  | 58.7010891    | 51.10885 | 31.31676 | 10.56     |
| S =       | 24        | 24        | 8.94          | 8.35     | 12.21    | 24        |
| stirrups= | 2.4       | 2.4       | 6.44295302    | 6.898204 | 4.717445 | 2.4       |
|           |           |           | <u>12 D-2</u> |          |          |           |
| x (ft) =  | 0         | 4.8       | 9.6           | 14.4     | 19.2     | 24        |
| Vs.req =  | -66.62838 | -34.24252 | 30.67121844   | 36.03244 | 33.75792 | 23.44671  |
| Vs.act =  | 10.56     | 39.59093  | 60.08975136   | 60.15641 | 49.29201 | 20.19442  |
| S =       | 24        | 24        | 8.73          | 8.16     | 8.71     | 12.55     |
| stirrups= | 2.4       | 2.4       | 6.597938144   | 7.058824 | 6.613088 | 4.589641  |
|           |           |           | <u>12 S</u>   |          |          |           |
| x (ft) =  | 0         | 4.65      | 9.3           | 13.95    | 18.6     | 23.25     |
| Vs.req =  | 119.0166  | 76.59969  | 37.83084607   | 17.16483 | 20.06779 | 12.92839  |
| Vs.act =  | 122.76    | 84.53498  | 40.64537171   | 27.50791 | 27.74819 | 12.92211  |
| S =       | 2         | 4.34      | 8.78          | 19.36    | 16.56    | 19        |
| stirrups= | 27.9      | 12.85714  | 6.355353075   | 2.882231 | 3.369565 | 2.936842  |
|           |           |           | <u>14 D-1</u> |          |          |           |
| x (ft) =  | 0         | 5.3       | 10.6          | 15.9     | 21.2     | 26.5      |
| Vs.req =  |           | -26.53856 | 37.26204312   | 42.11791 |          | 16.20594  |
| Vs.act =  | 11.66     | 50.52667  | 78.84380952   | 67.71153 |          | 13.04007  |
| S =       | 24        | 24        | 7.2           | 7        | 10.09    | 21.46     |
| stirrups= | 2.65      | 2.65      | 8.833333333   | 9.085714 | 6.303271 | 2.963653  |
|           |           |           | <u>14 D-2</u> |          |          |           |
| x (ft) =  | 0         | 5.25      | 10.5          | 15.75    | 21       | 26.25     |
| Vs.req =  |           | -32.62978 | 32.16095039   |          | 27.36796 | 12.15543  |
| Vs.act =  | 11.55     | 44.08521  | 66.54748121   | 56.77089 | 34.30862 | 11.55     |
| s =       | 24        | 24        | 8.52          | 8.15     | 12.18    | 24        |
| stirrups= | 2.625     | 2.625     | 7.394366197   | 7.730061 | 5.172414 | 2.625     |
|           |           |           | <u>16 D</u>   |          |          |           |
| x (ft) =  | 0         | 5.75      | 11.5          | 17.25    | 23       | 28.75     |
| Vs.req =  | -177.0127 | -45.3678  | 24.51340945   | 34.75553 | 29.81767 | 18.98695  |
| Vs.act =  | 12.65     | 37.53525  | 57.32114334   | 58.99758 | 43.21555 | 16.65387  |
| S =       | 24        | 24        | 12.2          | 9.36     | 11.43    | 18.23     |
| stirrups= | 2.875     | 2.875     | 5.655737705   | 7.371795 | 6.036745 | 3.78497   |
| 10.5      | -         | <b>-</b>  | <u>16 S</u>   | 40.5-    |          | <b>A-</b> |
| x (ft) =  | 0         | 5.55      | 11.1          | 16.65    | 22.2     | 27.75     |
| Vs.req =  | 130.168   | 79.65812  | 34.21897445   | 29.08765 | 29.99407 | 20.27913  |
| Vs.act =  | 146.52    | 102.944   | 57.24924025   | 53.41344 | 48.03966 | 20.93143  |
| S =       | 2         | 4.07      | 9.47          | 11.14    | 10.81    | 14        |
| stirrups= | 33.3      | 16.36364  | 7.032734952   | 5.978456 | 6.160962 | 4.757143  |
| continue  | d         |           |               |          |          |           |

## Table 8.3.1.2d, page 2

| Table 0.3. I.zu, page z |           |           |                |          |          |          |  |  |
|-------------------------|-----------|-----------|----------------|----------|----------|----------|--|--|
|                         |           |           | <u>18 D</u>    |          |          |          |  |  |
| x (ft) =                | 0         | 6.2       | 12.4           | 18.6     | 24.8     | 31       |  |  |
| Vs.req =                | -196.9965 | -40.7112  | 29.04878012    | 39.11324 | 33.40445 | 21.89226 |  |  |
| Vs.act =                | 13.64     | 45.54643  | 71.39497316    | 71.67733 | 52.96036 | 20.77157 |  |  |
| S =                     | 24        | 24        | 10.26          | 8.29     | 10.17    | 15.76    |  |  |
| stirrups=               | 3.1       | 3.1       | 7.251461988    | 8.974668 | 7.315634 | 4.720812 |  |  |
|                         |           |           | <u>20 D</u>    |          |          |          |  |  |
| x (ft) =                | 0         | 6.45      | 12.9           | 19.35    | 25.8     | 32.25    |  |  |
| Vs.req =                | -223.274  | -46.23435 | 26.64864942    | 37.98363 | 32.71949 | 21.47955 |  |  |
| Vs.act =                | 14.19     | 44.67881  | 70.50761072    | 72.92315 | 54.17605 | 21.27171 |  |  |
| S =                     | 24        | 24        | 11.17          | 8.51     | 10.35    | 16.01    |  |  |
| stirrups=               | 3.225     | 3.225     | 6.929274843    | 9.095182 | 7.478261 | 4.834478 |  |  |
|                         |           |           | <u>20 S</u>    |          |          |          |  |  |
| x (ft) =                | 0         | 6.1       | 12.2           | 18.3     | 24.4     | 30.5     |  |  |
| Vs.req =                | 133.5788  | 77.991    | 28.3706955     | 31.32486 | 32.44601 | 22.48776 |  |  |
| Vs.act =                | 136.4746  | 108.4639  | 60.89038634    | 65.05413 | 56.04192 | 22.94017 |  |  |
| S =                     | 2.36      | 4.05      | 11.13          | 10.08    | 9.73     | 14.04    |  |  |
| stirrups=               | 31.01695  | 18.07407  | 6.576819407    | 7.261905 | 7.523124 | 5.213675 |  |  |
|                         |           |           | <u>24 D-1</u>  |          |          |          |  |  |
| x (ft) =                | 0         | 6.9       | 13.8           | 20.7     | 27.6     | 34.5     |  |  |
| Vs.req =                | -143.7955 | -27.47212 | 43.84168766    | 50.25452 | 38.60131 | 20.94964 |  |  |
| Vs.act =                | 15.18     | 75.49788  | 123.4582621    | 107.8422 | 67.17686 | 22.47502 |  |  |
| S =                     | 24        | 24        | 6.04           | 5.77     | 8.15     | 16.21    |  |  |
| stirrups=               | 3.45      | 3.45      | 13.70860927    | 14.35009 | 10.15951 | 5.107958 |  |  |
|                         |           |           | <u>24 D-2</u>  |          |          |          |  |  |
| x (ft) =                | 0         | 6.85      | 13.7           | 20.55    | 27.4     | 34.25    |  |  |
| Vs.req =                | -136.6943 | -28.1959  | 43.89707996    | 50.56572 | 39.21723 | 21.68588 |  |  |
| Vs.act =                | 15.07     | 75.55161  | 124.3826654    | 109.6833 | 69.28325 | 23.50097 |  |  |
| S =                     | 24        | 24        | 5.98           | 5.66     | 7.9      | 15.39    |  |  |
| stirrups=               | 3.425     | 3.425     | 13.7458194     | 14.52297 | 10.40506 | 5.341131 |  |  |
|                         |           |           | <u>26 D-1</u>  |          |          |          |  |  |
| FAILED IN FLEXURE       |           |           |                |          |          |          |  |  |
|                         |           |           | <u>26 D-2</u>  |          |          |          |  |  |
|                         |           | ſ         | FAILED IN FLEX | URE      |          |          |  |  |
|                         |           |           |                |          |          |          |  |  |

Notes:

fc girder-6 ksi, fc slab-3.6 ksi
 Prestressing steel-0.5 in grade 270 low relaxation
 Stirrup steel-two # 3 U legged grade 40(40ksi)

|           |           |           | 10 D        |          |          |          |
|-----------|-----------|-----------|-------------|----------|----------|----------|
| x (ft) =  | 0         | 4         | 8           | 12       | 16       | 20       |
| Vs.req =  |           | -69.05961 | 7.823988217 | 19.27349 | 16.82968 | 8.733358 |
| Vs.act =  | 8.8       | 17.6      | 21.21622575 | 22.75396 | 19.13774 | 8.8      |
| S =       | 24        | 24        | 24          | 17.01    | 20.43    | 24       |
| stirrups= | 2         | 2         | 2           | 2.821869 | 2.349486 | 2        |
| ounapo-   | -         | 2         | <br>12 D-1  | 2.021000 | 2.010100 | 2        |
| x (ft) =  | 0         | 4.5       | 9           | 13.5     | 18       | 22.5     |
| Vs.req =  | -60.97329 |           | 33.09770351 | 38.33675 | 28.67748 | 13.63704 |
| Vs.act =  | 9.9       | 39.12509  | 60.00229432 | 51.87845 | 31.00124 | 9.9      |
| S =       | 24        | 24        | 8.13        | 7.72     | 11.26    | 24       |
| stirrups= | 2.25      | 2.25      | 6.642066421 | 6.994819 | 4.795737 | 2.25     |
| ounapo-   | 2.20      | 2.20      | 12 D-2      | 0.001010 | 1.100101 | 2.20     |
| x (ft) =  | 0         | 4.5       | 9           | 13.5     | 18       | 22.5     |
| Vs.req =  |           | -35.58834 | 33.73357313 | 38.96031 | 36.5299  | 25.51289 |
| Vs.act =  | 9.9       | 39.82443  | 61.39463192 | 60.98573 | 50.12264 | 20.60711 |
| S =       | 24        | 24        | 7.94        | 7.55     | 8.05     | 11.53    |
| stirrups= | 2.25      | 2.25      | 6.801007557 | 7.152318 | 6.708075 | 4.683435 |
| 0         |           |           | <u>12 S</u> |          | 0.100010 |          |
| x (ft) =  | 0         | 4.4       | 8.8         | 13.2     | 17.6     | 22       |
| Vs.req =  | 136.8983  |           | 50.83933308 | 20.59079 |          | 15.07836 |
| Vs.act =  | 145.2     | 99.93191  | 49.9803112  | 30.56999 |          | 15.488   |
| S =       | 1.6       | 3.61      | 6.53        | 16.13    | 14.37    | 15       |
| stirrups= | 33        | 14.62604  | 8.08575804  | 3.273404 |          | 3.52     |
|           |           |           | 14 D-1      |          |          |          |
| x (ft) =  | 0         | 4.95      | 9.9         | 14.85    | 19.8     | 24.75    |
| Vs.req =  | -72.62533 |           | 39.99657534 | 44.75982 | 33.86584 | 17.48496 |
| Vs.act =  | 10.89     | 49.89896  | 78.72931997 | 67.28998 | 40.70989 | 13.14027 |
| S =       | 24        | 24        | 6.7         | 6.58     | 9.48     | 19.89    |
| stirrups= | 2.475     | 2.475     | 8.865671642 | 9.027356 | 6.265823 | 2.986425 |
| •         |           |           | 14 D-2      |          |          |          |
| x (ft) =  | 0         | 4.95      | 9.9         | 14.85    | 19.8     | 24.75    |
| Vs.req =  | -86.67392 |           | 36.51252746 | 41.15156 | 30.3832  | 14.12396 |
| Vs.act =  | 10.89     | 45.6916   | 70.21623202 | 59.23961 | 34.71498 | 10.89    |
| S =       | 24        | 24        | 7.51        | 7.38     | 10.97    | 24       |
| stirrups= | 2.475     | 2.475     | 7.909454061 | 8.04878  | 5.414768 | 2.475    |
|           |           |           | 16 D        |          |          |          |
| x (ft) =  | 0         | 5.4       | 10.8        | 16.2     | 21.6     | 27       |
| Vs.req =  | -169.2309 | -47.28108 | 27.4097368  | 37.87537 | 32.58977 | 21.01796 |
| Vs.act =  | 11.88     | 38.01382  | 59.325906   | 60.45021 | 44.5696  | 17.31148 |
| S =       | 24        | 24        | 10.91       | 8.59     | 10.46    | 16.47    |
| stirrups= | 2.7       | 2.7       | 5.939505041 | 7.543655 | 6.195029 | 3.934426 |
|           |           |           | <u>16 S</u> |          |          |          |
| x (ft) =  | 0         | 5.2       | 10.4        | 15.6     | 20.8     | 26       |
| Vs.req =  | 148.7885  | 96.31375  | 48.84301931 | 31.2871  | 32.37762 | 22.23424 |
| Vs.act =  | 156.8914  | 122.8212  | 67.85132809 | 53.9305  | 50.30857 | 22.88    |
| S =       | 1.75      | 3.37      | 6.64        | 10.36    | 10.01    | 12       |
| stirrups= | 35.65714  | 18.51632  | 9.397590361 | 6.023166 | 6.233766 | 5.2      |
|           |           |           |             |          |          |          |

Table 8.3.1.2e: Girder Spacing = 9 feet

### Table 8.3.1.2e, page 2

| x (ft) =05.811.617.423.229Vs.req =-191.1934-43.8381631.253502641.8717435.939323.59127Vs.act =12.7644.8606371.666520471.9722453.35320.94665s =24249.547.749.4514.62stirrups=2.92.97.2955974848.9922487.3650794.760602 $kr(tr) =$ 06.112.218.324.430.5Vs.req =-215.7267-45.9726631.2481514542.7119236.8135524.41479Vs.act =13.4247.2519376.3788284177.555957.8674622.85877s =24249.527.579.214.09stirrups=3.053.057.689075639.6697497.9565225.195174stirrups=3.053.057.689075639.6697497.9565225.195174x (ft) =05.7511.517.252328.75vs.req =153.521395.6212643.6820380834.8777435.9396224.99386vs.act =159.7895133.991775.5386625768.0862159.8392525.3s =1.93.37.239.058.7912stirrups=36.3157920.909099.5435684657.6243097.8498295.75vs.req =1.93.37.239.058.7912stirrups=36.3157920.909099.543568465                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |                   | 9         |                |          |          |          |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------|-----------|----------------|----------|----------|----------|--|--|--|
| Vs.req         -191.1934         -43.83816         31.2535026         41.87174         35.9393         23.59127           Vs.act =         12.76         44.86063         71.6665204         71.97224         53.353         20.94665           s =         24         24         9.54         7.74         9.45         14.62           stirrups=         2.9         2.9         7.295597484         8.992248         7.365079         4.760602           x (ft) =         0         6.1         12.2         18.3         24.4         30.5           Vs.req =         -215.7267         -45.97266         31.24815145         42.71192         36.81355         24.41479           Vs.act =         13.42         47.25193         76.37882841         77.5559         57.86746         22.85877           s =         24         24         9.52         7.57         9.2         14.09           stirrups=         3.05         3.05         7.68907563         9.669749         7.956522         5.195174           x (ft) =         0         5.75         11.5         17.25         23         28.75           Vs.req =         153.5213         95.62126         43.68203808         34.87774         35.93962                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |                   |           | <u>18 D</u>    |          |          |          |  |  |  |
| Vs.act =12.7644.8606371.666520471.9722453.35320.94665 $s =$ 24249.547.749.4514.62stirrups=2.92.97.2955974848.9922487.3650794.760602 $x$ (ft) =06.112.218.324.430.5Vs.req =-215.7267-45.9726631.2481514542.7119236.8135524.41479Vs.act =13.4247.2519376.378284177.555957.8674622.85877 $s =$ 24249.527.579.214.09stirrups=3.053.057.689075639.6697497.9565225.195174 $x$ (ft) =05.7511.517.252328.75 $vs.req =$ 153.521395.6212643.6820380834.8777435.9396224.99386 $vs.act =$ 159.7895133.991775.5386625768.0862159.8392525.3 $s =$ 1.93.37.239.058.7912stirrups=36.3157920.909099.5435684657.6243097.8498295.75 $s =$ 1.93.37.239.058.7912 $x$ (ft) =06.4512.919.3525.832.25 $vs.req =$ 13.0364-28.399248.5658682855.3580243.1082724.15496 $vs.req =$ -130.3364-28.399248.5658682855.3580243.1082724.15496 $vs.req =$ 14.1977.25667 <td></td> <td>-</td> <td></td> <td>11.6</td> <td>17.4</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           | -                 |           | 11.6           | 17.4     |          |          |  |  |  |
| s =         24         24         9.54         7.74         9.45         14.62           stirrups=         2.9         2.9         7.295597484         8.992248         7.365079         4.760602           x (ft) =         0         6.1         12.2         18.3         24.4         30.5           Vs.req =         -215.7267         -45.97266         31.24815145         42.71192         36.81355         24.41479           Vs.act =         13.42         47.25193         76.37882841         77.55559         57.86746         22.85877           s =         24         24         9.52         7.57         9.2         14.09           stirrups=         3.05         3.05         7.68907563         9.669749         7.956522         5.195174           x (ft) =         0         5.75         11.5         17.25         23         28.75           Vs.req =         153.5213         95.62126         43.68203808         34.87774         35.93962         24.99386           Vs.act =         159.7895         133.9917         75.53866257         68.08621         59.83925         25.3           s =         1.9         3.3         7.23         9.05         8.79         12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Vs.req =  | -191.1934         | -43.83816 | 31.2535026     | 41.87174 | 35.9393  | 23.59127 |  |  |  |
| stirrups=         2.9         2.9         7.295597484         8.992248         7.365079         4.760602           x (ft) =         0         6.1         12.2         18.3         24.4         30.5           Vs.req =         -215.7267         -45.97266         31.24815145         42.71192         36.81355         24.41479           Vs.act =         13.42         47.25193         76.37882841         77.55559         57.86746         22.85877           s =         24         24         9.52         7.57         9.2         14.09           stirrups=         3.05         3.05         7.68907563         9.669749         7.956522         5.195174           x (ft) =         0         5.75         11.5         17.25         23         28.75           vs.req =         153.5213         95.62126         43.68203808         34.87774         35.93962         24.99386           vs.act =         159.7895         133.9917         75.53866257         68.08621         59.83925         25.3           s =         1.9         3.3         7.23         9.05         8.79         12           stirrups=         36.31579         20.90909         9.543568465         7.624309         7.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Vs.act =  | 12.76             | 44.86063  | 71.6665204     | 71.97224 | 53.353   | 20.94665 |  |  |  |
| z (ft) =06.112.218.324.430.5Vs.req =-215.7267-45.9726631.2481514542.7119236.8135524.41479Vs.act =13.4247.2519376.3788284177.5555957.8674622.85877 $s =$ 24249.527.579.214.09stirrups=3.053.057.689075639.6697497.9565225.195174 $z$ (ft) =05.7511.517.252328.75Vs.req =153.521395.6212643.6820380834.8777435.9396224.99386Vs.act =159.7895133.991775.5386625768.0862159.8392525.3 $s =$ 1.93.37.239.058.7912stirrups=36.3157920.909099.5435684657.6243097.8498295.75 $z$ (ft) =06.4512.919.3525.832.25vs.req =-130.3364-28.3999248.5658682855.3580243.1082724.15496vs.act =14.1977.25667128.9390071113.238172.0261824.66039 $s =$ 24245.45.177.1913.81stirrups=3.2253.22514.333333314.9709910.764955.604634 $z =$ 2621262626262626 $z =$ 24245.45.177.1913.81stirrups=3.2253.22514.33333333 <t< th=""><td>s =</td><td>24</td><td>24</td><td>9.54</td><td>7.74</td><td></td><td>14.62</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | s =       | 24                | 24        | 9.54           | 7.74     |          | 14.62    |  |  |  |
| x (ft) =06.112.218.324.430.5Vs.req =-215.7267-45.9726631.2481514542.7119236.8135524.41479Vs.act =13.4247.2519376.3788284177.5555957.8674622.85877s =24249.527.579.214.09stirrups=3.053.057.689075639.6697497.9565225.195174stirrups=3.053.057.689075639.6697497.9565225.195174x (ft) =05.7511.517.252328.75Vs.req =153.521395.6212643.6820380834.8777435.9396224.99386Vs.act =159.7895133.991775.5386625768.0862159.8392525.3s =1.93.37.239.058.7912stirrups=36.3157920.909099.5435684657.6243097.8498295.75stirrups=36.3157920.909099.5435684657.6243097.8498295.75vs.req =1.93.37.239.058.7912stirrups=36.3157920.909099.5435684657.6243097.8498295.75vs.req =1.98.3312.919.3525.832.25vs.req =1.1977.25667128.9390071113.238172.0261824.66039s =24245.45.177.1913.81stirrups=3.2253.22514.3333333<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | stirrups= | 2.9               | 2.9       | 7.295597484    | 8.992248 | 7.365079 | 4.760602 |  |  |  |
| Vs.req-215.7267-45.9726631.2481514542.7119236.8135524.41479Vs.act =13.4247.2519376.3788284177.5555957.8674622.85877s =24249.527.579.214.09stirrups=3.053.057.689075639.6697497.9565225.195174 $x$ (ft) =05.7511.517.252328.75Vs.req =153.521395.6212643.6820380834.8777435.9396224.99386Vs.act =159.7895133.991775.5386625768.0862159.8392525.3s =1.93.37.239.058.7912stirrups=36.3157920.909099.5435684657.6243097.8498295.75trups=36.3157920.909099.5435684657.6243097.8498295.75trups=36.3157920.909099.54356868657.6243097.8498295.75trups=36.3157920.909099.54356868657.6243097.8498295.75trups=36.3157920.909099.543568682855.3580243.1082724.15496Vs.act =14.1977.25667128.9390071113.238172.0261824.66039s =24245.45.177.1913.81stirrups=3.2253.22514.333333314.9709910.764955.604634vs.act =14.1977.25667128.9390071113.23817.1913.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                   |           | <u>20 D</u>    |          |          |          |  |  |  |
| Vs.act =13.4247.2519376.3788284177.5555957.8674622.85877 $s =$ 24249.527.579.214.09stirrups=3.053.057.689075639.6697497.9565225.195174 $x$ (ft) =05.7511.517.252328.75Vs.req =153.521395.6212643.6820380834.8777435.9396224.99386Vs.act =159.7895133.991775.5386625768.0862159.8392525.3 $s =$ 1.93.37.239.058.7912stirrups=36.3157920.909099.5435684657.6243097.8498295.75 $v =$ $24 D-1$ $v =$ $v =$ $v =$ $v =$ $x$ (ft) =06.4512.919.3525.832.25 $vs.req =$ -130.3364-28.3999248.5658682855.3580243.1082724.15496 $vs.act =$ 14.1977.25667128.9390071113.238172.0261824.66039 $s =$ 24245.45.177.1913.81stirrups=3.2253.22514.333333314.9709910.764955.604634 $s =$ 2426D-1 $v =$ $v =$ $v =$ $vs.act =$ 14.1977.25667128.9390071113.238172.0261824.66039 $s =$ 24245.45.177.1913.81stirrups=3.2253.22514.333333314.97099 <td< th=""><td>x (ft) =</td><td>-</td><td></td><td>. = . =</td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | x (ft) =  | -                 |           | . = . =        |          |          |          |  |  |  |
| s =       24       24       9.52       7.57       9.2       14.09         stirrups= $3.05$ $3.05$ $7.68907563$ $9.669749$ $7.956522$ $5.195174$ x (ft) =       0 $5.75$ 11.5 $17.25$ 23 $28.75$ Vs.req =       153.5213       95.62126       43.68203808 $34.87774$ $35.93962$ $24.99386$ Vs.act =       159.7895       133.9917 $75.53866257$ $68.08621$ $59.83925$ $25.3$ s =       1.9 $3.3$ $7.23$ $9.05$ $8.79$ $12$ stirrups= $36.31579$ $20.90909$ $9.543568465$ $7.624309$ $7.849829$ $5.75$ stirrups= $36.31579$ $20.90909$ $9.543568465$ $7.624309$ $7.849829$ $5.75$ vertical <b>24 D-1 24 D-1 24 D-1 24 D-1 24 D-1</b> x (ft) =       0 $6.455$ $12.9$ $19.35$ $25.8$ $32.25$ vs.act =       14.19 $77.25667$ $128.9390071$ $113.2381$ $72.02618$ $24.66039$ $5.604634$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Vs.req =  | -215.7267         | -45.97266 | 31.24815145    | 42.71192 |          | 24.41479 |  |  |  |
| stirrups=       3.05       3.05       7.68907563       9.669749       7.956522       5.195174         x (ft) =       0       5.75       11.5       17.25       23       28.75         Vs.req =       153.5213       95.62126       43.68203808       34.87774       35.93962       24.99386         Vs.act =       159.7895       133.9917       75.53866257       68.08621       59.83925       25.3         s =       1.9       3.3       7.23       9.05       8.79       12         stirrups=       36.31579       20.90909       9.543568465       7.624309       7.849829       5.75         stirrups=       0       6.45       12.9       19.35       25.8       32.25         vs.act =       14.19       77.25667       128.9390071       113.2381       72.02618       24.66039         s =       24       24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Vs.act =  | 13.42             | 47.25193  | 76.37882841    | 77.55559 | 57.86746 | 22.85877 |  |  |  |
| x (ft) =05.7511.517.252328.75Vs.req =153.521395.6212643.6820380834.8777435.9396224.99386Vs.act =159.7895133.991775.5386625768.0862159.8392525.3s =1.93.37.239.058.7912stirrups=36.3157920.909099.5435684657.6243097.8498295.75FAILED IN FLEXUREv24 D-1v24 D-2vvvv24 D-2vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv <td>s =</td> <td></td> <td>24</td> <td>9.52</td> <td>7.57</td> <td></td> <td>14.09</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s =       |                   | 24        | 9.52           | 7.57     |          | 14.09    |  |  |  |
| $ \begin{split} \textbf{x} (ft) = & 0 & 5.75 & \overline{11.5} & 17.25 & 23 & 28.75 \\ \hline \textbf{Vs.req} = & 153.5213 & 95.62126 & 43.68203808 & 34.87774 & 35.93962 & 24.99386 \\ \hline \textbf{Vs.act} = & 159.7895 & 133.9917 & 75.53866257 & 68.08621 & 59.83925 & 25.3 \\ \hline \textbf{s} = & 1.9 & 3.3 & 7.23 & 9.05 & 8.79 & 12 \\ \hline \textbf{stirrups} = & 36.31579 & 20.90909 & 9.543568465 & 7.624309 & 7.849829 & 5.75 \\ \hline \textbf{k} = & $ | stirrups= | 3.05              | 3.05      | 7.68907563     | 9.669749 | 7.956522 | 5.195174 |  |  |  |
| Vs.req =         153.5213         95.62126         43.68203808         34.87774         35.93962         24.99386           Vs.act =         159.7895         133.9917         75.53866257         68.08621         59.83925         25.3           s =         1.9         3.3         7.23         9.05         8.79         12           stirrups=         36.31579         20.90909         9.543568465         7.624309         7.849829         5.75           stirrups=         36.31579         20.90909         9.543568465         7.624309         7.849829         5.75           stirrups=         36.31579         20.90909         9.543568465         7.624309         7.849829         5.75           vitrups=         36.31579         20.90909         9.543568465         7.624309         7.849829         5.75           vitrups=         36.31579         20.90909         9.543568465         7.624309         7.849829         5.75           x (ft) =         0         6.45         12.9         19.35         25.8         32.25           Vs.req =         14.19         77.25667         128.9390071         113.2381         72.02618         24.66039           s =         24         24         5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |                   |           |                |          |          |          |  |  |  |
| Vs.act =         159.7895         133.9917         75.53866257         68.08621         59.83925         25.3           s =         1.9         3.3         7.23         9.05         8.79         12           stirrups=         36.31579         20.90909         9.543568465         7.624309         7.849829         5.75           u         24 D-1         u         u         u         u         u         u           FAILED IN FLEXURE           x (ft) =         0         6.45         12.9         19.35         25.8         32.25           Vs.req =         -130.3364         -28.39992         48.56586828         55.35802         43.10827         24.15496           Vs.act =         14.19         77.25667         128.9390071         113.2381         72.02618         24.66039           s =         24         24         5.4         5.17         7.19         13.81           stirrups=         3.225         3.225         14.3333333         14.97099         10.76495         5.604634           tirrups=         3.225         3.225         14.3333333         14.97099         10.76495         5.604634           tirrups=         3.225         14.33333333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           | °,                | 5.75      | 11.5           | 17.25    | 23       | 28.75    |  |  |  |
| s =         1.9         3.3         7.23         9.05         8.79         12           stirrups=         36.31579         20.90909         9.543568465         7.624309         7.849829         5.75           Lend         24 D-1         1         1         1         1         1           FAILED IN FLEXURE           x (ft) =         0         6.45         12.9         19.35         25.8         32.25           Vs.req =         -130.3364         -28.39992         48.56586828         55.35802         43.10827         24.15496           Vs.act =         14.19         77.25667         128.9390071         113.2381         72.02618         24.66039           s =         24         24         5.4         5.17         7.19         13.81           stirrups=         3.225         3.225         14.33333333         14.97099         10.76495         5.604634           bitrups=         3.225         3.225         14.33333333         14.97099         10.76495         5.604634           bitrups=         3.225         3.225         14.3333333         14.97099         10.76495         5.604634           bitrups=         Bitrups=         Bitrups=         Bitru                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Vs.req =  | 153.5213          | 95.62126  | 43.68203808    | 34.87774 | 35.93962 | 24.99386 |  |  |  |
| stirrups=         36.31579         20.90909         9.543568465         7.624309         7.849829         5.75           i         i         24 D-1         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Vs.act =  | 159.7895          | 133.9917  | 75.53866257    | 68.08621 | 59.83925 | 25.3     |  |  |  |
| 24 D-1             FAILED IN FLEXURE           FAILED IN FLEXURE           x (ft) =         0         6.45         12.9         19.35         25.8         32.25           Vs.req =         -130.3364         -28.39992         48.56586828         55.35802         43.10827         24.15496           Vs.act =         14.19         77.25667         128.9390071         113.2381         72.02618         24.66039           s =         24         24         5.4         5.17         7.19         13.81           stirrups=         3.225         3.225         14.33333333         14.97099         10.76495         5.604634           FAILED IN FLEXURE           FAILED IN FLEXURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -         |                   |           |                |          |          |          |  |  |  |
| FAILED IN FLEXURE           24 D-2         24 D-2         25.8         32.25           x (ft) =         0         6.45         12.9         19.35         25.8         32.25           Vs.req =         -130.3364         -28.39992         48.56586828         55.35802         43.10827         24.15496           Vs.act =         14.19         77.25667         128.9390071         113.2381         72.02618         24.66039           s =         24         24         5.4         5.17         7.19         13.81           stirrups=         3.225         3.225         14.33333333         14.97099         10.76495         5.604634           tirrups=         3.225         3.225         14.33333333         14.97099         10.76495         5.604634           tirrups=         Stirrups=         24         26 D-1         Image: Stirrups in the start                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | stirrups= | 36.31579          | 20.90909  | 9.543568465    | 7.624309 | 7.849829 | 5.75     |  |  |  |
| x (ft) =0 $6.45$ $12.9$ $19.35$ $25.8$ $32.25$ Vs.req = $-130.3364$ $-28.39992$ $48.56586828$ $55.35802$ $43.10827$ $24.15496$ Vs.act = $14.19$ $77.25667$ $128.9390071$ $113.2381$ $72.02618$ $24.66039$ s = $24$ $24$ $5.4$ $5.17$ $7.19$ $13.81$ stirrups= $3.225$ $3.225$ $14.33333333$ $14.97099$ $10.76495$ $5.604634$ FAILED IN FLEXUREFAILED IN FLEXURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                   |           |                |          |          |          |  |  |  |
| x (ft) =0 $6.45$ $12.9$ $19.35$ $25.8$ $32.25$ Vs.req = $-130.3364$ $-28.39992$ $48.56586828$ $55.35802$ $43.10827$ $24.15496$ Vs.act = $14.19$ $77.25667$ $128.9390071$ $113.2381$ $72.02618$ $24.66039$ s = $24$ $24$ $5.4$ $5.17$ $7.19$ $13.81$ stirrups= $3.225$ $3.225$ $14.33333333$ $14.97099$ $10.76495$ $5.604634$ FAILED IN FLEXUREColspan="4">26 D-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |                   | I         | FAILED IN FLEX | URE      |          |          |  |  |  |
| Vs.req =       -130.3364       -28.39992       48.56586828       55.35802       43.10827       24.15496         Vs.act =       14.19       77.25667       128.9390071       113.2381       72.02618       24.66039         s =       24       24       5.4       5.17       7.19       13.81         stirrups=       3.225       3.225       14.33333333       14.97099       10.76495       5.604634         FAILED IN FLEXURE         26 D-1         26 D-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |                   |           |                |          |          |          |  |  |  |
| Vs.act =         14.19         77.25667         128.9390071         113.2381         72.02618         24.66039           s =         24         24         5.4         5.17         7.19         13.81           stirrups=         3.225         3.225         14.3333333         14.97099         10.76495         5.604634           EAILED IN FLEXURE           26 D-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |                   |           |                |          |          |          |  |  |  |
| s =         24         24         5.4         5.17         7.19         13.81           stirrups=         3.225         3.225         14.3333333         14.97099         10.76495         5.604634           26 D-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Vs.req =  | -130.3364         | -28.39992 | 48.56586828    | 55.35802 | 43.10827 | 24.15496 |  |  |  |
| stirrups=         3.225         3.225         14.33333333         14.97099         10.76495         5.604634           26 D-1 <th< th=""><td>Vs.act =</td><td>14.19</td><td>77.25667</td><td>128.9390071</td><td>113.2381</td><td>72.02618</td><td>24.66039</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Vs.act =  | 14.19             | 77.25667  | 128.9390071    | 113.2381 | 72.02618 | 24.66039 |  |  |  |
| 26 D-1         FAILED IN FLEXURE           26 D-2         26 D-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |                   |           |                |          |          |          |  |  |  |
| FAILED IN FLEXURE       26 D-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | stirrups= | 3.225             | 3.225     | 14.333333333   | 14.97099 | 10.76495 | 5.604634 |  |  |  |
| <u>26 D-2</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |                   |           |                |          |          |          |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | FAILED IN FLEXURE |           |                |          |          |          |  |  |  |
| FAILED IN FLEXURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |                   |           |                |          |          |          |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                   | I         | FAILED IN FLEX | URE      |          |          |  |  |  |

Notes:

fc girder-6 ksi, fc slab-3.6 ksi
 Prestressing steel-0.5 in grade 270 low relaxation
 Stirrup steel-two # 3 U legged grade 40(40ksi)

## SHEAR CAPACITY TABLES FOR G 48-I GIRDER

|           | 1.5 <b>u</b> . 0110 | ier spacing | -            | 1        |          |           |
|-----------|---------------------|-------------|--------------|----------|----------|-----------|
|           |                     |             | <u>12 D</u>  |          |          |           |
| x (ft) =  | 0                   | 6.45        | 12.9         | 19.35    | 25.8     | 32.25     |
|           |                     | -54.78632   | 4.007735494  | 13.93497 | 11.20166 | -6.746385 |
| Vs.act =  | 14.19               | 28.38       | 28.38        | 28.38    | 28.38    | 14.19     |
| S =       | 24                  | 24          | 24           | 24       | 24       | 24        |
| stirrups= | 3.225               | 3.225       | 3.225        | 3.225    | 3.225    | 3.225     |
|           |                     |             | <u>14 D</u>  |          |          |           |
| x (ft) =  | 0                   | 7.1         | 14.2         | 21.3     | 28.4     | 35.5      |
| Vs.req =  |                     | -47.92252   | 9.545944326  | 18.54644 | 14.81018 | -5.626662 |
| Vs.act =  | 15.62               | 31.24       | 34.0960966   | 34.0961  | 31.24    | 15.62     |
| S =       | 24                  | 24          | 24           | 20.29    | 24       | 24        |
| stirrups= | 3.55                | 3.55        | 3.55         | 4.199113 | 3.55     | 3.55      |
|           |                     |             | <u>14 S</u>  |          |          |           |
| x (ft) =  | 0                   | 6.85        | 13.7         | 20.55    | 27.4     | 34.25     |
| Vs.req =  | 48.69615            | 7.449948    | -11.80301026 | 12.77929 | 14.31673 | -3.635675 |
| Vs.act =  | 51.66857            | 30.14       | 30.14        | 30.14    | 30.14    | 15.07     |
| s =       | 7                   | 24          | 24           | 24       | 24       | 24        |
| stirrups= | 11.74286            | 3.425       | 3.425        | 3.425    | 3.425    | 3.425     |
|           |                     |             | <u>16 D</u>  |          |          |           |
| x (ft) =  | 0                   | 7.6         | 15.2         | 22.8     | 30.4     | 38        |
| Vs.req =  | -231.0184           | -46.08145   | 12.16080433  | 20.66282 | 16.52522 | -4.792786 |
| Vs.act =  | 16.72               | 33.44       | 38.82909091  | 38.9272  | 33.53811 | 16.72     |
| S =       | 24                  | 24          | 24           | 18.15    | 23.86    | 24        |
| stirrups= | 3.8                 | 3.8         | 3.8          | 5.024793 | 3.822297 | 3.8       |
|           |                     |             | <u>16 S</u>  |          |          |           |
| x (ft) =  | 0                   | 7.2         | 14.4         | 21.6     | 28.8     | 36        |
| Vs.req =  | 49.59386            | 6.166577    | -11.28738917 | 13.9111  | 15.46707 | -2.321948 |
| Vs.act =  | 50.688              | 31.68       | 31.68        | 31.68    | 31.68    | 15.84     |
| s =       | 7.5                 | 24          | 24           | 24       | 24       | 24        |
| stirrups= | 11.52               | 3.6         | 3.6          | 3.6      | 3.6      | 3.6       |
|           |                     |             | <u>18 D</u>  |          |          |           |
| x (ft) =  | 0                   | 7.95        | 15.9         | 23.85    | 31.8     | 39.75     |
| Vs.req =  | -257.8614           | -49.15535   | 11.31521355  | 20.25095 | 16.29812 | -4.260251 |
| Vs.act =  | 17.49               | 34.98       | 40.22889491  | 40.22889 | 34.98    | 17.49     |
| S =       | 24                  | 24          | 24           | 18.46    | 24       | 24        |
| stirrups= | 3.975               | 3.975       | 3.975        | 5.167931 | 3.975    | 3.975     |
|           |                     |             | <u>20 D</u>  |          |          |           |
| x (ft) =  | 0                   | 8.3         | 16.6         | 24.9     | 33.2     | 41.5      |
|           | -290.5935           | -53.7364    | 8.888820378  | 18.4401  | 14.86868 | -4.461097 |
| Vs.act =  | 18.26               | 36.52       | 39.61672515  | 39.61673 | 36.52    | 18.26     |
| S =       | 24                  | 24          | 24           | 20.52    | 24       | 24        |
| stirrups= | 4.15                | 4.15        | 4.15         | 4.853801 | 4.15     | 4.15      |
|           |                     |             | <u>20 S</u>  |          |          |           |
| x (ft) =  | 0                   | 7.9         | 15.8         | 23.7     | 31.6     | 39.5      |
| Vs.req =  | 51.32484            | 2.580799    | -13.70021413 | 13.57641 | 15.76595 | -1.263207 |
| Vs.act =  | 57.93333            | 34.76       | 34.76        | 35.13734 | 35.13734 | 17.38     |
| S =       | 7.2                 | 24          | 24           | 24       | 23.49    | 24        |
| stirrups= | 13.16667            | 3.95        | 3.95         | 3.95     | 4.03576  | 3.95      |
| continued |                     |             | - •••        |          |          |           |

## Table 8.3.1.3a: page 2

| Table 0.  | 5.1.3a. pa | ye z      |              |          |          |           |
|-----------|------------|-----------|--------------|----------|----------|-----------|
|           |            |           | <u>22 D</u>  |          |          |           |
| x (ft) =  | 0          | 8.6       | 17.2         | 25.8     | 34.4     | 43        |
| Vs.req =  | -307.0976  |           | 9.882126662  | 19.65382 | 16.02104 | -3.267288 |
| Vs.act =  | 18.92      | 37.84     | 42.97084746  | 42.97085 | 37.84    | 18.92     |
| s =       | 24         | 24        | 24           | 18.88    | 24       | 24        |
| stirrups= | 4.3        | 4.3       | 4.3          | 5.466102 | 4.3      | 4.3       |
|           |            |           | <u>24 D</u>  |          |          |           |
| x (ft) =  | 0          | 8.95      | 17.9         | 26.85    | 35.8     | 44.75     |
| Vs.req =  | -328.0353  | -55.91499 | 10.38750887  | 20.26806 | 16.5784  | -2.764392 |
| Vs.act =  | 19.69      | 39.38     | 45.61210642  | 46.11698 | 39.88487 | 19.69     |
| S =       | 24         | 24        | 24           | 18.23    | 23.4     | 24        |
| stirrups= | 4.475      | 4.475     | 4.475        | 5.891388 | 4.589744 | 4.475     |
|           |            |           | <u>24 S</u>  |          |          |           |
| x (ft) =  | 0          | 8.65      | 17.3         | 25.95    | 34.6     | 43.25     |
| Vs.req =  | 54.26711   | -1.10761  | -16.49573897 | 12.95179 | 15.77851 | -1.016652 |
| Vs.act =  | 66.1913    | 38.06     | 38.06        | 38.24414 | 38.24414 | 19.03     |
| S =       | 6.9        | 24        | 24           | 24       | 23.77    | 24        |
| stirrups= | 15.04348   | 4.325     | 4.325        | 4.325    | 4.366849 | 4.325     |
|           |            |           | <u>26 D</u>  |          |          |           |
| x (ft) =  | 0          | 9.2       | 18.4         | 27.6     | 36.8     | 46        |
| Vs.req =  | -351.403   | -60.09131 | 8.705518191  | 19.2774  | 15.9074  | -2.39789  |
| Vs.act =  | 20.24      | 40.48     | 45.68578313  | 45.68578 | 40.48    | 20.24     |
| S =       | 24         | 24        | 24           | 19.09    | 24       | 24        |
| stirrups= | 4.6        | 4.6       | 4.6          | 5.783133 | 4.6      | 4.6       |
|           |            |           | <u>28 D</u>  |          |          |           |
| x (ft) =  | 0          | 9.5       | 19           | 28.5     | 38       | 47.5      |
| Vs.req =  | -372.0428  | -62.13361 | 8.403023839  | 19.30495 | 16.00387 | -2.032419 |
| Vs.act =  | 20.9       | 41.8      | 47.3         | 47.3     | 41.8     | 20.9      |
| S =       | 24         | 24        | 24           | 19       | 24       | 24        |
| stirrups= | 4.75       | 4.75      | 4.75         | 6        | 4.75     | 4.75      |
|           |            |           | <u>30 D</u>  |          |          |           |
| x (ft) =  | 0          | 9.6       | 19.2         | 28.8     | 38.4     | 48        |
| Vs.req =  | -379.1074  | -66.43017 | 7.329841557  | 19.38599 | 16.37872 | -0.728028 |
| Vs.act =  | 21.12      | 42.24     | 48.65286257  | 49.7547  | 43.34183 | 21.12     |
| S =       | 24         | 24        | 24           | 18.41    | 22.81    | 24        |
| 0-        | 24         | 27        |              |          |          |           |

Notes:

fc girder-6 ksi, fc slab-3.6 ksi
 Prestressing steel-0.5 in grade 270 low relaxation
 Stirrup steel-two # 3 U legged grade 40(40ksi)

| Table | 8.3.1.3b: | Girder \$ | Spacing = | 6 feet |
|-------|-----------|-----------|-----------|--------|
|-------|-----------|-----------|-----------|--------|

|           |           |            | 12 D         |          |          |           |
|-----------|-----------|------------|--------------|----------|----------|-----------|
| x (ft) =  | 0         | 5.95       | 11.9         | 17.85    | 23.8     | 29.75     |
|           | -174.2281 |            | 5.915146627  | 16.81072 | 13.9715  | -0.879874 |
| Vs.act =  | 13.09     | 26.18      | 27.10874163  | 27.10874 | 26.18    | 13.09     |
| S =       | 24        | 24         | 24           | 22.41    | 24       | 24        |
| stirrups= | 2.975     | 2.975      | 2.975        | 3.186078 | 2.975    | 2.975     |
| ounapo-   | 2.010     | 2.070      | 14 D         | 0.100070 | 2.070    | 2.010     |
| x (ft) =  | 0         | 6.55       | 13.1         | 19.65    | 26.2     | 32.75     |
| Vs.req =  | -199.2059 |            | 11.67095678  | 21.85642 |          | 0.613738  |
| Vs.act =  | 14.41     | 28.82      | 34.49362369  | 35.77509 | 30.10147 | 14.41     |
| S =       | 24        | 24         | 24           | 17.22    | 22.04    | 24        |
| stirrups= | 3.275     | 3.275      | 3.275        | 4.56446  | 3.566243 | 3.275     |
| ounapo    | 0.210     | 01210      | 14 S         |          | 0.000210 | 0.210     |
| x (ft) =  | 0         | 6.3        | 12.6         | 18.9     | 25.2     | 31.5      |
| Vs.req =  | 70.26196  | 26.30208   | -12.37418145 | 14.98759 | 17.01748 | 2.425516  |
| Vs.act =  | 73.92     | 36.89601   | 27.72        | 28.76991 | 28.76991 | 13.86     |
| S =       | 4.5       | 14.44      | 24           | 20.70001 | 22.31    | 24        |
| stirrups= | 16.8      | 5.235457   | 3.15         | 3.15     | 3.388615 | 3.15      |
| ounupo    | 10.0      | 01200101   | <u>16 D</u>  | 0.10     | 0.000010 | 0.10      |
| x (ft) =  | 0         | 7.1        | 14.2         | 21.3     | 28.4     | 35.5      |
| Vs.req =  |           | -46.60596  | 16.50423715  | 26.01081 | 21.27607 | 1.842676  |
| Vs.act =  | 15.62     | 33.6778    | 44.07307064  | 46.24624 | 35.85098 | 15.62     |
| S =       | 24        | 24         | 20.76        | 14.41    | 18.53    | 24        |
| stirrups= | 3.55      | 3.55       | 4.104046243  | 5.912561 | 4.597949 | 3.55      |
| ounapo-   | 0.00      | 0.00       | 16 S         | 0.012001 | 1.007010 | 0.00      |
| x (ft) =  | 0         | 6.8        | 13.6         | 20.4     | 27.2     | 34        |
| Vs.req =  | 73.5642   | 25.88466   | -6.538252434 | 20.24653 |          | 4.285125  |
| Vs.act =  | 75.58737  | 39.92801   | 34.49427639  | 40.05085 | 35.47657 | 14.96     |
| S =       | 4.75      | 14.38      | 24           | 18.38    | 17.5     | 24        |
| stirrups= | 17.17895  | 5.674548   | 3.4          | 4.439608 | 4.662857 | 3.4       |
| ounupo    |           | 0.07 10 10 | 18 D         |          |          | 0.1       |
| x (ft) =  | 0         | 7.45       | 14.9         | 22.35    | 29.8     | 37.25     |
| Vs.req =  |           | -49.18838  |              | 25.98733 |          | 2.546234  |
| Vs.act =  | 16.39     | 34.98858   | 45.93423132  | 48.71391 | 37.76826 | 16.39     |
| S =       | 24        | 24         | 21.15        | 14.39    | 18.4     | 24        |
| stirrups= | 3.725     | 3.725      | 4.226950355  | 6.212648 | 4.858696 | 3.725     |
| oundpo    | 0.1.20    | 0.1.20     | 20 D         | 0.2.20.0 |          | 0.1.20    |
| x (ft) =  | 0         | 7.8        | 15.6         | 23.4     | 31.2     | 39        |
| Vs.req =  | -282.5716 | -53.44438  | 14.06353656  | 24.4217  | 20.14228 | 2.495203  |
| Vs.act =  | 17.16     | 34.32      | 43.74747579  | 47.41904 | 37.99156 | 17.16     |
| S =       | 24        | 24         | 24           | 15.49    | 19.77    | 24        |
| stirrups= | 3.9       | 3.9        | 3.9          | 6.042608 | 4.734446 | 3.9       |
|           | <u> </u>  |            | 20 S         |          |          |           |
| x (ft) =  | 0         | 7.4        | 14.8         | 22.2     | 29.6     | 37        |
| Vs.req =  | 76.19011  | 23.3693    | -11.48212164 | 18.53348 | 20.64074 | 5.520229  |
| Vs.act =  | 80.56082  | 40.9311    | 35.82577289  | 41.32504 | 38.05926 | 16.28     |
| S =       | 4.85      | 15.85      | 24           | 19.99    | 17.94    | 24        |
| stirrups= | 18.30928  | 5.602524   | 3.7          | 4.442221 | 4.949833 | 3.7       |
| continued |           | I          |              |          |          |           |

#### Table 8.3.1.3b, page 2

|           | p. 1. Su, pa | ye z      |              |          |          |          |
|-----------|--------------|-----------|--------------|----------|----------|----------|
|           |              |           | <u>22 D</u>  |          |          |          |
| x (ft) =  | 0            | 8.1       | 16.2         | 24.3     | 32.4     | 40.5     |
| Vs.req =  | -299.6257    | -54.074   | 15.59844473  | 26.07058 | 21.65447 | 3.803023 |
| Vs.act =  | 17.82        | 37.45636  | 49.69117741  | 53.81481 | 41.58    | 17.82    |
| S =       | 24           | 24        | 21.78        | 14.23    | 18       | 24       |
| stirrups= | 4.05         | 4.05      | 4.462809917  | 6.830639 | 5.4      | 4.05     |
|           |              |           | <u>24 D</u>  |          |          |          |
| x (ft) =  | 0            | 8.35      | 16.7         | 25.05    | 33.4     | 41.75    |
| Vs.req =  | -324.5003    | -58.55368 | 13.90075265  | 25.08617 | 21.01075 | 4.311379 |
| Vs.act =  | 18.37        | 36.74     | 48.32108696  | 53.82115 | 42.24006 | 18.37    |
| S =       | 24           | 24        | 24           | 14.72    | 18.47    | 24       |
| stirrups= | 4.175        | 4.175     | 4.175        | 6.807065 | 5.425014 | 4.175    |
|           |              |           | 24 S         |          |          |          |
| x (ft) =  | 0            | 8.15      | 16.3         | 24.45    | 32.6     | 40.75    |
| Vs.req =  | 81.52087     | 21.22342  | -13.18407261 | 18.77304 | 21.37474 | 6.071502 |
| Vs.act =  | 93.54783     | 42.28314  | 39.46753754  | 46.0572  | 42.44966 | 17.93    |
| S =       | 4.6          | 17.67     | 24           | 19.98    | 17.55    | 24       |
| stirrups= | 21.26087     | 5.534805  | 4.075        | 4.894895 | 5.57265  | 4.075    |
|           |              |           | <u>26 D</u>  |          |          |          |
| x (ft) =  | 0            | 8.65      | 17.3         | 25.95    | 34.6     | 43.25    |
| Vs.req =  | -346.518     | -60.57489 | 13.7993811   | 25.27794 | 21.25593 | 4.815486 |
| Vs.act =  | 19.03        | 38.06     | 50.39813187  | 56.49024 | 44.15211 | 19.03    |
| S =       | 24           | 24        | 24           | 14.56    | 18.18    | 24       |
| stirrups= | 4.325        | 4.325     | 4.325        | 7.129121 | 5.709571 | 4.325    |
|           |              |           | <u>28 D</u>  |          |          |          |
| x (ft) =  | 0            | 8.9       | 17.8         | 26.7     | 35.6     | 44.5     |
| Vs.req =  | -369.4191    | -64.22438 | 12.53454689  | 24.61544 | 20.84115 | 5.221051 |
| Vs.act =  | 19.58        | 39.16     | 51.11825503  | 56.98059 | 45.02234 | 19.58    |
| S =       | 24           | 24        | 24           | 14.9     | 18.47    | 24       |
| stirrups= | 4.45         | 4.45      | 4.45         | 7.167785 | 5.78235  | 4.45     |
|           |              |           | <u>30 D</u>  |          |          |          |
| x (ft) =  | 0            | 9         | 18           | 27       | 36       | 45       |
| Vs.req =  | -377.2065    | -68.73165 | 11.49486467  | 24.77271 | 21.29538 | 6.554367 |
| Vs.act =  | 19.8         | 39.6      | 52.8         | 60.09236 | 46.89236 | 19.8     |
| s =       | 24           | 24        | 24           | 14.4     | 17.54    | 24       |
| stirrups= | 4.5          | 4.5       | 4.5          | 7.5      | 6.157355 | 4.5      |

Notes:

1. fc girder-6 ksi, fc slab-3.6 ksi

2. Prestressing steel-0.5 in grade 270 low relaxation

3. Stirrup steel-two # 3 U legged grade 40(40ksi)

| Table | 8.3.1.3c: | Girder S | Spacing = | 7 feet |
|-------|-----------|----------|-----------|--------|
|-------|-----------|----------|-----------|--------|

|           |           |           | 12 D         |          |          |          |
|-----------|-----------|-----------|--------------|----------|----------|----------|
| x (ft) =  | 0         | 5.5       | 11           | 16.5     | 22       | 27.5     |
|           |           | -65.22279 | 6.562474482  |          | 15.71175 | 4.593282 |
| Vs.act =  | 12.1      | 24.2      | 26.3143906   | 26.31439 | 24.2     | 12.1     |
| S =       | 24        | 24        | 24           | 20.43    | 24       | 24       |
| stirrups= | 2.75      | 2.75      | 2.75         | 3.230543 | 2.75     | 2.75     |
| - currape |           |           | 14 D         | 0.2000.0 |          |          |
| x (ft) =  | 0         | 6.05      | 12.1         | 18.15    | 24.2     | 30.25    |
| Vs.req =  | -191.9167 |           | 12.43207489  | 23.8026  | 19.98986 | 6.367136 |
| Vs.act =  | 13.31     | 26.62     | 33.51493359  | 36.33827 | 29.44333 | 13.31    |
| S =       | 24        | 24        | 24           | 15.81    | 19.8     | 24       |
| stirrups= | 3.025     | 3.025     | 3.025        | 4.59203  | 3.666667 | 3.025    |
|           |           |           | 14 S         |          |          |          |
| x (ft) =  | 0         | 5.85      | 11.7         | 17.55    | 23.4     | 29.25    |
| Vs.req =  | 91.0075   | 44.50587  | 2.509746608  | 17.12075 | 19.56562 | 8.10935  |
| Vs.act =  | 96.525    | 49.08102  | 26.79605951  | 29.83951 | 28.78345 | 12.87    |
| S =       | 3.2       | 8.53      | 24           | 22.18    | 19.41    | 24       |
| stirrups= | 21.9375   | 8.229777  | 2.925        | 3.165014 | 3.616692 | 2.925    |
|           |           |           | <u>16 D</u>  |          |          |          |
| x (ft) =  | 0         | 6.6       | 13.2         | 19.8     | 26.4     | 33       |
| Vs.req =  | -215.0711 |           | 18.71223984  | 29.32823 | 24.40121 | 8.0293   |
| Vs.act =  | 14.52     | 33.55222  | 46.29982846  | 48.83196 | 36.08436 | 14.52    |
| S =       | 24        | 24        | 18.31        | 12.78    | 16.16    | 24       |
| stirrups= | 3.3       | 3.3       | 4.325505188  | 6.197183 |          | 3.3      |
|           |           |           | 16 S         |          |          |          |
| x (ft) =  | 0         | 6.3       | 12.6         | 18.9     | 25.2     | 31.5     |
| Vs.req =  | 94.7038   | 44.56652  |              | 22.438   | 23.92014 | 10.2484  |
| Vs.act =  | 95.04     | 53.69713  | 33.91063291  | 41.42852 | 35.23789 | 13.86    |
| S =       | 3.5       | 8.35      | 24           | 16.59    | 15.56    | 24       |
| stirrups= | 21.6      | 9.053892  | 3.15         | 4.556962 | 4.858612 | 3.15     |
|           |           |           | 18 D         |          |          |          |
| x (ft) =  | 0         | 7         | 14           | 21       | 28       | 35       |
|           | -241.1429 |           | 20.18099285  |          | 25.86698 | 9.066732 |
| Vs.act =  | 15.4      | 37.21818  | 52.51585624  | 55.01346 | 39.71579 | 15.4     |
| S =       | 24        | 24        | 16.94        | 12.04    | 15.2     | 24       |
| stirrups= | 3.5       | 3.5       | 4.958677686  | 6.976744 | 5.526316 | 3.5      |
|           |           |           | <u>20 D</u>  |          |          |          |
| x (ft) =  | 0         | 7.35      | 14.7         | 22.05    | 29.4     | 36.75    |
| Vs.req =  | -274.3837 | -53.65303 | 18.53521497  | 29.82192 | 24.91664 | 9.200653 |
| Vs.act =  | 16.17     | 37.00092  | 51.41247816  | 54.86692 | 40.45536 | 16.17    |
| S =       | 24        | 24        | 18.63        | 12.69    | 15.98    | 24       |
| stirrups= | 3.675     | 3.675     | 4.734299517  | 6.950355 | 5.519399 | 3.675    |
|           |           |           | <u>20 S</u>  |          |          |          |
| x (ft) =  | 0         | 7         | 14           | 21       | 28       | 35       |
| Vs.req =  | 100.3152  | 43.55653  | -6.909153635 | 24.09359 | 25.8826  | 12.11871 |
| Vs.act =  | 100.4348  | 58.88235  | 39.4468445   | 49.87494 | 41.22809 | 15.4     |
| s =       | 3.68      | 8.5       | 24           | 15.37    | 14.31    | 24       |
| stirrups= | 22.82609  | 9.882353  | 3.5          | 5.465192 | 5.870021 | 3.5      |
| continued |           |           |              |          |          |          |

### Table 8.3.1.3c, page 2

|           | 5.1.3C, pag | ye z      |              |          |          |          |
|-----------|-------------|-----------|--------------|----------|----------|----------|
|           |             |           | <u>22 D</u>  |          |          |          |
| x (ft) =  | 0           | 7.65      | 15.3         | 22.95    | 30.6     | 38.25    |
| Vs.req =  | -291.9826   | -53.6517  | 20.7059669   | 31.97294 | 26.8431  | 10.64831 |
| Vs.act =  | 16.83       | 41.44426  | 59.40495727  | 62.60888 | 44.64818 | 16.83    |
| s =       | 24          | 24        | 16.41        | 11.61    | 14.52    | 24       |
| stirrups= | 3.825       | 3.825     | 5.594149909  | 7.906977 | 6.322314 | 3.825    |
|           |             |           | <u>24 D</u>  |          |          |          |
| x (ft) =  | 0           | 7.9       | 15.8         | 23.7     | 31.6     | 39.5     |
| Vs.req =  | -317.3236   | -57.94198 | 19.26435712  | 31.19867 | 26.37734 | 11.26182 |
| Vs.act =  | 17.38       | 41.12047  | 58.97019643  | 63.58595 | 45.73622 | 17.38    |
| S =       | 24          | 24        | 17.57        | 11.84    | 14.71    | 24       |
| stirrups= | 3.95        | 3.95      | 5.395560615  | 8.006757 | 6.444596 | 3.95     |
|           |             |           | <u>24 S</u>  |          |          |          |
| x (ft) =  | 0           | 7.65      | 15.3         | 22.95    | 30.6     | 38.25    |
| Vs.req =  | 106.74      | 42.7897   | -12.25651469 | 22.87109 | 25.62415 | 12.85503 |
| Vs.act =  | 115.4057    | 62.88701  | 41.45926829  | 52.21943 | 44.42016 | 16.83    |
| S =       | 3.5         | 8.77      | 24           | 16.4     | 14.64    | 24       |
| stirrups= | 26.22857    | 10.4675   | 3.825        | 5.597561 | 6.270492 | 3.825    |
|           |             |           | <u>26 D</u>  |          |          |          |
| x (ft) =  | 0           | 8.15      | 16.3         | 24.45    | 32.6     | 40.75    |
| Vs.req =  | -341.6643   | -61.78243 | 18.05132183  | 30.59247 | 26.02887 | 11.80925 |
| Vs.act =  | 17.93       | 40.95408  | 58.79465061  | 64.76788 | 46.9273  | 17.93    |
| S =       | 24          | 24        | 18.69        | 12.03    | 14.84    | 24       |
| stirrups= | 4.075       | 4.075     | 5.232744783  | 8.129676 | 6.590296 | 4.075    |
|           |             |           | <u>28 D</u>  |          |          |          |
| x (ft) =  | 0           | 8.4       | 16.8         | 25.2     | 33.6     | 42       |
| Vs.req =  | -364.9778   | -65.18627 | 17.07275945  | 30.15952 | 25.80467 | 12.30661 |
| Vs.act =  | 18.48       | 40.98228  | 58.97596732  | 66.20023 | 48.20654 | 18.48    |
| S =       | 24          | 24        | 19.71        | 12.16    | 14.92    | 24       |
| stirrups= | 4.2         | 4.2       | 5.114155251  | 8.289474 | 6.756032 | 4.2      |
|           |             |           | <u>30 D</u>  |          |          |          |
| x (ft) =  | 0           | 8.45      | 16.9         | 25.35    | 33.8     | 42.25    |
| Vs.req =  | -375.705    | -72.17302 | 14.52342887  | 29.25685 | 25.46839 | 13.61001 |
| Vs.act =  | 18.59       | 38.29671  | 56.27720558  | 66.98358 | 49.00309 | 18.59    |
| s =       | 24          | 24        | 22.64        | 12.2     | 14.67    | 24       |
| stirrups= | 4.225       | 4.225     | 4.478798587  | 8.311475 | 6.912065 | 4.225    |

Notes:

fc girder-6 ksi, fc slab-3.6 ksi
 Prestressing steel-0.5 in grade 270 low relaxation
 Stirrup steel-two # 3 U legged grade 40(40ksi)

|                                          |                                             |                                                       | 40.0                                                                               | 1                                                              |                                                              |                                                |
|------------------------------------------|---------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------|
| (6)                                      | 0                                           | 5.45                                                  | <u>12 D</u>                                                                        | 45.45                                                          |                                                              | 05.75                                          |
| x (ft) =                                 | 0                                           | 5.15                                                  | 10.3                                                                               | 15.45                                                          | 20.6                                                         | 25.75                                          |
|                                          |                                             | -69.11594                                             | 8.359966634                                                                        | 20.71338                                                       |                                                              | 8.970776                                       |
| Vs.act =                                 | 11.33                                       | 22.66                                                 | 26.27887301                                                                        | 27.21963                                                       | 23.60076                                                     | 11.33                                          |
| S =                                      | 24                                          | 24                                                    | 24                                                                                 | 18.19                                                          | 22.16                                                        | 24                                             |
| stirrups=                                | 2.575                                       | 2.575                                                 | 2.575                                                                              | 3.397471                                                       | 2.788809                                                     | 2.575                                          |
|                                          |                                             |                                                       | <u>14 D</u>                                                                        |                                                                |                                                              |                                                |
| x (ft) =                                 | 0                                           | 5.65                                                  | 11.3                                                                               | 16.95                                                          | 22.6                                                         | 28.25                                          |
| Vs.req =                                 | -182.993                                    | -62.49672                                             | 13.94964258                                                                        | 26.09122                                                       |                                                              | 11.79708                                       |
| Vs.act =                                 | 12.43                                       | 24.86                                                 | 33.11793343                                                                        | 37.42867                                                       |                                                              | 12.43                                          |
| S =                                      | 24                                          | 24                                                    | 24                                                                                 | 14.42                                                          | 17.82                                                        | 24                                             |
| stirrups=                                | 2.825                                       | 2.825                                                 | 2.825                                                                              | 4.701803                                                       | 3.804714                                                     | 2.825                                          |
|                                          |                                             |                                                       | <u>14 S</u>                                                                        |                                                                |                                                              |                                                |
| x (ft) =                                 | 0                                           | 5.45                                                  | 10.9                                                                               | 16.35                                                          | 21.8                                                         | 27.25                                          |
| Vs.req =                                 | 110.6548                                    | 61.94814                                              | 17.74868763                                                                        | 18.35657                                                       | 21.36405                                                     | 12.87957                                       |
| Vs.act =                                 | 110.6769                                    | 60.39592                                              | 27.36790904                                                                        | 30.10848                                                       | 28.18358                                                     | 11.99                                          |
| S =                                      | 2.6                                         | 6.13                                                  | 21.39                                                                              | 20.68                                                          | 17.77                                                        | 24                                             |
| stirrups=                                | 25.15385                                    | 10.66884                                              | 3.057503506                                                                        | 3.162476                                                       | 3.68036                                                      | 2.725                                          |
|                                          |                                             |                                                       | <u>16 D</u>                                                                        |                                                                |                                                              |                                                |
| x (ft) =                                 | 0                                           | 6.15                                                  | 12.3                                                                               | 18.45                                                          | 24.6                                                         | 30.75                                          |
| Vs.req =                                 | -207.8567                                   | -55.33535                                             | 20.01938662                                                                        | 31.65707                                                       | 26.69952                                                     | 13.80186                                       |
| Vs.act =                                 | 13.53                                       | 32.49729                                              | 46.3929654                                                                         | 49.41078                                                       | 35.80298                                                     | 13.81787                                       |
| S =                                      | 24                                          | 24                                                    | 17.12                                                                              | 11.84                                                          | 14.77                                                        | 23.5                                           |
| stirrups=                                | 3.075                                       | 3.075                                                 | 4.310747664                                                                        | 6.233108                                                       | 4.996615                                                     | 3.140426                                       |
|                                          |                                             |                                                       | <u>16 S</u>                                                                        |                                                                |                                                              |                                                |
| x (ft) =                                 | 0                                           | 5.9                                                   | 11.8                                                                               | 17.7                                                           | 23.6                                                         | 29.5                                           |
| Vs.req =                                 | 115.3438                                    | 62.69404                                              | 15.22171372                                                                        | 25.06918                                                       | 26.81073                                                     | 15.92486                                       |
| Vs.act =                                 | 115.3778                                    | 65.42444                                              | 33.95777778                                                                        | 43.42158                                                       | 38.41919                                                     | 15.97538                                       |
| S =                                      | 2.7                                         | 5.94                                                  | 24                                                                                 | 14.85                                                          | 13.88                                                        | 19.5                                           |
| stirrups=                                | 26.22222                                    | 11.91919                                              | 2.95                                                                               | 4.767677                                                       | 5.100865                                                     | 3.630769                                       |
|                                          |                                             |                                                       | <u>18 D</u>                                                                        |                                                                |                                                              |                                                |
| x (ft) =                                 | 0                                           | 6.65                                                  | 13.3                                                                               | 19.95                                                          | 26.6                                                         | 33.25                                          |
| Vs.req =                                 | -230.5546                                   | -48.17737                                             | 26.06567766                                                                        | 37.02734                                                       | 31.01283                                                     | 15.43971                                       |
| Vs.act =                                 | 14.63                                       | 41.3922                                               | 61.52655156                                                                        | 62.45521                                                       | 43.29619                                                     | 15.60533                                       |
| S =                                      | 24                                          | 24                                                    | 13.12                                                                              | 10.1                                                           | 12.68                                                        | 22.5                                           |
| stirrups=                                | 3.325                                       | 3.325                                                 | 6.082317073                                                                        | 7.90099                                                        | 6.293375                                                     | 3.546667                                       |
|                                          |                                             |                                                       | <u>20 D</u>                                                                        |                                                                |                                                              |                                                |
| x (ft) =                                 | 0                                           | 7                                                     | 14                                                                                 | 21                                                             | 28                                                           | 35                                             |
| Vs.req =                                 | -263.8577                                   | 51 20602                                              | 24.42216173                                                                        | 36.20384                                                       | 30.39835                                                     | 15.77915                                       |
| 101109                                   | -200.0011                                   | -51.38603                                             | 27.72210175                                                                        | 00.20001                                                       |                                                              |                                                |
| Vs.act =                                 | 15.4                                        | 41.53861                                              | 61.50703491                                                                        | 63.58216                                                       | 43.61374                                                     | 15.4                                           |
|                                          |                                             |                                                       |                                                                                    |                                                                |                                                              |                                                |
| Vs.act =                                 | 15.4                                        | 41.53861                                              | 61.50703491                                                                        | 63.58216                                                       | 43.61374                                                     | 15.4                                           |
| Vs.act =<br>s =                          | 15.4<br>24                                  | 41.53861<br>24                                        | 61.50703491<br>14.14                                                               | 63.58216<br>10.45                                              | 43.61374<br>13.1                                             | 15.4<br>24                                     |
| Vs.act =<br>s =<br>stirrups=             | 15.4<br>24                                  | 41.53861<br>24                                        | 61.50703491<br>14.14<br>5.940594059                                                | 63.58216<br>10.45                                              | 43.61374<br>13.1                                             | 15.4<br>24<br>3.5                              |
| Vs.act =<br>s =<br>stirrups=<br>x (ft) = | 15.4<br>24<br>3.5<br>0                      | 41.53861<br>24<br>3.5<br>6.65                         | 61.50703491<br>14.14<br>5.940594059<br><u>20 S</u><br>13.3                         | 63.58216<br>10.45<br>8.038278<br>19.95                         | 43.61374<br>13.1<br>6.412214<br>26.6                         | 15.4<br>24<br>3.5<br>33.25                     |
| Vs.act =<br>s =<br>stirrups=             | 15.4<br>24<br>3.5<br>0<br>123.5083          | 41.53861<br>24<br>3.5<br>6.65<br>63.14414             | 61.50703491<br>14.14<br>5.940594059<br><u>20 S</u><br>13.3<br>9.326171462          | 63.58216<br>10.45<br>8.038278<br>19.95<br>29.53098             | 43.61374<br>13.1<br>6.412214<br>26.6<br>30.96535             | 15.4<br>24<br>3.5<br>33.25<br>18.4917          |
| Vs.act =                                 | 15.4<br>24<br>3.5<br>0<br>123.5083<br>125.4 | 41.53861<br>24<br>3.5<br>6.65<br>63.14414<br>74.44601 | 61.50703491<br>14.14<br>5.940594059<br><u>20 S</u><br>13.3<br>9.326171462<br>42.63 | 63.58216<br>10.45<br>8.038278<br>19.95<br>29.53098<br>57.35786 | 43.61374<br>13.1<br>6.412214<br>26.6<br>30.96535<br>47.83786 | 15.4<br>24<br>3.5<br>33.25<br>18.4917<br>18.48 |
| Vs.act =                                 | 15.4<br>24<br>3.5<br>0<br>123.5083          | 41.53861<br>24<br>3.5<br>6.65<br>63.14414             | 61.50703491<br>14.14<br>5.940594059<br><u>20 S</u><br>13.3<br>9.326171462          | 63.58216<br>10.45<br>8.038278<br>19.95<br>29.53098             | 43.61374<br>13.1<br>6.412214<br>26.6<br>30.96535             | 15.4<br>24<br>3.5<br>33.25<br>18.4917          |

### Table 8.3.1.3d, page 2

|           | 5. I.Su, pa | ye z      |             |          |          |          |
|-----------|-------------|-----------|-------------|----------|----------|----------|
|           |             |           | <u>22 D</u> |          |          |          |
| x (ft) =  | 0           | 7.25      | 14.5        | 21.75    | 29       | 36.25    |
| Vs.req =  | -283.8701   | -53.3025  | 25.44709618 | 37.54916 | 31.73247 | 17.27192 |
| Vs.req =  | -283.8701   | -53.3025  | 25.44709618 | 37.54916 | 31.73247 | 17.27192 |
| s =       | 24          | 24        | 13.35       | 9.88     | 12.29    | 22       |
| stirrups= | 3.625       | 3.625     | 6.516853933 | 8.805668 | 7.078926 | 3.954545 |
|           |             |           | <u>24 D</u> |          |          |          |
| x (ft) =  | 0           | 7.45      | 14.9        | 22.35    | 29.8     | 37.25    |
| Vs.req =  | -311.7282   |           | 22.51837674 | 35.70533 | 30.46227 | 17.90808 |
| Vs.act =  | 16.39       | 42.56166  | 64.17745379 | 68.88178 | 48.74786 | 17.87188 |
| S =       | 24          | 24        | 15.03       | 10.35    | 12.74    | 22.01    |
| stirrups= | 3.725       | 3.725     | 5.948103792 | 8.637681 | 7.017268 | 4.06179  |
|           |             |           | <u>24 S</u> |          |          |          |
| x (ft) =  | 0           | 7.25      | 14.5        | 21.75    | 29       | 36.25    |
| Vs.req =  | 131.3009    | 63.6867   | 3.95179123  | 27.73879 | 30.37211 | 19.47864 |
| Vs.act =  | 133.8462    | 80.94151  | 44.26360947 | 59.30956 | 50.87134 | 19.87539 |
| S =       | 2.86        | 5.89      | 24          | 13.52    | 12.35    | 19.26    |
| stirrups= | 30.41958    | 14.7708   | 3.625       | 6.434911 | 7.044534 | 4.517134 |
|           |             |           | <u>26 D</u> |          |          |          |
| x (ft) =  | 0           | 7.7       | 15.4        | 23.1     | 30.8     | 38.5     |
| Vs.req =  | -336.51     | -63.44938 | 21.66036882 | 35.3792  | 30.34777 | 18.57736 |
| Vs.act =  | 16.94       | 43.03499  | 65.18730127 | 71.02946 | 51.17805 | 19.24089 |
| S =       | 24          | 24        | 15.58       | 10.4     | 12.73    | 21.13    |
| stirrups= | 3.85        | 3.85      | 5.930680359 | 8.884615 | 7.258445 | 4.372929 |
|           |             |           | <u>28 D</u> |          |          |          |
| x (ft) =  | 0           | 7.95      | 15.9        | 23.85    | 31.8     | 39.75    |
| Vs.req =  | -360.2052   | -66.51585 | 21.04307768 | 35.23031 | 30.35911 | 18.93061 |
| Vs.act =  | 17.49       | 43.74141  | 66.5741737  | 73.42687 | 53.42162 | 20.31752 |
| S =       | 24          | 24        | 15.99       | 10.41    | 12.68    | 20.66    |
| stirrups= | 3.975       | 3.975     | 5.966228893 | 9.164265 | 7.523659 | 4.617619 |
|           |             |           | <u>30 D</u> |          |          |          |
| x (ft) =  | 0           | 8         | 16          | 24       | 32       | 40       |
| Vs.req =  | -371.8601   | -73.90542 | 18.37268368 | 34.2885  | 30.01123 | 18.84189 |
| Vs.act =  | 17.6        | 41.19777  | 64.17413424 | 74.50408 | 54.91132 | 20.98361 |
| s =       | 24          | 24        | 17.9        | 10.41    | 12.45    | 20.13    |
| stirrups= | 4           | 4         | 5.363128492 | 9.221902 | 7.710843 | 4.769001 |

Notes:

fc girder-6 ksi, fc slab-3.6 ksi
 Prestressing steel-0.5 in grade 270 low relaxation
 Stirrup steel-two # 3 U legged grade 40(40ksi)

| Table 8.3.1.3 | e: Girder | Spacing = | 9 feet |
|---------------|-----------|-----------|--------|
|---------------|-----------|-----------|--------|

|                  |           |           | 12 D        |          |          |            |
|------------------|-----------|-----------|-------------|----------|----------|------------|
| x (ft) =         | 0         | 4.85      | <u>9.7</u>  | 14.55    | 19.4     | 24.25      |
|                  |           | -72.69682 |             | 22.75444 | 19.4     | 10.4519    |
| Vs.act =         | 10.67     | 21.34     | 26.14311178 | 28.27711 | 23.474   | 10.4513    |
| s =              | 24        | 21.34     | 20.14311178 | 16.55    | 23.474   | 24         |
| s =<br>stirrups= | 2.425     | 2.425     | 2.425       | 3.516616 | 2.91     | 2.425      |
| Sunup3-          | 2.720     | 2.420     | <u>14 D</u> | 3.310010 | 2.51     | 2.420      |
| x (ft) =         | 0         | 5.35      | 10.7        | 16.05    | 21.4     | 26.75      |
| Vs.req =         | -171.8844 |           | 17.37699409 | 29.67936 | 25.38291 | 14.50161   |
| Vs.act =         | 11.77     | 26.05109  | 36.55869454 | 40.39691 | 32.98668 | 14.86737   |
| S =              | 24        | 24        | 19.78       | 12.68    | 15.59    | 19         |
| stirrups=        | 2.675     | 2.675     | 3.24570273  | 5.063091 | 4.118024 | 3.378947   |
| ounapo           |           |           | 14 S        |          |          | 0.01.00.11 |
| x (ft) =         | 0         | 5.15      | 10.3        | 15.45    | 20.6     | 25.75      |
| Vs.req =         | 130.2525  | 78.99923  | 32.30764277 | 20.92839 | 24.0808  | 15.05147   |
| Vs.act =         | 135.96    | 79.67435  | 38.13220484 | 32.23294 | 32.34953 | 15.10667   |
| S =              | 2         | 4.81      | 11.75       | 18.14    | 15.77    | 18         |
| stirrups=        | 30.9      | 12.84823  | 5.259574468 | 3.406836 | 3.918833 | 3.433333   |
| ounapo           | 00.0      |           | 16 D        | 01.00000 | 0.010000 | 01100000   |
| x (ft) =         | 0         | 5.8       | 11.6        | 17.4     | 23.2     | 29         |
| Vs.req =         |           | -57.84087 | 22.78190172 | 34.9145  | 29.65585 | 17.7401    |
| Vs.act =         | 12.76     | 33.1217   | 48.87566861 | 51.53953 | 41.03968 | 18.01412   |
| S =              | 24        | 24        | 15.04       | 10.74    | 13.3     | 17         |
| stirrups=        | 2.9       | 2.9       | 4.627659574 | 6.480447 | 5.233083 | 4.094118   |
| ounapo           | 2.0       | 2.0       | 16 S        | 0.100111 | 0.200000 |            |
| x (ft) =         | 0         | 5.55      | 11.1        | 16.65    | 22.2     | 27.75      |
| Vs.req =         | 135.1622  |           | 30.40826144 | 27.28006 |          | 18.93053   |
| Vs.act =         | 139.5429  | 87.09635  | 45.42504744 | 44.55789 | 37.97941 | 14.90539   |
| S =              | 2.1       | 4.64      | 12.24       | 13.64    | 12.7     | 19.66      |
| stirrups=        | 31.71429  | 14.35345  | 5.441176471 | 4.882698 | 5.244094 | 3.387589   |
|                  |           |           | 18 D        |          |          |            |
| x (ft) =         | 0         | 6.25      | 12.5        | 18.75    | 25       | 31.25      |
| Vs.req =         | -223.0195 | -51.71408 | 28.23516426 | 39.99567 | 33.78571 | 21.05629   |
| Vs.act =         | 13.75     | 41.00021  | 62.54432409 | 63.64463 | 49.64084 | 21.29032   |
| S =              | 24        | 24        | 12.11       | 9.35     | 11.64    | 15.5       |
| stirrups=        | 3.125     | 3.125     | 6.193228737 | 8.02139  | 6.443299 | 4.83871    |
|                  |           |           | <u>20 D</u> |          |          |            |
| x (ft) =         | 0         | 6.6       | 13.2        | 19.8     | 26.4     | 33         |
| Vs.req =         | -256.413  | -54.14282 | 27.16813004 | 39.70909 | 33.61348 | 20.97717   |
| Vs.act =         | 14.52     | 41.93778  | 63.98441296 | 65.97423 | 47.46355 | 18.05596   |
| S =              | 24        | 24        | 12.71       | 9.53     | 11.85    | 19.3       |
| stirrups=        | 3.3       | 3.3       | 6.231313926 | 8.310598 | 6.683544 | 4.103627   |
|                  |           |           | <u>20 S</u> |          |          |            |
| x (ft) =         | 0         | 6.3       | 12.6        | 18.9     | 25.2     | 31.5       |
| Vs.req =         | 145.2967  | 82.06191  | 25.48631574 | 33.50669 | 34.89541 | 23.54375   |
| Vs.act =         | 151.2     | 96.64942  | 52.99649158 | 61.45472 | 55.11156 | 23.76      |
| s =              | 2.2       | 4.51      | 14.53       | 11.05    | 10.61    | 14         |
| stirrups=        | 34.36364  | 16.76275  | 5.203028217 | 6.841629 | 7.125353 | 5.4        |
| continued        | k         |           |             |          |          |            |

#### Table 8.3.1.3e, page 2

|           |           |           | <u>22 D</u>   |          |          |          |  |  |  |
|-----------|-----------|-----------|---------------|----------|----------|----------|--|--|--|
| x (ft) =  | 0         | 6.85      | 13.7          | 20.55    | 27.4     | 34.25    |  |  |  |
| Vs.req =  | -277.1149 | -55.50653 | 28.34270371   | 41.536   | 35.34847 | 22.47369 |  |  |  |
| Vs.act =  | 15.07     | 45.23514  | 70.66681735   | 73.29225 | 55.39557 | 22.605   |  |  |  |
| S =       | 24        | 24        | 11.99         | 8.93     | 11.03    | 16       |  |  |  |
| stirrups= | 3.425     | 3.425     | 6.855713094   | 9.204927 | 7.452403 | 5.1375   |  |  |  |
|           |           |           | <u>24 D</u>   |          |          |          |  |  |  |
| x (ft) =  | 0         | 7.1       | 14.2          | 21.3     | 28.4     | 35.5     |  |  |  |
| Vs.req =  | -303.3195 | -59.13783 | 27.39747293   | 41.35721 | 35.38393 | 22.58936 |  |  |  |
| Vs.act =  | 15.62     | 45.97466  | 72.3344991    | 76.18422 | 56.92438 | 22.72    |  |  |  |
| S =       | 24        | 24        | 12.35         | 8.93     | 10.96    | 16.5     |  |  |  |
| stirrups= | 3.55      | 3.55      | 6.898785425   | 9.540873 | 7.773723 | 5.163636 |  |  |  |
|           |           |           | <u>24 S</u>   |          |          |          |  |  |  |
| x (ft) =  | 0         | 6.85      | 13.7          | 20.55    | 27.4     | 34.25    |  |  |  |
| Vs.req =  | 154.2641  | 83.8936   | 21.4954713    | 30.96531 | 33.83788 | 23.02838 |  |  |  |
| Vs.act =  | 154.5641  | 101.6394  | 50.59287382   | 62.50883 | 55.82721 | 23.18462 |  |  |  |
| S =       | 2.34      | 4.47      | 17.45         | 12.11    | 11.08    | 15.6     |  |  |  |
| stirrups= | 35.12821  | 18.38926  | 4.710601719   | 6.787779 | 7.418773 | 5.269231 |  |  |  |
|           |           |           | <u>26 D</u>   |          |          |          |  |  |  |
| x (ft) =  | 0         | 7.3       | 14.6          | 21.9     | 29.2     | 36.5     |  |  |  |
| Vs.req =  | -330.7187 | -65.18148 | 24.91401055   | 39.85891 | 34.38462 | 21.90162 |  |  |  |
| Vs.act =  | 16.06     | 44.52677  | 70.2262451    | 76.05129 | 56.31696 | 22.02514 |  |  |  |
| S =       | 24        | 24        | 13.54         | 9.23     | 11.24    | 17.5     |  |  |  |
| stirrups= | 3.65      | 3.65      | 6.46971935    | 9.490791 | 7.793594 | 5.005714 |  |  |  |
|           |           |           | <u>28 D</u>   |          |          |          |  |  |  |
| x (ft) =  | 0         | 7.5       | 15            | 22.5     | 30       | 37.5     |  |  |  |
| Vs.req =  | -357.1467 | -70.72747 | 22.71037927   | 38.5625  | 33.52972 | 21.31416 |  |  |  |
| Vs.act =  | 16.5      | 43.23869  | 68.37906862   | 76.13515 | 56.07515 | 21.58038 |  |  |  |
| S =       | 24        | 24        | 14.81         | 9.51     | 11.48    | 18.35    |  |  |  |
| stirrups= | 3.75      | 3.75      | 6.076975017   | 9.463722 | 7.839721 | 4.904632 |  |  |  |
|           |           |           | <u>30 D</u>   |          |          |          |  |  |  |
|           |           | F         | AILED IN FLEX | URE      |          |          |  |  |  |
|           |           |           |               |          |          |          |  |  |  |

Notes:

fc girder-6 ksi, fc slab-3.6 ksi
 Prestressing steel-0.5 in grade 270 low relaxation
 Stirrup steel-two # 3 U legged grade 40(40ksi)

### SHEAR CAPACITY TABLES FOR G 54-I GIRDER

| Table 0.3       | 5.1.4a. Gii   | uer Spac         | lng = 5 feet |            |             |           |
|-----------------|---------------|------------------|--------------|------------|-------------|-----------|
| (6)             |               |                  | <u>12 D</u>  |            | <b>0-</b> 0 | <u></u>   |
| x (ft) =        | 0             | 6.9              | 13.8         | 20.7       | 27.6        | 34.5      |
| Vs.req =        | -183.3695     |                  | 3.809310026  | 14.41384   | 11.74389    | -4.394993 |
| Vs.act =        | 15.18         | 30.36            | 30.36        | 30.36      | 30.36       | 15.18     |
| s =             | 24            | 24               | 24           | 24         | 24          | 24        |
| stirrups=       | 3.45          | 3.45             | 3.45         | 3.45       | 3.45        | 3.45      |
|                 |               |                  | <u>14 D</u>  |            |             |           |
| x (ft) =        | 0             | 7.6              | 15.2         | 22.8       | 30.4        | 38        |
| Vs.req =        | -209.4072     | -49.87496        | 9.715842305  | 18.85638   | 15.16897    | -3.501068 |
| Vs.act =        | 16.72         | 33.44            | 34.66633274  | 34.66633   | 33.44       | 16.72     |
| s =             | 24            | 24               | 24           | 22.36      | 24          | 24        |
| stirrups=       | 3.8           | 3.8              | 3.8          | 4.078712   | 3.8         | 3.8       |
|                 |               |                  | <u>16 D</u>  |            |             |           |
| x (ft) =        | 0             | 8.25             | 16.5         | 24.75      | 33          | 41.25     |
| Vs.req =        | -232.7444     | -43.99533        | 14.94626264  | 22.85836   | 18.28701    | -2.643767 |
| Vs.act =        | 18.15         | 36.3             | 41.8367863   | 41.83679   | 36.3        | 18.15     |
| s =             | 24            | 24               | 24           | 18.39      | 24          | 24        |
| stirrups=       | 4.125         | 4.125            | 4.125        | 5.383361   | 4.125       | 4.125     |
|                 |               |                  | <u>16 S</u>  |            |             |           |
| x (ft) =        | 0             | 8                | 16           | 24         | 32          | 40        |
| Vs.req =        | 58.79303      | 16.09852         | -9.301561391 | 15.82848   | 17.11035    | -1.123492 |
| Vs.act =        | 60.34286      | 35.2             | 35.2         | 35.2       | 35.2        | 17.6      |
| S =             | 7             | 24               | 24           | 24         | 24          | 24        |
| stirrups=       | 13.71429      | 4                | 4            | 4          | 4           | 4         |
|                 |               |                  | 18 D         |            |             |           |
| x (ft) =        | 0             | 8.65             | 17.3         | 25.95      | 34.6        | 43.25     |
| Vs.req =        | -260.757      | -46.2615         | 14.56899276  | 22.7681    | 18.28201    | -2.162489 |
| Vs.act =        | 19.03         | 38.06            | 43.83825638  | 43.83826   | 38.06       | 19.03     |
| S =             | 24            | 24               | 24           | 18.41      | 24          | 24        |
| stirrups=       | 4.325         | 4.325            | 4.325        | 5.63824    | 4.325       | 4.325     |
|                 |               |                  | 20 D         |            |             |           |
| x (ft) =        | 0             | 9                | 18           | 27         | 36          | 45        |
| Vs.req =        | -288.7973     |                  | 13.38385503  | 22.08824   | 17.82148    | -1.785616 |
| Vs.act =        | 19.8          | 39.6             | 44.88975713  | 44.88976   | 39.6        | 19.8      |
| S =             | 24            | 24               | 24           | 18.94      | 24          | 24        |
| stirrups=       | 4.5           | 4.5              | 4.5          | 5.702218   | 4.5         | 4.5       |
| ounapo          |               |                  | 20 S         | 0.1 022 10 |             |           |
| x (ft) =        | 0             | 8.65             | 17.3         | 25.95      | 34.6        | 43.25     |
| Vs.req =        | 59.85792      | 13.44136         | -11.77421397 | 15.3952    | 17.31812    | 0.453494  |
| Vs.act =        | 65.24571      | 38.06            | 38.06        | 38.06      | 38.06       | 19.03     |
| S =             | 7             | 24               | 24           | 24         | 24          | 24        |
| stirrups=       | ,<br>14.82857 | 4.325            | 4.325        | 4.325      | 4.325       | 4.325     |
| sunups-         | 14.02007      | 7.020            | 22 D         | 7.020      | 7.020       | 7.020     |
| x (ft) =        | 0             | 9.4              | 18.8         | 28.2       | 37.6        | 47        |
| Vs.req =        | -312.3841     | 9.4<br>-50.37158 | 14.00734022  | 22.81181   | 18.44761    | -1.274893 |
| Vs.req =        | 20.68         | 41.36            | 47.86072289  | 48.01699   | 41.51627    | 20.68     |
| vs.act =<br>s = | 20.68         | 41.36<br>24      | 24           | 18.26      | 23.82       | 20.68     |
|                 |               |                  |              |            |             | 4.7       |
| stirrups=       | 4.7           | 4.7              | 4.7          | 6.177437   | 4.735516    | 4./       |

Table 8.3.1.4a: Girder Spacing = 5 feet

#### Table 8.3.1.4a: page 2

| x (ft) = $0$ $9.7$ $19.4$ $29.1$ $38.8$ $48.5$ Vs.req = $-337.8371$ $-53.99074$ $12.65766374$ $22.06747$ $17.95275$ $-0.8961$ Vs.act = $21.34$ $42.68$ $48.59705162$ $48.59705$ $42.68$ $21.34$ s = $24$ $24$ $24$ $18.79$ $24$ $24$ stirrups= $4.85$ $4.85$ $4.85$ $6.194784$ $4.85$ $4.85$ $s =$ $24$ $24$ $24$ $18.79$ $24$ $24$ stirrups= $4.85$ $4.85$ $4.85$ $6.194784$ $4.85$ $4.85$ $s =$ $24$ $24$ $24$ $37.6$ $47.7$ $x$ (ft) =0 $9.4$ $18.8$ $28.2$ $37.6$ $47.7$ $vs.act =$ $72.98824$ $41.36$ $41.36$ $41.36862$ $41.36862$ $20.68$ $s =$ $6.8$ $24$ $24$ $24$ $23.99$ $24.7$ $vs.act =$ $72.98824$ $41.36$ $41.36$ $41.36862$ $41.36862$ $20.68$ $s =$ $6.8$ $24$ $24$ $24$ $23.99$ $24.7$ $vs.act =$ $72.98824$ $41.7$ $4.7$ $4.7$ $4.7$ $4.7$ $vs.act =$ $72.98824$ $41.36$ $21.4$ $24$ $23.99$ $24.7$ $vs.act =$ $72.98824$ $4.7$ $4.7$ $4.7$ $4.7$ $4.7$ $4.7$ $vs.act =$ $26.824$ $24$ $24$ $23.97$ $24.7$ $vs.act =$ $22.11$                                                              |    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Vs.req = $-337.8371$ $-53.99074$ $12.65766374$ $22.06747$ $17.95275$ $-0.8961$ Vs.act = $21.34$ $42.68$ $48.59705162$ $48.59705$ $42.68$ $21.34$ stirrups= $24$ $24$ $24$ $18.79$ $24$ $24$ stirrups= $4.85$ $4.85$ $4.85$ $6.194784$ $4.85$ $4.85$ x (ft) =0 $9.4$ $18.8$ $28.2$ $37.6$ $47$ Vs.req = $61.6072$ $10.04727$ $-13.94689614$ $15.13727$ $17.57198$ $1.01395$ Vs.act = $72.98824$ $41.36$ $41.36$ $41.36862$ $20.68$ s = $6.8$ $24$ $24$ $24$ $23.99$ $24$ stirrups= $16.58824$ $4.7$ $4.7$ $4.7$ $4.701959$ $4.7$ vs.req = $-360.6216$ $-55.56579$ $12.6361547$ $22.28864$ $18.18219$ $-0.53260$ vs.req = $-360.6216$ $-55.56579$ $12.6361547$ $22.28864$ $18.18219$ $-0.53260$ vs.act = $22.11$ $44.22$ $50.73135922$ $50.75903$ $44.24767$ $22.11$ s = $24$ $24$ $24$ $18.54$ $23.97$ $24$ stirrups= $5.025$ $5.025$ $5.025$ $6.504854$ $5.031289$ $5.025$ vs.act = $22.66$ $45.32$ $50.4352809$ $50.43528$ $45.32$ $22.664$ s = $24$ $24$ $24$ $19.58$ $24$ $24$ stirrups= $5.15$ $5.15$ $5$ |    |
| Vs.act =21.3442.6848.5970516248.5970542.6821.34 $s =$ 24242418.792424stirrups=4.854.854.856.1947844.854.85 $x$ (ft) =09.418.828.237.647Vs.req =61.607210.04727-13.9468961415.1372717.571981.01396Vs.act =72.9882441.3641.3641.3686241.3686220.68 $s =$ 6.824242423.9924stirrups=16.588244.74.74.74.7019594.7 $x$ (ft) =010.0520.130.1540.250.25Vs.req =-360.6216-55.5657912.636154722.886418.18219-0.53266Vs.act =22.1144.2250.7313592250.7590344.2476722.11 $s =$ 24242418.5423.9724stirrups=5.0255.0255.0256.5048545.0312895.025 $v_s$ (ft) =010.320.630.941.251.5 $v_s$ (ft) =010.320.630.9<                                                                                                                                                                                                                                                                       |    |
| s =24242418.792424stirrups=4.854.854.856.1947844.854.85x (ft) =09.418.828.237.647Vs.req =61.607210.04727-13.9468961415.1372717.571981.01399Vs.act =72.9882441.3641.3641.3686241.3686220.68 $s =$ 6.824242423.9924stirrups=16.588244.74.74.74.7019594.7x (ft) =010.0520.130.1540.250.25Vs.req =-360.6216-55.5657912.636154722.2886418.18219-0.53260vs.act =22.1144.2250.7313592250.7590344.2476722.11 $s =$ 24242418.5423.9724stirrups=5.0255.0255.0256.5048545.0312895.025vs.act =22.6645.3250.435280950.4352845.3222.66 $s =$ 24242419.582424vs.act =22.6645.3250.435280950.4352845.3222.66 $s =$ 24242419.582424stirrups=5.155.155.156.3125645.155.15                                                                                                                                                                                                                                                                                                                                                       | 13 |
| stirrups=4.854.854.854.856.1947844.854.85x (ft) =09.418.828.237.647Vs.req =61.607210.04727-13.9468961415.1372717.571981.01395Vs.act =72.9882441.3641.3641.3686241.3686220.68s =6.824242423.9924stirrups=16.588244.74.74.74.74.7019594.7x (ft) =010.0520.130.1540.250.25Vs.req =-360.6216-55.5657912.636154722.2886418.18219-0.53260Vs.act =22.1144.2250.7313592250.7590344.2476722.11s =24242418.5423.9724stirrups=5.0255.0255.0256.5048545.0312895.025vs.req =-385.7812-60.057110.6461433621.0474417.30063-0.26344vs.act =22.6645.3250.435280950.4352845.3222.66s =24242419.58242424s =24242419.582424trups=5.155.155.156.3125645.155.15                                                                                                                                                                                                                                                                                                                                                                     |    |
| x (ft) =09.418.828.237.647Vs.req = $61.6072$ $10.04727$ $-13.94689614$ $15.13727$ $17.57198$ $1.01399$ Vs.act = $72.98824$ $41.36$ $41.36$ $41.36862$ $41.36862$ $20.68$ s = $6.8$ $24$ $24$ $24$ $23.99$ $24$ stirrups= $16.58824$ $4.7$ $4.7$ $4.7$ $4.701959$ $4.7$ $x$ (ft) =0 $10.05$ $20.1$ $30.15$ $40.2$ $50.25$ Vs.req = $-360.6216$ $-55.56579$ $12.6361547$ $22.28864$ $18.18219$ $-0.53266$ Vs.act = $22.11$ $44.22$ $50.73135922$ $50.75903$ $44.24767$ $22.11$ s = $24$ $24$ $24$ $18.54$ $23.97$ $24$ stirrups= $5.025$ $5.025$ $6.504854$ $5.031289$ $5.025$ $x$ (ft) =0 $10.3$ $20.6$ $30.9$ $41.2$ $51.5$ Vs.act = $22.66$ $45.32$ $50.4352809$ $50.43528$ $45.32$ $22.66$ $s =$ $24$ $24$ $24$ $19.58$ $24$ $24$ Vs.act = $22.66$ $45.32$ $50.4352809$ $50.43528$ $45.32$ $22.66$ $s =$ $24$ $24$ $24$ $19.58$ $24$ $24$ stirrups= $5.15$ $5.15$ $5.15$ $5.15$ $5.15$ $5.15$                                                                                                               |    |
| x (ft) =09.418.828.237.647Vs.req =61.607210.04727-13.9468961415.1372717.571981.01399Vs.act =72.9882441.3641.3641.3686241.3686220.68 $s =$ 6.824242423.9924stirrups=16.588244.74.74.74.74.7019594.7 $x (ft) =$ 010.0520.130.1540.250.25Vs.req =-360.6216-55.5657912.636154722.2886418.18219-0.53264Vs.act =22.1144.2250.7313592250.7590344.2476722.11 $s =$ 24242418.5423.9724stirrups=5.0255.0255.0256.5048545.0312895.025vs.act =22.6645.3250.435280950.4352845.3222.66 $s =$ 24242419.582424stirrups=5.155.155.156.3125645.155.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
| Vs.req = $61.6072$ $10.04727$ $-13.94689614$ $15.13727$ $17.57198$ $1.01399$ Vs.act = $72.98824$ $41.36$ $41.36$ $41.36862$ $41.36862$ $20.68$ s = $6.8$ $24$ $24$ $24$ $23.99$ $24$ stirrups= $16.58824$ $4.7$ $4.7$ $4.7$ $4.701959$ $4.7$ $x$ (ft) =0 $10.05$ $20.1$ $30.15$ $40.2$ $50.255$ Vs.req = $-360.6216$ $-55.56579$ $12.6361547$ $22.28864$ $18.18219$ $-0.53266$ Vs.act = $22.11$ $44.22$ $50.73135922$ $50.75903$ $44.24767$ $22.11$ s = $24$ $24$ $24$ $18.54$ $23.97$ $24$ stirrups= $5.025$ $5.025$ $5.025$ $6.504854$ $5.031289$ $5.025$ vs.act = $22.66$ $45.32$ $50.4352809$ $30.9$ $41.2$ $51.5$ vs.act = $22.66$ $45.32$ $50.4352809$ $50.43528$ $45.32$ $22.66$ s = $24$ $24$ $24$ $19.58$ $24$ $24$ stirrups= $5.15$ $5.15$ $5.15$ $5.15$ $5.15$                                                                                                                                                                                                                                     |    |
| Vs.act =72.9882441.3641.3641.3686241.3686220.68 $s =$ 6.824242423.9924stirrups=16.588244.74.74.74.74.7019594.7 $x$ (ft) =010.0520.130.1540.250.25Vs.req =-360.6216-55.5657912.636154722.2886418.18219-0.5326Vs.act =22.1144.2250.7313592250.7590344.2476722.11 $s =$ 24242418.5423.9724stirrups=5.0255.0255.0256.5048545.0312895.025 $x$ (ft) =010.320.630.941.251.5Vs.act =22.6645.3250.435280950.4352845.3222.664 $s =$ 24242419.582424stirrups=5.155.155.156.3125645.155.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| s =6.824242423.9924stirrups=16.588244.74.74.74.7019594.7 $L$ $L$ $L$ $L$ $L$ $L$ $L$ $L$ $x (ft) =$ 010.0520.130.1540.250.25 $Vs.req =$ -360.6216-55.5657912.636154722.2886418.18219-0.53260 $Vs.act =$ 22.1144.2250.7313592250.7590344.2476722.11 $s =$ 24242418.5423.9724stirrups=5.0255.0255.0256.5048545.0312895.025 $x (ft) =$ 010.320.630.941.251.5 $Vs.req =$ -385.7812-60.057110.6461433621.0474417.30063-0.26344 $Vs.act =$ 22.6645.3250.435280950.4352845.3222.66 $s =$ 24242419.582424stirrups=5.155.155.155.155.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 93 |
| stirrups=16.588244.74.74.74.7019594.7x (ft) =010.0520.130.1540.250.25Vs.req =-360.6216-55.5657912.636154722.2886418.18219-0.53264Vs.act =22.1144.2250.7313592250.7590344.2476722.11s =24242418.5423.9724stirrups=5.0255.0255.0256.5048545.0312895.025x (ft) =010.320.630.941.251.5Vs.req =-385.7812-60.057110.6461433621.0474417.30063-0.26344Vs.act =22.6645.3250.435280950.4352845.3222.66s =24242419.582424stirrups=5.155.155.155.155.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5  |
| x (ft) =010.0520.130.1540.250.25Vs.req =-360.6216-55.5657912.636154722.2886418.18219-0.53264Vs.act =22.1144.2250.7313592250.7590344.2476722.11s =24242418.5423.9724stirrups=5.0255.0255.0256.5048545.0312895.025x (ft) =010.320.630.941.251.5Vs.req =-385.7812-60.057110.6461433621.0474417.30063-0.26344Vs.act =22.6645.3250.435280950.4352845.3222.66s =24242419.582424stirrups=5.155.155.155.155.155.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
| x (ft) =010.05 $20.1$ $30.15$ $40.2$ $50.25$ Vs.req =-360.6216-55.5657912.636154722.2886418.18219-0.53266Vs.act =22.1144.22 $50.73135922$ $50.75903$ 44.2476722.11s =24242418.5423.9724stirrups= $5.025$ $5.025$ $5.025$ $6.504854$ $5.031289$ $5.025$ x (ft) =010.320.6 $30.9$ 41.2 $51.5$ Vs.req =-385.7812-60.057110.6461433621.0474417.30063-0.26344Vs.act =22.6645.32 $50.4352809$ $50.43528$ 45.3222.666s =24242419.582424stirrups= $5.15$ $5.15$ $5.15$ $6.312564$ $5.15$ $5.15$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
| Vs.req =-360.6216-55.5657912.636154722.2886418.18219-0.5326Vs.act =22.1144.2250.7313592250.7590344.2476722.11s =24242418.5423.9724stirrups=5.0255.0255.0256.5048545.0312895.025x (ft) =010.320.630.941.251.5Vs.act =-385.7812-60.057110.6461433621.0474417.30063-0.26344Vs.act =22.6645.3250.435280950.4352845.3222.666s =24242419.582424stirrups=5.155.155.156.3125645.155.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | j  |
| s =24242418.5423.9724stirrups= $5.025$ $5.025$ $5.025$ $6.504854$ $5.031289$ $5.025$ $u$ $u$ $u$ $u$ $u$ $u$ $u$ x (ft) =010.320.6 $30.9$ $41.2$ $51.5$ Vs.req = $-385.7812$ $-60.0571$ 10.64614336 $21.04744$ 17.30063 $-0.26342$ Vs.act =22.66 $45.32$ $50.4352809$ $50.43528$ $45.32$ $22.666$ $s =$ 24242419.582424stirrups= $5.15$ $5.15$ $5.15$ $6.312564$ $5.15$ $5.15$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 49 |
| stirrups= $5.025$ $5.025$ $5.025$ $6.504854$ $5.031289$ $5.025$ x (ft) =010.320.6 $30.9$ 41.2 $51.5$ Vs.req = $-385.7812$ $-60.0571$ $10.64614336$ $21.04744$ $17.30063$ $-0.26343$ Vs.act =22.6645.32 $50.4352809$ $50.43528$ $45.32$ $22.666$ s =24242419.582424stirrups= $5.15$ $5.15$ $6.312564$ $5.15$ $5.15$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
| x (ft) =010.320.6 $30.9$ 41.251.5Vs.req =-385.7812-60.057110.6461433621.0474417.30063-0.26344Vs.act =22.6645.3250.435280950.4352845.3222.66s =24242419.582424stirrups=5.155.155.156.3125645.155.15stirrups=000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
| x (ft) =010.320.6 $30.9$ 41.2 $51.5$ Vs.req =-385.7812-60.057110.64614336 $21.04744$ 17.30063-0.26344Vs.act =22.6645.32 $50.4352809$ $50.43528$ 45.3222.66s =24242419.582424stirrups=5.155.155.156.3125645.155.15 <b>30 D-1</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | j  |
| Vs.req =       -385.7812       -60.0571       10.64614336       21.04744       17.30063       -0.26344         Vs.act =       22.66       45.32       50.4352809       50.43528       45.32       22.66         s =       24       24       19.58       24       24         stirrups=       5.15       5.15       5.15       6.312564       5.15       5.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| Vs.act =         22.66         45.32         50.4352809         50.43528         45.32         22.66           s =         24         24         24         19.58         24         24           stirrups=         5.15         5.15         5.15         6.312564         5.15         5.15 $30 D-1$ 20         20         21         22.66         22.66         22.66         22.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
| s =         24         24         24         19.58         24         24           stirrups=         5.15         5.15         5.15         6.312564         5.15         5.15           u         30 D-1         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 52 |
| stirrups=         5.15         5.15         6.312564         5.15         5.15           30 D-1         30 D-1         5000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | j  |
| <u>30 D-1</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| x (ft) = 0 10.6 21.2 31.8 42.4 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| Vs.req = -251.6312 -33.46798 30.38624968 34.5355 24.12189 0.10885                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 51 |
| Vs.act = 23.32 74.951 104.4309963 86.31377 56.83377 23.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | )  |
| s = 24 24 10.84 10.6 16.7 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
| stirrups= 5.3 5.3 11.73431734 12 7.616766 5.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
| <u>30 D-2</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
| x (ft) = 0 10.6 21.2 31.8 42.4 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
| Vs.req = -250.138 -33.23736 30.6016935 34.73695 24.33856 0.21472                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22 |
| Vs.act = 23.32 75.38326 105.2647767 87.10098 57.21945 23.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| s = 24 24 10.75 10.52 16.51 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| stirrups= 5.3 5.3 11.83255814 12.09125 7.704422 5.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |

Notes:

1. fc girder-6 ksi, fc slab-3.6 ksi

Prestressing steel-0.5 in grade 270 low relaxation
 Stirrup steel-two # 3 U legged grade 40(40ksi)

| Table 8.3.1.4b: | Girder | Spacing = | 6 feet |
|-----------------|--------|-----------|--------|
|-----------------|--------|-----------|--------|

|           |           |           | 12 D         |          |          |          |
|-----------|-----------|-----------|--------------|----------|----------|----------|
| x (ft) =  | 0         | 6.35      | 12.7         | 19.05    | 25.4     | 31.75    |
|           |           | -62.09817 | 5.271866749  | 17.06319 | 14.37419 | 1.703594 |
| Vs.act =  | 13.97     | 27.94     | 27.94        | 27.94    | 27.94    | 13.97    |
| S =       | 24        | 21.54     | 24           | 24       | 21.54    | 24       |
| stirrups= | 3.175     | 3.175     | 3.175        | 3.175    | 3.175    | 3.175    |
| Surrup3-  | 0.170     | 0.170     | 14 D         | 0.170    | 0.170    | 0.170    |
| x (ft) =  | 0         | 7         | 14           | 21       | 28       | 35       |
| Vs.req =  | -201.3444 |           | 11.0437251   | 21.9894  | 18.21475 | 2.956546 |
| Vs.act =  | 15.4      | 30.8      | 34.6801252   | 34.68013 | 30.8     | 15.4     |
| S =       | 24        | 24        | 24           | 19.17    | 24       | 24       |
| stirrups= | 3.5       | 3.5       | 3.5          | 4.381847 | 3.5      | 3.5      |
|           |           |           | 16 D         |          |          |          |
| x (ft) =  | 0         | 7.6       | 15.2         | 22.8     | 30.4     | 38       |
| Vs.req =  | -226.2877 | -48.4918  | 16.69731295  | 26.29793 | 21.61124 | 4.077368 |
| Vs.act =  | 16.72     | 34.29687  | 42.68826177  | 44.65742 | 36.26603 | 16.72    |
| S =       | 24        | 24        | 22.83        | 15.98    | 20.53    | 24       |
| stirrups= | 3.8       | 3.8       | 3.994743758  | 5.707134 | 4.44228  | 3.8      |
|           |           |           | <u>16 S</u>  |          |          |          |
| x (ft) =  | 0         | 7.4       | 14.8         | 22.2     | 29.6     | 37       |
| Vs.req =  | 81.28768  | 35.61945  | -5.725573649 | 19.18136 | 20.76893 | 5.550965 |
| Vs.act =  | 81.4      | 48.51762  | 33.63761884  | 36.15127 | 35.07365 | 16.28    |
| S =       | 4.8       | 12.12     | 24           | 22.51    | 20.79    | 24       |
| stirrups= | 18.5      | 7.326733  | 3.7          | 3.944913 | 4.271284 | 3.7      |
|           |           |           | <u>18 D</u>  |          |          |          |
| x (ft) =  | 0         | 8.1       | 16.2         | 24.3     | 32.4     | 40.5     |
| Vs.req =  | -251.9647 | -46.15841 | 19.62398781  | 28.64122 | 23.48875 | 4.863902 |
| Vs.act =  | 17.82     | 39.88811  | 51.28122621  | 51.91375 | 40.52064 | 17.82    |
| S =       | 24        | 24        | 19.38        | 14.64    | 18.84    | 24       |
| stirrups= | 4.05      | 4.05      | 5.015479876  | 6.639344 | 5.159236 | 4.05     |
|           |           |           | <u>20 D</u>  |          |          |          |
| x (ft) =  | 0         | 8.45      | 16.9         | 25.35    | 33.8     | 42.25    |
| Vs.req =  |           | -49.15595 | 18.8228607   |          | 23.27248 | 5.363841 |
| Vs.act =  | 18.59     | 40.69902  | 52.23460965  | 53.63244 | 42.09685 | 18.59    |
| S =       | 24        | 24        | 20.18        | 14.81    | 18.98    | 24       |
| stirrups= | 4.225     | 4.225     | 5.024777007  | 6.846725 | 5.342466 | 4.225    |
|           |           |           | <u>20 S</u>  |          |          |          |
| x (ft) =  | 0         | 8.15      | 16.3         | 24.45    | 32.6     | 40.75    |
| Vs.req =  | 84.82785  | 34.22447  | -7.80674711  | 21.53108 | 23.10027 | 7.541648 |
| Vs.act =  | 89.65     | 52.88695  | 39.93        | 45.60505 | 41.53505 | 17.93    |
| s =       | 4.8       | 12.31     | 24           | 19.56    | 18.23    | 24       |
| stirrups= | 20.375    | 7.94476   | 4.075        | 5        | 5.364783 | 4.075    |
|           | -         |           | <u>22 D</u>  |          |          |          |
| x (ft) =  | 0         | 8.8       | 17.6         | 26.4     | 35.2     | 44       |
| Vs.req =  | -306.1162 | -51.0923  | 18.77190716  | 28.50615 | 23.55599 | 5.948677 |
| Vs.act =  | 19.36     | 42.41906  | 54.86193182  | 56.71655 | 44.27367 | 19.36    |
| S =       | 24        | 24        | 20.15        | 14.61    | 18.65    | 24       |
| stirrups= | 4.4       | 4.4       | 5.240694789  | 7.227926 | 5.662198 | 4.4      |
| continued | t k       |           |              |          |          |          |

#### Table 8.3.1.4b, page 2

|             | , pa      | 95 2      |               | n        | 1        |          |
|-------------|-----------|-----------|---------------|----------|----------|----------|
|             |           |           | <u>24 D</u>   |          |          |          |
| x (ft) =    | 0         | 9.1       | 18.2          | 27.3     | 36.4     | 45.5     |
| Vs.req =    | -332.1462 |           | 17.69521863   | 27.98016 | 23.24011 | 6.414269 |
| Vs.act =    | 20.02     | 42.57775  | 54.97879911   | 57.95134 | 45.55029 | 20.02    |
| S =         | 24        | 24        | 21.3          | 14.82    | 18.82    | 24       |
| stirrups=   | 4.55      | 4.55      | 5.126760563   | 7.368421 | 5.802338 | 4.55     |
|             |           |           | <u>24 S</u>   |          |          |          |
| x (ft) =    | 0         | 8.8       | 17.6          | 26.4     | 35.2     | 44       |
| Vs.req =    | 87.41817  | 31.78818  | -11.94435926  | 20.04514 | 22.52293 | 8.237563 |
| Vs.act =    | 96.8      | 69.9193   | 41.45415121   | 46.92793 | 44.19378 | 19.36    |
| S =         | 4.8       | 9.19      | 24            | 21.03    | 18.71    | 24       |
| stirrups=   | 22        | 11.49075  | 4.4           | 5.021398 | 5.644041 | 4.4      |
|             |           |           | <u>26 D</u>   |          |          |          |
| x (ft) =    | 0         | 9.4       | 18.8          | 28.2     | 37.6     | 47       |
| Vs.req =    | -357.1032 | -57.42422 | 16.86885109   | 27.6244  | 23.04605 | 6.827471 |
| Vs.act =    | 20.68     | 42.95648  | 55.45295174   | 59.4229  | 46.92643 | 20.68    |
| s =         | 24        | 24        | 22.28         | 14.96    | 18.91    | 24       |
| stirrups=   | 4.7       | 4.7       | 5.062836625   | 7.540107 | 5.965098 | 4.7      |
|             |           |           | <u>28 D</u>   |          |          |          |
| x (ft) =    | 0         | 9.7       | 19.4          | 29.1     | 38.8     | 48.5     |
| Vs.req =    | -381.0422 | -59.98025 | 16.26950351   | 27.42472 | 22.96428 | 7.197152 |
| Vs.act =    | 21.34     | 43.55952  | 56.29537108   | 61.14562 | 48.40977 | 21.34    |
| s =         | 24        | 24        | 23.05         | 15.03    | 18.92    | 24       |
| stirrups=   | 4.85      | 4.85      | 5.04989154    | 7.744511 | 6.15222  | 4.85     |
|             |           |           | <u>30 D-1</u> |          |          |          |
| x (ft) =    | 0         | 9.95      | 19.9          | 29.85    | 39.8     | 49.75    |
| Vs.req =    | -246.3256 | -32.23766 | 37.11727368   | 41.54203 | 29.9284  | 7.599315 |
| Vs.act =    | 21.89     | 81.11886  | 118.8610974   | 98.66344 | 60.9212  | 21.89    |
| s =         | 24        | 24        | 8.87          | 8.81     | 13.46    | 24       |
| stirrups=   | 4.975     | 4.975     | 13.46110485   | 13.55278 | 8.870728 | 4.975    |
|             |           |           | <u>30 D-2</u> |          |          |          |
| x (ft) =    | 0         | 9.95      | 19.9          | 29.85    | 39.8     | 49.75    |
| Vs.req =    | -244.7768 | -31.98552 | 37.35433967   | 41.76411 | 30.16524 | 7.705187 |
| Vs.act =    | 21.89     | 81.52224  | 119.673379    | 99.48258 | 61.33144 | 21.89    |
| s =         | 24        | 24        | 8.81          | 8.75     | 13.32    | 24       |
| stirrups=   | 4.975     | 4.975     | 13.55278093   | 13.64571 | 8.963964 | 4.975    |
| ,<br>Nataa. | 1         | 1         |               | 1        | 1        |          |

Notes:

1. fc girder-6 ksi, fc slab-3.6 ksi

2. Prestressing steel-0.5 in grade 270 low relaxation

3. Stirrup steel-two # 3 U legged grade 40(40ksi)

|           |                                       | opus      | 12 D        |          |          |          |
|-----------|---------------------------------------|-----------|-------------|----------|----------|----------|
| x (ft) =  | 0                                     | 5.85      | 11.7        | 17.55    | 23.4     | 29.25    |
|           |                                       | -69.24234 | 5.213633493 | 18.28082 | 15.83747 | 7.27112  |
| Vs.act =  | 12.87                                 | 25.74     | 26.28789748 | 26.2879  | 25.74    | 12.87    |
| S =       | 24                                    | 24        | 24          | 23.02    | 24       | 24       |
| stirrups= | 2.925                                 | 2.925     | 2.925       | 3.049522 | 2.925    | 2.925    |
| •         |                                       |           | <u>14 D</u> |          |          |          |
| x (ft) =  | 0                                     | 6.5       | 13          | 19.5     | 26       | 32.5     |
| Vs.req =  | -192.1546                             | -58.9515  | 12.89806967 | 24.89264 | 21.01202 | 9.071889 |
| Vs.act =  | 14.3                                  | 28.6      | 34.55974026 | 36.45606 | 30.49632 | 14.3     |
| s =       | 24                                    | 24        | 24          | 16.94    | 21.19    | 24       |
| stirrups= | 3.25                                  | 3.25      | 3.25        | 4.604486 | 3.680982 | 3.25     |
|           |                                       |           | <u>16 D</u> |          |          |          |
| x (ft) =  | 0                                     | 7.05      | 14.1        | 21.15    | 28.2     | 35.25    |
| Vs.req =  | -218.7351                             | -53.03664 | 17.9733157  | 29.33646 | 24.5537  | 10.47642 |
| Vs.act =  | 15.51                                 | 33.06021  | 43.52648572 | 46.57616 | 36.10989 | 15.51    |
| S =       | 24                                    | 24        | 21.21       | 14.33    | 18.07    | 24       |
| stirrups= | 3.525                                 | 3.525     | 3.988684583 | 5.903699 | 4.681793 | 3.525    |
|           |                                       |           | <u>16 S</u> |          |          |          |
| x (ft) =  | 0                                     | 6.9       | 13.8        | 20.7     | 27.6     | 34.5     |
| Vs.req =  | 102.994                               | 54.58237  | 10.59898703 | 22.44347 | 24.27167 | 11.93439 |
| Vs.act =  | 104.0914                              | 61.23815  | 34.11555094 | 39.41447 | 35.65892 | 15.18    |
| s =       | 3.5                                   | 7.91      | 24          | 19.24    | 17.79    | 24       |
| stirrups= | 23.65714                              | 10.46776  | 3.45        | 4.303534 | 4.6543   | 3.45     |
|           |                                       |           | <u>18 D</u> |          |          |          |
| x (ft) =  | 0                                     | 7.6       | 15.2        | 22.8     | 30.4     | 38       |
| Vs.req =  | -243.159                              | -46.9894  | 23.69765775 | 33.73199 |          | 11.6242  |
| Vs.act =  | 16.72                                 | 41.72187  | 57.285055   | 57.71284 |          | 16.72    |
| S =       | 24                                    | 24        | 16.05       | 12.43    | 15.78    | 24       |
| stirrups= | 3.8                                   | 3.8       | 5.682242991 | 7.337088 | 5.779468 | 3.8      |
|           |                                       |           | <u>20 D</u> |          |          |          |
| x (ft) =  | 0                                     | 7.95      | 15.9        | 23.85    | 31.8     | 39.75    |
| Vs.req =  |                                       | -49.47131 | 23.39251053 | 33.73059 |          | 12.27807 |
| Vs.act =  | 17.49                                 | 43.33729  | 59.67162585 | 60.56064 | 44.22631 | 17.49    |
| S =       | 24                                    | 24        | 16.24       | 12.41    | 15.7     | 24       |
| stirrups= | 3.975                                 | 3.975     | 5.874384236 | 7.687349 | 6.076433 | 3.975    |
|           |                                       |           | <u>20 S</u> |          |          |          |
| x (ft) =  | 0                                     | 7.7       | 15.4        | 23.1     | 30.8     | 38.5     |
| Vs.req =  | 108.6433                              | 54.37193  | 5.480279851 | 27.19291 | 28.46399 | 14.40875 |
| Vs.act =  | 109.8811                              | 69.39935  | 43.18661072 | 53.71688 | 44.41027 | 16.94    |
| S =       | 3.7                                   | 7.75      | 24          | 15.49    | 14.8     | 24       |
| stirrups= | 24.97297                              | 11.92258  | 3.85        | 5.965139 | 6.243243 | 3.85     |
| (6.)      |                                       |           | <u>22 D</u> | 04.0     |          |          |
| x (ft) =  | 0                                     | 8.3       | 16.6        | 24.9     | 33.2     | 41.5     |
| Vs.req =  | -298.2138                             | -50.8309  | 23.87726411 | 34.38988 | 28.75633 | 12.99848 |
| Vs.act =  | 18.26                                 | 45.92667  | 63.85494082 | 64.8689  | 46.94063 | 18.26    |
| S =       | 24                                    | 24        | 15.84       | 12.11    | 15.28    | 24       |
| stirrups= | 4.15                                  | 4.15      | 6.287878788 | 8.224608 | 6.518325 | 4.15     |
| continued | c c c c c c c c c c c c c c c c c c c |           |             |          |          |          |

### Table 8.3.1.4c, page 2

| Table 0.0 | 5.1.4C, pag | ye z      |               |          |          |          |
|-----------|-------------|-----------|---------------|----------|----------|----------|
|           |             |           | <u>24 D</u>   |          |          |          |
| x (ft) =  | 0           | 8.6       | 17.2          | 25.8     | 34.4     | 43       |
| Vs.req =  | -324.7202   | -53.87608 | 23.14823744   | 34.13832 | 28.66624 | 13.56772 |
| Vs.act =  | 18.92       | 46.79477  | 65.2476093    | 67.12906 | 48.67623 | 18.92    |
| S =       | 24          | 24        | 16.29         | 12.15    | 15.26    | 24       |
| stirrups= | 4.3         | 4.3       | 6.335174954   | 8.493827 | 6.762779 | 4.3      |
|           |             |           | <u>24 S</u>   |          |          |          |
| x (ft) =  | 0           | 8.3       | 16.6          | 24.9     | 33.2     | 41.5     |
| Vs.req =  | 112.3276    | 52.9296   | -0.213714675  | 25.19377 | 27.57733 | 15.28737 |
| Vs.act =  | 118.4432    | 73.31528  | 44.45485953   | 54.87549 | 46.94063 | 18.26    |
| s =       | 3.7         | 7.96      | 24            | 16.73    | 15.28    | 24       |
| stirrups= | 26.91892    | 12.51256  | 4.15          | 5.953377 | 6.518325 | 4.15     |
|           |             |           | <u>26 D</u>   |          |          |          |
| x (ft) =  | 0           | 8.9       | 17.8          | 26.7     | 35.6     | 44.5     |
| Vs.req =  | -350.0948   | -56.46769 | 22.67686784   | 34.06192 | 28.70039 | 14.07447 |
| Vs.act =  | 19.58       | 47.92258  | 67.0828947    | 69.69684 | 50.53652 | 19.58    |
| S =       | 24          | 24        | 16.58         | 12.13    | 15.18    | 24       |
| stirrups= | 4.45        | 4.45      | 6.441495778   | 8.804617 | 7.035573 | 4.45     |
| · · · ·   |             |           | <u>28 D</u>   |          |          |          |
| x (ft) =  | 0           | 9.15      | 18.3          | 27.45    | 36.6     | 45.75    |
| Vs.req =  | -376.3538   | -60.77319 | 21.00337246   | 33.08516 | 28.03782 | 14.47683 |
| Vs.act =  | 20.13       | 47.19555  | 65.83922198   | 69.96283 | 51.31915 | 20.13    |
| S =       | 24          | 24        | 17.85         | 12.46    | 15.49    | 24       |
| stirrups= | 4.575       | 4.575     | 6.151260504   | 8.812199 | 7.088444 | 4.575    |
| · · · ·   |             |           | <u>30 D-1</u> |          |          |          |
| x (ft) =  | 0           | 9.4       | 18.8          | 28.2     | 37.6     | 47       |
| Vs.req =  | -240.1064   | -30.319   | 44.00129251   | 48.60187 | 35.74611 | 14.94722 |
| Vs.act =  | 20.68       | 86.94435  | 132.1767031   | 109.9514 | 64.71904 | 20.68    |
| s =       | 24          | 24        | 7.49          | 7.53     | 11.27    | 24       |
| stirrups= | 4.7         | 4.7       | 15.06008011   | 14.98008 | 10.00887 | 4.7      |
|           |             |           | <u>30 D-2</u> |          |          |          |
| x (ft) =  | 0           | 9.4       | 18.8          | 28.2     | 37.6     | 47       |
| Vs.req =  | -238.51     | -30.04666 | 44.25886293   | 48.84334 | 36.00177 | 15.05309 |
| Vs.act =  | 20.68       | 87.47946  | 133.1524028   | 110.8261 | 65.15312 | 20.68    |
| S =       | 24          | 24        | 7.43          | 7.48     | 11.16    | 24       |
| stirrups= | 4.7         | 4.7       | 15.18169583   | 15.08021 | 10.10753 | 4.7      |
|           | 1           |           |               | 1        | 1        |          |

Notes:

1. fc girder-6 ksi, fc slab-3.6 ksi

2. Prestressing steel-0.5 in grade 270 low relaxation

3. Stirrup steel-two # 3 U legged grade 40(40ksi)

|           |           |           | 12 D        |          |          |          |
|-----------|-----------|-----------|-------------|----------|----------|----------|
| x (ft) =  | 0         | 5.5       | 11          | 16.5     | 22       | 27.5     |
|           |           | -71.89197 | 7.917819913 |          | 18.69753 | 9.589056 |
| Vs.act =  | 12.1      | 24.2      | 26.87110885 | 26.98819 | 24.31708 | 12.1     |
| S =       | 24        | 24        | 24          | 19.66    | 23.77    | 24       |
| stirrups= | 2.75      | 2.75      | 2.75        | 3.35707  | 2.776609 | 2.75     |
| 0         |           |           | 14 D        | 0.001.01 |          |          |
| x (ft) =  | 0         | 6.05      | 12.1        | 18.15    | 24.2     | 30.25    |
| Vs.req =  | -182.9051 | -64.54486 | 13.73778653 | 26.79571 | 22.97865 | 12.92468 |
| Vs.act =  | 13.31     | 26.62     | 33.61769231 | 36.79066 | 29.79297 | 13.31    |
| S =       | 24        | 24        | 24          | 15.73    | 19.38    | 24       |
| stirrups= | 3.025     | 3.025     | 3.025       | 4.615385 | 3.74613  | 3.025    |
|           |           |           | <u>16 D</u> |          |          |          |
| x (ft) =  | 0         | 6.6       | 13.2        | 19.8     | 26.4     | 33       |
| Vs.req =  | -209.6015 | -56.46988 | 20.27877048 | 32.59675 | 27.60358 | 16.56917 |
| Vs.act =  | 14.52     | 33.05617  | 45.571081   | 48.70655 | 38.26593 | 16.59429 |
| S =       | 24        | 24        | 18.8        | 12.89    | 16.08    | 21       |
| stirrups= | 3.3       | 3.3       | 4.212765957 | 6.144298 | 4.925373 | 3.771429 |
|           |           |           | <u>16 S</u> |          |          |          |
| x (ft) =  | 0         | 6.45      | 12.9        | 19.35    | 25.8     | 32.25    |
| Vs.req =  | 123.6435  | 72.86063  | 26.53779386 | 24.85489 | 27.06632 | 17.53575 |
| Vs.act =  | 126.1333  | 77.79844  | 39.97463867 | 40.95794 | 39.27593 | 17.92421 |
| S =       | 2.7       | 5.93      | 16.72       | 17.37    | 15.95    | 19       |
| stirrups= | 28.66667  | 13.05228  | 4.629186603 | 4.455959 | 4.852665 | 4.073684 |
|           |           |           | <u>18 D</u> |          |          |          |
| x (ft) =  | 0         | 7.15      | 14.3        | 21.45    | 28.6     | 35.75    |
| Vs.req =  | -234.1102 |           | 26.97699256 | 38.18932 | 32.04935 | 18.10792 |
| Vs.act =  | 15.73     | 42.50447  | 61.15698175 | 61.71923 | 45.48671 | 18.15    |
| S =       | 24        | 24        | 14.1        | 10.98    | 13.81    | 20.8     |
| stirrups= | 3.575     | 3.575     | 6.085106383 | 7.814208 | 6.212889 | 4.125    |
|           |           |           | <u>20 D</u> |          |          |          |
| x (ft) =  | 0         | 7.55      | 15.1        | 22.65    | 30.2     | 37.75    |
| Vs.req =  | -261.7682 |           | 28.99954218 | 39.91104 |          | 19.05012 |
| Vs.act =  | 16.61     | 47.04053  | 68.46870229 | 68.26106 | 50.1549  | 19.932   |
| S =       | 24        | 24        | 13.1        | 10.48    | 13.19    | 20       |
| stirrups= | 3.775     | 3.775     | 6.916030534 | 8.645038 | 6.86884  | 4.53     |
|           |           |           | <u>20 S</u> |          |          |          |
| x (ft) =  | 0         | 7.3       | 14.6        | 21.9     | 29.2     | 36.5     |
| Vs.req =  | 131.5466  | 73.95352  | 21.9337608  | 32.56302 | 33.54745 | 21.0583  |
| Vs.act =  | 137.6571  | 87.69605  | 49.86170788 | 60.47461 | 49.9599  | 19.272   |
| S =       | 2.8       | 5.7       | 19.2        | 12.94    | 12.56    | 20       |
| stirrups= | 31.28571  | 15.36842  | 4.5625      | 6.769706 | 6.974522 | 4.38     |
| (())      |           | 7.05      | <u>22 D</u> | 00.55    | 04.4     | 00.05    |
| x (ft) =  | 0         | 7.85      | 15.7        | 23.55    | 31.4     | 39.25    |
| Vs.req =  | -289.9541 | -50.98305 | 28.40766379 | 39.79804 | 33.54528 | 19.8344  |
| Vs.act =  | 17.27     | 48.4105   | 70.76573487 | 71.26493 | 51.76008 | 20.12039 |
| S =       | 24        | 24        | 13.31       | 10.46    | 13.1     | 20.6     |
| stirrups= | 3.925     | 3.925     | 7.077385424 | 9.005736 | 7.19084  | 4.572816 |
| continued | 1         |           |             |          |          |          |

### Table 8.3.1.4d, page 2

|           | 5. 1.4u, pa | ye z      |               |          |          |          |
|-----------|-------------|-----------|---------------|----------|----------|----------|
|           |             |           | <u>24 D</u>   |          |          |          |
| x (ft) =  | 0           | 8.15      | 16.3          | 24.45    | 32.6     | 40.75    |
| Vs.req =  | -316.8921   | -53.59534 | 28.10543503   | 39.87902 | 33.7293  | 20.52859 |
| Vs.act =  | 17.93       | 50.01949  | 73.46640854   | 74.55503 | 53.66953 | 20.49143 |
| s =       | 24          | 24        | 13.41         | 10.4     | 12.97    | 21       |
| stirrups= | 4.075       | 4.075     | 7.293064877   | 9.403846 | 7.540478 | 4.657143 |
|           |             |           | <u>24 S</u>   |          |          |          |
| x (ft) =  | 0           | 7.9       | 15.8          | 23.7     | 31.6     | 39.5     |
| Vs.req =  | 136.762     | 73.58029  | 16.92974308   | 31.17319 | 33.18341 | 22.21265 |
| Vs.act =  | 139.04      | 90.17581  | 48.23207101   | 63.69617 | 55.39112 | 22.54703 |
| S =       | 3           | 5.73      | 24            | 13.52    | 12.7     | 18.5     |
| stirrups= | 31.6        | 16.5445   | 3.95          | 7.011834 | 7.464567 | 5.124324 |
|           |             |           | <u>26 D</u>   |          |          |          |
| x (ft) =  | 0           | 8.4       | 16.8          | 25.2     | 33.6     | 42       |
| Vs.req =  | -344.6416   | -58.13743 | 26.42219166   | 38.92564 | 33.10674 | 21.01808 |
| Vs.act =  | 18.48       | 49.64796  | 72.93066689   | 75.46484 | 54.78198 | 21.07985 |
| s =       | 24          | 24        | 14.23         | 10.62    | 13.16    | 21.04    |
| stirrups= | 4.2         | 4.2       | 7.083626142   | 9.491525 | 7.659574 | 4.790875 |
|           |             |           | <u>28 D</u>   |          |          |          |
| x (ft) =  | 0           | 8.65      | 17.3          | 25.95    | 34.6     | 43.25    |
| Vs.req =  | -371.4109   | -62.22373 | 25.00560139   | 38.15441 | 32.61517 | 20.67019 |
| Vs.act =  | 19.03       | 49.49831  | 72.7572011    | 76.57718 | 55.65031 | 21.36202 |
| s =       | 24          | 24        | 14.99         | 10.8     | 13.32    | 21.38    |
| stirrups= | 4.325       | 4.325     | 6.924616411   | 9.611111 | 7.792793 | 4.855005 |
|           |             |           | <u>30 D-1</u> |          |          |          |
| x (ft) =  | 0           | 8.9       | 17.8          | 26.7     | 35.6     | 44.5     |
| Vs.req =  | -234.2158   | -29.00636 | 50.2158877    | 55.10604 | 41.09629 | 20.66505 |
| Vs.act =  | 19.58       | 91.21415  | 142.4052307   | 118.7221 | 70.0545  | 22.10348 |
| s =       | 24          | 24        | 6.56          | 6.64     | 9.8      | 21.26    |
| stirrups= | 4.45        | 4.45      | 16.2804878    | 16.08434 | 10.89796 | 5.023518 |
|           |             |           | <u>30 D-2</u> |          |          |          |
| x (ft) =  | 0           | 8.9       | 17.8          | 26.7     | 35.6     | 44.5     |
| Vs.req =  | -232.5763   | -28.71404 | 50.49395707   | 55.36674 | 41.37045 | 20.92621 |
| Vs.act =  | 19.58       | 91.76433  | 143.3843318   | 119.5955 | 70.83673 | 22.44126 |
| S =       | 24          | 24        | 6.51          | 6.6      | 9.71     | 20.94    |
| stirrups= | 4.45        | 4.45      | 16.40552995   | 16.18182 | 10.99897 | 5.100287 |
|           |             |           |               | 1        | 1        |          |

Notes:

1. fc girder-6 ksi, fc slab-3.6 ksi

2. Prestressing steel-0.5 in grade 270 low relaxation

3. Stirrup steel-two # 3 U legged grade 40(40ksi)

| Table 8.3.1.4 | e: Girder S | Spacing = 9 fe | et |
|---------------|-------------|----------------|----|
|---------------|-------------|----------------|----|

| (1)                  | _                  |                      | <u>12 D</u>                |                     |                      |                     |
|----------------------|--------------------|----------------------|----------------------------|---------------------|----------------------|---------------------|
| x (ft) =             | 0                  | 5.15                 | 10.3                       | 15.45               | 20.6                 | 25.75               |
|                      |                    | -77.54059            | 8.438298538                | 22.58614            |                      | 10.61535            |
| Vs.act =             | 11.33              | 22.66                | 25.91798283                | 26.83112            |                      | 11.33               |
| S =                  | 24                 | 24                   | 24                         | 18.64               | 22.21                | 24                  |
| stirrups=            | 2.575              | 2.575                | 2.575                      | 3.315451            | 2.78253              | 2.575               |
|                      |                    |                      | <u>14 D</u>                |                     |                      |                     |
| x (ft) =             | 0                  | 5.7                  | 11.4                       | 17.1                | 22.8                 | 28.5                |
|                      | -171.8157          | -67.69459            | 16.02362838                | 29.6144             | 25.59327             | 14.70647            |
| Vs.act =             | 12.54              | 25.15887             | 33.75369939                | 38.43138            | 32.34455             | 15.048              |
| S =                  | 24                 | 24                   | 23.85                      | 14.24               | 17.4                 | 20                  |
| stirrups=            | 2.85               | 2.85                 | 2.867924528                | 4.803371            | 3.931034             | 3.42                |
|                      |                    |                      | <u>16 D</u>                |                     |                      |                     |
| x (ft) =             | 0                  | 6.2                  | 12.4                       | 18.6                | 24.8                 | 31                  |
| Vs.req =             | -200.0971          | -60.4072             | 22.13626282                | 35.27658            | 30.15185             | 18.35591            |
| Vs.act =             | 13.64              | 32.65045             | 46.49659906                | 49.72528            | 40.94542             | 18.70629            |
| S =                  | 24                 | 24                   | 17.22                      | 11.91               | 14.72                | 17.5                |
| stirrups=            | 3.1                | 3.1                  | 4.320557491                | 6.246851            | 5.054348             | 4.251429            |
|                      |                    |                      | <u>16 S</u>                |                     |                      |                     |
| x (ft) =             | 0                  | 6.05                 | 12.1                       | 18.15               | 24.2                 | 30.25               |
| Vs.req =             | 143.432            | 90.49614             | 42.00795025                | 26.63175            | 29.31874             | 19.17064            |
| Vs.act =             | 145.2              | 98.04248             | 50.78028406                | 41.39271            | 41.04635             | 19.36               |
| S =                  | 2.2                | 4.77                 | 10.28                      | 16.21               | 14.73                | 16.5                |
| stirrups=            | 33                 | 15.22013             | 7.062256809                | 4.478717            | 4.928717             | 4.4                 |
|                      |                    |                      | <u>18 D</u>                |                     |                      |                     |
| x (ft) =             | 0                  | 6.7                  | 13.4                       | 20.1                | 26.8                 | 33.5                |
| Vs.req =             | -226.3503          | -53.11331            | 28.24236016                | 40.74698            | 34.54193             | 21.83083            |
| Vs.act =             | 14.74              | 41.00281             | 60.64181498                | 61.99493            | 49.45296             | 21.83704            |
| S =                  | 24                 | 24                   | 13.47                      | 10.29               | 12.81                | 16.2                |
| stirrups=            | 3.35               | 3.35                 | 5.968819599                | 7.813411            | 6.276347             | 4.962963            |
|                      |                    |                      | <u>20 D</u>                |                     |                      |                     |
| x (ft) =             | 0                  | 7.15                 | 14.3                       | 21.45               | 28.6                 | 35.75               |
| Vs.req =             | -252.4788          | -48.55313            | 32.71609604                | 44.65733            | 37.70775             | 24.33157            |
| Vs.act =             | 15.73              | 48.2468              | 72.80708402                | 72.5294             | 56.59524             | 24.35613            |
| S =                  | 24                 | 24                   | 11.61                      | 9.37                | 11.71                | 15.5                |
| stirrups=            | 3.575              | 3.575                | 7.390180879                | 9.156884            | 7.327071             | 5.535484            |
| -                    |                    |                      | <u>20 S</u>                |                     |                      |                     |
| x (ft) =             | 0                  | 6.9                  | 13.8                       | 20.7                | 27.6                 | 34.5                |
| Vs.req =             | 153.058            | 92.81695             | 38.21964607                | 36.39294            | 37.42511             | 25.68565            |
| Vs.act =             | 158.4              | 113.3066             | 64.548223                  | 63.84357            | 58.3781              | 26.02286            |
| S =                  | 2.3                | 4.54                 | 11.02                      | 11.57               | 11.26                | 14                  |
| stirrups=            | 36                 | 18.23789             | 7.513611615                | 7.156439            | 7.353464             | 5.914286            |
| · · ·                |                    |                      | <u>22 D</u>                |                     |                      |                     |
|                      |                    |                      |                            |                     |                      | 07.05               |
| x (ft) =             | 0                  | 7.45                 | 14.9                       | 22.35               | 29.8                 | 37.25               |
| x (ft) =<br>Vs.req = | 0<br>-281.0824     | 7.45<br>-51.17369    | 14.9<br>32.63451552        | 22.35<br>44.9379    | 29.8<br>38.08359     | 37.25<br>24.69514   |
|                      | -                  |                      |                            |                     |                      |                     |
| Vs.req =             | -281.0824          | -51.17369            | 32.63451552                | 44.9379             | 38.08359             | 24.69514            |
| Vs.req =<br>Vs.act = | -281.0824<br>16.39 | -51.17369<br>50.3296 | 32.63451552<br>76.37326006 | 44.9379<br>76.52031 | 38.08359<br>58.98286 | 24.69514<br>24.8962 |

### Table 8.3.1.4e, page 2

|           | <del>4</del> e, pa | 90 2      |               |          |          |          |
|-----------|--------------------|-----------|---------------|----------|----------|----------|
|           |                    |           | <u>24 D</u>   |          |          |          |
| x (ft) =  | 0                  | 7.7       | 15.4          | 23.1     | 30.8     | 38.5     |
| Vs.req =  | -310.4097          | -55.959   | 30.96596289   | 44.03105 | 37.52675 | 24.33327 |
| Vs.act =  | 16.94              | 50.34674  | 76.56597355   | 78.02716 | 59.50792 | 24.64    |
| s =       | 24                 | 24        | 12.17         | 9.42     | 11.66    | 16.5     |
| stirrups= | 3.85               | 3.85      | 7.592440427   | 9.808917 | 7.924528 | 5.6      |
|           |                    |           | <u>24 S</u>   |          |          |          |
| x (ft) =  | 0                  | 7.5       | 15            | 22.5     | 30       | 37.5     |
| Vs.req =  | 159.7744           | 93.53975  | 33.9772183    | 35.76611 | 37.70687 | 26.13507 |
| Vs.act =  | 165                | 119.7146  | 65.52604901   | 69.03669 | 61.82039 | 26.4     |
| S =       | 2.4                | 4.51      | 12.41         | 11.78    | 11.18    | 15       |
| stirrups= | 37.5               | 19.95565  | 7.252215955   | 7.640068 | 8.050089 | 6        |
|           |                    |           | <u>26 D</u>   |          |          |          |
| x (ft) =  | 0                  | 8         | 16            | 24       | 32       | 40       |
| Vs.req =  | -336.5695          | -57.53803 | 31.4520691    | 44.69289 | 38.16577 | 24.86602 |
| Vs.act =  | 17.6               | 52.94728  | 81.0121452    | 82.65261 | 62.1306  | 25.14286 |
| s =       | 24                 | 24        | 11.95         | 9.25     | 11.42    | 16.8     |
| stirrups= | 4                  | 4         | 8.033472803   | 10.37838 | 8.406305 | 5.714286 |
|           |                    |           | <u>28 D</u>   |          |          |          |
| x (ft) =  | 0                  | 8.2       | 16.4          | 24.6     | 32.8     | 41       |
| Vs.req =  | -365.9094          | -64.00665 | 28.50777288   | 42.8116  | 36.83421 | 23.89562 |
| Vs.act =  | 18.04              | 50.96471  | 77.88421639   | 81.68215 | 60.77598 | 24.05333 |
| s =       | 24                 | 24        | 13.15         | 9.63     | 11.79    | 18       |
| stirrups= | 4.1                | 4.1       | 7.482889734   | 10.21807 | 8.346056 | 5.466667 |
|           |                    |           | <u>30 D-1</u> |          |          |          |
| x (ft) =  | 0                  | 8.4       | 16.8          | 25.2     | 33.6     | 42       |
| Vs.req =  | -230.5226          | -30.4387  | 54.3320389    | 59.98639 | 45.12587 | 23.29681 |
| Vs.act =  | 18.48              | 91.66812  | 145.8963155   | 122.4302 | 73.23841 | 23.51644 |
| S =       | 24                 | 24        | 6.06          | 6.1      | 8.92     | 18.86    |
| stirrups= | 4.2                | 4.2       | 16.63366337   | 16.52459 | 11.30045 | 5.344645 |
|           |                    |           | <u>30 D-2</u> |          |          |          |
| x (ft) =  | 0                  | 8.4       | 16.8          | 25.2     | 33.6     | 42       |
| Vs.req =  | -228.8411          | -30.12493 | 54.63241383   | 60.26781 | 45.4198  | 23.57687 |
| Vs.act =  | 18.48              | 92.15442  | 146.8625374   | 123.3034 | 73.97324 | 23.85799 |
| S =       | 24                 | 24        | 6.02          | 6.06     | 8.85     | 18.59    |
| stirrups= | 4.2                | 4.2       | 16.74418605   | 16.63366 | 11.38983 | 5.42227  |
| Jataa.    |                    |           |               | 1        | 1        |          |

Notes:

1. fc girder-6 ksi, fc slab-3.6 ksi

2. Prestressing steel-0.5 in grade 270 low relaxation

3. Stirrup steel-two # 3 U legged grade 40(40ksi)

# SHEAR CAPACITY TABLES FOR G 63-T BULB GIRDER

| Table 0.3        | 5.1.5a: GI | rder Spac | sing = 5 feet |           |          |           |
|------------------|------------|-----------|---------------|-----------|----------|-----------|
|                  | 0          | 0.0       | <u>14 S</u>   | 04.0      | 22.0     | 4.4       |
| x (ft) =         | 0          | 8.2       | 16.4          | 24.6      | 32.8     | 41        |
| Vs.req =         | 48.3249    | 9.38496   | -17.46434412  | 9.8205    | 11.95102 | -9.345239 |
| Vs.act =         | 50.93647   | 36.08     | 36.08         | 36.08     | 36.08    | 18.04     |
| S =              | 8.5        | 24        | 24            | 24        | 24       | 24        |
| stirrups=        | 11.57647   | 4.1       | 4.1           | 4.1       | 4.1      | 4.1       |
| (4.)             | -          |           | <u>18 D</u>   |           |          |           |
| x (ft) =         | 0          | 9.5       | 19            | 28.5      | 38       | 47.5      |
| Vs.req =         | -285.4163  |           | 17.83139802   | 24.701206 |          | -7.970287 |
| Vs.act =         | 20.9       | 41.8      | 46.66271186   | 46.662712 | 41.8     | 20.9      |
| s =              | 24         | 24        | 24            | 19.47     | 24       | 24        |
| stirrups=        | 4.75       | 4.75      | 4.75          | 5.8551618 | 4.75     | 4.75      |
|                  |            |           | <u>18 S</u>   |           |          |           |
| x (ft) =         | 0          | 9.5       | 19            | 28.5      | 38       | 47.5      |
| Vs.req =         | 55.77353   |           | -9.984220019  | 16.396982 | 17.28688 | -7.970287 |
| Vs.act =         | 59.01176   | 41.8      | 41.8          | 41.8      | 41.8     | 20.9      |
| S =              | 8.5        | 24        | 24            | 24        | 24       | 24        |
| stirrups=        | 13.41176   | 4.75      | 4.75          | 4.75      | 4.75     | 4.75      |
|                  |            |           | <u>20 D</u>   |           |          |           |
| x (ft) =         | 0          | 10        | 20            | 30        | 40       | 50        |
| Vs.req =         | -313.8026  | -41.29027 | 19.42773657   | 26.03727  | 19.85435 | -7.55141  |
| Vs.act =         | 22         | 45.95644  | 52.60538477   | 50.648942 | 44       | 22        |
| s =              | 24         | 24        | 22.04         | 18.43     | 24       | 24        |
| stirrups=        | 5          | 5         | 5.444646098   | 6.5111232 | 5        | 5         |
|                  |            |           | <u>22 D</u>   |           |          |           |
| x (ft) =         | 0          | 10.4      | 20.8          | 31.2      | 41.6     | 52        |
| Vs.req =         | -343.4633  | -42.93591 | 19.20250074   | 26.029065 | 19.86455 | -7.243847 |
| Vs.act =         | 22.88      | 47.53739  | 54.50086488   | 52.723478 | 45.76    | 22.88     |
| s =              | 24         | 24        | 22.27         | 18.4      | 24       | 24        |
| stirrups=        | 5.2        | 5.2       | 5.603951504   | 6.7826087 | 5.2      | 5.2       |
|                  |            |           | 22 S          |           |          |           |
| x (ft) =         | 0          | 10.2      | 20.4          | 30.6      | 40.8     | 51        |
| Vs.req =         | 57.8922    | 8.78161   | -10.83244318  | 17.064537 | 18.26924 | -6.030822 |
| Vs.act =         | 71.808     | 44.88     | 44.88         | 44.88     | 44.88    | 22.44     |
| s =              | 7.5        | 24        | 24            | 24        | 24       | 24        |
| stirrups=        | 16.32      | 5.1       | 5.1           | 5.1       | 5.1      | 5.1       |
| I                |            |           | 24 D          |           |          |           |
| x (ft) =         | 0          | 10.8      | 21.6          | 32.4      | 43.2     | 54        |
| Vs.req =         |            | -44.15817 | 19.23618677   | 26.207999 |          | -6.975429 |
| Vs.act =         | 23.76      | 49.43492  | 56.9209486    | 55.006027 | 47.52    | 23.76     |
| S =              | 24         | 24        | 22.21         | 18.25     | 24       | 24        |
| stirrups=        | 5.4        | 5.4       | 5.835209365   | 7.1013699 | 5.4      | 5.4       |
|                  |            |           | <u>26 D</u>   |           |          |           |
| x (ft) =         | 0          | 11.1      | 22.2          | 33.3      | 44.4     | 55.5      |
| Vs.req =         | -401.0855  | -47.70701 | 17.75967837   | 25.32559  | 19.38431 | -6.658528 |
| Vs.act =         | 24.42      | 48.86037  | 55.58170597   | 55.561339 | 48.84    | 24.42     |
| S =              | 24.42      | 24        | 23.98         | 18.82     | 24       | 24        |
| s =<br>stirrups= | 5.55       | 5.55      | 5.554628857   | 7.077577  | 5.55     | 5.55      |
| continue         |            | 0.00      | 0.00-020001   | 1.011311  | 0.00     | 0.00      |

Table 8.3.1.5a: Girder Spacing = 5 feet

### Table 8.3.1.5a: page 2

|           |           |           | <u>28 D</u>   |           |          |           |
|-----------|-----------|-----------|---------------|-----------|----------|-----------|
| x (ft) =  | 0         | 11.5      | 23            | 34.5      | 46       | 57.5      |
| Vs.req =  | -426.1472 | -47.8484  | 18.52303627   | 26.08973  | 19.98684 | -6.339041 |
| Vs.act =  | 25.3      | 51.78059  | 59.82490942   | 58.644316 | 50.6     | 25.3      |
| s =       | 24        | 24        | 22.93         | 18.21     | 24       | 24        |
| stirrups= | 5.75      | 5.75      | 6.018316616   | 7.5782537 | 5.75     | 5.75      |
|           |           |           | <u>30 D</u>   |           |          |           |
| x (ft) =  | 0         | 11.8      | 23.6          | 35.4      | 47.2     | 59        |
| Vs.req =  | -453.4016 | -50.72352 | 17.45198069   | 25.488417 | 19.56305 | -6.09257  |
| Vs.act =  | 25.96     | 51.92     | 59.4747929    | 59.474793 | 51.92    | 25.96     |
| s =       | 24        | 24        | 24            | 18.59     | 24       | 24        |
| stirrups= | 5.9       | 5.9       | 5.9           | 7.6169984 | 5.9      | 5.9       |
| -         |           |           | <u>32 D-1</u> |           |          |           |
| x (ft) =  | 0         | 12.1      | 24.2          | 36.3      | 48.4     | 60.5      |
| Vs.req =  | -307.7585 | -21.24111 | 38.77988858   | 39.752035 | 26.84502 | -5.871152 |
| Vs.act =  | 26.62     | 94.87641  | 129.7463044   | 98.547899 | 63.678   | 26.62     |
| s =       | 24        | 24        | 9.36          | 10.39     | 17.24    | 24        |
| stirrups= | 6.05      | 6.05      | 15.51282051   | 13.974976 | 8.422274 | 6.05      |
|           |           |           | <u>32 D-2</u> |           |          |           |
| x (ft) =  | 0         | 12.1      | 24.2          | 36.3      | 48.4     | 60.5      |
| Vs.req =  | -306.5601 | -21.06454 | 38.94305966   | 39.904155 | 27.01276 | -5.772391 |
| Vs.act =  | 26.62     | 95.24299  | 130.4700335   | 99.208451 | 63.9814  | 26.62     |
| S =       | 24        | 24        | 9.31          | 10.33     | 17.1     | 24        |
| stirrups= | 6.05      | 6.05      | 15.59613319   | 14.056147 | 8.491228 | 6.05      |
|           |           |           | <u>34 D-1</u> |           |          |           |
| x (ft) =  | 0         | 12.35     | 24.7          | 37.05     | 49.4     | 61.75     |
| Vs.req =  | -322.6593 | -23.56587 | 38.13624098   | 39.391118 | 26.57778 | -5.500591 |
| Vs.act =  | 27.17     | 95.95481  | 131.304465    | 100.16862 | 64.81896 | 27.17     |
| S =       | 24        | 24        | 9.48          | 10.43     | 17.32    | 24        |
| stirrups= | 6.175     | 6.175     | 15.63291139   | 14.209012 | 8.556582 | 6.175     |
|           |           |           | <u>34 D-2</u> |           |          |           |
| x (ft) =  | 0         | 12.35     | 24.7          | 37.05     | 49.4     | 61.75     |
| Vs.req =  | -319.0664 | -23.04699 | 38.61509757   | 39.837475 | 27.06658 | -5.221689 |
| Vs.act =  | 27.17     | 97.06068  | 133.3843461   | 102.05547 | 65.7318  | 27.17     |
| s =       | 24        | 24        | 9.33          | 10.27     | 16.91    | 24        |
| stirrups= | 6.175     | 6.175     | 15.88424437   | 14.43038  | 8.764045 | 6.175     |

Notes:

1. fc girder-6 ksi, fc slab-3.6 ksi

|                    |                 |           | <u>14 S</u>          |          |          |           |
|--------------------|-----------------|-----------|----------------------|----------|----------|-----------|
| x (ft) =           | 0               | 7.55      | <u>14 5</u><br>15.1  | 22.65    | 30.2     | 37.75     |
| x(n) =<br>Vs.req = |                 |           | -10.47394861         | 11.76467 | 14.57522 | -2.648361 |
| Vs.act =           | 72.48           | 37.76924  | 33.22                | 33.22    | 33.22    | 16.61     |
|                    | 5.5             | 18.84     | 24                   | 24       | 24       | 24        |
| S =                | 5.5<br>16.47273 | 4.808917  | 3.775                | 3.775    | 3.775    | 3.775     |
| stirrups=          | 10.47273        | 4.808917  |                      | 3.775    | 3.775    | 3.775     |
| y (ft)             | 0               | 8.85      | <u>18 D</u><br>17.7  | 26.55    | 35.4     | 44.25     |
| x (ft) =           |                 | -43.98502 | 21.68761571          | 20.55    |          | -0.765608 |
| Vs.req =           | 19.47           | 43.09386  | 52.41499003          | 29.03566 | 40.78752 | 19.47     |
| Vs.act =           | 24              | 43.09386  |                      | 16.23    | 21.92    | 24        |
| S =                |                 |           | 19.78<br>5.369059656 |          |          |           |
| stirrups=          | 4.425           | 4.425     |                      | 6.543438 | 4.844891 | 4.425     |
| ((1))              | 0               | 0.05      | <u>18 S</u>          | 00.55    | 05.4     | 44.05     |
| x (ft) =           | 0               | 8.85      | 17.7                 | 26.55    | 35.4     | 44.25     |
| Vs.req =           | 79.2306         | 30.25519  | -8.809954044         | 20.58052 | 21.67532 | -0.765608 |
| Vs.act =           | 84.96           | 46.543    | 38.94                | 38.94    | 38.94    | 19.47     |
| S =                | 5.5             | 17.26     | 24                   | 24       | 24       | 24        |
| stirrups=          | 19.30909        | 6.152955  | 4.425                | 4.425    | 4.425    | 4.425     |
|                    |                 |           | <u>20 D</u>          |          |          |           |
| x (ft) =           | 0               | 9.4       | 18.8                 | 28.2     | 37.6     | 47        |
| Vs.req =           | -304.329        |           | 25.28902947          | 32.46151 | 25.53376 | -0.162323 |
| Vs.act =           | 20.68           | 49.99601  | 62.8965213           | 58.38411 | 45.4836  | 20.68     |
| S =                | 24              | 24        | 16.93                | 14.78    | 20.01    | 24        |
| stirrups=          | 4.7             | 4.7       | 6.662728884          | 7.631935 | 5.637181 | 4.7       |
|                    |                 |           | <u>22 D</u>          |          |          |           |
| x (ft) =           | 0               | 9.8       | 19.6                 | 29.4     | 39.2     | 49        |
| Vs.req =           |                 | -41.28448 | 25.50067199          | 32.78725 |          | 0.239139  |
| Vs.act =           | 21.56           | 52.4151   | 66.27193617          | 61.60307 | 47.74623 | 21.56     |
| S =                | 24              | 24        | 16.77                | 14.61    | 19.76    | 24        |
| stirrups=          | 4.9             | 4.9       | 7.012522361          | 8.049281 | 5.951417 | 4.9       |
|                    |                 |           | <u>22 S</u>          |          |          |           |
| x (ft) =           | 0               | 9.6       | 19.2                 | 28.8     | 38.4     | 48        |
| Vs.req =           | 83.13233        | 30.06844  | -7.387953304         | 22.87651 | 23.90525 | 1.406691  |
| Vs.act =           | 84.48           | 51.27348  | 44.05574661          | 46.91304 | 45.09729 | 21.12     |
| s =                | 6               | 16.81     | 24                   | 22.1     | 21.14    | 24        |
| stirrups=          | 19.2            | 6.853064  | 4.8                  | 5.21267  | 5.449385 | 4.8       |
|                    | •               |           | <u>24 D</u>          |          |          |           |
| x (ft) =           | 0               | 10.1      | 20.2                 | 30.3     | 40.4     | 50.5      |
| Vs.req =           | -366.4235       | -45.4819  | 23.62805919          | 31.56566 | 24.91016 | 0.523401  |
| Vs.act =           | 22.22           | 51.71558  | 64.67235622          | 61.2668  | 48.31002 | 22.22     |
| S =                | 24              | 24        | 18.08                | 15.16    | 20.44    | 24        |
| stirrups=          | 5.05            | 5.05      | 6.703539823          | 7.994723 | 5.92955  | 5.05      |
|                    |                 |           | 26 D                 |          |          |           |
| x (ft) =           | 0               | 10.5      | 21                   | 31.5     | 42       | 52.5      |
| Vs.req =           | -393.0438       |           | 24.68696216          | 32.57169 | 25.71654 | 0.963341  |
| Vs.act =           | 23.1            | 55.23913  | 70.03386728          | 66.00833 | 51.21359 | 23.1      |
| s =                | 23.1            | 24        | 17.25                | 14.63    | 19.72    | 24        |
| stirrups=          | 5.25            | 5.25      | 7.304347826          | 8.61244  | 6.389452 | 5.25      |
| continue           |                 | 0.20      | 1.00-0-1020          | 0.01244  | 0.003402 | 0.20      |
| Sommuel            | 4               |           |                      |          |          |           |

## Table 8.3.1.5b, page 2

|           |           |           | <u>28 D</u>   |          |          |          |
|-----------|-----------|-----------|---------------|----------|----------|----------|
| x (ft) =  | 0         | 10.8      | 21.6          | 32.4     | 43.2     | 54       |
| Vs.req =  | -421.7971 | -48.36515 | 23.62697232   | 31.99752 | 25.32248 | 1.294875 |
| Vs.act =  | 23.76     | 55.47524  | 70.11523915   | 66.96914 | 52.32914 | 23.76    |
| s =       | 24        | 24        | 17.98         | 14.85    | 19.96    | 24       |
| stirrups= | 5.4       | 5.4       | 7.208008899   | 8.727273 | 6.492986 | 5.4      |
|           |           |           | <u>30 D</u>   |          |          |          |
| x (ft) =  | 0         | 11.1      | 22.2          | 33.3     | 44.4     | 55.5     |
| Vs.req =  | -449.6433 | -51.02297 | 22.77481718   | 31.56818 | 25.03392 | 1.591249 |
| Vs.act =  | 24.42     | 55.91275  | 70.53871519   | 68.14627 | 53.5203  | 24.42    |
| s =       | 24        | 24        | 18.61         | 15.01    | 20.14    | 24       |
| stirrups= | 5.55      | 5.55      | 7.157442235   | 8.874084 | 6.613704 | 5.55     |
| -         |           |           | <u>32 D-1</u> |          |          |          |
| x (ft) =  | 0         | 11.35     | 22.7          | 34.05    | 45.4     | 56.75    |
| Vs.req =  | -305.3274 | -20.10705 | 45.35362742   | 46.55799 | 32.50673 | 1.834497 |
| Vs.act =  | 24.97     | 99.88     | 142.4725705   | 109.6468 | 67.05427 | 24.97    |
| s =       | 24        | 24        | 8             | 8.87     | 14.24    | 24       |
| stirrups= | 5.675     | 5.675     | 17.025        | 15.35513 | 9.564607 | 5.675    |
|           |           |           | <u>32 D-2</u> |          |          |          |
| x (ft) =  | 0         | 11.35     | 22.7          | 34.05    | 45.4     | 56.75    |
| Vs.req =  | -304.0954 | -19.91437 | 45.5327366    | 46.72552 | 32.68973 | 1.933258 |
| Vs.act =  | 24.97     | 100.2564  | 143.2320104   | 110.3575 | 67.38189 | 24.97    |
| S =       | 24        | 24        | 7.96          | 8.82     | 14.13    | 24       |
| stirrups= | 5.675     | 5.675     | 17.11055276   | 15.44218 | 9.639066 | 5.675    |
|           |           |           | <u>34 D-1</u> |          |          |          |
| x (ft) =  | 0         | 11.65     | 23.3          | 34.95    | 46.6     | 58.25    |
| Vs.req =  | -318.6445 | -20.7173  | 45.91005183   | 47.11474 | 32.95303 | 2.26432  |
| Vs.act =  | 25.63     | 103.6909  | 148.6021981   | 114.5728 | 69.6615  | 25.63    |
| s =       | 24        | 24        | 7.88          | 8.72     | 13.97    | 24       |
| stirrups= | 5.825     | 5.825     | 17.74111675   | 16.03211 | 10.00716 | 5.825    |
|           |           |           | <u>34 D-2</u> |          |          |          |
| x (ft) =  | 0         | 11.6      | 23.2          | 34.8     | 46.4     | 58       |
| Vs.req =  | -316.7313 | -21.72466 | 45.40298686   | 46.82598 | 32.87843 | 2.520807 |
| Vs.act =  | 25.52     | 102.6585  | 147.2163422   | 114.0778 | 69.52    | 25.52    |
| s =       | 24        | 24        | 7.94          | 8.74     | 13.92    | 24       |
| stirrups= | 5.8       | 5.8       | 17.53148615   | 15.92677 | 10       | 5.8      |

Notes:

1. fc girder-6 ksi, fc slab-3.6 ksi

|                 |             | put            | 44.0                 |                   | I        |                   |
|-----------------|-------------|----------------|----------------------|-------------------|----------|-------------------|
| × ( <b>f</b> +) | <u>^</u>    | 7.05           | <u>14 S</u>          | 04.45             | 00.0     | 25.05             |
| x (ft) =        | 0           | 7.05           | 14.1                 | 21.15             | 28.2     | 35.25             |
| Vs.req =        |             |                | 5.385301848          | 14.62211          | 17.78339 | 3.824782          |
| Vs.act =        | 93.06       | 48.24879       | 31.02                | 31.02             | 31.02    | 15.51             |
| S =             | 4           | 11.37          | 24                   | 24                | 24       | 24                |
| stirrups=       | 21.15       | 7.440633       | 3.525                | 3.525             | 3.525    | 3.525             |
|                 |             |                | <u>18 D</u>          |                   |          |                   |
| x (ft) =        | 0           | 8.25           | 16.5                 | 24.75             | 33       | 41.25             |
| Vs.req =        |             | -47.30457      | 24.09443648          | 33.4497           | 26.95995 | 6.165992          |
| Vs.act =        | 18.15       | 42.60817       | 54.75024189          |                   |          | 18.15             |
| s =             | 24          | 24             | 17.81                | 14.38             | 18.99    | 24                |
| stirrups=       | 4.125       | 4.125          | 5.558674902          | 6.884562          | 5.21327  | 4.125             |
|                 |             |                | <u>18 S</u>          |                   |          |                   |
| x (ft) =        | 0           | 8.25           | 16.5                 | 24.75             | 33       | 41.25             |
| Vs.req =        | 101.3957    | 49.79719       | 2.429833021          | 23.61897          | 25.14236 | 6.165992          |
| Vs.act =        | 108.9       | 59.67526       | 37.85149254          | 40.67405          | 39.12256 | 18.15             |
| S =             | 4           | 10.49          | 24                   | 22.11             | 20.77    | 24                |
| stirrups=       | 24.75       | 9.43756        | 4.125                | 4.477612          | 4.76649  | 4.125             |
|                 |             |                | 20 D                 |                   |          |                   |
| x (ft) =        | 0           | 8.8            | 17.6                 | 26.4              | 35.2     | 44                |
| Vs.req =        | -296.249    | -42.00969      | 28.84930923          | 37.13102          | 29.82491 | 6.969956          |
| Vs.act =        | 19.36       | 50.64889       | 67.25173719          | 63.08719          | 46.48434 | 19.36             |
| S =             | 24          | 24             | 14.85                | 12.92             | 17.13    | 24                |
| stirrups=       | 4.4         | 4.4            | 7.111111111          | 8.173375          | 6.164623 | 4.4               |
|                 |             |                | 22 D                 |                   |          |                   |
| x (ft) =        | 0           | 9.2            | 18.4                 | 27.6              | 36.8     | 46                |
| Vs.req =        | -326.8601   |                | 29.61759031          | 37.87718          |          | 7.495563          |
| Vs.act =        | 20.24       | 53.87989       | 72.0398892           | 67.4006           | 49.2406  | 20.24             |
| S =             | 24          | 24             | 14.44                | 12.65             | 16.75    | 24                |
| stirrups=       | 4.6         | 4.6            | 7.645429363          | 8.727273          | 6.591045 | 4.6               |
| ounupo-         | 1.0         | 1.0            | <u>22 S</u>          | 0.727270          | 0.001010 | 1.0               |
| x (ft) =        | 0           | 9.05           | 18.1                 | 27.15             | 36.2     | 45.25             |
| Vs.req =        |             |                | -0.816645673         |                   | 28.96096 | 8.657485          |
| Vs.act =        | 108.6       | 67.83778       | 46.36847176          |                   | 47.29338 | 19.91             |
| s =             | 4.4         | 9.97           | 24                   | 18.06             | 17.45    | 24                |
| stirrups=       | 24.68182    | 10.89268       | 4.525                | 6.013289          | 6.223496 | 4.525             |
| surups-         | 24.00102    | 10.09200       | <u>24 D</u>          | 0.013203          | 0.223490 | 4.020             |
| x (ft) =        | 0           | 9.6            | 19.2                 | 28.8              | 38.4     | 48                |
| Vs.req =        | -356.1989   | -42.51366      | 30.64329773          |                   |          |                   |
|                 |             |                |                      | 38.812            | 31.19001 | 7.955856<br>21.12 |
| Vs.act =        | 21.12<br>24 | 57.48155<br>24 | 77.47103855<br>13.94 | 72.16831<br>12.33 | 52.17882 | 21.12             |
| S =             |             |                |                      | 9.343066          | 16.32    |                   |
| stirrups=       | 4.8         | 4.8            | 8.263988522          | 9.343000          | 7.058824 | 4.8               |
| v (f+)          | 0           | 0.0            | <u>26 D</u>          | 20.7              | 20.6     | 10 F              |
| x (ft) =        | 0           | 9.9            | 19.8                 | 29.7              | 39.6     | 49.5              |
| Vs.req =        | -386.4977   | -45.64484      | 29.60757969          | 38.27809          | 30.84117 | 8.401778          |
| Vs.act =        | 21.78       | 58.13049       | 78.33602896          | 73.76183          | 53.55629 | 21.78             |
| S =             | 24          | 24             | 14.38                | 12.45             | 16.45    | 24                |
| stirrups=       | 4.95        | 4.95           | 8.26147427           | 9.542169          | 7.221884 | 4.95              |
| continue        | d           |                |                      |                   |          |                   |

## Table 8.3.1.5c, page 2

|           |           |           | <u>28 D</u>   |          |          |          |
|-----------|-----------|-----------|---------------|----------|----------|----------|
| x (ft) =  | 0         | 10.2      | 20.4          | 30.6     | 40.8     | 51       |
| Vs.req =  | -415.8064 | -48.37468 | 28.81281099   | 37.91158 | 30.61368 | 8.799898 |
| Vs.act =  | 22.44     | 58.97731  | 79.51895749   | 75.60187 | 55.06023 | 22.44    |
| s =       | 24        | 24        | 14.74         | 12.53    | 16.51    | 24       |
| stirrups= | 5.1       | 5.1       | 8.303934871   | 9.768555 | 7.413689 | 5.1      |
|           |           |           | <u>30 D</u>   |          |          |          |
| x (ft) =  | 0         | 10.5      | 21            | 31.5     | 42       | 52.5     |
| Vs.req =  | -444.1658 | -50.73861 | 28.23571799   | 37.69711 | 30.4966  | 9.157057 |
| Vs.act =  | 23.1      | 60.03538  | 81.04038835   | 77.64403 | 56.63902 | 23.1     |
| s =       | 24        | 24        | 15.01         | 12.57    | 16.53    | 24       |
| stirrups= | 5.25      | 5.25      | 8.394403731   | 10.02387 | 7.622505 | 5.25     |
|           |           |           | <u>32 D-1</u> |          |          |          |
| x (ft) =  | 0         | 10.75     | 21.5          | 32.25    | 43       | 53.75    |
| Vs.req =  | -300.2225 | -17.08138 | 52.9254882    | 54.06111 | 38.67829 | 9.446965 |
| Vs.act =  | 23.65     | 106.3905  | 157.0337185   | 121.7117 | 71.06855 | 23.65    |
| s =       | 24        | 24        | 6.86          | 7.64     | 11.97    | 24       |
| stirrups= | 5.375     | 5.375     | 18.80466472   | 16.88482 | 10.77694 | 5.375    |
|           |           |           | <u>32 D-2</u> |          |          |          |
| x (ft) =  | 0         | 10.75     | 21.5          | 32.25    | 43       | 53.75    |
| Vs.req =  | -298.9652 | -16.87415 | 53.11911284   | 54.24258 | 38.87501 | 9.545726 |
| Vs.act =  | 23.65     | 106.754   | 157.7881637   | 122.462  | 71.42778 | 23.65    |
| s =       | 24        | 24        | 6.83          | 7.6      | 11.88    | 24       |
| stirrups= | 5.375     | 5.375     | 18.88726208   | 16.97368 | 10.85859 | 5.375    |
|           |           |           | <u>34 D-1</u> |          |          |          |
| x (ft) =  | 0         | 11        | 22            | 33       | 44       | 55       |
| Vs.req =  | -315.4681 | -19.06638 | 52.6549511    | 54.00503 | 38.64844 | 9.897732 |
| Vs.act =  | 24.2      | 108.7415  | 160.8621155   | 125.0864 | 72.96574 | 24.2     |
| s =       | 24        | 24        | 6.87          | 7.61     | 11.91    | 24       |
| stirrups= | 5.5       | 5.5       | 19.2139738    | 17.3456  | 11.08312 | 5.5      |
|           |           |           | <u>34 D-2</u> |          |          |          |
| x (ft) =  | 0         | 11        | 22            | 33       | 44       | 55       |
| Vs.req =  | -311.6864 | -18.45886 | 53.22163579   | 54.5362  | 39.22113 | 10.17663 |
| Vs.act =  | 24.2      | 109.9903  | 163.2302511   | 127.2086 | 73.96864 | 24.2     |
| s =       | 24        | 24        | 6.77          | 7.5      | 11.67    | 24       |
| stirrups= | 5.5       | 5.5       | 19.49778434   | 17.6     | 11.31105 | 5.5      |

Notes:

1. fc girder-6 ksi, fc slab-3.6 ksi

|                      |           |           | <u> </u>         | 1        |          |          |
|----------------------|-----------|-----------|------------------|----------|----------|----------|
|                      |           |           | <u>14 S</u>      |          |          |          |
| x (ft) =             | 0         | 6.6       | 13.2             | 19.8     | 26.4     | 33       |
|                      |           |           | 20.82620641      | 16.71038 | 20.35383 | 9.954684 |
| Vs.act =             | 116.16    | 64.30286  | 29.04            | 29.04    | 29.04    | 14.52    |
| S =                  | 3         | 7         | 24               | 24       | 24       | 24       |
| stirrups=            | 26.4      | 11.31429  | 3.3              | 3.3      | 3.3      | 3.3      |
|                      |           |           | <u>18 D</u>      |          |          |          |
| x (ft) =             | 0         | 7.75      | 15.5             | 23.25    | 31       | 38.75    |
|                      |           |           | 26.80475132      | 37.44397 |          | 12.88735 |
| Vs.act =             | 17.05     | 42.60903  | 57.42818449      | 56.35749 | 41.53833 | 17.05    |
| s =                  | 24        | 24        | 16.01            | 12.84    | 16.71    | 24       |
| stirrups=            | 3.875     | 3.875     | 5.808869457      | 7.242991 | 5.56553  | 3.875    |
|                      |           |           | <u>18 S</u>      |          |          |          |
| x (ft) =             | 0         | 7.75      | 15.5             | 23.25    | 31       | 38.75    |
| Vs.req =             | 123.1228  | 68.9657   | 19.11195724      | 26.87525 | 28.69565 | 12.88735 |
| Vs.act =             | 136.4     | 71.10548  | 38.11021616      | 43.54373 | 39.53352 | 17.05    |
| s =                  | 3         | 7.57      | 24               | 19.43    | 18.2     | 24       |
| stirrups=            | 31        | 12.28534  | 3.875            | 4.786413 | 5.10989  | 3.875    |
|                      |           |           | 20 D             |          |          |          |
| x (ft) =             | 0         | 8.3       | 16.6             | 24.9     | 33.2     | 41.5     |
|                      | -286.4959 | -42.83785 | 32.83555191      | 42.0688  | 34.26584 | 13.92973 |
| Vs.act =             | 18.26     | 51.86736  | 72.01577564      | 67.80077 |          | 18.26    |
| S =                  | 24        | 24        | 13.04            | 11.41    | 14.91    | 24       |
| stirrups=            | 4.15      | 4.15      | 7.63803681       | 8.729185 | 6.68008  | 4.15     |
| ounapo-              | 1.10      |           | 22 D             | 0.720100 | 0.00000  | 1.10     |
| x (ft) =             | 0         | 8.75      | 17.5             | 26.25    | 35       | 43.75    |
|                      |           | -40.31721 | 35.77055553      | 44.42751 | 36.13543 | 14.66981 |
| Vs.act =             | 19.25     | 57.87876  | 81.4859054       | 75.59988 |          | 19.25    |
| s =                  | 24        | 24        | 11.96            | 10.78    | 14.11    | 24       |
| s =<br>stirrups=     | 4.375     | 4.375     | 8.779264214      | 9.74026  | 7.441531 | 4.375    |
| sunups-              | 4.373     | 4.373     | 22 S             | 9.74020  | 7.441331 | 4.575    |
| x (ft) =             | 0         | 8.6       | 17.2             | 25.8     | 34.4     | 43       |
|                      |           | 71.05341  |                  | 33.71949 |          | 15.78247 |
| Vs.req =<br>Vs.act = | 130.8652  |           | 49.2121948       | 61.20302 |          | 18.92    |
|                      | 3.4       | 7.11      |                  | 14.99    |          | 24       |
| S =                  |           | 14.51477  | <u>24</u><br>4.3 |          | 14.69    |          |
| stirrups=            | 30.35294  | 14.51477  |                  | 6.88459  | 7.025187 | 4.3      |
|                      | 0         | 0.1       | <u>24 D</u>      | 07.0     | 00.4     |          |
| x (ft) =             | 0         | 9.1       | 18.2             | 27.3     | 36.4     | 45.5     |
| Vs.req =             | -347.1406 | -41.8331  | 35.88986352      | 44.70226 | 36.3989  | 15.18966 |
| Vs.act =             | 20.02     | 60.39647  | 85.28114349      | 79.2492  | 54.36453 | 20.02    |
| S =                  | 24        | 24        | 11.9             | 10.7     | 13.99    | 24       |
| stirrups=            | 4.55      | 4.55      | 9.176470588      | 10.20561 | 7.805575 | 4.55     |
|                      |           |           | <u>26 D</u>      |          |          |          |
| x (ft) =             | 0         | 9.4       | 18.8             | 28.2     | 37.6     | 47       |
| Vs.req =             | -377.9206 |           | 35.16310365      | 44.40988 | 36.24641 | 15.72084 |
| Vs.act =             | 20.68     | 61.66431  | 87.23966929      | 81.73213 | 56.15677 | 20.68    |
| S =                  | 24        | 24        | 12.11            | 10.73    | 13.99    | 24       |
| stirrups=            | 4.7       | 4.7       | 9.31461602       | 10.51258 | 8.062902 | 4.7      |
| continued            | d         |           |                  |          |          |          |

#### Table 8.3.1.5d, page 2

| Table 0.  | 5.1.5u, pa | ye z      |               |          |          |          |
|-----------|------------|-----------|---------------|----------|----------|----------|
|           |            |           | <u>28 D</u>   |          |          |          |
| x (ft) =  | 0          | 9.7       | 19.4          | 29.1     | 38.8     | 48.5     |
| Vs.req =  | -407.6773  | -47.02823 | 34.68440394   | 44.28999 | 36.21821 | 16.19637 |
| Vs.act =  | 21.34      | 63.14898  | 89.54057325   | 84.41927 | 58.02768 | 21.34    |
| S =       | 24         | 24        | 12.25         | 10.73    | 13.96    | 24       |
| stirrups= | 4.85       | 4.85      | 9.502040816   | 10.84809 | 8.338109 | 4.85     |
|           |            |           | <u>30 D</u>   |          |          |          |
| x (ft) =  | 0          | 9.95      | 19.9          | 29.85    | 39.8     | 49.75    |
| Vs.req =  | -438.3578  | -51.20066 | 32.96663612   | 43.23869 | 35.47251 | 16.57694 |
| Vs.act =  | 21.89      | 62.77405  | 88.81835326   | 84.90545 | 58.86115 | 21.89    |
| s =       | 24         | 24        | 12.85         | 10.96    | 14.21    | 24       |
| stirrups= | 4.975      | 4.975     | 9.291828794   | 10.89416 | 8.402533 | 4.975    |
| •         |            |           | <u>32 D-1</u> |          |          |          |
| x (ft) =  | 0          | 10.2      | 20.4          | 30.6     | 40.8     | 51       |
| Vs.req =  | -295.3751  | -14.75074 | 59.8222807    | 61.00705 | 44.38569 | 16.92397 |
| Vs.act =  | 22.44      | 111.1649  | 168.2758366   | 131.1866 | 74.07567 | 22.44    |
| s =       | 24         | 24        | 6.07          | 6.77     | 10.43    | 24       |
| stirrups= | 5.1        | 5.1       | 20.16474465   | 18.07976 | 11.73538 | 5.1      |
|           |            |           | <u>32 D-2</u> |          |          |          |
| x (ft) =  | 0          | 10.2      | 20.4          | 30.6     | 40.8     | 51       |
| Vs.req =  | -294.0963  | -14.52902 | 60.03047849   | 61.2024  | 44.59595 | 17.02273 |
| Vs.act =  | 22.44      | 111.6056  | 169.0706074   | 131.8896 | 74.42456 | 22.44    |
| s =       | 24         | 24        | 6.04          | 6.74     | 10.36    | 24       |
| stirrups= | 5.1        | 5.1       | 20.26490066   | 18.16024 | 11.81467 | 5.1      |
|           |            |           | <u>34 D-1</u> |          |          |          |
| x (ft) =  | 0          | 10.4      | 20.8          | 31.2     | 41.6     | 52       |
| Vs.req =  | -312.8394  | -18.45598 | 58.48771452   | 60.15626 | 43.73104 | 17.38626 |
| Vs.act =  | 22.88      | 111.7344  | 169.252612    | 132.5464 | 75.02815 | 22.88    |
| s =       | 24         | 24        | 6.18          | 6.83     | 10.53    | 24       |
| stirrups= | 5.2        | 5.2       | 20.19417476   | 18.27233 | 11.85185 | 5.2      |
|           |            |           | <u>34 D-2</u> |          |          |          |
| x (ft) =  | 0          | 10.4      | 20.8          | 31.2     | 41.6     | 52       |
| Vs.req =  | -308.9804  | -17.80357 | 59.09940842   | 60.73032 | 44.34556 | 17.66516 |
| Vs.act =  | 22.88      | 112.8997  | 171.4914822   | 134.6811 | 76.0893  | 22.88    |
| s =       | 24         | 24        | 6.1           | 6.74     | 10.32    | 24       |
| stirrups= | 5.2        | 5.2       | 20.45901639   | 18.51632 | 12.09302 | 5.2      |
| Notes:    | •          | •         |               | •        | •        |          |

Notes:

1. fc girder-6 ksi, fc slab-3.6 ksi

2. Prestressing steel-0.5 in grade 270 low relaxation

3. Stirrup steel-two # 3 U legged grade 40(40ksi)

|           |           |            |                      | 1        |           |            |
|-----------|-----------|------------|----------------------|----------|-----------|------------|
|           |           |            | <u>14 S</u>          |          |           |            |
| x (ft) =  | 0         | 6.2        | 12.4                 | 18.6     | 24.8      | 31         |
| Vs.req =  | 129.585   | 81.13085   | 35.8185227           | 18.24648 | 22.45101  | 13.23251   |
| Vs.act =  | 130.944   | 87.77173   | 35.93972752          | 27.62377 | 27.62377  | 13.64      |
| s =       | 2.5       | 5          | 14.68                | 24       | 23.41     | 24         |
| stirrups= | 29.76     | 14.88      | 5.068119891          | 3.1      | 3.178129  | 3.1        |
|           |           |            | <u>18 D</u>          |          |           |            |
| x (ft) =  | 0         | 7.3        | 14.6                 | 21.9     | 29.2      | 36.5       |
| Vs.req =  | -248.2428 | -52.76373  | 28.78472394          | 40.86724 | 33.84081  | 19.34154   |
| Vs.act =  | 16.06     | 41.92846   | 58.61611993          | 58.22288 | 44.74721  | 19.272     |
| s =       | 24        | 24         | 14.9                 | 11.77    | 15.13     | 20         |
| stirrups= | 3.65      | 3.65       | 5.879194631          | 7.442651 | 5.789822  | 4.38       |
| •         | •         |            | <u>18 S</u>          |          |           |            |
| x (ft) =  | 0         | 7.3        | 14.6                 | 21.9     | 29.2      | 36.5       |
| Vs.req =  | 144.0464  |            | 35.42831241          | 29.55586 | 31.75978  | 19.34154   |
| Vs.act =  | 154.176   | 90.82039   | 47.96249652          | 45.24425 | 42.703    | 19.272     |
| S =       | 2.5       | 5.96       | 14.74                | 17.67    | 16.45     | 20         |
| stirrups= | 35.04     | 14.69799   | 5.943012212          | 4.957555 | 5.325228  | 4.38       |
|           |           |            | 20 D                 |          |           |            |
| x (ft) =  | 0         | 7.8        | 15.6                 | 23.4     | 31.2      | 39         |
| Vs.req =  | -277.896  | -46.6705   | 34.48137578          | 45.24235 | 37.30321  | 20.56918   |
| Vs.act =  | 17.16     | 50.31942   | 71.97563141          | 68.89948 |           | 20.592     |
| s =       | 24        | 24         | 12.42                | 10.61    | 13.69     | 20.002     |
| stirrups= | 3.9       | 3.9        | 7.536231884          | 8.821866 | 6.837107  | 4.68       |
| Stillup3- | 0.0       | 0.0        | <u>22 D</u>          | 0.021000 | 0.007 107 | 4.00       |
| x (ft) =  | 0         | 8.3        | 16.6                 | 24.9     | 33.2      | 41.5       |
| Vs.req =  | -305.879  | -40.45176  | 40.12872924          | 49.60895 | 40.74295  | 21.60664   |
| Vs.act =  | 18.26     | 59.37069   | 86.47715381          | 80.36965 | 56.91519  | 21.912     |
|           | 24        |            |                      | 9.66     | 12.52     |            |
| S =       | 4.15      | 24<br>4.15 | 10.66<br>9.343339587 |          |           | 20<br>4.98 |
| stirrups= | 4.15      | 4.15       |                      | 10.31056 | 7.955272  | 4.98       |
|           | 0         | 0.45       | <u>22 S</u>          | 04.45    | 00.0      | 40.75      |
| x (ft) =  | 0         | 8.15       | 16.3                 | 24.45    | 32.6      | 40.75      |
|           | 153.2192  |            | 33.28500764          | 38.00528 | 38.74557  | 22.65773   |
| Vs.act =  |           | 105.4474   | 60.68405114          | 65.3296  | 56.1102   | 23.13548   |
| S =       | 2.7       | 5.58       | 15.19                | 13.3     | 13.05     | 18.6       |
| stirrups= | 36.22222  | 17.52688   | 6.438446346          | 7.353383 | 7.494253  | 5.258065   |
|           | -         |            | <u>24 D</u>          |          |           |            |
| x (ft) =  | 0         | 8.6        | 17.2                 | 25.8     | 34.4      | 43         |
| Vs.req =  | -339.2562 | -43.81766  | 39.08629367          | 49.03264 | 40.37012  | 22.17903   |
| Vs.act =  | 18.92     | 60.46437   | 88.06896345          | 82.53411 | 58.71352  | 22.704     |
| S =       | 24        | 24         | 10.93                | 9.76     | 12.61     | 20         |
| stirrups= | 4.3       | 4.3        | 9.441903019          | 10.57377 | 8.183981  | 5.16       |
|           |           |            | <u>26 D</u>          |          |           |            |
| x (ft) =  | 0         | 8.9        | 17.8                 | 26.7     | 35.6      | 44.5       |
| Vs.req =  | -370.5407 | -46.20671  | 38.74808448          | 49.03953 | 40.46218  | 22.81804   |
| Vs.act =  | 19.58     | 62.33887   | 91.10455071          | 85.84927 | 60.42652  | 22.92293   |
| S =       | 24        | 24         | 10.99                | 9.72     | 12.53     | 20.5       |
| stirrups= | 4.45      | 4.45       | 9.717925387          | 10.98765 | 8.523543  | 5.209756   |
| continued | h         | •          |                      |          | •         |            |

Table 8.3.1.5e: Girder Spacing = 9 feet

## Table 8.3.1.5e, page 2

| Table 0.  | 5.1.5e, pa | yez       |               |          |          |          |
|-----------|------------|-----------|---------------|----------|----------|----------|
|           |            |           | <u>28 D</u>   |          |          |          |
| x (ft) =  | 0          | 9.2       | 18.4          | 27.6     | 36.8     | 46       |
| Vs.req =  | -400.7711  | -48.16351 | 38.66012664   | 49.22063 | 40.67865 | 23.39101 |
| Vs.act =  | 20.24      | 64.44018  | 94.53800582   | 89.41747 | 62.77526 | 23.69561 |
| S =       | 24         | 24        | 10.99         | 9.65     | 12.43    | 20.5     |
| stirrups= | 4.6        | 4.6       | 10.04549591   | 11.44041 | 8.881738 | 5.385366 |
|           |            |           | <u>30 D</u>   |          |          |          |
| x (ft) =  | 0          | 9.5       | 19            | 28.5     | 38       | 47.5     |
| Vs.req =  | -429.9847  | -49.72975 | 38.79571082   | 49.55823 | 41.00707 | 23.90688 |
| Vs.act =  | 20.9       | 66.83407  | 98.40268518   | 93.28229 | 64.69938 | 23.88571 |
| s =       | 24         | 24        | 10.92         | 9.56     | 12.29    | 21       |
| stirrups= | 4.75       | 4.75      | 10.43956044   | 11.92469 | 9.275834 | 5.428571 |
|           |            |           | <u>32 D-1</u> |          |          |          |
| x (ft) =  | 0          | 9.7       | 19.4          | 29.1     | 38.8     | 48.5     |
| Vs.req =  | -290.466   | -12.85209 | 66.23005876   | 67.54197 | 49.7417  | 24.26119 |
| Vs.act =  | 21.34      | 114.7999  | 177.2830946   | 138.8351 | 79.40039 | 24.38857 |
| s =       | 24         | 24        | 5.48          | 6.11     | 9.31     | 21       |
| stirrups= | 4.85       | 4.85      | 21.24087591   | 19.05074 | 12.50269 | 5.542857 |
|           |            |           | <u>32 D-2</u> |          |          |          |
| x (ft) =  | 0          | 9.7       | 19.4          | 29.1     | 38.8     | 48.5     |
| Vs.req =  | -289.17    | -12.61603 | 66.45281768   | 67.75108 | 49.96529 | 24.35995 |
| Vs.act =  | 21.34      | 115.1422  | 177.90072     | 139.4672 | 79.74561 | 24.37696 |
| s =       | 24         | 24        | 5.46          | 6.09     | 9.25     | 21.01    |
| stirrups= | 4.85       | 4.85      | 21.31868132   | 19.1133  | 12.58378 | 5.540219 |
|           |            |           | <u>34 D-1</u> |          |          |          |
| x (ft) =  | 0          | 9.9       | 19.8          | 29.7     | 39.6     | 49.5     |
| Vs.req =  | -308.196   | -16.46258 | 65.03241455   | 66.80676 | 49.17964 | 24.43789 |
| Vs.act =  | 21.78      | 115.7944  | 179.0095104   | 140.8413 | 80.91666 | 25.0705  |
| s =       | 24         | 24        | 5.56          | 6.15     | 9.36     | 20.85    |
| stirrups= | 4.95       | 4.95      | 21.36690647   | 19.31707 | 12.69231 | 5.697842 |
|           |            |           | <u>34 D-2</u> |          |          |          |
| x (ft) =  | 0          | 9.9       | 19.8          | 29.7     | 39.6     | 49.5     |
| Vs.req =  | -304.2783  | -15.76857 | 65.6861774    | 67.42066 | 49.83283 | 25.05334 |
| Vs.act =  | 21.78      | 116.9931  | 181.328436    | 142.9945 | 82.74364 | 25.86442 |
| s =       | 24         | 24        | 5.49          | 6.07     | 9.19     | 20.21    |
| stirrups= | 4.95       | 4.95      | 21.63934426   | 19.57166 | 12.92709 | 5.878278 |
| Notes:    | •          |           |               | •        | . 1      |          |

Notes:

1. fc girder-6 ksi, fc slab-3.6 ksi

|                                          | . 1.0a. Oli                                                                                   | der opne                                                                                                          | -                                                                                                                                                   |                                                                                                           |                                                                                                                                               |                                                                                                     |
|------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| x (ft) =                                 | 0                                                                                             | 10.0                                                                                                              | <u>18 S</u><br>20.4                                                                                                                                 | 20.6                                                                                                      | 40.0                                                                                                                                          | E 4                                                                                                 |
|                                          | 0                                                                                             | 10.2                                                                                                              |                                                                                                                                                     | 30.6                                                                                                      | 40.8                                                                                                                                          | 51                                                                                                  |
| Vs.req =                                 | 47.75787                                                                                      | -1.756529                                                                                                         | -15.38611339                                                                                                                                        | 13.42826                                                                                                  | 14.76287                                                                                                                                      | -15.42757                                                                                           |
| Vs.act =                                 | 48.96                                                                                         | 44.88                                                                                                             | 44.88                                                                                                                                               | 44.88                                                                                                     | 44.88                                                                                                                                         | 22.44                                                                                               |
| S =                                      | 11                                                                                            | 24                                                                                                                | 24                                                                                                                                                  | 24                                                                                                        | 24                                                                                                                                            | 24                                                                                                  |
| stirrups=                                | 11.12727                                                                                      | 5.1                                                                                                               | 5.1                                                                                                                                                 | 5.1                                                                                                       | 5.1                                                                                                                                           | 5.1                                                                                                 |
| (6)                                      |                                                                                               | 10 -                                                                                                              | <u>20 D</u>                                                                                                                                         |                                                                                                           | 10.0                                                                                                                                          |                                                                                                     |
| x (ft) =                                 | 0                                                                                             | 10.7                                                                                                              | 21.4                                                                                                                                                | 32.1                                                                                                      | 42.8                                                                                                                                          | 53.5                                                                                                |
| Vs.req =                                 | -330.8007                                                                                     |                                                                                                                   | 18.26493781                                                                                                                                         | 25.21638                                                                                                  | 18.0905                                                                                                                                       | -14.1385                                                                                            |
| Vs.act =                                 | 23.54                                                                                         | 47.08                                                                                                             | 49.39629291                                                                                                                                         | 49.39629                                                                                                  | 47.08                                                                                                                                         | 23.54                                                                                               |
| S =                                      | 24                                                                                            | 24                                                                                                                | 24                                                                                                                                                  | 21.85                                                                                                     | 24                                                                                                                                            | 24                                                                                                  |
| stirrups=                                | 5.35                                                                                          | 5.35                                                                                                              | 5.35                                                                                                                                                | 5.87643                                                                                                   | 5.35                                                                                                                                          | 5.35                                                                                                |
|                                          | -                                                                                             |                                                                                                                   | <u>22 D</u>                                                                                                                                         |                                                                                                           |                                                                                                                                               |                                                                                                     |
| x (ft) =                                 | 0                                                                                             | 11.1                                                                                                              | 22.2                                                                                                                                                | 33.3                                                                                                      | 44.4                                                                                                                                          | 55.5                                                                                                |
| Vs.req =                                 | -362.8677                                                                                     | -49.65279                                                                                                         | 17.61955964                                                                                                                                         | 24.89296                                                                                                  | 18.41738                                                                                                                                      | -13.8699                                                                                            |
| Vs.act =                                 | 24.42                                                                                         | 48.84                                                                                                             | 50.93945701                                                                                                                                         | 50.93946                                                                                                  | 48.84                                                                                                                                         | 24.42                                                                                               |
| S =                                      | 24                                                                                            | 24                                                                                                                | 24                                                                                                                                                  | 22.1                                                                                                      | 24                                                                                                                                            | 24                                                                                                  |
| stirrups=                                | 5.55                                                                                          | 5.55                                                                                                              | 5.55                                                                                                                                                | 6.027149                                                                                                  | 5.55                                                                                                                                          | 5.55                                                                                                |
|                                          |                                                                                               |                                                                                                                   | <u>22 S</u>                                                                                                                                         |                                                                                                           |                                                                                                                                               |                                                                                                     |
| x (ft) =                                 | 0                                                                                             | 11                                                                                                                | 22                                                                                                                                                  | 33                                                                                                        | 44                                                                                                                                            | 55                                                                                                  |
| Vs.req =                                 | 50.68044                                                                                      | -2.92776                                                                                                          | -15.88655299                                                                                                                                        | 14.46133                                                                                                  | 16.09048                                                                                                                                      | -13.54688                                                                                           |
| Vs.act =                                 | 52.8                                                                                          | 48.4                                                                                                              | 48.4                                                                                                                                                | 48.4                                                                                                      | 48.4                                                                                                                                          | 24.2                                                                                                |
| S =                                      | 11                                                                                            | 24                                                                                                                | 24                                                                                                                                                  | 24                                                                                                        | 24                                                                                                                                            | 24                                                                                                  |
| stirrups=                                | 12                                                                                            | 5.5                                                                                                               | 5.5                                                                                                                                                 | 5.5                                                                                                       | 5.5                                                                                                                                           | 5.5                                                                                                 |
|                                          |                                                                                               |                                                                                                                   | <u>24 D</u>                                                                                                                                         |                                                                                                           |                                                                                                                                               |                                                                                                     |
| x (ft) =                                 | 0                                                                                             | 11.55                                                                                                             | 23.1                                                                                                                                                | 34.65                                                                                                     | 46.2                                                                                                                                          | 57.75                                                                                               |
| Vs.req =                                 | -392.4546                                                                                     | -49.91826                                                                                                         | 18.28277605                                                                                                                                         | 25.53194                                                                                                  | 18.89477                                                                                                                                      | -13.61656                                                                                           |
| Vs.act =                                 | 25.41                                                                                         | 50.82                                                                                                             | 53.74828996                                                                                                                                         | 53.74829                                                                                                  | 50.82                                                                                                                                         | 25.41                                                                                               |
| s =                                      | 24                                                                                            | 24                                                                                                                | 24                                                                                                                                                  | 21.52                                                                                                     | 24                                                                                                                                            | 24                                                                                                  |
| stirrups=                                | 5.775                                                                                         | 5.775                                                                                                             | 5.775                                                                                                                                               | 6.44052                                                                                                   | 5.775                                                                                                                                         | 5.775                                                                                               |
|                                          |                                                                                               |                                                                                                                   |                                                                                                                                                     |                                                                                                           |                                                                                                                                               |                                                                                                     |
| x (ft) =                                 |                                                                                               |                                                                                                                   | <u>26 D</u>                                                                                                                                         |                                                                                                           |                                                                                                                                               |                                                                                                     |
|                                          | 0                                                                                             | 11.9                                                                                                              | <u>26 D</u><br>23.8                                                                                                                                 | 35.7                                                                                                      | 47.6                                                                                                                                          | 59.5                                                                                                |
| Vs.req =                                 | -422.6976                                                                                     | -52.56057                                                                                                         |                                                                                                                                                     | 35.7<br>25.09334                                                                                          | 47.6<br>18.5901                                                                                                                               | 59.5<br>-13.30666                                                                                   |
| Vs.req =<br>Vs.act =                     |                                                                                               |                                                                                                                   | 23.8                                                                                                                                                |                                                                                                           |                                                                                                                                               | -13.30666<br>26.18                                                                                  |
|                                          | -422.6976                                                                                     | -52.56057                                                                                                         | 23.8<br>17.41168308                                                                                                                                 | 25.09334                                                                                                  | 18.5901                                                                                                                                       | -13.30666                                                                                           |
| Vs.act =                                 | -422.6976<br>26.18                                                                            | -52.56057<br>52.36                                                                                                | 23.8<br>17.41168308<br>54.96240953                                                                                                                  | 25.09334<br>54.96241                                                                                      | 18.5901<br>52.36                                                                                                                              | -13.30666<br>26.18                                                                                  |
| Vs.act =<br>s =                          | -422.6976<br>26.18<br>24                                                                      | -52.56057<br>52.36<br>24                                                                                          | 23.8<br>17.41168308<br>54.96240953<br>24                                                                                                            | 25.09334<br>54.96241<br>21.83                                                                             | 18.5901<br>52.36<br>24                                                                                                                        | -13.30666<br>26.18<br>24                                                                            |
| Vs.act =<br>s =<br>stirrups=<br>x (ft) = | -422.6976<br>26.18<br>24                                                                      | -52.56057<br>52.36<br>24                                                                                          | 23.8<br>17.41168308<br>54.96240953<br>24<br>5.95                                                                                                    | 25.09334<br>54.96241<br>21.83                                                                             | 18.5901<br>52.36<br>24                                                                                                                        | -13.30666<br>26.18<br>24                                                                            |
| Vs.act =<br>s =<br>stirrups=<br>x (ft) = | -422.6976<br>26.18<br>24<br>5.95                                                              | -52.56057<br>52.36<br>24<br>5.95                                                                                  | 23.8<br>17.41168308<br>54.96240953<br>24<br>5.95<br><b>26 S</b>                                                                                     | 25.09334<br>54.96241<br>21.83<br>6.541457                                                                 | 18.5901<br>52.36<br>24<br>5.95                                                                                                                | -13.30666<br>26.18<br>24<br>5.95                                                                    |
| Vs.act =<br>s =<br>stirrups=             | -422.6976<br>26.18<br>24<br>5.95<br>0                                                         | -52.56057<br>52.36<br>24<br>5.95<br>11.75                                                                         | 23.8<br>17.41168308<br>54.96240953<br>24<br>5.95<br><b>26 S</b><br>23.5                                                                             | 25.09334<br>54.96241<br>21.83<br>6.541457<br>35.25                                                        | 18.5901<br>52.36<br>24<br>5.95<br>47                                                                                                          | -13.30666<br>26.18<br>24<br>5.95<br>58.75                                                           |
| Vs.act =                                 | -422.6976<br>26.18<br>24<br>5.95<br>0<br>51.78865                                             | -52.56057<br>52.36<br>24<br>5.95<br>11.75<br>-6.110834                                                            | 23.8<br>17.41168308<br>54.96240953<br>24<br>5.95<br><b>26 S</b><br>23.5<br>-18.48910533                                                             | 25.09334<br>54.96241<br>21.83<br>6.541457<br>35.25<br>13.97496                                            | 18.5901<br>52.36<br>24<br>5.95<br>47<br>16.15741                                                                                              | -13.30666<br>26.18<br>24<br>5.95<br>58.75<br>-12.70957                                              |
| Vs.act =                                 | -422.6976<br>26.18<br>24<br>5.95<br>0<br>51.78865<br>56.4                                     | -52.56057<br>52.36<br>24<br>5.95<br>11.75<br>-6.110834<br>51.7                                                    | 23.8<br>17.41168308<br>54.96240953<br>24<br>5.95<br><b>26 S</b><br>23.5<br>-18.48910533<br>51.7                                                     | 25.09334<br>54.96241<br>21.83<br>6.541457<br>35.25<br>13.97496<br>51.7                                    | 18.5901<br>52.36<br>24<br>5.95<br>47<br>16.15741<br>51.7                                                                                      | -13.30666<br>26.18<br>24<br>5.95<br>58.75<br>-12.70957<br>25.85                                     |
| Vs.act =                                 | -422.6976<br>26.18<br>24<br>5.95<br>0<br>51.78865<br>56.4<br>11                               | -52.56057<br>52.36<br>24<br>5.95<br>11.75<br>-6.110834<br>51.7<br>24                                              | 23.8<br>17.41168308<br>54.96240953<br>24<br>5.95<br><b>26 S</b><br>23.5<br>-18.48910533<br>51.7<br>24                                               | 25.09334<br>54.96241<br>21.83<br>6.541457<br>35.25<br>13.97496<br>51.7<br>24                              | 18.5901<br>52.36<br>24<br>5.95<br>47<br>16.15741<br>51.7<br>24                                                                                | -13.30666<br>26.18<br>24<br>5.95<br>58.75<br>-12.70957<br>25.85<br>24                               |
| Vs.act =                                 | -422.6976<br>26.18<br>24<br>5.95<br>0<br>51.78865<br>56.4<br>11                               | -52.56057<br>52.36<br>24<br>5.95<br>11.75<br>-6.110834<br>51.7<br>24                                              | 23.8<br>17.41168308<br>54.96240953<br>24<br>5.95<br><b>26 S</b><br>23.5<br>-18.48910533<br>51.7<br>24<br>5.875                                      | 25.09334<br>54.96241<br>21.83<br>6.541457<br>35.25<br>13.97496<br>51.7<br>24                              | 18.5901<br>52.36<br>24<br>5.95<br>47<br>16.15741<br>51.7<br>24                                                                                | -13.30666<br>26.18<br>24<br>5.95<br>58.75<br>-12.70957<br>25.85<br>24                               |
| Vs.act =                                 | -422.6976<br>26.18<br>24<br>5.95<br>0<br>51.78865<br>56.4<br>11<br>12.81818<br>0              | -52.56057<br>52.36<br>24<br>5.95<br>11.75<br>-6.110834<br>51.7<br>24<br>5.875                                     | 23.8<br>17.41168308<br>54.96240953<br>24<br>5.95<br><b>26 S</b><br>23.5<br>-18.48910533<br>51.7<br>24<br>5.875<br><b>28 D</b>                       | 25.09334<br>54.96241<br>21.83<br>6.541457<br>35.25<br>13.97496<br>51.7<br>24<br>5.875                     | 18.5901<br>52.36<br>24<br>5.95<br>47<br>16.15741<br>51.7<br>24<br>5.875                                                                       | -13.30666<br>26.18<br>24<br>5.95<br>58.75<br>-12.70957<br>25.85<br>24<br>5.875                      |
| Vs.act =                                 | -422.6976<br>26.18<br>24<br>5.95<br>0<br>51.78865<br>56.4<br>11<br>12.81818                   | -52.56057<br>52.36<br>24<br>5.95<br>11.75<br>-6.110834<br>51.7<br>24<br>5.875<br>12.3                             | 23.8<br>17.41168308<br>54.96240953<br>24<br>5.95<br><b>26 S</b><br>23.5<br>-18.48910533<br>51.7<br>24<br>5.875<br><b>28 D</b><br>24.6               | 25.09334<br>54.96241<br>21.83<br>6.541457<br>35.25<br>13.97496<br>51.7<br>24<br>5.875<br>36.9             | 18.5901<br>52.36<br>24<br>5.95<br>47<br>16.15741<br>51.7<br>24<br>5.875<br>49.2                                                               | -13.30666<br>26.18<br>24<br>5.95<br>58.75<br>-12.70957<br>25.85<br>24<br>5.875<br>61.5              |
| Vs.act =                                 | -422.6976<br>26.18<br>24<br>5.95<br>0<br>51.78865<br>56.4<br>11<br>12.81818<br>0<br>-461.8877 | -52.56057<br>52.36<br>24<br>5.95<br>-6.110834<br>51.7<br>24<br>5.875<br>-24<br>5.875<br>-24<br>5.875<br>-56.76107 | 23.8<br>17.41168308<br>54.96240953<br>24<br>5.95<br><b>26 S</b><br>23.5<br>-18.48910533<br>51.7<br>24<br>5.875<br><b>28 D</b><br>24.6<br>14.9378233 | 25.09334<br>54.96241<br>21.83<br>6.541457<br>35.25<br>13.97496<br>51.7<br>24<br>5.875<br>36.9<br>22.87168 | 18.5901         52.36         24         5.95         47         16.15741         51.7         24         5.875         49.2         16.71011 | -13.30666<br>26.18<br>24<br>5.95<br>58.75<br>-12.70957<br>25.85<br>24<br>5.875<br>61.5<br>-14.28319 |

Table 8.3.1.6a: Girder Spacing = 5 feet

### Table 8.3.1.6a: page 2

|           | 5.1.0a. pa | <u>ye 2</u> |             |          |          |           |
|-----------|------------|-------------|-------------|----------|----------|-----------|
|           |            |             | <u>30 D</u> |          |          |           |
| x (ft) =  | 0          | 12.7        | 25.4        | 38.1     | 50.8     | 63.5      |
| Vs.req =  | -486.4846  |             | 16.17096833 | 24.12351 | 17.72114 | -13.69334 |
| Vs.act =  | 27.94      | 55.88       | 57.14557491 | 57.14557 | 55.88    | 27.94     |
| s =       | 24         | 24          | 24          | 22.96    | 24       | 24        |
| stirrups= | 6.35       | 6.35        | 6.35        | 6.637631 | 6.35     | 6.35      |
|           |            |             | <u>32 D</u> |          |          |           |
| x (ft) =  | 0          | 13          | 26          | 39       | 52       | 65        |
| Vs.req =  | -515.2045  | -59.6291    | 14.81871339 | 23.30081 | 17.12176 | -13.49328 |
| Vs.act =  | 28.6       | 57.2        | 57.5376054  | 57.53761 | 57.2     | 28.6      |
| s =       | 24         | 24          | 24          | 23.72    | 24       | 24        |
| stirrups= | 6.5        | 6.5         | 6.5         | 6.576728 | 6.5      | 6.5       |
|           |            |             | <u>34 D</u> |          |          |           |
| x (ft) =  | 0          | 13.3        | 26.6        | 39.9     | 53.2     | 66.5      |
| Vs.req =  | -540.9327  | -61.46171   | 14.1171825  | 23.04467 | 16.9804  | -13.1254  |
| Vs.act =  | 29.26      | 58.52       | 58.67935484 | 58.67935 | 58.52    | 29.26     |
| s =       | 24         | 24          | 24          | 23.87    | 24       | 24        |
| stirrups= | 6.65       | 6.65        | 6.65        | 6.686217 | 6.65     | 6.65      |
|           |            |             | <u>36 D</u> |          |          |           |
| x (ft) =  | 0          | 13.6        | 27.2        | 40.8     | 54.4     | 68        |
| Vs.req =  | -565.8441  | -61.96836   | 13.56345923 | 22.88569 | 16.90705 | -12.79464 |
| Vs.act =  | 29.92      | 59.84       | 59.92752194 | 59.92752 | 59.84    | 29.92     |
| S =       | 24         | 24          | 24          | 23.93    | 24       | 24        |
| stirrups= | 6.8        | 6.8         | 6.8         | 6.819891 | 6.8      | 6.8       |
|           |            |             | <u>38 D</u> |          |          |           |
| x (ft) =  | 0          | 13.9        | 27.8        | 41.7     | 55.6     | 69.5      |
| Vs.req =  | -590.0405  | -62.25335   | 13.1340846  | 22.80568 | 16.88765 | -12.50058 |
| Vs.act =  | 30.58      | 61.16       | 61.26227425 | 61.26227 | 61.16    | 30.58     |
| s =       | 24         | 24          | 24          | 23.92    | 24       | 24        |
| stirrups= | 6.95       | 6.95        | 6.95        | 6.973244 | 6.95     | 6.95      |
|           |            |             | <u>42 D</u> |          |          |           |
| x (ft) =  | 0          | 14.3        | 28.6        | 42.9     | 57.2     | 71.5      |
| Vs.req =  | -637.4892  | -67.59985   | 9.938506781 | 21.11847 | 15.80744 | -11.57584 |
| Vs.act =  | 31.46      | 62.92       | 62.92       | 62.92    | 62.92    | 31.46     |
| s =       | 24         | 24          | 24          | 24       | 24       | 24        |
| stirrups= | 7.15       | 7.15        | 7.15        | 7.15     | 7.15     | 7.15      |
|           | •          |             |             | •        |          |           |

Notes:

1. fc girder-6 ksi, fc slab-3.6 ksi

2. Prestressing steel-0.5 in grade 270 low relaxation

3. Stirrup steel-two # 3 U legged grade 40(40ksi)

Table 8.3.1.6b: Girder Spacing = 6 feet

|                      |               |                      | 18 S                |                  |                  |                    |
|----------------------|---------------|----------------------|---------------------|------------------|------------------|--------------------|
| x (ft) =             | 0             | 9.5                  | <u>18 0</u><br>19   | 28.5             | 38               | 47.5               |
| Vs.req =             |               | 18.91503             | -15.31711516        | 16.95064         |                  | -8.069807          |
| Vs.act =             | 71.65714      | 41.8                 | 41.8                | 41.8             | 41.8             | 20.9               |
| S =                  | 7             | 24                   | 24                  | 24               | 24               | 24                 |
| stirrups=            | 16.28571      | 4.75                 | 4.75                | 4.75             | 4.75             | 4.75               |
| ounapo-              | 10.20071      | 1.70                 | 20 D                | 1.70             | 1.70             | 1.10               |
| x (ft) =             | 0             | 10.1                 | 20.2                | 30.3             | 40.4             | 50.5               |
| Vs.req =             | -319.7249     |                      | 24.56515924         | 32.02199         |                  | -6.592366          |
| Vs.act =             | 22.22         | 48.87067             | 57.63731034         | 53.4122          | 44.64557         | 22.22              |
| S =                  | 24            | 24                   | 20.01               | 17.21            | 23.78            | 24                 |
| stirrups=            | 5.05          | 5.05                 | 6.056971514         | 7.042417         | 5.09672          | 5.05               |
| ounapo-              | 0.00          | 0.00                 | 22 D                | 7.012117         | 0.00072          | 0.00               |
| x (ft) =             | 0             | 10.5                 | 21                  | 31.5             | 42               | 52.5               |
| Vs.req =             | -352.2233     |                      | 24.28355336         | 31.97599         | 24.6497          | -6.248026          |
| Vs.act =             | 23.1          | 50.5184              | 59.6322268          | 55.53735         | 46.42352         | 23.1               |
| s =                  | 23.1          | 24                   | 20.22               | 17.21            | 23.77            | 23.1               |
| s =<br>stirrups=     | 5.25          | 5.25                 | 6.231454006         | 7.321325         | 5.300799         | 5.25               |
| Surrup3-             | 0.20          | 0.20                 | <u>22 S</u>         | 1.021020         | 0.000700         | 0.20               |
| x (ft) =             | 0             | 10.4                 | 20.8                | 31.2             | 41.6             | 52                 |
| Vs.req =             | 77.17119      | 19.16312             | -12.04916509        | 20.63741         | 22.05696         | -5.943102          |
| Vs.act =             | 78.44571      | 45.76                | 45.76               | 45.76            | 45.76            | 22.88              |
| S =                  | 70.44571      | 43.76                | 24                  | 43.70            | 43.70<br>24      | 22.00              |
| s =<br>stirrups=     | 17.82857      | 5.2                  | 5.2                 | 5.2              | 5.2              | 5.2                |
| sunups=              | 17.02007      | 5.2                  | 24 D                | J.Z              | 5.2              | 5.2                |
| y (ft)               | 0             | 10.9                 | <u>24 D</u><br>21.8 | 32.7             | 43.6             | 54.5               |
| x (ft) =<br>Vs.req = |               | -49.20564            |                     | 32.14414         |                  | -5.946595          |
| Vs.req =<br>Vs.act = | 23.98         | -49.20564<br>52.4852 | 62.16134095         | 58.04258         | 48.36644         | -5.946595<br>23.98 |
|                      | 23.90         | 24                   | 20.19               | 17.1             | 23.6             | 23.90              |
| S =                  | 5.45          | 24<br>5.45           | 6.478454681         | 7.649123         | 5.542373         | 5.45               |
| stirrups=            | 5.45          | 5.45                 | 26 D                | 7.049123         | 5.542575         | 5.45               |
| y (ft)               | 0             | 11.25                | 20 D                | 33.75            | 45               | 56.25              |
| x (ft) =             |               | -51.54619            | 23.70008675         | 31.91924         |                  | -5.582197          |
| Vs.req =<br>Vs.act = | 24.75         | 53.52907             | 63.39445438         | 59.72105         | 49.85566         | 24.75              |
|                      | 24.75         | 24                   | 20.64               | 17.16            | 23.66            | 24.75              |
| s =<br>stirrups=     | 5.625         | 5.625                | 6.540697674         | 7.867133         |                  | 5.625              |
| sunups=              | 5.625         | 5.625                |                     | 1.00/133         | 5.705655         | 5.625              |
| x (ft) =             | 0             | 11.1                 | <u>26 S</u>         | 33.3             | 44.4             | 55.5               |
| x(ii) =<br>Vs.req =  | 0<br>79.32212 | 16.81708             | 22.2                | 33.3<br>19.77131 | 44.4<br>21.89785 |                    |
|                      |               | 48.84                |                     |                  |                  | -5.0078            |
| Vs.act =             | 83.72571<br>7 | 48.84                | 48.84<br>24         | 48.84<br>24      | 48.84<br>24      | 24.42<br>24        |
| S =                  | 7<br>19.02857 | 24<br>5.55           | 5.55                | 24<br>5.55       | 24<br>5.55       |                    |
| stirrups=            | 19.02007      | 5.55                 | 5.55<br><u>28 D</u> | 5.55             | 5.55             | 5.55               |
| v (f+) _             | 0             | 11.6                 |                     | 210              | 46.4             | 58                 |
| x (ft) =             | -             |                      | 23.2                | 34.8             |                  |                    |
| Vs.req =             | -455.1789     | -57.25522            | 20.24185876         | 28.95165         | 22.1968          | -6.525147          |
| Vs.act =             | 25.52         | 51.04                | 57.28763485         | 57.28763         | 51.04            | 25.52              |
| S =                  | 24            | 24                   | 24                  | 19.28            | 24               | 24                 |
| stirrups=            | 5.8           | 5.8                  | 5.8                 | 7.219917         | 5.8              | 5.8                |
| continued            | 1             |                      |                     |                  |                  |                    |

#### Table 8.3.1.6b, page 2

| Table 0.3 | 5. I.OD, Pa | ye z      |             |          |          |           |
|-----------|-------------|-----------|-------------|----------|----------|-----------|
|           |             |           | <u>30 D</u> |          |          |           |
| x (ft) =  | 0           | 11.95     | 23.9        | 35.85    | 47.8     | 59.75     |
| Vs.req =  | -481.9187   |           | 20.83253983 | 29.74498 | 22.8808  | -5.903391 |
| Vs.act =  | 26.29       | 52.91278  | 60.50892874 | 60.17614 | 52.58    | 26.29     |
| S =       | 24          | 24        | 23.7        | 18.62    | 24       | 24        |
| stirrups= | 5.975       | 5.975     | 6.050632911 | 7.701396 | 5.975    | 5.975     |
|           |             |           | <u>32 D</u> |          |          |           |
| x (ft) =  | 0           | 12.25     | 24.5        | 36.75    | 49       | 61.25     |
| Vs.req =  | -512.2511   |           | 19.65279577 | 29.05663 | 22.38349 | -5.666141 |
| Vs.act =  | 26.95       | 53.9      | 60.95630915 | 60.95631 | 53.9     | 26.95     |
| S =       | 24          | 24        | 24          | 19.02    | 24       | 24        |
| stirrups= | 6.125       | 6.125     | 6.125       | 7.728707 | 6.125    | 6.125     |
|           |             |           | <u>34 D</u> |          |          |           |
| x (ft) =  | 0           | 12.5      | 25          | 37.5     | 50       | 62.5      |
| Vs.req =  | -541.4333   |           | 18.03123004 | 28.1285  | 21.74372 | -5.28169  |
| Vs.act =  | 27.5        | 55        | 61.25959079 | 61.25959 | 55       | 27.5      |
| S =       | 24          | 24        | 24          | 19.55    | 24       | 24        |
| stirrups= | 6.25        | 6.25      | 6.25        | 7.672634 | 6.25     | 6.25      |
|           |             |           | <u>36 D</u> |          |          |           |
| x (ft) =  | 0           | 12.8      | 25.6        | 38.4     | 51.2     | 64        |
| Vs.req =  | -567.7452   | -66.85307 | 17.72204168 | 28.1623  | 21.82088 | -4.917969 |
| Vs.act =  | 28.16       | 56.32     | 62.9254321  | 62.92543 | 56.32    | 28.16     |
| S =       | 24          | 24        | 24          | 19.44    | 24       | 24        |
| stirrups= | 6.4         | 6.4       | 6.4         | 7.901235 | 6.4      | 6.4       |
|           |             |           | <u>38 D</u> |          |          |           |
| x (ft) =  | 0           | 13.1      | 26.2        | 39.3     | 52.4     | 65.5      |
| Vs.req =  | -592.3039   | -68.50301 | 17.54421055 | 28.2802  | 21.95566 | -4.593457 |
| Vs.act =  | 28.82       | 57.64     | 64.67692068 | 64.67692 | 57.64    | 28.82     |
| s =       | 24          | 24        | 24          | 19.29    | 24       | 24        |
| stirrups= | 6.55        | 6.55      | 6.55        | 8.1493   | 6.55     | 6.55      |
|           |             |           | <u>42 D</u> |          |          |           |
| x (ft) =  | 0           | 13.5      | 27          | 40.5     | 54       | 67.5      |
| Vs.req =  | -640.9811   | -74.26914 | 14.43924732 | 26.68485 | 20.94568 | -3.631666 |
| Vs.act =  | 29.7        | 59.4      | 65.09225422 | 65.09225 | 59.4     | 29.7      |
| S =       | 24          | 24        | 24          | 20.14    | 24       | 24        |
| stirrups= | 6.75        | 6.75      | 6.75        | 8.043694 | 6.75     | 6.75      |

Notes:

1. fc girder-6 ksi, fc slab-3.6 ksi

2. Prestressing steel-0.5 in grade 270 low relaxation

3. Stirrup steel-two # 3 U legged grade 40(40ksi)

Table 8.3.1.6c: Girder Spacing = 7 feet

|                  |           |           | -            |                  |          |           |
|------------------|-----------|-----------|--------------|------------------|----------|-----------|
| (5.)             |           |           | <u>18 S</u>  | 00 -             | 05.0     |           |
| x (ft) =         | 0         | 8.9       | 17.8         | 26.7             | 35.6     | 44.5      |
| Vs.req =         | 94.81897  | 39.15037  | -11.84780045 | 20.30822         | 22.57711 | -0.904925 |
| Vs.act =         | 97.9      | 49.74175  | 39.16        | 39.16            | 39.16    | 19.58     |
| S =              | 4.8       | 15.58     | 24           | 24               | 24       | 24        |
| stirrups=        | 22.25     | 6.854942  | 4.45         | 4.45             | 4.45     | 4.45      |
|                  |           |           | <u>20 D</u>  |                  |          |           |
| x (ft) =         | 0         | 9.5       | 19           | 28.5             | 38       | 47.5      |
| Vs.req =         | -309.9066 |           | 28.73914808  | 37.20139         | 29.40473 | 0.747053  |
| Vs.act =         | 20.9      | 50.23333  | 63.20234076  | 59.01186         | 46.04286 | 20.9      |
| s =              | 24        | 24        | 17.1         | 14.81            | 19.95    | 24        |
| stirrups=        | 4.75      | 4.75      | 6.666666667  | 7.697502         | 5.714286 | 4.75      |
|                  |           |           | <u>22 D</u>  |                  |          |           |
| x (ft) =         | 0         | 10        | 20           | 30               | 40       | 50        |
| Vs.req =         | -339.9722 | -44.7094  | 31.58363345  | 39.47704         | 31.15798 | 1.273276  |
| Vs.act =         | 22        | 55.97683  | 71.85344804  | 65.96172         | 50.08511 | 22        |
| S =              | 24        | 24        | 15.54        | 13.94            | 18.8     | 24        |
| stirrups=        | 5         | 5         | 7.722007722  | 8.608321         | 6.382979 | 5         |
|                  |           |           | <u>22 S</u>  |                  |          |           |
| x (ft) =         | 0         | 9.85      | 19.7         | 29.55            | 39.4     | 49.25     |
| Vs.req =         | 102.4662  | 40.6358   | -8.923960727 | 26.24252         | 27.54607 | 1.514679  |
| Vs.act =         | 104.016   | 57.26754  | 44.66204244  | 47.12569         | 45.80364 | 21.67     |
| S =              | 5         | 14.61     | 24           | 22.62            | 21.55    | 24        |
| stirrups=        | 23.64     | 8.090349  | 4.925        | 5.225464         | 5.484919 | 4.925     |
|                  |           |           | 24 D         |                  |          |           |
| x (ft) =         | 0         | 10.35     | 20.7         | 31.05            | 41.4     | 51.75     |
| Vs.req =         | -373.1386 |           | 30.71385841  | 39.00242         | 30.81898 | 1.61656   |
| Vs.act =         | 22.77     | 56.98916  | 73.00411479  | 67.57737         | 51.56241 | 22.77     |
| S =              | 24        | 24        | 15.97        | 14.09            | 18.98    | 24        |
| stirrups=        | 5.175     | 5.175     | 7.777082029  | 8.814762         | 6.54373  | 5.175     |
| ounupo-          | 0.170     | 0.170     | 26 D         | 0.011702         | 0.01070  | 0.170     |
| x (ft) =         | 0         | 10.65     | 21.3         | 31.95            | 42.6     | 53.25     |
| Vs.req =         | -405.908  | -51.44174 | 29.14220443  |                  | 30.14977 | 2.012019  |
| Vs.act =         | 23.43     | 56.94132  | 72.5884599   | 68.15263         | 52.50549 | 23.43     |
| s =              | 23.43     | 24        | 16.78        | 14.39            | 19.34    | 23.43     |
| s =<br>stirrups= | 5.325     | 5.325     | 7.616209774  | 8.881167         | 6.608066 | 5.325     |
| sunups-          | 5.525     | 5.525     | <u>26 S</u>  | 0.001107         | 0.000000 | 5.525     |
| v (ft) _         | 0         | 10.5      |              | 21.5             | 42       | 52.5      |
| x (ft) =         | 0         |           | 21           | 31.5<br>24.86807 |          | 52.5      |
| Vs.req =         | 105.4887  | 39.0656   | -13.08254082 |                  | 27.06682 | 2.558008  |
| Vs.act =         | 110.88    | 59.9617   | 46.56170123  | 48.99832         | 48.63662 | 23.1      |
| S =              | 5<br>25.2 | 15.04     | 24           | 23.63            | 21.71    | 24        |
| stirrups=        | 25.2      | 8.37766   | 5.25         | 5.332205         | 5.803777 | 5.25      |
|                  | 0         | 4.4       | <u>28 D</u>  | 00               | 4.4      | ~~        |
| x (ft) =         | 0         | 11        | 22           | 33               | 44       | 55        |
| Vs.req =         | -446.8305 | -57.02328 | 25.78604093  | 35.15731         | 27.73488 | 1.13068   |
| Vs.act =         | 24.2      | 54.32448  | 66.69878863  | 63.65123         | 51.27692 | 24.2      |
| S =              | 24        | 24        | 19.28        | 15.88            | 21.45    | 24        |
| stirrups=        | 5.5       | 5.5       | 6.846473029  | 8.312343         | 6.153846 | 5.5       |
| continued        | t d       |           |              |                  |          |           |

#### Table 8.3.1.6c, page 2

|             |           |           | <u>30 D</u>    |          |          |          |  |  |  |  |
|-------------|-----------|-----------|----------------|----------|----------|----------|--|--|--|--|
| x (ft) =    | 0         | 11.3      | 22.6           | 33.9     | 45.2     | 56.5     |  |  |  |  |
| Vs.req =    | -475.7787 | -59.18804 | 25.49514997    | 35.31089 | 27.94844 | 1.779786 |  |  |  |  |
| Vs.act =    | 24.86     | 55.67818  | 68.86920223    | 66.3144  | 53.12338 | 24.86    |  |  |  |  |
| S =         | 24        | 24        | 19.36          | 15.68    | 21.11    | 24       |  |  |  |  |
| stirrups=   | 5.65      | 5.65      | 7.004132231    | 8.647959 | 6.423496 | 5.65     |  |  |  |  |
| <u>32 D</u> |           |           |                |          |          |          |  |  |  |  |
| x (ft) =    | 0         | 11.6      | 23.2           | 34.8     | 46.4     | 58       |  |  |  |  |
| Vs.req =    | -506.6391 | -62.05701 | 24.54057254    | 34.79746 | 27.58764 | 2.062725 |  |  |  |  |
| Vs.act =    | 25.52     | 56.02199  | 69.07126155    | 67.2703  | 54.22103 | 25.52    |  |  |  |  |
| S =         | 24        | 24        | 20.08          | 15.88    | 21.34    | 24       |  |  |  |  |
| stirrups=   | 5.8       | 5.8       | 6.932270916    | 8.765743 | 6.522962 | 5.8      |  |  |  |  |
| <u>34 D</u> |           |           |                |          |          |          |  |  |  |  |
| x (ft) =    | 0         | 11.9      | 23.8           | 35.7     | 47.6     | 59.5     |  |  |  |  |
| Vs.req =    | -534.6368 | -63.91452 | 24.34591338    | 34.94118 | 27.76019 | 2.506903 |  |  |  |  |
| Vs.act =    | 26.18     | 57.34667  | 71.08534519    | 69.711   | 55.97232 | 26.18    |  |  |  |  |
| S =         | 24        | 24        | 20.16          | 15.74    | 21.09    | 24       |  |  |  |  |
| stirrups=   | 5.95      | 5.95      | 7.083333333    | 9.072427 | 6.770982 | 5.95     |  |  |  |  |
|             |           |           | <u>36 D</u>    |          |          |          |  |  |  |  |
| x (ft) =    | 0         | 12.15     | 24.3           | 36.45    | 48.6     | 60.75    |  |  |  |  |
| Vs.req =    | -563.6048 | -67.42246 | 23.02963712    | 34.23705 | 27.28752 | 2.885343 |  |  |  |  |
| Vs.act =    | 26.73     | 56.94762  | 70.33769163    | 70.15378 | 56.76371 | 26.73    |  |  |  |  |
| s =         | 24        | 24        | 21.23          | 15.99    | 21.36    | 24       |  |  |  |  |
| stirrups=   | 6.075     | 6.075     | 6.867640132    | 9.118199 | 6.825843 | 6.075    |  |  |  |  |
|             |           |           | <u>38 D</u>    |          |          |          |  |  |  |  |
| x (ft) =    | 0         | 12.4      | 24.8           | 37.2     | 49.6     | 62       |  |  |  |  |
| Vs.req =    | -591.8872 | -70.67389 | 21.86016724    | 33.62816 | 26.8818  | 3.22476  |  |  |  |  |
| Vs.act =    | 27.28     | 56.65281  | 69.73779442    | 70.69013 | 57.60515 | 27.28    |  |  |  |  |
| S =         | 24        | 24        | 22.29          | 16.22    | 21.59    | 24       |  |  |  |  |
| stirrups=   | 6.2       | 6.2       | 6.6756393      | 9.173859 | 6.89208  | 6.2      |  |  |  |  |
|             |           |           | <u>42 D</u>    |          |          |          |  |  |  |  |
|             |           | F         | FAILED IN FLEX | URE      |          |          |  |  |  |  |

Notes:

1. fc girder-6 ksi, fc slab-3.6 ksi

| · · · · · |           |           | 40.0         |          |          |          |
|-----------|-----------|-----------|--------------|----------|----------|----------|
| ), (ft)   | 0         | 0.05      | <u>18 S</u>  |          | 22.4     | 14 75    |
| x (ft) =  | 0         | 8.35      | 16.7         | 25.05    | 33.4     | 41.75    |
|           |           |           | 5.357253394  | 22.76337 | 25.61619 | 6.017356 |
|           | 119.1568  | 60.84399  | 36.74        | 36.87882 | 36.87882 | 18.37    |
| S =       | 3.7       | 10.38     | 24           | 24       | 23.82    | 24       |
| stirrups= | 27.08108  | 9.653179  | 4.175        | 4.175    | 4.206549 | 4.175    |
| (5)       | 0         | 0.05      | <u>20 D</u>  | 00.05    | 05.0     | 44.75    |
| x (ft) =  | 0         | 8.95      | 17.9         | 26.85    | 35.8     | 44.75    |
| Vs.req =  | -299.9171 |           | 31.9600965   | 41.62849 |          | 7.887415 |
| Vs.act =  | 19.69     | 50.41562  | 66.41746059  | 62.67985 | 46.67801 | 19.69    |
| S =       | 24        | 24        | 15.38        | 13.24    | 17.51    | 24       |
| stirrups= | 4.475     | 4.475     | 6.983094928  | 8.111782 | 6.133638 | 4.475    |
|           |           |           | <u>22 D</u>  |          |          |          |
| x (ft) =  | 0         | 9.45      | 18.9         | 28.35    | 37.8     | 47.25    |
| Vs.req =  | -330.2617 |           | 35.70811281  | 44.57962 | 35.80469 | 8.564622 |
| Vs.act =  | 20.79     | 57.078    | 76.72235981  | 70.93314 | 51.28878 | 20.79    |
| S =       | 24        | 24        | 13.75        | 12.34    | 16.36    | 24       |
| stirrups= | 4.725     | 4.725     | 8.247272727  | 9.189627 | 6.93154  | 4.725    |
|           |           |           | <u>22 S</u>  |          |          |          |
| x (ft) =  | 0         | 9.3       | 18.6         | 27.9     | 37.2     | 46.5     |
| Vs.req =  | 126.131   | 61.30149  | 2.18987856   | 30.22831 | 31.79073 | 8.763294 |
| Vs.act =  | 129.2211  | 71.18727  | 45.46203666  | 51.30305 | 46.76102 | 20.46    |
| s =       | 3.8       | 9.68      | 24           | 19.64    | 18.67    | 24       |
| stirrups= | 29.36842  | 11.52893  | 4.65         | 5.682281 | 5.977504 | 4.65     |
|           |           |           | <u>24 D</u>  |          |          |          |
| x (ft) =  | 0         | 9.8       | 19.6         | 29.4     | 39.2     | 49       |
| Vs.req =  | -363.8631 | -48.37343 | 35.21078158  | 44.389   | 35.69361 | 8.999982 |
| Vs.act =  | 21.56     | 58.70573  | 78.94217452  | 73.36692 | 53.13047 | 21.56    |
| s =       | 24        | 24        | 13.93        | 12.38    | 16.39    | 24       |
| stirrups= | 4.9       | 4.9       | 8.442211055  | 9.499192 | 7.175107 | 4.9      |
|           |           |           | <u>26 D</u>  |          |          |          |
| x (ft) =  | 0         | 10.15     | 20.3         | 30.45    | 40.6     | 50.75    |
| Vs.req =  | -395.5033 | -49.86698 | 35.34934974  | 44.72993 | 36.00674 | 9.511747 |
| Vs.act =  | 22.33     | 61.05254  | 82.47111478  | 76.85049 | 55.43191 | 22.33    |
| S =       | 24        | 24        | 13.84        | 12.25    | 16.19    | 24       |
| stirrups= | 5.075     | 5.075     | 8.800578035  | 9.942857 | 7.523162 | 5.075    |
|           |           |           | <u>26 S</u>  |          |          |          |
| x (ft) =  | 0         | 9.95      | 19.9         | 29.85    | 39.8     | 49.75    |
| Vs.req =  | 130.5246  | 60.70604  | -2.633391213 | 29.37788 | 31.74764 | 9.977887 |
| Vs.act =  | 131.34    | 76.16273  | 48.158       | 54.6505  | 50.2725  | 21.89    |
| S =       | 4         | 9.68      | 24           | 20       | 18.51    | 24       |
| stirrups= | 29.85     | 12.33471  | 4.975        | 5.97     | 6.450567 | 4.975    |
|           |           |           | <u>28 D</u>  |          |          |          |
| x (ft) =  | 0         | 10.5      | 21           | 31.5     | 42       | 52.5     |
| Vs.req =  | -436.4399 | -55.23839 | 32.15842091  | 41.93583 | 33.67294 | 8.701444 |
| Vs.act =  | 23.1      | 58.96028  | 77.51317717  | 73.0281  | 54.47521 | 23.1     |
| S =       | 24        | 24        | 15.46        | 13.31    | 17.67    | 24       |
| stirrups= | 5.25      | 5.25      | 8.150064683  | 9.466566 | 7.13073  | 5.25     |
| continued |           |           |              | •        |          |          |

#### Table 8.3.1.6d, page 2

| Table 0.5.1.00, page 2 |           |           |                |          |          |          |  |  |  |  |
|------------------------|-----------|-----------|----------------|----------|----------|----------|--|--|--|--|
|                        |           |           | <u>30 D</u>    |          |          |          |  |  |  |  |
| x (ft) =               | 0         | 10.8      | 21.6           | 32.4     | 43.2     | 54       |  |  |  |  |
| Vs.req =               | -465.8718 | -57.06156 | 32.18112336    | 42.3377  | 34.08554 | 9.405798 |  |  |  |  |
| Vs.act =               | 23.76     | 60.9334   | 80.76973314    | 76.53914 | 56.70281 | 23.76    |  |  |  |  |
| s =                    | 24        | 24        | 15.34          | 13.08    | 17.31    | 24       |  |  |  |  |
| stirrups=              | 5.4       | 5.4       | 8.448500652    | 9.908257 | 7.487002 | 5.4      |  |  |  |  |
| <u>32 D</u>            |           |           |                |          |          |          |  |  |  |  |
| x (ft) =               | 0         | 11.05     | 22.1           | 33.15    | 44.2     | 55.25    |  |  |  |  |
| Vs.req =               | -498.9177 | -61.7935  | 30.04543422    | 40.95312 | 33.06863 | 9.704706 |  |  |  |  |
| Vs.act =               | 24.31     | 59.88561  | 78.79338753    | 75.99531 | 57.08753 | 24.31    |  |  |  |  |
| S =                    | 24        | 24        | 16.4           | 13.5     | 17.8     | 24       |  |  |  |  |
| stirrups=              | 5.525     | 5.525     | 8.085365854    | 9.822222 | 7.449438 | 5.525    |  |  |  |  |
|                        |           |           | <u>34 D</u>    |          |          |          |  |  |  |  |
| x (ft) =               | 0         | 11.3      | 22.6           | 33.9     | 45.2     | 56.5     |  |  |  |  |
| Vs.req =               | -529.2635 | -65.44315 | 28.72901514    | 40.27289 | 32.62454 | 10.16561 |  |  |  |  |
| Vs.act =               | 24.86     | 59.79208  | 78.60997596    | 76.91689 | 58.099   | 24.86    |  |  |  |  |
| S =                    | 24        | 24        | 17.08          | 13.66    | 17.95    | 24       |  |  |  |  |
| stirrups=              | 5.65      | 5.65      | 7.93911007     | 9.926794 | 7.554318 | 5.65     |  |  |  |  |
|                        |           |           | <u>36 D</u>    |          |          |          |  |  |  |  |
| x (ft) =               | 0         | 11.55     | 23.1           | 34.65    | 46.2     | 57.75    |  |  |  |  |
| Vs.req =               | -558.8008 | -68.78081 | 27.59624741    | 39.71589 | 32.2688  | 10.58397 |  |  |  |  |
| Vs.act =               | 25.41     | 59.82535  | 78.63870014    | 77.99079 | 59.17744 | 25.41    |  |  |  |  |
| S =                    | 24        | 24        | 17.72          | 13.79    | 18.06    | 24       |  |  |  |  |
| stirrups=              | 5.775     | 5.775     | 7.821670429    | 10.05076 | 7.674419 | 5.775    |  |  |  |  |
|                        |           |           | <u>38 D</u>    |          |          |          |  |  |  |  |
| x (ft) =               | 0         | 11.8      | 23.6           | 35.4     | 47.2     | 59       |  |  |  |  |
| Vs.req =               | -587.6187 | -71.84648 | 26.61795325    | 39.25949 | 31.98372 | 10.96059 |  |  |  |  |
| Vs.act =               | 25.96     | 59.98731  | 78.88259906    | 79.20149 | 60.3062  | 25.96    |  |  |  |  |
| s =                    | 24        | 24        | 18.31          | 13.89    | 18.14    | 24       |  |  |  |  |
| stirrups=              | 5.9       | 5.9       | 7.733478973    | 10.19438 | 7.805954 | 5.9      |  |  |  |  |
|                        |           |           | <u>42 D</u>    |          |          |          |  |  |  |  |
|                        |           | F         | FAILED IN FLEX | URE      |          |          |  |  |  |  |
|                        |           |           |                |          |          |          |  |  |  |  |

Notes:

1. fc girder-6 ksi, fc slab-3.6 ksi

|           |           | as: opas  | 40.0        | 1        |          |          |
|-----------|-----------|-----------|-------------|----------|----------|----------|
| · (ft)    | 0         | 7.9       | <u>18 S</u> | 00.7     | 21.0     | 20.5     |
| x (ft) =  |           |           | 15.8        | 23.7     | 31.6     | 39.5     |
| Vs.req =  | 138.8433  |           | 22.22332385 | 25.90584 | 29.09703 | 12.78231 |
| Vs.act =  | 139.04    | 70.78845  | 35.09210191 | 37.60338 | 37.27127 | 17.38    |
| S =       | 3         | 7.81      | 24          | 23.55    | 20.97    | 24       |
| stirrups= | 31.6      | 12.13828  | 3.95        | 4.025478 | 4.520744 | 3.95     |
| (6)       |           | 0.45      | <u>20 D</u> | 05.05    |          | 10.05    |
| x (ft) =  | 0         | 8.45      | 16.9        | 25.35    | 33.8     | 42.25    |
| Vs.req =  |           | -52.99864 | 34.41706935 | 45.45205 | 37.10633 | 14.81855 |
| Vs.act =  | 18.59     | 49.8337   | 68.05557867 | 65.032   | 46.81011 | 18.59    |
| S =       | 24        | 24        | 14.28       | 12.12    | 15.81    | 24       |
| stirrups= | 4.225     | 4.225     | 7.100840336 | 8.366337 | 6.413662 | 4.225    |
|           |           |           | <u>22 D</u> |          |          |          |
| x (ft) =  | 0         | 8.95      | 17.9        | 26.85    | 35.8     | 44.75    |
| Vs.req =  | -320.1542 | -47.8607  | 39.19636834 | 49.16954 | 40.01272 | 15.67875 |
| Vs.act =  | 19.69     | 57.43441  | 79.97497195 | 74.50925 | 51.96869 | 19.69    |
| S =       | 24        | 24        | 12.52       | 11.19    | 14.64    | 24       |
| stirrups= | 4.475     | 4.475     | 8.57827476  | 9.597855 | 7.336066 | 4.475    |
|           |           |           | <u>22 S</u> |          |          |          |
| x (ft) =  | 0         | 8.85      | 17.7        | 26.55    | 35.4     | 44.25    |
| Vs.req =  | 149.6327  | 81.723    | 19.68219564 | 35.00119 | 36.55462 | 15.90009 |
| Vs.act =  | 155.76    | 83.83364  | 47.02188679 | 56.32529 | 48.2434  | 19.47    |
| S =       | 3         | 7.26      | 24          | 16.96    | 16.24    | 24       |
| stirrups= | 35.4      | 14.6281   | 4.425       | 6.261792 | 6.539409 | 4.425    |
|           |           |           | <u>24 D</u> |          |          |          |
| x (ft) =  | 0         | 9.3       | 18.6        | 27.9     | 37.2     | 46.5     |
| Vs.req =  | -354.1324 | -49.72698 | 39.1468394  | 49.31837 | 40.17563 | 16.22502 |
| Vs.act =  | 20.46     | 59.64915  | 83.26814066 | 77.80427 | 54.18527 | 20.46    |
| s =       | 24        | 24        | 12.53       | 11.14    | 14.56    | 24       |
| stirrups= | 4.65      | 4.65      | 8.906624102 | 10.01795 | 7.664835 | 4.65     |
|           |           |           | <u>26 D</u> |          |          |          |
| x (ft) =  | 0         | 9.65      | 19.3        | 28.95    | 38.6     | 48.25    |
| Vs.req =  | -386.1699 | -50.6632  | 39.75819217 | 50.02021 | 40.77934 | 16.83572 |
| Vs.act =  | 21.23     | 62.65439  | 87.95589709 | 82.16228 | 56.86077 | 21.23    |
| S =       | 24        | 24        | 12.3        | 10.95    | 14.3     | 24       |
| stirrups= | 4.825     | 4.825     | 9.414634146 | 10.57534 | 8.097902 | 4.825    |
|           |           |           | <u>26 S</u> |          |          |          |
| x (ft) =  | 0         | 9.5       | 19          | 28.5     | 38       | 47.5     |
| Vs.req =  | 155.3462  | 82.05986  | 15.46796085 | 34.75618 | 37.01104 | 17.30783 |
| Vs.act =  | 167.2     | 90.95587  | 50.56292135 | 61.24982 | 52.4869  | 20.9     |
| S =       | 3         | 7.16      | 24          | 16.91    | 15.88    | 24       |
| stirrups= | 38        | 15.92179  | 4.75        | 6.741573 | 7.178841 | 4.75     |
|           |           |           | 28 D        |          |          |          |
| x (ft) =  | 0         | 10        | 20          | 30       | 40       | 50       |
| Vs.req =  | -427.1011 | -55.74525 | 36.79182941 | 47.382   | 38.56432 | 16.11393 |
| Vs.act =  | 22        | 61.08216  | 83.90389311 | 79.04079 | 56.21905 | 22       |
| S =       | 24        | 24        | 13.51       | 11.78    | 15.43    | 24       |
| stirrups= | 5         | 5         | 8.8823094   | 10.18676 | 7.777058 | 5        |
| continued |           |           |             |          |          |          |
|           |           |           |             |          |          |          |

| Table | 8.3.1 | I.6e, | page | 2 |
|-------|-------|-------|------|---|
|-------|-------|-------|------|---|

|             |           |           | <u>30 D</u>    |          |          |          |  |  |  |  |  |
|-------------|-----------|-----------|----------------|----------|----------|----------|--|--|--|--|--|
| x (ft) =    | 0         | 10.2      | 20.4           | 30.6     | 40.8     | 51       |  |  |  |  |  |
| Vs.req =    | -460.6751 | -61.94066 | 33.95514252    | 45.66815 | 37.37348 | 16.78901 |  |  |  |  |  |
| Vs.act =    | 22.44     | 59.47989  | 81.43890068    | 78.52829 | 56.56928 | 22.44    |  |  |  |  |  |
| S =         | 24        | 24        | 14.54          | 12.13    | 15.78    | 24       |  |  |  |  |  |
| stirrups=   | 5.1       | 5.1       | 8.418156809    | 10.09068 | 7.756654 | 5.1      |  |  |  |  |  |
| <u>32 D</u> |           |           |                |          |          |          |  |  |  |  |  |
| x (ft) =    | 0         | 10.5      | 21             | 31.5     | 42       | 52.5     |  |  |  |  |  |
| Vs.req =    | -492.43   | -64.13007 | 33.60410435    | 45.62041 | 37.38305 | 17.19302 |  |  |  |  |  |
| Vs.act =    | 23.1      | 60.89141  | 83.5339853     | 80.94257 | 58.3     | 23.1     |  |  |  |  |  |
| S =         | 24        | 24        | 14.67          | 12.12    | 15.75    | 24       |  |  |  |  |  |
| stirrups=   | 5.25      | 5.25      | 8.588957055    | 10.39604 | 8        | 5.25     |  |  |  |  |  |
|             |           |           | <u>34 D</u>    |          |          |          |  |  |  |  |  |
| x (ft) =    | 0         | 10.75     | 21.5           | 32.25    | 43       | 53.75    |  |  |  |  |  |
| Vs.req =    | -523.3435 | -67.5698  | 32.50519022    | 45.11325 | 37.07854 | 17.70572 |  |  |  |  |  |
| Vs.act =    | 23.65     | 61.2394   | 84.15216033    | 82.50956 | 59.5968  | 23.65    |  |  |  |  |  |
| S =         | 24        | 24        | 15.1           | 12.19    | 15.79    | 24       |  |  |  |  |  |
| stirrups=   | 5.375     | 5.375     | 8.543046358    | 10.58244 | 8.169728 | 5.375    |  |  |  |  |  |
|             |           |           | <u>36 D</u>    |          |          |          |  |  |  |  |  |
| x (ft) =    | 0         | 11        | 22             | 33       | 44       | 55       |  |  |  |  |  |
| Vs.req =    | -553.4198 |           | 31.59795529    | 44.73502 | 36.86628 | 18.17218 |  |  |  |  |  |
| Vs.act =    | 24.2      | 61.74363  | 84.99461323    | 84.18722 | 60.93624 | 24.2     |  |  |  |  |  |
| S =         | 24        | 24        | 15.47          | 12.24    | 15.81    | 24       |  |  |  |  |  |
| stirrups=   | 5.5       | 5.5       | 8.532643827    | 10.78431 | 8.349146 | 5.5      |  |  |  |  |  |
|             |           |           | <u>38 D</u>    |          |          |          |  |  |  |  |  |
|             |           | F         | FAILED IN FLEX | URE      |          |          |  |  |  |  |  |
|             |           |           | <u>42 D</u>    |          |          |          |  |  |  |  |  |
|             |           | F         | FAILED IN FLEX | URE      |          |          |  |  |  |  |  |

Notes:

1. fc girder-6 ksi, fc slab-3.6 ksi

#### STIRRUP DESIGN/ DETAILING TABLES

#### fc = 6ksi fy = 40 ksi 2#3U legged stirrups Av=0.22 in2

| Table 8.3.2.1: I<br>GIRDER | STRAND  | SPAN   |      | UMBE                         | R OF | STIR | RUPS | 3   | TOTAL |  |
|----------------------------|---------|--------|------|------------------------------|------|------|------|-----|-------|--|
| SPACING(FT)                | PATTERN | L (FT) | 0.0L | .0L 0.1L 0.2L 0.3L 0.4L 0.5L |      |      |      |     |       |  |
| 5                          | 8 D     | 43.5   | 3.0  | 3.0                          | 3.0  | 3.0  | 3.0  | 3.0 | 18.0  |  |
|                            | 8 S     | 43     | 14.0 | 6.0                          | 3.0  | 3.0  | 3.0  | 3.0 | 32    |  |
|                            | 10 D-1  | 50     | 3.0  | 3.0                          | 3.0  | 4.0  | 3.0  | 3.0 | 19.0  |  |
|                            | 10 D-2  | 50     | 3.0  | 3.0                          | 6.0  | 4.0  | 5.0  | 3.0 | 24.0  |  |
|                            | 12 D    | 56     | 3.0  | 3.0                          | 4.0  | 5.0  | 4.0  | 3.0 | 22.0  |  |
|                            | 12 S    | 54.5   | 17.0 | 8.0                          | 3.0  | 4.0  | 4.0  | 3.0 | 39.0  |  |
|                            | 14 D-1  | 61     | 3.0  | 3.0                          | 9.0  | 9.0  | 6.0  | 3.0 | 33.0  |  |
|                            | 14 D-2  | 60.5   | 3.0  | 3.0                          | 9.0  | 9.0  | 8.0  | 4.0 | 36.0  |  |
|                            | 16 D-1  | 64     | 4.0  | 4.0                          | 9.0  | 10.0 | 7.0  | 4.0 | 38.0  |  |
|                            | 16 D-2  | 63.5   | 4.0  | 4.0                          | 9.0  | 10.0 | 9.0  | 4.0 | 40.0  |  |
|                            | 16 S    | 61     | 20.0 | 8.0                          | 3.0  | 4.0  | 5.0  | 3.0 | 43.0  |  |
|                            | 18 D-1  | 66     | 4.0  | 4.0                          | 9.0  | 10.0 | 7.0  | 4.0 | 38.0  |  |
|                            | 18 D-2  | 65.5   | 4.0  | 4.0                          | 9.0  | 10.0 | 9.0  | 5.0 | 41.0  |  |
| 6                          | 8 D     | 39.5   | 2.0  | 2.0                          | 2.0  | 2.0  | 2.0  | 2.0 | 12.0  |  |
|                            | 8 S     | 39     | 19.0 | 8.0                          | 3.0  | 2.0  | 2.0  | 2.0 | 36.0  |  |
|                            | 10 D-1  | 45.5   | 3.0  | 3.0                          | 3.0  | 4.0  | 3.0  | 3.0 | 19.0  |  |
|                            | 10 D-2  | 46     | 3.0  | 3.0                          | 3.0  | 4.0  | 3.0  | 3.0 | 19.0  |  |
|                            | 12 D    | 51.5   | 3.0  | 3.0                          | 4.0  | 5.0  | 4.0  | 3.0 | 22.0  |  |
|                            | 12 S    | 55.5   | 22.0 | 11.0                         | 4.0  | 4.0  | 4.0  | 3.0 | 48.0  |  |
|                            | 14 D-1  | 50     | 2.8  | 2.8                          | 10.2 | 9.8  | 6.7  | 3.2 | 35.6  |  |
|                            | 14 D-2  | 56.5   | 3.0  | 3.0                          | 10.0 | 10.0 | 9.0  | 5.0 | 40.0  |  |
|                            | 16 D-1  | 56     | 3.0  | 3.0                          | 11.0 | 11.0 | 7.0  | 4.0 | 39.0  |  |
|                            | 16 D-2  | 59     | 3.0  | 3.0                          | 11.0 | 11.0 | 10.0 | 6.0 | 44.0  |  |
|                            | 16 S    | 57     | 24.0 | 13.0                         | 3.0  | 6.0  | 6.0  | 4.0 | 56.0  |  |
|                            | 18 D-1  | 61.5   | 3.0  | 3.0                          | 11.0 | 11.0 | 8.0  | 4.0 | 40.0  |  |
|                            | 18 D-2  | 61     | 3.0  | 3.0                          | 11.0 | 11.0 | 10.0 | 6.0 | 44.0  |  |
| 7                          | 8 D     | 37     | 2.0  | 2.0                          | 2.0  | 3.0  | 2.0  | 2.0 | 13.0  |  |
|                            | 8 S     | 36     | 22.0 | 9.0                          | 5.0  | 2.0  | 2.0  | 2.0 | 42.0  |  |
|                            | 10 D-1  | 42     | 3.0  | 3.0                          | 3.0  | 4.0  | 3.0  | 2.0 | 18.0  |  |
|                            | 10 D-2  | 42.5   | 3.0  | 3.0                          | 3.0  | 4.0  | 3.0  | 3.0 | 19.0  |  |
|                            | 12 D    | 47.5   | 3.0  | 3.0                          | 5.0  | 6.0  | 5.0  | 4.0 | 26.0  |  |
|                            | 12 S    | 46     | 25.0 | 14.0                         | 6.0  | 4.0  | 5.0  | 3.0 | 57.0  |  |
|                            | 14 D-1  | 52     | 3.0  | 3.0                          | 11.0 | 10.0 | 7.0  | 4.0 | 38.0  |  |
|                            | 14 D-2  | 52     | 3.0  | 3.0                          | 11.0 | 11.0 | 10.0 | 6.0 | 44.0  |  |
|                            | 16 D-1  | 55.5   | 3.0  | 3.0                          | 12.0 | 12.0 | 8.0  | 4.0 | 42.0  |  |
|                            | 16 D-2  | 55     | 3.0  | 3.0                          | 12.0 | 12.0 | 11.0 | 7.0 | 48.0  |  |
|                            | 16 S    | 53     | 27.0 | 16.0                         | 6.0  | 6.0  | 6.0  | 4.0 | 65.0  |  |
|                            | 18 D-1  | 57.5   | 3.0  | 3.0                          | 12.0 | 1.0  | 9.0  | 5.0 | 33.0  |  |
|                            | 18 D-2  | 57     | 3.0  | 3.0                          | 12.0 | 12.0 | 11.0 | 7.0 | 48.0  |  |

Table 8.3.2.1: Design Table for G 36-I Girder

Continued

|       | 0 7  | A 1. |        |
|-------|------|------|--------|
| Table | 8.5. | 2.1: | page 2 |

| GIRDER      | STRAND  | SPAN   |        | NUME | BER C | F ST | RRUF | 'S   | TOTAL |  |  |
|-------------|---------|--------|--------|------|-------|------|------|------|-------|--|--|
| SPACING(FT) | PATTERN | L (FT) | 0.0L   | 0.1L | 0.2L  | 0.3L | 0.4L | 0.5L | (L/2) |  |  |
| 8           | 8 D     | 34.5   | 2.0    | 2.0  | 2.0   | 3.0  | 2.0  | 2.0  | 13.0  |  |  |
|             | 8 S     | 34     | 28.0   | 11.0 | 8.0   | 2.0  | 2.0  | 2.0  | 53.0  |  |  |
|             | 10 D-1  | 39.5   | 2.0    | 2.0  | 4.0   | 5.0  | 4.0  | 3.0  | 20.0  |  |  |
|             | 10 D-2  | 41.5   | 2.0    | 2.0  | 5.0   | 6.0  | 5.0  | 4.0  | 24.0  |  |  |
|             | 12 D    | 44     | 3.0    | 3.0  | 5.0   | 6.0  | 5.0  | 4.0  | 26.0  |  |  |
|             | 12 S    | 43     | 30.0   | 16.0 | 8.0   | 5.0  | 5.0  | 3.0  | 67.0  |  |  |
|             | 14 D-1  | 48.5   | 3.0    | 3.0  | 11.0  | 11.0 | 7.0  | 4.0  | 39.0  |  |  |
|             | 14 D-2  | 48.5   | 3.0    | 3.0  | 12.0  | 11.0 | 12.0 | 7.0  | 48.0  |  |  |
|             | 16 D-1  | 52     | 3.0    | 3.0  | 13.0  | 12.0 | 9.0  | 5.0  | 45.0  |  |  |
|             | 16 D-2  | 52     | 3.0    | 3.0  | 13.0  | 13.0 | 11.0 | 8.0  | 51.0  |  |  |
|             | 16 S    | 50     | 32.0   | 19.0 | 9.0   | 7.0  | 7.0  | 5.0  | 79.0  |  |  |
|             | 18 D-1  | 0      | 0.0    | 0.0  | 0.0   | 0.0  | 0.0  | 0.0  | 0.0   |  |  |
|             | 18 D-2  | 53.5   | 3.0    | 3.0  | 13.0  | 13.0 | 12.0 | 9.0  | 53.0  |  |  |
| 9           | 8 D     | 32.5   | 2.0    | 2.0  | 2.0   | 3.0  | 2.0  | 2.0  | 13.0  |  |  |
|             | 8 S     | 32     | 31.0   | 12.0 | 10.0  | 3.0  | 2.0  | 2.0  | 60.0  |  |  |
|             | 10 D-1  | 37     | 2.0    | 2.0  | 4.0   | 5.0  | 4.0  | 2.0  | 19.0  |  |  |
|             | 10 D-2  | 37     | 2.0    | 2.0  | 4.0   | 4.0  | 3.0  | 3.0  | 18.0  |  |  |
|             | 12 D    | 41.5   | 2.0    | 2.0  | 5.0   | 6.0  | 5.0  | 4.0  | 24.0  |  |  |
|             | 12 S    | 40.5   | 34.0   | 17.0 | 10.0  | 5.0  | 5.0  | 4.0  | 75.0  |  |  |
|             | 14 D-1  | 45.5   | 3.0    | 3.0  | 12.0  | 11.0 | 8.0  | 5.0  | 42.0  |  |  |
|             | 14 D-2  | 45.5   | 3.0    | 3.0  | 12.0  | 11.0 | 10.0 | 8.0  | 47.0  |  |  |
|             | 16 D-1  | 49     | 3.0    | 3.0  | 14.0  | 13.0 | 9.0  | 5.0  | 47.0  |  |  |
|             | 16 D-2  | 49     | 3.0    | 3.0  | 14.0  | 13.0 | 12.0 | 9.0  | 54.0  |  |  |
|             | 16 S    | 47.5   | 36.0   | 22.0 | 12.0  | 8.0  | 8.0  | 5.0  | 91.0  |  |  |
|             | 18 D-1  |        |        |      | FA    | ILED |      |      |       |  |  |
|             | 18 D-2  |        | FAILED |      |       |      |      |      |       |  |  |

fc = 6 ksi fy = 40 ksi 2#3U legged stirrups Av=0.22in2

| GIRDER      | esign Table i<br>STRAND | SPAN   |      |              |      |      | RUP  | S   | TOTAL         |
|-------------|-------------------------|--------|------|--------------|------|------|------|-----|---------------|
| SPACING(FT) | PATTERN                 |        |      |              |      |      |      |     |               |
| 5           | 10 D                    | 54.00  | 3.0  | 3.0          | 3.0  | 3.0  | 3.0  | 3.0 | (L/2)<br>18.0 |
| 5           | 12 D-1                  | 61     | 3.0  | 3.0          | 6.0  | 7.0  | 5.0  | 3.0 | 27.0          |
|             | 12 D-1<br>12 D-2        | 60.5   | 3.0  | 3.0          | 6.0  | 7.0  | 6.0  | 3.0 | 28.0          |
|             | 12 D-2<br>12 S          | 59     | 15.0 | 6.0          | 3.0  | 3.0  | 3.0  | 3.0 | 33.0          |
|             | 14 D-1                  | 67     | 4.0  | 4.0          | 8.0  | 9.0  | 6.0  | 4.0 | 35.0          |
|             | 14 D-2                  | 66.5   | 4.0  | 4.0          | 8.0  | 9.0  | 8.0  | 4.0 | 37.0          |
|             | 14 D-2                  | 71     | 4.0  | 4.0          | 4.0  | 6.0  | 5.0  | 4.0 | 27.0          |
|             | 16 S                    | 68     | 19.0 | 6.0          | 4.0  | 5.0  | 5.0  | 4.0 | 43.0          |
|             | 18 D                    | 75     | 4.0  | 4.0          | 4.0  | 7.0  | 5.0  | 4.0 | 28.0          |
|             | 20 D                    | 78     | 4.0  | 4.0          | 4.0  | 7.0  | 5.0  | 4.0 | 28.0          |
|             | 20 B                    | 73.5   | 19.0 | 6.0          | 4.0  | 5.0  | 5.0  | 4.0 | 43.0          |
|             | 24 D-1                  | 83.5   | 5.0  | 5.0          | 10.0 | 11.0 | 8.0  | 5.0 | 44.0          |
|             | 24 D-2                  | 82.5   | 5.0  | 5.0          | 10.0 | 11.0 | 8.0  | 5.0 | 44.0          |
|             | 24 D 2<br>26 D-1        | 85     | 5.0  | 5.0          | 10.0 | 11.0 | 8.0  | 5.0 | 44.0          |
|             | 26 D-2                  | 85     | 5.0  | 5.0          | 10.0 | 11.0 | 11.0 | 5.0 | 47.0          |
| 6           | 10 D                    | 49.5   | 3.0  | 3.0          | 3.0  | 3.0  | 3.0  | 3.0 | 18.0          |
| 0           | 12 D-1                  | 55.5   | 3.0  | 3.0          | 6.0  | 7.0  | 5.0  | 3.0 | 27.0          |
|             | 12 D 1<br>12 D-2        | 55.5   | 3.0  | 3.0          | 6.0  | 7.0  | 7.0  | 4.0 | 30.0          |
|             | 12 D 2                  | 54     | 19.0 | 9.0          | 3.0  | 3.0  | 4.0  | 3.0 | 41.0          |
|             | 14 D-1                  | 61     | 3.0  | 3.0          | 8.0  | 9.0  | 6.0  | 3.0 | 32.0          |
|             | 14 D-2                  | 61     | 3.0  | 3.0          | 7.0  | 8.0  | 5.0  | 3.0 | 29.0          |
|             | 16 D                    | 66.5   | 4.0  | 4.0          | 6.0  | 7.0  | 6.0  | 4.0 | 31.0          |
|             | 16 S                    | 63.5   | 22.0 | 11.0         | 4.0  | 6.0  | 6.0  | 4.0 | 53.0          |
|             | 18 D                    | 70     | 4.0  | 4.0          | 6.0  | 8.0  | 6.0  | 4.0 | 32.0          |
|             | 20 D                    | 72.5   | 4.0  | 4.0          | 5.0  | 7.0  | 6.0  | 4.0 | 30.0          |
|             | 20 S                    | 68.5   | 24.0 | 11.0         | 4.0  | 6.0  | 6.0  | 4.0 | 55.0          |
|             | 24 D-1                  | 78     | 4.0  | 4.0          | 12.0 | 13.0 | 9.0  | 4.0 | 46.0          |
|             | 24 D-2                  | 77     | 4.0  | 4.0          | 11.0 | 12.0 | 9.0  | 4.0 | 44.0          |
|             | 26 D-1                  | 79.5   | 4.0  | 4.0          | 12.0 | 13.0 | 9.0  | 4.0 | 46.0          |
|             | 26 D-2                  | 79     | 4.0  | 4.0          | 11.0 | 13.0 | 12.0 | 7.0 | 51.0          |
| 7           | 10 D                    | 46     | 3.0  | 3.0          | 3.0  | 3.0  | 3.0  | 3.0 | 18.0          |
| •           | 12 D-1                  | 51.5   | 3.0  | 3.0          | 7.0  | 7.0  | 5.0  | 3.0 | 28.0          |
|             | 12 D-2                  | 51     | 3.0  | 3.0          | 6.0  | 7.0  | 7.0  | 4.0 | 30.0          |
|             | 12 S                    | 50     | 24.0 | 11.0         | 5.0  | 3.0  | 4.0  | 3.0 | 50.0          |
|             | 14 D-1                  | 57     | 3.0  | 3.0          | 9.0  | 9.0  | 7.0  | 3.0 | 34.0          |
|             | 14 D-2                  | 56.5   | 3.0  | 3.0          | 8.0  | 8.0  | 6.0  | 3.0 | 31.0          |
|             | 16 D                    | 62     | 4.0  | 4.0          | 6.0  | 8.0  | 6.0  | 4.0 | 32.0          |
|             | 16 S                    | 59.5   | 27.0 | 14.0         | 5.0  | 6.0  | 6.0  | 5.0 | 63.0          |
|             | 18 D                    | 65.5   | 4.0  | 4.0          | 7.0  | 8.0  | 7.0  | 5.0 | 35.0          |
|             | 20 D                    | 68     | 4.0  | 4.0          | 6.0  | 8.0  | 7.0  | 5.0 | 34.0          |
|             | 20 S                    | 64.5   | 28.0 | 15.0         | 4.0  | 7.0  | 7.0  | 5.0 | 66.0          |
|             | 24 D-1                  | 73     | 4.0  | 4.0          | 13.0 | 14.0 | 10.0 | 5.0 | 50.0          |
|             | 24 D-2                  | 72.5   | 4.0  | 4.0          | 13.0 | 14.0 | 10.0 | 5.0 | 50.0          |
|             | 26 D-1                  |        |      |              |      | LED  |      |     |               |
|             | 26 D-2                  | 74.5 4 | 1.0  | 4.0 <i>′</i> |      |      | 13.0 | 8.0 | 56.0          |

CONTINUED

| GIRDER      | STRAND  | SPA    | Ν                                 |            | NUI   | ИB | ER C | DF ST  | IRRUP  | 'S     | TOTAL |  |
|-------------|---------|--------|-----------------------------------|------------|-------|----|------|--------|--------|--------|-------|--|
| SPACING(FT) | PATTERN | L(FT   | )                                 | 0.0L       | . 0.1 | L  | 0.2L | . 0.31 | - 0.4L | . 0.5L | (L/2) |  |
| 8           | 10 D    | 42.5   | 5                                 | 3.0        | 3.0   | )  | 3.0  | 3.0    | 3.0    | 3.0    | 18.0  |  |
|             | 12 D-1  | 48     |                                   | 3.0        | 3.0   | )  | 7.0  | 7.0    | 5.0    | 3.0    | 28.0  |  |
|             | 12 D-2  | 48     |                                   | 3.0        | 3.0   | )  | 7.0  | 7.0    | 7.0    | 5.0    | 32.0  |  |
|             | 12 S    | 46.5   | 5                                 | 28.0       | 13.   | 0  | 7.0  | 3.0    | 4.0    | 3.0    | 58.0  |  |
|             | 14 D-1  | 53     |                                   | 3.0        | 3.0   | )  | 9.0  | 9.0    | 7.0    | 3.0    | 34.0  |  |
|             | 14 D-2  | 52.5   | 5                                 | 3.0        | 3.0   | )  | 8.0  | 8.0    | 6.0    | 3.0    | 31.0  |  |
|             | 16 D    | 57.5   | 5                                 | 3.0        | 3.0   | )  | 6.0  | 8.0    | 6.0    | 4.0    | 30.0  |  |
|             | 16 S    | 55.5   | 5                                 | 34.0       | 17.   | 0  | 7.0  | 6.0    | 7.0    | 5.0    | 76.0  |  |
|             | 18 D    | 62     |                                   | 4.0        | 4.(   | )  | 8.0  | 9.0    | 8.0    | 5.0    | 38.0  |  |
|             | 20 D    | 64.5   | 5                                 | 4.0        | 4.(   | )  | 7.0  | 9.0    | 8.0    | 5.0    | 37.0  |  |
|             | 20 S    | 61     |                                   | 31.0       | 19.   | 0  | 7.0  | 8.0    | 8.0    | 6.0    | 79.0  |  |
|             | 24 D-1  | 69     |                                   | 4.0        | 4.(   | )  | 14.0 | 15.0   | ) 11.0 | 6.0    | 54.0  |  |
|             | 24 D-2  | 68.5   | 68.5 4.0 4.0 14.0 15.0 11.0 6.0 5 |            |       |    |      |        |        |        | 54.0  |  |
|             | 26 D-1  | FAILED |                                   |            |       |    |      |        |        |        |       |  |
|             | 26 D-2  | F      | FAI                               | LED        | )     |    |      |        |        |        |       |  |
| 9           | 10 D    | 40     | 2.                                | .0         | 2.0   | 2  | 2.0  | 3.0    | 3.0    | 2.0    | 14.0  |  |
|             | 12 D-1  | 45     | 3.                                | .0         | 3.0   | 7  | 7.0  | 7.0    | 5.0    | 3.0    | 28.0  |  |
|             | 12 D-2  | 45     | 3.                                | .0         | 3.0   | 7  | 7.0  | 8.0    | 7.0    | 5.0    | 33.0  |  |
|             | 12 S    | 44     | 33                                | 3.0        | 15.0  | 8  | 3.0  | 4.0    | 4.0    | 4.0    | 68.0  |  |
|             | 14 D-1  | 49.5   | 3.                                | .0         | 3.0   | ç  | 9.0  | 9.0    | 7.0    | 3.0    | 34.0  |  |
|             | 14 D-2  | 49.5   | 3.                                | .0         | 3.0   | 8  | 3.0  | 8.0    | 6.0    | 3.0    | 31.0  |  |
|             | 16 D    | 54     | 3.                                | .0         | 3.0   | 6  | 6.0  | 8.0    | 7.0    | 4.0    | 31.0  |  |
|             | 16 S    | 52     | 36                                | 6.0        | 19.0  | 1  | 0.0  | 6.0    | 7.0    | 6.0    | 84.0  |  |
|             | 18 D    | 58     | 3.                                | .0         | 3.0   | 8  | 3.0  | 9.0    | 8.0    | 5.0    | 36.0  |  |
|             | 20 D    | 61     | 3.                                | .0         | 3.0   | 8  | 3.0  | 10.0   | 8.0    | 6.0    | 38.0  |  |
|             | 20 S    | 57.5   | 37                                | <i>.</i> 0 | 21.0  | 1  | 0.0  | 8.0    | 8.0    | 6.0    | 90.0  |  |
|             | 24 D-1  | 0      | 0.                                | .0         | 0.0   | -  | 0.0  | 0.0    | 0.0    | 0.0    | 0.0   |  |
|             | 24 D-2  | 64.5   | 4.                                | .0         | 4.0   | 1  | 5.0  | 15.0   | 11.0   | 6.0    | 55.0  |  |
|             | 26 D-1  |        |                                   |            |       |    | FA   | ILED   |        |        |       |  |
|             | 26 D-2  |        |                                   |            |       |    | FA   | ILED   |        |        |       |  |

Table 8.3.2.2: page 2

| GIRDER      | STRAND  | SPAN   |      | NUME | BER C | F STI | RRUP | S    | TOTAL |
|-------------|---------|--------|------|------|-------|-------|------|------|-------|
| SPACING(FT) | PATTERN | L (FT) | 0.0L | 0.1L | 0.2L  | 0.3L  | 0.4L | 0.5L | (L/2) |
| 5           | 12 D    | 64.5   | 4.0  | 4.0  | 4.0   | 4.0   | 4.0  | 4.0  | 24.0  |
| -           | 14 D    | 71     | 4.0  | 4.0  | 4.0   | 5.0   | 4.0  | 4.0  | 25.0  |
|             | 14 S    | 68.5   | 12.0 | 4.0  | 4.0   | 4.0   | 4.0  | 4.0  | 32.0  |
|             | 16 D    | 76     | 4.0  | 4.0  | 4.0   | 5.0   | 4.0  | 4.0  | 25.0  |
|             | 16 S    | 72     | 12.0 | 4.0  | 4.0   | 4.0   | 4.0  | 4.0  | 32.0  |
|             | 18 D    | 79.5   | 4.0  | 4.0  | 4.0   | 6.0   | 4.0  | 4.0  | 26.0  |
|             | 20 D    | 83     | 5.0  | 5.0  | 5.0   | 5.0   | 5.0  | 5.0  | 30.0  |
|             | 20 S    | 79     | 14.0 | 4.0  | 4.0   | 4.0   | 4.0  | 4.0  | 34.0  |
|             | 22 D    | 86     | 5.0  | 5.0  | 5.0   | 6.0   | 5.0  | 5.0  | 31.0  |
|             | 24 D    | 89.5   | 5.0  | 5.0  | 5.0   | 6.0   | 5.0  | 5.0  | 31.0  |
|             | 24 S    | 86.5   | 15.0 | 5.0  | 5.0   | 5.0   | 5.0  | 5.0  | 40.0  |
|             | 26 D    | 92     | 5.0  | 5.0  | 5.0   | 6.0   | 5.0  | 5.0  | 31.0  |
|             | 28 D    | 95     | 5.0  | 5.0  | 5.0   | 6.0   | 5.0  | 5.0  | 31.0  |
|             | 30 D    | 96     | 5.0  | 5.0  | 5.0   | 7.0   | 5.0  | 5.0  | 32.0  |
| 6           | 12 D    | 59.5   | 3.0  | 3.0  | 3.0   | 4.0   | 3.0  | 3.0  | 19.0  |
|             | 14 D    | 65.5   | 4.0  | 4.0  | 4.0   | 5.0   | 4.0  | 4.0  | 25.0  |
|             | 14 S    | 63     | 17.0 | 6.0  | 4.0   | 4.0   | 4.0  | 4.0  | 39.0  |
|             | 16 D    | 71     | 4.0  | 4.0  | 5.0   | 6.0   | 5.0  | 4.0  | 28.0  |
|             | 16 S    | 68     | 18.0 | 6.0  | 4.0   | 5.0   | 5.0  | 4.0  | 42.0  |
|             | 18 D    | 74.5   | 4.0  | 4.0  | 5.0   | 7.0   | 5.0  | 4.0  | 29.0  |
|             | 20 D    | 78     | 4.0  | 4.0  | 4.0   | 6.0   | 5.0  | 4.0  | 27.0  |
|             | 20 S    | 74     | 19.0 | 6.0  | 4.0   | 5.0   | 5.0  | 4.0  | 43.0  |
|             | 22 D    | 81     | 4.0  | 4.0  | 5.0   | 7.0   | 6.0  | 4.0  | 30.0  |
|             | 24 D    | 83.5   | 5.0  | 5.0  | 5.0   | 7.0   | 6.0  | 5.0  | 33.0  |
|             | 24 S    | 81.5   | 22.0 | 6.0  | 4.0   | 5.0   | 6.0  | 4.0  | 47.0  |
|             | 26 D    | 86.5   | 5.0  | 5.0  | 5.0   | 8.0   | 6.0  | 5.0  | 34.0  |
|             | 28 D    | 89     | 5.0  | 5.0  | 5.0   | 8.0   | 6.0  | 5.0  | 34.0  |
|             | 30 D    | 90     | 5.0  | 5.0  | 5.0   | 8.0   | 7.0  | 5.0  | 35.0  |
| 7           | 12 D    | 55     | 3.0  | 3.0  | 3.0   | 4.0   | 3.0  | 3.0  | 19.0  |
|             | 14 D    | 60.5   | 3.0  | 3.0  | 3.0   | 5.0   | 4.0  | 3.0  | 21.0  |
|             | 14 S    | 58.5   | 22.0 | 9.0  | 3.0   | 4.0   | 4.0  | 3.0  | 45.0  |
|             | 16 D    | 66     | 4.0  | 4.0  | 5.0   | 7.0   | 5.0  | 4.0  | 29.0  |
|             | 16 S    | 63     | 22.0 | 9.0  | 4.0   | 5.0   | 5.0  | 4.0  | 49.0  |
|             | 18 D    | 70     | 4.0  | 4.0  | 5.0   | 7.0   | 6.0  | 4.0  | 30.0  |
|             | 20 D    | 73.5   | 4.0  | 4.0  | 5.0   | 7.0   | 6.0  | 4.0  | 30.0  |
|             | 20 S    | 70     | 23.0 | 10.0 | 4.0   | 6.0   | 6.0  | 4.0  | 53.0  |
|             | 22 D    | 76.5   | 4.0  | 4.0  | 6.0   | 8.0   | 7.0  | 4.0  | 33.0  |
|             | 24 D    | 79     | 4.0  | 4.0  | 6.0   | 8.0   | 7.0  | 4.0  | 33.0  |
|             | 24 S    | 76.5   | 27.0 | 11.0 | 4.0   | 6.0   | 7.0  | 4.0  | 59.0  |
|             | 26 D    | 81.5   | 4.0  | 4.0  | 6.0   | 9.0   | 7.0  | 4.0  | 34.0  |
|             | 28 D    | 84     | 5.0  | 5.0  | 6.0   | 9.0   | 7.0  | 5.0  | 37.0  |
|             | 30 D    | 84.5   | 5.0  | 5.0  | 5.0   | 9.0   | 7.0  | 5.0  | 36.0  |

Table 8.3.2.3: Design Table for G 48-I Girder

| GIRDER      | STRAND  | SPAN   | N    | IUMB | ER O | F STIF | RUP  | S    | TOTAL |
|-------------|---------|--------|------|------|------|--------|------|------|-------|
| SPACING(FT) | PATTERN | L (FT) | 0.0L | 0.1L | 0.2L | 0.3L   | 0.4L | 0.5L | (L/2) |
| 8           | 12 D    | 51.5   | 3.0  | 3.0  | 3.0  | 4.0    | 3.0  | 3.0  | 19.0  |
|             | 14 D    | 56.5   | 3.0  | 3.0  | 3.0  | 5.0    | 4.0  | 3.0  | 21.0  |
|             | 14 S    | 54.5   | 26.0 | 11.0 | 3.0  | 4.0    | 4.0  | 3.0  | 51.0  |
|             | 16 D    | 61.5   | 3.0  | 3.0  | 5.0  | 7.0    | 5.0  | 4.0  | 27.0  |
|             | 16 S    | 59     | 27.0 | 12.0 | 3.0  | 5.0    | 6.0  | 4.0  | 57.0  |
|             | 18 D    | 66.5   | 4.0  | 4.0  | 6.0  | 8.0    | 7.0  | 4.0  | 33.0  |
|             | 20 D    | 70     | 4.0  | 4.0  | 6.0  | 8.0    | 7.0  | 4.0  | 33.0  |
|             | 20 S    | 66.5   | 29.0 | 14.0 | 4.0  | 7.0    | 7.0  | 5.0  | 66.0  |
|             | 22 D    | 72.5   | 4.0  | 4.0  | 7.0  | 9.0    | 7.0  | 4.0  | 35.0  |
|             | 24 D    | 74.5   | 4.0  | 4.0  | 6.0  | 9.0    | 7.0  | 4.0  | 34.0  |
|             | 24 S    | 72.5   | 31.0 | 15.0 | 4.0  | 7.0    | 7.0  | 5.0  | 69.0  |
|             | 26 D    | 77     | 4.0  | 4.0  | 6.0  | 9.0    | 8.0  | 5.0  | 36.0  |
|             | 28 D    | 79.5   | 4.0  | 4.0  | 6.0  | 10.0   | 8.0  | 5.0  | 37.0  |
|             | 30 D    | 80     | 4.0  | 4.0  | 6.0  | 10.0   | 8.0  | 5.0  | 37.0  |
| 9           | 12 D    | 48.5   | 3.0  | 3.0  | 3.0  | 4.0    | 3.0  | 3.0  | 19.0  |
|             | 14 D    | 53.5   | 3.0  | 3.0  | 4.0  | 5.0    | 5.0  | 4.0  | 24.0  |
|             | 14 S    | 51.5   | 31.0 | 13.0 | 6.0  | 4.0    | 4.0  | 4.0  | 62.0  |
|             | 16 D    | 58     | 3.0  | 3.0  | 5.0  | 7.0    | 6.0  | 4.0  | 28.0  |
|             | 16 S    | 55.5   | 32.0 | 15.0 | 6.0  | 5.0    | 6.0  | 4.0  | 68.0  |
|             | 18 D    | 62.5   | 4.0  | 4.0  | 7.0  | 8.0    | 7.0  | 5.0  | 35.0  |
|             | 20 D    | 66     | 4.0  | 4.0  | 7.0  | 9.0    | 7.0  | 5.0  | 36.0  |
|             | 20 S    | 63     | 35.0 | 17.0 | 6.0  | 7.0    | 8.0  | 6.0  | 79.0  |
|             | 22 D    | 68.5   | 4.0  | 4.0  | 7.0  | 10.0   | 8.0  | 6.0  | 39.0  |
|             | 24 D    | 71     | 4.0  | 4.0  | 7.0  | 10.0   | 8.0  | 6.0  | 39.0  |
|             | 24 S    | 68.5   | 36.0 | 19.0 | 5.0  | 7.0    | 8.0  | 6.0  | 81.0  |
|             | 26 D    | 73     | 4.0  | 4.0  | 7.0  | 10.0   | 8.0  | 5.0  | 38.0  |
|             | 28 D    | 75     | 4.0  | 4.0  | 6.0  | 10.0   | 8.0  | 5.0  | 37.0  |
|             | 30 D    |        |      |      | FAIL | .ED    |      |      |       |

Table 8.3.2.3: page 2

| GIRDER      | STRAND  | SPAN  | N    | IUMB | ER O | F STI | RRUP | S    | TOTAL |
|-------------|---------|-------|------|------|------|-------|------|------|-------|
| SPACING(FT) | PATTERN | L(FT) |      | 0.1L |      | 0.3L  | 0.4L | 0.5L | (L/2) |
| 5           | 12 D    | 69    | 4.0  | 4.0  | 4.0  | 4.0   | 4.0  | 4.0  | 24.0  |
|             | 14 D    | 76    | 4.0  | 4.0  | 4.0  | 4.0   | 4.0  | 4.0  | 24.0  |
|             | 16 D    | 82.5  | 5.0  | 5.0  | 5.0  | 6.0   | 5.0  | 5.0  | 31.0  |
|             | 16 S    | 80    | 14.0 | 4.0  | 4.0  | 4.0   | 4.0  | 4.0  | 34.0  |
|             | 18 D    | 86.5  | 5.0  | 5.0  | 5.0  | 6.0   | 5.0  | 5.0  | 31.0  |
|             | 20 D    | 90    | 5.0  | 5.0  | 5.0  | 6.0   | 5.0  | 5.0  | 31.0  |
|             | 20 S    | 86.5  | 15.0 | 5.0  | 5.0  | 5.0   | 5.0  | 5.0  | 40.0  |
|             | 22 D    | 94    | 5.0  | 5.0  | 5.0  | 7.0   | 5.0  | 5.0  | 32.0  |
|             | 24 D    | 97    | 5.0  | 5.0  | 5.0  | 7.0   | 5.0  | 5.0  | 32.0  |
|             | 24 S    | 94    | 17.0 | 5.0  | 5.0  | 5.0   | 5.0  | 5.0  | 42.0  |
|             | 26 D    | 100.5 | 5.0  | 5.0  | 5.0  | 7.0   | 5.0  | 5.0  | 32.0  |
|             | 28 D    | 103.5 | 6.0  | 6.0  | 6.0  | 7.0   | 6.0  | 6.0  | 37.0  |
|             | 30 D-1  | 106   | 6.0  | 6.0  | 12.0 | 12.0  | 8.0  | 6.0  | 50.0  |
|             | 30 D-2  | 106   | 6.0  | 6.0  | 12.0 | 12.0  | 8.0  | 6.0  | 50.0  |
| 6           | 12 D    | 63.5  | 4.0  | 4.0  | 4.0  | 4.0   | 4.0  | 4.0  | 24.0  |
|             | 14 D    | 70    | 4.0  | 4.0  | 4.0  | 5.0   | 4.0  | 4.0  | 25.0  |
|             | 16 D    | 76    | 4.0  | 4.0  | 4.0  | 6.0   | 5.0  | 4.0  | 27.0  |
|             | 16 S    | 74    | 19.0 | 8.0  | 4.0  | 4.0   | 5.0  | 4.0  | 44.0  |
|             | 18 D    | 81    | 4.0  | 4.0  | 5.0  | 7.0   | 6.0  | 4.0  | 30.0  |
|             | 20 D    | 84.5  | 5.0  | 5.0  | 5.0  | 7.0   | 6.0  | 5.0  | 33.0  |
|             | 20 S    | 81.5  | 21.0 | 8.0  | 4.0  | 5.0   | 6.0  | 4.0  | 48.0  |
|             | 22 D    | 88    | 5.0  | 5.0  | 6.0  | 8.0   | 6.0  | 5.0  | 35.0  |
|             | 24 D    | 91    | 5.0  | 5.0  | 6.0  | 8.0   | 6.0  | 5.0  | 35.0  |
|             | 24 S    | 88    | 22.0 | 12.0 | 5.0  | 5.0   | 6.0  | 5.0  | 55.0  |
|             | 26 D    | 94    | 5.0  | 5.0  | 5.0  | 8.0   | 6.0  | 5.0  | 34.0  |
|             | 28 D    | 97    | 5.0  | 5.0  | 5.0  | 8.0   | 7.0  | 5.0  | 35.0  |
|             | 30 D-1  | 99.5  | 5.0  | 5.0  | 14.0 | 14.0  | 9.0  | 5.0  | 52.0  |
|             | 30 D-2  | 99.5  | 5.0  | 5.0  | 14.0 | 14.0  | 9.0  | 5.0  | 52.0  |
| 7           | 12 D    | 58.5  | 3.0  | 3.0  | 3.0  | 3.0   | 3.0  | 3.0  | 18.0  |
|             | 14 D    | 65    | 4.0  | 4.0  | 4.0  | 5.0   | 4.0  | 4.0  | 25.0  |
|             | 16 D    | 70.5  | 4.0  | 4.0  | 4.0  | 6.0   | 5.0  | 4.0  | 27.0  |
|             | 16 S    | 69    | 24.0 | 11.0 | 4.0  | 5.0   | 5.0  | 4.0  | 53.0  |
|             | 18 D    | 76    | 4.0  | 4.0  | 6.0  | 8.0   | 6.0  | 4.0  | 32.0  |
|             | 20 D    | 79.5  | 4.0  | 4.0  | 6.0  | 8.0   | 6.0  | 4.0  | 32.0  |
|             | 20 S    | 7     | 25.0 | 12.0 | 4.0  | 6.0   | 7.0  | 4.0  | 58.0  |
|             | 22 D    | 83    | 5.0  | 5.0  | 7.0  | 9.0   | 7.0  | 5.0  | 38.0  |
|             | 24 D    | 86    | 5.0  | 5.0  | 7.0  | 9.0   | 7.0  | 5.0  | 38.0  |
|             | 24 S    | 83    | 27.0 | 12.0 | 5.0  | 6.0   | 7.0  | 5.0  | 62.0  |
|             | 26 D    | 89    | 5.0  | 5.0  | 7.0  | 9.0   | 7.0  | 5.0  | 38.0  |
|             | 28 D    | 91.5  | 5.0  | 5.0  | 7.0  | 9.0   | 7.0  | 5.0  | 38.0  |
|             | 30 D-1  | 94    | 5.0  | 5.0  | 15.0 | 15.0  | 10.0 | 5.0  | 55.0  |
| aantinuad   | 30 D-2  | 94    | 5.0  | 5.0  | 16.0 | 15.0  | 11.0 | 5.0  | 57.0  |

Table 8.3.2.4: Design Table for G 54-I Girder

| GIRDER      | STRAND  | SPAN  | N    | UMB  | ER OI | F STI | RRUF | s   | TOTAL |
|-------------|---------|-------|------|------|-------|-------|------|-----|-------|
| SPACING(FT) | PATTERN | L(FT) |      | -    | 0.2L  |       | -    | -   | (L/2) |
| 8           | 12 D    | 55    | 3.0  | 3.0  | 3.0   | 4.0   | 3.0  | 3.0 | 19.0  |
|             | 14 D    | 60.5  | 3.0  | 3.0  | 3.0   | 5.0   | 4.0  | 3.0 | 21.0  |
|             | 16 D    | 66    | 4.0  | 4.0  | 5.0   | 7.0   | 5.0  | 4.0 | 29.0  |
|             | 16 S    | 64.5  | 29.0 | 13.0 | 5.0   | 5.0   | 5.0  | 4.0 | 61.0  |
|             | 18 D    | 71.5  | 4.0  | 3.6  | 6.0   | 8.0   | 7.0  | 5.0 | 33.6  |
|             | 20 D    | 75.5  | 4.0  | 4.0  | 7.0   | 9.0   | 7.0  | 5.0 | 36.0  |
|             | 20 S    | 73    | 32.0 | 16.0 | 5.0   | 7.0   | 7.0  | 5.0 | 72.0  |
|             | 22 D    | 78.5  | 4.0  | 4.0  | 7.0   | 9.0   | 8.0  | 5.0 | 37.0  |
|             | 24 D    | 81.5  | 4.0  | 4.0  | 8.0   | 10.0  | 8.0  | 5.0 | 39.0  |
|             | 24 S    | 79    | 32.0 | 17.0 | 4.0   | 7.0   | 8.0  | 6.0 | 74.0  |
|             | 26 D    | 84    | 5.0  | 5.0  | 7.0   | 10.0  | 8.0  | 5.0 | 40.0  |
|             | 28 D    | 86.5  | 5.0  | 5.0  | 7.0   | 10.0  | 8.0  | 5.0 | 40.0  |
|             | 30 D-1  | 89    | 5.0  | 5.0  | 17.0  | 16.0  | 11.0 | 5.0 | 59.0  |
|             | 30 D-2  | 89    | 5.0  | 5.0  | 17.0  | 17.0  | 11.0 | 6.0 | 61.0  |
| 9           | 12 D    | 51.5  | 3.0  | 3.0  | 3.0   | 4.0   | 3.0  | 3.0 | 19.0  |
|             | 14 D    | 57    | 3.0  | 3.0  | 3.0   | 5.0   | 4.0  | 4.0 | 22.0  |
|             | 16 D    | 62    | 4.0  | 4.0  | 5.0   | 7.0   | 5.0  | 5.0 | 30.0  |
|             | 16 S    | 60.5  | 33.0 | 16.0 | 7.0   | 5.0   | 5.0  | 5.0 | 71.0  |
|             | 18 D    | 67    | 4.0  | 4.0  | 6.0   | 8.0   | 7.0  | 5.0 | 34.0  |
|             | 20 D    | 71.5  | 4.0  | 4.0  | 8.0   | 10.0  | 8.0  | 6.0 | 40.0  |
|             | 20 S    | 69    | 36.0 | 19.0 | 8.0   | 8.0   | 8.0  | 6.0 | 85.0  |
|             | 22 D    | 74.5  | 4.0  | 4.0  | 8.0   | 10.0  | 8.0  | 6.0 | 40.0  |
|             | 24 D    | 77    | 4.0  | 4.0  | 8.0   | 10.0  | 8.0  | 6.0 | 40.0  |
|             | 24 S    | 75    | 38.0 | 20.0 | 8.0   | 8.0   | 8.0  | 6.0 | 88.0  |
|             | 26 D    | 80    | 4.0  | 4.0  | 8.0   | 11.0  | 9.0  | 6.0 | 42.0  |
|             | 28 D    | 82    | 5.0  | 5.0  | 8.0   | 11.0  | 9.0  | 6.0 | 44.0  |
|             | 30 D-1  | 84    | 5.0  | 5.0  | 17.0  | 17.0  | 12.0 | 6.0 | 62.0  |
|             | 30 D-2  | 84    | 5.0  | 5.0  | 17.0  | 17.0  | 12.0 | 6.0 | 62.0  |

Table 8.3.2.4: page 2

| GIRDER      | STRAND  | SPAN  | N    | UMB  | ER O | F STII | RRUF | s    | TOTAL |
|-------------|---------|-------|------|------|------|--------|------|------|-------|
| SPACING(FT) | PATTERN | L(FT) | 0.0L | 0.1L | 0.2L | 0.3L   | 0.4L | 0.5L | (L/2) |
| 5           | 14 S    | 82    | 12.0 | 5.0  | 5.0  | 5.0    | 5.0  | 5.0  | 37.0  |
|             | 18 D    | 95    | 5.0  | 5.0  | 5.0  | 6.0    | 5.0  | 5.0  | 31.0  |
|             | 18 S    | 95    | 14.0 | 5.0  | 5.0  | 5.0    | 5.0  | 5.0  | 39.0  |
|             | 20 D    | 100   | 5.0  | 5.0  | 5.0  | 7.0    | 5.0  | 5.0  | 32.0  |
|             | 22 D    | 104   | 6.0  | 6.0  | 6.0  | 7.0    | 6.0  | 6.0  | 37.0  |
|             | 22 S    | 102   | 17.0 | 6.0  | 6.0  | 6.0    | 6.0  | 6.0  | 47.0  |
|             | 24 D    | 108   | 6.0  | 6.0  | 6.0  | 8.0    | 6.0  | 6.0  | 38.0  |
|             | 26 D    | 111   | 6.0  | 6.0  | 6.0  | 7.0    | 6.0  | 6.0  | 37.0  |
|             | 28 D    | 115   | 6.0  | 6.0  | 6.0  | 8.0    | 6.0  | 6.0  | 38.0  |
|             | 30 D    | 118   | 6.0  | 6.0  | 6.0  | 8.0    | 6.0  | 6.0  | 38.0  |
|             | 32 D-1  | 121   | 6.0  | 6.0  | 16.0 | 14.0   | 9.0  | 6.0  | 57.0  |
|             | 32 D-2  | 121   | 6.0  | 6.0  | 16.0 | 14.0   | 9.0  | 6.0  | 57.0  |
|             | 34 D-1  | 123.5 | 7.0  | 7.0  | 16.0 | 15.0   | 9.0  | 7.0  | 61.0  |
|             | 34 D-2  | 123.5 | 7.0  | 7.0  | 16.0 | 15.0   | 9.0  | 7.0  | 61.0  |
| 6           | 14 S    | 75.5  | 17.0 | 5.0  | 4.0  | 4.0    | 4.0  | 4.0  | 38.0  |
|             | 18 D    | 88.5  | 5.0  | 5.0  | 6.0  | 7.0    | 5.0  | 5.0  | 33.0  |
|             | 18 S    | 88.5  | 20.0 | 7.0  | 5.0  | 5.0    | 5.0  | 5.0  | 47.0  |
|             | 20 D    | 94    | 5.0  | 5.0  | 7.0  | 8.0    | 6.0  | 5.0  | 36.0  |
|             | 22 D    | 98    | 5.0  | 5.0  | 7.0  | 8.0    | 6.0  | 5.0  | 36.0  |
|             | 22 S    | 96    | 20.0 | 7.0  | 5.0  | 6.0    | 6.0  | 5.0  | 49.0  |
|             | 24 D    | 101   | 5.0  | 5.0  | 7.0  | 8.0    | 6.0  | 5.0  | 36.0  |
|             | 26 D    | 105   | 6.0  | 6.0  | 8.0  | 9.0    | 7.0  | 6.0  | 42.0  |
|             | 28 D    | 108   | 6.0  | 6.0  | 8.0  | 9.0    | 7.0  | 6.0  | 42.0  |
|             | 30 D    | 111   | 6.0  | 6.0  | 8.0  | 9.0    | 7.0  | 6.0  | 42.0  |
|             | 32 D-1  | 113.5 | 6.0  | 6.0  | 17.0 | 16.0   | 10.0 | 6.0  | 61.0  |
|             | 32 D-2  | 113.5 | 6.0  | 6.0  | 18.0 | 16.0   | 10.0 | 6.0  | 62.0  |
|             | 34 D-1  | 116.5 | 6.0  | 6.0  | 18.0 | 16.0   | 10.0 | 6.0  | 62.0  |
|             | 34 D-2  | 116   | 6.0  | 6.0  | 18.0 | 16.0   | 10.0 | 6.0  | 62.0  |
| 7           | 14 S    | 70.5  | 22.0 | 8.0  | 4.0  | 4.0    | 4.0  | 4.0  | 46.0  |
|             | 18 D    | 82.5  | 5.0  | 5.0  | 6.0  | 7.0    | 6.0  | 5.0  | 34.0  |
|             | 18 S    | 82.5  | 25.0 | 10.0 | 5.0  | 5.0    | 5.0  | 5.0  | 55.0  |
|             | 20 D    | 88    | 5.0  | 5.0  | 8.0  | 9.0    | 7.0  | 5.0  | 39.0  |
|             | 22 D    | 92    | 5.0  | 5.0  | 8.0  | 9.0    | 7.0  | 5.0  | 39.0  |
|             | 22 S    | 90.5  | 25.0 | 11.0 | 5.0  | 6.0    | 7.0  | 5.0  | 59.0  |
|             | 24 D    | 96    | 5.0  | 5.0  | 9.0  | 10.0   | 7.0  | 5.0  | 41.0  |
|             | 26 D    | 99    | 5.0  | 5.0  | 9.0  | 10.0   |      | 5.0  | 42.0  |
|             | 28 D    | 102   | 6.0  | 6.0  | 9.0  | 10.0   | 8.0  | 6.0  | 45.0  |
|             | 30 D    | 105   | 6.0  | 6.0  | 9.0  | 10.0   | 8.0  | 6.0  | 45.0  |
|             | 32 D-1  | 107.5 | 6.0  | 6.0  | 19.0 | 17.0   | 11.0 | 6.0  | 65.0  |
|             | 32 D-2  | 107.5 | 6.0  | 6.0  | 19.0 | 17.0   | 11.0 | 6.0  | 65.0  |
|             | 34 D-1  | 110   | 6.0  | 6.0  | 20.0 | 18.0   | 11.0 | 6.0  | 67.0  |
|             | 34 D-2  | 110   | 6.0  | 6.0  | 20.0 | 18.0   | 12.0 | 6.0  | 68.0  |

Table 8.3.2.5: Design Table for G 63-T Bulb Girder

| GIRDER<br>SPACING(FT) | STRAND<br>PATTERN | SPAN<br>L(FT) | NUM  | IBER | OF S | STIR | RUPS | 5    | TOTAL<br>(L/2) |
|-----------------------|-------------------|---------------|------|------|------|------|------|------|----------------|
|                       |                   | -( )          | 0.0L | 0.1L | 0.2L | 0.3L | 0.4L | 0.5L | (_/_/          |
| 8                     | 14 S              | 66            | 27.0 | 12.0 | 4.0  | 4.0  | 4.0  | 4.0  | 55.0           |
| ŭ                     | 18 D              | 77.5          | 4.0  | 4.0  | 6.0  | 8.0  | 6.0  | 4.0  | 32.0           |
|                       | 18 S              | 77.5          | 31.0 | 13.0 | 4.0  | 5.0  | 6.0  | 4.0  | 63.0           |
|                       | 20 D              | 83            | 5.0  | 5.0  | 8.0  | 9.0  | 7.0  | 5.0  | 39.0           |
|                       | 22 D              | 91            | 5.0  | 5.0  | 9.0  | 10.0 | 8.0  | 5.0  | 42.0           |
|                       | 22 S              | 86            | 31.0 | 15.0 | 5.0  | 7.0  | 7.0  | 5.0  | 70.0           |
|                       | 24 D              | 91            | 5.0  | 5.0  | 10.0 | 11.0 | 8.0  | 5.0  | 44.0           |
|                       | 26 D              | 94            | 5.0  | 5.0  | 10.0 | 11.0 | 8.0  | 5.0  | 44.0           |
|                       | 28 D              | 97            | 5.0  | 5.0  | 10.0 | 11.0 | 9.0  | 5.0  | 45.0           |
|                       | 30 D              | 99.5          | 5.0  | 5.0  | 10.0 | 11.0 | 9.0  | 5.0  | 45.0           |
|                       | 32 D-1            | 102           | 6.0  | 6.0  | 21.0 | 18.0 | 12.0 | 6.0  | 69.0           |
|                       | 32 D-2            | 102           | 6.0  | 6.0  | 21.0 | 19.0 | 12.0 | 6.0  | 70.0           |
|                       | 34 D-1            | 104           | 6.0  | 6.0  | 21.0 | 19.0 | 12.0 | 6.0  | 70.0           |
|                       | 34 D-2            | 104           | 6.0  | 6.0  | 21.0 | 19.0 | 12.0 | 6.0  | 70.0           |
| 9                     | 14 S              | 62            | 30.0 | 15.0 | 5.0  | 4.0  | 4.0  | 4.0  | 62.0           |
|                       | 18 D              | 73            | 4.0  | 4.0  | 6.0  | 8.0  | 6.0  | 5.0  | 33.0           |
|                       | 18 S              | 73            | 35.0 | 15.0 | 6.0  | 5.0  | 6.0  | 5.0  | 72.0           |
|                       | 20 D              | 78            | 3.9  | 4.0  | 8.0  | 9.0  | 7.0  | 5.0  | 36.9           |
|                       | 22 D              | 86            | 5.0  | 5.0  | 10.0 | 11.0 | 8.0  | 5.0  | 44.0           |
|                       | 22 S              | 81.5          | 37.0 | 18.0 | 7.0  | 8.0  | 8.0  | 6.0  | 84.0           |
|                       | 24 D              | 86            | 5.0  | 5.0  | 10.0 | 11.0 | 9.0  | 6.0  | 46.0           |
|                       | 26 D              | 89            | 5.0  | 5.0  | 10.0 | 11.0 | 9.0  | 6.0  | 46.0           |
|                       | 28 D              | 92            | 5.0  | 5.0  | 10.0 | 12.0 | 9.0  | 6.0  | 47.0           |
|                       | 30 D              | 95            | 5.0  | 5.0  | 11.0 | 12.0 | 10.0 | 6.0  | 49.0           |
|                       | 32 D-1            | 97            | 5.0  | 5.0  | 22.0 | 19.0 | 13.0 | 6.0  | 70.0           |
|                       | 32 D-2            | 97            | 5.0  | 5.0  | 22.0 | 20.0 | 13.0 | 6.0  | 71.0           |
|                       | 34 D-1            | 99            | 5.0  | 5.0  | 22.0 | 20.0 | 13.0 | 6.0  | 71.0           |
|                       | 34 D-2            | 99            | 5.0  | 5.0  | 22.0 | 20.0 | 13.0 | 6.0  | 71.0           |

Table 8.3.2.5: page 2

| GIRDER      | STRAND  | SPAN  |       | NU   | MBEF | R OF S | TIRR | UPS  | TOTAL |
|-------------|---------|-------|-------|------|------|--------|------|------|-------|
| SPACING(FT) | PATTERN | L(FT) | 0.0L  | 0.1L | 0.2L | 0.3L   | 0.4L | 0.5L | (L/2) |
| 5           | 18 S    | 102   | 12.00 | 6.00 | 6.00 | 6.00   | 6.00 | 6.00 | 42.00 |
|             | 20 D    | 101   | 6.00  | 6.00 | 6.00 | 6.00   | 6.00 | 6.00 | 36.00 |
|             | 22 D    | 111   | 6.00  | 6.00 | 6.00 | 6.00   | 6.00 | 6.00 | 36.00 |
|             | 22 S    | 110   | 12.00 | 6.00 | 6.00 | 6.00   | 6.00 | 6.00 | 42.00 |
|             | 24 D    | 115.5 | 6.00  | 6.00 | 6.00 | 7.00   | 6.00 | 6.00 | 37.00 |
|             | 26 D    | 119   | 6.00  | 6.00 | 6.00 | 7.00   | 6.00 | 6.00 | 37.00 |
|             | 26 S    | 117.5 | 13.00 | 6.00 | 6.00 | 6.00   | 6.00 | 6.00 | 43.00 |
|             | 28 D    | 123   | 7.00  | 7.00 | 7.00 | 8.00   | 7.00 | 7.00 | 43.00 |
|             | 30 D    | 127   | 7.00  | 7.00 | 7.00 | 7.00   | 7.00 | 7.00 | 42.00 |
|             | 32 D    | 130   | 7.00  | 7.00 | 7.00 | 7.00   | 7.00 | 7.00 | 42.00 |
|             | 34 D    | 133   | 7.00  | 7.00 | 7.00 | 7.00   | 7.00 | 7.00 | 42.00 |
|             | 36 D    | 136   | 7.00  | 7.00 | 7.00 | 7.00   | 7.00 | 7.00 | 42.00 |
|             | 38 D    | 139   | 7.00  | 7.00 | 7.00 | 7.00   | 7.00 | 7.00 | 42.00 |
|             | 42 D    | 143   | 8.00  | 8.00 | 8.00 | 8.00   | 8.00 | 8.00 | 48.00 |
| 6           | 18 S    | 95    | 17.00 | 5.00 | 5.00 | 5.00   | 5.00 | 5.00 | 42.00 |
|             | 20 D    | 95    | 5.00  | 5.00 | 6.00 | 7.00   | 6.00 | 5.00 | 34.00 |
|             | 22 D    | 105   | 6.00  | 6.00 | 7.00 | 8.00   | 6.00 | 6.00 | 39.00 |
|             | 22 S    | 104   | 18.00 | 6.00 | 6.00 | 6.00   | 6.00 | 6.00 | 48.00 |
|             | 24 D    | 109   | 6.00  | 6.00 | 7.00 | 8.00   | 6.00 | 6.00 | 39.00 |
|             | 26 D    | 112.5 | 6.00  | 6.00 | 7.00 | 8.00   | 6.00 | 6.00 | 39.00 |
|             | 26 S    | 111   | 19.00 | 6.00 | 6.00 | 6.00   | 6.00 | 6.00 | 49.00 |
|             | 28 D    | 116   | 6.00  | 6.00 | 6.00 | 8.00   | 6.00 | 6.00 | 38.00 |
|             | 30 D    | 119.5 | 6.00  | 6.00 | 6.00 | 8.00   | 6.00 | 6.00 | 38.00 |
|             | 32 D    | 122.5 | 7.00  | 7.00 | 7.00 | 8.00   | 7.00 | 7.00 | 43.00 |
|             | 34 D    | 125   | 7.00  | 7.00 | 7.00 | 8.00   | 7.00 | 7.00 | 43.00 |
|             | 36 D    | 128   | 7.00  | 7.00 | 7.00 | 8.00   | 7.00 | 7.00 | 43.00 |
|             | 38 D    | 131   | 7.00  | 7.00 | 7.00 | 9.00   | 7.00 | 7.00 | 44.00 |
|             | 42 D    | 135   | 7.00  | 7.00 | 7.00 | 8.00   | 7.00 | 7.00 | 43.00 |
| 7           | 18 S    | 89    | 23.00 | 7.00 | 5.00 | 5.00   | 5.00 | 5.00 | 50.00 |
|             | 20 D    | 89.5  | 5.00  | 5.00 | 7.00 | 8.00   | 6.00 | 5.00 | 36.00 |
|             | 22 D    | 100   | 5.00  | 5.00 | 8.00 | 9.00   | 7.00 | 5.00 | 39.00 |
|             | 22 S    | 98.5  | 24.00 | 8.00 | 5.00 | 6.00   | 6.00 | 5.00 | 54.00 |
|             | 24 D    | 103.5 | 6.00  | 6.00 | 8.00 | 9.00   | 7.00 | 6.00 | 42.00 |
|             | 26 D    | 106.5 | 6.00  | 6.00 | 8.00 | 9.00   | 7.00 | 6.00 | 42.00 |
|             | 26 S    | 105   | 26.00 | 9.00 | 6.00 | 6.00   | 6.00 | 6.00 | 59.00 |
|             | 28 D    | 110   | 6.00  | 6.00 | 7.00 | 9.00   | 7.00 | 6.00 | 41.00 |
|             | 30 D    | 113   | 6.00  | 6.00 | 7.00 | 9.00   | 7.00 | 6.00 | 41.00 |
|             | 32 D    | 116   | 6.00  | 6.00 | 7.00 | 9.00   | 7.00 | 6.00 | 41.00 |
|             | 34 D    | 119   | 6.00  | 6.00 | 7.00 | 9.00   |      | 6.00 | 41.00 |
|             | 36 D    | 121.5 | 6.00  | 6.00 |      | 10.00  | 7.00 | 6.00 | 42.00 |
|             | 38 D    | 124   | 7.00  | 7.00 | 7.00 | 10.00  | 7.00 | 7.00 | 45.00 |
|             | 42 D    |       |       |      | FAI  | LED    |      |      |       |

Table 8.3.2.6: Design Table for G 72-T Bulb Girder

| Table 8.3.2.6: pa | STRAND  | SPAN  | NU    | MBEF  | R OF S | TIRR  | UPS  |      | TOTAL |
|-------------------|---------|-------|-------|-------|--------|-------|------|------|-------|
| SPACING(FT)       | PATTERN | L(FT) |       |       |        |       |      |      | (L/2) |
|                   |         | -( /  | 0.0L  | 0.1L  | 0.2L   | 0.3L  | 0.4L | 0.5L | ()    |
| 8                 | 18 S    | 83.5  | 27.00 | 10.00 | 5.00   | 5.00  | 5.00 | 5.00 | 57.00 |
| <b>v</b>          | 20 D    | 89.5  | 5.00  | 5.00  | 7.00   | 9.00  | 7.00 | 5.00 | 38.00 |
|                   | 22 D    | 94.5  | 5.00  | 5.00  | 9.00   | 10.00 | 7.00 | 5.00 | 41.00 |
|                   | 22 S    | 93    | 30.00 | 12.00 | 5.00   | 6.00  | 6.00 | 5.00 | 64.00 |
|                   | 24 D    | 98    | 5.00  | 5.00  | 9.00   | 10.00 | 8.00 | 5.00 | 42.00 |
|                   | 26 D    | 101.5 | 5.00  | 5.00  | 9.00   | 10.00 | 8.00 | 5.00 | 42.00 |
|                   | 26 S    | 99.5  | 30.00 | 13.00 | 5.00   | 6.00  | 7.00 | 5.00 | 66.00 |
|                   | 28 D    | 105   | 6.00  | 6.00  | 9.00   | 10.00 | 8.00 | 6.00 | 45.00 |
|                   | 30 D    | 108   | 6.00  | 6.00  | 9.00   | 10.00 | 8.00 | 6.00 | 45.00 |
|                   | 32 D    | 110.5 | 6.00  | 6.00  | 8.00   | 9.00  | 8.00 | 6.00 | 43.00 |
|                   | 34 D    | 113   | 6.00  | 6.00  | 8.00   | 10.00 | 8.00 | 6.00 | 44.00 |
|                   | 36 D    | 115.5 | 6.00  | 6.00  | 8.00   | 10.00 | 8.00 | 6.00 | 44.00 |
|                   | 38 D    | 118   | 6.00  | 6.00  | 8.00   | 11.00 | 8.00 | 6.00 | 45.00 |
|                   | 42 D    |       |       |       | FAIL   | ED    |      |      |       |
| 9                 | 18 S    | 79    | 32.00 | 13.00 | 4.00   | 4.00  | 5.00 | 4.00 | 62.00 |
|                   | 20 D    | 84.5  | 5.00  | 5.00  | 8.00   | 9.00  | 7.00 | 5.00 | 39.00 |
|                   | 22 D    | 89.5  | 5.00  | 5.00  | 9.00   | 10.00 | 8.00 | 5.00 | 42.00 |
|                   | 22 S    | 88.5  | 36.00 | 15.00 | 5.00   | 7.00  | 7.00 | 5.00 | 75.00 |
|                   | 24 D    | 93    | 5.00  | 5.00  | 9.00   | 10.00 | 8.00 | 5.00 | 42.00 |
|                   | 26 D    | 96.5  | 5.00  | 5.00  | 10.00  | 11.00 | 9.00 | 5.00 | 45.00 |
|                   | 26 S    | 95    | 38.00 | 16.00 | 5.00   | 7.00  | 8.00 | 5.00 | 79.00 |
|                   | 28 D    | 100   | 5.00  | 5.00  | 9.00   | 11.00 | 8.00 | 5.00 | 43.00 |
|                   | 30 D    | 102   | 6.00  | 6.00  | 9.00   | 10.00 | 8.00 | 6.00 | 45.00 |
|                   | 32 D    | 105   | 6.00  | 6.00  | 9.00   | 11.00 | 8.00 | 6.00 | 46.00 |
|                   | 34 D    | 107.5 | 6.00  | 6.00  | 9.00   | 11.00 | 9.00 | 6.00 | 47.00 |
|                   | 36 D    | 110   | 6.00  | 6.00  | 9.00   | 11.00 | 9.00 | 6.00 | 47.00 |
|                   | 38 D    |       |       |       | FAIL   | .ED   |      |      |       |
|                   | 42 D    |       |       |       | FAIL   | ED    |      |      |       |

Table 8.3.2.6: page 2

## LIST OF REFERENCES

- American Association of State Highway and Transportation Officials, "Standard Specifications for Highway Bridges", 15th Edition(1992) and 16th Edition(1996).
- American Association of State Highway and Transportation Officials, "LRFD Bridge Design Specifications", 1st Edition (1994), 2nd Edition (1996), 3rd Edition (1998) And 4th Edition (2000).
- 3. Collins M.P., "Prestressed Concrete Structures", Prentice Hall, 1st Edition (1991).
- Nilson A.H., "Design of Prestressed Concrete", John Wiley Aad Sons, 2nd Edition (1987).
- Nawy E.G., "Prestressed Concrete; A Fundamental Approach", Prentice Hall, 1st Edition (1989).
- Menn C., (Translated and Edited by Ganvrean P.), "Prestressed Concrete Bridges", Birchausn Verlag A G Basel, 1st Edition (1990).
- Antonnie E. Naaman, "Prestressed Concrete Analysis and Design; Fundamentals", Mcgraw-Hill, 1st Edition (1982).
- 8. James R.Libby., "Modern Prestressed Concrete; Design Principles and Construction Methods", Van Vostrand Reinhold, 1st Edition(1984).
- Richard M.Barker and Jay A.Puckett., "Design of Highway Bridges; Based On LRFD Bridge Design Specifications", John Wiley And Sons, 1st Edition (1997).

- ACI 343R-95, "Analysis and Design of Reinforced Concrete Structures; Reported by ACI Committee 343", American Concrete Institute, 1st Edition (July 1995).
- Precast/Prestressed Concrete Institute, "Fundamentals of Prestressed Concrete Design", 2nd Edition (1991).
- Fernando E.Fagundo and David W. Garmizo, ACI Committee E 705-Computer Program Series/COM-4 (89), "Spreadsheet Approach for the Design of Prestressed Concrete Bridge Girders", 4th Edition (1989).
- 13. Alam G., "Development of Design Criteria for Simply Supported Slab and Girder Bridges for Specialized Military Loading System", Ph.D. Thesis, Dept of Civil Engineering, University of Illinois(1993).
- National Transport Research Center (NTRC), "Axle Load Study on National Highways", (July1995).
- 15. Collins M.P., and Mitchell D., (1980), "Shear and Torsion Design of Prestressed and Non-Prestressed Concrete Beams", Prestressed Concrete Institute Journal, 25(5), 32-100.
- 16. Collins M.P., and Mitchell D.,(1985)., "Chapter 4 Shear and Torsion", CPCA Concrete Design Handbook, Canadian Portland Cement Association, Ottawa, Canada.
- Bhide S. B., and Collins, M. P. (1989). "Influence of axial tension on the shear capacity of reinforced concrete members." ACI Struct. J., 86(5), 570-581.
- Collins M.P., and Mitchell D.,(1986)., "A Rational Approach to Shear Design-The 1984 Canadian Code Provisions", ACI Journal, 83(6), 925-933.

- 19. Collins M.P., and Mitchell D., Adebar., and Vecchio F.J.(1996)., "General Shear Design Method", ACI Structural Engineering Journal, 93(1), 36-45.
- 20. Hillerborg, A., Modeer., and Peterson, P.E.(1976)., "Analysis of Crack Formation and Crack Growth in Concrete by Means of Fracture Mechanics and Finite Elements", Cement and Concrete Res., 6, 773-782.
- 21. Kupfer, H., Mang, R., (1983), "Failure of the Shear Zone of R.C. and P.C. Girders-An Analysis with Consideration of Interlocking of Cracks", Bauingenieur, 58,143-149(In Germany).
- 22. Marti, P., and Meyboon, J.(1992)., "Response of Prestressed Elements to In-Plane Shear", ACI Structural Journal 89(5), 503-514.
- 23. Vecchio, F.J., and Collins, M.P.(1986)., "The Modified Compression Field Theory for Reinforced Concrete Elements Subjected to Shear", ACI Structural Journal, 85(4), 258-268.
- 24. Anonymous (2000), "A Primer on LRFD Specifications; Technical Information", http://www.lrfd.com.
- 25. Anonymous(2000), "Addendum to LRFD Specifications", <u>Http://Www2.Epix.Net/~Modjeski</u>.
- 26. Richard Brice (1999), "PG Super", <u>Http://Www.Bridgesite.Com</u>.
- 27. Ghani, M.(1996)., "Evaluation of Existing Short and Medium Span Prestressed Bridges with A View of Suggesting an Economical I-Girder Design", Msc Thesis, National University of Science and Technology.
- Collins M.P. and Modjeski., "Shear Behavior of Full Scale Prestressed Bridge Girder; Comparison of LRFD and Standard AAHSTO Procedure", Pci Journal 1996, 63-72.

- 29. ASCE-ACI Committee 445 on Shear and Torsion., "Recent Approaches to Shear Design of Structural Concrete", ASCE Journal 124(12), (Dec 1998).
- 30. M. Myint Lwin., "Simplified Method for Shear Design of Prestressed Concrete Girders", Bridge and Structures Office, Washington State Department of Transportation, <u>Lwinn@Wsdot.Wa.Gov</u>.
- 31. Zhongguo(John)Ma, University Of Nebraska-Lincoln, "Why AASHTO LRFD?", <u>Mtadros@Unomaha.Edu</u>.
- 32. Naredra Taly.," Design of Modern Highway Bridges", Chapter 7, P 462-475.