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Abstract

The human brain is the most wonderful and mysterious organ of human body. This
masterpiece creation of nature manages the actions in such a way that they happens in
real time at right place. It also stores information so that the behavior can be modi�ed
according to the past experience. A single cubic centimeter of human brain contain several
million nerve cells, each of which may communicate with thousands of other cells in
information processing networks that make the most elaborate computer look primitive.
These cells can be excited by stimulation, therefore are known as excitable cells. The
excitable cells found in brain are called neurons. Neuron is the basic structural and
functional unit of human brain which is specialized for the conduction of nerve impulses.
Upon receiving a threshold stimulus, the membrane of neuron quickly depolarizes at the
point of stimulation, and this electrical impulse propagates along the axon of neuron in
the form of action potential. Hodgkin and Huxley model explains in detail the formation
and propagation of action potential through nerve cell. This model contains the set of
non-linear di�erential equations that can be solved by numerical method techniques only.
Computationally the model is very complex and almost takes 1200 �ops for simulating
a single neuron. Another category of excitable cells are found in heart, called cardiac
myocytes. The formation of action potential of cardiac myocytes can be explained by
Luo-Rudy model which is the extension of Hodgkin and Huxley model. Computationally
Luo-Rudy model is almost ten times more complex than Hodgkin and Huxley model.
Therefore, there is a need of simpler model for excitable cells that can implement the
behavior of excitable cells down to ionic channel level. In our study we used a new
concept of acti�ers for the �rst time to model excitable cells. Acti�ers are the electrical
circuits that can amplify and rectify at the same time. The model is conductance based
and captures the ionic channel level characteristics of excitable cells. Computationally,
the acti�er model takes 12 �ops for simulating neuron and 15 �ops for simulating cardiac
myocyte, almost a decrease of 100 times in computational cost of Hodgkin and Huxley
model. We reported some common behaviors of neurons and cardiac myocytes. The
results are in good agreement with the experimental data.
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Part I

Neuron





Chapter 1

Introduction

The human brain is the most complex structure that can be regarded as the measure of
complexity of the known universe. This complex structure is composed of excitable cells
called neurons. All neurons transmit information in the form of impulses [9, 17]. When
a neuron is in its equilibrium state, its membrane has an electrical potential of approx-
imately -70 millivolts, that is, the inside of the membrane has more negative ions than
the outside. Neuron membrane is made of phosphoric acid and fatty acid and contains
some negatively charged protein molecules scattered throughout it [46, 27]. These protein
molecules are the chemical receptors of particular ions and are called ion channels. The
ion channels allow speci�c type of ions to pass through the membrane of the cell. For
example, the ion channels that only allow the sodium ions to pass through the membrane
are called sodium ion channels [6, 28]. These ion channels are voltage sensitive gates
and are opened at particular voltage level. Similarly the closing of ion channel gates also
occurs at particular potential di�erence. For example, sodium gates open at -30 millivolts
and close at +35 millivolts [50].
The concentration of sodium and potassium ions is not same inside and outside the cell.
This di�erence in ionic concentration causes a concentration gradient across the neuron
membrane. Initially the concentration of potassium ions is much higher inside the neu-
ron than the �uid outside the cell [19, 11]. There are leakage channels that allows the
potassium ions from inside the neuron to move outside, to balance its concentration under
a di�usion force caused by the concentration gradient. The di�usion process leaves an
excess of negative charge inside the cell body which causes a strong potential di�erence
across the cell membrane [25]. Due to this potential di�erence, an electric force develops
in the opposite direction to the di�usion force and tries to stop the potassium ions �ow.
When these two forces balance each other, the further movement of potassium ions is
stopped from inside to the outside of the cell [11, 53, 30].
Under equilibrium state, the concentration of potassium ions inside the cell is 400 millimole
per liter and 20 millimole per liter outside the cell. Due to the movement of potassium
ions outside the cell a negative potential appears across the membrane [6]. The mem-
brane at equilibrium is slightly permeable to sodium ions due to leakage channels. When
chemical substance called neurotransmitter is released, it moves the potential di�erence
of membrane in a positive direction and activates the cell membrane by developing an
action potential across the membrane. This action potential propagates in the form of
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electrical impulse through the axon [56, 32].
In 1952, Hodgkin and Huxley developed a conductance based model to explain the gener-
ation and propagation of action potential through the axon of giant squid [20, 33]. Their
model gives good approximation about how the membrane behaves when ions are ex-
changed. The Hodgkin and Huxley model contains set of non-linear di�erential equations
that makes the model very complex. Other simple models of neuron are integrate and �re
model and Izhikevich model [15]. These models are very e�cient computationally but are
not able to implement the actual conductance based behavior of the neuron.
The cells in heart are also excitable cells called cardiac myocytes. The cardiac myocytes
also generates action potential like neurons but their action potential is due to excita-
tion contraction process. The function of ion channels in myocytes is similar to that of
neurons, however, their action potential is due to the mechanical impulses of excitation
contraction process [16, 10]. Based on Hodgkin and Huxley model, a model is developed
for cardiac myocytes called Luo-Rudy dynamic model. This model is also very complex
like Hodgkin and Huxley model. These two models are very accurate at single cell level
but are complicated when we want to simulate the population of excitable cells [7]. There-
fore, we need a simple model that can represent the excitable cells and all of its behaviors
by slight modi�cations.
In our study we tried to develop a uni�ed model for excitable cells that can represent the
generation of action potential in both type of cells.

1.1 Neuron

A neuron is the basic building block of the nervous system that is responsible for com-
municating information in both chemical and electrical forms. There are several di�erent
types of neurons responsible for di�erent tasks in the human body. Sensory or a�erent
neuron carries massage from a sense organ to the brain. Motor or e�erent neuron transmit
information from the brain to the muscles of the body. Interneurons or associative neuron
are responsible for communicating information between di�erent neurons in the body. A
neuron has three main parts; membrane, axon and dendrite.

1.1.1 Membrane

The membrane of neuron is made of phosphoric acid and fatty acid having thickness of
about 3 − 4 nanometers. It keeps the neuron in contact with the ionic solution around
it containing sodium, potassium, calcium and chloride ions. The membrane is partially
permeable and contains negatively charged protein molecules scattered throughout it.
Due to the presence of positive and negative charges, it behaves like capacitor. The
protein molecules acts as chemical receptors for particular ions and therefore, these protein
molecules are called ionic channels. For example, the protein molecules that only allow
the movement of sodium ions are called sodium channels. These channels requires certain
potential di�erence for their activation. For sodium channels the value of this potential
is about −30 millivolts. Similarly, for potassium ions, the value of activation channel



1.1 Neuron 17

Figure 1.1: Anatomy of Neuron [28]

potential is +35 millivolts. The closing of ionic channels is also the function of potential
di�erence. Some channels called leakage channels, remain open for the free movement of
ions through the membrane.

1.1.2 Axon

The long wire like structure that acts as output terminal of neuron is called axon. The
axon may branch and send multiple �bres to attach to the other neurons. These �bers are
called axon terminals. The axon contains small tubes that carries chemical substances.
These tubes are called micro-tubules. The chemical substances carried by micro-tubules
are called neurotransmitters. The larger axons are covered with a layer of fatty insulation
called myelin sheath. Therefore, axon transports the neurotransmitters produced in the
cell body to the target neuron. The target neuron is also called postsynaptic neuron. The
axon terminals contains a large number of chemical pockets which stores neurotransmit-
ters. These pockets are called vesicles.

1.1.3 Dendrite

The cell body of the neuron contains multiple �bres called dendrites. The dendrites of
a neuron may range from a few short �bres to a huge mass of entangled bushes. A
typical neuron can have 10,000 to 100,000 dendrites. The axons from one neuron can be
connected to the cell body of another neuron directly or through dendrites. The dendrites
of many neurons contains thousands of little extensions called dendritic spines.
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1.1.4 Synapse

The point of functional contact between two neurons is called synapse. In between the
contact points, there is a space of about 20 nanometers called synaptic cleft. When
a synapse is active, the vesicles open and release neurotransmitters into the synaptic
cleft. The synapse can be either excitatory or inhibitory depending upon the type of
neurotransmitter. The excitatory synapses increase the activation of target neurons while
the inhibitory synapse reduce their activation.

1.1.5 Action Potential

The waveform of potential across the membrane of neuron due to the ion distribution is
called membrane potential or action potential. The formation of action potential is due
to the di�usion force and electric force. Di�usion force is generated due to the di�erence
in ionic concentration inside and outside the cell, while electric force arises due to electro-
static force of attraction between positive ions and negatively charged protein molecules.
The concentration of ions inside and outside the neuron is not same. Due to this con-
centration di�erence, a concentration gradient force is established across the membrane.
This force is called di�usion force. The concentration of potassium ions is usually much
higher inside the neuron than the �uid outside the cell. The leakage channels allow the
potassium ions to move outside the cell to balance the concentration gradient under the
action of di�usion force. The neuron contains negatively charged protein molecules which
always remain inside the cell due to their larger size. Therefore, di�usion force leaves a
negative charge inside the neuron and net positive charge outside the cell. Due to these
opposite charges, a strong electric force appears across the membrane. The direction of
this electric force is opposite to the di�usion force, therefore, electric force tends to stop
the outward �ow of potassium ions from the membrane. When electric force becomes
equal to the di�usion force, an equilibrium is established across the cell membrane and
further movement of potassium ions is stopped. The equilibrium state is achieved when
the concentration of potassium ions inside the cell is 400 millimole per liter and 20 mil-
limole per liter outside the cell. The resting membrane potential due to potassium ions
can be calculated by using Nernst equation;

V = RT
kF
log

[I+]
out

[I+]in

Where k, R and F are constants, T is absolute temperature and [I+] is the concentration
of positive ions. At normal temperature of 180C;

RT
kF

= 58

Therefore, Nernst equation gives the resting potential of potassium ions as;

V = 58log
[

20
400

]
= −75.46mV ≈ −75mV

The Nernst equation can be extended to take into account the e�ect of sodium, calcium
and chloride ions concentrations. Thus the resting potential of neuron is the sum of rest-
ing potentials contributed by all the ionic channels. The typical value of neuron resting
potential is about -65 millivolts.
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The membrane at resting state is slightly permeable to sodium ions due to leakage chan-
nels. When a large quantity of neurotransmitter is released by the presynaptic neuron, it
can trigger a stronger response in the membrane potential of postsynaptic neuron. If the
neurotransmitter is excitatory, it will move the potential di�erence in a positive direction
from -65 millivolts to -30 millivolts called threshold potential. As -30 millivolts is the
activation potential for sodium channels, therefore, this threshold potential will open all
sodium channels so that sodium ions can easily move inside the cell. The concentration
of sodium ions outside the cell is greater, therefore, di�usion force pushes the sodium ions
inside the cell. As inside the cell there are negatively charged protein ions that tends to
attract positively charged sodium ions, thus, positively charged sodium ions rush inside
the cell due to electrical force. Due to same direction of di�usion and electrical force
on sodium ions, the movement of sodium ions inside the cell body is 500 times more
than in the resting state. This rapid inward movement of sodium ions again develops the
equilibrium condition when membrane potential reaches the value of +50 millivolts. At
this potential all sodium channels are closed and potassium channels are activated. The
opening of potassium channels let the potassium ions to move outside the cell and poten-
tial of membrane goes towards negative side from +50 millivolts to -65 millivolts. The
opening and closing of potassium ion channels is much slower than sodium ion gates, as a
result membrane potential goes more negative towards -75 millivolts. This state of more
negative voltage than the resting potential (-65 millivolts) is called hyperpolarization.
The few voltage dependent gates of potassium ions are closed in hyperpolarization state
and the membrane potential returns back to the normal resting voltage of -65 millivolts.
During this time when membrane potential tends to move towards -65 millivolts, neuron
can not be electrically stimulated to generate another action potential. This time interval
in which neuron can not generate action potential is called absolute refractory period.
The action potential of typical neuron is shown in the �gure 1.2.

Figure 1.2: Action potential of neuron [26]
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1.2 Neuron Models

Many attempts were made to explain the generation and propagation of action potential
through the nerve cells. Some most widely accepted models of neuron are described below.

1.2.1 Leaky Integrate and Fire Model

The simpli�ed model of neuron is called Leaky Integrate and Fire (LIF) model. This
model is the parallel combination of a capacitor C and resistor R. The source of current
I(t) generates a pulse and capacitor is charged through resistor R. The circuit of LIF
model is shown in �gure 1.3. Applying Kirchho�'s current law, the external current I(t)

Figure 1.3: Leaky Integrate and Fire Model

is the sum of current through resistor R and capacitor C. Mathematically;

I(t) = IR + IC

From basic circuit theory, we can write the current IR and IC , when voltage across resistor
and capacitor is given by v;

IR = v
R

IC = C dv
dt

Therefore, the total current I(t) can be expressed as;

I(t) = v
R

+ C dv
dt

By simpli�cation, we get the equation for LIF model as;

τ dv
dt

+ v(t) = RI(t) ; τ = RC
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Let the circuit is stimulated by a constant input current Io, in this case the solution of
circuit can be expressed as;

v(t) = RIo(1− e−
t
τ )

LIF model takes approximately 5 �ops to simulate a single neuron and can implement
some common behaviors of neuron like tonic spiking and class-I excitability [21].

1.2.2 Hodgkin and Huxley Model

Hodgkin and Huxley developed a mathematical model to explain the behavior of nerve
cells in a giant squid in 1952. This model is the most accepted one to capture neural
dynamics in biological neurons in the form of action potential (�gure 1.4). Hodgkin and
Huxley explained the formation of action potential on the basis of ionic channels. Ac-
cording to this model, there are three types of channels contribute to the changes in the
membrane potential:
1) leakage channels
2) voltage dependent potassium channels
3) voltage dependent sodium channels
The voltage controlled channels have varying conductances which are dependent on the

Figure 1.4: Hodgkin and Huxley Model

number of channels opened at a particular time. Hodgkin and Huxley devised an empir-
ical formula to these channels which they found from their experiments. They de�ned
the conductances of these channels using three variables n, m and h, chosen appropri-
ately to approximate their behavior to the experimental data. The variables n, m and h
describe the activation of potassium ionic channels, sodium ionic channels and the inacti-
vation of sodium ionic channels respectively. The e�ect of these variables on the channel
conductance is given by;
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gk = ḡkn
4

Where ḡk is a constant, and n is a dimensionless variable that varies from 0 to 1. It is
the proportion of ionic channels that are open. These variables represent the number of
activation or inactivation gates such as the voltage-gated K+1 current with four activation
gates (represented as n4), and the voltage-gated Na+1 current with three activation gates
(m3) and one inactivation gate (h1). The variable n can be de�ned by the equation:

dn
dt

= αn(1− n)− βnn

where αn is the rate of closing of the channels and βn is the rate of opening. Together, these
variables represent the total rate of change in the channels during an action potential.
The sodium conductance can be described by the equation;

gNa = m3h ¯gNa

Where ¯gNa is a constant, m is the proportion of activation ionic channels and h is the
proportion of inactivation of ionic channels. Let the variable x represents n, m and h, we
can write a generalized equation as;

dx
dt

= αx(1− x)− βxx

Where x is either m, n or h, α and β are the rate of closing and opening of the channels.
Together, these variables represent the total rate of change in the channels during an
action potential. Hodgkin and Huxley selected these variables to get a reasonable �t to
the experimental data.
Applying Kircho�'s current law on �gure 1.4, we can write:

I = IC + INa + IK + IL

IC = C dV
dt

INa = gNa(E − ENa)

IK = gk(E − EK)

IL = gL(E − EL)

I(t) = C dV
dt

+ gNa(E − ENa) + gk(E − EK) + gL(E − EL)

dV

dt
=

1

C
[I(t)− gNa(E − ENa)− gk(E − EK)− g(E − EL)] (1.1)

Above equation (1.1) is called the Hodgkin and Huxley model. Computationally, Hodgkin
and Huxley model takes 1200 �ops to simulate a single neuron. The computational cost
of model is the measure of accuracy in this case.

1.2.3 Izhikevich Model

Leaky integrate and �re model is the most simplest model of spiking neurons while
Hodgkin and Huxley model is the most complex one based on the actual conductance
based behavior of spiking neuron. In 2003, Eugene Izhikevich proposed a simpli�ed model
for spiking neurons based on leaky integrate and �re model. This model is called quadratic
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integrate and �re model or Izhikevich model. Izhikevich model is based on the behav-
ior prediction technique without knowing the deep understanding of the neuron and ionic
channels. Computationally, Izhikevich model is simpler like leaky integrate and �re model
but e�cient like Hodgkin and Huxley model. The only drawback in Izhikevich model is,
it is not conductance based model. This model can be used only for simulation purposes
without knowing the actual dynamics of the neuron. Izhikevich model can be expressed
mathematically as;

dv
dt

= 0.04v2 + 5v + 140− u+ I

du
dt

= a(bv − u)

Here v and u represents membrane potential and membrane recovery for the activation
of K+1 ionic currents and inactivation of Na+1 ionic currents, and it provides negative
feedback to v. The variables and parameters in the model are all dimensionless values
that can be thought of as representing various states or properties of the neuron. In these
equations,
v is membrane potential
u is membrane recovery
a is the time scale of u
b relates subthreshold sensitivity of u to v
After the spike reaches its threshold value (+30 millivolts), the membrane voltage and
the recovery variable are reset according to the model. Izhikevich model can be plotted
(�gure 1.5) for regular spiking in MATLAB code given below.

C=100; vr=-60; vt=-40; k=0.7; % parameters used for RS

a=0.03; b=-2; c=-50; d=100; % neocortical pyramidal neurons

vpeak=35; % spike cutoff

T=1000; tau=1; % time span and step (ms)

n=round(T/tau); % number of simulation steps

v=vr*ones(1,n); u=0*v; % initial values

I=[zeros(1,0.1*n),70*ones(1,0.9*n)];% pulse of input DC current

for i=1:n-1 % forward Euler method

v(i+1)=v(i)+tau*(k*(v(i)-vr)*(v(i)-vt)-u(i)+I(i))/C;

u(i+1)=u(i)+tau*a*(b*(v(i)-vr)-u(i));

if v(i+1)>=vpeak % a spike is fired!

v(i)=vpeak; % padding the spike amplitude

v(i+1)=c; % membrane voltage reset

u(i+1)=u(i+1)+d; % recovery variable update

end;

end;

plot(tau*(1:n), v); % plot the result

Izhikevich model displays almost all possible behaviors of excitatory cortical neurons such
as Regular Spiking, Intrinsically bursting and Chattering etc. The model also displays
all possible inhibitory cortical cell's responses such as Fast Spiking and Low threshold
spiking. The model also can successfully exhibit the behavior of thalamo cortical neurons.
On October 27, 2005 Izhikevich simulated a neural network that had the size of the human
brain (1011 neurons) using his neural network model. Therefore, we can say that the most
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Figure 1.5: MATLAB simulation of Izhikevich model for regular spiking

e�cient computational model is, Izhikevich model.

1.2.4 Comparison

A brief comparison of neuron models is presented in table-I which compares the complexity
of neuron models in number of �ops.

Table 1.1: This table compares all the well known models of neurons with AJ model. BM
stands for Biophysically Meaningful, M stands for myocyte and other column headings
are stated in the result section.

Models BM TS PS TB PB MM SFA C-1 C-2 SL SO R I RS RB TV B DAP A IIS IIB C M FLOPS
Integrate and Fire - + - - - - - + - - - - + - - - - - - - - - - 5

Integrate and Fire with adapt. - + - - - - + + - - - - + - - - - + - - - - - 10
Integrate and Fire or burst - + + - + - + + - - - - + + + - + + - - - - - 13

Resonate and Fire - + + - - - - + + - + + + + - - + + + - - + - 10
Quadratic Integrate and Fire - + - - - - - + - + - - + - - + + - - - - - - 7

Izhikevich (2003) - + + + + + + + + + + + + + + + + + + + + + - 13
FitzHugh Nagumo - + + - - - + - + + + - - - + + - + + - - - 72
Hindmarsh Rose - + + + + + + + + + + + + + + + + + + - 120
Morris lecar + + + - - - + + + + + + - - + + - + + - - - 600
Wilson - + + + + + + + + + + - + + - + + - 180

Hodgkin Huxley + + + + + + + + + + + + + + + + + + + - 1200



Chapter 2

Methodology

The excitable cells can be modeled by active circuit elements like transistors or operational
ampli�er due to the ampli�ed form of action potential generated by small input stimulus.
We modeled the excitable cells with active circuit element operational ampli�er due to
its wide range of operations and other passive elements like capacitor, resistors and p-n
junction diodes. A brief description of each circuit element is given below:

2.1 Operational Ampli�er

An ampli�er that can perform mathematical operations such as addition, multiplication,
integration and di�erentiation etc is called operational ampli�er. It is used widely as high
voltage gain ampli�er and as a switch. Symbolically operational ampli�er is shown in
�gure 2.1. The operational ampli�er has two inputs and one output. One is known as

Figure 2.1: Schematic diagram of operational ampli�er
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the non-inverting input (+) and the other as inverting input (-). It is usually energized
from a dual balanced D.C. power supply giving equal positive and negative voltages in
the range ±5V to ±15V . The center point of the power supply (i.e. 0V) is common to
the input and output circuits and is taken as their voltage reference level.
Figure 2.2 shows a simpli�ed circuit of a non-inverting operational ampli�er. The input

Figure 2.2: Schematic diagram of operational ampli�er in non-inverting mode

voltage is connected to the non-inverting (+) input and earth or ground voltage 0V.
The inverting input (-) is connected to earth, and the output voltage Vo is between the
output terminal and earth. The operational ampli�er now acts as a non-inverting voltage
ampli�er. This means that the output is the exact ampli�ed copy of the input.
The non-inverting operational ampli�er with feedback is shown in �gure 2.3. In this case
the input voltage Vin is applied to the non-inverting (+) terminal of operational ampli�er.
The resistance Ri is called input resistance and resistance Rf is called feedback resistance.
The transfer function of operational ampli�er in non-inverting mode is given in equation
(2.1).

Vout
Vin

= 1 +
Rf

Ri

(2.1)

Equation (2.1) shows that the gain of ampli�er depends upon the externally connected
resistances Ri and Rf . The positive sign of gain indicates that the input and output
signals are in phase.

2.2 Linear Resistor

Resistor is a device that limits the electric current in a circuit. Resistance of a resistor is
denoted by R and it is the measure of the opposition to the motion of charge carriers. In
metallic conductors the charge carriers are the free electrons and their motion is opposed
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Figure 2.3: Schematic diagram of operational ampli�er in non-inverting mode with feed-
back resistance

due to their continuous collisions with the lattice atoms of the solid conductors. The value
of resistance R depends on the nature, dimensions and the physical state of the conductor.
It is observed experimentally that at constant temperature the resistance of a conductor
is directly proportional to length L and inversely proportional to cross-sectional area A.
Mathematically we can write,

R ∝ L
A

R = ρ
L

A
(2.2)

Where ρ is the constant of proportionality and is called the resistivity or speci�c resistance
of the material. A wire with small length and greater cross-sectional area will o�er less
resistance. To explain this concept, we consider a hollow cylinder with length L and
inner and outer radii r1 and r2, made of a material with resistivity ρ. Let a potential
di�erence is created between the inner and outer surfaces of the cylinder so that current
�ows radially through the cylinder as shown in �gure 2.4. We assumed that the current
is �owing in radial direction towards the outside, not along the length of the conductor.
As charge travels in the radial direction, the cross-sectional area of cylinder varies from
2πr1L to 2πr2L, from inner surface to the outer surface. In this situation, equation (2.2)
cannot be applicable directly. Let the length of current path in radial direction be dr
and the corresponding resistance of this shell be dR. In this case, equation (2.2) can be
written as;

dR = ρdr
2πrL
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Figure 2.4: Resistance of cylinder due to radial current �ow

Integrating left hand side over R and right hand side from r1 to r2;∫
dR = ρ

2πL

∫ r2
r1

dr
r

R = ρ
2πL

ln r2
r1

We can observe that, the resistance strongly depends upon the geometry of the conductor.
The neurons in our body can be considered as cylinder due to the long extension of axon.
The axon has cylindrical membrane similar to the resistor shown in �gure 2.4, having
one conducting �uid inside the membrane and other outside it. In equilibrium state, all
the inner �uid is at the same potential, so no current can �ow along the length of the
axon. If axon is stimulated, the charged ions �ow radially across the cylinder membrane
at the point of stimulation. This �ow creates a potential di�erence across the membrane
at the point of stimulation and propagates along the length of axon in the form of action
potential.
The resistance of the neuron is usually described by another parameter called conductance,
denoted by g. The conductance of a material is the reciprocal of resistance. Mathemati-
cally, we can write;

g = 1
R

The resistance of material also depends upon temperature. It is found experimentally
that with increase in temperature, resistance of conductor increases but in case of semi-
conductors and insulators, resistance decreases with increasing temperature. The increase
in resistance 4R for conductors is directly proportional to original resistance Ro at zero
degree centigrade and rise in temperature 4T . Mathematically, we can write;

4R ∝ Ro4T

4R = αRo4T
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Where α is the constant of proportionality and is called temperature coe�cient of re-
sistance. Let the resistance of material at 0oC is Ro and at T oC is RT , the increase in
resistance 4R, can be expressed as;

4R = RT −Ro

Therefore, at particular temperature T oC resistance can be written as;

RT −Ro = αRo4T

RT = Ro + αRo4T

The resistance of material that changes with temperature is called non-linear resistance. If
temperature is kept constant, the resistance variation becomes zero. In this case resistance
will be linear and Ohm's law is applicable for such resistance. The characteristic equation
of linear resistor can be de�ned by Ohm's law as;

v = iR (2.3)

Equation (2.3) is valid only for linear operation of resistance when resistance remains con-
stant. In human body temperature remains constant (37oC) for normal person, therefore,
for neurons we can describe the current voltage characteristics by applying Ohm's law.
We can �nd the typical value of resistance for neuron by assuming that temperature of
neuron remains constant when it �res action potential pulse. In this case resistance only
depends upon surface area of neuron that contributes in the formation of action potential.
The resistance of a typical patch of membrane is,

RM = 10, 000Ωcm2

The total resistance of neuron with radius r is given by;

Rm = RM
4πr2

Substituting the appropriate values we have;

Rm = 10,000Ωcm2

4π×(20×10−4cm)2
= 198MΩ

The high resistance of neuron does not allow the movement of ions in equilibrium state.

2.3 Capacitor

Capacitor is a device which stores charge in its electric �eld. A typical capacitor consists
of two parallel conducting plates placed close to each other. The space between the plates
may be �lled with a dielectric material such as air, mica or para�n. Charging of capacitor
is usually accomplished by transferring the charge from one plate to the other by means
of a battery. The charge gained by one plate is equal to the charge lost by other plate,
that is, the net charge is zero on the capacitor. However, when we say that the charge of
a capacitor is Q, it means that one plate has charge +Q while the other has charge −Q.
The capability of a capacitor to store charge is called capacitance. The charge Q, which
resides on one of the plates, depends upon the potential di�erence between the plates.
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The larger the voltage of the battery, the greater will be the charge on the capacitor. If
v is the potential di�erence across the plates, then

Q ∝ v or Q = Cv

Di�erentiating with respect to t we get,

dQ
dt

= C dv
dt

By de�nition,

i = dQ
dt

Therefore, the characteristic equation of capacitor can be written in the form of equation
(2.4), given below;

i = c
dv

dt
(2.4)

From equation (2.4) we can conclude that, the circuit consists of capacitor can be consid-
ered as di�erentiator. The opposition o�ered by capacitor in time varying source is called
capacitive reactance, denoted byXc. The capacitive reactanceXc is inversely proportional
to capacitance and frequency of time varying signal applied at capacitor. Mathematically,
we can write,

Xc ∝ 1
fC

Xc = 1
2πfC

When direct current signal (f=0) is applied on capacitor, we see that capacitive reactance
Xc becomes in�nite, representing short circuit. Therefore, capacitor behaves as short
circuit for direct current source. If the frequency of applied signal increases, capacitive
reactance Xc decreases. At high frequencies capacitive reactance becomes very low and
capacitor behaves as short circuit.
The cell body of neuron can be assumed as spherical capacitor with non-uniform radius.
The capacitance of spherical capacitor with inner radius r1 and outer radius r2 can be
expressed as;

C = 4πεo
r1r2

r2 − r1

(2.5)

The cell body of neuron can store electrical charge in the form of ions. For simplicity we
assume that the cell body of neuron is uniform sphere of radius r and charge is evenly
distributed throughout the cell body. In this case, we can de�ne the e�ective area of
spherical surface that stores charge and separation between the surfaces as;

A = r1r2

d = r2 − r1

Therefore, equation (2.5) can be written as;

C = 4πεo
A

d
(2.6)

Let Cm be the capacitance of spherical shell of radius r, it can be shown that the capaci-
tance of spherical shell can be written as;
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Cm = 4πr2CM

where CM is constant and is called membrane capacitance per unit area. Its typical value
is given by;

CM = 4πεo
1
d

= 1µF/cm2

Since for neurons r = 20 microns, so we have;

Cm = 4π × 1µF/cm2 × (20× 10−4cm)2 = 5× 10−11F

Cm = 50pF

Also the resistance of neuron is;

Rm = 198MΩ

Depending upon the values of capacitance and resistance we can de�ne the membrane
time constant τm as;

τm = RmCm = RM
4πr2
× 4πr2CM

τm = RMCM = 1µF/cm2 × 10, 000Ωcm2 = 10 msec

Therefore, we can assume the values of capacitance and resistance for neuron as, C =
50pF , RK = 198MΩ and RNa = 65MΩ, where RK is the resistance of potassium ion
channels and RK is the resistance of sodium ion channels. The value of RNa is taken
three times less than that of RK because sodium ion moves much faster than potassium
ions [20, 49].

2.4 P-N Junction Diode

P-N junction diode is a semiconductor device that allows the electric current to �ow in
one direction only. When a p-type semiconductor is joined or doped to an n-type semicon-
ductor, the region arises where both materials are joined, is called a p− n junction. The
junction is not formed by simply placing the two materials in contact with each other,
but rather through a fabrication process that creates a transition from p-type to n-type
material within a single crystal. Before doping, both type of materials are electrically
neutral. The reason is that each acceptor atom A and each donor atom D has the same
number of electrons as protons. However, there is a greater concentration of electrons
in the n-region as compared with their concentration in the p-region. Likewise, there
is higher concentration of holes in the p-region as compared with the n-region. Due to
concentration di�erence between charge carriers, a di�usion force is established across
the junction that tends to push the charge carriers in opposite directions. Therefore, at
the instant the p-type and n-type materials are joined, electrons near the junction di�use
from the n-region into the p-region as shown in �gure 2.5. For each electron that leaves
the n-region to cross the junction into p-region, a donor atom that now has a net positive
charge is left behind. Similarly, for each hole in the p-region that receive an electron from
the n-region, an acceptor atom acquires a net negative charge. The result of this process
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Figure 2.5: The p − n junction showing charged ions after holes and electrons di�usion.
D=donor atom; A=acceptor atom; e=associated electron; h=associated hole; + = posi-
tively charged ion; - = negatively charged ion.
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is that positively charged donor ions accumulate just inside the n-region and negatively
charged acceptor ions accumulate just inside the p-region. This charge distribution is
shown in �gure 2.5.
The accumulation of charge of opposite polarities in the two separated regions give rise to
a potential di�erence and electric �eld across the junction region. The direction of elec-
tric �eld is such that it opposes the �ow of electrons from the n-region into the p-region.
Therefore, after the initial surge of charge across the junction, the di�usion current dwin-
dles to a negligible amount. The region of junction is populated by uncovered positive and
negative ions. There are no mobile charge carriers in this region. The n-region electrons
have migrated to the p-side and have �lled the p-region holes. Because all charge carriers
have been depleted from this region, it is called depletion region. It is also called the
barrier region because the potential di�erence that exists across the junction due to the
oppositely charged sides of the junction acts as a barrier to further di�usion current. The
width of depletion region depends on how heavily the p and n materials have been doped.
Symbolically, p−n junction is represented by an arrow head and a line in front of it. The
arrow head represents p-type material and line in front of it represents n-type material as
shown in �gure 2.6. There are two schemes of connecting p− n junction with battery:

Figure 2.6: Biasing of p − n junction; + = positive terminal of battery; - = negative
terminal of battery

1) Forward Biased
2) Reverse Biased
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2.4.1 Forward Biased

The term bias used in electronics refers to a dc voltage that is maintained in a device by
some externally connected source. When the p-side is connected to the positive terminal
of the battery and n-side is connected to the negative terminal of the battery, the p − n
junction is said to be forward biased. In this situation, the external potential di�erence
tends to cancel the internal potential barrier. The barrier is reduced in height, so di�usion
current is enhanced. Therefore, current �ows with relative ease through the junction. The
driving force is such as to pull the electrons towards the positive anode and holes to the
negative cathode. Both of these constitute current �ow, but notice, holes are being pulled
from where there are lots of holes, and electrons from where there are lots of electrons,
and so we obtain a large current. A current of the order of a few milliamperes begins to
�ow across the p − n junction when the external potential di�erence overcomes the po-
tential barrier. For germanium potential barrier is about 0.3 volts and for silicon 0.7 volts.

2.4.2 Reverse Biased

When p-side is connected to the negative terminal of the battery and n-side is connected t
the positive terminal of the battery, the p−n junction is said to be reverse biased. In this
situation, the holes are pulled from where there are very few and electrons from where
there are very few. There is almost no current in the reverse biased p− n junction.
Similar situation can be observed in �ring of neuron. When an input pulse greater than
threshold potential is applied on the dendrite of a neuron, it generates an electrical pulse
in the form of action potential. Therefore, the barrier potential of p− n junction can be
compared with the threshold potential of neuron.
The p−n junction is non-linear device because its resistance varies with external potential
di�erence, therefore Ohm's law is not applicable on p − n junction. The current voltage
characteristic equation for p− n junction can be expressed as;

I = Is(e
eV
kT − 1) (2.7)

Where I is current through p − n junction, Is is reverse saturation current, e is the
base of natural logarithms (e = 2.71828...), e in the power is charge on electron (e =
1.602×10−19C), V is external applied potential di�erence, k is Boltzmann's constant and
T is absolute temperature.
The p−n junction is non-linear device as indicated by equation (2.7), however, by applying
power series expansion we can convert the exponential function into linear function. In
that case we can apply the linear approximation in a certain range of values where p− n
junction shows constant resistance and Ohm's law is valid for that region of operation.

2.5 Acti�er

The combination of ampli�er and recti�er (p−n junction) is called acti�er. Ampli�er in-
creases the input voltage level and recti�er generates unidirectional current in the circuit
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depending upon the polarity of ampli�ed voltage. Consider neuron membrane at equilib-
rium state, such that positive charge is distributed outside the membrane and negative
charge is inside the membrane. Upon receiving a small input stimulation of about +30
millivolts, there is a change of 100 millivolts in the membrane potential. Moreover, the
pulse always propagates in one direction from cell body to the axon of neuron. Due to the
generation of ampli�ed and unidirectional pulse, a neuron can be modeled by an acti�er
(�gure 2.7).
Consider a voltage source is connected to the non-inverting input of the operational am-

Figure 2.7: Electrical Model of Neuron

pli�er. The operational ampli�er in non-inverting con�guration generates the ampli�ed
copy of the input. This ampli�ed output of the operational ampli�er is applied as input
to the capacitor C in series with p− n junction diode as shown in �gure 2.7. The voltage
source has a rectangular waveform with time period of 2τ . When a pulse of about 20
millivolts is applied as input on non-inverting input of the operational ampli�er, it am-
pli�es the pulse to its particular level de�ned by the values of R3 and R4. The capacitor
gets fully charged due to this ampli�ed pulse through resistance R2. When voltage across
D1 exceeds from its threshold level, it becomes forward biased and capacitor discharges
through resistance R1. The combination of resistance and capacitance creates time con-
stant for charging and discharging phases of the circuit.
By applying KV L around the capacitor and diode branch,

Vc + VR = 0

Vc = −iR1

i = ic = cdv
dt
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V = −R1C
dv
dt

The solution of above equation can be written as

V (t) = Voe
− t
R1C

Let

T1 = R1C

So

V (t) = Voe
− t
T1

As a consequence, at the end of each half cycle, the capacitor is practically completely
charged or completely discharged. The waveform of voltage across capacitor is given in
�gure 2.8.

Figure 2.8: Charging and Discharging of Capacitor

Similarly, it can be shown that the output voltage is given by equation (2.8).

V (t) =

{
Voe
− t
T1 ; 0 ≤ t ≤ τ

−Voe−
t−τ
T2 ; τ ≤ t ≤ 2τ

(2.8)

In general equation (2.8) can be written as equation (2.9).

V (t) =
∞∑
n=0

(−1)nVoe
− t−nτ
T(n mod2)+1 (2.9)
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Assume that T1 and T2 are of a magnitude comparable to τ , so that in alternate half cycles,
the capacitor is neither completely charged nor discharged. However, as time proceeds,
the voltage across the capacitor will reach a steady state.

Figure 2.9: output waveform
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Chapter 3

Neuron Acti�er Model

Neurons are the excitable cells that can amplify a small input voltage signal. Based on
this fact, we can model the electrical behavior of neuron by an ampli�er. Moreover, a
neuron also generates unidirectional current, therefore, we can approximate the generation
of action potential of neuron by acti�er. In this chapter we shall relate the behavior of
acti�er model with actual dynamics of excitable cells.

3.1 Neuron

Figure 3.1: Neuron Circuit
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Consider the circuit shown in �gure 3.1 in which we modeled a neuron by variable capaci-
tance, resistance and diodes. Neuron contains negatively charged protein molecules which
are �xed inside the cell. Hence, protein acts as substrate in the formation of p−n junction
type structure between protein and the K+1 ions. The junction formed between protein
molecules and the K+1 ions is called K-Junction. The potential barrier for K-Junction
is about Vk = 35mV . Outside the cell, Na+1 ions are in higher concentration. These
ions forms the N-Junction with protein molecules. The potential barrier for N-Junction is
about VNa = −30mV . These junctions are similar to ion channels as in Hodgkin-Huxley
Model [20].
When an input pulse of about 20 or 30 millivolt appears on the input of operational am-
pli�er, it generates an ampli�ed pulse as an input for capacitor. The capacitor charges to
its peak value depending upon the strength of input applied on it. As long as the voltage
across diodeDk becomes greater than the potential barrier Vk = 35mV , the diode becomes
forward biased and allows the capacitor to discharge. This phenomenon is equivalent to
the movement of K+1 ions outside the cell. The conductance for outside movement of
K+1 ions is gk. At the same time when Dk is forward biased, DNa is reverse biased. Since
the junction in reverse biased condition is active for minority charge carriers, hence when
Dk is active for the movement of K

+1 ions outside the cell at the same time DNa is active
for the movement of leaky ions inside the cell.
When the voltage across Dk goes negative, it becomes reverse biased and K-Junction is
closed for further movement of K+1 ions. When the voltage reaches at VNa = −30mV , the
diode DNa becomes forward biased and Na

+1 ions moves inside the cell. The conductance
for inside movement of Na+1 ions is gNa. At the same time when DNa is forward biased,
DK is reverse biased. Hence, when DNa is active for the movement of Na

+1 ions inside
the cell at the same time DK is active for the movement of leaky ions outside the cell.
The time constants for K+1 ions and Na+1 ions can be written as;

Tk = RkC

TNa = RNaC

We can adjust the values of R and C according to the waveform of interest for a certain
cell. For neuron, equation (2.9) can be written as equation (3.1).

V (t) =

{
Voe
− t−2nτ

Tk ; 2nτ ≤ t ≤ (2n+ 1)τ

−Voe
− t−(2n+1)τ

TNa ; (2n+ 1)τ ≤ t ≤ 2(n+ 1)τ
(3.1)

In general equation (3.1) can be written as equation (3.2).

V (t) = Vo

∞∑
n=0

[e
− t−2nτ

Tk − e−
t−(2n+1)τ

TNa ] (3.2)

Equation (3.2) is referred as Neuron Action Potential (NAP) Equation. The circuit with
actual 80 millivolts action potential is shown in �gure 3.3 and the output of circuit is
shown in �gure 3.4.
This section illustrates the behavior of individual spiking neuron in response to simple
pulses of dc voltage [25]. In all the diagrams that show the behavior of bursting, we have
used an extra timer circuit (Figure 3.5).
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Figure 3.2: Input and output for neuron circuit

Figure 3.3: 80 millivolts action potential neuron circuit
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Figure 3.4: 80 millivolts action potential pulses

Figure 3.5: For Bursting and Regular Spiking we used Timer Circuit as an extra unit
with source as : V1 = 30mV , V2 = 10mV , Vcc = 8V
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3.2 Results

In this section we shall relate the experimental data to the simulation results. We can
record the action potential of single neuron in awake mice using tetrodes. The tetrodes
are injected in the mice brain through surgery and data is stored in computer memory to
get the electrical behavior of mice brain neurons (�gure 3.6).
The results of �gure 3.6 can be described theoretically by AJ model.

Figure 3.6: Action potential recording of single neuron in awake mice using tetrode

Tonic Spiking (TS): This type of behavior can be tested by applying constant dc input
stimulus to the neuron. Initially the �ring rate of neuron is very fast however as the
time proceeds, its �ring patterns are regularly spaced. Such behavior is called tonic
spiking [24]. For tonic spiking, we used timer in free running state called astable
mode. We also used function generator an AND gate. This complete arrangement
gives us suitable stimulation for tonic spiking (�gure 3.7).

Phasic Spiking (PS): In phasic spiking a neuron can �re a single spike at the beginning
of the stimulation and remains stationary for the remaining interval of time [12, 22].
This behavior is shown in �gure 3.8.

Tonic Bursting (TB): Some neurons, such as chattering neurons in cat neocortex, �re
periodic bursts of spikes when stimulated (�gure 3.9). The burst frequency may be
50 Hz. Such neurons contribute to the gamma-frequency oscillations in the brain
[13, 21].

Phasic Bursting (PB): When stimulus is applied some neurons in the brain �res a
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Figure 3.7: Tonic Spiking

Figure 3.8: Phasic Spiking
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Figure 3.9: Tonic Bursting

train of continuous spikes. This behavior is called phasic bursting (�gure 3.10).
This is a very important behavior and cannot be neglected in the neuron model
[48, 34].

Figure 3.10: Phasic Bursting

Mixed Mode (MM): This type of neurons �res a burst at the beginning of the stimu-
lation and behaves like tonic spiking mode (�gure 3.11). This type of neurons are
found in mammalian neocortex [52].

Spike Frequency Adaptation (SFA): This type of neurons are commonly found in
mammalian neocortex (�gure 3.12). Initially they �res at high frequency and can
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Figure 3.11: Mixed Mode (Bursting Then Spiking)

sustain a stable frequency of �ring [23].

Figure 3.12: Spike Frequency Adaptation

Class 1 Excitability (C-1): The frequency of �ring of this type of neurons depends on
the strength of the input (�gure 3.13). They �re low frequency spikes when input
is weak and �re at high frequency when stimulation strength is greater. We can
predict the strength of input by �ring rate of the class-1 excitable neurons [31].

Class 2 Excitability (C-2): This type of neurons �res equally spaced spikes as the
signal strength is increased (�gure 3.14). So the �ring frequency of such neurons is
independent of the signal strength [39, 29, 2].
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Figure 3.13: Class 1 Excitability

Figure 3.14: Class 2 Excitability
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Spike Latency (SL): This type of cortical neurons �re spikes with a delay that depends
on the strength of the input signal and are called spike latency �ring neurons (�gure
3.15).

Figure 3.15: Spike Latency

Subthreshold Oscillations (SO): Practically every brain structure has oscillatory neu-
ron potentials (�gure 3.16) . The frequency of such oscillations enforces neurons to
act as bandpass �lters [18, 19].

Frequency Preference and Resonance (R): Some neurons shows the phenomenon
of resonance. The neuron can �re only if the frequency of stimulation lies within
a certain range (�gure 3.17). If the gap between two stimulation pulses is very
short or very large, the neuron will not �re until it matches certain frequency called
resonance frequency determined by RC-time constant of the circuit. Such neurons
are called resonators [35, 36].

Integration and Coincidence Detection (I): This type of neurons �re at high fre-
quencies when the time interval between two input pulses is less than RC-time
constant of the circuit (�gure 3.18). These neurons are helpful in detecting high
frequency stimulus [54, 55, 5].

Rebound Spike (RS): These are inhibitory type of neurons (�gure 3.19). When these
neurons captures an inhibitory input pulse, they �res a post inhibitory spike [47].

Rebound Burst (RB): This type of neurons includes the thalamo-cortical cells and
may �re post-inhibitory bursts (�gure 3.20). Such type of bursts contribute to the
sleep oscillations in thalamo-cortical system [47].

Threshold Variability (TV): The biological neurons have a variable threshold that
depends on previous activity of the neurons (�gure 3.21). We can �rst stimulate
a neuron with a small excitatory pulse so that the neuron does not �re. After a
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Figure 3.16: Subthreshold Oscillations

Figure 3.17: Resonator: V1 = −30mV , V2 = 10mV , Vcc = 1V , VEE = −1V
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Figure 3.18: Integrator

Figure 3.19: Rebound Spiking: V1 = −30mV , V2 = 10mV , Vcc = 5V , VEE = −1V
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Figure 3.20: Rebound Burst

while, we apply a brief inhibitory input and exactly the same subthreshold pulse.
The neuron �res the second time because its threshold was lowered by the preceding
inhibitory input. This phenomenon is called threshold variability [3].

Figure 3.21: Threshold Variability

Bistability of Resting and Spiking States (B): Some neurons show two stable modes
of operation: resting and tonic spiking (�gure 3.22). An excitatory or inhibitory
pulse can switch between these modes. Initially when stimulation is applied, the
neuron shows tonic spiking or even bursting and by applying same input second
time that exhibits resting [44, 4].
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Figure 3.22: Bistability of Resting and Spiking States

Depolarization After Potential (DAP): After �ring a spike, the membrane potential
of a neuron may show a depolarization state (�gure 3.23).This type of behavior is
called depolarization after-potential (DAP) [51].

Figure 3.23: Depolarization After Potential

Accommodation (A): Neurons are extremely sensitive to high frequency inputs, but
may not �re in response to a strong but slowly increasing input (�gure 3.24). When
a slowly increasing ramped input is applied, the neuron initially �res bumps but as
the coincident pulse appears as input, it �res [43].

Inhibition-Induced Spiking (IIS): This type of behavior can be observed in many
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Figure 3.24: Neuron Accommodation

thalamo-cortical neurons (�gure 3.25). This type of neurons remains stationary in
the presence of input and �res spikes when input is absent [42].

Figure 3.25: Inhibition-Induced Spiking

Inhibition-Induced Bursting (IIB): Instead of spiking, a thalamo-cortical neuron can
�re bursts of spikes when input is absent (�gure 3.26). This type of behavior is called
inhibition induced bursting. This behavior plays an important role in sleep rhythms
[41].

Chaos in Neuron (CN): Some neurons �res random pulses when excited by identical
pulses (�gure 3.27). This type of behavior is called neuron chaos [40, 38, 45, 37].
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Figure 3.26: Inhibition-Induced Bursting

Figure 3.27: Chaos in Neuron
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Spike Bursting (SB): This type of behavior is observed in the mouse brain neurons
[37]. The neuron �res spikes and burst simultaneously (3.28).

Figure 3.28: Spike Bursting

No model should exhibit all these 22 behaviors at the same time because some of the
properties are mutually exclusive. For example, a neuron cannot be an integrator
and resonator at the same time. However, there are models that can easily be tuned
to exhibit each such property. The �gures presented here are obtained by using
PSPICE 9.2 LITE EDITION. In case of bursting we used an additional circuit of
timer and function generator to get the desired output waveform.

3.3 comparison

In table II, we presented comparison of di�erent models. For neurons, AJ-Model takes 12
FLOPS while for cardiac myocyte it takes 15 FLOPS.
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Table 3.1: Comparison with other models.

Models BM TS PS TB PB MM SFA C-1 C-2 SL SO R I RS RB TV B DAP A IIS IIB C SB M FLOPs
Integrate and Fire - + - - - - - + - - - - + - - - - - - - - - - 5

Integrate and Fire with adapt. - + - - - - + + - - - - + - - - - + - - - - - 10
Integrate and Fire-or-burst - + + - + - + + - - - - + + + - + + - - - - - 13

Resonate and Fire - + + - - - - + + - + + + + - - + + + - - + - 10
Quadratic Integrate and Fire - + - - - - - + - + - - + - - + + - - - - - - 7

Izhikevich (2003) - + + + + + + + + + + + + + + + + + + + + + - 13
FitzHugh-Nagumo - + + - - - + - + + + - - - + + - + + - - - 72
Hindmarsh-Rose - + + + + + + + + + + + + + + + + + + - 120
Morris-lecar + + + - - - + + + + + + - - + + - + + - - - 600
Wilson - + + + + + + + + + + - + + - + + - 180

Hodgkin-Huxley + + + + + + + + + + + + + + + + + + + - 1200
Asif-Jamil Model (2013) + + + + + + + + + + + + + + + + + + + + + + + + 12

This table compares all the well known models of neurons with AJ-model. BM stands
for Biophysically Meaningful, M stands for myocyte and other column headings are
stated in the result section. The empty cells in the table represent that information
about corresponding behaviors are not available.
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Cardiac Myocyte





Chapter 4

Cardiac Myocyte Modeling

4.1 Luo-Rudy Model

Luo and Rudy presented in 1991, the �rst cardiac action potential model for Guinea pig.
This model was based upon the previously proposed Hodgkin and Huxley model. The
Luo-Rudy model can be expressed as;

dV
dt

= − 1
C

(INa + IK + IKI + IKP + IB + ISI + Ist)

Where
C = membrane capacitance
Ist = stimulation current
INa = fast inward sodium current
IK = time-dependent potassium current
IKI = time-independent potassium current
IKP = the plateau potassium current
IB = the background current
ISI = the slow inward calcium current
In Luo-Rudy model ionic currents are described by the Markov chain process. Markov
chain process is a memoryless process in which all the information is con�ned in the
present state, not on the previous history of the process. For any ionic channel x, we can
attach three states as;
1) Opening state denoted by O
2) Closing state denoted by C
3) Inactivation state denoted by I
Let n be the total number of channels per unit area and O be the probability of opening
of the channels, the current due to any arbitrary channel x can be expressed as;

Ix = ḡx.n.O.(V − Ex)

Where
ḡx = Single channel conductance
V − Ex = E�ective force on ionic channel
The state transition of Luo-Rudy model are expressed in �gure 4.1. Recently, some more
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Figure 4.1: Markov chain based Luo-Rudy model representing the state transition between
opening, closing and inactivation of ionic current channels

ionic channel currents are observed and Luo-Rudy model have been updated with currents
like ICa(L), IKs, IKr and Irel. Due to the discovery of more ionic channel currents, the
complexity of Luo-Rudy model tends to increase.

4.1.1 Cardiac Myocyte Modeling by Acti�er

Consider the circuit shown in �gure 4.2, which represents the cardiac myocyte. The
di�erence between this circuit and the previous one shown in �gure 3.1, is the ionic
oscillator Vion. This ionic oscillator represents the injection of Ca+2 ions in the heart cell.
We modeled the Ca+2 ion concentration by normal distribution function.

Consider the voltage pulse is applied on capacitor C and it is charged to its peak value.
As the voltage across DK exceeds Vk = 35mV , it becomes forward biased and K+1 moves
outside the cell. At the same time when K+1 is moving outside, Vion provides voltage to
DNa to forward bias DNa, and thus Ca+2 moves inside the cell.
Mathematically the action potential for cardiac myocyte can be written as equation (4.1),

V (t) =

{
V1e

− t−2nτ
Tk + V2e

− (t−(2n+1)τ)2

TNa ; 2nτ ≤ t ≤ (2n+ 1)τ
−Vo ; (2n+ 1)τ ≤ t ≤ 2(n+ 1)τ

(4.1)



4.1 Luo-Rudy Model 61

Figure 4.2: Cardiac Myocyte Circuit

Figure 4.3: Cardiac myocyte action potential when inputs are adjusted as: Vin can be
characterized by four parameters V1, V2, Pulse Width and Period. V1 = −1V ; V2 = 0.5V ;
Pulsewidth = 12cm0.4seconds; Period = 0.8seconds; R1 = 1kΩ; R2 = 10kΩ; Vcc =
0.42V ; VEE = −0.42V ; C = 1.3pF ; Rk = 198MΩ; RNa = 65MΩ; Vion can be modeled by
three parameters as Voffset = −0.04V ; Vamplitude = 0.03V ; Frequency = 1.25Hz
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In general above equation can be written as equation (4.2);

V (t) =
∞∑
n=0

[V1e
− t−2nτ

Tk + V2e
− (t−(2n+1)τ)2

TNa

− Vo[u(t− (2n+ 1)τ)− u(t− 2(n+ 1)τ)]]

(4.2)

V1 and V2 are the arbitrary constants. Equation (4.2) is referred as Cardiac Action

Potential (CAP) Equation. In above equation (4.2), the term V2e
− (t−(2n+1)τ)2

TNa represents
the Ca+2 ion concentration. Clearly, we can see that the Ca+2 ions concentration is
represented by normal distribution function (�gure 4.4).
The formation of cardiac action potential can be divided into three steps: 1) Inward

Figure 4.4: Cardiac Myocyte action potential

movement of sodium ions 2) Outward movement of potassium ions 3) Injection of calcium
ions when potassium is moving outward. Typically cardiac myocyte action potential starts
from -80 millivolts and goes to +35 millivolts. Due to inward movement of fast sodium
ions, potential rapidly increases from -80 millivolts to +35 millivolts. When potential
exceeds 35 millivolts, K-Junction goes in forward biased region and allows the potassium
to move out of the cell. The slow movement of calcium into the cell causes plateau
phase of the myocyte that distinguish it from neuron. This phase of the cardiac myocyte
maintains the heart beat at constant level of 0.8 seconds [14]. Like other excitable cells,
cardiac myocyte is also refractory for input stimulation. If a myocyte is in active region,
in certain time interval it does not generate a new action potential. This time interval is
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called refractory period. The refractory period of cardiac myocyte is about 50 milliseconds
to 350 milliseconds. By slight variation we can show arrythmia in the cardiac myocytes
that is caused by the excess of in�ux of the calcium ions (�gure 4.5), which also con�rms
the actual experimental results [8].

Figure 4.5: Cardiac myocyte action potential when inputs are adjusted as: Vin can be
characterized by four parameters V1, V2, Pulse Width and Period. V1 = −1V ; V2 = 0.5V ;
Pulsewidth = 12cm0.4seconds; Period = 0.8seconds; R1 = 1kΩ; R2 = 10kΩ; Vcc =
0.42V ; VEE = −0.42V ; C = 1.3pF ; Rk = 198MΩ; RNa = 65MΩ; Vion can be modeled by
three parameters as Voffset = −0.04V ; Vamplitude = 0.09V ; Frequency = 1.25Hz

4.2 Results

The cardiac myocytes can �re action potential due to the mechanical impulses of excitation
contraction process. Unlike neurons, the action potential of cardiac myocyte is prolong
due to the presence of calcium ions as shown in �gure 4.6. The action potential of cardiac
myocyte can be divided into six phases as:
1) Stimulation
2) Upstroke
3) Early repolarization
4) Plateau
5) Final repolarization
6) Resting
The action potential of cardiac myocyte is generated by the electrical pulse coming from
sinoatrial node, due to heart beat. When action potential is initiated, the re-excitation
of cell cannot occur unless the �rst �ve phases of action potential are not completed,
therefore, this interval is called absolute refractory period or Action Potential Duration
(APD). During the end of �nal repolarization and resting, a new stimulation pulse can
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Figure 4.6: Cardiac myocyte action potential [1]

generate an action potential in the cell, therefore, this interval is called relative refractory
period or Diastolic Interval (DI).

4.3 Restitution Function

The function which relates the Action Potential Duration (APD) and the Diastolic Interval
(DI) is called APD Restitution Function. A graph drawn between APD and DI in such
a way that DI is taken along x-axis and APD is taken along y-axis is called restitution
curve. Restitution curve exhibits some properties that can be stated as:
1) It is an exponential curve.
2) The slope of restitution curve �attens when DI is 300 milliseconds, called critical point
of restitution curve.
3) Restitution curve shifts towards negative slope after critical point.
4) At any instant, sum of x and y coordinate represents Basic Cycle Length (BCL).
5) BCL increases with increase in DI and after critical point it shifts toward the smaller
values again.
6) The slope of restitution curve at any point gives the excitation rate.
We can represent the equations for APD and DI by considering the cardiac myocyte action
potential curve as shown in �gure 4.3 as,

APD = y(t) = αe
− t−τ1

Tk + βe
− (t−τ2)

2

TNa (4.3)

DI = x(t) = γe
− (t−τ3)

2

Tk (4.4)
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α represents the interval for outward �ux (e�ux) of potassium ions from the cell, β is the
interval of inward �ow (in�ux) of sodium ions into the cell and γ is reverse recovery inter-
val of membrane for secondary excitation of cell. The value of γ is taken large enough due
to the fact that, recovery process takes long time due to redistribution of ions across the
membrane. From experimental data, we can choose the initial value α as 30 milliseconds
to be consistent with experimental results [17]. The values of other parameter are;
α = 30msec, β = 150msec, γ = 350msec, τ1 = 0, τ2 = 20msec, τ3 = 15msec,
Tk = 150msec, TNa = 300msec
The reason for above choice is straightforward from the fact that tubules of cardiac my-
ocyte is 5 times greater than that of neurons. Moreover, note that the time constant for
sodium ions is taken greater than potassium due to the presence of calcium.
Equations (4.3) and (4.4) represents the unbiased restitutio function. By considering the
unbiased equations, we plotted the graph between APD and DI in such a way that APD
is taken along y-axis and DI is taken along x-axis we get the following two graphs (�gure
4.7 and �gure 4.8).
MATLAB code for �gure 4.7

t=[20:0.01:40];

x=350*exp(-(t-15).^2/150);

y=(30*(exp(-(t)/150)+150*exp(-(t-20).^2/300)))/(12*pi);

plot(x,y),xlabel('DI'),ylabel('APD'),grid

Figure 4.7: APD vs DI when 20msec ≤ t ≤ 40msec

In �gure 4.7 the relation between APD and DI is exponential which shows that, when
value of DI increases initially, there is rapid increase in APD (i.e. the slope of graph is
greater than 1) and �nally restitution curve becomes almost parallel along x-axis [17].
The sum of APD and DI is called basic cycle length (BCL). When the value of DI is
small, corresponding value of APD is also small, representing that if cell is excited in such
a way that its DI is short, it will generate the next action potential with shorter APD, as
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a result recovery time of cell also reduces and hence the BCL.
MATLAB code for �gure 4.8

t=[0:0.01:40];

y=30*exp(-t/150)+150*exp(-(t-20).^2/300);

x=300*exp(-(t-15).^2/150);

plot(x,y),xlabel('DI'),ylabel('APD'),grid

Figure 4.8: APD vs DI when 0 ≤ t ≤ 40msec

The exponential increase in APD and DI occurs when DI < 300 milliseconds (�gure
4.8). As the value of DI increases from 300 milliseconds, APD falls down to the lower
values representing the negative slope. For detailed view of graph consider the 3D plot of
APD and DI along time scale (�gure 4.9).
MATLAB code for �gure 4.9

t=[0:0.01:40];

x=350*exp(-(t-15).^2/150);

y=30*exp(-t/150)+150*exp(-(t-20).^2/300);

plot3(t,x,y),xlabel('t'),ylabel('DI'),zlabel('APD'),grid

Clearly we noticed that the maximum value of DI is 350 msec, at this value the cell is
in silent mode for longer time and its �ring is at lowest rate, while its minimum value
is about 80 msec and at this value the �ring of cell is very high. So we can apply two
bounds on DI as,

80 msec ≤ x(t) ≤ 350 msec (4.5)

Similarly we can apply upper and lower limit on APD as,
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Figure 4.9: 3D plot of APD and DI when 0 ≤ t ≤ 40msec

50 msec ≤ y(t) ≤ 130 msec (4.6)

We can apply biased restitution function depending upon the curve of interest. In this
case equations (4.3) and (4.4) can be written as;

APD = y(t) = yo + αe
− t−τ1

Tk + βe
− (t−τ2)

2

TNa (4.7)

DI = x(t) = xo + γe
− (t−τ3)

2

Tk (4.8)

Equations (4.7) and (4.8) are the biased restitution function equations. These equations
can be applied whenever the ionic concentration of cell is changed by some external or
internal source.

4.4 Refractory Period

The refractory period is the interval of time during which a normal cardiac cell cannot
re-excite. The normal refractory period of the ventricle is 250 msec to 300 msec. We can
�nd the upper and lower bound on refractory period by adding equation (4.5) and (4.6);

130 msec ≤ RP ≤ 480 msec (4.9)

The values in equation (4.9) are very much closer to the actual experimental values.
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4.5 Conclusion

Our study is based on the modeling of excitable cells like neurons and cardiac myocytes.
We applied the concept of active junctions for the �rst time and referred such type of
junctions as acti�ers. Acti�ers are electrical circuits that are able to amplify an input
signal and have the ability to rectify. We tried to develop a uni�ed model that is capable of
simulating both the neuron and the cardiac myocyte. Excitable cells are voltage sensitive
structures. A small external voltage that acts as input, can change the dynamics of the
cell. We adopted voltage sensitive circuit model in order to capture the dynamics of the
excitable cell. Our model is conductance based and its parameters can be easily adjusted.
The uniqueness of our model is that we can switch it to cardiac myocyte. By adding
a time varying voltage source in series with sodium junction diode we can switch the
model for cardiac myocyte. For cardiac myocytes we can implement rhythms that healthy
myocyte exhibits as well as arrythmia which is represented by an abnormal myocyte. We
suggested the equations for APD (Action Potential Duration) and DI (Diastolic Interval)
and found the upper and lower bounds on APD and DI. The �ndings were found similar
to experimental data. We used p-n junction based technique to explain the functioning
of channels. This concept of junctions simpli�ed the mathematical modeling of threshold
function. Thus, we do not need to use a separate function to describe the thresholds of
the cell which reduced our computation cost. Moreover, we used operational ampli�er
in feedback mode that increases the stability of circuit. The simplicity of the model is
compared with other neuron �ring models and it is amazing that it only takes 12 �ops
for neuron and 15 �ops for simulating cardiac myocyte. No model for excitable cells have
ever proposed that is able to represent the neuron and cardiac myocyte. Our study is the
�rst step to develop a mathematical connection between brain and heart.
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