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PREFACE

Recently there has been a huge interest in the development of computational method-
ologies for modeling and simulating biological processes. The book facilitates the
design of effective and efficient techniques by introducing key elements of the emerg-
ing field of computational systems biology. It gives an in-depth description of core
subjects including biological network modeling, analysis, and inference. It presents
a measured introduction to foundational topics such as genomics and describes state-
of-the-art software tools.

The collaborations between experts from highly diverse areas ranging from biology
to computer science are crucial for the progress in computational systems biology.
The book is aimed at fostering close collaborations between biologists, chemists,
physicists, mathematicians and computer scientists by providing ground-breaking
research. It provides an inspiration and basis for the future development and appli-
cations of novel computational and mathematical methods to solving complex and
unsolved problems in biology.

The book is intended for researchers and scientists from the fields of biology, chem-
istry, mathematics, physics, and computer science who are interested in computational
systems biology or focused on developing, refining, and applying computational and
mathematical approaches to solving biological problems. It is organized in a way so
that the experts from the industry such as biotechnology and pharmaceutical compa-
nies will find it very useful and simulating. The book is accessible to students and
provides knowledge that he/she requires.

We wish to thank Wiley for the support and help in the processing of the book. We
would also like to thank Yanqing Zhang, Bart Bijnens, Antti Honkela, Zhongming
Zhao, Nicos Angelopoulos, Roman Rosipal, Jae-Hyung Lee, Zhaolei Zhang, Ying
Liu, Wenyuan Li, Dong Xu, Giovani Gomez Estrada, Li Liao, Leming Zhou, and
Etienne Birmele for their help in the reviewing process.

H. M. Lodhi and S. H. Muggleton

Feburary, 2009
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I

OVERVIEW





1
ADVANCES

IN COMPUTATIONAL
SYSTEMS BIOLOGY

Huma M. Lodhi
Department of Computing, Imperial College London, London, SW7 2AZ, UK

1.1 INTRODUCTION

Computational systems biology, a rapidly evolving field, is at the interface of com-
puter science, mathematics, physics, and biology. It endeavors to study, analyze, and
understand complex biological systems by taking a coordinated integrated systems
view using computational methodologies. From the middle of the twentieth century
till present, we have been witnessing breakthrough discoveries in biology that range
from molecular structure of deoxyribonucleic acid (DNA) to the generation of the se-
quence of the euchromatic portion of the human genome. There have also been recent
advances in sophisticated computational methodologies, high-throughput biotech-
nologies, and computational power. The stunning developments in diverse disciplines
such as biology and computer science are playing a key role in the fast progression of
the emerging field. Computational systems biology provides a point of convergence
for genomics, proteomics, metabolomics, and computational modeling. It is charac-
terized by its focus on experimental data, computational techniques, and hypotheses
testing [1–3].

Open and unsolved problems in biology range from understanding structure and
dynamics of biological systems to prediction and inference in the complex systems.

Elements of Computational Systems Biology Edited by Huma M. Lodhi and Stephen H. Muggleton
Copyright © 2010 John Wiley & Sons, Inc.
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4 ADVANCES IN COMPUTATIONAL SYSTEMS BIOLOGY

In the postgenomic era, systems-based approaches may provide a solution to such
unsolved problems. It is believed that some answer to the question “what is life” may
be obtained by taking a broader, integrated view of biology [4]. However, applica-
tions of systems-based techniques to biology are not new. Such methods and frame-
works have been applied to analyze biological processes since early twentieth century
[5, 6]. Norbert Wiener’s groundbreaking work [7] is a well-known example of these
applications.

The purpose and objective of this chapter is to review cutting-edge and long-
ranging research in the field of computational systems biology in the recent years.
However, the review is not meant to be exhaustive. We briefly describe novel method-
ologies to build multiscale biological models in Section 1.2. In Section 1.3, we present
an overview of the applications of proteomics techniques to study biological pro-
cesses. We then summarize computational systems biology methods to examine and
understand aging in Section 1.4. Section 1.5 describes systems-based techniques for
drug design, where such methods are revolutionizing the process of drug discovery.
Efficient software tools and infrastructure are crucial to solving complex biological
problems. In Section 1.6, we review tools for systems biology.

1.2 MULTISCALE COMPUTATIONAL MODELING

In the postgenomic era, researchers seek to focus their attention to studying and
analyzing biological networks and pathways by the use of multiscale computational
modeling techniques. A model can be viewed as a representation of a biological
system, where the representation can comprise a set of differential equations [8], a set
of first-order logic clauses [9], and so on. Biological models that incorporate multiple
scales such as time and space or multiple timescales may be viewed as multiscale
models [10]. Chapter 2 gives an in-depth account of mathematical and computational
models in systems biology.

Development of efficient and effective computational methodologies to perform
modeling, simulation, and analysis of complex biological processes is a challenging
task. Traditionally, mathematical and computational models have been developed by
considering a single scale. However, it is now feasible to incorporate multiple scales
in the process of model building due to recent advances in computational power and
technology. Generally, multiscale models are constructed by using sophisticated tech-
niques including numerical methods and integration approaches. Multiscale model
of the heart [11, 12] is a well-known example of an application of these modeling
techniques.

Multiscale computational modeling and simulation methods are showing
promising results in the field of oncology. The development of three-dimensional
multiscale brain tumor model by Zhang et al. [13] is an attempt in this direction.
The dynamics of tumor growth were simulated by using an agent-based multiscale
model where microscopic scale, macroscopic scale, and molecular scale were incor-
porated in the in silico model. In micro-macroscopic environment, a virtual brain
tissue block was represented by points in three-dimensional lattice. The lattice was
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divided into four cubes that illustrated the behavior of chemotactically acting tumor
cells. The chemotaxis distribution of transforming growth factor alpha (TGF�), glu-
cose, and oxygen tension were illustrated in a set of mathematical equations. It was
observed that the amount of TGF� and glucose was chemoattractant, and diffu-
sion of glucose occurred at a constant rate. In order to incorporate molecular scale,
epidermal growth factor receptor (EGFR) gene–protein interaction network model
[14] was used in conjunction with cell cycle module. The authors used a simplified
EGFR network that comprised of EGFR and TGF� genes. The mathematical model
of EGFR gene–protein network was represented as a set of differential equations.
The authors utilized the cell cycle model presented in Tyson and Novak [15] and
Alacron et al. [16]. The implementation of the software systems was carried out
by combining in-house code with an agent-based software tool, namely, MASON
(http://cs.gmu.edu/ eclab/projects/mason/). In order to study and ana-
lyze tumor growth and spread, 10 simulations were performed. The results demon-
strated an increase in tumor volume with respect to time, where the relationship
between tumor volume and time was not linear. There was a sharp increase in volume
growth at later time intervals. The study found that migrating and proliferating cells
exhibited a dynamic behavior with respect to time. Furthermore, the cells caused spa-
tiotemporal tumor growth. The results showed that the number of migrating cells was
greater than the number of proliferating cells over time, where the high concentration
of phospholipase C gamma (PLC�) might be the key factor behind the phenomenon.
In summary, the study demonstrated a successful construction of multiscale computa-
tional model of the complex multifaceted biological process. However, the approach
is not free from shortcomings as described below:

• A simple EGFR network was used.
• Clonal heterogeneity within tumor was not examined.

It has been found that the distribution of tumor cells is not homogeneous, and the
cells exhibit heterogeneous patterns. Techniques that account for clonal heterogene-
ity of tumor cell populations can be vital to analyze and study the development of
cancerous diseases. Furthermore, clonal heterogeneity can strongly impact the design
of effective therapeutic strategies. Therefore, many studies examined heterogeneity
in tumors [17, 18]. Zhang et al. [19] extended their multiscale computational mod-
eling technique [13] to investigate the clonal heterogeneity by incorporating genetic
instability. The extended model included doubling time of cell and cell cycle. Other
parameters such as cell–cell adhesion were also considered so that the strength of
the chemoattractants’ (TGF�, oxygen tension, and glucose) impact on cancer cells
adhesion and rate of cell migration could be investigated. The authors used Shannon’s
entropy for the quantification of tumor heterogeneity. Shannon entropy in this context
can be calculated as follows: Let ci denote the occurrence of clone i in the tumor,
the entropy is given by

∑
i ci ln(ci), where the higher values of Shannon’s entropy

represent more clonal heterogeneity.
The results of the study showed an increase in tumor total volume over time, where

the tumor was categorized into three regions on the basis of the distance between it
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and the nutrient source. It was observed that there was a general increase in the values
of Shannon’s entropy for all the three regions. However, there was highest clonal
heterogeneity in the region closest to the nutrient source at early time stages where
the region exhibited a homogeneous pattern at later stages. The study inferred that
cancer could spread faster due to clonal heterogeneity as compared to homogeneous
cell populations in tumor.

The complexity of the mechanisms of development and morphogenesis establishes
a need to design effective and efficient computational techniques to investigate and
analyze the biological process. In a recent study, Robertson et al. [20] presented a
multiscale computational framework to investigate morphogenesis mechanisms in
Xenopus laevis. Mammalian cells share similarities with X. laevis in terms of signal-
ing network and cell behavior. A multiscale model was constructed by integrating
an intercellular signaling pathway model with the multicellular model of mesendo-
derm migration. The authors implemented Wnt/�-catenin signaling pathway model
that was presented by Lee et al. [21], whereas an agent-based approach was applied
to build mesendoderm migration model. In order to simulate mesendoderm cells’
migration, it was viewed that each cell comprised of nine sections, where each sec-
tion was modeled as an agent. Mesendoderm migration was facilitated by the use of
fibronectin extracellular matrix substrate. The study found that fibronectin gradient
was a key factor behind the cellular movement. It was also observed that polar-
ity signals [22] might be important for mesendoderm migration and morphogene-
sis. The simulations also demonstrated the importance to keep the cadherin binding
strength in balance with the integrin binding strength. Although the study estab-
lishes the efficacy of multiscale computational methodologies to studying morpho-
genesis, the proposed approach may not be computationally attractive for large-scale
simulations.

Physiome project [12] is well known for the development of multiscale mod-
eling infrastructures. Given that standard modeling languages are useful for
sharing biological data and models, three markup languages, namely, CellML
(http://www.cellml.org/), FieldML, and ModelML, have been developed in
the project. CellML [23] is characterized by its ability to capture three-dimensional
information regarding cellular structures. It can also incorporate mathematical knowl-
edge and metadata. FieldML, a related language, is known for its incorporation of
spatial information. The third systems biology modeling language, namely, Mod-
elML, is characterized by its ability to encode physical equations that illustrate com-
plex biological processes. The efficacy of the languages was established by building
multiscale heart models [12].

It has been found that same input, to constituent parts of a system, can produce
different outputs. Such variations may be produced by factors including alterations
in the concentration of system’s components. It is desirable to design techniques and
methods that can provide robustness to variations. Shinar et al. [24] presented a robust
method by exploiting molecular details. The authors coined the term “input–output
relation” for the association between input signal strength and output. The study
investigated the input–output relation in bacterial signaling systems.
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1.3 PROTEOMICS

Proteomics, the study of proteins, is viewed crucial to analyze and understand biolog-
ical systems, as protein is the building block of life. Mass spectrometry (for details see
Chapter 17) is a well-known proteomics technology that is showing a huge impact on
the development of the field of computational systems biology. Several recent stud-
ies have identified the significant role of proteomics techniques in solving complex
biological problems [25–27].

Proteomics methods and data can be useful for the reconstruction of biological
networks. Recently, Rho et al. [28] presented a computational framework to recon-
struct biological networks. The framework is based on the use of proteomics data and
technologies to build and analyze computational models of biological networks. It is
termed as integrative proteomic data analysis pipeline (IPDAP). IPDAP incorporates
a number of network modeling and analysis tools. The component tools of IPDAP can
be applied to reconstruct biological networks by fusing different types of proteomics
data. The successful application of IPDAP to different cellular and tissue systems
demonstrated the efficacy and functionality of the framework.

In another study, Zhao et al. [29] investigated signal transduction by applying
techniques from optimization theory and exploiting proteomics and genomics data.
They formulated the network identification problem as an integer linear programm-
ing problem. The proteomics (protein–protein interaction) data were represented as
weighted undirected graph, where the nodes and the edges represented proteins and
interaction between pair of proteins, respectively. The results of the study confirmed
the efficacy of the approach in searching optimal signal transduction networks from
the data.

Cell cycle comprises a series of ordered events by which cell replication and
division take place. Studying cell cycle regulation provides useful insights in cancer
growth and spread. The relationship between cell cycle and cancer has been a focus
of many studies [30, 31]. In Sigal et al. [32], a proteomics approach was applied to
investigate cell cycle mechanisms. The approach is based on the use of time-lapse
microscopy to study protein dynamics. The study identified cell cycle-dependent
changes in protein localization, where 40 percent of the investigated nuclear proteins
demonstrated cell cycle dependence. Another challenging problem is to find patterns
of polarized growth in cells where such growth is viewed as an important process
in organisms. In order to investigate the biological problem, Narayanaswamy et al.
[33] conducted a study by using budding yeast as the model system. The proposed
computational method is based on the use of microarray image analysis and a machine
learning technique, namely, naive Bayes algorithm. The study found 74 localized
proteins including previously uncharacterized proteins and observed novel patterns
of cell polarization in budding yeast.

In a recent study [34], a computational technique is presented for predicting peptide
retention times. The method is at the intersection of two machine learning approaches,
namely, neural networks and genetic algorithms. In order to predict the retention times,
an artificial neural network is trained and the predicted values are further optimized
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by using a genetic algorithm. The method was successfully applied to Arabidopsis
proteomics data.

1.4 COMPUTATIONAL SYSTEMS BIOLOGY AND AGING

Aging is a complex phenomenon that has not been well understood. In aging, we
witness gradual diminishing/decreasing functions at different levels, including or-
gans and tissues. Cell division has been viewed as a key process in aging since long
[35, 36]. Recently, de Magalhaes and Faragher [37] have elucidated that aging might
be affected by variations in cell division. Hazard rates and nutrition may be the key
factors that influence the longevity of cellular organisms [38]. There are a number of
theories that describe how aging occurs. Kirkwood [38] listed five different theories
that are as follows:

• Somatic mutation theory
• Telomere loss theory
• Mitochondrial theory
• Altered proteins and waste accumulation theory
• Network theory

Aging has been extensively studied in Caenorhabditis elegans (nematode), mice,
humans, and fruit flies. A number of genes that extend organisms’ life span have been
discovered. Several studies on aging found that genetic mutations could increase
longevity [39–41]. Furthermore, aging genes with their associated pathways may
influence the variations in aging between different species but may not have any
affect on the differences in aging within a particular specie [42]. Gene expression
and pathway analysis can provide useful means to identify aging-related similarities
and differences between various species [43], where the efficacy of DNA microarray
technology, in studying aging, is significant [44]. In a recent study on aging, DNA
microarray experiments were utilized to show that aging in C. elegans is influenced
by GATA transcriptional circuit [45].

Advances in computational systems biology have led to the development of tools
and methods for solving highly complex problem of aging. For example, Xue et al. [46]
addressed the key issue regarding aging by applying an analytic method to human/fruit
fly protein–protein interaction network, namely, NP analysis [47]. The method is based
on the identification of active modules in network, where the chosen module com-
prised of protein–protein interaction subnetwork between genes that show (positive
or negative) correlation during aging. The application of the method to human brain
aging identified four modules. Among these modules, the two showed transcription-
ally anticorrelation with each other. The other two modules comprised of immunity
genes and translational genes, respectively. In order to study correlation between genes
in other species during aging, the method was applied to fruit fly interactome. The
results of the study showed that in addition to two transcriptionally anticorrelated
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genes modules, there were two other modules that demonstrated such anticorrelation.
On the basis of these findings, the authors suggest that only a few modules are associ-
ated with aging. The other key result of the study is the identification of the influence
of module connecting genes on aging.

In another study, Garan et al. [48] presented a computational systems biology
framework for studying neuroendocrine aging. The framework allows fusion of het-
erogeneous data from different disciplines such as endocrinology, cell biology, ge-
netics, and so on. The method can be effective in identifying underlying relationship
between the components that define aging.

Machine learning provides useful approaches and techniques to conduct studies
on aging. In Swindell et al. [49], a number of machine learning methods were used
to predict mouse life span. Twenty-two learning algorithms were applied to the prob-
lem, where the results demonstrated usefulness of support vector machines (SVMs),
stabilized linear discriminant analysis, and nearest shrunken centroid in solving the
problem, hence establishing the efficacy of machine learning technique for aging
research. Agent-based modeling techniques have also been used to understand the
biological processes of aging. The study published by Krivenko and Burtsev [50] is
indicative of the success of such approaches for aging related studies. The authors
applied their technique to simulate evolution and studied important factors including
kin recognition and aggression.

Analysis of pathways for aging can also facilitate the understanding of complex
diseases such as cancer. The probability of the occurrence of a cancer can be sub-
stantially lowered by downregulating the aging pathways [39]. Recently, Bergman
et al. [51] investigated longevity genes. They conducted an extensive study by using
more than 1200 subjects. On the basis of system-based analysis, the authors rec-
ommend that the investigation of genetic pathways can lead to the development of
strategies that may regulate age-related diseases and disorders.

1.5 COMPUTATIONAL SYSTEMS BIOLOGY IN DRUG DESIGN

Millions of people are suffering from fatal diseases such as cancer, AIDS, and many
other bacterial and viral illnesses. Computational systems biology approaches can
provide a solution to the key issue that is how to design lifesaving and cost-effective
drugs so that the diseases can be cured and prevented. Pharmaceutical companies
view that systems-based computational techniques will be highly useful in designing
effective therapeutic drugs [52–54]. Furthermore, advanced and sophisticated meth-
ods will accelerate drug discovery and development. In 2007, FDA approved only 17
new drugs [55] and approximately 50 drugs in 2008 (http://www.fda.gov/).

It is believed that the association between systems-based biological methods and
drug design is age-old. Herbal drugs were developed by observing the diseases; hence,
today’s drug design has been (directly/indirectly) influenced by such early attempts
[56]. Computational systems biology approaches may revolutionize therapeutic inter-
vention in clinical medicine [2]. Effective systems-based drug design techniques can
be developed by exploiting the knowledge of the robustness of biological systems [57].
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An overview of a number of computational methods’ (Petri nets, cellular automata
techniques, hybrid methods, pi calculus, agent systems, and differential equations-
based methods) application to the task of drug design can be found in Materi and
Wishart [52].

Identification of novel drug targets in diseases is a key problem. In order to solve
such problems, Chu and Chen [58] recently presented a systems-based approach for
the identification of apoptosis drug targets. The selection of the drug targets by utiliz-
ing the approach can be viewed as a multistage discovery process. In the first stage,
a protein–protein interaction network is constructed by a number of datasets and on-
line interactome databases. In the second stage, a stochastic model of protein–protein
interactions is constructed. In order to refine the model, false protein interactions are
removed by utilizing an information theoretic measure, namely, Akaike’s informa-
tion criterion to microarray data. Finally, drug targets are identified by conducting a
network-level comparison between normal and cancer cells.

Transcription factors-based methods can play an important role in devising an
effective therapeutic and preventive interventions strategy for diseases. In Rosen-
berger et al. [59], the role of activating transcription factor 3 (ATF3) was inves-
tigated for murine cytomegalovirus (MCMV) infection. Mouse was used as the
model system. The study demonstrated negative regulation of interferon-gamma
(IFN-�) expression caused by ATF3 in natural killer cells. The mice that had zero
ATF3 exhibited high resistance to MCMV infection.

In another study, Nelander et al. [60] introduced a computational systems biology
methodology for the prediction of pathway responses to combinatorial drug pertur-
bations or drug combinations. The method is based on the use of multiple input–
output model. Given that the linear models are not able to capture crucial information
required for the task at hand, the authors presented nonlinear multiple input–output
model. The approach was applied to analyze perturbations in MCF7 human breast
carcinoma cells, where a number of compounds including rottlerin, rapamycin, and
and so on were selected as perturbants. The leave-one-out cross-validation results
showed the efficacy of the method.

Genetic causes of diseases can provide information that is crucial to design effective
therapeutic approaches. A network that illustrates the association between diseases
and their related genes can be highly informative. The human disease network pre-
sented in Goh et al. [61] is an attempt in this direction. The graph theoretic framework
is based on the construction of a network to analyze and investigate the association
between phenotypes and disease genes. In the constructed bipartite graph, one set of
nodes represents genetic disorders and the second set denotes known disease genes
in human genome. The edge between the disease and a gene represents the mutation
in gene caused by the disease. The network provides a means to study novel patterns
of gene disease associations.

Screening toxic compounds is a key issue in drug design and development. In
Amini et al. [62], a novel computational methodology was introduced as an accurate
means of predicting toxicity of compounds. The technique integrates two machine
learning approaches, namely, SVMs [63] and inductive logic programming (ILP), and
is termed support vector inductive logic programming (SVILP). The method works
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by obtaining a set of rules from an ILP system, hence mapping the compounds into
relational ILP space. The induced rules are then applied to compute the similarity
between two compounds by the use of a novel kernel function. The function, given
by an inner product in relational ILP space, is a weighted sum over all the common
hypothesized rules. The ILP kernel is used in conjunction with SVMs to compute tox-
icity. The authors applied their method to a diverse and broad ranging toxicity dataset,
namely, DSSTox [64]. The effectiveness of the method was established by using a
cross-validation experimental methodology to predict the toxicity of the compounds.
The results of the study confirmed the efficacy of the method for drug design and
development. In Lodhi et al. [65], the method is extended to classify mutagens and
recognize protein folds. The extended method learns a multiclass classifier by using
a divide-and-conquer reduction strategy that divides multiclasses into binary groups
and solves each individual problem by inducing an SVILP. The extended multiclass
SVILP was successfully applied to classify compounds.

The database storing detailed kinetic knowledge can be a useful resource as it
can provide information that is required to build models of biological processes.
In order to provide such a knowledge base, a database of kinetic data, namely,
KDBI, has been developed [66]. The database contains various types of data, in-
cluding protein–protein interactions and protein–small molecule interactions. It in-
cludes 19,263 records, where 2635 entries belong to protein–protein interactions
and 11,873 records contain information regarding protein–small molecule interac-
tions. The database also comprises ordinary differential equations-based pathways
models.

1.6 SOFTWARE TOOLS FOR SYSTEMS BIOLOGY

In this section, we will very briefly describe software tools that are designed for
modeling, simulating, and analyzing complex biological processes. Bioconductor is
a project that provided a number of useful tools for conducting systems biology-
based studies. The design of effective infrastructure is crucial for the development of
efficient and user-friendly tools. Software infrastructures may be developed by using
only a basic computer language and generator (a software tool) [67]. Chapter 15
provides an in-depth description of a text mining tool for systems biology. Table 1.1
summarizes a number of software packages for studying and investigating biological
systems.

SQUAD [68] is an example of modeling tools for systems biology. It constructs
dynamic models of signaling networks, where the unavailability of kinetic data do
not hinder its performance. The underlying methodology of the systems is based on
the integration of Boolean and continuous modeling techniques. The implementation
is written in Java, whereas C++ has been used to code algorithms for the computa-
tion of steady states. SQUAD supports a number of input formats, including NET
(text file), MML (xml file), and SMBL (systems biology markup language). The
system performs simulations as follows: It takes as input a directed graph represent-
ing the structure of the network. The steady states of the graph are identified by
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Table 1.1 Software tools for systems biology

Tools Biological systems Input format Platform

Modeling

SQUAD Signaling and regulatory XML, MML, and Windows and
networks NET Linux

CellNetAnalyzer Metabolic, signaling, and Network Composer All platforms
regulatory networks and ASCII (approximately)

BioTapestry Signaling and CSV and tabular Linux, Mac, and
regulatory networks Windows

Sensitivity Analysis

SBML-SAT Signaling, regulatory SBML Linux, Mac, and
and metabolic network Windows

Visualization

Cytoscape Molecular interaction MS Excel, SIF, All platforms
networks and so on (approximately)

CellProfiler Cell images DIB Linux, Mac, and
Windows

using a Boolean algorithm. Then, a dynamic model is constructed. Finally, a user
can perform simulations. SQUAD has a user-friendly graphical interface and can be
downloaded from http://www.enfin.org/dokuwiki/doku.php?id=squad:

start.
CellNetAnalyzer [69] is a related software tool for modeling and analyzing bio-

logical process. It can be applied to analyze signaling, regulatory, and metabolic
networks. The software tool is implemented in MATLAB, and C has been used to
code some underlying techniques. The input data can be provided to CellNetAnalyzer
by using Network Composer or ASCII file. It is available at http://www.mpi-

magdeburg.mpg.de/projects/cna/cna.html.
BioTapestry [70] is another biological modeling tool. It can perform analysis and

modeling of large biological networks. Linux, Windows, and Mac are supported
platforms. BioTapestry is available at http://www.biotapestry.org/.

Sensitivity analysis is an important aspect of computational modeling for sys-
tems biology. SBML-SAT [71] performs sensitivity analysis of biological systems,
and the systems are represented in the form of ordinary differential equations. It in-
corporates and implements a number of well-known sensitivity analysis techniques.
Windows, Mac, and Linux are supported platforms. SBML-SAT is implemented in
MATLAB, where the input data need to be coded in SBML format. It is available at
http://sysbio.molgen.mpg.de/SBML-SAT/.

We now briefly describe Cytoscape [72] that facilitates the visualization and analy-
sis of biological networks. It also allows data integration. The supported input formats
are delimited text files, MS Excel, SIF (simple interaction format), SMBL, GO (gene



REFERENCES 13

association), and so on. It enables the identification of active modules in biological
networks. Cytoscape also allows export of network structures as images in different
formats. Cytoscape is available at http://www.cytoscape.org/.

The development of CellProfiler [73, 74] is an attempt to study complex bio-
logical processes by using image analysis software packages. The tool comprises
two components, namely, CellProfiler and CellProfiler Analyst. The images are pro-
cessed by using CellProfiler. CellProfiler Analyst is applied to analyze the processed
data produced by CellProfiler. The tool can analyze hundreds and thousands of im-
ages. It is characterized by its capability of recognizing nonmammalian cells and
quantification of phenotypes. It supports processing and analysis of multidimen-
sional images and can perform illumination correction and cell identification by
using standard and advanced methods. The tool is implemented in MATLAB and
is available for Windows, Unix, and Mac platforms. The software tool is available at
http://www.cellprofiler.org/.

1.7 CONCLUSION

The review presented in the chapter shows that computational systems biology en-
compasses a range of complex problems and methodologies. We are witnessing a
rapid development in the field that will revolutionize and give answers to unsolved
questions in biology. Biotechnology will be on the forefront due to the influence of
systems-based approaches on medicine, agriculture, and so on [75, 76]. We believe
that the growing popularity of systems-based computational techniques to studying
and analyzing biological processes will foster collaboration between researchers from
diverse disciplines and will lead to significant development and progress in the field
of computational systems biology.

REFERENCES

1. P. K. Sorger. A reductionist’s systems biology: opinion. Curr. Opin. Cell Biol., 17(1):9–11,
2005.

2. E. Klauschen, B. R. Angermann, and M. Meier-Schellersheim. Understanding disease by
mouse click: the promise and potential of computational approaches in systems biology.
Clin. Exp. Immunol., 149:424–429, 2007.

3. H. Kitano. Computational systems biology. Nature, 420:206–210, 2002.

4. D. Noble. The Music of Life. Oxford University Press, 2006.

5. H. Kitano. Systems biology: a brief overview. Science, 295:1662–1664, 2002.

6. O. Wolkenhauer. Systems biology: the reincarnation of systems theory applied in biology.
Brief. Bioinform., 2(3):258–270, 2001.

7. N. Wiener. Cybernetics: or Control and Communication in the Animal and the Machines.
MIT Press, 2000 (first edition 1948).

8. A. Bellouquid and M. Delitala. Mathematical Modeling of Complex Biological Systems:
A Kinetic Theory Approach. Birkhauer, 2006.



14 ADVANCES IN COMPUTATIONAL SYSTEMS BIOLOGY

9. H. Lodhi and S. Muggleton. Modelling metabolic pathways using stochastic logic
programs-based ensemble methods. In V. Danos and V. Schachter, editors. Second
International Conference on Computational Methods in System Biology (CMSB-04),
LNCS. Springer, 2004, pp. 119–133.

10. J. Southern, J. Pitt-Francis, J. Whiteley, D. Stokeley, H. Kobashi, R. Nobes, Y. Kadooka,
and D. Gavaghan. Multi-scale computational modelling in biology and physiology. Prog.
Bio. Mol. Biol., 96:60–89, 2008.

11. D. Noble. Modeling the heart. Physiology, 19(4):191–197, 2004.

12. P. J. Hunter, E. J. Crampin, and P. M Nielsen. Bioinformatics, multiscale modeling and the
IUPS Physiome Project. Brief. Bioinform., 9(4):333–343, 2008.

13. L. Zhang, C. A. Athale, and T. S. Deisboeck. Development of a three-dimensional multi-
scale agent–based tumor model: simulating gene-protein interaction profiles, cell pheno-
types and multicellular patterns in brain cancer. J. Theor. Biol., 244(1):96–107, 2007.

14. C. Athale, Y. Mansury, and T. Deisboeck. Simulating the impact of a molecular ‘decision-
process’ on cellular phenotype and multicellular patterns in brain tumors. J. Theor. Biol.,
233(4):469–481, 2005.

15. J. J. Tyson and B. Novak. Regulation of the eukaryotic cell cycle: molecular antagonism,
hysteresis, and irreversible transitions. J. Theor. Biol., 210(2):249–263, 2001.

16. T. Alacron, H. M. Byrne, and P. K. Maini. A mathematical model of the effects of hypoxia
on the cell-cycle of normal and cancer cells. J. Theor. Biol., 229(3):395–411, 2004.

17. J. Mora, N. K. Cheung, and W. L. Gerald. Genetic heterogeneity and clonal evolution in
neuroblastoma. Br. J. Cancer, 85(2):182–189, 2001.

18. S. A. Hill, S. Wilson, and A. F. Chambers. Clonal heterogeneity, experimental metastatic
ability, and p21 expression in H-ras-transformed NIH 3T3 cells. J. Natl. Cancer Inst.,
80(7):484–490, 1988.

19. L. Zhang, C. G. Strouthos, Z. Wang, and T. S. Deisboeck. Simulating brain tumor het-
erogeneity with a multiscale agent-based model: linking molecular signatures, phenotypes
and expansion rate. Math. Comput. Model., 49(1–2):307–319, 2009.

20. S. H. Robertson, C. K. Smith, A. L. Langhans, S. E. McLinden, M. A. Oberhardt, K. R.
Jakab, B. Dzamba, D. W. DeSimone, J. A. Papin, and S. M. Peirce. Multiscale compu-
tational analysis of Xenopus laevis morphogenesis reveals key insights of systems-level
behaviour. BMC Syst. Biol., 1(46), 2007.

21. E. Lee, A. Salic, R. Kruger, R. Heinrich, and M. W. Kirschner. The roles of APc and
Axin derived from experimental and theoretical analysis of the Wnt pathway. PLoS Biol.,
1:116–132, 2003.

22. M. Nagel, E. Tahinci, K. Symes, and R. Winklbauer. Guidance of mesoderm cell migration
in the Xenopus gastrula requires PDGF signalling. Development, 131:2727–2736, 2004.

23. A. C. Cuellar and P. Lloyd. An overview of CellML 1.1, a biological model description
language. Simulation: Trans. Soc. Model. Simul. Int., 79(12):740–747, 2003.

24. G. Shinar, R. Milo, M. R. Martinez, and U. Alon. Input–output robustness in simple bacterial
signaling systems. Proc. Natl. Acad. Sci. USA, 104(50):19931–19935, 2007.

25. R. Aebersold and D. R. Goodlett. Mass spectrometry in proteomics. Chem. Rev.,
101(2):269–295, 2001.

26. A. D. Weston and L. Hood. Systems biology, proteomics and the future of health care:
toward predictive, preventative and personalized medicine. J. Proteome Res., 3(2):179–
196, 2004.



REFERENCES 15

27. X. Feng, K. Liu, Q. Luo, and B.-F. Liu. Mass spectrometry in systems biology: an overview.
Mass Spectrom. Rev., 27(6):635–660, 2008.

28. S. Rho, S. You, and D. Hwang. From proteomics towards systems biology: integration
of different types of proteomics data into network models. BMB Rep., 41(3):184–193,
2008.

29. X-M. Zhao, R-S. Wang, L. Chen, and K. Aihara. Uncovering signal transduction networks
from high-throughput data by integer linear programming. Nucleic Acids Res., 36(9):e48,
2008.

30. K. Collins, T. Jacks, and N. P. Pavletich. The cell cycle and cancer. Proc. Natl. Acad. Sci.
USA, 94:2776–2778, 1997.

31. M. Macaluso, G. Russo, C. Cinti, V. Bazan, N. Gebbia, and A. Russo. Ras family genes:
an interesting link between cell cycle and cancer. J. Cell. Physiol., 192:125–130, 2002.

32. A. Sigal, R. Milo, A. Cohen, N. Geva-Zatrosky, I. Alaluf, N. Swerdlin, N. Perzov, T. Danon,
Y. Liron, T. Raveh, A. E. Carpenter, G. Lahav, and U. Alon. Dynamic proteomics in
individual human cells uncovers widespread cell-cycle dependence of nuclear proteins.
Nat. Methods, 3(7):525–531, 2006.

33. R. Narayanaswamy, E. K. Moradi, W. Niu, G. T. Hart, M. Davis, K. L. McGray, A. D.
Ellington, and E. M. Marcotte. Systematic definition of protein constituents along the major
polarization axis reveals an adaptive reuse of the polarization machinery in pheromone-
treated budding yeast. J. Proteome Res., 8:6–19, 2009.

34. K. Shinoda, M. Tomita, and Y. Ishihama. Aligning LC peaks by converting gradient re-
tention times to retention index of peptides in proteomic experiments. Bioinformatics,
24(14):1590–1595, 2008.

35. L. Hayflick. How and Why We Age. Ballantine Books, 1994.

36. J. Campisi. Replicative senescene: an old lives’ tale. Cell, 84:497–500, 1996.

37. J. P. de Magalhaes and R. G. A. Faragher. Cell divisions and mammalian aging: integrative
biology insights from genes that regulate longevity. Bioessays, 30(6):567–578, 2008.

38. T. B. L. Kirkwood. Understanding the odd science of aging. Cell, 120, 2005.

39. V. D. Longo, M. R. Leiber, and J. Vijg. Turning anti-aging genes against cancer. Mol. Cell
Biol., 9:903–910, 2008.

40. V. D. Longo and C. E. Finch. Evolutionary medicine: from dwarf model systems to healthy
centenarians. Science, 299:1342–1346, 2003.

41. C. Kenyon. The plasticity of aging: insights from long-lived mutant. Cell, 120(4):449–460,
2005.

42. J. P. de Magalhaes and G. M. Church. Analyses of human–chimpanzee orthologous gene
pairs to explore evolutionary hypotheses of aging. Mech. Ageing Dev., 128:355–364, 2007.

43. S. K. Kim. Common aging pathways in worms, flies, mice and humans. J. Exp. Biol.,
210(9):1607–1612, 2007.

44. S. K. Kim. Genome-wide views of aging gene networks. Molecular Biology of Aging. Cold
Spring Harbor Laboratory Press, 2008.

45. Y. V. Budovskaya, K. Wu, L. K. Southworth, M. Jiang, P. Tedesco, and T. E. Johnson.
An elt-3/elt-5/elt-6 GATA transcription circuit guides aging in C. elegans. Cell, 134:1–13,
2008.

46. H. Xue, B. Xian, D. Dong, K. Xia, S. Zhu, Z. Zhang, L. Hou, Q. Zhang, Y. Zhang, and
J.-D. J. Han. A modular network model of aging. Mol. Syst. Biol., 3(147), 2007.



16 ADVANCES IN COMPUTATIONAL SYSTEMS BIOLOGY

47. K. Xia, D. Dong, H. Xue, S. Zhu, J. Wand, Q. Zhang, L. Hou, H. Chen, R. Tao, Z. Huang,
Z. Fu, Y. G. Chen, and J. D. Han. Identification of the proliferation/differentiation switch
in the cellular network of multicellular organisms. PLoS Comput. Biol., 2(11):e145, 2006.

48. S. A. Garan, W. Freitag, V. Caspo, P. Chrysler, B. Rizvi, and N. Shewaramani. A compu-
tational systems biology approach to neuroendocrine aging: initial results. Exp. Gerontol.,
42:142, 2007.

49. W. R. Swindell, J. M. Harper, and R. A. Miller. How long will my mouse line? Machine
approaches for prediction of mouse life span. J. Gerontol., 63A(9):895–906, 2008.

50. S. Krivenko and M. Burtsev. Simulation of the evolution of aging: effects of aggression
and kin-recognition. In Advances in Artificial Life, 9th European Conference, ECAL. Notes
in Computer Science 4648, 2007, pp. 84–92.

51. A. Bergman, G. Atzmon, K. Ye, T. MacCarthy, and N. Barzilai. Buffering mechanisms
in aging: a systems approach toward uncovering the genetic component of aging. PLoS
Comput. Biol., 3(8):e170, 2007.

52. W. Materi and S. Wishart. Computational systems biology in drug discovery and develop-
ment: methods and applications. Drug Discov. Today, 12(7–8):295–303, 2007.

53. C. R. Cho, M. Labow, M. Reinhardt, J. van Oostrum, and M. C. Peitsch. The application
of systems biology to drug discovery. Curr. Opin. Chem. Biol., 10(4):294–302, 2006.

54. N. Kumar, B. S. Hendriks, K. A. Janes, D. de Graaf, and D. A. Lauffenburger. Apply-
ing computational modeling to drug discovery and development. Drug Discov. Today,
11(17–18):806–811, 2006.

55. M. L. Billingsley. Druggable targets and targeted drugs: enhancing the development of new
therapeutics. Pharmacology, 82:239–244, 2008.

56. E. C. Butcher, E. L. Berg, and E. J. Kunkel. Systems biology in drug discovery. Nat.
Biotechnol., 22(10):1253–1259, 2004.

57. H. Kitano. A robustness-based approach to systems-oriented drug design. Nat. Rev. Drug
Discovery, 6:202–210, 2007.

58. L.-H. Chu and B.-S. Chen. Construction of a cancer-perturbed protein–protein interaction
network for discovery of apoptosis drug targets. BMC Syst. Biol., 2(56), 2008.

59. C.M. Rosenberger, A. E. Clark, P. M. Treuting, C. D. Jhonson, and A. Aderem. ATF3
regulates MCMV infection in mice by modulating IFN-� expression in natural killer cells.
Proc. Natl. Acad. Sci. USA, 105(7):2544–2549, 2008.

60. S. Nelander, W. Wang, B. Nilsson, C. Pratilas Q.-B. She, N. Rossen, and P. Gennemark.
Models from experiments: combinatorial drug perturbations of cancer cells. Mol. Syst.
Biol., 4(216), 2008.

61. K.-II. Goh, M. C. Cusick, D. Valle, B. Childs, M. Vidal, and A.-L Barabasi. The human
disease network. Proc. Natl. Acad. Sci. USA, 104(21):8685–8690, 2007.

62. A. Amini, S. Muggleton, H. Lodhi, and M.J.E. Sternberg. A novel logic-based approach
for quantitative toxicology prediction. J. Chem. Inform. Model., 47(3):998–1006, 2007.

63. V. Vapnik. The Nature of Statistical Learning Theory. Springer, New York, 1995.

64. A.M. Richard and C.R. Williams. Distributed structure-searchable toxicity (DSSTox) pub-
lic database network: a proposal. Mutat. Res., 499:27–52, 2000.

65. H. Lodhi, S. Muggleton and M. J. E Sternberg. Learning Large Margin First Order Decision
Lists for Multi-Class Classification. In J. Gama, V. S. Costa, A. M. Jorge and P. B. Brazdil,
editors. Discovery Science (DS) 2009, LNCS (LNAI) 5808, Springer, 168–183, 2009.



REFERENCES 17

66. P. Kumar, B. C. Han, Z. Shi, J. Jia, Y. P. Wang, Y. T. Zhang, L. Liang, Q. F. Liu, Z. L. Ji, and
Y. Z. Chen. Update of KDBI: kinetic data of bio-molecular interaction database. Nucleic
Acids Res., 37:D636–D641, 2009.

67. M. A. Swertz and R. S. Jansen. Beyond standardization: dynamic software infrastructure
for systems biology. Nat. Rev. Genet., 8:235–243, 2007.

68. A. D. Cara, A. Garg, G. D. Micheli, I. Xenarios, and L. Mendoza. Dynamic simulation of
regulatory networks using SQUAD. BMC Bioinform., 8(462), 2007.

69. S. Klamt, J. Saez-Rodriguez, and E. D. Gilles. Structural and functional analysis of cellular
networks with CellNetAnalyzer. BMC Syst. Biol., 1(2), 2007.

70. W. J. Longabaugh, E. H. Davidson, and H. Bolouri. Computational representation of de-
velopmental genetic regulatory networks. Dev. Biol., 283(1):1–16, 2005.

71. Z. Zi, Y. Zheng, A. E. Rundell, and E. Klipp. SBML-SAT: a systems biology markup
language (SBML) based sensitivity analysis tool. BMC Bioinform., 9(342), 2008.

72. M. S. Cline, et al. Integration of biological networks and gene expression data using Cy-
toscape. Nat. Protocols, 2(10):2366–2382, 2007.

73. A. E. Carpenter, T. R. Jones, M. R. Lamprecht, C. Clarke, I. H. Kang, O. Friman, D. A.
Guertin, J. H. Chang, R. A. Lindquist, J. Moffat, P. Golland, and D. M. Sabatini. CellProfiler:
image analysis software for identifying and quantifying cell phenotype. Genome Biol.,
7(R:100), 2006.

74. M. P. Lamprecht, D. M. Sabatini, and A. E. Carpenter. CellProfiler: free, versatile software
for automated biological image analysis. Biotechniques, 42(1):71–75, 2007.

75. T. Ideker, T. Galitski, and L. Hood. A new approach to decoding life: systems biology.
Annu. Rev. Genomics Hum. Genet., 2:343–372, 2001.

76. A. Aderem. Systems biology: its practices and challenges. Cell, 121:511–513, 2005.





II

BIOLOGICAL NETWORK
MODELING





2
MODELS IN SYSTEMS

BIOLOGY: THE PARAMETER
PROBLEM AND THE

MEANINGS OF
ROBUSTNESS
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With four parameters I can fit an elephant and with five I can make him wiggle his trunk.
— told by Enrico Fermi to Freeman Dyson and

attributed to John von Neumann [1].

2.1 INTRODUCTION

I coteach a graduate course at Harvard called An Introduction to Systems Biology. It
covers some of the mathematical methods used to build mechanistic models of molec-
ular and cellular systems. Beginning students tend to ask two kinds of questions. Those
with a biological background say “Why do I need to use mathematical models? What
can they tell me that conventional biological methods cannot?”, while those from
the physical sciences (mathematics, physics, and engineering) or computer science
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say “I know how to model. Why is biology any different from physics or engineer-
ing?” Broadly speaking, everyone wants to know, from very different perspectives,
“How do I do systems biology?” Students are usually under the misapprehension that
the person standing in front of them knows the answers to such questions. In my
case, I was only marginally less ignorant than the students themselves. It was their
curiosity and skepticism, along with a realization that the field lacks a shared foun-
dation for discussing such questions, that forced me to think more deeply about the
issues.

This paper is the first of at least two in which I review some tentative conclusions. It
sets out a framework for thinking about models in which I try to rise above the partisan
assertions that are sometimes made—“my kind of model is better than yours”—and
point to some of the broader themes and open problems. It should be obvious that
this can be no more than a report of work in progress and is neither complete nor
definitive. The next paper will discuss, among other things, why models are being used
in systems biology and what we should expect from them [2]. Ideally, this should not
be treated separately, but I found it difficult to do justice to everything in the bounds
of a single paper.

For our purposes, systems biology may be defined as the emerging discipline
that asks how physiology and phenotype emerge from molecular interactions [3, 4].
Mathematical models are being used in support of this, continuing a long tradition
inherited from genetics [5, 6], physiology [7, 8], biochemistry [9–11], evolutionary
biology [12, 13], and ecology [14]. Models, however, mean different things to physi-
cists, mathematicians, engineers, and computer scientists, not to mention to biologists
of varying persuasions. These different perspectives need to be unraveled and their
advantages distilled if model building is to fulfill its potential as an explanatory tool
for studying biological systems. I begin in Section 2.2 by pointing out that most
mechanistic models (as opposed to those arising from “omics”) can be thought of
as some form of dynamical system. This provides a unified framework in which to
compare different kinds of models. Mechanistic models are often complex, in the
sense of having many undetermined parameters, and the parameter problem emerges
as one of the central difficulties in the field. Different disciplines provide sharply
contrasting approaches to this, as I discuss in Section 2.3, and this has tended to
obscure the problem in the literature. Attempts are sometimes made to resolve the
parameter problem by making assertions of “robustness.” This is generally regarded
as a desirable feature—who could doubt that biology is robust? However, its wide
usage is often uncorrelated with precise definition. I identify in Section 2.5 four kinds
of robustness that arise in the dynamical systems framework and review some previ-
ous studies in terms of this classification. Section 2.4 outlines the qualitative view of
dynamical systems that forms the basis for this discussion.

Parameters and robustness are concepts that have been widely studied in
mathematics, engineering, and statistics. My intention here is not to review this mate-
rial, for which there are many standard texts—see, for instance, Varma et al. [15] and
Walter and Pronzato [16]—but rather to show how these concepts are being used, and
sometimes abused, in systems biology and to draw attention to some of the scientific
issues that arise from that.
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2.2 MODELS AS DYNAMICAL SYSTEMS

Two broad directions have emerged in systems biology. The first, “omics,” initiated
by new technologies such as the microarray [17], relies on inferring causality from
correlation in large datasets (see, for instance, Sieberts and Schadt [18]). To the extent
that models are used, they are statistical in character. The second direction, which
might be called “mechanistic” systems biology, has been less visible but has deeper
historical roots [7–11]. The resulting models specify molecules, cells, and tissues and
their interactions based on what is known or believed to be true. It is with the latter
type of model that we will be concerned here. The subtleties of causal analysis are
well discussed elsewhere [19].

Most mechanistic models in systems biology can be regarded as some form of
dynamical system. A dynamical system describes the states of a biological system
and how these states change in time. It can be abstractly visualized as in Figure 2.1 as
a state space, upon which is imposed a temporal dynamics: Given a particular state
as an initial condition, the dynamics define the trajectory taken over time from that
starting point. Not all models take this form. For instance, constraint-based models
represent systems at steady state and have no explicit representation of time [20]. We
focus here on models that do.

Parameter space

State space

Parameter values

Attractor
Initial condition

Trajectory

Dynamics

Figure 2.1 Dynamical system. A point in parameter space, given by a set of parameter values,
defines the dynamics on the state space. If the system is prepared in an initial condition, then
the dynamics typically lead to an attractor, pictured here as a star. Common attractors are steady
states or periodic orbits but they can be much more complex [46]. Note that some trajectories
leave the attractor, indicating that it is unstable, as discussed in Section 2.4.1. The parameter
and state spaces are pictured as abstract sets. For ODE models, they usually correspond to
Euclidean spaces, Rk , of some dimension k but for other kinds of models the state space can
be infinite dimensional (PDEs or stochastic models) or not have any linear structure (discrete
models).
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Dynamical systems usually depend on parameters. In abstractly visualizing a
dynamical system, therefore, one should always keep in mind the parameter space
that accompanies the state space, as in Figure 2.1. The dynamics on the state space
cannot be defined without first specifying the parameter values, thereby fixing a point
in parameter space. As this point varies, so do the dynamics.

2.2.1 Continuous Models

A type of model that is frequently used is one in which the state of a molecular
component, x, is its concentration in some cellular compartment (cytoplasm, plasma
membrane, etc.), which we will also denote by x and treat as a function of time,
x(t). The temporal dynamics are then described by an ordinary differential equation
(ODE) for the net rate of production of x. This is how the biochemistry of enzymes has
been modeled [21], which provides a foundation for models of molecular networks
[22, 23]. As an example, if x is produced at a (zero order) rate of a molar per second
and consumed at a (first order) rate of b per second, then

dx

dt
= a− bx. (2.1)

In this case, the dynamical system has a one-dimensional state space, consisting of
the single state variable x, and a two-dimensional parameter space, consisting of the
two parameters a and b. Since (2.1) is linear, it can be readily solved [24]:

x(t) = a

b
−
(a

b
− x0

)
exp(−bt), (2.2)

where x0 is the initial condition from which the system starts at time t = 0: x(0) = x0.
We see that no matter where the system is started from, it relaxes exponentially to
the unique steady state, x = a/b, at which production and consumption are exactly
balanced. As the values of the parameters a and b change, the steady state also
changes but the dynamics remain “qualitatively” the same. Much of the difficulty in
comprehending nonlinear, higher dimensional systems lies in understanding how this
very simple picture has to be refined; see Section 2.4.

Example (2.1) is unusual in that it is explicitly solvable in a closed form in which
the parameters appear as symbols. Most dynamical systems arising in systems biology
are nonlinear and cannot be solved in this way (except possibly at steady state; see
Section 2.4.2.3). They have to be studied by simulation, for which parameter values
must be specified. The difficulties with this—the parameter problem—are discussed
in Section 2.3.

Several kinds of differential equation models have proved useful in systems
biology, reflecting the emergence of new experimental techniques. Fluorescent sen-
sors have revolutionized cell biology, making it possible to image specific proteins in
individual living cells in real time and revealing extraordinary dynamical complexity.
Ionic calcium, Ca2+, for instance, exhibits sparks, puffs, oscillations, and traveling
waves in certain cell types [25], reflecting its role as a second messenger linking
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external signals (first messengers) to a spectrum of cellular responses. To model this,
spatial compartments need to be represented as two- or three-dimensional geometries,
rather than as unstructured entities like “cytoplasm” and “membrane,” and the dynam-
ics need to be described by partial differential equations, often of reaction–diffusion
type, with the compartment geometry entering into the boundary conditions [26].

The same fluorescent technology has more recently made it possible to mea-
sure noise in individual cells, revealing the impact of both molecular stochasticity
(“intrinsic noise”) and cell-to-cell variability (“extrinsic noise”) [27, 28]. Extrinsic
noise can sometimes be modeled as a probability distribution on the initial condi-
tions of a deterministic model or by adding external noise terms, as in the Langevin
approach [29]. Molecular stochasticity, however, requires some form of stochastic
master equation in which the state of a component is described by the probability
distribution of the number of molecules of component x, as a function of time, and
the dynamics are described by stochastic differential equations [29].

2.2.2 Discrete Models

Differential equation models of the kinds discussed above are familiar in the physical
sciences, biochemistry, and physiology. Biologists, however, often find it convenient
to describe gene expression in terms of discrete states—on/off or low/high—and the
development of microarray technology allows mRNA levels to be quantified into
multiple discrete levels, as in the familiar heat maps. Genetic manipulations also lead
naturally to causal inferences expressed in Boolean logic: “in the absence of X, Y
becoming low leads to high Z.” These kinds of data and reasoning can be modeled
by dynamical systems with discrete states, where the temporal dynamics are given
by discrete transitions between states, rather than being parameterized by a global
clock, t, that marks the passage of time. When states are composed of many discrete
variables (e.g., many genes), state transitions may take place synchronously, with
each variable being updated simultaneously, or asynchronously, with variables being
updated independently of each other.

Discrete models often permit abstraction from the mechanistic details [30]. Such
abstraction may lead to an absence of visible parameters, which is sometimes touted
as an advantage of discrete models over continuous models. Such assertions should be
treated skeptically. Parameters are usually insidiously hiding in the unstated assump-
tions that accompany a discrete model. For instance, for states composed of many
discrete variables, the assumption of asynchronous timing gives equal opportunity to
each interleaved sequence of updates. In reality, each variable may have its own rate
of change and a model that took these rates into account as parameters would select
some interleaved sequences in preference to others. Such distinctions are beyond the
scope of unparameterized discrete models but may sometimes have serious biological
implications.

Discrete models have a long history in biology [31, 32], prior to the recent
resurgence of interest in them via computer science [33]. Theoretical computer sci-
entists view discrete models as computing machines [34]. A Turing machine, for in-
stance, is a discrete state/transition system coupled to a read/write memory. Computer
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scientists are concerned, among other issues, with methods for constructing such ma-
chines, for instance, for building complex machines out of simpler ones. This intro-
duces a syntactic capability that is lacking from the physical science perspective but
which becomes important in building models [35, 36].

One way to construct a complex model is to regard it as emerging from the col-
lective interactions of independent agents, each of which has its own internal state
and can undertake computations based on rules about its state and the state of other
agents in the system [35, 37, 38]. For instance, each individual molecule could be an
agent and the computations undertaken by agents could represent chemical reactions
between molecules. Such agent-based systems capture molecular fluctuations and can
reproduce stochastic models but their syntactic structure permits additional forms of
analysis such as model checking or abstract interpretation, which have been important
in computer science [33, 39].

This last example illustrates the limitations of Figure 2.1. In an agent-based system,
the state space may unfold with the dynamics and is then no longer a static entity.
More generally, cells produce new cells, organisms produce new organisms; one of the
characteristic features of biology is its capability for self-reproduction. There exists
no general mathematical framework for dynamical systems in which the dynamics
reconstruct the state space as they progress. Hybrid models, which combine discrete
and continuous dynamics, provide only a partial kludge [40].

Thinking in terms of dynamical systems draws attention to the state of the system.
Deciding how the state should be represented, whether coarsely as Boolean levels or
at fine grain in an agent-based description or somewhere in between as concentrations,
and how time and space should be modeled, should depend not on the disciplinary
prejudices of the modeler but on the nature of the experimental data and the kinds
of biological questions that are being asked. No one type of model is best for all
purposes.

2.3 THE PARAMETER PROBLEM

Biological systems have many “moving parts,” whose collective interactions produce
the physiology or phenotype of interest. Two general strategies have emerged to
model this complexity. One seeks to bring the model’s assumptions close to reality by
embracing the details of components and interactions. The resulting models are thick,
with many states and more parameters. The other strategy moves in the opposite
direction and seeks to abstract the essentials from the details, giving rise to thin
models with fewer parameters. Despite parochial assertions to the contrary, both
strategies have provided biological insight; their pros and cons are discussed in the
companion paper to this [2]. In both cases, but most especially with thicker models,
the problem arises of determining parameter values in a way that maintains credibility
in a model’s conclusions. The importance of this problem has tended to be obscured in
the literature for several reasons. On the one hand, it is easier to assert (particularly to
an experimental audience) “This model accounts for the data” than “This model, with
these parameter values, accounts for the data.” The latter formulation invites awkward
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questions as to why those parameter values were chosen and not others. (One might
have included “initial conditions” along with parameter values but since the initial
conditions are values of state variables, they share the same level of measurability
and are, therefore, usually easier to determine than parameter values.) Even if editors
and reviewers are aware of the problem—and it seems they are mostly not—they
are generally disinclined to ferret about in the Supplementary Information, to which
graveyard such technical details are usually consigned. Finally, such a variety of
approaches have something to say about the problem that it is hardly surprising to
find confusion as to best practice. Here, we emphasize the significance and centrality
of the parameter problem by contrasting different disciplinary perspectives of it.

2.3.1 Parameterphobia

Parameters are anathema to physicists, who take the view expressed in the quotation
from von Neumann that, with enough parameters, any behavior can be modeled.
Of course, von Neumann was joking: a weighted sum of increasing functions with
positive weights (parameters) can never fit a decreasing function, no matter how many
parameters are used. (See Section 2.4.2.1 for a more relevant example.) However, the
truth behind the joke distills a long tradition of modeling the inanimate world on
the basis of the fundamental laws of physics. Biology, while founded entirely upon
these laws, is not modeled in terms of them. Molecular or cellular behavior is not
deduced from Schrödinger’s equation. At best, a model may be based on chemical
principles such as the law of mass action. At worst, it may rely on some ad hoc
guess that is only tenuously related to specific biological knowledge, let alone an
underlying molecular mechanism. We have, in such cases, no systematic methodology
for avoiding parameters.

While physicists are familiar with parameters and keep them firmly in their place,
computer scientists (at least those of a theoretical disposition) are less acquainted with
them. The discrete models used in theoretical computer science, like finite automata
or Turing machines, have no parameters [34]. (They may have labels but these are
passive adornments that do not effect the rate of state transitions.) When discrete
models are parameterized, they transmogrify into Markov chains, whose properties
are more commonly studied elsewhere than in computer science. In consequence,
computer science has had little to say about the parameter problem.

2.3.2 Measuring and Calculating

Ideally, parameter values should be independently measured. In practice, our limited
ability to make quantitative measurements of molecular states makes this difficult
if not impossible for many parameters. Even when parameters have been measured,
the conditions may have been sufficiently different as to raise doubts as to the rel-
evance of the measurements. In vitro values, for instance, may differ substantially
from those in vivo, while in vivo measurements themselves may require very careful
interpretation [41]. Nevertheless, such measurements as do exist are often useful for
initial analysis. Molecular dynamics (MD) calculations—arising from atomic-scale
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models—can now provide illuminating explanations of intramolecular behavior [42].
Certain kinds of parameters, such as binding constants, might be calculated from such
MD models. Since these calculations are limited largely by computational power, it
would be unwise to bet against them in the long run, but it seems unlikely that they
will yield a systematic approach anytime soon. They will, in any case, be limited to
only certain kinds of parameters and to molecules whose atomic structures are well
understood.

2.3.3 Counter Fitting

Engineers are accustomed to building thick models with many parameters—of
chemical reactors or combustion chambers, for instance—and determining parameter
values by fitting to quantitative data [16]. This is the strategy most widely adopted in
systems biology when sufficient data of the right kind are available. The development
of nonlinear optimization algorithms has made parameter fitting easy to undertake
but has also concealed its dangers. These take several forms. The structure of a model
may render it nonidentifiable a priori: It may not be possible, even in principle prior to
any data fitting, to determine certain parameter values. Even if a model is identifiable,
the fitting process itself may need to be carefully examined. The reported optimum
may be only local. Even if a global optimum is found, there may be several parameter
sets that yield roughly similar optimal values. In other words, the energy landscape
underlying the optimization may be undulating with many optimal valleys rather than
a broad funnel leading to a single optimum. A classic example is that of fitting a sum
of two exponentials; see, for instance, Figure 4.6 of Lakowicz [43].

The second and more serious danger in model fitting brings us back to the broader
significance of von Neumann’s quip. How is a model to be rejected? The answer “when
there are no parameter values that fit the data” would not have satisfied von Neumann
because, in his view, a model that is complex enough may fit all manner of data. In
other words, the rejection criterion is inadequate. As we will see in Section 2.4.2.1, the
behavior of biochemical models is more subtle than this: models with arbitrary many
parameters may sometimes have the simple qualitative behavior shown by Eq. (2.2).
The core issue may be restated in terms of explanatory power. A model does not
explain the data to which it is fitted; the process of fitting already incorporates the
data into the model.

Of course, parameter fitting is widely used in other areas of science. An X-ray
crystal structure, for instance, is obtained by fitting an atomic model to diffraction
data, with many free parameters (bond angles, bond lengths, etc.). In such cases,
independent cross-validation is used [44]. The data are partitioned into two sets:
“test” data and “working” data. Parameters are determined by fitting on the working
data. Having been fitted, they are used to account for the test data. If they do, the model
is accepted; if not, it is rejected. Hodgkin and Huxley used a similar strategy for their
famous model of the action potential in the squid giant axon [8]. The parameters were
fitted in independent experiments on each of the three ion channels. Once fitted, the
model, with those parameter values, was shown to numerically reproduce the time
course of the action potential. Another strategy is to use wild-type data as working
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data and mutant data to test it by computationally mimicking the effect of the mutation
[45]. As these examples make clear, a model’s explanatory power comes from being
able to account for data to which it has not been fitted.

Merely showing that quantitative data can be accounted for with some choice of
parameter values can be such an effort, particularly with thick models, that it is often
regarded as sufficient in itself. While this is easy to get away with, at least at present,
it is not a good foundation for a new discipline.

2.3.4 Beyond Fitting

Determining a specific set of parameter values and accounting for novel data is only
part of the parameter problem. We have a general suspicion of models that are fine-
tuned, for which some parameters require precise values. They are not “robust.”
(Much the same argument is made about unstable steady states; see Section 2.4.1.)
Robustness is a good feature, so the argument goes, because there are always errors,
often substantial errors, in measuring and fitting data. Related systems might also be
expected to show qualitatively similar behavior but not have quite the same parameter
values. If a model can be shown to be robust to changes in parameter values, then
one can be more confident in drawing conclusions from it despite such uncertainties.
There may also be properties of a model that are robust to variation in certain param-
eter values, like temperature compensation in circadian oscillators. Identifying such
properties may yield biological insight; see Section 2.5.3. Aside from such robust-
ness, which we will discuss further in Section 2.5, there may not always be sufficient
quantitative data, or data of the right type, to fit all parameter values. The available
data may, for instance, not be numerical but qualitative, as in developmental patterns.
Finally, models can also be used in an exploratory way to understand how to think
about a system in the first place, prior to any determination of parameter values. In
all these cases, it becomes important to know how the model’s behavior varies as a
function of parameter values. This is the broader aspect of the parameter problem. To
address it, a more qualitative view of dynamical systems becomes necessary.

2.4 THE LANDSCAPES OF DYNAMICS

2.4.1 Qualitative Dynamics

Although the general ideas outlined in this section apply to most forms of dynamical
system, they are best understood for ODE models [23, 46]. Figure 2.2 illustrates, in a
simple case, the kind of behavior to be expected of a model similar to example (2.1),
in which

dx

dt
= f (x; a), (2.3)

where x ∈ Rn is a vector of state variables, a ∈ Rm is a vector of parameters, and
f : Rn → Rn is the vector rate function expressing the balance between production
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Figure 2.2 Qualitative dynamics. Panels (a), (c), and (d) show different patterns of trajectories
on the state space—the nonnegative quadrant of R2—of the ODE model dx1/dt = bx2 − x1,
dx2/dt = a(1+ x 3

1 )/(10+ x 3
1 )− x2, adapted from Ozbudak et al. [52]. Each figure shows the

trajectories starting from the initial conditions with integer coordinates on the boundary of
the box defined by the origin and (5, 4). Note that the vertical axis is the same in each fig-
ure but the horizontal axis varies. Black square denotes a stable steady state, open square an
unstable saddle point. Some trajectories go to the state with high x1 value, others to the state
with low x1 value. Panels (a) and (d) have only a single basin of attraction leading to a stable
state. Panel (c) has three basins of attraction corresponding to bistability. The dashed line marks
the approximate location of the (one-dimensional) basin of attraction of the saddle point, which
provides the boundary between the two larger (two-dimensional) basins leading to the stable
states. Panel (b) shows the parameter space for the two parameters a and b divided into regions
corresponding to parameter values with qualitatively similar dynamics. Note the bifurcations—
creation or destruction of steady states—that arise as the boundaries of regions are crossed, a
behavior that was absent in example (2.1). Both basins of attraction and parameter regions can
be much more complex than in this simple example, particularly in higher dimensions.

and consumption of each xi. Biological state variables are frequently non-negative
(concentrations, for instance) and the state space may then be taken to be the non-
negative orthant of Rn. For any given set of parameter values, the trajectory starting
from a given initial condition will typically converge upon an attractor: a limited
region of the state space within which trajectories become confined. For instance,
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the trajectory may reach a steady state, as in example (2.1), or a periodic orbit, as in
models of the cell cycle [23], circadian rhythms [47], or developmental clocks [48].
Chemical systems can also have more complex attractors and exhibit behaviors like
bursting and chaos [49], which may have some biological role in the excitable tissues
found in cardiac and neural systems [50]. A dynamical system may have several
different attractors for a given set of parameter values. A familiar instance in systems
biology is bistability [23, 51, 52], in which a dynamical system has three attractors,
consisting of two stable steady states and one unstable steady state (Figure 2.2(c)). In
this case, different initial conditions may reach different attractors and each attractor
will have its own basin of attraction consisting of those initial conditions that lead to
it. The state space breaks up into multiple disjoint basins of attraction, each leading
to a unique attractor.

The geometry of a basin of attraction reveals something of the dynamics leading to
the corresponding attractor. For instance, a steady state is stable if its basin of attraction
has the same dimension as that of the ambient state space (dimension 2 for the two
stable states in Figure 2.2(c)). If its dimension is lower, then moving away from the
attractor along one of the missing dimensions leads outside the basin of attraction and
toward some other attractor. This is the case for the saddle point in Figure 2.2(c) for
which the basin of attraction has dimension 1. The argument is made that an unstable
steady state is never found experimentally because random perturbations (“noise”)
would destabilize it. Stable states are “robust” to such perturbation. Consequently, a
steady state of a model that is claimed to represent some observed behavior should
always be checked to be stable. However, if only a few dimensions among hundreds are
missing from a basin of attraction, then it may be possible for the system to linger in the
corresponding steady state for an appreciable time, relative to the noise timescales
in the system, before becoming destabilized. Our experience of high-dimensional
systems is still too limited to know how significant this might be.

The dynamics may also satisfy constraints, which complicate the above picture.
We will return to this in Section 2.5.2.

The dimension of a basin of attraction can often be estimated in the local vicinity of
an attractor. For instance, the Hartman–Grobman theorem [53] tells us that for a rea-
sonable (“nondegenerate”) steady state, x = x∗, the local dynamics are qualitatively
the same as those of the linearized system, in which the full dynamics represented by
f (x) is replaced by the linearized dynamics

dx

dt
= J(x∗)x, (2.4)

where J(x) is the n× n matrix of first partial derivatives (the Jacobian), Ji,j(x) =
∂fi/∂xj . Since linear equations are solvable, (2.4) gives considerable information
about the local vicinity of steady states, including the (local) dimension of the basin
of attraction [24]. In contrast, rather little is known, in general, about the global
geometry of basins of attraction. Are they large or small and is their shape long
and thin or short and squat? A characteristic difficulty in dynamical systems derived
from differential equations is that local behavior may be accessible (a derivative is a
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Figure 2.3 Waddington’s epigenetic landscapes. As he put it, “A multidimensional phase space
is not very easy for the simple-minded biologist to imagine or to think about.” [56, p. 27]. (He refers
to the state space by its alternative name of “phase” space.) (a) Waddington abstracted dynamics
on the high-dimensional state space of a developing embryo into a picture of a ball rolling down
an inclined landscape into a branching fan of valleys and coming to rest at the end of one of them
[56, Figure 4]. The end points represent different attractors, corresponding to different differenti-
ation states of the organism. (b) Waddington’s analogy for the action of genes on development
shows the underside of the landscape being maintained by guy ropes in tension [56, Figure 5].
Each peg represents a gene that can have multiple effects and each attachment point can have
multiple genes influencing it. Changes to a single gene may sometimes have little effect on the
dynamics, depending on the background of the other genes.

measure of local slope) but global behavior can be very challenging to analyze. For
new developments in this direction see, in particular, GutenKunst et al. [54] and Rand
[55].

Systems biology forces us to confront the subtleties of global dynamics in high-
dimensional spaces. This was already apparent to Conrad Waddington over 50 years
ago [56]. His “epigenetic landscape” (Figure 2.3(a)) was an attempt to create a
visualizable analogy for the complex dynamics through which an egg gives rise to an
adult organism. (Sewall Wright’s earlier “adaptive landscape” had a similar heuristic
intent for the dynamics of genotypes during evolution but lacked the moving parts
[57].) The epigenetic landscape continues to provide a conceptual basis for thinking
about biological dynamics in high dimensions [58]. While many biologists are now
familiar with the ball rolling down the valleys, fewer are aware of the mathematical
models that Waddington used to arrive at this analogy [56, Chapter 2].

The picture of trajectories in state space holds for a given set of parameter val-
ues. If we now imagine moving through the parameter space, the pattern of trajec-
tories will change (Figure 2.2(b)). In general, the parameter space itself also falls
into disjoint regions. Within each region, the pattern of trajectories remains qualita-
tively (“topologically”) similar. It is as if the trajectories were inscribed on rubber
and the rubber is stretched: While distances change, the connectivities remain the
same. Different parameter regions, however, exhibit qualitatively different patterns
(Figure 2.2(b)). In moving between regions, attractors may appear or disappear or
change their dynamical characteristics, for instance, from stable to unstable, and the
trajectories may reorganize themselves accordingly. Such bifurcations are usually key
features of the overall behavior [46].
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Waddington was well aware of the role of parameters and illustrated them through
the use of guy ropes, representing genes with pleiotropic effects (Figure 2.3(b)). While
this gives a vivid illustration of systems behavior, it is less satisfactory in giving a
sense of the landscape of parameter space. Waddington was a remarkable scientist,
who, more than any other, anticipated modern systems biology [59] and dismantled
some of the barriers between biology and mathematics—see Section 2.5.4. He was
marginalized in his own time partly because he was so far ahead of it in thinking
about development, genetics, and evolution as an integrated system. It is good to see
his reputation restored for a modern audience [60].

For a given dynamical system, it would be useful to know, at least, the number of
parameter regions and, for each region, the number of attractors and their types. No
general methods are known for eliciting such details but some partial insights have
come from different mathematical approaches.

2.4.2 Steady State Attractors of ODE Models

2.4.2.1 Chemical Reaction Network Theory Example (2.1) has only a sin-
gle parameter region and only a single attractor—a stable steady state—for all param-
eter values in that region. Remarkably, more complex models may still exhibit similar
behavior. This emerges from Feinberg’s chemical reaction network theory (CRNT)
[61]; see Gunawardena [62] for an overview and other references. CRNT applies to
the ODE model coming from a network of chemical reactions by applying the prin-
ciple of mass action. It associates with such a network a nonnegative integer called
the “deficiency”, which does not depend on the values of the parameters but only on
the underlying network of reactions. The deficiency is the dimension of a certain lin-
ear subspace, reflecting one of the key insights of CRNT: Behind the nonlinearity of
mass-action kinetics, there exists a remarkable degree of hidden linearity [62]. Under
reasonable conditions, deficiency zero networks behave like example (2.1): Provided
constraints are respected (see Section 2.5.2 for an explanation of constraints), there
is a single parameter region and only a single stable steady state for all parameter
values in that region [61, 62]. This theorem is important because it shows that thick
models, with many parameters, may nevertheless have simple qualitative dynamics.
One cannot always fit an elephant! Having said that, the “deficiency zero theorem”
is too restricted to be widely used in systems biology, where parameter values have
typically been found to influence the qualitative dynamics. Recent developments in
CRNT may be more relevant [63] and the full implications of CRNT for systems
biology remain to be worked out.

2.4.2.2 Monotone Systems The dependence of the qualitative dynamics on
the parameters can often be calculated for ODE models with only two state variables.
The method of nullclines provides a geometric guide to the existence of steady states
and there are mathematical theorems, like that of Poincaré–Bendixson, that help
identify more complex attractors like periodic orbits [46]. Such methods are strictly
limited to two-dimensional systems. Sontag and others have shown, nevertheless, that
the steady states of certain high-dimensional ODE systems, with many state variables
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and parameters, correspond to those of an associated two-dimensional system [64].
There are several requirements for this method to work; among the most crucial
is that the high-dimensional system is monotone, meaning, roughly speaking, that
its dynamics preserve an underlying order on the state space (for full details, see
Angeli et al. [64]). Powerful mathematical results are known for such monotone
systems, upon which is based the reduction from many dimensions to 2. For a model
that satisfies the requirements, monotone theory shows that the steady state behavior
and its parameter dependence is no more complex than would be expected for the
associated two-dimensional model. This can be a useful tool when it can be applied.

If an enzymatic reaction is modeled in the standard biochemical manner [21],
with an enzyme–substrate complex and mass-action kinetics, then it is not monotone.
It becomes monotone in the quasi-steady-state approximation, which leads to the
familiar Michaelis–Menten rate function. While continuing to be widely used in
complex models, the Michaelis–Menten function is suspect for at least two reasons.
First, in the context of a single enzyme acting on a single substrate, it emerges through
a singular perturbation based on a separation of timescales, which is only known to
be accurate under certain conditions on the enzyme and substrate [65, 66]. Second,
because the enzyme–substrate complex is removed from the dynamics (which is
what makes the perturbation singular), the approximation cannot capture enzyme
sequestration when there are many substrates present. This can readily lead to errors.
The “total quasi-steady-state” approximation appears safer in both respects [67]. It
would be interesting if a separation of timescales argument could be found that was
broadly accurate and also resulted in monotonicity.

2.4.2.3 Algebraic Geometric Methods As the previous discussion suggests,
there is much to be said for constructing a model directly from a network of chemical
reactions using the principle of mass action. This is a systematic procedure that allows
the biochemistry to be modeled in a realistic form. (Of course, the sheer complexity of
biology may make this infeasible in general.) Mass action has one other consequence,
which has, until recently, been largely overlooked. If the rate function f (x; a) in
Eq. (2.3) comes from some network of chemical reactions by mass action, then it
is always a polynomial function of the state variables, x1, . . . , xn. Accordingly, the
steady states of the system, at which dx/dt = 0, correspond to an algebraic variety
[68]. One of the interesting features of algebraic geometry, which it shares with linear
algebra, is that it can be undertaken over an arbitrary coefficient field. In particular, the
set of steady-state solutions, {fi(x; a) = 0}, can be regarded as an algebraic variety
over the field R(a) of real rational functions in the parameters, a1, . . . , am. In other
words, the parameters can be treated as uninterpreted symbols, rather than as actual
numbers, to which can be applied, nevertheless, all the usual arithmetic operations of
addition, subtraction, multiplication, and division.

While this possibility is evident, it has not previously been exploited because there
appeared to be nothing one could say about the geometric structure of the steady-
state variety. Recently, we have shown that for multisite phosphorylation systems,
the steady-state variety forms a rational algebraic curve over R(a) [69, 70]. Ratio-
nality provides an explicit description of the steady states, which, together with the
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ability to roam algebraically over the parameter space, leads to unexpected insights.
We show that such systems can have a parameter region with multiple stable steady
states, whose maximum number increases with the number of sites, suggesting that
multisite phosphorylation, which plays a key regulatory role in most cellular pro-
cesses, can implement complex information processing [70]. The method also yields
stringent quantitative predictions that, nevertheless, do not require parameter values
to be known or estimated [69]. While these results are currently limited to post-
translational modification [71], they suggest that algebraic geometric methods may
have wider application to the parameter problem in systems biology.

The freedom to treat parameters as algebraic symbols applies only to the steady
state; the dynamics, which depend upon derivatives and infinitesimal procedures,
are fundamentally nonalgebraic. It remains an interesting question, however, to what
extent other attractors, such as periodic orbits, can also be analyzed symbolically.

2.5 THE MEANINGS OF ROBUSTNESS

Robustness is one of the themes to have emerged in systems biology [72–75] and it is
particularly relevant to the parameter problem. Unfortunately, it is also one of those
concepts whose wide usage has not been matched by precise definition. Robustness
means, broadly, that some property of the system remains the same under perturbation.
To make this precise, it is necessary to say what the property is, in what sense it remains
the same, and what kinds of perturbations are being considered. The property might
be the overall qualitative dynamics of a system, in which case “remaining the same”
could mean that the number and type of attractors and the connectivity and shape of
the trajectories remain the same under perturbation. Alternatively, the property could
be a quantitative function evaluated on an attractor, like the period of a periodic orbit.
In this case, “remaining the same” could mean that the property remains quantitatively
unchanged under perturbation (“exact robustness”) or that it only changes by a limited
amount (“approximate robustness”). As for perturbations, at least three different kinds
can be distinguished: changes to parameter values, changes to initial conditions, and
changes to the functional form that describes the dynamics (i.e., the f in Eq. (2.3)
for an ODE model). These perturbations have distinct mathematical and biological
implications. We will discuss the first two as preparation for reviewing some influential
studies of robustness and then return to the third.

2.5.1 Parameter Biology

Consider an ODE model derived by the principle of mass action from a network
of biochemical reactions. In this case, the parameters are rate constants of various
kinds: association rates, disassociation rates, catalytic rates, and so on. Such rates are,
hopefully (see the next paragraph), intrinsic features of the corresponding proteins
and would not be expected to change except through alterations to their amino acid
sequences. This could happen on an evolutionary timescale, so that different species
may have different parameter values, but this would not be expected to happen in



36 MODELS IN SYSTEMS BIOLOGY

different cells of the same organism or tissue or clonal population of cells in cell
culture. The situation could be different in a polyclonal population, such as a tumor
or a natural population of outbred organisms, in which there could be substantial
genetic polymorphism. Depending on which loci exhibit polymorphism and how it
affects protein function, this genetic variation could give rise to rate constant variation
between different cells or different organisms.

(A caveat is essential here. Rate constants are not solely determined by intrin-
sic features of a protein. They also depend on the ambient conditions in the cell—
temperature, pH, and other ionic strengths—as well as, potentially, posttranslational
modifications such as disulfide bridges or glycosylations, or the presence of accessory
molecules such as chaperones or scaffolds, none of which might have been included
in a model. The reductionist approach commonly used in systems biology, in which
the properties of a system are deduced from its components, is always at risk of the
system biting back: The properties of the components may depend on that of the sys-
tem [2]. To put it another way, the boundary of a system has to be drawn somewhere,
with the implicit assumption that what is outside the boundary is irrelevant to the
behavior inside. Such assumptions tend to be taken for granted until they fail.)

Models are not always deduced from mass action. For instance, separation of
timescales is often convenient, if not essential, in reducing complexity. Whether this
is achieved through the suspect “quasi-steady state” or the safer “total quasi-steady
state,” approximations discussed in Section 2.4.2.2, it necessarily leads to parameters
that are no longer rate constants. Similarly, models of allosteric enzymes [76, 77] or
rate functions for gene expression in terms of transcription factor binding [78] are
also based on separation of timescales and lead to rational algebraic rate functions
resembling the ubiquitous Hill functions. (Despite their very wide usage, Hill func-
tions are not derived from any approximation and have no well-founded mechanistic
interpretation [21].) The basic issues can be discussed for the Michaelis–Menten
formula

rx

k + x
, (2.5)

in which r, the maximal rate, and k, the Michaelis–Menten constant, are the two
parameters. Of these, k is derived from rate constants [21] and may hence be assumed
to vary only under the same conditions. Notice, however, that this depends on the
underlying mechanistic derivation of (2.5) and on the assumptions behind it. As for r,
it is, in terms of the usual derivation [21], a product of a catalytic rate and an enzyme
concentration. The enzyme is not formally part of the dynamics but its concentration
can change on multiple timescales. On a physiological timescale, the concentration
is set by the balance between synthesis and degradation and could readily vary from
cell to cell within a single organism, tissue, or clonal population through differences
in cell volumes, intrinsic noise in transcription/translation, and stochastic partitioning
of molecules during cell division. In polyclonal populations, genetic variation or gene
copy number variation could introduce additional variation in concentration levels.
These factors would also play a role on a longer evolutionary timescale. As we see, the
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biological interpretation of changes to parameter values depends both on the model
and the nature of its parameters and on the biological context that is being modeled.

2.5.2 Robustness to Initial Conditions

If the property thought to be robust is associated with an attractor, such as a steady
state, then its robustness to initial conditions would seem to follow from the stability
of the attractor, in the sense discussed in Section 2.4.1. However, it is often the case
that the dynamics satisfy additional constraints. For instance, an enzyme suffers no
net change in concentration in any reaction that it catalyzes. If it is not being other-
wise synthesized or degraded, then its total concentration remains constant at all times.
Similarly, if a substrate exists in many states of modification—multisite phosphoryla-
tion, for instance—and is also not synthesized or degraded, then its total concentration
remains constant. (Note that these constraints are linear in the state variables; non-
linear constraints may also be possible.) If there are k independent constraints, they
confine the dynamics to lie within a subspace of dimension d = n− k, where n is
the dimension of the ambient space. The state space thereby becomes divided into
“slices” of dimension d, each corresponding to a set of constraint values (Figure 2.4).
Within each slice, the dynamics behave as they did in Figure 2.1, with attractors,
basins of attraction and stability, as appropriate to an ambient space of dimension
d (not n). However, its qualitative character can change with the constraint values.
Hence, the constraint space also becomes divided into regions, within each of which
the dynamics in the corresponding slices remain qualitatively similar (Figure 2.4).

Figure 2.4 Dynamical system with constraints. The state space becomes divided into “slices,”
represented by the straight lines, each slice corresponding to a set of constraint values, repre-
sented by a point in the space of constraints. Note that if the invariants are nonlinear, then the
slices may be curved spaces. The dynamics are confined within the slices. If an initial condition
is chosen within a slice, then the trajectory remains within that slice for all time; trajectories never
cross between slices. The dynamics within a slice can have attractors, represented by stars,
and other features as described in Figure 2.1 but their qualitative character can change as the
constraints vary, as illustrated by the appearance and disappearance of attractors.



38 MODELS IN SYSTEMS BIOLOGY

Unlike variation of parameters, rather little seems to be known about variation of
constraints. Parameters and constraints are mathematically distinct. Parameters can
be chosen independently of initial conditions, while constraints cannot. Parameters
define the dynamics; constraints confine the dynamics. The biological implications
of the two forms of robustness can be quite distinct; see Section 2.5.3.

In summary, for properties associated with an attractor, robustness to initial con-
ditions may take two forms. If initial conditions are varied within the same set of
constraint values, then it corresponds to stability of the attractor and the dimension
and shape of the basin of attraction in state space (with respect to the effective ambient
space of dimension d) provide measures of it. If constraint values are varied, then ro-
bustness goes beyond stability and the dimension and shape of the appropriate region
in constraint space become relevant.

2.5.3 Robustness in Reality

With this background, let us review some particularly interesting and influential
demonstrations of robustness in different biological systems.

Signaling in bacteria is typically implemented by two-component systems con-
sisting of a sensor kinase coupled to a response regulator protein [79]. The sensor
autophosphorylates in response to a signal, using ATP as the phosphate donor. It
then transfers the phosphate to the response regulator, which initiates the signaling
response, by, for instance, stimulating gene transcription. In some two-component
systems involved in homeostasis—such as the EnvZ/OmpR system that regulates
osmolarity in Escherichia coli—the sensor also catalyzes the dephosphorylation of
the response regulator. This unusual bifunctional mechanism has been studied in sev-
eral models [80–82], whose general conclusion is that the mechanism enables the
amount of phosphorylated response regulator at steady state to be constraint robust
with respect to changes in the total amounts of sensor and response regulator. The
initial analysis by Russo and Silhavy using Michaelis–Menten kinetics [81], which
provided the first indication of this robustness, was subsequently refined using mass-
action kinetics by Batchelor and Goulian [80]. Their analysis showed approximate
constraint robustness when the amount of sensor kinase is much less than the amount
of response regulator, which, indeed, corresponds well to E. coli’s normal operating
regime. In their accompanying experimental analysis, they varied the total amounts
of EnvZ and OmpR and found good agreement with their model. Shinar et al. incor-
porated a further element into the mechanism by noting that in certain bifunctional
two-component systems [82, Table 1], including the EnvZ/OmpR system in E. coli,
ATP acts as a cofactor in the dephosphorylation of the response regulator. Their model
for this shows exact constraint robustness of the amount of phosphorylated response
regulator, with respect to changes to the total amounts of sensor, response regulator,
and ATP, provided the amount of response regulator remains above a threshold. These
predictions were also borne out by experiment.

E. coli has also been a model bacterium for the study of chemotaxis. It moves by
rotating its multiple flagella. Rotation in one direction brings the flagella into align-
ment, allowing the bacterium to “run” in a straight line. Rotation in the other direction
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drives the flagella apart, causing the bacterium to “tumble” and randomly reorient its
direction. By regulating its tumbling frequency, the bacterium can efficiently seek
out nutrients and escape poisons (chemotaxis) in environments that lie outside its
control. Because E. coli is so small, it has to sense changes in ligand concentration
over time, not space. It has been found to adapt its sensitivity to such changes across
a remarkably broad range of background concentrations. Unraveling the mechanism
behind this has been a triumph of systems biology [83].

Barkai and Leibler [84] studied robustness of the precision of adaptation in E.
coli by simulation of an ODE model. For a given chemotactic ligand concentration,
the system appears to reach a steady state, presumably stable, irrespective of the
other parameter values. To measure the precision of adaptation, the activated state of
the receptor was evaluated at steady state for zero ligand and for a fixed saturating
concentration of ligand (1 mM), and the ratio of the latter to the former, denoted by
p, was taken as a measure of the precision of adaptation. If p = 1, the adaptation is
“perfect.” There are three constraints in the model, corresponding to the total amounts
of the receptor and the two chemotactic enzymes CheR and CheB, which implement
adaptation by methylating and demethylating the receptor. The constraints and the
parameters were randomly sampled and it was shown that the precision of adaptation
remains close to 1 despite substantial perturbation around a reference model with
physiologically realistic parameters and constraints.

This analysis reveals both constraint robustness and parametric robustness. In his
commentary on Barkai and Leibler [84], Hartwell invoked them both (implicitly)
by suggesting that the robustness explains why chemotactic behaviors are buffered
against the extensive polymorphism seen in outbred natural populations [85]. This
is an attractive argument but it would be bolstered by knowing how much the genes
in the chemotactic network are specifically affected by this polymorphism. How
much of this variation contributes to variation in rate constants and how much to
variation in concentration levels? Is the robustness in the model consistent with the
actual level of variation seen in natural populations? Because of the implications for
human physiology and disease, there are increasing data on polymorphisms in human
populations [86] but few studies on how this affects the function of specific molecular
systems or even individual proteins (see, for instance, Tiseo et al. [87]). In a subsequent
paper by Alon et al. [88], only constraint robustness was experimentally verified.
Concentrations of chemotactic proteins were varied and the precision of adaptation
was measured in individual bacteria. In these circumstances, each bacterium in a
clone would be expected to have different concentrations of proteins through intrinsic
noise in the transcriptional machinery and stochastic partitioning between daughter
cells. The precision of adaptation was found to be very close to 1 [88, Table 1].
The experimental data are well explained by constraint robustness. However, since
the parameters are all rate constants, the data are not at all explained by parametric
robustness. We see that these two types of robustness are distinct both mathematically
and experimentally.

Morphogens are spatial signals that direct patterning in embryonic development
[89]. They have been found to exhibit remarkable levels of robustness between
different embryos [90, 91]. In a series of penetrating studies in Drosophila, Barkai
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and others used robustness as a design principle to identify molecular mechanisms
that implemented it [91, 92]; for overviews, see Barkai and others [73, 93] and Alon
[3, Chapter 9]. They assumed a network of molecular interactions based on what was
known in the literature and that the concentrations of the network components could
vary between embryos because of polymorphisms in the population. By sampling
points in parameter space (“numerical screening”), they identified regions in which
the spatial profile of the morphogen exhibited robustness to changes in initial con-
centration levels of the network components. While these parametric regions were
tiny (<1 percent of the sampled points), they could be interpreted as particular kinds
of mechanisms. The underlying models in these spatial studies are PDEs rather than
ODEs but the qualitative framework of Section 2.4 can be used in much the same
way and we see that the robustness here is to changes in the state space rather than
the parameter space.

It would be interesting to know whether robustness to changes in the state space
on a physiological timescale arises from the same mechanisms as robustness to
changes in the parameter space on an evolutionary timescale, or whether differ-
ent aspects of the molecular circuitry are responsible. As Waddington recognized
[56], physiological robustness may lay the foundation for evolutionary adaptation
(“genetic assimilation” as he put it); see also Kirschner and Gerhart [94]. The differ-
ent types of robustness discussed here may provide a framework for studying such
questions.

2.5.4 Structural Stability

Robustness with respect to functional variation—perturbing the f in Eq. (2.3)—
has not been as widely utilized as the kinds of robustness described above. How-
ever, it was the basis for a remarkable historical episode that still has resonance
for us today. Waddington’s distillation of biological dynamics inspired the distin-
guished French pure mathematician René Thom to develop a mathematical frame-
work for describing it [95]. Thom made two general assumptions. First, that the dy-
namics arose from descending down a gradient, so that f (x; a) = −∇g(x; a), where
∇ =∑n

i=1 ∂/∂xi is the gradient operator. Waddington’s epigenetic landscape has just
such a gradient dynamics but for Thom the assumption arose from technical neces-
sity rather than analogy and, in his case, the parameters play a key role. In gradient
dynamics, steady states correspond to minima of the gradient function, g, which pro-
vides a crucial simplification. Second, Thom assumed that, in the absence of detailed
knowledge about the underlying molecular mechanisms that gives rise to g, it was
reasonable to focus on structurally stable behaviors; that is, those behaviors that re-
mained qualitatively the same if the function g was perturbed, g → g+ h, where h

is “small.” Under these assumptions, Thom proved that, for small numbers of pa-
rameters (m ≤ 5), there were only finitely many—in fact, just 11—different types of
structurally stable bifurcations [96, Chapter 7]. Note that the state space can be of
any dimension. Furthermore, most bifurcations that have been studied tend to depend
on only a few parameters, with the others playing only a background role. Hence, in
practice, the restriction to m ≤ 5 is not limiting.
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The subtitle to Thom’s book, An Outline of a General Theory of Models [97],
reflects the broad view he took of the scope of these results. The theory remains
deep and difficult. Thom was himself a Fields medallist but could only guess parts
of the argument and had to enlist the help of other mathematicians to complete
the details. Later work filled in some gaps and clarified its place within mathemat-
ics, where it is now largely absorbed into bifurcation theory and singularity theory
[53, 98]. Poston and Stewart remains the most accessible account [96]. Thom’s own
book [97] “transcends the world of numbers,” as the back cover puts it.

What is important about Thom’s theorem is that it gives the first hint that even
very complex dynamics may still be composed of only a small finite number of key
“motifs.” At the same time, from our vantage point, the difficulties with Thom’s as-
sumptions become much clearer. First, the dynamics arising from molecular networks
are rarely of gradient type. Second, it is not reasonable to perturb f in an arbitrary
way, since the resulting perturbed function may not have arisen from any molecu-
lar network. What is required, instead, is a restricted notion of structural stability in
which perturbations are confined to a biochemically realistic subclass.

We unwittingly undertook a computational study of this in the context of develop-
mental patterning in the Drosophila embryo [36]. In an influential paper, von Dassow
et al. had found that the segment polarity gene regulation network was parametrically
robust [99] (using the language developed here) and the evolutionary implications of
this were widely cited [89]. However, their model was based on a regular hexagonal
lattice of cells, which is far from the normal structure of an epithelium [100]. More-
over, because cellularization in Drosophila takes place late in embryonic development,
the segment polarity network has to operate without knowing in advance which lattice
of cells has emerged. If the cellular lattice is changed, the effect on the model is to
change f in a biochemically realistic manner, through alterations in cell-to-cell com-
munication. Hence, robustness to lattice variation is a form of restricted structural
stability. Our paper was concerned with computational infrastructure for building
models rather than with structural stability (the relevance of which was unclear at
the time), but our limited analysis suggested that the segment polarity network was
structurally unstable despite being parametrically robust. We speculated that small
changes to the underlying molecular network might render it robust to lattice variation
but were unable to pursue this further.

In our analysis, the robustness operates on the physiological and not the evolu-
tionary timescale. However, molecular networks can be reorganized during evolution,
which can change both nodes and links, as well as parameter values and expression
levels. Restricted structural stability might be the appropriate type of robustness with
which to study this.

We see from this that Thom’s ideas remain relevant, despite being largely forgot-
ten. His approach came to be called “catastrophe theory” and garnered great celebrity,
being compared to Newton’s theory of gravitation and mechanics. The resulting fall
from grace was predictably brutal [101, 102]; for a more balanced perspective, see
Arnold et al. [98] and Zeeman et al. [103]. While most of those who know of it think it
dead and buried, I think, in contrast, that it has merely been dormant, waiting for sys-
tems biology to provide a more fertile landscape for Thom’s ideas to germinate again.
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2.5.5 Classifying Robustness

One reason why robustness has attracted such attention is that it may be a biological de-
sign principle [74]. This is an appealing idea, but to make sense of it, robustness needs
to be precisely defined and grounded in the kind of careful experiments discussed in
Section 2.5.3. As we have shown, there are different types of robustness, which may
be classified according to which aspect of the dynamical system is changed.

• Type I: Dynamical Stability. Robustness to change of initial conditions within a
fixed set of constraint values.

• Type II: Constraint Robustness. Robustness to change of constraint values.
• Type III: Parametric Robustness. Robustness to change of parameter values.
• Type IV: Structural Stability. Robustness to change of the dynamical function.

No doubt there are others. As noted in Section 2.5.1, the interpretation of these math-
ematical properties depends crucially on the biological context that is being modeled.
Robustness could be quantified if we could estimate the size and shape of various
regions in high-dimensional spaces: basins of attraction, constraint regions, and pa-
rameter regions. Many studies can be seen as attempts to do this by random sampling
[84, 99]. Lack of space precludes a discussion of robustness trade-offs [74, 104]
and new methods of global sensitivity analysis [54, 55]. Kitano has remarked on the
need for a theory of biological robustness [105]. The dynamical systems framework
outlined here may provide a basis for this.

2.6 CONCLUSION

One of the difficulties for students of systems biology is to make sense of the many
different concepts and techniques that are coming into the subject from the physical
sciences and computer science. Those of us who have been trained in these other
disciplines necessarily take a particular perspective (as will be evident to readers
of this paper), and it is ultimately our students who bear the burden of harmoniz-
ing this cacophony. Steven Pinker tells the story [106] of indentured laborers from
different language groups being brought together on some remote island under colo-
nial occupation. The first generation cobbles together a form of communication—a
“pidgin”—which suffices for getting along on an everyday basis. It is the second gen-
eration who, spontaneously and magically, creates a full-fledged natural language, a
“creole.” It should be evident that this paper is written in systems biology pidgin. Let
us hope that, in time, our students will teach us how to write systems biology creole.

I thank the students of MCB195, SB101, and SB200 for their questioning enthusi-
asm, which prompted this paper; Uri Alon for many helpful and perceptive comments;
an anonymous reviewer for pointing out some issues of scope that needed clarifica-
tion; Rebecca Ward for her unerring editorial eye; and the editors for their patience.
They bear no responsibility for any of the paper’s remaining mistakes, obscurities, or
omissions, for which I alone must apologize.
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3.1 INTRODUCTION

In failing cardiac myocytes, chronic stimulation of �-adrenergic receptor (�-AR) due
to the high level of circulating catecholamine secreted by activation of the sympa-
thetic nervous system leads to desensitization and impaired �-AR responsiveness [1].
Furthermore, chronic activation of �-adrenergic signaling pathway may result in
altered expression and functional activity of �-AR, G-protein, adenylyl cyclase (AC),
and G-protein receptor kinase [2]. The alteration of this pathway makes the �-AR-
mediated cardiac response substantially blunt and ultimately delivers adverse biolog-
ical signals [3]. These molecular and biochemical alterations of the �-AR signaling
pathway are common to the failing hearts despite the varying etiologies [4]. There-
fore, restoring the altered signaling pathway is a generally accepted notion to treat
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heart failure (HF), and actually, new therapeutic strategies have been developed based
on this notion [5]. Among those new therapeutic strategies, �-AR-blocking agent (�-
blocker) is conceived as a standard therapy for patients with mild-to-moderate HF
[6]. The diastolic function of such patients gets worsened with decreasing cardiac
performance. This results in shortened diastolic filling time, which is insufficient for
the ventricle to properly prepare for the next heartbeat. In such a case, �-blocker
can be used to elongate the diastolic filling time by reducing the heart rate. How-
ever, the tolerance for the �-blocker therapy is limited due to its possibility of syn-
copes caused by a too low heart rate, resulting in a too big drop in overall blood
pressure. Moreover, since �-blocker intrinsically decreases cardiac contractility, the
�-blocker therapy to the patients with severely impaired cardiac function may fur-
ther decompensate failing cardiac myocytes, eventually leading to lethal results [3].
In such cases, �-blocker should be administered with inotropic agents to prevent
further deterioration of cardiac functioning [6]. In fact, it was reported that some
combined therapies with �-blocker and inotropic agents have reduced the rehospital-
ization rate and the mortality of patients with severe HF [6]. However, little is known
about the fundamental effect of the combined therapies at the molecular and cellular
levels.

In this chapter, we show an integrative mathematical model of the �-AR signal-
ing pathway and the underlying excitation–contraction coupling mechanism of the
cardiac myocytes to quantitatively analyze the different effects of the selected drugs
(�-blocker, �-AR inhibitor (�-ARKI), and phosphodiesterase inhibitor (PDEI)) and
their combined therapies. Extensive in silico simulations showed that �-blocker sig-
nificantly decreases the Ca2+ transient (potentially leading to a negative inotropic
effect), while inotropes (�-ARKI and PDEI) increase the Ca2+ transient (potentially
leading to a positive inotropic effect) [3]. For the combined therapy, PDEI showed
remarkably increased cAMP and receptor phosphorylation, which could possibly lead
to a strong positive inotropic effect with the risk of a lethal result for long-term use.
On the other hand, although �-ARKI showed potentially moderate positive inotropic
effect compared with PDEI, the relatively lower cAMP concentration and decreased
receptor phosphorylation might be advantageous in the long-term use. The mathemat-
ical modeling and in silico simulation analysis proposed in this chapter can provide a
useful guideline for designing new pharmacotherapeutics and developing an optimal
pharmacological treatment protocol for HF.

3.2 MATERIALS AND METHODS

3.2.1 Model Construction and Validation

We have developed an integrative mathematical model of the �-AR signaling path-
way and the underlying excitation–contraction coupling mechanism of the cardiac
myocytes. The model is comprised of a cardiac myocyte physiological part and a
�-AR signaling pathway part (see Figure 3.1 and Appendix 3A.1.2). The cardiac
myocyte physiological part is composed of 15 ion channels (mediating Ca2+, Na+,



MATERIALS AND METHODS 51

K+, and Cl− current flows) and four compartments (subspace (dyadic space), cyto-
plasm, junctional sarcoplasmic reticulum (JSR), and network sarcoplasmic reticulum
(NSR)) as shown in Figure 3.1. This model was developed by introducing the post-
translational modification (PTM) effects of cyclic AMP-dependent protein kinase
(PKA) and Ca2+/calmodulin-dependent protein kinase II (CaMKII) (i.e., the regu-
lation of L-type Ca2+ channel (LTCC), ryanodine receptor (RyR), phospholamban
(PLB), and sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) by these protein
kinases) into the previously published model [7]. In addition, the proposed model
explicitly describes the regulation of the intracellular Ca2+ transient by calcineurin
(CaN) and CaMKII. Note that CaN is activated by Ca2+ increase and plays a cru-
cial role in inhibiting the PKA function through dephosphorylating inhibitor 1 (I1)
and PLB. CaMKII is also activated by Ca2+ increase like CaN, but it phosphory-
lates LTCC, RyR, PLB, and troponin I (TnI), resulting in increase of the intra-
cellular Ca2+ transient, which ultimately contributes to a positive inotropic effect
[8]. It turns out that our simulation results are in well accord with the previous ex-
perimental data, qualitatively and quantitatively (see Appendix 3A.1.1). The �-AR
signaling pathway part describes the �-AR signal transduction mechanism ranging
from ligand (�-agonist such as catecholamine and isoproterenol) binding to �-AR
and activation of Gs-proteins to cAMP generation by active AC and PKA activa-
tion (Figure 3.1). There have been some attempts to develop a mathematical model
of this signaling pathway, but only a partial model was developed and the multi-
ple feedback loops in this pathway were not considered [9, 10]. We note, how-
ever, that the multiple negative feedback loops should be considered to properly
investigate the hidden system dynamics and drug effects, since such feedback loops
may play crucial roles in overall regulations. Hence, in this chapter, we have intro-
duced all of the six negative feedback loops (i.e., �-AR→�-ARK� �-AR, �-AR→
PKA� �-AR, AC→ cAMP→ PKA� AC, AC→ cAMP→ PKA→Ca2+� AC,
PDE� cAMP→ PKA→ PDE, PDE� cAMP→ PKA→Ca2+→ PDE) into the
mathematical model based on experimental evidences [11, 12]. Most of the re-
action parameters used in the mathematical model were obtained from liter-
ature of experimental measurements, and those parameters not available from
literature were estimated through iterative simulations and fitting such that they
are consistent with other indirect experimental evidences (see Appendix 3A.1.1
and 3A.1.2).

3.2.2 Classification of Different Heart Failure Cases

HF has numerous etiologies, including myocardial infarction, hypertension, and
valvular disease, which usually have functional alterations in the �-AR signaling
pathway or ion channels of cardiac myocytes. For instance, it was reported that the
expression and functional activity of �-AR, AC, and Gs-protein became decreased,
while those of �-ARK and Gi-proteins got increased in the failing heart [4]. It was
also reported that some components of cardiac myocytes such as SERCA, NCX, RyR,
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Table 3.1 Possible morphological changes in failing heart. HFC-1 and HFC-2 are
primarily characterized by alterations in the signaling pathway, and HFC-3 is mainly
characterized by ion channel remodeling∗

Component HFC-1 HFC-2 HFC-3

�-AR 10% (↓)[21] 50% (↓)[22] 20% (↓)[21]
�-ARK 200% (↑)[16] 50% (↑)[23] 50% (↑)[23]
AC 20% (↓)[24] 20% (↓)[24] 20% (↓)[24]
G-proteins − − 10% (↓)[21]
RyR − − 30% (↓)[13]
LTCC − − 30% (↓)[13]
SERCA − − 50% (↓)[25]
NCX − − 200% (↑)[26]
Na+/K+ pump − − 30% (↓)[27]
K+ channel − − IKr 40% (↓)[28], IKur 40 (↓)[26],

Itof 50% (↓)[26]
∗The symbols (↓) and (↑) denote down- and upregulation of the corresponding protein, respectively. “–”
means that the expression and functional activity of the protein showed no change in failing heart. IKr,
IKur, and Itof denote the rectifier, the ultrarapidly activating delayed rectifier, and the transient outward
K+ current, respectively.

LTCC, and potassium channels got remarkably changed in HF [13]. Drug effects
might be considerably different depending on such intracellular molecular changes.
To systematically analyze the drug effects, we classify the molecular changes of HF
into three types by focusing on down-regulation of �-AR, up-regulation of �-ARK,
and ion channel remodeling (see Table 3.1). We refer to these types as heart failure
cases (HFCs) throughout the remaining part of this chapter.

We analyze the effects of individual drugs and combined treatments for the three
different HFCs with respect to the following four system responses: the intracellular
Ca2+ transient, the membrane action potential (AP), the phosphorylation of �-AR, and
the cAMP accumulation. The intracellular Ca2+ transient and the membrane action
potential are typical physiological responses of cardiac myocytes at the cellular level,
therefore important factors in determining the hemodynamics of heart. In addition,
�-AR and cAMP play a crucial regulatory role in the �-AR signaling pathway at the
molecular level. Figure 3.2 shows the variation of the intracellular Ca2+ transient and
action potential with respect to isoproterenol (Iso) stimulation (50 nM) for each HFC
and the normal cardiomyocyte (control). In all HFCs, the Ca2+ transient peak did not
change to Iso stimulation, while it became remarkably increased in the control. The
half-decay time (i.e., the period of time taken for decrease from the peak to its 50
percent) of the Ca2+ transient was significantly prolonged in the control but not in the
three HFCs. It is typical in failing heart that the Ca2+ transient does not increase in
spite of the strong stimulation [14]. Such HF patients might intrinsically have fully
stimulated inotropic systems in a way that all the receptors are activated. As shown in
Figure 3.2, the 90 percent and 50 percent depolarization of AP (APD90 and APD50,
respectively) did not show any significant change in all the cases. However, it should
be noted that APDs were more prolonged in HFC-3.
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Figure 3.2 The simulation result for percent changes of cellular responses (Ca2+ transient and
APDs) to Iso (50 nM) stimulation. The percent change of the Ca2+ transient was remarkably blunt
in all the HFCs compared to the control.

3.2.3 Simulation Protocol

The equations of the integrated mathematical model (Appendix 3A.1.2) were coded
in Matlab, and the full set of ordinary differential equations was solved on three
HP workstations (xw-8200) by using a Runge–Kutta–Merson numerical integration
algorithm. The software package Matlab (V7.0, R14) was utilized while develop-
ing/solving equations of individual components. To trigger an action potential, we
used a 0.5-ms 80 pA/pF stimulus current with a frequency of 0.83 Hz (the pacing
period is 1200 ms). The effects of drug intervention on the system responses were
observed at steady-state beats obtained after a train of 200 stimulus pulses.

3.3 RESULTS

3.3.1 �-Adrenergic Receptor Antagonists

It is widely known that the cardiac functioning might be temporarily but signifi-
cantly decreased in failing heart by the �-blocker therapy as it is intrinsically a �-AR
antagonist, but this impaired cardiac function might also be restored in long-term use
by reverse remodeling of cardiac myocytes [3]. However, we note that this temporary
effect of the �-blocker therapy can cause severe cardiac malfunctioning. Figure 3.3
illustrates the effect of the �-blocker therapy in short-term use that might differ from
HFCs. �-Blocker (propranolol) significantly decreased the Ca2+ transient as expected
from the previous experiment [15]. The Ca2+ transient decreased to 12 percent for
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Figure 3.3 The simulation result of cellular responses for �-blocker therapy. (a) The intracellular
Ca2+ transient peaks. (b) The maximal concentration of cAMP. (c) The percent change of the cel-
lular responses at the maximal dose. The system responses for the smallest drug concentration
[10−6 (�M)] are similar to those without �-blocker administration.

HFC-1 and 21 percent for HFC-2 at the maximal dose of the drug. It remarkably
decreased to 50 percent for HFC-3 (Figure 3.3(a) and (c)). APD90 did not signifi-
cantly change except 8 percent decrease for HFC-3 (Figure 3.3(c)). cAMP decreased
to 72 percent for HFC-1, 73 percent for HFC-2, and 83 percent for HFC-3 (Figure
3.3(b) and (c)). The receptor phosphorylation also decreased to 85 percent for HFC-1,
90 percent for HFC-2, and 94 percent for HFC-3 after the drug administration
(Figure 3.3(c)).

It is interesting that the Ca2+ transient of HFC-3 most significantly decreased along
with an increase of the �-blocker dose, even if it was larger than the others before
the �-blocker administration. This is because HFC-3 implies having defects in both
the �-AR signaling pathway and ionic channels. It seems that the Ca2+ transient
decreased first by the �-blocker treatment and then further aggravated by the remod-
eled ion channels. This result suggests that the �-blocker therapy for patients having
complex defects like HFC-3 might induce severe impairment of cardiac muscle con-
tractility due to the rapidly decreased Ca2+ transient and eventually lead to lethal
results. It is also interesting that the receptor phosphorylation decreased along with
an increase of the �-blocker dose in all HFCs. This is because the activity of �-ARK
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was remarkably attenuated for the decreased number of agonist-bound receptors due
to the �-blocker—�-blocker competes with �-agonist (Iso) for the same binding site.
Although PKA contributes to receptor phosphorylation, this effect seems negligible
compared with that of �-ARK.

3.3.2 �-Adrenergic Receptor Kinase Inhibitor

It was reported that the activity of �-ARK significantly increased in failing heart [16].
In addition, the receptor phosphorylation increased, and thereby the accumulation of
cAMP also decreased in failing heart due to the functional decoupling of �-AR [17].
From these reports, it turns out that the cardiac muscle contractility becomes impaired
by �-ARK, and therefore, the inhibition of �-ARK can be one promising way of
restoring the impaired cardiac muscle contractility [1]. In our simulations, �-ARKI
(hepalin) increased the Ca2+ transient for all HFCs as shown in Figure 3.4(a) and
(c) (210 percent for HFC-1, 87 percent for HFC-2, and 59 percent for HFC-3 at the
maximal drug dose). cAMP also significantly increased to 174 percent for HFC-1,
50 percent for HFC-2, and 48 percent for HFC-3 (Figure 3.4(b) and (c)). As expected
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Figure 3.4 The simulation result of cellular responses for �-ARKI treatment. The system re-
sponses for the smallest drug concentration [10−5 (�M)] are similar to those without �-ARKI
administration.
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from the role of �-ARKI, the receptor phosphorylation decreased for all HFCs as
shown in Figure 3.4(c) (62 percent for HFC-1, 58 percent for HFC-2, and 52 percent for
HFC-3). On the other hand, APD90 was slightly prolonged (Figure 3.4(c)). Although
cAMP concentration of HFC-3 was larger than that of HFC-2 for the maximal �-
ARKI, the Ca2+ transient of HFC-3 was less than that of HFC-2 (Figure 3.4(a) and
(b)). This result suggests that the effect of �-ARKI might be quite limited in the
failing heart caused by ion channel remodeling. For full administration of �-ARKI,
the receptor phosphorylation was not completely depleted, but the depletion level was
proportional to the level of cAMP. This implies that PKA considerably inhibits the
receptor activation by increased cAMP. In other words, the negative feedback formed
through PKA contributes to suppressing the drug effect.

3.3.3 Phosphodiesterase Inhibitor

The PDE families are activated by PKA phosphorylation and Ca2+/CaM binding. The
activated PDE hydrolyzes cAMP to 5′-AMP, and this again suppresses the activity
of PKA and the increase of Ca2+. This negative feedback loop seems to keep the
homeostasis of cAMP for abnormally increased external stimuli such as hormones or
neurotransmitters, including catecholamine and forskoline. PDEI is a typical inotropic
drug agent that improves the impaired cardiac functioning of failing heart [18] by
ultimately ablating the PKA-mediated negative feedback. In our simulations, PDEI
(IBMX) dramatically increased the Ca2+ transient compared with �-ARKI therapy.
The Ca2+ transient increased to 262 percent for HFC-1, 222 percent for HFC-2, and
97 percent for HFC-3 at the maximal dose (Figure 3.5(a) and (c)). Moreover, the
increment of cAMP was surprising. It was augmented to 8520-fold for HFC-1, 7940-
fold for HFC-2, and 7500-fold for HFC-3 at the maximal dose (Figure 3.5(b) and
(c)). However, the receptor phosphorylation was not significantly changed despite
the overwhelming increase of cAMP and PKA activation (Figure 3.5(c)). APD90
was prolonged to 33 percent for HFC-1 and HFC-2, and 28 percent for HFC-3 in
proportion to the Ca2+ transient increment (Figure 3.5(c)). Note that the PDEI effect
on the Ca2+ transient of HFC-3 seems very limited compared with that of HFC-1
or HFC-2, since HFC-3 has defects in both the signaling pathway and ion channels.
Hence, this result shows that the decreased Ca2+ transient by remodeling of ion
channels may not be fully restored by PDEI, although the PDEI effect on the Ca2+

transient was strong enough. The PDEI effect on the Ca2+ transient was similar to that
of �-ARKI (Figure 3.4(c)), except for the receptor phosphorylation. PDEI increased
the receptor phosphorylation, since the activity of PKA due to cAMP was significantly
increased after the PDEI administration, although some of the receptors were already
phosphorylated due to the increased �-ARK. The most interesting result we obtained
is that cAMP was abnormally increased as the PDEI dose increased beyond a certain
threshold (about 50 �M). We can explain this phenomenon as follows. Below the
threshold, the drug effect might mostly be compensated by the negative feedback
effect of PDE, although the activity of PDE was suppressed in proportion to the
drug dose. In other words, the decreased activity of PDE by PDEI is compensated
by the increased PKA, since PDE is activated by PKA. On the other hand, there is
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Figure 3.5 The simulation result of cellular responses for PDEI treatment. The system
responses for the smallest drug concentration [10−2 (�M)] are similar to those without PDEI
administration.

no longer a negative feedback effect of PDE if PDEI can completely inhibit PDE.
Hence, beyond the threshold, cAMP became increased along with the drug dose.
From this result, we found that if the dynamics of the system is dominantly regulated
by a negative feedback and a drug perturbs this negative feedback loop, then the
drug dose–response curve shows a switch-like behavior as shown in Figure 3.5(a)
and (b).

3.3.4 Combined Therapies

The combined therapy of �-blocker and inotropic drug agents for patients with
severely impaired cardiac functioning is a desirable therapeutics for HF [6]. We
have analyzed the combined therapeutic effects of �-blocker and positive inotropic
agents by varying their administration from a low to high dose and found reasonable
therapeutic strategies to treat HF. The Ca2+ transient (Figure 3.6(a)–(c)) and cAMP
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Figure 3.6 The simulation result for the combined therapy of �-blocker and �-ARKI. The cellular
responses to the combined therapy were normalized with respect to their controls (i.e., the system
responses of nonfailing heart for Iso stimulation (50 nM)).

(Figure 3.6(g)–(i)) became increased along with the increase of �-ARKI, whereas
the receptor phosphorylation (Figure 3.6(d)–(f)) became significantly decreased in
the combined therapy of �-blocker and �-ARKI. However, such effects of �-ARKI
were almost diminished for a high dose of �-blocker. The effects of �-ARKI on the
Ca2+ transient and cAMP were most significant for HFC-1, while they were min-
imal for HFC-3. This combined therapy, however, does not show any remarkable
effect on APD irrespective of HFCs (data not shown). Although �-ARKI improved
the Ca2+ transient in this combined therapy, the effect of �-ARKI was not enough
to increase the Ca2+ transient to an extent as much as in the control. In particular,
this effect was significantly limited for HFC-3. The Ca2+ transient (Figure 3.7(a)–(c))
and cAMP (Figure 3.7(g)–(i)) became significantly increased along with the increase
of PDEI. The PDEI effect in the combined therapy was more significant than the
�-ARKI effect in Figure 3.6, while the receptor phosphorylation (Figure 3.7(d)–(f))
did not change much with PDEI variations unlike �-ARKI. Such PDEI effects on the
Ca2+ transient and cAMP were remarkably decreased for a high dose of �-blocker.
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Figure 3.7 The simulation result for the combined therapy of �-blocker and PDEI.

The effect of the PDEI therapy in HFC-3 was interesting in that the Ca2+ transient in-
creased and the receptor phosphorylation was insignificant at a high dose of �-blocker
(Figure 3.7(c) and (f)), while cAMP greatly increased (Figure 3.7(i)). This implies
that the PDEI effect might be significantly limited for the failing heart with the dual
defects.

In summary, the �-ARKI therapy in the combined therapy showed significant
increases in the Ca2+ transient and cAMP, potentially leading to a positive inotropic
effect, while the receptor phosphorylation decreased for a high dose of �-ARKI. This
suggests the long-term use of �-ARKI for combined therapy without much adverse
effect. On the other hand, the PDEI therapy in the combined therapy greatly increased
the Ca2+ transient and cAMP. Since an excessive increase of cAMP might lead to
lethal results [19], the long-term use of PDEI could induce serious adverse effect.
Moreover, the highly increased receptor phosphorylation in HFC-1 can cause receptor
internalization and degradation, resulting in the attenuation of �-AR signaling.
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3.4 DISCUSSION

In this chapter, we have analyzed various drug effects for HF treatment. As well
known, �-blocker showed a negative inotropic effect that significantly decreased
the Ca2+ transient and cAMP, whereas both �-ARKI and PDEI showed a positive
inotropic effect. These effects were, however, rather different depending on HFCs.
Moreover, we have analyzed the effects of �-ARKI and PDEI in the combined therapy
with �-blocker to compensate the temporary decrease of cardiac functioning caused
by �-blocker. �-ARKI increased the Ca2+ transient and cAMP by decreasing the
receptor phosphorylation. However, these effects were more significant in the com-
bined therapy with PDEI. In particular, the receptor became highly phosphorylated
for HFC-1 irrespective of the PDEI dose. From these simulation results, we can eval-
uate the two combined therapies as follows: Although the inotropic effect of �-ARKI
was less significant than PDEI, potential adverse effect of the �-ARKI therapy with
respect to the receptor phosphorylation was much lower, and that with respect to
cAMP was moderate even for a high dose of �-ARKI. On the other hand, although
the cardiac inotropic effect was obvious in the PDEI therapy, the PDEI dose should
be limited to a moderate range to prevent potential adverse effect.

The Ca2+ transient decreased more significantly in HFC-3 than other HFCs after
�-blocker administration. This result suggests that responses to the same drug can be
quite different depending on HFCs, even if the hemodynamics of all HFCs are similar
before the drug administration. The major cause for the remarkable decrease of the
Ca2+ transient in HFC-3 seems to be the synergistic effect of the cAMP decrease by
�-blocker and the ion channel remodeling. This also implies that it might be difficult
to restore the cardiac functioning by targeting only one of the multiple morphological
and biochemical alterations as in HFC-3. In addition to modulating the Ca2+ transient
for HF treatment, modulating the dynamics of Ca2+ binding to the contractile elements
or the dynamics of the Ca2+ uptake by the SR might be other measures.

Mathematical modeling and in silico simulations have emerged as a useful tool
for therapeutics in the context of systems biology [20]. Throughout this approach,
we can systematically integrate various clinical data, disease information, and exper-
imental data. Moreover, it helps us to establish a fundamental understanding of the
disease–drug interaction mechanism. On the basis of this, we can predict probable
adverse effects and investigate an optimal dosage and treatment schedules. In this
chapter, we have focused on a therapeutic strategy to improve the impaired cardiac
functioning caused by �-blocker, but the proposed approach can also be applied to
other pharmacotherapeutics.
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3A.1 APPENDIX

3A.1.1 Model Validation
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Figure 3A.1 The transient response of cAMP accumulation for Iso (isoproterenol) stimulation.
The simulation result is consistent with previous experimental data (empty circle [29]; filled circle
[30]).
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Figure 3A.2 The cAMP accumulation with respect to Iso. The simulation result is consistent
with previous experimental data [30].
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Figure 3A.3 The PKA activation with respect to cAMP with PKI (+)/without PKI (−). The simu-
lation results are consistent with previous experimental data [31].
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Figure 3A.4 The PLB phosphorylation with respect to Iso. The simulation result is consistent
with previous experimental data [32].
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Figure 3A.5 L-type Ca2+ current (ICaL) with respect to Iso. The amplitude of ICaL gets in-
creased along with Iso from 0 nM to 50 nM, and the half-decay time of ICaL becomes prolonged.
This simulation result is qualitatively consistent with previous experimental data [33, 34].
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Figure 3A.6 The Ca2+ release (Jrel) from SR with respect to Iso. The amplitude of Jrel becomes
dramatically increased along with Iso from 0 nM to 50 nM, and the half-decay time of Jrel becomes
shortened. This simulation result is qualitatively consistent with previous experimental data [33].

3A.1.2 The Mathematical Model Used for Simulations

3A.1.2.1 �-Adrenergic Signaling Pathway Model

β-Adrenergic Receptor Module

d[β1AR p1]

dt
= [LRtot]

(
ka βARK[β1ARK∗]

−kd βARK[β1AR p1]

km βARK + [LRtot]

k3
i βARK

k3
i βARK + [β1ARK∗]3

)
, (3A.1)
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where [β1ARK∗] = ki b1ARKI [β1ARK]

ki b1ARKI + [β1ARKI]
.

d[β1AR p2]

dt
= kPKA+[PKACI ][β1ARact]− kPKA−[β1AR p2]. (3A.2)

[β1ARact] = [β1AR]+ [LR]+ [LRG]+ [RG]+ [DR]+ [DRG]. (3A.3)

[β1ARtot] = [β1ARact]+ [β1AR p1]+ [β1AR p2]. (3A.4)

[LRtot] = [LR]+ [LRG]. (3A.5)

[Gstot] = [RG]+ [LRG]+ [DRG]+ [Gsβγ ]+ [Gs]. (3A.6)

where [RG] = [β1AR][GS]/KC, [LR] = [L][β1AR]/KL,
[LRG] = [L][β1AR] [GS]/(KL·KR), [DR] = [Blocker][β1AR]/KDR,
[DRG] = [Blocker][β1AR][GS]/(KDR·KR).

[β1AR]

= − (A1B2 + B3 − A2B1)+
√

(A1B2 + B3 − A2B1)2 + 4B1B3A2

2B1B3
(3A.7)

where A1 = [Gstot]− [Gsβγ ], A2 = [β1ARtot]−
(
[β1AR p1]+ [β1AR p2]

)
,

B1 = 1

KC

+ [L]

KL·KR

+ [Blocker]

KDR·KR

, B2 = [L]

KL·KR

+ 1

KC

+ [Blocker]

KDR·KR

,

B3 = 1+ [L]

KL

+ [Blocker]

KDR

.

[Gs] = [Gstot]− [Gsβγ ]

1+ [β1AR]
(

1
KC

+ [L]
KL·KR

+ [Blocker]
KDR·KR

) (3A.8)

Parameter Value Unit Reference Parameter Value Unit Reference

KL 0.285 �M [35] kPKA− 0.62ka PKA s−1 [35]
KR 6.2e–2 �M [36] km βARK 4.0e–4 �M [36, 40]
KC 33.0 �M [35] ki βARK 3.0 �M [39, 40]
KDR 4.1 nM [38] βARK 1.0 �M [39, 40]
ka βARK 1.1e–3 �M−1 s−1 [35] Gstot 3.83 �M [35]
kd βARK 2ka βARK s−1 [35] β1ARtot 1.32e-2 �M [35]
kPKA+ 3.6e-3 �M−1 s−1 [35] L 0∼500 nM [35]

Gs Activation Module

d[GsαGTPtot]

dt
= kgact ([RG]+ [LRG])− khyd[GsαGTPtot]. (3A.9)
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d[Gsβγ ]

dt
= kgact ([RG]+ [LRG])− kreassoc[GsαGDP][Gsβγ ] (3A.10)

d[GsαGDP]

dt
= khyd[GsαGTPtot]− kreassoc[GsαGDP][Gsβγ ] (3A.11)

where [GsαGTPtot] = [GsαGTP]+ [GsαGTP : AC], [ACtot] = [GsαGTP/AC]+
[AC], and [GsαGTP/AC] = [GsαGTP][AC]/KGsα.

[AC] =

KGsα[ACtot]− (KGs2
α +KGsα[GsαGTPtot])

+
√(

KGs2
α +KGsα[GsαGTPtot]−KGsα[ACtot]

)2 + 4KGs3
α[ACtot]

2KGsα

(3A.12)

Parameter Value Unit Reference Parameter Value Unit Reference

kgact 16 s−1 [35] KGsα 0.315 �M [35]
khyd 0.8 s−1 [35] ACtot 0.0497 �M [35]
kreassoc 1.2e3 �M−1 s−1 [35]

cAMP Activation and PDE Modulation

d[cAMPtot]

dt
= kAC−basal[AC][ATP]

km−basal + [ATP]

+kAC−GsαGTP�AC[AC : GsαGTP][ATP]

km−GsαGTP + [ATP]

− kc−PDE�PDE[cAMP][PDE]

(km−PDE + [cAMP]) ki−IBMX+IBMX
ki−IBMX

(3A.13)

�PDE = [Ca2+]

km−PDE−Ca + [Ca2+]
+ [PKACI ]

km−PDE−PKA + [PKACI ]
. (3A.14)

�AC = 0.5ψAC5 + 0.5ψAC6, (3A.15)

ψAC5 = 0.25km−AC5−Ca−high

km−AC5−Ca−high + [Ca2+]
+ 0.25km−AC5−Ca−low

km−AC5−Ca−low + [Ca2+]

+ 0.5km−AC−PKA

km−AC−PKA + [PKACI ]
, (3A.16)
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ψAC6 = 0.25km−AC6−Ca−high

km−AC6−Ca−high + [Ca2+]
+ 0.25km−AC6−Ca−low

km−AC6−Ca−low + [Ca2+]

+ 0.5km−AC−PKA

km−AC−PKA + [PKACI ]
. (3A.17)

Parameter Value Unit Reference Parameter Value Unit Reference

ATP 5.0e3 �M [41] kAC−basal 0.2 s−1 [35]
km−AC5−Ca−high 7.9e-2 �M [41] km−basal 1.03e3 �M [35]
km−AC5−Ca−low 58.0 �M [41] kAC−GsαGTP 8.5 s−1 [35]
km−AC6−Ca−high 0.15 �M [41] km−GsαGTP 315.0 �M [35]
km−AC5−Ca−low 60.0 �M [41] kc−PDE 1.67 s−1 [35]
km−AC−PKA 5.0e-2 �M [42] km−PDE 1.3 �M [35]
km−PDE−PKA 3.0e-2 �M [43] ki−IBMX 16.0 �M [45]
km−PDE−Ca 8.01e-2 �M [44]

PKA Activation Module

[ARCI] = [cAMP][RCI]

KA

, (3A.18)

[A2RCI] = [cAMP]2[RCI]

KAKB

= [PKACI][A2RI]

KD

, (3A.19)

[A2RI] = KD[cAMP]2[RCI]

KAKB[PKACI]
, (3A.20)

[PKACI/PKI] = [PKACI][PKItot]

KPKI + [PKACI]+ [PKACII]
, (3A.21)

[PKAItot] = [RCI]+ [cAMP][RCI]

KA

+ [cAMP]2[RCI]

KAKB

+KD[cAMP]2[RCI]

KAKB[PKACI]
, (3A.22)

[RCI] = [PKAItot]

1+ [cAMP]
KA

+ [cAMP]2

KAKB
+ KD[cAMP]2

KAKB[PKACI ]

, (3A.23)

[PKAItot] = [RCI]+ [ARCI]+ [A2RCI]+ [PKACI]

+[PKACI/PKI], (3A.24)
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[PKACI] =
1

2KAKB

{
−
(

KAKB[PKAItot]+ KD[cAMP]2

C1
−KAKB ([PKAItot]− [PKItot])

)

+

√√√√√√
(
KAKB[PKAItot]+ KD[cAMP]2

C1
−KAKB ([PKAItot]− [PKItot])

)2

+4KAKB

(
KD[cAMP]2([PKAItot]−[PKItot])

C1

)
⎫⎪⎪⎬
⎪⎪⎭ , (3A.25)

[PKACII] = 1
2KAKB

{
−
(
KAKB[PKAItot]+ KD[cAMP]2

C1
−KAKB[PKAIItot]

)

+

√√√√√
(
KAKB[PKAItot]+ KD[cAMP]2

C1
−KAKB[PKAIItot]

)2

+4KAKB
KD[cAMP]2[PKAIItot]

C1

⎫⎪⎬
⎪⎭ , (3A.26)

Parameter Value Unit Reference Parameter Value Unit Reference

KA 9.14 �M [35] PKAItot 0.59 �M [35]
KB 1.64 �M [35] PKAIItot 2.5e-2 �M [35]
KD 4.375 �M [35] PKIItot 0.18 �M [35]
KPKI 2e-4 �M [35]

I1 and PP1 Module

d[I1∗]

dt
= kc I1 PKACI [PKACI ][I1]

km I1 PKACI + [I1]
− kc I1∗ PP2A[PP2A][I1∗]

km I1∗ PP2A + [I1∗]

−kc I1∗ CaN∗ [CaN∗][I1∗]

km I1∗ CaN∗ + [I1∗]
− kc I1∗ CaN∗∗ [CaN∗∗][I1∗]

km I1∗ CaN∗∗ + [I1∗]
,

−ka I1∗ PP1[I1∗][PP1]+ kd I1∗ PP1[I1∗/PP1]. (3A.27)

d[I1∗/PP1]

dt
= ka I1∗ PP1[I1∗][PP1]−kd I1∗ PP1[I1∗/PP1]

− kc I1∗PP1 PP2A[PP2A][I1∗/PP1]

km I1∗PP1 PP2A + [I1∗/PP1]

−kc I1∗PP1 CaN∗∗[CaN∗∗][I1∗/PP1]

km I1∗PP1 CaN∗∗ + [I1∗/PP1]
, (3A.28)

d[I1/PP1]

dt
= kc I1∗PP1 PP2A[PP2A][I1∗/PP1]

km I1∗PP1 PP2A + [I1∗/PP1]

+ kc I1∗PP1 CaN∗∗[CaN∗∗][I1∗/PP1]

km I1∗PP1 CaN∗∗ + [I1∗/PP1]

− kd I1PP1[I1/PP1], (3A.29)
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[I1tot] = [I1]+ [I1∗]+ [I1/PP1]+ [I1∗/PP1], (3A.30)

[PP1tot] = [PP1]+ [I1/PP1]+ [I1∗/PP1], (3A.31)

[CaN∗] = [CaN][Ca2+]
2.8

k2.8
m Ca CaN + [Ca2+]2.8 , (3A.32)

[CaN∗∗] = [CaN][Ca2+]
2.8

k2.8
m CaM CaN + [Ca2+]2.8 , (3A.33)

[CaNtot] = [CaN]+ [CaN∗]+ [CaN∗∗]. (3A.34)

Parameter Value Unit Reference Parameter Value Unit Reference

kc I1 PKACI 7.5 �M−1 s−1 [46] km I1∗PP1 PP2A 6 �M [46]
km I1 PKACI 9 �M [46] kc I1∗PP1 CaN∗∗ 4.97 �M−1 s−1 [46]
kc I1∗ PP2A 7.83 �M−1 s−1 [46] km I1∗PP1 CaN∗∗ 0.34 �M [46]
km I1∗ PP2A 6 �M [46] kd I1PP1 1 s−1 [46]
kc I1∗ CaN∗ 4.97 �M−1 s−1 [46] km Ca CaN 1.3 �M [47]
km I1∗ CaN∗ 0.034 �M [46] km CaM CaN 0.6 �M [47]
kc I1∗ CaN∗∗ 4.97 �M−1 s−1 [46] PP2A 0.12 �M [46]
km I1∗ CaN∗∗ 0.34 �M [46] CaNtot 1 �M [46]
ka I1∗ PP1 18.47e3 �M−1 s−1 [46] I1tot 1.8 �M [46]
kd I1∗ PP1 0.1 s−1 [46] PP1tot 1.8 �M [46]
kc I1∗ PP1 PP2A 7.83 �M−1 s−1 [46]

PLB

[PLB]tot = [PLB]+ [PLBp]. (3A.35)

[CaN]act = [CaN∗]+ [CaN∗∗]. (3A.36)

d[PLBp]

dt
= kc−PKA−PLBNPKE1[PLB]

km−PKA−PLB + [PLB]

− kc−PP1−PLB ([PP1]+ [CaN∗]) [PLBp]

km−PP1−PLB + [PLBp]
(3A.37)

where NPKE1 = PKtot 1

km−npke + PKtot 1
and PKtot 1 = CaMKIIact + [PKACI]

[PKAItot]
.
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Parameter Value Unit References Parameter Value Unit References

kc−PKA−PLB 54 s−1 [35] km−PP1−PLB 7.0 �M [35]
km−PKA−PLB 21 �M [35] km−npke 0.4 – Estimated
kc−PP1−PLB 8.5 s−1 [35] PLBtot 106 �M [35]

CaMKII

dWB

dt
= kib[Ca2+/CaM]WI − kbiWB − VA + kdephosWP, (3A.38)

dWP

dt
= VA − kptWP + ktp[Ca2+]

4
WT − kdephosWP, (3A.39)

dWT

dt
= kptWP − ktp[Ca2+]

4
WT − ktaWT + kat[CaM]WA − kdephosWT , (3A.40)

dWA

dt
= ktaWT − kat[CaM]WA − kdephosWA, (3A.41)

WI = 1− (WB +WP +WT +WA), (3A.42)

VA = KAWtot

(
(cBWB)2 + (cBWB)(cPWP )+ (cBWB)(cT WT )+ (cBWB)(cAWA)

)
(3A.43)

where Tw = WB +WP +WT +WA and KA = K
′
A

(
a·Tw + b·T 2

w + c·T 3
w

)
,

[Ca2+/CaM] = [Ca2+]
h cmk

i

kh cmk
m CaCaM + [Ca2+]h cmk

i

, (3A.44)

CaMKIIact = cAWA + cPWP + cT WT + cAWA. (3A.45)

Parameter Value Unit Reference Parameter Value Unit Reference

kib 10e-3 �M−1 ms−1 [48] h cmk 5.0 – [48]
kbi 0.8e-3 ms−1 [48] a 0.22 – [48]
kpt 1e-3 ms−1 [48] b 1.83 – [48]
ktp 1e-3 �M−1 ms−1 [48] c 0.8 – [48]
kta 0.8e-6 ms−1 [48] cB 0.75 – [48]
kat 10e-3 �M−1 ms−1 [48] cP 1.0 – [48]
kp

a 5.8e-2 ms−1 [48] cT 0.8 – [48]
km CaCaM 0.55 �M−1 ms−1 [49] cA 0.8 – [48]
kdephos 5.0e-4 ms−1 Estimated
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3A.1.2.2 Cardiac Myocyte Physiological Model

Membrane Potential

−Cm

dV

dt
= ICaL + Ip(Ca) + INaCa + ICab + INa + INab + INaK + IKto,f

+IKto,s + IK1 + IKs + IKur + IKss + IKr + ICl,Ca + Istim (3A.46)

Calcium Dynamics

d[Ca2+]i
dt

= Bi

{
Jleak+Jxfer−Jup−Jtrpn − (ICab − 2INaCa + Ip(Ca))

AcapCm

2VmyoF

}
,

(3A.47)

d[Ca2+]ss
dt

= Bss

{
Jrel

VJSR

VSS

− Jxfer

Vmyo

VSS

− ICaL

AcapCm

2·VmyoF

}
, (3A.48)

d[Ca2+]JSR

dt
= BJSR(Jtr − Jrel), (3A.49)

d[Ca2+]NSR

dt
= (Jup − Jleak)

Vmyo

VNSR

− Jtr

VJSR

VNSR

, (3A.50)

Bi =
{

1+ [CMDN]totK
CMDN
m(

KCMDN
m + [Ca2+]i

)2

}−1

, (3A.51)

Bss =
{

1+ [CMDN]totK
CMDN
m(

KCMDN
m + [Ca2+]ss

)2

}−1

, (3A.52)

BJSR =

⎧⎪⎨
⎪⎩1+ [CSQN]totK

CSQN
m(

K
CSQN
m + [Ca2+]JSR

)2

⎫⎪⎬
⎪⎭
−1

. (3A.53)

Jrel = v1(PO1 + PO2)([Ca2+]JSR − [Ca2+]SS)PRyR, (3A.54)

Jtr = [Ca2+]NSR − [Ca2+]JSR

τtr

, (3A.55)

Jxfer = [Ca2+]ss − [Ca2+]i
τxfer

, (3A.56)
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Jleak = v2([Ca2+]NSR − [Ca2+]i), (3A.57)

Jup = v3(1+ ACMK)[Ca2+]
2
i

[Ca2+]2
i + (Km,up(1−Kplb))2

(3A.58)

where ACMK = Pmax−CaMKIICaMKIIact

km−ser38 + CaMKIIact

and Kplb = Pmax−PLB[PLBp]

km−PLBp + [PLBp]
.

Parameter Value Unit Reference Parameter Value Unit Reference

Cm 1.0 �F/cm2 [50] τtr 20.0 ms [50]
Acap 1.534e-4 cm2 [50] τxfer 8.0 ms [50]
Vmyo 25.84e-6 �l [50] Km,up 0.5 �M [50]
VJSR 0.12e-6 �l [50] km−PLBp 40 �M Estimated
VNSR 2.098e-6 �l [50] km−ser38 0.3 – Estimated
VSS 1.485e-6 �l [50] Pmax−PLB 0.5 – Estimated
[K+]0 5400 �M [50] Pmax−CaMKII 0.75 – Estimated
[Na+]0 140,000 �M [50] ν1 4.5 ms−1 [50]
[Ca2+]0 1,800 �M [50] ν2 1.74e-5 ms−1 [50]
KCMDN

m 0.238 �M [50] ν3 0.45 �M ms−1 [50]
KCSQN

m 800 �M [50]

Jtrpn = k+ht[Ca2+]i([HT ]tot − [HTCa])− k−ht[HTCa]+ k+lt [Ca2+]i([LT ]tot

−[LTCa])− k−lt [LTCa], (3A.59)

dPRyR

dt
= −0.2NPKE2

(
0.4PRyR + ICaL

ICaL,max
e−(V−5.0)2/648.0

)
, (3A.60)

d[HTCa]

dt
= k+ht[Ca2+]i ([HT ]tot − [HTCa])− k−ht[HTCa], (3A.61)

d[LTCa]

dt
= k+lt [Ca2+]i ([LT ]tot − [LTCa])− k−lt [LTCa], (3A.62)

where NPKE2 = PKtot 2

km−npke + PKtot 2
and PKtot 2 = CaMKIIact + [PKACII]

[PKAIItot]
.

PC1 = 1− (PC2 + PO1 + PO2 ), (3A.63)

dPO1

dt
= k+a [Ca2+]

n

ssPC1−k−a PO1−k+b [Ca2+]
m

ssPO1 + k−b PO2−k+c PO1+k−c PC2 ,

(3A.64)

dPO2

dt
= k+b [Ca2+]

m

ssPO1 − k−b PO2 , (3A.65)



APPENDIX 73

dPC2

dt
= k+c PO1 − k−c PC2 , (3A.66)

ICaL = GCaLO(V − ECa,L), (3A.67)

dO

dt
= αC4 − 4βO+KpcbI1 − γO+ 0.001(αI2 −Kpcf O), (3A.68)

C1 = 1− (O+ C2 + C3 + C4 + I1 + I2 + I3), (3A.69)

dC2

dt
= 4αC1 − βC2 + 2βC3 − 3αC2, (3A.70)

dC3

dt
= 3αC2 − 2βC3 + 3βC4 − 2αC3, (3A.71)

dC4

dt
= 2αC3 − 3βC4 + 4βO− αC4 + 0.01(4βKpcbI1 − αγC4)

+ 0.002(4βI2 −Kpcf C4)+ 4βKpcbI3 − γKpcf C4, (3A.72)

dI1

dt
= γO−KpcbI1 + 0.001(αI3 −Kpcf I1)+ 0.01(αγC4 − 4βKpcbI1), (3A.73)

dI2

dt
= 0.001(Kpcf O− αI2)+KpcbI3 − γI2 + 0.002(Kpcf C4 − 4βI2), (3A.74)

dI3

dt
= 0.001(Kpcf I1 − αI3)+ γI2 −KpcbI3 + γKpcf C4 − 4βKpcbI3, (3A.75)

α(Vp) =
0.4(0.1Vp + 1.2)

[
1+ 0.7e−0.1(Vp+40.0)2 − 0.75e−0.0025(Vp+20.0)2

]
1+ 0.12e0.1(Vp+12.0) ,

(3A.76)

β(Vp) = 0.05e−0.0769(Vp+12.0), (3A.77)

Kpcf = 13.0
(

1− e(−0.01(Vp+14.5)2
)

, (3A.78)

γ = Kpc,max[Ca2+]ss
Kpc,half + [Ca2+]ss

where Vp = V + 10NPKE2. (3A.79)
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Parameter Value Unit Reference Parameter Value Unit Reference

k+ht 2.37e–3 �M-1 ms−1 [50] k−c 0.8e–3 Ms−1 [50]
k−ht 3.2e–5 Ms−1 [50] n 4.0 – [50]
k+lt 3.27e–2 �M−1 ms−1 [50] m 3.0 – [50]
k−lt 1.96e–2 ms−1 [50] GCaL 0.173 mS/�F [50]
k+a 6.08e–3 �M−4 ms−1 [50] ECa,L 63.0 mV [50]
k−a 7.13e–2 Ms−1 [50] Kpcb 0.5e–3 Ms−1 [50]
k+b 4.05e–3 �M−3 ms−1 [50] Kpc,max 0.23 ms−1 [50]
k−b 0.965 Ms−1 [50] Kpc,half 20.0 �M [50]
k+c 0.9e–2 Ms−1 [50] ICaL,max 7.0 pA/pF [50]

Ip(Ca) = Imax
p(Ca)

[Ca2+]
2
i

K2
m,p(Ca) + [Ca2+]2

i

. (3A.80)

INaCa = kNaCa

1

K3
m,Na + [Na+]3

o

1

Km,Ca + [Ca2+]o

1

1+ ksate(η−1)VF/RT(
eηVF/RT [Na+]3

i [Ca2+]o − e(η−1)VF/RT [Na+]3
O[Ca2+]i

) . (3A.81)

ICab = GCab(V − ECaN ), (3A.82)

ECaN = RT

2F
ln

(
[Ca2+]O
[Ca2+]i

)
. (3A.83)

Parameter Value Unit Reference Parameter Value Unit Reference

ksat 0.1 – [50] T 298 K [50]
kNaCa 2.93e2 pA pF−1 [50] Imax

p(Ca) 1.0 pA pF−1 [50]
η 0.35 – [50] Km,p(Ca) 0.5 �M [50]
GCab 3.67e-4 mS �F−1 [50] Km,Ca 1.38e3 �M [50]
F 96.5 C mmol−1 [50] Km,Na 8.75e4 �M [50]
R 8.31 J mol−1 K−1 [50]

Na+ Dynamics

d[Na+]i
dt

= −(INa + INab + 3INaCa + 3INaK)
AcapCm

VmyoF
, (3A.84)

INa = GNaONa(V − ENa), (3A.85)

ENa = RT

F
ln

(
0.9[Na+]o + 0.1[K+]o
0.9[Na+]i + 0.1[K+]i

)
, (3A.86)
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CNa3 = 1− (ONa + CNa1 + CNa2 + IFNa + I1Na + I2Na + ICNa2 + ICNa3),

(3A.87)

dCNa2

dt
= αNaI1CNa3 − βNaI1CNa2 + βNaI2CNa1 − αNaI2CNa2 + αNaI3ICNa2

−βNa3CNa2, (3A.88)

dCNa1

dt
= αNaI2CNa2 − βNaI2CNa1 + βNaI3ONa − αNaI3CNa1 + αNaI3IFNa

−βNa3CNa1, (3A.89)

dONa

dt
= αNaI3CNa1 − βNaI3ONa + βNa2IFNa − αNa2ONa, (3A.90)

dIFNa

dt
= αNa2ONa − βNa2IFNa + βNa3CNa1 − αNa3IFNa + βNa4I1Na

−αNa4IFNa + αNaI2ICNa2 − βNaI2IFNa, (3A.91)

dI1Na

dt
= αNa4IFNa − βNa4I1Na + βNa5I2Na1 − αNa5I1Na, (3A.92)

dI2Na

dt
= αNa5I1Na − βNa5I2Na, (3A.93)

dICNa2

dt
= αNaI1ICNa3 − βNaI1ICNa2 + βNaI2IFNa − αNaI2ICNa2 + βNa3CNa2

−αNa3ICNa2, (3A.94)

dICNa3

dt
= βNaI1ICNa2 − αNaI1ICNa3 − βNa3CNa3 − αNa3ICNa3, (3A.95)

where

αNaI1 = 3.802

0.1027e−(V+2.5)/17.0 + 0.2e−(V+2.5)/150.0 ,

αNaI2 = 3.802

0.1027e−(V+2.5)/15.0 + 0.23e−(V+2.5)/150.0 ,

αNaI3 = 3.802

0.1027e−(V+2.5)/12.0 + 0.25e−(V+2.5)/150.0 ,
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βNaI1 = 0.1917e−(V+2.5)/20.3,

βNaI2 = 0.2e−(V−2.5)/20.3, βNaI3 = 0.22e−(V−7.5)/20.3,

αNa3 = 7.0× 10−7e−(V+7.0)/7.7, βNa3 = 0.0084+ 0.00002(V + 7.0),

αNa2 = 1.0

0.188495e−(V+7.0)/16.6 + 0.393956
, βNa2 =

αNaI3·αNaI3·αNa3

βNaI3·βNa3
,

αNa4 = αNa2

1000
, βNa4 = αNa3, αNa5 = αNa2

95000
, and βNa5 =

αNa3

50
.

INab = GNab(V − ENa). (3A.96)

Parameter Value Unit Reference Parameter Value Unit Reference

GNa 13.0 mS �F−1 [50] GNab 0.0026 mS �F−1 [50]

K + Dynamics

d[K+]i
dt

= −(IKto,f + IKto,s + IK1 + IKs + IKss + IKur + IKr − 2INaK)
AcapCm

VmyoF
.

(3A.97)

IKto,f = GKto,f a3
to,f ito,f (V − EK), (3A.98)

EK = RT

F
ln

(
[K+]O
[K+]i

)
, (3A.99)

dato,f

dt
= αa(1− ato,f )− βaato,f , (3A.100)

dito,f

dt
= αi(1− ito,f )− βiito,f (3A.101)

where αa = 0.18064e0.03577(V+30.0), βa = 0.3956e−0.06237(V+30.0),

αi = 0.000152e−(V+13.5)/7.0

0.067083e−(V+33.5)/7.0 + 1
, and βi =

0.00095e(V+33.5)/7.0

0.051335e(V+33.5)/7.0 + 1
.

IKto,s = GKto,sato,sito,s(V − EK), (3A.102)

dato,s

dt
= ass − ato,s

τta,s

, (3A.103)

dito,s

dt
= iss − ito,s

τti,s

(3A.104)
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where ass = 1

1+ e−(V+22.5)/7.7 , iss = 1

1+ e−(V+45.2)/5.7 ,

τta,s = 0.493e−0.0629V + 2.058 and τti,s = 270+ 1050

1+ e(V+45.2)/5.7 .

IK1 = 0.2938

(
[K+]o

210+ [K+]o

)[
V − EK

1+ e0.0896(V−EK)

]
. (3A.105)

IKs = GKsn
2
Ks(V − EK), (3A.106)

dnKs

dt
= αn(1− nKs)− βnnKs (3A.107)

where αn = 0.00000481333(V + 26.5)

1+ e−0.128(V+26.5) and βn = 0.0000953333e−0.038(V+26.5).

IKur = GKurauriur(V − EK), (3A.108)

daur

dt
= ass − aur

τaur

, (3A.109)

diur

dt
= iss − iur

τiur

, (3A.110)

where τaur = 0.493e−0.0629V + 2.058 and τiur = 12000− 170

1+ e(V+45.2)/5.7 .

IKss = GKssaKssiKss(V − EK), (3A.111)

daKss

dt
= ass − aKss

τKss

, (3A.112)

diKss

dt
= 0 (3A.113)

where τKss = 39.3e−0.0862V + 13.17.

IKr = OkGKr

[
V − RT

F
ln

(
0.98[K+]O + 0.02[Na+]O
0.98[K+]i + 0.02[Na+]i

)]
, (3A.114)

CK0 = 1− (CK1 + CK2 +OK + IK), (3A.115)

dCK1

dt
= αa0CK0 − βa0CK1 + kbCK2 − kf CK1, (3A.116)

dCK2

dt
= kf CK1 − kbCK2 + βa1Ok − αa1CK2, (3A.117)

dOk

dt
= αa1CK2 − βa1Ok + βiIK − αkOK, (3A.118)
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dIk

dt
= αiOK − βiIK, (3A.119)

where αa0 = 0.022348e0.01176V , βa0 = 0.047002e−0.0631V ,

αa1 = 0.013733e0.038198V , βa1 = 0.0000689e−0.04178V ,

αi = 0.090821e0.02339(V+5.0), and βi = 0.006497e−0.03268(V+5.0).

INaK = Imax
NaKfNaK

1

1+ (Km,Nai/[Na+]i)
3/2

[K+]o
Km,Ko + [K+]o

(3A.120)

where fNaK = 1

1+ 0.1245e−0.1VF/RT + 0.0365σe−VF/RT
and

σ = 1

7
(e[Na+]O/67300 − 1).

Cl− Dynamics

ICl,Ca = GCl,CaOCl,Ca

[Ca2+]i
Km,Cl + [Ca2+]i

(V − ECl), (3A.121)

where OCl,Ca = 0.2

1+ e−(V−46.7)/7.8 .

Parameter Value Unit Reference Parameter Value Unit Reference

GKto,f 0.47 mS �F−1 [50] GKr 7.8e–2 mS �F−1 [50]
GKto,f 7.98e-2 mS �F−1 [50] Imax

NaK 2.38e–2 pA pF−1 [50]
GKs 5.75e-3 mS �F−1 [50] GCl,Ca 3.67e–2 mS �F−1 [50]
GKto,s 0.0 mS �F−1 [50] ECI −40.0 mV [50]
GKur 0.16 mS �F−1 [50] Km,Cl 10.0 �M [50]
GKss 0.05 mS �F−1 [50] Km,Nai 2.1e4 �M [50]
GKto,s 6.9e-2 mS �F−1 [50] Km,Ko 1.5e3 �M [50]
GKur 9.5e-2 mS �F−1 [50] kf 2.38e–2 ms−1 [50]
GKss 3.4e-2 mS �F−1 [50] kb 3.68e–2 ms−1 [50]

Initial Values

Variable Control (Iso 50 nM) HFC-1 HFC-2 HFC-3 Unit

V −81.58 −81.71 −81.61 −81.74 mV
CNa2 2.17e–2 2.16e–2 2.12e–2 2.15e–2 –
CNal 3.22e–4 3.15e–4 3.2e–4 3.13e–4 –
ONa 9.19e–7 8.85e–7 9.1e–7 8.75e–7 –
IFNa 1.97e–4 1.9e–4 1.95e–4 1.88e–4 –
I1Na 1.13e–6 1.03e–6 1.08e–6 1.15e–6 –
I2Na 4.59e–6 3.3e–6 3.41e–6 9.03e–6 –
ICNa2 1.33e–2 1.3e–2 1.32e–2 1.29e–2 –
ICNa3 0.367 0.36 0.37 0.36 –
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O 1.2e–12 2.62e–13 2.99e–13 5.54e–13 –
C2 3.55e–4 1.43e–4 1.6e–4 2.14e–4 –
C3 7.37e–8 7.75e–9 9.66e–9 1.75e–8 –
C4 1.76e–8 2.62e–11 3.62e–11 2.12e–10 –
Il 2.73e–8 2.19e–8 2.27e–8 3.12e–8 –
I2 4.93e–7 2.71e–10 4.22e–10 3.54e–9 –
I3 2.44e–5 3.72e–8 5.14e-8 3.02e–7 –
ato,f 2.88e–3 2.85e–3 2.87e–3 2.84e–3 –
ito,f 1.0 1.0 1.0 1.0 –
ato,s 4.66e–4 4.58e–4 4.63e–4 4.56e–4 –
ito,s 0.98 0.98 0.98 0.97 –
nKs 8.31e–4 7.62e–4 7.72e–4 1.07e–3 –
aur 4.66e–4 4.58e–4 4.63e–4 4.56e–4 –
iur 1.0 1.0 1.0 1.0 –
aKss 0.73 0.75 0.74 0.77 –
iKss 1.0 1.0 1.0 1.0 –
CK1 1.057e–3 1.047e–3 1.054e–3 1.04e–3 –
CK2 6.88e–4 6.8e–4 6.84e–4 6.84e–4 –
Ok 2.85e–4 2.55e–4 2.6e–4 3.63e–4 –
Ik 5.47e–5 4.86e–5 4.97e–5 6.93e–5 –
[Na2+]i 1.67e4 1.66e4 1.66e4 1.71e4 �M
[K+]i 1.36e5 1.36e5 1.36e5 1.35e5 �M
[Ca2+]i 9.65e–2 0.11 0.1 0.1 �M
[Ca2+]ss 9.65e–2 0.11 0.1 0.1 �M
[Ca2+]JSR 3.11e3 1.47e3 1.64e3 1.16e3 �M
[Ca2+]NSR 3.11e3 1.47e3 1.64e3 1.16e3 �M
[HTCa] 128.60 127.84 127.87 128.31 �M
[LTCa] 9.7 10.62 10.258 10.08 �M
PO1 1.94e–3 1.47e–3 1.5e–3 1.44e–3 –
PO2 7.32e–9 7.59e–9 6.8e–9 6.14e–9 –
PC2 0.19 0.15 0.15 0.14 –
PRyR 2.34e–16 2.8e–17 0 7.42e–17 –
WB 4.54e–2 2.44e–2 2.9e–2 3.54e–2 –
WP 1.21e–2 3.46e–4 6.77e–4 1.46e–3 –
WT 3.21e–2 9.66e–4 1.91e–3 4.072e–3 –
WA 5.13e–8 1.54e–9 3.05e–9 6.51e–9 –
[β1AR p1] 3.49e–3 8.7e–3 2.81e–3 4.21e–3 �M
[β1AR p2] 2.77e–3 4.37e–4 5.8e–4 1.28e–3 �M
[GsαGTPtot] 0.13 4.96e–2 5.79e–2 9.06e–2 �M
[Gsβγ ] 1.33e–3 2.41e–4 2.99e–4 6.25e–4 �M
[Gsα GDP] 6.28e–2 0.14 0.13 9.67e–2 �M
[cAMPtot] 1.82 0.59 0.67 0.93 �M
[I1∗] 1.75e–5 6.32e–6 7.54e–6 1.06e–5 �M
[I1∗:PP1] 0.92 0.5 0.57 0.71 �M
[I1:PP1] 0.14 8.99e–2 9.97e–2 0.12 �M
[PLBp] 101.82 5.11 14.68 87.5 �M
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Rule-based modeling is an effective way of handling the explosive combinatorics of
biological networks. The use of partial objects in describing molecular interactions
means that only the necessary conditions for a rule are specified and not the com-
plete chemical entities taking part in a reaction. This leads to descriptions that are
easier to set up and more compact. Networks of substantial scale can be described
without having to reduce the combinatorics of the system—as other approaches
must.

An important aspect of the rule-based approach is its agility, as one can easily
modify rules to incorporate new knowledge or test different assumptions. A special
and rather frequent case is when one wishes to replace a rule with ones imposing
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stronger conditions. This process is called refinement, and we approach it in this study
both from the practical and the theoretical point of view.

There are various reasons why one would like to use refinement:

• One wants to understand how the activity of a rule varies with its application
contexts

• One realizes that more conditions are necessary than previously thought
• One more subtly wishes to evolve the behavior of the current system

The notion of behavior-preserving, or neutral, refinement commands an analysis
of the possible symmetries of partial complexes. Here, we need a rigourous algebraic
theory to see through the intricacies caused by symmetries. Incidentally, the problem
of neutral refinement is one of a family of problems that is well-studied in the theory
of concurrent systems, usually under the catch phrase of “behavioral equivalence.”
The form of equivalence we are looking for here is especially strong, since it should
hold irrespective of the other rules defining the dynamics of the model.

The material is organized as follows. We begin with a brief introduction to the
Kappa language (Section 4.1). Next, we present several examples (Section 4.2) of
refinements. We have, in particular, a somewhat lengthy example that shows how
refinements can be used to evolve complex behavior from simple systems. By intro-
ducing mutant variants of agents that alter the behavior of a single rule, it is possible to
change dramatically and in unexpected ways the outcome of a pathway (Section 4.2.2).

Once we are reassured that the notion of refinement is actually useful, we turn to
the second part, namely, the mathematical development of rule refinement. An alge-
braic version of (a mild simplification of) Kappa is introduced (Section 4.3). This is
framed in basic category theory, which allows us to make use of existing mathematical
techniques. Previous work in this area developed a framework for homogeneous rule
refinement, where agents of the same type had the same sets of sites [1]. The frame-
work developed here is much more general and introduces the notion of addresses to
access specific agents in partial complexes (Section 4.4). This enables us to model a
much larger class of rule refinements, and an example is given of a model that could
not have been dealt with previously. We end by deriving a general formula for neutral
refinement and show that the stochastic transition system underlying the rule set is
unchanged.

The following is self-contained. Nevertheless, readers might want to consult earlier
Kappa references on a concrete example of the agility of rule-based modeling [2], the
use of debugging methods based on abstract interpretation [3], the development of
techniques for large-scale stochastic simulation [4], or the study of statistical asymp-
totic properties of simple Kappa networks [5].

4.1 KAPPA, BRIEFLY

The realm of protein–protein interactions commands a picture that is substantially
different from the traditional closed biochemical world of metabolic networks. The
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innumerable combinations that noncovalent binding brings about all but forbid an
extensional view of protein networks. An analogy with group theory might help.
Even when a group is finite, its multiplication table might be so large that no ex-
tensional description is possible. Yet, in some favorable cases, one can handle such
groups using generators and relations. Accordingly, in Kappa and other rule-based
languages such as BNG [6], agents do not represent species (aka complexes) but their
elementary components, that is, to say proteins. Agents are used as generators, and
rules specify how more complex objects can be assembled from them. This does not
preclude simulation, and one can even simulate systems with an infinite number of
possible complexes (supposing agents are available in infinite numbers of course).
For unconditional rule sets, by using simple statistical mechanics techniques, one
can derive conditions on the affinities and copy numbers of agent types for the set
of possible unique complexes to become infinite in the limit of infinite populations;
so to some extent, one can predict where traditional enumerative methods cease to
apply [5].

Throughout this study, we will use the rather generic term “agent” to designate our
basic entitities, but in most applications, these are indeed idealizations of proteins.
Agents have sites that can be used to bind to other sites and can also hold an internal
state. Binding via sites accounts for the formation of domain-mediated complexes,
while internal states account for posttranslational modifications such as phosphoryla-
tion. (Syntactically, as we will soon see in the examples below, the binding of two sites
is represented by a common superscript, while the internal state of a site is indicated
as a subscript.) Different types of atomic events can be combined in a rule such as
binding, unbinding, modification of an internal state, and addition or deletion of an
agent. A binding rule requires two distinct free sites, and hence, at any given time, it
is not possible for a site to be bound more than once, although an agent may be bound
simultaneously on different sites.

A Kappa model consists of (1) a rule set specifying how the initial solution may
evolve, with each rule being given a rate and (2) an initial state that declares the names,
sites, and copy numbers of all agents present in the system at the outset. Each rule in
the rule set has a likelihood attached to it, which gives the model a stochastic behavior.
This likelihood is proportional to the number of ways in which the rule can be applied
to the current state of the system multiplied by its rate. This rate is a measure of how
efficient a rule is at turning a chance encounter of reagents into an actual reaction. In
the case where agents have no sites at all, a model boils down to a Petri net, and the
dynamics is the same as the mass action law put in Gillespie form [7].

4.2 REFINEMENT, PRACTICALLY

4.2.1 A Simple Cascade

In order to introduce our notation for rules and agents and demonstrate the notion of
refinement in a first simple case, we start with an elementary cascade. This type of
biological circuitry occurs frequently in actual pathways (e.g., see [8]).
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In our example, we have one kinase S, covalently modifying another kinase X,
which, in turn, modifies some third agent Y . Each agent type is supposed to have a
single site, and the sites of X andY hold an internal state of either u (unphosphorylated)
or p (phosphorylated); one says, X and Y are active when they are phosphorylated.
To keep things simple, the model does not include any mechanism to deactivate
X or Y .

4.2.1.1 The Rules The interactions between S and X are defined by the follow-
ing rules:

S(i), X(su) → S(i1), X(s1
u),

S(i1), X(s1) → S(i), X(s),

S(i1), X(s1
u) → S(i1), X(s1

p).

In this rule set, a binding is represented by a shared exponent, for example,
S(i1), X(s1) represents a binding between the S and the X agents via their respective
i and s sites. The first rule in the triplet specifies the conditions for such a binding to
take place: one needs the sites i and s to be free and one also needs the site s to have a
specific internal state u, indicated as a subscript su. One might say that S is ‘smart’ in
so far as it does not bind a target that is already modified, that is, of the form X(sp).
The second rule represents the unbinding of the two molecules. Contrary to the first
one, this rule does not depend on the s site of X being in a particular internal state.
The ability to not have to specify the entirety of the context in which an event can
be triggered—which we alluded to earlier, and which is sometimes called the “don’t
care, don’t write” convention—already shows here in a very simple form. The third
rule represents the activation of X, that is, the change of X’s internal state from u

to p.
A second and similar rule triplet defines the interactions of X and Y :

X(sp), Y (su) → X(s1
p), Y (s1

u),

r := X(s1), Y (s1) → X(s), Y (s),

X(s1), Y (s1
u) → X(s1), Y (s1

p).

This rule set differs from the previous one only in that the X agent is required to have
a phosphorylated s site in order to bind a Y agent, as stipulated in the first rule. This
ensures that the first half of the cascade happens before the second and, in particular,
that Y cannot be activated if there is no S signal.

4.2.1.2 On The Importance of Being Off To complete the definition of our
model and define a proper stochastic system, we need to choose rates for the above
rules and to define an initial state. We will assume that all rates are 1, except the rate
k of the rule r, whereby X and Y detach. In fact, we want to ask a classical cascade
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Figure 4.1 Simulation with k = 0.1 (sticky case): Y ’s rise time is approximately 8 (higher curve),
at which time about 100% X s are active and bound (lower curve).

question, namely, how the overall rate of production of the active (phosphorylated)
form of Y depends on k. (One could ask the same for the rate at which S and X detach.)
Intuitively, if k is too low, X will tend to remain attached to Y for long periods of
time after Y has been activated and during which it will be unable to interact with any
other Y ; moreover, this also potentially prevents Y to which it is attached from further
propagating the signal. On the other hand, if k is too high, X will detach from Y

before it has had a chance to activate it. The performance of the cascade is, therefore,
a nonmonotonic function of k, and somehow, an efficient activation of Y needs to
strike the right balance between binding too loosely and too tightly.

Let us demonstrate this numerically by varying k. Suppose one starts with an
initial state of 15 ∗ S(i)+ 60 ∗X(su)+ 120 ∗ Y (su), so as to have significantly more
Ys than Xs (otherwise the stickiness effect will be largely invisible). As expected, the
activation of Y is rather slow when k = 0.1 (Figure 4.1), becomes faster for k = 10
(Figure 4.2), and slows again when k = 100 (Figure 4.3).1

Specifically, the Y ’s rise times, defined as the time where half of the Y s are active,
are respectively and approximately 8, 5, and 7. A closer numerical examination of
the rise time of Y as a function of k would reveal the boundaries of the control area,
which produces the optimal behavior of the rule. With the above set of parameters,
and for k within [1, 50], one has a rise time below 6. Outside of this interval, the
production slows down either because binding is too sticky or too liquid. We make
a mental note that there is a rather large interval k where the cascade operates fast;
how large of course will depend on all the other parameters as well.

1Simulations are obtained with the Kappa factory, an implementation of the Kappa language, which includes
a graphical interface, is free for academic usage and can be obtained at support@plectix.com.
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Figure 4.2 Simulation with k = 10 (near optimum): Y ’s rise time is about 5 (higher curve), at
which time about 50% of X s are active and bound (lower curve).

4.2.1.3 Refinement of The Off Rule However, there is another method to
optimize the behavior of this rule without having to investigate the effect of varying
the rate parameter to probe the control area. In this system, the rule r regarding the
detachment of X from Y given above is applied regardless of the internal state of Y .
A natural strategy to optimize the cascade is to make r depend on Y ’s internal state,
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Figure 4.3 Simulation with k = 100 (liquid case): Y ’s rise time is about 7 (higher curve), at
which time less than 30% of X s are active and bound (lower curve).
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and split it into two subcases with respective rates k1 and k2:

r1 := X(s1), Y (s1
u) → X(s), Y (su),

r2 := X(s1), Y (s1
p) → X(s), Y (sp).

The substitution of r with r1, r2 is an example of a rule refinement. If one sets
k1 := k2 := k, the behavior of the system will remain unchanged. Such a case where
a refinement does not alter the dynamics of a system is what we have called earlier “a
neutral refinement.” On the other hand, if one sets k1 := 0, so that X never detaches if
the Y site has not been activated and k2 := ∞, that is, X detaches as soon as activation
has occurred, one will clearly accelerate the activation of Y . In effect, in this example,
splitting r is exactly what one needs to make Y ’s rise time a monotonic function of
both k1 (decreasing) and k2 (increasing), whereas before, as we have seen above, it
was not a monotonic function of k. It follows that the optimal assignment for k1 and
k2 is as above. This definitely changes the dynamics and constitutes what we have
called a kinetic refinement.

4.2.2 Another Cascade

Here is another two-tiered cascade:

S(i), X(su) → S(i1), X(s1
u),

r := S(i1), X(s1) → S(i), X(s),

S(i1), X(s1
u) → S(i1), X(s1

p).

r′ := X(s?
p, y), Y (su) → X(s?

p, y1), Y (s1
u),

X(y1), Y (s1) → X(y), Y (s),

X(y1), Y (s1
u) → X(y1), Y (s1

p).

The first rule triplet is identical to that in the first example. However, the second rule
triplet has an important difference. First, X now has two sites s and y, one to bind S,
and the other to bind Y , respectively. Second, the X/Y association rule r′ does not
require X to detach from S to attach to a Y . The superscript ? on the s in X precisely
expresses that the X, Y association rule does not care whether the X agent is free or
bound on its other site s. The rule does, however, ask X to be activated as in the first
example.

These rules are also more solid examples of the “don’t care, don’t write” convention
of which we have seen simple examples earlier (Section 4.2.1.1). The left-hand sides
of rules are partial complexes containing only the conditions that are necessary for
the rule to be activated. For example, in the fifth rule, the s site of the X molecule is
not mentioned because we do not care which internal or binding state it is in. Every
such rule embodies a regularity assumption that may or may not hold. One use of
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refinements is to allow one to revise such assumptions and admit in the dynamics
less regularity, viz, more dependence on the context of a rule than hitherto assumed.
However, with this second example, we wish to explore another aspect of refinement,
namely, that it enables complex behavior to evolve from simple systems. We are going
to perform a series of refinements of the above cascade and obtain rather surprising
behaviors.

4.2.2.1 Neutral Refinements Our first refinement concerns r, the S/X disso-
ciation rule, which we replace with the following:

r1 := S(i1, s1), X(s1) → S(i, s1), X(s),

r2 := S(i1, s2), X(s1) → S(i, s2), X(s).

This refinement has the effect of adding a new site s to S with an internal state that can
be either of 1 or 2. As there are no rules that modify this internal state, the refinement
can be seen as defining a variant of S. To use a more biological terminology, we
will say that S(i, s1) and S(i, s2) are isoforms, sometimes simply written as S1, S2
hereafter.

Our second refinement concerns r′, the X/Y association rule, which we replace
with the following:

r′1 := X(s?
p, y), Y (su, y1) → X(s?

p, y1), Y (s1
u, y1),

r′2 := X(s?
p, y), Y (su, y2) → X(s?

p, y1), Y (s1
u, y2).

This time, we have introduced isoforms of the Y agent, using the new site y, which
we again write simply Y1, Y2.

For our final refinements, we pick r′1 and r′2 and make a distinction based on
whether the s site of the X agent is bound or free:

r′11 := X(s−p , y), Y (su, y1) → X(s−p , y1), y(s1
u, y1),

r′12 := X(sp, y), Y (su, y1) → X(sp, y1), Y (s1
u, y1),

r′21 := X(s−p , y), Y (su, y2) → X(s−p , y1), Y (s1
u, y2),

r′22 := X(sp, y), Y (su, y2) → X(sp, y1), Y (s1
u, y2).

Here, the s− superscript carried by s means that it is bound, but the rule does not
care what it is bound to. In fact, in this simple example, s at X can only be bound to
one of the two S isoforms, so this is just a convenient abbreviation, and one could
equivalently write for example:

r′21 := S(i1), X(s1
p, y), Y (su, y2) → S(i1), X(s1

p, y2), Y (s2
u, y2).
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This begs the remark that a left-hand side can have any number of agents in any
configuration. The important thing to notice is that neither r′11 nor r′21 knows which
isoform of S it is dealing with.

Applying these four successive refinements gives us a new rule set, where r is
replaced with r1, r2, and r′ with r′11, r′12, r′21, and r′22. We now have two inputs, S1, S2,
and two outputs, Y1, Y2, that we can manipulate independently. The question we ask
now is another classical cascade question, namely, we wish to understand the range
of input/output dependencies one can attain with our cascade.

4.2.2.2 Kinetic Refinements If all refined rules were to inherit the original rule
rates, this would be a neutral refinement, all our isoforms would be indistinguishable,
and there would be no interesting dependency created by our rule set. We need to
alter some of the rule rates to obtain a kinetic refinement with an interesting behavior.
This is what we do now.

We first set r2 to have a lower rate and r1 to have a higher rate than the original
rule r. All other rates being equal, this has the effect of making S2 stickier and S1
more liquid. As S1’s dissociation rate is high, it is less likely to stay bound to X at
s. So, with only S1s in the system, one would expect to see higher numbers of s-free
active Xs compared with the neutral refinement. Conversely, the S2 variant is more
likely to stay bound to X at s, and one would expect to see higher numbers of s-bound
active Xs, with only S2s in the system. Furthermore, as we have seen in the first
example (Section 4.2.1.2), for well-chosen values of the various cascade parameters,
one has a large window of efficient dissociation rates (our numerical study concerned
the dissociation rate of the second tier of the cascade, but the same holds for the
first one). So, our variant signals S1 and S2 may well be equally efficient, and in fact
nearly optimal in their activation of Ys. They only differ in style or in their degree of
liquidity.

Now, we can take advantage of this difference in the transient behavior of our
signal isoforms by setting the rates of r′11 and r′22 to 0. This amounts to requiring that
an s-bound active X can attach only to the Y2 variant, whereas s-free active X can
attach only to the Y1 variant.

With this second kinetic refinement in place and following the informal argument
above, one would now expect S1 to activate primarily Y1, and S2, Y2. To confirm this,
we can run simulations varying the numbers of S1, S2:

15 ∗ S(i, s1)+ 0 ∗ S(i, s2)+ 50 ∗X(su)+ 120 ∗ Y (su, y1)+ 120 ∗ Y (su, y2),

0 ∗ S(i, s1)+ 15 ∗ S(i, s2)+ 50 ∗X(su)+ 120 ∗ Y (su, y1)+ 120 ∗ Y (su, y2),

In the first case, one has only the S1 isoform, and this has the effect of mainly producing
active Y1s (Figure 4.4), while in the second one (Figure 4.5), one has only the S2
isoform, and this has the effect of mainly producing active Y2s. As we have no rule
for the deactivation of Xs, all Xs eventually become free at s (because the S/X

association rule tests for the internal state of X), which explains why some active
Y1 is also produced in the second case. However, this happens at a much slower rate
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Figure 4.4 Simulation with only S1: Y1 gets activated and not Y2. Here, and in the following,
rules for spontaneous inactivation of X , Y at a rate of 0.01 were added.

than the production of active Y2. Were we to include deactivation rules for X or Y , we
would see a low production of active Y1 at all times. The design we obtain successfully
establishes a specific input/output relation, whereby S1 only activates Y1, and S2 only
Y2, despite the fact that both cascades share a component, namely, X.

Of course, if one reflects on the design, there is no magic, as it hinges on the shared
component reflecting its binding status upstream in its behavior downstream (the role
of the second kinetic refinement). The subtle point is that it does so without sensing
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Figure 4.5 Simulation with only S2: Y2 gets activated and not Y1.
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Figure 4.6 Simulation with both S1 and S2 and an excess of X : both Y1 and Y2 get activated
at the same rate.

the upstream isoform it is bound to—the information is contained only in the different
residency times of the two signal isoforms (the role of the first kinetic refinement).
This in numero experiment shows that there is “plenty of room” at the relevant time
scales (to paraphrase a famous quote from Feynman).

4.2.2.3 Signal Integration Thus, and so far, the results of our numerical ex-
periment are as one would expect given the rule set. It is when one asks what happens
if both signal isoforms of S are present in the system at the same time that one gets
a surprise. If there is an excess of available X, both active Y1 and Y2 are produced
at approximately even rates, and the system behaves as two independent juxtaposed
pathways (Figure 4.6). However, if one has a limited number of Xs as in

15 ∗ S(i, s1)+ 15 ∗ S(i, s2)+ 10 ∗X(su)+ 120 ∗ Y (su, y1)+ 120 ∗ Y (su, y2),

the S2 to Y2 pathway takes over, and despite the presence of S1, only active Y2 is
significantly produced (Figure 4.7). The behavior of the system in this case can be
seen to be analogous to that of a transistor, whereby S2 can completely override S1. To
summarize the situation, and despite the fact that it is always tricky to give Boolean
representations of biological circuitry, one could say that the final design behaves
as the Boolean function Y1, Y2 = S1 ∧ ¬S2, S2. Note, however, that the amount of
control exerted by S2 can be modulated by the amount of the shared component X,
as when X is in excess, the mapping becomes simply the identity (Figure 4.6).

4.2.2.4 Discussion One can easily imagine that such a ‘transistor’ circuit, as we
have just derived, could be useful for cellular decision-making. Of course, this prompts
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Figure 4.7 Simulation with both S1 and S2 and few X s: S2 overrides S1, as only Y1 gets
significantly activated.

the fascinating question of whether it can be implemented, and more specifically,
whether a variation in a real protein cascade, mimicking our derivation of the said
circuit, can be engineered by varying the code of the various relevant proteins. This
is one of a set of questions that is being actively researched in the new and exciting
engineering field of synthetic biology (see [9] for a recent review). One might soon be
able to answer this kind of question, but at the moment, the technology of synthetic
protein networks is far less advanced than that of transcriptional circuits.

Our design also raises the intriguing possibility of encoding information in the
transient assembly of complexes, a mode of information processing that is unique
to the world of protein interactions, and which needs a language where binding is a
primitive operation to be comfortably dealt with. From the specific point of view of
this study, it is also an example of the explanatory power of refinements, as they make
the design particularly transparent, whereas presumably, it would be rather difficult
to understand it without resorting to refinements.

This second extended example concludes the motivational and methodological
part of our refinement study. By now, hopefully, the reader will have a good intuition
of refinements and their use. So, we turn now to other, less biologically motivated
examples, no longer meant to show the usefulness of refinements but rather to antic-
ipate some of the mathematical challenges we will need to address later and prepare
the ground for the algebraic treatment that constitutes the core of this study, and which
comes next (Section 4.3 onward).

4.2.3 The SSA Convention

The previous examples show how natural and intuitive refinement can be, but have
maybe given the (mistaken) impression that obtaining a neutral refinement is a fairly
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straightforward matter. In fact, this is far from being the case in general, and there are
several subtleties that we need to take into account.

Let us begin examining this by considering a straightforward binding rule, r :=
A(x), A(x) → A(x1), A(x1) between agent type A (with at least one site x) and itself,
with stochastic rate constant kr. Now, in the case where rule r is actually a reaction,
that is, A has just the one site x with no internal state, it is usual, during stochastic
simulation, to calculate the activity of the rule as krn(n− 1)/2, where n is the number
of As currently unbound on site x [7]. In this convention, call it the SSA convention,
an event is the identification of a multiset, here an unordered pair of As, and there are
nC2 such unordered pairs not n(n− 1).

The SSA convention works well for reactions (aka Petri nets or multiset rewriting)
because any application of a reaction preserves the reaction symmetries (as expressed
in its multiset representation). This is no longer true with our richer notion of rewriting,
where the local symmetries of a rule may increase or decrease depending on its
application context. So, we shall use another convention, where an event is an injection
of the rule’s left-hand side, and one does not attempt at quotienting those injections
by the automorphisms of the rule (aka symmetries).

To understand this better, let us examine a concrete case where r is not a reaction.
This means that the rule can instantiate as several distinct reactions. For example,
let us suppose that the site x actually has an internal state, blue or red, that the rule
does not mention. Intuitively, the result of firing r is the creation of either a red–red,
a red–blue, or a blue–blue pair of As. We can make this explicit with the following
refinement of r into the three subcases:

r1 := A(xR), A(xR) → A(x1
R), A(x1

R),

r2 := A(xR), A(xB) → A(x1
R), A(x1

B),

r3 := A(xB), A(xB) → A(x1
B), A(x1

B).

Let us assume that these three refined rules are actually reactions, that is, we have
now revealed everything about A’s sites and states. Notice that r2, unlike the other
two refinements, breaks the symmetry of the original rule r. This has a significant
consequence on how we calculate its activity; unlike r1 and r3 that follow the above
pattern, that is, kr1nR(nR − 1)/2 and kr3nB(nB − 1)/2, r2’s activity is kr2nRnB. The
total combined SSA activity of r1, r2, and r3 is the same as that of r:

krn(n− 1)/2 = krnR(nR − 1)/2+ krnB(nB − 1)/2+ krnRnB,

where n = nR + nB. In other words, setting kr1 := kr2 := kr3 := kr defines a neutral
refinement.

Now, what about the other convention, where one does not take into account a
rule’s apparent local symmetry when calculating its activity, that is, does not divide
by the number of automorphisms (in r’s case, 2). Obviously, we have to divide r’s rate
constant by the number of automorphisms in order to recover the original behavior,
in our case assigning kr/2 to r. This keeps the activity of r unchanged, kr/2n(n− 1),
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and we readily calculate that

(kr/2)n(n− 1) = (kr/2)nR(nR − 1)+ (kr/2)nB(nB − 1)+ (2kr/2)nRnB,

so that this time we need the assignment kr1 := kr3 := kr/2 and kr2 := kr to get a
neutral refinement. It seems here we need a non uniform assignment of rate constants
in order to obtain a neutral refinement, and the reader might think the SSA convention
is more natural. It is not. The nonuniform rate assignment is an optical illusion, since
one can rewrite the above as:

(kr/2)n(n− 1) =
(kr/2)nR(nR − 1)+ (kr/2)nB(nB − 1)+ (kr/2)nRnB + (kr/2)nRnB,

where all rates are now equal, and one has two copies of the assymmetric refined
rule r2. These copies are associated with the two nonisomorphic injections of the
original r left-hand side in r2’s. The subtle point is that although the injections are
not isomorphic (since they map the first A either to a red or a blue type; see also
the discussion in Sections 4.3.4, and 4.4.1), the obtained rules are. Likewise, one can
inject r’s left-hand side in two ways in r1’s and r3’s, but this time, the injections are
isomorphic (meaning they are conjugated by an automorphism of their joint target),
since both extensions preserve r’s automorphisms. So, in these two latter cases, there
is no need for a copy. This point of view leads indeed to our main technical result
(Th. 1, Section 4.4.3), where all rates are kept equal to the original rule—provided
one uses our convention, not the SSA one.

In summary, in a rule-based setting, we can either rely on the SSA convention
(underlying Gillespie’s stochastic simulation algorithm) or the one presented above.
The calculation of the rate constants required to obtain a neutral refinement will be
affected. Our choice is more natural in that it brings a general result of a simpler form.
In this red–blue example, both conventions seem to be on a par, and the next example
will show a case where the SSA convention is less natural.

4.2.4 A Less Obvious Refinement

Let us consider a final example that should demonstrate the full subtlety of determining
the appropriate rate constants for a neutral refinement. To this end, consider two agent
types B and C, again each with only one site x, and define a family of systems x(n1, n2)
consisting of n1-free C(x) and n2 dimers C(x1), B(x1).

Consider the rule r := C(), B() → C() with rate 1. Note, that r does not mention
x at all. This means that r can be applied irrespective of the binding of B and C.
Whatever the bindings are, the effect of the rule will be, provided n2 > 0, to delete
a B and to bring x(n1, n2) to a new state x(n1 + 1, n2 − 1). If n2 = 0, then there are
no Bs left in the system, and the rule cannot be applied, in which case we say that the
system is in a deadlock.



REFINEMENT, PRACTICALLY 97

We would like to refine r into mutually exclusive subcases depending on the
bindings between B and C. Specifically, we want to use the following three refined
rules.

r1 := C(x1), B(x1) → C(x),

r2 := C(x1), B(x1), C(x2), B(x2) → C(x1), B(x1), C(x),

r3 := C(x), C(x1), B(x1) → C(x), C(x).

Note, that by deleting the agent B, we implicitly also delete all bonds emanating from
that B, so, in particular, the previously bound C becomes free. Each of these is a
particular case of r in the sense that their left-hand sides embed, sometimes in more
than one way, that of r. Intuitively, r1 is the case where B and C are bound together,
r2 is the case where B and C are both bound but not to each other, and r3 is the case
where B is bound but C is free. Given the family of systems we are working with,
these are the only relevant subcases and are mutually exclusive.

Recall that the activity of a rule is defined as the number of ways in which it is
possible to apply the rule multiplied by the rule rate. This determines the likelihood
that the rule is applied next and only depends on the current state of the system. We
have not yet chosen rates for the refined rules above. In the cascade examples, it
was the case that simply assigning each new rule the same rate as the original rule
resulted in a neutral refinement. Even in the preceding red/blue example, under the
SSA convention (Section 4.2.3), where the stochastic simulator implicitly deals with
automorphisms (which is the case of the implementation in the Kappa factory), the
same uniform assignment of rates gives a neutral refinement.

However, if we assume this is true in this case and run a simulation of the system
before and after the rule refinement with an initial state of x(0, 100) and plot the
activities of the rules, we see that such rate choices are not appropriate, as the sum of
the activities of the refined rules is clearly different from the activity of the original
rule r (Figure 4.8). So, setting each refined rule rate to be equal to the original does
not result in a neutral refinement in this case.

When we look at the refined rules, we see that the problem most likely lies with r2
whose left-hand side contains symmetries that should increase the ways in which it
can be applied to x but which are ignored by the simulation algorithm. The question
we wish to answer is how do these factors contribute to the dynamics and how, in
general, do we choose rates for refined rules. The stochastic semantics of the system
is determined by the joint activities of all the rules in the rule set over all states of the
system. In order to preserve this stochastic semantics, we need to preserve the global
activity. Intuitively, this means we must ensure that the joint activities of the rules we
are adding to the system are equal to the activity of the rule we are replacing. Below,
we derive a general formula to choose the refined rules such that the global activity
is preserved. We will return to this example when we have a general solution.

This concludes our series of examples, where hopefully we have shown how natural
and useful refinements are. As seen in the last couple of examples, choosing rates even
for a neutral refinement is not necessarily as simple as one might imagine. Moreover,
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Figure 4.8 Graph of all rule SSA activities with initial state x (0, 100).

the cascade examples, particularly the ‘transistor,’ illustrate just how subtle (and
useful) the effects of kinetic refinement can be. In order to fully understand how
refined rules contribute to the dynamics of the system, we have developed a formal
mathematical framework to study the Kappa modeling language and rule refinements.
The following sections (Sections 4.3 and 4.4) present the technical aspects of this
work and derive a general formula for choosing rule rates for neutral refinements that
generalizes the homogeneous framework developed in Danos et al. [1]. This gives
us a baseline reference for subsequently modulating the behavior of a rule set with
kinetic refinements, a process that is otherwise difficult to design and justify.

4.3 RULE-BASED MODELING

The modeling approach we have explained informally (Section 4.1), and illustrated
with examples (Section 4.2), we shall now make precise using a simple categorical
language, where

• The state of a system is seen as an object x

• The various ways a rule r may apply to x are seen as arrows from r’s left-hand
side to x.

To make this presentation easier, we simplify the Kappa syntax in two respects. The
first is that we assume agents have no internal states. There is no loss of generality
here, since internal states can be modeled as sites that can bind to specific unary
nodes. The second simplification is that wildcard bindings (as in Section 4.2.2.1) are
not used, for example, expressions such as A(x−), meaning that x is bound to an
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unspecified agent, are not considered. However, for a given set of rules, it is easy to
compute a syntactic super-approximation of all possible bindings (in effect, defining
the contact map associated with the rule set, defined below), and wildcards can be
replaced with all possible concrete bindings agents they may correspond to. So, this
again does not lose generality.

4.3.1 Notation

We will use a certain number of basic notations hereafter. If given a family of sets
(Ai; i ∈ I), we write

∑
i∈I Ai for their disjoint sum. We write A� B for the set of

elements of A that are not in B, ℘(A) for the set of subsets of A. If an equivalence
relation � on a set A is given, we write A/ � for the set of equivalence classes and
A/ �⊆ A for a generic selection of representatives. If f , g are maps to a partial
order, then f ≤ g means that f is pointwise below g. If f is a partial map on A, we
write dom(f ) ⊆ A for its domain of definition. Finally, we define a partial pairing on
a set A as an irreflexive symmetric binary relation on A such that an element of A is
in relation with at most one (other) element of A.

We suppose we are given a set A of agent names and a set S of site names. A
signature is a map from agent names A to sets of sites ℘(S).

4.3.2 Objects and Arrows

Definition 4.1 (objects) An object is a quadruple (V, λ, σ, π) where

• V is a finite set of nodes,
• λ ∈ AV assigns agent names to nodes,
• σ ∈ P(S)V assigns sets of site names to nodes, and
• π is a partial pairing over the disjoint sum

∑
v∈V σ(v).

The pairing π represents bindings, or edges, between sites. Because π is a pairing,
any given site can be bound at most once, but a node can be bound many times via
different sites.

The simplest nonempty objects are single nodes with no sites (and therefore no
binding).

We define (u, a) ∈ π as shorthand for ∃(v, b) : (u, a, v, b) ∈ π, and say (u, a) is
free when (u, a) /∈ π and bound when (u, a) ∈ π.

Definition 4.2 (arrows) An arrow from x to y is a map f : Vx → Vy such that

• (1) f preserves names: λyf = λx,
• (2) f preserves sites: σyf ⊇ σx,
• (3a) f preserves edges: (u, a, v, b) ∈ πx ⇒ (f (u), a, f (v), b) ∈ πy,
• (3b) f reflects edges: (f (u), a) ∈ πy, a ∈ σx(u) ⇒ (u, a) ∈ πx,
• (4) f is injective.
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Figure 4.9 The contact map of the simple cascade given in section 4.2.1.

The category S of site graphs has objects and arrows (aka morphisms) as above. We
write [x, y] for the set of arrows from x to y. We say that y embeds x, or that x is
embedded in y when [x, y] /= ∅. Rules, defined below, will use arrows to recognize
a partial configuration and rewrite it. Importantly, the existence of an arrow in [x, y]
is not enough information to apply a rule, since there are many ways in which y can
embed x. This is why we have to keep track of arrows. In particular, the set [x, x] of
automorphisms of x (aka symmetries) might contain more than the identity map, and
this brings subtle aspects in rule refinement.

Our S lives naturally in a larger category of contact maps, where one relaxes both
the definition of objects and arrows:

• Objects are as above with π any symmetric relation (no longer necessarily a
partial pairing)

• Arrows are only asked to satisfy clauses (1), (2), and (3a) (no longer (3b) or (4)).

An example of a contact map is shown in Figure 4.9, which sums up all possible
pairings that the simple cascade given in Section 4.2.1 can form. Note, in particular,
that X’s unique site s is linked twice, so π is indeed not a pairing.

One has an obvious forgetful functor from site graphs (and contact maps as well)
to the category of graphs and graph morphisms—one simply forgets sites. However,
from the point of view of graphs, the reflectivity condition (3b) above does not really
make sense, and one really needs sites to express edge reflection.

If f ∈ [x, y], we write f (x) for y the target object of f not to be confused with
the image of f , f (Vx) ⊆ Vy. We also define the site image of f in y as Im(f ) :=
{(f (v), a); v ∈ Vx, a ∈ σx(v)}. This is a subset of

∑
v∈Vx

σy(f (v)), and only sites in
Im(f ) are mentioned in the arrow-defining clauses above.

Conditions (2) and (3a) and the notion of pairing alone already severely constrain
arrows:

Lemma 4.1 (rigidity) Suppose x is connected, then any nonempty partial injection
f from Vx to Vy extends to at most one morphism in [x, y].

Proof: If f is strictly partial, that is, if Vx � dom(f ) is not empty, pick v ∈ Vx such
that for some node w ∈ dom(f ), and some sites a, b, (w, a, v, b) ∈ πx. This is always
possible because x is connected. Then, either (f (w), a, v′, b) ∈ πy for some v′ ∈ Vy,
and by (3a) one must extend f as f (v) = v′, or there is no such extension. �
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4.3.3 Extensions

Our theory of refinement (Section 4.4) relies entirely on choosing appropriate sets
of extensions of a given s up to isomorphism, so it is worth examining a few basic
properties thereof.

It is easy to see that an arrow is injective if and only if it is a mono, but there are
more epis than surjections.

Lemma 4.2 (epis) A map h ∈ [x, y] is an epi if and only if every connected com-
ponent of y intersects f (Vx); that is to say for all connected component cy ⊆ y,
h−1(cy) /= ∅.

Proof: Suppose f1h = f2h for h ∈ [x, y], fi ∈ [y, z], and let cy ⊆ y be a connected
component of y such that h−1(cy) /= ∅. Pick u such that h(u) ∈ cy, then f1(h(u)) =
f2(h(u)) and by Lemma 4.1 f1/cy = f2/cy. �

We write [x, y]e ⊆ [x, y] for the epis from x to y.

Definition 4.3 (extensions) The category S(s) of extensions of an object s is defined
as

• objects are epis φ ∈ [s, x]e for some x, and
• an arrow ψ : φ1 → φ2 is an arrow in S such that ψφ1 = φ2.

If ψφ1 = φ2, then ψ is an epi, because φ2 is one; ψ is also a unique such arrow because
φ1 is an epi. The category of extensions of s is, therefore, a simple graph (meaning
there is at most one arrow between any two objects); however, it is not a partial order,
and two extensions φ1, φ2 may be isomorphic.

We write φ1 �S(s) φ2 when φ1 and φ2 are isomorphic. It is easy to see that this is
the case if and only if

• there are ψ, ψ′ such that ψφ1 = φ2 and ψ′φ2 = φ1 or
• there is ψ such that ψφ1 = φ2 and σφ2(s)ψ = σφ1(s).

One has to be careful that φ1 �S(s) φ2 is a stronger statement than saying that
their targets φ1(s), φ2(s) are isomorphic in S (as site graphs). Consider the sim-
ple example, where s = A(a), A(a), and t = A(a), A(a, b1), B(a1); one has two
maps φ1, φ2 in [s, t], and their targets are isomorphic, since they are equal; how-
ever, they are not isomorphic as objects of S(s). We will return to this example
later.

4.3.4 Actions and Rules

To complete our presentation of Kappa, we need to explain rules. A rule is seen as an
object, an action thereon, and a rate at which the rule applies.
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An atomic action on s is one of the following:

• an edge addition +u, a, v, b,
• an edge deletion −u, a, v, b,
• an agent addition +A, σ with A a name, σ a set of free sites, and
• an agent deletion −u,

with u, v ∈ Vs, a ∈ σs(u), and b ∈ σs(v). Edge additions and deletions are symmetric.
An atomic action α on s is defined:

• if � = +u, a, v, b, when both (u, a) and (v, b) are free in s or
• if � = −u, a, v, b, when (u, a, v, b) ∈ πs.

An action on s is a finite sequence of atomic actions on s. The notion of definedness
extends recursively to nonatomic actions. We consider only defined actions hereafter.

Definition 4.4 (rules) A rule is a triple r = s, �, �, where s is an object, � is an
action defined on s, and � is a rate (a positive real number).

We write α · s for the result of the action α on s (usually called the right hand side).
Given f ∈ [s, x], and α one defines f (α) the transport of an atomic α along f as:

• f (±u, a, v, b) = ±f (u), a, f (v), b,
• f (+A, σ) = +A, σ, and
• f (−u) = −f (u).

This can be extended to nonatomic actions.
Conditions (3a) and (3b) entail that f (α) is defined on x when α is defined on s.
Given an f ∈ [s, s′] and a rule r = s, α, τ, one can define the image rule f (r) =

s′, f (α), τ.

4.3.5 Events and Probabilities

A rule set R defines a quantitative labeled transition system on objects.

Definition 4.5 (transitions) Let r = s, α, τ be a rule, R be a set of rules, and x be
an object.

Define:

• the set of events in x associated to r as E(x, r) := {r} × [s, x],
• the set of events in x associated to R as E(x) =∑

r∈R E(x, r),
• the activity of r at x as a(x, r) := τ|[s, x]|, and
• the activity of R at x as a(x) :=∑

r∈R a(x, r).
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This defines a labeled continuous Markov chain on objects:

x −→r
f f (α) · x, (4.1)

where f ∈ [s, x] and the event r, f has probability τ/a(x) if a(x) > 0, and the sub-
sequent time advance is an exponential random variable δt(x) such that p(δt(x) >

t) := e−a(x)t .

As long as the quantitative structure of the transition system is determined by
the activities of its rules, our analysis of refinements holds; the exact form of the
dependency does not matter.

We say r, r′ are isomorphic rules, written r � r′, if there is an isomorphism
θ ∈ [s, s′] such that r′ = θ(r). If that is the case, then r and θ(r) have isomorphic
transitions:

x −→r
f f (α) · x ⇔ x −→θ(r)

fθ−1 fθ−1(θ(α)) · x

and, in particular, the same events and activities a(r, x) = a(θ(r), x). These rules are,
therefore, indistinguishable.

To define activities, one can use the alternate SSA convention and define a(x, r) :=
τ|[s, x]|/|[s, s]|. As discussed earlier (Section 4.2.3), this convention is natural in the
special case of Petri nets because siteless objects have simple automorphisms, and
rule application uses simpler contexts. In particular, two injections in [s, x] that are
conjugated by an autorphism of s will define transitions to isomorphic states. This
is no longer true with the richer contexts offered by site graphs, as the context can
easily be made to distinguish conjugate injections by breaking their symmetry. The
convention we choose to follow, that is, to consider each injection (of each rule) as a
distinct event, is more natural in our context.

4.4 REFINEMENT, THEORETICALLY

Now that we have our basics in place, we turn first to the question of what constitutes
a refinement of a rule r. Intuitively, it is a set of extensions (in the sense of Section
4.3.3) that will partition the various ways in which a rule can be applied. To capture
this notion, we introduce now the concept of growth policy.

4.4.1 Growth Policies

The idea of a growth policy for an object s is to state explicitly which sites need to be
present along each extension of s. We start with a mathematical definition. Later, we
will investigate practical ways to obtain growth policies.

Let s be a fixed object in S, and G be a family of maps G(φ) from Vφ(s) to ℘(S)
indexed by s’s extensions S(s). Define S(s, G) as the subcategory of S(s) obtained
by restricting oneself to objects φ such that σφ(s) ≤ G(φ). Objects not in S(s, G)
correspond to overgrown extensions, where one has more sites than asked for.
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Definition 4.6 (growth policy) One says G is a growth policy for s if for all ψφ ∈
S(s, G), and for all u ∈ Vφ(s):

G(φ)(u) = G(ψφ)(ψ(u)).

The above condition is called the faithful condition and ensures that any sites that
are asked for over an extension are also asked for over further extensions.

Given a growth policy G, the set of extensions we wish to use as refinements are
those that have grown fully under G, that is, for all nodes in φ(s), all and only the
sites asked for by G are present.

Definition 4.7 (refinement) Given a rule r = s, α, τ, and a growth policy G for s,
one defines the refinement of s and r via G:

G(s) := {φ ∈ S(s) | σφ(s) = G(φ)}/ �S(s),

G(r) := {φ(r) | φ ∈ G(s)∗},

where G(s)∗ stands for a particular selection of representatives in G(s).

There are a few comments worth making about this definition.
First, the resulting G(r) does not depend on the selection. Evidently, if φ1 �S(s) φ2,

then the associated refined rules φ1(r) and φ2(r) are equivalent. As discussed earlier
(Section 4.2.3), the rates are unchanged, as all the clever accounting is hidden in the
quotient under the equivalence �S(s).

This begs the second remark, namely, that G(r) can contain equivalent rules, since
one is only selecting up to�S(s), and as we have noticed earlier, this is a more stringent
condition than having isomorphic targets. To illustrate this, consider again the example
where s = A(a), A(a), t = A(a), A(a, b1), B(a1), and one has two nonisomorphic
extensions φ1, φ2 in G�(s). Suppose, the rule action is A(a), A(a) → A(a1), A(a1),
then φ1(r) � φ2(r), since this action is stable under the automorphism of s that swaps
the two As. This is entirely similar to the red–blue example (Section 4.2.3).

Third, there is no reason why G(s)∗ should be finite or even computable. As said,
ours is a purely mathematical definition.

4.4.2 Simple Growth Policies

An example is the empty growth policy G∅ defined as:

G∅(φ)(u) =
{

σs(v) if u = φ(v),

∅ if u /∈ φ(Vs).

The faithful condition on growth policies is satisfied, as only sites that exist in s are
asked for over any (and all) extensions. Furthermore, G∅(s) = [s, s]/ �S(s) contains
only the identity map (up to selection), and G∅(r) = r for any r of the form s, α, τ.
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This is as expected, one asks for no new sites in G∅ and, therefore, the original rule
is its own refinement.

A simple way to obtain further growth policies is to let the growth requirement of
a node depend only on the node’s name. This leads to what we call homogeneous or
name-based refinements.

Specifically, given a signature �, one can define:

G�(φ)(u) := �(λφ(s)(u)).

Obviously, G� satisfies the faithful condition, since by condition (1), λψφ(s)(ψ(u)) =
λφ(s)(u).

The associated refinement is given by

G�(s) := {φ | σφ(s) = �}/ �S(s) .

This set is not empty as soon as σs ≤ � ◦ λs. It can well be infinite. Suppose for
example, that s = A(), �(A) = {a, b}, �(B) = ∅ for A /= B, then G�(s) consists of
all pointed chains and cycles one can form with each node being of type A and having
a, b as sites. Even after selection, the resulting G�(s)∗ is clearly infinite.

4.4.3 Neutral Refinements

We can now obtain our first general result, which expresses the fact that the refined
rules G(r) decompose unambiguously r.

4.4.3.1 Injectivity

Theorem 4.1 (injectivity) Let r = s, α, τ be a rule, G be a growth policy for s, and
x an object: the composition map from E(x, G(r)) to E(x, r) is injective.

Proof: We want to prove that the map from
∑

φ∈G(s)∗ [φ(s), x] to [s, x] mapping (φ, γ)
to γφ is injective.

So, let us suppose given two factorizations γ1φ1 = γ2φ2 as in the diagram below:

We want to show that φ1 = φ2 and γ1 = γ2. It is enough to prove that φ1 = φ2 because
φ1 is an epi, so it is enough to prove φ1 �S(s) φ2, since one selects one representative
only per class in G(s). But then it is enough to prove that there is an epi α such that
αφ1 = φ2, since by symmetry, there will also be an α′ such that φ1 = α′φ2, and this
implies the above (φ1 = α′αφ1 ⇒ α′α = Id). So, consider the partial injective map
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from Vt1 to Vt2 defined by α := γ−1
2 γ1, we are going to prove that this map is total

and an epi such that αφ1 = φ2.
Pick v1 ∈ Vt1 ; we wish to prove that γ−1

2 γ1(v1) is defined. Since φ1 is an epi, there
is u ∈ Vs, such that there is a path p that connects u1 := φ1(u) to v1, and γ1 being
an arrow, there is an image path in x that connects v := γ1(u1) = γ2(u2) to γ1(v1).
Pick along this image path the node that immediately precedes the first node (if any)
that is not in Im(γ2) (i.e., where γ−1

2 is undefined). Call that node e (as exit), this is
the node via which one exits Im(γ2), call a the site of e used to exit Im(γ2), write
ei := γ−1

i (e), and call p′ the path p up to e1. Because γ2 is an arrow, it must be that
e2 does not have a as a site.

Consider now the object t obtained from s by grafting p′ and the associated exten-
sion φ ∈ [s, t]. Since p′ is connected to s, φ is indeed an epi. Also, by construction,
there are (epis) β1 and β2 such that βiφ = φi.

We are in a position to apply the condition on G, since all our objects φ, φ1, φ2
are in S(s, G), which combined with the fact that φ1, φ2 are in G(s) gives:

a ∈ σt1 (e1) = G(φ1)(e1) = G(φ)(β−1
1 (e1)) = G(φ2)(β2β

−1
1 (e) = e2) = σt2 (e2),

which means e2 has a as a site, after all. Therefore, the image path of p along γ1
wholly lies in Im(γ2), γ−1

2 is defined at γ1(v1), and α is total. It is easy to verify that α
is an arrow. Trivially, αφ1 = φ2, and α is, hence, an epi (since it is the suffix of φ2). �

4.4.3.2 Surjectivity It is time to tackle the question of refinement surjectivity.
Given f ∈ [s, x], and G a growth policy for s, f can be decomposed as f =

γφ, where φ is maximal in S(s) such that σφ(s) ≤ G(φ). Such a φ is called the G-
factorization of f in x. We say x is G-decomposable, if for all f , its G-factorization
is in G(s).

We can illustrate this definition with a growth policy we have already considered:
s = A(), �(A) = {a, b}, �(B) = ∅ for A /= B, and G = G�.

Here are some examples:

• x = A(a), then φ = f /∈ G�(s), and x is not G�-decomposable.
• x = A(a, b1), B(a1), then Im(φ) = {A(a)}, so again φ /∈ G�(s) and x is not G�-

decomposable.
• x = A(a, b1), A(a1, b), A(a, b), then it is easy to see that x is G�-decomposable.

In the first case, x does not have enough sites, while in the second, it has too many.
In the third, x is G�-decomposable because it is itself obeying signature �.

Theorem 4.2 Let r = s, α, τ be a rule, G be a growth policy for s, and x be G-
decomposable, the composition map from E(x, G(r)) to E(x, r) is bijective.

Proof: We already know that the composition map is injective, so all there remains to
prove is that it is surjective. But since x is G-decomposable, any f ∈ [s, x] factorizes
as γφ with φ ∈ G(s). �
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Given R a rule set, r a rule in R, we write R[r\G(r)] for the rule set obtained by
replacing r with G(r).

We have just seen that E(x, G(r)) and E(x, r) are in bijection. In other words, each
event f ∈ [s, x] associated to rule r = s, α, τ has a unique matching refined event γ

associated to some unique rule φ(r) = φ(s), φ(α), τ. Since γφ = f , both events have
the same effect on x.

This establishes the following corollary.

Corollary 4.1 Let R be a rule set and G be a growth policy, R and R[r\G(r)]
determine the same stochastic transition system on G-decomposable states.

4.4.4 Example Concluded

We can now conclude our pending example where we had s := C(), B(), and:

t1 := C(x1), B(x1),

t2 := C(x1), B(x1), C(x2), B(x2),

t3 := C(x1), B(x1), C(x).

Observe that the above refinements are definable by a name-based growth policy,
where: �(B) = �(C) = {x}, and � is empty on all other names. The set G�(s) con-
tains many more extensions (e.g., C(x1), C(x1), B(x)), but these have no matches on
the states x(n1, n2) considered here (see 4.2.4).

Now, although we have |[s, t2]e| = 2 (recall that epis must have images in all con-
nected components), these two extensions are actually isomorphic, so the refinement
of r via t2 only contributes one rule to G(r) according to Definition 4.7. This means
that by giving r1, r2, and r3 uniformly the same rate, that of the original rule, kr, their
activities will add up exactly to that of r.

However, our simulation engine follows the SSA convention (where a rule’s activ-
ity is modulated by dividing by the number of automorphisms of its left hand side). So,
in the only case of refinement r2, which has two automorphisms, we need to multiply
kr2 by a factor of 2 to get from the SSA activity to ours. To numerically verify this, we
ran a simulation of the refined system with x(0, 100) as the initial state. Figure 4.10
shows the simulation run, and we can see that at all times the refined activities add
up to the original one (the top curve)—unlike in Figure 4.8.

4.4.5 Growth Policies, Concretely

We turn now to the question of how one can define concrete nonhomogeneous growth
policies. To do this, we introduce a notion of address, which is a way to designate a
node in an extension of s by a path that connects it to the image of a node in s.

Let us define S2 as the set of formal paths, that is, the set of finite even-length
sequences with values in S, the set of sites.
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Figure 4.10 The activities of the refined rules r1, r2, and r3 add up exactly to r ’s (top curve).

Definition 4.8 (addresses) Given φ ∈ S(s), u ∈ Vs, v ∈ Vφ(s), p a formal path, one
says that (u, p) is an address for v ∈ Vφ(s) in φ, written v = [[u, p]]φ, if p defines in
φ(s) a path starting from φ(u) and ending at v.

One says that v is addressable if it has an address; one says u, p is valid in φ if it
addresses some v.

Clearly, for a given φ, an address uniquely identifies v ∈ Vφ(s), and because φ

is an epi, every v can be addressed in this way. However, a v can be addressed in
different ways. For instance, if s = A(a1), B(b1), then A = [[A,∅]]Id = [[B, b, a]]Id ,
where we have written ∅ for the empty path.

Now, we want to define our growth policy for a given node in an extension based
on its address, and we need only specify this for nodes that we actually want to see
in a refinement. To do this, we introduce the notion of formal growth and allow it to
be only a partial assignment of sets of sites to addresses.

Definition 4.9 (formal growth) A partial map g from Vs × S2 to ℘(S) is said to
be a formal growth on s if for all u ∈ Vs, (u,∅) ∈ dom(g), and for all φ ∈ S(s):

[[u, p]]φ = [[u′, p′]]φ, (u, p), (u′, p′) ∈ dom(g) ⇒ g(u, p) = g(u′, p′).

Given a formal growth, one defines:

Gg(φ)(v) :=
{

g(u, p) if v = [[u, p]]φ and (u, p) ∈ dom(g),

∅ else.

The condition of Definition 4.9 ensures that Gg(φ)(v) does not depend on the choice
of an address in the domain of g.



REFINEMENT, THEORETICALLY 109

Lemma 4.3 If g is a formal growth, then Gg is a growth policy.

Proof: To see this, pick a ψ(v) in a ψφ ∈ S(s, Gg).
Suppose, Gg(φ)(v) = g(u, p) as in the first case of the definition above. Then

by definition [[u, p]]φ = v, and (u, p) ∈ dom(g); certainly, [[u, p]]ψφ = ψ(v), so
Gg(ψφ)(ψ(v)) = g(u, p).

Suppose, now one is in the second case, and v has no address in dom(g). Again
by definition, Gg(φ)(v) = ∅, and since φ ∈ S(s, Gg), this forces σφ(s)(v) = ∅, which
φ being an epi is only possible if v = φ(u) for u ∈ Vs, but then an address for v is
simply (u,∅) ∈ dom(g). �

A similar argument shows readily that all nodes in a φ ∈ S(s, Gg) have an address
in dom(g), and Gg(s) is the set of extensions of s, where all nodes are addressable
within dom(g) and have all the required sites.

We will call such growth policies address-based, or also sometimes weakly homo-
geneous.

It is easily seen that a name-based growth policy G� is a particular type of address-
based growth policy. We may safely assume to simplify notations that sites can only
belong to one node type (else the notion of a formal path can incorporate the name
of the nodes visited as well as the sites). An address u, p along any φ will, therefore,
always lead to a node of the same type, namely, the type of the last site of p, or that of u

if p = ∅, and, therefore, G� assigns nodes with the same address to the same growth.
Likewise, it is easy to verify that the empty growth policy G∅ is address based:

just define g(u,∅) = σs(u) for u ∈ Vs. But, of course, the point of this new notion is
that it is more flexible, and we shall now see an example of a weakly homogeneous
refinement, which is not homogeneous.

4.4.6 A Weakly Homogeneous Refinement

Let us consider a system with three agent types: a receptor R with two sites a and x,
a messenger M with one site y, and an adaptor A with two sites r and m. The system
contact map summarizing all the bindings one is interested in is shown in Figure 4.11.

R

x a r m

A

M

y

Figure 4.11 Contact map for RAM system.
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We have a rule, say for the activation of M, with left hand side s := My−, that is,
the rule requires that M is bound via the y site, but does not care what it is bound to.
We wish to refine the rule into the following extensions:

t1 = M(y1), A(m1, r),

t2 = M(y1), A(m1, r2), R(a2),

t3 = M(y1), R(x1).

In each case, there is clearly a unique extension in [s, ti], so it is enough to specify
the target of the extension.

A concrete motivation for this refinement would be the need to express the fact
that the activation of M is impossible in the case t1, and faster when it is directly
connected to the receptor as in t3. However, t2 and t3 both mention a node of type
R with different binding sites, so the desired refinement cannot be homogeneous,
meaning that there is no � such that the above tis are jointly in G�(s).

So, let us define a finite formal growth g as follows:

g(M,∅) = {y},
g(M, ym) = {m, r},

g(M, ymra) = {a},
g(M, yx) = {x},

where other pairs (M, p) are assumed not in dom(g).
We have to verify that g is a formal growth (as in Definition 4.9). There are two

conditions. The first holds trivially. The second also does because no two addresses
in the domain of g can address the same node. Indeed, suppose (M, p), (M, q) belong
to the domain of g, and address the same node in some extension φ; just by the type
of their end nodes, one sees that the only nontrivial possibility is p = yx, q = ymra,
where the end node is of type R; but M, yx, M, ymra cannot both be valid in φ, since
y can only be paired with one of x and m.

The diagram below shows S(s, Gg) and Gg(s) (Figure 4.12), and one can observe
that all extensions shown there project to the contact map (Figure 4.11).

As said, the formal growth we have constructed can address any node in at most
one way. In other words, if [[u, p]]φ = [[u′, p′]]φ, and both (u, p), (u′, p′) are in
dom(g), then in fact u, p = u′, p′. This is an easy way to satisfy the constraint
of Definition 4.9, and it might be that this suffices in practice, at least when s is
connected.

It is also worth noticing that a formal growth with finite domain defines a finite
G(s). This is general. For any extension φ ∈ G(s), |Vφ(s)| ≤ |dom(g)|, since each node
is addressable at least once within dom(g). Therefore, if dom(g) is finite, refinements
are uniformly bounded in size, and G(s) is finite, that is, in sharp constrast with
name-based growth policies, which are in general defining infinite refinements (as
the earlier example of chains and rings).
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t1 t2 t3

Figure 4.12 The refinement Gg (s) of s via Gg for the RAM system (solid arrows); intermediate
extensions in S(s, Gg ) are shown too (dotted arrows).

4.4.7 Non-homogeneous Growth Policies

There are obviously ways for objects to grow that do not obey the constraints of the
above examples. In order to see this, let us consider another example.

We are given s := B() and the following contact map (see Figure 4.13).
Clearly, the following ti define each a unique extension of s, which we will call φi:

t1 = B(x, y),

t2 = B(x1, y), A(x1),

t3 = B(x, y1), A(y1),

t4 = B(x1, y2), A(x1), A(y2),

t5 = B(x1, y2), A(x1, y2).

There is a valid growth policy to describe this, namely:

G(φ1)([[B,∅]]φ1 ) = G(φ2)([[B,∅]]φ2 ) = · · · = G(φ5)([[B,∅]]φ5 ) = {x, y},
G(φ2)([[B, xx]]φ2 ) = {x},
G(φ3)([[B, yy]]φ3 ) = {y},
G(φ4)([[B, xx]]φ4 ) = {x}, G(φ4)([[B, yy]]φ4 ) = {y},
G(φ5)([[B, xx]]φ5 ) = {x, y},
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A

x y

B

yx

Figure 4.13 Contact map for the A(x, y ), B(x, y ) system.

where all other extensions, which are not intermediates of the above, are assigned uni-
formly G(φ) = ∅. (Note that we have used the address notation, which is convenient
even for general growth policies.)

The refinements associated with G are shown in Figure 4.14. It is not an address-
based growth policy, as its formal growth would have to verify the contradictory
assignments g(B, xx) = {x} = {x, y} because of extensions φ2 and φ5, respectively.

An interesting thing to note is that if we relax the injectivity requirement in our am-
bient category S (condition (4) in Definition 4.2), the above is no longer a valid growth
policy at all. With this requirement lifted, there is an arrow h from t4 to t5 mapping

B
yx

B

B
x y

A

y

B
x y

A

y

A

x

B
x y

B
x y

A

x

A

yxt1

t2 t3 t4 t5

Figure 4.14 Growth diagram for the cyclic AB system.
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the two As to the unique A in t5, which has sites {x, y}; this h violates the faithful
condition. This shows that G being a growth policy depends on the ambient category,
and may also suggest that one has a simpler refinement theory without condition (4).

4.5 CONCLUSION

We have presented a notion of refinement for rule based modeling.
Specifically, we have

• Proposed a notion of growth policy to manage the growth of objects and produce
refined rules

• Characterized situations where these refinements preserve the original behavior.

The somewhat technical treatment of these concepts is justified by the fact that,
unlike in the case of simpler rewriting frameworks such as Petri nets, the solution to
this problem needs a thorough understanding of symmetries.

Our refinements as they stand under this approach are a lot more flexible than in
our previous work [1]. However, they still do not allow full flexibility. For example,
it would be beneficial if we were able to use the wild card binding where we say that
an agent is bound to a site not in a growth policy, but we do not care what the site is.
This would extend the validity of the surjectivity argument that establishes that a set
of refined rules covers all cases. There is no real mathematical difficulty here, but the
needed notations could prove daunting.

Another question that we have not addressed is how to generate growth policies.
The growth policies used in our examples were informally generated using the contact
map to keep track of possible bindings that should be added to extensions. An inter-
esting future direction for this work would be to develop a formal theory of how to
generate refinements starting with a possibly restricted notion of formal growth. This
would have an evident utility in a modeling environment, in that it could guarantee a
user that his refinements are neutral, without him having to sit down and do the kind
of calculations we have done here in a few examples.

Talking about which, we have shown on the more practical side, how refinement
can be used to derive models. This of course is the main motivation for our study. This
sort of approach might offer a structured top–down approach to navigate the space
of parameters of a given model for data fitting. Indeed, every time one refines a rule,
more parameters are made available to optimization. This line of thought is pursued
further in the recent study [10], where one derives a biological repair scheme from a
very simple initial model solely by means of successive refinements.

Finally, on the more conceptual side, one wonders whether refinements could pro-
vide some interesting grammatical substrate, with a measure of biological plausiblity,
that one could use to investigate the plasticity of existing pathways and study their
evolution.2

2The first author was the principal contributor to this study, others have contributed equally.
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5
A (NATURAL) COMPUTING

PERSPECTIVE ON
CELLULAR PROCESSES

Matteo Cavaliere and Tommaso Mazza
The Microsoft Research - University of Trento, CoSBi, Trento, Italy

5.1 NATURAL COMPUTING AND COMPUTATIONAL BIOLOGY

Natural computing is a fast growing field of interdisciplinary research driven by the
idea that natural processes can be used for implementing computations, constructing
new computing devices, and to get inspirations for new computational paradigms.
Moreover, natural computing can also be understood as abstracting biological pro-
cesses in form of computational processes to allow the use of computational tools
for analyzing biologically relevant properties. The field is growing very fast (see, the
journals in the area, e.g., [1] and [2]). This chapter is constructed on the same double
vision: In the first part of the chapter, we recall a computational model inspired by the
structure and the functioning of living cells, called membrane system, and we show
how one can abstract biologically relevant properties and study them by using tools
coming from theoretical computer science. In the second part of the chapter, we show
how the paradigm can be extended and adapted in order to describe and simulate the
mechanisms underlying cell cycle and breast tumor growth.

Elements of Computational Systems Biology Edited by Huma M. Lodhi and Stephen H. Muggleton
Copyright © 2010 John Wiley & Sons, Inc.
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5.2 MEMBRANE COMPUTING

An important research direction in natural computing concerns computations in living
cells. An abstract computational model inspired by the structure and the functioning
of living cells is a membrane system, introduced in 1998 by Păun [3]. Since their
introduction, a large number of membrane systems models have been introduced
in the literature. Several of them have been proved to be computationally complete
and useful for solving hard computational problems in an efficient way (see, for
instance the introductory monograph [4]). In 2003, Thomson Institute for Scientific
Information, ISI, has nominated membrane computing as fast emerging research front
in computer science with the initial paper considered fast breaking paper.

Most of the work done in the membrane systems community concerns the com-
putational power of the system (for an updated bibliography, the reader can consult
the Web page [5], where also preprints can be downloaded). Currently, a handbook of
membrane computing is in preparation (it was scheduled to appear at the end of 2008).

More recently, membrane systems have been applied to systems biology and sev-
eral models have been proposed for simulating biological processes (e.g., see the
monograph dedicated to membrane systems applications [6]).

In the original definition, membrane systems are composed of a hierarchical nesting
of membranes that enclose regions in which floating objects exist. Each region can
have associated rules for evolving these objects (called evolution rules, modeling
the biochemical reactions present in cell regions) and/or rules for moving objects
across membranes (called symport/antiport rules, modeling some kinds of transport
mechanism present in cells). Recently, inspired by brane calculus [7], a model of
membrane systems, having objects attached to the membranes, was introduced in
Cardelli and Păun [8]. A more general approach, considering both free-floating objects
and objects attached to the membranes, has been proposed and investigated in Brijder
et al. [9]. The idea of these models is that membrane operations are moderated by the
objects (proteins) attached to the membranes. However, in all these models, objects are
associated with an atomic membrane, which has no concept of inner or outer surface.
In reality, many biological processes are driven and controlled by the presence of
specific proteins on the appropriate sides of a membrane. For instance, endocytosis,
exocytosis, and budding in cells are processes in which the existence and locality of
membrane proteins is crucial (see, e.g. [10]).

In general, the compartments of a cell are in constant communication, with
molecules being passed from a donor compartment to a target compartment, mediated
by membrane proteins. Once transported to the correct compartment, the substances
are often then processed by means of local biochemical reactions.

Motivated by this, an extended model has been investigated in Cavaliere and
Sedwards [11, 12] by combining some basic features found in biological cells: (i)
evolution of objects (molecules) by means of multiset rewriting rules associated with
specific regions of the systems (the rules model biochemical reactions); (ii) transport
of objects across the regions of the system by means of rules associated with the
membranes of the system and involving proteins attached to the membranes (on one
or possibly both sides); and (iii) rules that take care of the attachment/detachment of
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objects to/from the sides of the membranes. Moreover, since we want to distinguish
the functioning of different regions, we also associate with each membrane a unique
identifier (a label).

We review the basic paradigm and show how one can, in this way, abstract and
investigate biologically relevant properties such as reachability of a certain state of
the system.

In particular, we are interested in finding classes of membrane systems, where
one can provide algorithms (possibly, efficient) to check interesting and biologically
relevant properties. In computability theory, it is well-known that not all problems can
be algorithmically solved (problems for which algorithms exist are called decidable).
Moreover, for some problems, only inefficient algorithms are known. For these topics,
the reader can consult standard books in computability theory as in Hopcroft and
Ullman [13].

In this respect, we investigate the proposed model by defining two classes of
systems based on two different ways of applying the rules: These two ways correspond
to two different ways of abstracting the applications of biochemical rules in cellular
compartments (a third possible way, less abstract and closer to biochemistry, is to
associate kinetic rates with the rules: This possibility is presented only in the second
part of the chapter when cellular pathways are modeled).

The first way is based on free parallelism: At each step of the evolution of the
system, an arbitrary number of rules may be applied. We prove that, in this case, there
are algorithms that can be used to check important properties like reachability of a
certain configuration (state) even in the presence of cooperative evolution and trans-
port rules (intuitively, cooperative means that several objects/molecules are needed
for starting a biochemical or transport rule).

We also consider a maximal parallel evolution: In this case, if a rule can be
applied then it must be applied, with alternative possible rules being chosen non-
deterministically. This strategy models, for example, the behavior in biology, where a
process takes place as soon as resources become available. In this case, we show that
there is no algorithm that can be used to check whether or not a system can reach a
certain configuration, when the systems use noncooperative evolution rules coupled
with cooperative transport rules. However, several other cases where algorithms are
possible are also presented.

The model presented follows the philosophy of a well-known model in the area
of membrane computing, called evolution–communication model, introduced in
Cavaliere [14], where the system evolves by evolution of the objects and transport
of objects by means of symport/antiport rules that are essentially synchronized
exchanges of objects. However, in the model presented here, the transport of objects
may depend on the presence of particular proteins attached to the internal and
external surfaces of the membranes. Clearly, the model presented is an abstraction
whose main purpose is to produce a cellular-inspired model of computation; the
model needs to be complemented with “real-life” details (e.g., as done in the second
part of this chapter). However, we believe that even such abstract computational
paradigm could give a different view on cellular processes and on the types of
problems that one could and should address.
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Sections 5.4 and 5.5 are based on the the work presented in Cavaliere and Sedwards
[11, 12] (the reader can find there details concerning the definitions and the proofs
of the presented results). A survey of the models of membrane systems that consider
proteins on the membranes is given in Cavaliere et al. [15].

5.3 FORMAL LANGUAGES PRELIMINARIES

Membrane systems are based on formal languages theory and multiset rewriting, two
well-known tools in theoretical computer science. We briefly recall the basic theo-
retical notions used in this chapter. For more details, the reader can consult standard
books in the area, such as those by Hopcroft and Ullman [13] and Salomaa [16] and
the corresponding chapters of the handbook by Rozenberg and Salomaa [17].

Given the set A, we denote by |A| its cardinality and by∅ the empty set. We denote
by N and by R the set of natural and real numbers, respectively.

As usual, an alphabet V is a finite set of symbols. By V ∗, we denote the set of all
strings (sequences of symbols) over V . By V+, we denote the set of all strings over
V excluding the empty string. The empty string is denoted by λ (it is the string with
zero symbols). The length of a string v is denoted by |v|. The concatenation of two
strings u, v ∈ V ∗ is written uv.

The number of occurrences of the symbol a in the string w is denoted by |w|a.
Suppose V = {a, b}. Then a string is w = aaba, then |w| = 4 and |w|a = 3.
A multiset is a set where each element may have a multiplicity. Formally, a multiset

over a set V is a map M : V → N, where M(a) denotes the multiplicity of the symbol
a ∈ V in the multiset M.

For multisets M and M ′ over V , we say that M is included in M ′ if M(a) ≤ M ′(a)
for all a ∈ V . Every multiset includes the empty multiset, defined as M where M(a) =
0 for all a ∈ V .

The sum of multisets M and M′ over V is written as the multiset (M +M ′), defined
by (M +M ′)(a) = M(a)+M ′(a) for all a ∈ V . The difference between M and M ′
is written as (M −M ′) and defined by (M −M ′)(a) = max{0, M(a)−M ′(a)} for
all a ∈ V . We also say that (M +M ′) is obtained by adding M to M ′ (or vice-
versa), while (M −M ′) is obtained by removing M ′ from M. For example, given the
multisets M = {a, b, b, b} and M′ = {b, b}, we can say that M ′ is included in M, that
(M +M ′) = {a, b, b, b, b, b} and that (M −M ′) = {a, b}.

If the set V is finite, for example, V = {a1, . . . , an}, then the multiset M can be
explicitly described as {(a1, M(a1)), (a2, M(a2)), . . . , (an, M(an))}. The support of a
multiset M is defined as the set supp(M) = {a ∈ V | M(a) > 0}. A multiset is empty
(hence finite) when its support is empty (also finite).

A compact notation can be used for finite multisets: If M = {(a1, M(a1)),
(a2, M(a2)), . . . , (an, M(an))} is a multiset of finite support, then the string w =
a
M(a1)
1 a

M(a2)
2 . . . aM(an)

n (and all its permutations) precisely identifies the symbols in
M and their multiplicities. Hence, given a string w ∈ V ∗, we can say that it identifies
a finite multiset over V , written as M(w), where M(w) = {a ∈ V | (a, |w|a)}. For
instance, the string bab represents the multiset M(w) = {(a, 1), (b, 2)}, which is the
multiset {a, b, b}. The empty multiset is represented by the empty string λ.
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5.4 MEMBRANE OPERATIONS WITH PERIPHERAL PROTEINS

In the membrane systems field, it is usual to represent a membrane (that represents a
biological membrane) by a pair of square brackets [ ]. To each topological side of a
membrane, we associate the multisets u and v (over a particular alphabet V ), and this
is denoted by [ u]v. We say that the membrane is marked by u and v; v is called the
external marking and u the internal marking; in general, we refer to them as markings
of the membrane. The objects of the alphabet V are called proteins or, simply, objects.
An object is called free if it is not attached to the sides of a membrane, so is not a part
of a marking.

Each membrane encloses a region, and the contents of a region can consist of free
objects and/or other membranes (we also say that the region contains free objects
and/or other membranes).

Moreover, each membrane has an associated label that is written as a superscript
of the square brackets. If a membrane is associated with the label i, we call it
membrane i. Each membrane encloses a unique region, so we also say region i

to identify the region enclosed by membrane i. The set of all labels is denoted
by Lab.

For instance, in the system [abbbbc[abb ba]2
b ab]1

ab, the external membrane,
labeled by 1, is marked by ab (internal and external marking). The contents of
the region enclosed by the external membrane is composed of the free objects
a, b, b, b, b, c, and the membrane [abb ba]2

b. The system is graphically represented in
Figure 5.1.

1

a b bb

b c

2
a

a b

a

b

b

b b

a

b

Figure 5.1 Graphical representation of the membrane system [abbbbc[abb ba ]2b ab ]1ab . It has
a multiset of floating molecules and proteins attached to the membranes.
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We consider rules that model the attachment of objects to the sides of the mem-
branes.

attach : [au]iv → [ ua]iv, a[ u]iv → [ u]iva,

detach : [ ua]iv → [au]iv, [ u]iva → [ u]iva,

with a ∈ V , u, v ∈ V ∗, and i ∈ Lab.
The semantics of the attachment rules (attach) is as follows.
For the first case, the rule is applicable to the membrane i if the membrane is

marked by multisets containing the multisets u and v on the appropriate sides, and
region i contains an object a. In the second case, the rule is applicable to membrane
i if it is marked by multisets containing the multisets u and v, as before, and is
contained in a region that contains an object a. If the rule is applicable, we say that
the objects defined by u, v, and a can be assigned to the rule (so that it may be
executed).

In both cases, if a rule is applicable and the objects given in u, v, and a are assigned
to the rule, then the rule can be executed (applied) and the object a is added to the
appropriate marking in the way specified. The objects not involved in the application
of a rule are left unchanged in their original positions.

The semantics of the detachment rule (detach) is similar, with the difference that the
attached object a is detached from the specified marking and added to the contents of
either the internal or external region. An example of the application of an attachment
rule is shown in Figure 5.2.

As it is biologically relevant, we also consider rules associated with the membranes
that control the passage of objects across the membranes. Precisely

movein : a[ u]iv → [ a u]iv,

moveout : [ a u]iv → a[ u]iv,

with a ∈ V , u, v ∈ V ∗, and i ∈ Lab.
The semantics of the rules is as follows.

1
1

a

a
b b b b

bc

ab abbc

Figure 5.2 Graphical representation of the attach rule [a b ]1cb → [ ba ]1cb .
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1
1

a

a
b b b b

bc

ab abbc

Figure 5.3 Graphical representation of the moveout rule [a b ]1cb → a[ b ]1cb .

In the first case, the rule is applicable to membrane i if it is marked by multisets
containing the multisets u and v, on the appropriate sides, and the membrane is
contained in a region containing an object a. The objects defined by u, v, and a can
thus be assigned to the rule.

If the rule is applicable and the objects a, u, and v are assigned to the rule, then
the rule can be executed (applied) and, in this case, the object a is removed from the
contents of the region surrounding membrane i and added to the contents of region i.

In the second case, the semantics is similar, but here, the object a is moved from
region i to its surrounding region.

An example of the execution of a movement rule (moveout) is shown in Figure 5.3.
The rules of attach, detach, movein, and moveout are generally called membrane

rules (denoted collectively as memrul) over the alphabet V and the set of labels Lab.
Membrane rules for which |uv| ≥ 2, we call cooperative membrane rules (in short,

coomem). Membrane rules for which |uv| = 1, we call noncooperative membrane rules
(in short, ncoomem). Membrane rules for which |uv| = 0 are called simple membrane
rules (in short, simm).

We also introduce evolution rules that involve objects but not membranes. These
can be considered to model the biochemical reactions that take place inside the com-
partments of the cell. They are evolution rules over the alphabet V and set of labels
Lab, and they follow the definition that can be found in evolution–communication P

systems [14]. We define

evol : [u → v]i,

with u ∈ V+, v ∈ V ∗, and i ∈ Lab. An evolution rule is called cooperative (in short,
cooe) if |u| > 1, otherwise the rule is called noncooperative (ncooe).

The rule is applicable to region i if the region contains a multiset of free objects
that includes the multiset u. The objects defined by u can thus be assigned to the rule.

If the rule is applicable and the objects defined by u are assigned to the rule,
then the rule can be executed. In this case, the objects specified by u are subtracted
from the contents of region i, while the objects specified by v are added to the con-
tents of the region i. An example of the application of an evolution rule is shown in
Figure 5.4.
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Figure 5.4 Graphical representation of the evolution rule [ab → cd ]1.

5.5 MEMBRANE SYSTEMS WITH PERIPHERAL PROTEINS

We can now define a membrane system having membranes marked with multisets
of proteins on both sides of the membrane, free objects, and using the operations
introduced in Section 5.4.

Formally, a membrane system with peripheral proteins (in short, a Ppp system)
and n membranes is a construct

� = (V, μ, (u1, v1), . . . , (un, vn), w1, . . . , wn, R, Rm),

where

• V is a finite, nonempty alphabet of objects (proteins).
• μ is a membrane structure with n ≥ 1 membranes, injectively labeled by

1, 2, . . . , n.
• (u1, v1), . . . , (un, vn) ∈ V ∗ × V ∗ are the markings associated, at the beginning

of any evolution, with the membranes 1, 2, . . . , n, respectively. They are called
initial markings of �; the first element of each pair specifies the internal marking,
while the second one specifies the external marking.

• w1, . . . , wn specify the multisets of free objects contained in regions 1, 2, . . . , n,
respectively, at the beginning of any evolution and they are called initial contents
of the regions.

• R is a finite set of evolution rules over V and the set of labels Lab = {1, . . . , n}.
• Rm is a finite set of membrane rules over the alphabet V and set of labels

Lab = {1, . . . , n}.

5.5.1 Dynamics of The System

A configuration (state) of a membrane system � consists of a membrane structure, the
markings of the membranes (internal and external), and the multisets of free objects
present inside the regions. In what follows, configurations are denoted by writing the
markings as subscripts (internal and external) of the parentheses, which identify the
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membranes. The labels of the membranes are written as superscripts, and the contents
of the regions as string, for example,

[ [ aa]4
ab [aaa aa]2

b [ b ]3
bb a ]1

a

The initial configuration consists of the membrane structure μ, the initial markings
of the membranes, and the initial contents of the regions; the environment is empty
at the beginning of the evolution.

We denote by C(�) the set of all possible configurations of �.
We assume the existence of a clock that marks the timing of steps (single transi-

tions) for the whole system.
A transition from a configuration C ∈ C(�) to a new one is obtained by assigning

the objects present in the configuration to the rules of the system and then executing
the rules as described in Section 5.4.

As we were mentioning earlier, we define two possible ways of assigning the
objects to the rules: free-parallel and maximal-parallel. These two ways conceptualize
two ways of abstracting the application of biochemical reactions. As we will see, the
obtained predictive results are different according to the considered abstraction.

• Free-parallel evolution
In each region and for each marking, an arbitrary number of applicable rules
is executed (membrane and evolution rules have equal precedence). A single
object (free or not) may only be assigned to a single rule.

This implies that in one step, no rule, one rule, or as many applicable rules as
desired may be applied.

We call a single transition performed in a free-parallel way a free-parallel
transition.

• Maximal-parallel evolution
In each region and for each marking, to the applicable rules, chosen in a non-
deterministic way, are assigned objects, chosen in a nondeterministic way, such
that after the assignment no further rule is applicable using the unassigned ob-
jects. As with free-parallel evolution, membrane and evolution rules have equal
precedence, and a single object (free or not) may only be assigned to a single
rule.

We call a single transition performed in a maximal-parallel way a maximal-
parallel transition.

A sequence of free-parallel [maximal-parallel] transitions, starting from the initial
configuration, is called a free-parallel [maximal-parallel, respectively] evolution.

A configuration of a Ppp system � that can be reached by a free-parallel [maximal-
parallel] evolution, starting from the initial configuration, is called free-parallel
[maximal-parallel, respectively] reachable. A pair of multisets (u, v) is a free-parallel
[maximal-parallel] reachable marking for � if there exists a free-parallel [maximal-
parallel, respectively] reachable configuration of � that contains at least one mem-
brane marked internally by u and externally by v.
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We denote by CR(�, fp) [CR(�, mp)] the set of all free-parallel [maximal par-
allel, respectively] reachable configurations of � and by MR(�, fp) [MR(�, mp)]
the set of all free-parallel [maximal-parallel, respectively] reachable markings of �.

Moreover, we denote by Ppp,m(α, β), α ∈ {cooe, ncooe}, β ∈ {coomem, ncoomem,

simm} the class of all possible membrane systems with peripheral proteins, evolution
rules of type α, membrane rules of type β, and m membranes (m is changed to ∗ if
the number of membranes is not bounded). We omit α or β from the notation if the
corresponding types of rules are not allowed. We also denote by V� the alphabet V

of the system �.

5.5.2 Reachability in Membrane Systems

One of the main goal of having a formal model is to provide a way to abstract
and analyze relevant properties. In our case, we use tools from theoretical computer
science, in particular coming from formal languages theory, to investigate biologically
relevant properties of the defined membrane systems.

In particular, a rather natural question concerns whether or not a biological system
can reach a particular specified configuration/state. Hence, it would be useful to
construct models having such qualitative properties to be decidable.

In the described model, one can prove that when the evolution is free-parallel,
it is possible to decide, for an arbitrary membrane system with peripheral proteins
and an arbitrary configuration, whether or not such a configuration is reachable by the
system. Formally, the following theorem holds (results presented in these sections can
be found in Cavaliere and Sedwards [11, 12]). Notice that the number of membranes
is not relevant for the obtained results (the symbol * is used).

Theorem 5.1 It is decidable whether or not for any Ppp system � from
Ppp,∗(cooe, coomem) and any configuration C of �, C ∈ CR(�, fp).

It is decidable whether or not for any Ppp system � from Ppp,∗(cooe, coomem) and
any pair of multisets (u, v) over V�, (u, v) ∈MR(�, fp).

We can now suppose that a membrane system evolves in a maximal-parallel way; in
this case, one can prove that the reachability of a specified configuration is decidable
when the evolution rules used are noncooperative and the membrane rules are simple
or when the system uses only membrane rules (including cooperative membrane
rules).

Moreover, one can also show that it is undecidable whether or not an arbitrary
configuration can be reached by an arbitrary system working in the maximal-parallel
way and using noncooperative evolution rules coupled with cooperative membrane
rules.

We first consider systems where only membrane rules are present.

Theorem 5.2 It is decidable whether or not for an arbitrary Ppp system � from
Ppp,∗(coomem) and an arbitrary configuration C of �, C ∈ CR(�, mp).
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It is decidable whether or not for an arbitrary Ppp system � from Ppp,∗(coomem)
and an arbitrary pair of multisets u, v over V�, (u, v) ∈MR(�, mp).

For systems having noncooperative evolution and simple membrane rules, the
following theorem holds.

Theorem 5.3 It is decidable whether or not for an arbitrary Ppp system � from
Ppp,∗(ncooe, simm) and an arbitrary configuration C of �, C ∈ CR(�, mp).

It is decidable whether or not for any Ppp system � from Ppp,∗(ncooe, simm) and
any pair of multisets (u, v) over V�, (u, v) ∈MR(�, mp).

Another possibility is to consider systems having noncooperative evolution rules
and cooperative membrane rules; in this case, the reachability of an arbitrary config-
uration becomes an undecidable problem and, as mentioned before, this means that,
in general, there is no algorithm that can be found to solve such a problem.

Theorem 5.4 It is undecidable whether or not for an arbitrary Ppp system � from
Ppp,∗(ncooe, coomem) and an arbitrary configuration C of �, C ∈ CR(�, mp).

It is known that membrane proteins can cluster and form more complex molecules
whose activity is very distinct from the original components; moreover, proteins
can cross sides of a membrane, and proteins on opposite sides can influence each
other in a “synchronized” manner. To capture all these aspects, we can extend the
considered paradigm by admitting evolution rules also for the proteins embedded in
the membranes.

This can be done in a rather natural manner, since membrane proteins are repre-
sented as multisets of objects, and then we can still use multiset rewriting rules to
represent these membrane processes.

Precisely, we can define a membrane-evolution rule

mem − evol : [ u]iv → [ u′ ]
i
v′ ,

with u, v, u′, v′ ∈ V ∗, and i ∈ Lab; if u = λ or v = λ then u′ = λ or v′ = λ, respec-
tively.

The rule is applicable to membrane i if the internal marking of the membrane
contains the multiset of proteins u and the external marking contains the multiset v.
The proteins defined by u and v can thus be assigned to the rule. If the rule is applicable
and the objects defined by u andv are assigned to the rule, then the rule can be executed.
In this case, the objects specified by u are subtracted from the internal marking of
membrane i, the objects specified by v are subtracted from the external marking
of membrane i, while the objects specified by u′ are added to the internal marking
of membrane i, and the objects specified by v′ are added to the external marking of
membrane i. An example of the application of an internal membrane-evolution rule
is shown in Figure 5.5.
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Figure 5.5 Graphical representation of the membrane-evolution rule [ ab ]1b → [ e ]1d .

As we will see in the next section, such extension will be extremely useful to
describe cellular processes that involve membrane receptors.

Looking into the details of the proof of Theorem 6.2 as presented in Cavaliere
and Sedwards [12], it is easy to extend the result and prove that is possible to check
the reachability of arbitrary configurations and markings for membrane systems with
peripheral proteins and membrane-evolution rules, with the systems working in a
free-parallel manner (the idea, as used in Cavaliere and Sedwards [12], is that at-
tached objects can be indexed in a special manner to separate from floating objects;
membrane-evolution rules can be then seen as cooperative evolution rules acting only
on attached objects).

However, from a computational point of view, it is not clear if the inclusion of
membrane-evolution rules leads to higher complexity algorithms. A more detailed
computational study of membrane systems with peripheral proteins and membrane
evolution-rules is then left as a research topic. The proposed membrane evolution rules
can also be seen as a generalization of the protein rules used in Păun and Popa [18],
where only one single protein can be rewritten on one side of the membrane. Moreover,
similar types of rules have been included in the stochastic simulator presented in
Cavaliere and Sedwards [19]: in that case, the attachment of an object can allow the
rewriting of the multiset of embedded proteins.

5.6 CELL CYCLE AND BREAST TUMOR GROWTH CONTROL

In this section, we show how the computational paradigm introduced in Section 5.5
can be adapted in order to model important cellular processes. In particular, we show
how it is possible to model the processes concerning cell cycle and breast tumor
growth.

It is well-known that the life of human beings is marked by the cycling life of
its constitutive cells. It goes through four repetitive phases: Gap 1 (G1), S, Gap 2

(G2), and M. G1 is in between mitosis and DNA replication and is responsible for cell
growth. The transition occurring at the restriction point (called R) during the G1 phase
commits a cell to the proliferative cycle. If the conditions that enforce this transition
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are not present, the cell exits the cell cycle and enters a nonproliferative phase (called
G0) during which cell growth, segregation, and apoptosis occur. Replication of DNA
takes place during the synthesis phase (called S). It is followed by a second gap phase
responsible for cell growth and preparation for division. Mitosis and production of
two daughter cells occur in the M phase. Switches from one phase to the next one
are critical checkpoints of the basic cyclic mechanism, and they are under constant
investigation [20, 21].

Passage through these four phases is regulated by a family of cyclins1 that act
as regulatory subunits for the cyclin-dependent kinases (Cdks). Cyclins’ complex
activates Cdks, with the aim to promote the next phase transition. Such activation
is due to sequential phosphorylations and dephosphorylations2 of the key residues
mostly located on each Cdk complex subunit. Therefore, the activity of the various
cyclin–Cdk complexes results to be controlled by the synthesis of the appropriate
cyclins during each specific phase of the cell cycle.

5.6.1 Cell Cycle Progression Inhibition in G1/S

Episodes of DNA damage during G1 pose a particular challenge because replication
of damaged DNA can be deleterious and because no other chromatid is present to
provide a template for recombinational repair. Besides, by considering that cyclins
operate as promoting factors for mitosis and that typical cancer evolutions act as
suppressors of certain members of the cyclins family, in case of DNA damage, the
desired (healthy) state is identified by the G0 phase. Hence, in this context, we are
interested to understand where and why G0 is reached.

5.6.1.1 p53-Dependent Checkpoint Pathway There are several proteins
that can inhibit the cell cycle in G1 but, whenever a DNA damage occurs, p533

is the protein that gets accumulated in the cell and that induces the CyclinE_cdk2

p21-mediated inhibition. It can be activated by different proteins that, in turn, can be
activated by different genotoxic or nongenotoxic stimuli. The role of this transcription
factor is to induce the transcription of genes that encode proteins involved in apoptosis,
of genes that encode proteins in charge to stop the cell cycle, and of proteins involved
in the DNA repair machinery. When a damage is detected, p53 allows a cell a unique
possibility for survival by starting the repair machinery. If this process fails, the cell
is destined to die. In particular, whenever the DNA double strand is broken, p53 is
activated by the ATM protein kinase. The oncoprotein Mdm24 binds the transcription

1Cyclins are a family of proteins involved in the progression of cells through the whole cell cycle. They
are so named because their concentrations vary in a cyclical fashion. They are produced or degraded as
needed in order to drive the cell through the different phases of its life cycle.
2In eukaryotes, protein phosphorylation is probably the most important regulatory event. Many enzymes
and receptors are switched on or off by phosphorylation and dephosphorylation. Phosphorylation is cat-
alyzed by various specific protein kinases, whereas phosphatases dephosphorylate.
3p53 is a key regulator of cellular responses to genotoxic stresses; for this reason, it is named: the guardian
of the genome [29].
4Mdm2 is the pivotal negative regulator of p53.
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factor and blocks its activity through a dual mechanism: It conceals the p53 trans-
activation domain and promotes the p53 degradation after ubiquitination5 [22]. ATM

activates p53 preventing the Mdm2 binding, so its inhibitory effect cannot occur. This
action allows p53 to shuttle to the nucleus. Here, it can promote the transcription of
different target genes; one of them is a cyclin-dependent kinase inhibitor: p21. p21

is in charge to suppress the CyclinE_Cdk2 kinase activity, thereby resulting in G1

arrest [23].
This mechanism has been formalized using membrane systems and simulated

in Mazza and Nocera [24]. In particular, we have extended the corresponding
Reactome6 [25] model (written in the Systems Biology Markup Language, SBML
[26]). Moreover, we have translated the model into the membrane system frame-
work [27] and have simulated its dynamics. The obtained membrane system model
is described in Figure 5.6.

In addition to the described pathway, we have provided some extra rules with the
aim to reduce any possible pathways cross-talk effects (in fact, very often, chemicals
are involved in more than one living function and hence, they are involved in different
pathways). Moreover, we have added an interaction rate to the rules, as described in
Sedwards and Mazza [28], and we have used Cyto-Sim7 to simulate the model.

We have initially employed the same quantitative initial configurations (except for
Cyclin_Cdk2, which we set one-tenth of the others with the aim both to acceler-
ate the degradation of p21 and to better qualitatively depict the arrest process) and
same rate constants (except for the last two degradations and for the p21 binding,
merely for complying qualitatively the well-known behaviors of the chemicals under
examination).

As already mentioned before, we have added to the model some extra feed-
back rules in order to avoid pathways cross-talks issues. In particular, we have
added a fictitious rule (r9) that causes the consumption of the sequestered com-
plex CyclinE_Cdk2 by p21 (r8). In this way, we can monitor and temporize the
cycle arrest process. Moreover, because damage, ATM, p53, and Mdm2 undergo phos-
phorylation and the corresponding ATMphospho, p53phospho, and Mdm2phospho

are endlessly created, we have introduced three simple degradation rules (r10−12) to
take into account their balancing processes (that are, possibly, envisaged by other

5Ubiquitin-mediated proteolysis of regulatory proteins controls a variety of biological processes. A protein
molecule doomed for destruction is marked with a chain of ubiquitin molecules. Proteins displaying this
ubiquitin death tag are promptly destroyed by the proteosome.
6Reactome is a knowledgebase of biological pathways. It offers significant literature references and pictorial
representations of reactants and reactions. (Part of) the pathway under investigation is available in numerous
data formats.
7Cyto-Sim [28] is a stochastic simulator of biochemical processes in hierarchical compartments that may
be isolated or may communicate via peripheral and integral membrane proteins. It is available online as a
Java applet [30] and as a standalone application. It works fully and correctly, although the functionalities
of the applet have been reduced for security issue. It is possible to model and simulate in a stochastic
and deterministic manner, (i) interacting species, (ii) compartmental hierarchies, (iii) species localizations
inside compartments and membranes, and (iv) rules (and correlated velocity formulas that govern the
dynamics of the system to be simulated) in the form of chemical equations.
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Π = (O,μ,wc,wn,(uc,vc),(un,vn),R
m,R), where

O = {damage,ATMdimer,ATMphospho,Mdm2,Mdm2−p53,Mdm2phospho,p53phospho,

p21,CyclinE−Cdk2,p21−CyclinE−Cdk2},

μ = [c[n]n]c,

wc = λ,

wn = damage1000 ATM_dimer1000 Mdm21000 p531000 Cyclin_Cdk21000,

uc = λ;vc = λ;un = λ;vn = λ,

R m = {r1: [Mdm2−p53]
n→[ ]n Mdm2−p53} rate(r1) = 1,

rate(r2) = 1,

rate(r3) = 1,

rate(r4) = 1,

rate(r5) = 1,

rate(r6) = 1,

rate(r7) = 1,

rate(r8) = 0.8,

rate(r9) = 1,

rate(r10) = 1,

rate(r11) = 0 .6,

rate(r12) = 0 .6

R =

{

r2 : [damage + ATMdimer → ATMphospho2]n

r3 : [Mdm2 + p53 → Mdm2_p53]n

r4 : [Mdm2−p53 → λ]c

r5 : [ATMphospho + Mdm2 → ATMphospho + Mdm2phospho]n

r6 : [ATMphospho + p53 → ATMphospho + p53phospho]n

r7 : [p53phospho → p53phospho + p21]n

r8 : [p21 + CyclinE−Cdk2 → p21−CyclinE−Cdk2]
n

r9 : [p21_CyclinE_Cdk2 → λ]n

r10 : [ATMphospho → λ]n

r11 : [p53phospho → λ]n

r12 : [Mdm2phospho → λ]n

}

Figure 5.6 p53-dependent G1/S arrest. The membrane system is written in the style described
in Section 5.5. However, with the aim to be closer to biochemistry, we use the symbol “+” to
represent multiset concatenation (instead of just writing them by concatenating the symbols, as
is usually done in the membrane systems area and as presented in Section 5.3). For instance,
here a rule [u1u2 → v1v2]1 is written as [u1 + u2 → v1 + v2]1. Moreover, the labels used are
short notations for the following cellular compartments: s = system, c = cytoplasm, and n =
nucleoplasm.

pathways). When the modeled pathway is not perturbed by a DNA damage, the
Mdm2_p53 complex is rapidly created (r3) and quickly shuttled to cytoplasm (r1),
where it is degradated (r12) (Figure 5.7). But when a damage occurs (r2), the accumu-
lation of Mdm2_p53 into the nucleus is quickly blocked (reducing its shuttling) and
the accumulation of p53phospho is promptly triggered (r6). After the damage, the
quantity of Mdm2_p53 shuttled decreases (from 270 to 370 complexes), and the accu-
mulated p53phospho molecules transcriptionally activate p21 (r7) that accumulates
and sequesters CyclinE_Cdk2 (r8) for G1/S arrest (Figure 5.8).
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Figure 5.7 p53-dependent G1/S progression.

Figure 5.8 p53-dependent G1/S arrest in response to stress.
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Π = (O,μ,wc,wn,(uc,vc),(un,vn),R
m,R),where

O =  {damage,ChkX,Cdc25A,Cdc25Aphospho,CyclinE−Cdk2phospho},

μ = [c[n]n]c,

wc =  λ,

wn =  Cdc25A1000 CyclinE−Cdk2phospho
1000,

uc =  λ,vc = λ,

un = λ,vn = λ,

R m =  {r1: [Cdc25Aphospho]
n → [ ]n Cdc25Aphospho} rate(r1) = 1

R =

{

r2 : [damage → ChkX]n rate(r2) = 10000,

r3 : [ChkX + Cdc25A → Cdc25Aphospho]n rate(r3) = 1,

r4 : [Cdc25Aphospho → λ]c rate(r4) = 1,

r5 : [Cdc25A + CyclinE_Cdk2phospho → CyclinE_Cdk2]n rate(r5) = 1,

r6 : [CyclinE_Cdk2 → TRANSITION]n rate(r6) = 10000

}

Figure 5.9 p53-independent G1/S arrest.

5.6.1.2 p53-Independent Checkpoint Pathway There is an alternative way
where the inhibition of Cdk28 in response to DNA damage can occur even in cells
lacking p53 or p21. In such case, the elimination of Cdc25A evokes a cell-cycle
arrest, promotes repair of the DNA cross-links and protects cells from DNA strand
breaks. Here, we have explored the response of human cells to phosphorylation of
Cdc25A by Chk1 or Chk29 due to ultraviolet light (UV) or ionizing radiation (IR) [31].
Indeed, upon exposure to UV or IR, the abundance and activity of Cdc25A rapidly
decreases. The destruction of Cdc25A prevents the entry into S-phase by maintain-
ing the CyclinE_Cdk2 complexes phosphorylated and inactive. Such a degradation
takes place within the cytosol10 and is mediated by the ‘endopeptidase activity’ of
26S proteosome. This process has been fully described in Franco et al. [32] and
here is summarized by the membrane system in Figure 5.9.

“Unfortunately,” between 16 and 24 h after exposure to UV, cells resume DNA
replication and progression through the cell cycle, indicating that the UV-induced cell
cycle arrest is then reversible. Using simulations, we have discovered that the source

8Cdk2 is the kinase (complexed with cyclinE) activated by Cdc25A.
9Chk1 is activated in response to DNA damage due to UV. Chk2 is activated by IR.

10Cytosol is the fluid portion of the cytoplasm, exclusive of organelles and membranes.
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Figure 5.10 p53-independent G1/S progression.

of reversibility is the Cdc25A–Cdc25Aphospho interplay. These are in charge of
the arrest and of triggering the cell cycle, respectively, by activating or disabling the
CyclinE_Cdk2 complex. Whenever the cycle stops, the degradation activity becomes
low and both species exhibit permanent oscillations due to their peer competition.
Oscillations are influenced by complementary cross-talk pathways. They interfere
with the unstable Cdc25A–Cdc25Aphospho interplay and stimulate the cell cycle
restarting.

Moreover, we have emulated the system evolution with normal degradation lev-
els as well. In Figure 5.10, we have shown that cell cycle progression quickly takes
place whenever no DNA damage occurs. The dashed line represents the G1/S pro-
gression trend (r6). Its behavior is strongly correlated to the CyclinE_Cdk2 de-
phosphorylation process (r5). On the other hand, in Figure 5.11, we have reproduced
an artificial DNA damage (square caps line). In accordance to the damage type,
Chk1/2 (it is named ChkX into the corresponding membrane system) quickly accu-
mulates (r2). Chk1/2 phosphorylates Cdc25A (r3) and blocks the CyclinE_Cdk2

dephosphorylation process (r5). Consequently, cycle progression results are signifi-
cantly reduced (550 vs. 1000) and slower (Figure 5.11).

5.6.2 Cell-Cycle Progression Inhibition in G2/M

14-3-3�, also known as stratifin, is a p53-inducible gene that inactivates mitotic-
Cdks by cytoplasmatic sequestration [33, 34]. Since the accumulation of mitotic-Cdks
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Figure 5.11 p53-independent G1/S arrest in response to stress.

is required for mitotic entry, the overexpression of 14-3-3� leads to cycle arrest in
G2. On the other hand, the inhibitory effect of 14-3-3� is usually balanced by the 14-

3-3�-Efp11 binding, which results in ubiquination of 14-3-3�, enhanced turnover
of 14-3-3� by the proteosome and cycle progression [35, 36]. BRCA112 balances
the Efp-mediated cycle progression-enhancing activity by monitoring the regulatory
effects of the estrogen receptor ER�. It inhibits the ER� signaling cascade and blocks
its AF-2 transcriptional activation [35, 37]. Moreover, in presence of wild-type p53,
BRCA1 induces 14-3-3�. Loss of this control may contribute to tumorigenesis.

Estrogens are a group of steroid compounds that are the primary female sex hor-
mone. They are involved in cell cycle progression and generation/promotion of tumors
such as breast, uterus, and prostate cancers. Estrogen actions are assumed to be medi-
ated by estrogen receptors, which are found in different ratios in the different tissues

11Efp (estrogen responsive finger protein) gene is predominantly expressed in female reproductive organs
(uterus, ovary and mammary glands). It acts as one of the primary estrogen responsive genes in Er�-
and/or Er�-positive breast tumor and would mediate estrogen functions such as cell proliferation. Efp
controls ubiquitin-mediated destruction of a cell-cycle inhibition and may regulate a switch from hormone-
dependent to hormone-independent growth of breast tumors.
12BRCA1 belongs to a class of genes known as tumor suppressors. The multifactorial BRCA1 protein
product is involved in DNA damage repair, ubiquitination, transcriptional regulation, and other functions.
Variations in the gene are implicated in a number of hereditary cancers, namely breast, ovarian, and prostate.
The majority (70%) of BRCA1-related breast cancers are negative for ER�.



134 A (NATURAL) COMPUTING PERSPECTIVE ON CELLULAR PROCESSES

Table 5.1 Estrogenic compound binding affinity

ER� ER�

17-beta estradiol x x
Estron x
Raloxifen x
Estriol x
Genistein x

of the body and which regulate the transcription of some target genes. A certain
stimulation of Efp by estrogen has been shown to promote genetic instability.

5.6.2.1 The Role of Estrogen Receptors Receptors are proteins located on
the cell membrane or within the cytoplasm or cell nucleus that bind to specific
molecules (ligands13) and initiate the cellular responses. Estrogen receptors are intra-
cellular proteins present both on the cell surface membrane and in the cytosol. Those
localized within the cytosol have a DNA-binding domain and can function as tran-
scription factors to regulate the production of proteins. Their signaling effects depend
on several factors: (i) the structure of the ligand or drug, (ii) the receptor subtype,
(iii) the gene regulatory elements, and the (iv) cell-type specific proteins. There are
two different ER proteins produced from ESR1 and ESR2 genes: ER� and ER�. ERs
are widely distributed throughout the human body

• ER�: endometrium, breast cancer cells, ovarian stroma cells, and hypothalamus.
• ER�: kidney, brain, bone, heart, lungs, intestinal mucosa, prostate, and endothe-

lial cells.

ERs actions can be selectively enhanced or disabled by some estrogen receptor,
modulators, in accordance with the binding affinities level of each estrogenic com-
pound (see Table 5.1). In particular, in many breast cancers, tumor cells grow in
response to estradiol, the natural hormone that activates both ERs [38]. Estradiol
(“female” hormone, but also present in men) represents the major estrogen in hu-
mans. Although estrogen is a well-known promoting factor of sporadic breast car-
cinoma (because the estrogen–ER binding stimulates the proliferation of mammary
cells with the resulting increase in cell division and DNA replication), its effects on
risk modification about hereditary breast cancers are still not clear.

5.6.2.2 G2/M Transition Control In healthy conditions, DNA damages in-
duce the increase of p53 levels. p53 promotes transcription of Cdk inhibitors (e.g.,
14-3-3σ), which recruit CyclinB–Cdk complexes leading to cell cycle arrest and
DNA repair. We have modeled the proteolysis of 14-3-3σ modulated by Efp. The

13Ligands introduce changes in the behavior of the receptor proteins, resulting in physiological changes
and constituting their biological actions.
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Π = (O,μ,ws,wc,wn,(us,vs),(uc,vc),(un,vn),Rm,R), where

O = {damage,p53,BRCA1,stratifin,estrogen,ER,ER−estrogen,ER−act,Efp,Cdc2−CyclinB,

stratifin_Cdc2−CyclinB,stratifin−Cdc2−CyclinB−ub,TRANSITION},

μ = [s[c[n]n]c]s,

ws = estrogen1000,

wc = Cdc2−CyclinB
1000,

wn = BRCA11000,

us = λ,vs =  λ,uc =  λ,vc =  ER
1000,un =  λ,vn =  λ,

R m =

{

r1 : [ ]c ER−act → [ER−act]
c rate(r1) = 1,

r2 : [ER−act]
c → [ER−act]

c rate(r2) = 1,

r3 : [stratifin]
n → [ ]n stratifin e(r3) = 1,tar

r4 : [ ]n ERact → [ERact]n rate(r4) = 1,

r5 : [Efp]
n →[ ]n Efp te(r5) = 1,ar

r6 : [ ]n Cdc2−CyclinB → [Cdc2−CyclinB]
n rate(r6) = 1

}

R =

{

r7 : [ ]cER + estrogen → [ ]cER−estrogen

: [ ]cER−estrogen → [ ]cER−act

rate(r7) = 1

r8 rate(r8) = 1

r9 : [ stratifin + Cdc2−CyclinB → stratifin−Cdc2−CyclinB]
c rate(r9) = 1

r10 : [Efp + stratifin−Cdc2−CyclinB → stratifin−Cdc2−CyclinB−ub]
c rate(r10) = 1

r11 : [stratifin−Cdc2−CyclinB−ub → Cdc2−CyclinB]
c rate(r11) = 1

r12 : [damage → p53]n rate(r12) = 1000

r13 : [p53 + BRCA1 → stratifin]n rate(r13) = 1

r14 : [ER−act → Efp]n rate(r14) = 1

r15 : [ER−act → λ]n rate(r15) = 1

r16 : [Cdc2−CyclinB → TRANSITION]n rate(r16) = 1

r17 : [damage + BRCA1  + ERact → BRCA1 + ER + damage]n rate(r17) = 1

}

Figure 5.12 G2/M transition control.

degradation of 14-3-3σ is subsequently followed by the protein dissociation of
the cyclinb–Cdk complexes, leading to cell cycle progression and tumor growth.
Finally, we have considered the compensative role of BRCA1 in (i) suppressing any
estrogen-dependent transcriptional pathway and in (ii) inducing 14-3-3σ . To test
whether altered checkpoints can modulate sensitivity to treatment in vivo, we have
constricted a model for this signaling pathway. The corresponding model is reported
in Figure 5.12.
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Figure 5.13 Healthy G2/M phase transition.

Whenever a healthy cell divides, its free Cdc2_CyclinB dimers shuttle to the nu-
cleus (r6) and induce the G2/M transition (r16). When we have simulated such situation,
we have monitored the accumulation of Efp into the nucleus (r14) and its migration
to the cytoplasm (r5) (dashed line in Figure 5.13) caused by the activation of the ERs
(r7−8) and the consequent migration into the nucleus (r1−2,4). Cdc2_CyclinB com-
plexes accumulate into the nucleus and promote entry in mitosis (square caps line). On
the other hand (see Figure 5.14), when a DNA damage occurs, p53 starts to accumu-
late (r12). p53 and BRCA1 coinduce 14-3-3σ (r13), which is free to migrate out to the
cytoplasm (r3). Here, it sequesters the Cdc2_CyclinB complexes (r9) and prevents
their shuttling to the nucleus. Consequently, the cell stops its cycle. Therefore, to allow
cell-cycle progression, estrogens stimulate production of Efp (see Figure 5.15). This
is obtained by enabling the ERs placed on the cell surface (because of the interaction
with the estrogens hormones (r7−8) and then by moving the receptors into the nucleus
(r1−2,4)). Here, the receptors can bind DNA and enhance the Efp production (r14).
BRCA1 balances this process by disabling the receptors moved into the nucleus and
then controlling their Efp induction (r17). The level of Efp in Figure 5.15 is signifi-
cantly lower than that in Figure 5.13. This is due to the BRCA1 inhibitory control. The
resulting Efp is free to shuttle to the cytoplsm (r5) and bind 14-3-3σ for ubiquina-
tion (r10). 14-3-3σ marked with ubiquitin chains is recognized and destroyed by the
proteosome (r11). Released Cdc2_CyclinB dimers can then escape into the nucleus
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Figure 5.14 Stratifin induction by p53 accumulation and ERs activation and migration into the
cytoplasm in response to stress.

Figure 5.15 G2/M phase transition in response to stress.
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(r6) and promote mitotic entry (r16). Finally, the transition process of Figure 5.15
results to be slower and less effective than that of the healthy system in Figure 5.14.
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SIMULATING FILAMENT

DYNAMICS IN CELLULAR
SYSTEMS
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Department of Electrical and Computer Engineering,
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6.1 INTRODUCTION

Increasingly, there is an appreciation of the importance of computational models in
biology. These models of biological systems have principally been used to show the
level of quantitative understanding of the systems in terms of how well they produce
previously observed behavior or more importantly produce a “testable hypothesis
relevant to important problems” [1].

Computational models provide two significant benefits. First, they help to test
conceptual models of how signaling networks interact. This is particularly important
when the number of interacting components is large or when the network topology is
complex—for example, containing numerous feedback loops or cross-talk between
different pathways. Second, computational models provide testable hypotheses that
can lead to new insight into the function of biological systems.

Most computational models in biology are based on ordinary differential equation
implementations of molecular wiring diagrams [2]. The states that are updated by
these equations represent the concentrations of biochemical species. Standard tech-
niques are then used to translate the nature of the interactions (e.g., Michaelis–Menten
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kinetics to describe enzymatic reactions) into the correct equations. As the scope of
systems being modeled increases from reacting chemical species to reaction diffusion
systems to force interaction systems, the complexity of the model and the computa-
tional demand increase.

However, there are situations in which we are interested in factors beyond the
concentrations of the individual species. One particular case is where we consider
the role of intracellular filaments in generating force. As an example, consider the
formation of the mitotic spindle [3, 4]. Here, individual microtubule filaments inter-
act with their associated motors to create a distinctive morphology. To test whether
the interaction gives rise to a mitotic spindle, these structures must be modeled
individually.

In this chapter, we outline some of the computational issues necessary for modeling
cytoskeletal filament systems. In particular, we focus on the components necessary
to simulate microtubule filaments under the influence of motor complexes.

6.2 BACKGROUND: THE ROLES OF FILAMENTS WITHIN CELLS

Eukaryotic cells contain three main types of filaments: actin filaments, intermediate
filaments (IFs), and microtubules (MTs). All three play vital roles within cells; they
facilitate intracellular protein transport, cellular motility, chromosome movement,
vesicle transport, and help maintain the structural integrity of the cell. In all three
cases, cytoskeletal filaments form through polymerization of subunits.

6.2.1 The Actin Network

The actin filament network contributes structural support for the cell and is the major
cytoskeletal system driving cell motility [5] and cytokinesis [6].

Actin, an approximately 42-kDa globular protein, is one of the most highly con-
served proteins in nature. In nature, it is found as a pool of monomers (so-called
G-actin) at high concentrations and as a directed semiflexible rod-like filament
(F-actin). Actin filaments have the structure of a two-start right-handed helix spanning
36 nm for every 13 actin monomers; thus, every new actin monomer extends the fila-
ment a distance of roughly 2.7 nm [7] (Figure 6.1). Actin is an ATPase, using energy

36 nm

Pointed
end

Barbed
end

Figure 6.1 Actin filaments are polarized. Though actin monomers can bind at either end, the
rate of binding at the front end is considerably higher, which means that most of the growth comes
at this end.
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Figure 6.2 Actin filaments are cross-linked. Single actin filaments are long and thin. Cross-
linking greatly increases their stiffness and resistance to bending forces. Common cross-linking
proteins are ˛-actinin, filamin, cortexillin and fimbrin.

from ATP hydrolysis to assemble into filaments [8]. However, because small actin
dimers and trimers are highly unstable, nucleators (the Arp2/3 complex and formins)
are needed for filaments to appear [9]. Once these filaments are formed, however,
their growth is rapid, approximately 0.3 �m/s [5].

Single actin filaments are thin (7 nm) and long. Recently, three-dimensional elec-
tron microscope tomograms were used to determine an average filament length of
approximately 100 nm [10]. Thus, alone they would not provide much support to the
cell. However, a number of proteins (e.g. α-actinin, filamin, cortexillin, fimbrin) have
evolved that cross-link individual filaments (Figure 6.2), creating a dense meshwork
or interconnected filaments [11]. While individual actin filaments are less rigid than
MTs [12], networks of actin filaments are more rigid than those consisting of MTs or
IFs, but cannot sustain as much force as intermediate filaments [13].

6.2.2 Intermediate Filaments

IFs are formed from a heterogeneous family of proteins. The filaments are around
10 nm in diameter and derive their name from their intermediate thickness between
that of actin and MT filaments [14]. The filaments are extremely difficult to break but
bend easily [13].

Though IFs vary greatly, they can be divided into several main groups: types
I–VI. Keratins, which form types I and II, give epithelial cells in the outer layers
of animal skin their resistance to mechanical stress. One of the type III IFs, neu-
rofilaments, which lines the axon of neurons, is involved in the neurodegenerative
amyotrophic lateral sclerosis when the filaments do not properly form in motor neu-
ron cells [16]. Type V IFs, lamins, form a fibrous network found on the inner surface
of the nucleus and may also serve an important fuction during spindle assembly [17].
In humans, mutations in lamin cause premature ageing (Hutchinson Gilford progeria
syndrome) [18].



144 SIMULATING FILAMENT DYNAMICS IN CELLULAR SYSTEMS

(b) Tetramer

(a) Dimer

(d ) Unit 
     length 
     filament 
     (ULF)

(c) Octamer

(e) Filaments

Figure 6.3 Formation of intermediate filaments. Intermediate filaments form parallel, coiled-coil
heterodimers (a). A tetramer is formed by two of these heterodimers in a staggered, over-lapping
fashion (b). These tetramers become octamers (c), two of which then join to form the basic Unit
Length Filament (ULF) (d). (e). Longer filaments are formed by the addition of multiple ULFs.
Adapted from [15].

Unlike the other two classes of filaments, IFs are not polar. Instead, parallel coiled-
coil dimers come together to form tetramers and two of these will assemble into an
octamer known as a unit length filament (Figure 6.3) [15].

6.2.3 Microtubules

MTs are primarily known for their role in forming the mitotic spindle, which separates
the chromosomes during cell division in eukaryotes [19]. MTs also form the flagella
and cilia in eukaryotic cells [20]. Flagella give spermatazoa their motility [21]. Cilia
allow the transport of fluid past stationary cells such as the transport of mucus along
the respiratory tract [22]. MTs are also used for intracellular transport such as dispers-
ing or condensing pigment granules in chromatophores allowing fish to camouflage
themselves. Viruses, such as HIV, have also taken advantage of MT filaments with
aster arrays to guide themselves toward the nucleus, so that they can inject their DNA
into that of their host cell [23].

MTs nucleate from gamma tubulin ring complexes (γ-TuRC), upon which
α-tubulin and β-tubulin heterodimers join together longitudinally to form proto-
filaments (Figure 6.4). Thirteen such protofilaments bind together laterally via weak
noncovalent interactions to form a hollow microtubule, with an outer diameter of
25 nm [24] and lengths capable of exceeding 10 �m [25].
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Figure 6.4 Microtubule protein formation. A heterodimer, consisting of ˛- and ˇ-tubulin sub-
units, forms the basic building block. Chains of these dimers are said to form a protofilament.
A microtubule is formed as a hollow cylinder, 25 nm in diameter, of parallel connections of 13
protofilaments.

Each end of the protofilament is characterized by the appearance of either
α-tubulin or β-tubulin. Both of these ends display different dynamic behaviors. The
more dynamic end, where β-tubulin is exposed, is known as the plus end; the less
dynamic end is the minus end.

MTs exhibit highly dynamic behavior, referred to as dynamic instability, in which
they transition between growing and shrinking states [24]. A transition from the
growing to the shrinking state is termed a catastrophe, and a transition from the
shrinking to the growing state is a rescue. This transition comes about because of
the different states that β-tubulin subunits can acquire. In the guanosine diphos-
phate (GDP)-bound state, β-tubulin rapidly depolymerizes. On the other hand, if the
β-tubulin subunits at the plus end are bound to guanosine triphosphate (GTP) then
the plus end is stabilized allowing MT growth to occur. Thus, whether the plus end
is in the growing or shrinking state is determined by the presence of a GTP end cap.

6.3 EXAMPLES OF FILAMENT SIMULATIONS

To date, filament simulations have demonstrated the plausibility of hypotheses, where
direct validation through biological experimentation is difficult to attain. Here, we
present several examples. The principle benefit of these simulations is that they pro-
duce quantitative results that can be compared with experimental results.

6.3.1 Actin-Based Motility in Listeria

The bacterium Listeria monocytogenes moves by highjacking its host’s actin network
and producing a dense comet tail of actin. Alberts and Odell [26] developed a detailed
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three-dimensional model of the actin dynamics driving Listeria propulsion. In this
multiscale model, large entities (e.g., actin filaments, the bacterium) are modeled
and treated individually. Smaller, more numerous components (e.g., actin monomers)
are treated in the more traditional continuum fashion—that is, by using reaction–
diffusion equations to determine their concentration fields. One of the keys features
of the model is the simulation of the nucleation of actin dynamics, which is a process
for which much biophysical data are known [5]. In the model, filaments are modeled
as rigid rods, which are subject to Brownian forces.

This model was able to produce saltatory motion at the nanoscale level while
producing persistent motion at larger scales as observed experimentally.

6.3.2 Kinetochore Positioning in Budding Yeast

During mitosis, kinetochore microtubules (kMTs) are responsible for segregating
chromosomes ensuring that each daughter cell receives a full set of the mother
cell’s genetic material. Sprague et al. used a filament-based model to simulate
kinetochore positioning in fission yeast [27]. Modeling the action of individual
kMTs in budding yeast is particularly appropriate, as there is only one MT per
kinetochore.

In these simulations, kMTs were modeled as one-dimensional rigid rods that
undergo catastrophes and rescue under a variety of regulatory schemes. Simulation
results were quantified by determining the plus end distributions and comparing these
to biological images. Interestingly, to make this comparison possible, the simulation
data were blurred using the point spread function of the microscope that was used to
obtain the experimental images

Using the model, it was found that dynamic instability alone could not reproduce
the spatial distribution of kMT plus ends nor could tension-dependent rescues of
sister kMTs reproduce the experimentally obtained distribution. However, it was
possible to recreate the distribution using either polar ejection forces to rescue
shrinking kMTs or a chemical gradient centered on the spindle equator promot-
ing catastrophe in the kMTs as they get closer to the spindle equator. This model
demonstrates the role of filament simulations as a means of rejecting competing
hypotheses.

6.3.3 Spindle Positioning in Caenorhabditis Elegans Embryos

Kozlowski et al. used three-dimensional simulations to determine how the interac-
tion between MTs and the cell cortex can determine the position of intracellular
organelles [28].

The simulation models several intracellular components of the Caenorhabditis
elegans embryo. MT asters are nucleated by centrosomes with a fixed number of MT
nucleation sites. MTs act as rigid rods that grow and shrink according to the dynamic
instability state. All MTs are acted on by Brownian motion forces. When one of the
MTs comes into contact with the cortex, its growth/shrinkage rates change. The cell
cortex is modeled by a cylinder capped by two hemispheres. To ensure that MTs stay
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inside the cell, a confinement force that is proportional to the extent by which a MT
protrudes outside the volume is used.

Using this model, simulations suggest that pulling forces are generated at the
cortex by force generators that remain attached to depolymerizing MT ends. The
interaction between the resultant spindle motion and MT dynamics and the force-
dependent release of cortical force generators acts as a positive feedback loop
that can explain experimentally observed oscillations in the position of the spindle
poles [29].

6.3.4 Other Examples

The number of computational models that capture the dynamic behavior of individual
cellular filaments is growing. There are several models explaining spindle formation,
either the requirement for heterodimer motors [3], the need for spatial regulation of
MT motor parameters [4], or the role of nucleation—the so-called slide and cluster
model [30]. Other models explain the assembly of the contractile ring during cytoki-
nesis [31] and microtubule aster organization [32].

Interesting, we see that models in all one, two, and three dimensions. While less
than three-dimensional representations may represent an oversimplification of the
geometry of many problems, useful results can still be generated by these simpler
models that can then be compared with biological observations. Through these com-
parisons, one can then obtain a minimal model consistent with observed behavior.

6.4 OVERVIEW OF FILAMENT SIMULATION

In this section, we provide an overview of the different steps required to simulate the
behavior of a filamental network. Details will be provided below.

To simulate the dynamics and force interactions of large filament systems, we
model each filament as a sequence of rigid rods that can bend at each rod junction
(Figure 6.5). A filament consisting of n rods is represented by a vector

m(t) = [x0 y0 · · · xi yi · · · xn yn]T ,

mi−2, t+dt

mi−1, t+dt

mi, t+dt

mi+1, t+dt

mi+2, t+dt

mi−2, t

mi−1, t

mi, t

mi+1, t
mi+2, t

Figure 6.5 In dynamic simulations, individual filaments are represented by rigid rods that can
bend at each interconnecting node, Mi,t . The evolution of these nodes is determined by the forces
acting on the rod.
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where mi,t = (xi, yi)(t) for i > 0 is the end point of the ith node at time t and (x0, y0)(t)
is the location of the initial point of the filament, which for actin and MTs would be the
minus end. To simulate multiple filaments m1, . . . , mN , their vector representations
are concatenated into a larger vector:

M(t) = [m1(t) · · · mN (t)]T .

While we do not account for the individual molecular interactions of the subunits
making up the filaments, we do account for filament growth and shrinkage.

For MTs, growth and shrinkage occur via dynamic instability, in which transi-
tions between the growing and the shrinking state are random events characterized
by rescue and catastrophe frequencies. As the plus ends of MTs are the most
dynamic ends, we model the minus end as static and allow growth and shrink-
age to occur only at the plus end. This can be achieved by several different
methods.

The simplest approach is to add an additional rod of fixed length at the end of
the filament at each time step. The problem with this method is that at a growth rate
of 0.1–0.2 �m/s [33] and at a time step of 0.01 s, the segment lengths would have
to be 2 nm, which means that a 10 �m filament would consist of 5000 rods. This is
computationally infeasible if many filaments are to be simulated at once. We could
allow larger rods or add them less frequently, but this would produce long stationary
periods followed by an abrupt filament.

Alternatively, we can allow variable length rods and have the ones at the plus
end to be much smaller for smoother growth while having the rest of the segments
be considerably larger to reduce the computational load per filament. The problem
with allowing neighboring segments to have different lengths is that it complicates
the curvature calculation for bent filaments (Section 6.6.2). The quickest way to
calculate the forces on a bent rod is if each rod is of the same length. Thus, within a
given filament, we would like to have all segment lengths be the same.

As we can now vary the segment lengths arbitrarily by changing the number of
segments making up each filament, we would like to have a large segment length to
have as few segments as possible to reduce the computational load. We also want
this length to be sufficiently small so that a sharply bent filament appears smoothly
curved. As a compromise, we select a target segment length of 1 �m and adjust the
number of segments to keep the actual segment length as close as possible to this (as
explained in Section 6.5.1).

After filament growth and shrinkage have been accounted for, we need to apply
external forces to the filament. We consider forces arising from Brownian motion,
linked motor complexes attached to two filaments, and straightening forces acting on
bent filaments. Because the filaments are stored as a series of segment end points, we
need to determine how the positions of these points should change at each time step
in response to the applied forces. As the mass of the filament section corresponding
to each rod is negligible when compared to the viscous damping that the filament
section would be subjected to, the velocities of rod end points will be proportional to
the forces acting on the end points.
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Thus, the filament positions will be calculated by solving a differential equation,
which, in a simplified form, and when discretized, can be expressed as:

dM
dt

= �F =⇒ M(t + dt) ≈ M(t)+ dt � F, (6.1)

where M(t) is a vector of all filament points at time t, � is a diagonal mobility matrix
expressing the proportionality constant between each segment velocity and the forces
acting on it, and F is a vector of net forces acting on the filaments points. The latter
is a function of the stochastic Brownian forces as well as a function of M. Also, if
the filaments are considered inelastic, the forces acting on the filaments should not
be able to stretch the filaments. Thus, forces parallel to the direction of the segments
must be removed. This contrainst will be enforced through virtual work [34] and is
described in the Section 6.7 on imposing constraints.

As shown in Section 6.7.4, the difference equation (6.1) can be rewritten in the
form of a linear system of equations:

Ax = b,

where x is the position of the filaments at the next time step. At this point, a solver is
needed to obtain x. Owing to the nonsymmetric nature of the matrix A, the biconjugate
gradient-stabilized method is used to solve the equation [35].

In summary, the steps that are needed at each step in time are

(1) Change filament length.

(2) Apply forces from filament stiffness, attached motor complexes, and Brownian
diffusion.

(3) Impose constraints using virtual work.

(4) Apply biconjugate gradient solver.

Below, we consider each of the steps in detail.

6.5 CHANGING FILAMENT LENGTH

To grow and shrink the filaments by small amounts requires extending or retracting
the endpoint by a small amount and repositioning the points to achieve equal segment
lengths. Over time, the segments lengths will deviate far from the desired segment
length. This will require that we resegment the filament by adding or removing a
segment, and that we recalculate the end point positions of the filaments.

6.5.1 Resegmenting Filament

At each time step, we are presented with a filament of a given length L, which may
have grown longer and needs to be resegmented. That is, we need to determine the
number of segments n that the filament should be divided into.
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Figure 6.6 Segment lengths as a function of the number of segments n and filament length L,
where L is expressed relative to the desired segment length R.

Given a desired segment length R, which should be small enough to portray a
bent filament smoothly and small enough to represent the shortest filaments with a
single segment, but not so small that we have an inordinate number of segments,
we would like to achieve a segment length δ = L/n as close as possible to R

(Figure 6.6).
Suppose that we have too few segments (δ > R). We increase n (decrease δ) until

|R− δ| is minimized (Figure 6.7). If L ≤ R, then we set δ = L. Otherwise, if L > R,
then, when n is small, δ = L/n will be larger than R and n can continue being
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Figure 6.7 The segment error is the absolute difference between the segment length ı and the
desired segment length R. The number of segments n is chosen according to which segmentation
has the lowest segment error.
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increased as long as

L

n
− R > R− L

n+ 1

holds, that is, until the next increment produces a segment length δ = L/(n+ 1) whose
error is larger than or equal to the error before it (L/n− R). We use R− L/(n+ 1),
which will be negative and thus allow an increment in n until the first δ is obtained
that is smaller than R.

At this point, there is no reason to increase n further as this would decrease δ below
R even more. This procedure would thus pick the number of segments necessary to
minimize the absolute error between the segment length and the target segment length
|δ− R| (Figure 6.7). The end points of segments for the new segmentation can then
be determined by following the path of the previous segmentation based on the path
length from the endpoints.

6.6 FORCES ON FILAMENTS

We now outline which forces act on the filaments and how these are simulated.

6.6.1 Brownian Forces

Filaments and other objects (such as diffusing molecules) are subject to Brownian
motion. In a two-dimensional simulation, this Brownian motion gives rise to a mean-
square displacement (〈||x||2〉) equal to

〈||x||2〉 = 4D dt,

where dt is the time step of the simulation and D is the diffusion coefficient, which
can be related to the drag coefficient (γ) using Einstein’s relation [8]:

D = kBT

γ
.

For a sphere, the drag coefficient is obtained using Stokes’s law:

γsphere = 6πηr,

where η is the viscosity and r is the radius of the particle. This formula needs to be
adjusted for the rod-like filaments. In particular, for an ellipsoid that is moving at
random with long axis L and radius r, the drag coefficient is given [36] by:

γellipsoid = 6πηL

ln(2L/r)
.
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It remains to compute the formula describing the force. In particular, the force and
velocity are related by the drag coefficient:

F = γẋ ≈ γ
x

dt
.

Thus,

〈||F ||2〉 = γ2〈||x||2〉
( dt)2

= 4kBT

mobavg dt
,

where mobavg = 1/γ is the average mobility and equals the inverse of the drag coef-
ficient [3].

6.6.2 Straightening Force

For the purpose of calculating the restoring force, we model the filament as a rod
with an external bending force. To calculate the force on a bent rod, we follow the
treatment given in Feynman [37], which we now explain.

As seen in Figure 6.8, when a rod is bent, its outer portion is stretched and its
inner portion compressed. There is a cross-section through the middle that is neither
stretched nor compressed (assuming that the rod is undergoing bending forces only
and there is no net elongation of the rod). The increase in length, �L, of a slice due to
stretching should then be proportional to the slice’s height (y) above the unstretched

R

L

L+DL

y

Figure 6.8 The increase in length �L of a slice due to stretching should then be in proportion
to the slice’s height y above the unstretched neutral slice. R is the radius of curvature. Adapted
from [37].
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neutral slice. Denoting the radius of curvature by R, we conclude that

�L

L
= y

R
.

If we model the rod as elastic, then the strain �L/L is proportional to the stress
�F/�A, where the ratio is Young’s modulus Y ,

�F

�A
= Y

�L

L
.

If we integrate the product of �F with its moment arm y over a cross-section of the
rod, then we get the bending moment about the neutral axis

M = Y

R

∫
y2 dF = Y

R
I,

where I is the second moment of area about the neutral axis. Thus, if an external force
F is bending a rod, then the straightening torque required to put the rod in equilibrium
is equivalent to M.

To calculate the value of M, we need an estimate of Young’s modulus Y and the
second moment of area I for the filament. More importantly, we need to calculate the
curvature 1/R. More formally, the curvature k(s) is

|α′′(s)|,

where α(s) is the curve parameterized by arc length

s(t) =
∫ t

0
|α′(τ)| dτ,

where α(τ) is any differentiable parameterized curve without singular points, and the
double prime refers to the second derivative. For the discrete representation of the
filament, we need to be able to approximate the second derivative of a parameterization
by arc length. Parameterizing by arc length is used, so that the second derivative is
only measuring changes in the tangent vector α′(s) in the form of changes in direction.
Parameterizing by arc length makes the change in magnitude of the tangent vector
zero, as increasing the parameter of the curve by one unit corresponds to increasing
the distance covered along the curve by one unit, and this will be valid for the entire
length of the parameterized curve.

We can achieve the constant tangent vector magnitude by making each segment
of the filament the same length δ, in which case the second derivative becomes:

1

R
= |α′′(s)| =

∣∣∣∣1

δ

(
mi+1 −mi

δ
− mi −mi−1

δ

)∣∣∣∣ .
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Thus, the bending moment should be

M = YI

δ2

(
mi+1 − 2mi +mi−1

)
.

Because the straightening forces are applied at the ends of each segment, we assume
that the straightening force is acting with a moment arm of one segment length δ and
is directed along the change in the tangent vectors. That is, the straightening force F

is:

F = M

δ
= YI

δ3

(
mi+1 − 2mi +mi−1

)
.

Forces equal to −F are applied at both the mi+1 and mi−1 nodes, and 2F is applied
at the mi rod.

6.6.3 Forces from Motor Complexes

When a motor complex connects two filaments, or a filament and another structure,
(such as the membrane) it exerts a force on both. This force needs to be applied at
the end points of the segment to which the motor complex is attached. To distribute
this force F acting on a filament at postion p, we need to consider p as a linear
combination of the end points of the segment on which it lies, that is, we write it as

p = αmi + (1− α)mi+1,

where α ∈ [0, 1). We can then apply the force αF at mi and the force (1− α)F at
mi+1.

6.7 IMPOSING CONSTRAINTS

6.7.1 Motivation

For running simulations, it is often the case that simulated objects are confined to
follow certain constraints. For example, to simulate experiments on molecular motor
processivity in microtubule gliding assays [38] where the motors are anchored to a
substrate, we would constrain the motors to fixed locations on the subtrate.

One way of satisfying position constraints is through the use of springs to impose
forces. For example, if the motor was to deviate far from its original position, then
a fictitous spring would pull it back toward the initial position. The problem with
this approach is that to enforce the constraint, the spring coefficient must be large
so that small deviations from the position produce strong forces pulling it back to
the substrate location. This produces large differences in the relaxation times in the
system of ordinary differential equations being solved, which dramatically increase
the time it takes the solver to finish.
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Thus, rather than calculating what forces are necessary to impose these constraints
while simultaneously allowing the molecular motor to obey Newton’s laws, we
employ a method known as virtual work [34]. Virtual work is the method for finding
the forces necessary to cancel out those forces that would cause a constraint to be
violated, and in the case of the example, it would find the forces necessary to cancel
out those forces that would cause the motor to move from its initial location. As
applied to simulating filaments, the constraint is that the filaments can bend but
cannot be stretched longitudinally. So, any forces that are applied that would cause
the filament to stretch get cancelled out automatically by applying virtual work.

6.7.2 Derivation

Here we follow [34]. We express the constraints of our model by defining valid
positions of elements as those that satisfy

C(x) = 0, (6.2)

where the positions of our model elements are stored in the vector x and C(x) is
a system of equations, with one equation for each constraint. Because Eq. (6.2)
must hold at all times, taking the first and second derivatives with respect to time
leads to

Ċ = 0 and C̈ = 0.

Specifically,

Ċ = ∂C
∂x

ẋ = 0.

To simplify the notation, define J = ∂C/∂x, which is the Jacobian of C. Then, for the
second derivative

C̈ = J̇ẋ + Jẍ = 0,

where J̇ refers to ∂Ċ/∂x. Note that Eq. (6.3) yields:

Jẍ = −J̇ẋ. (6.3)

We also construct a mass matrix M with the masses of each particle along the
diagonal. We then have the external forces F and the virtual forces F̂, which we need
to solve so as to cancel out the constraint violating forces within F. In particular,

(F+ F̂) = Mẍ.
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Thus,

ẍ = M−1(F+ F̂). (6.4)

Multiplying Eq. (6.4) by J and substituting Eq. (6.3) leads to

JM−1F̂ = −J̇ẋ − JM−1F. (6.5)

We have two unknowns, ẋ and F̂, and only one equation. We use virtual work to obtain
a second equation.

For the virtual forces F̂ to do no work on the particles we must have:

F̂ · ẋ = 0

for all ẋ satisfying Jẋ = 0. This condition holds if and only if

F̂ = JT λ, (6.6)

where λ has the same dimensions as C. Substituting Eq. (6.6) into Eq. (6.5), we obtain

JM−1JT λ = −J̇ẋ − JM−1F. (6.7)

We can now solve for λ and find F̂ using Eq. 6.6. We can then use ẍ = M−1(F+ F̂)
and integrate to obtain the position.

6.7.3 Implementation

For simulating unstretchable filaments in two dimensions with a segment length s,
we define our constraints to be

C0 = (x0 − x1)2 + (y0 − y1)2 − s2

C1 = (x1 − x2)2 + (y1 − y2)2 − s2

...

Cn−2 = (xn−2 − xn−1)2 + (yn−2 − yn−1)2 − s2

and construct

C =

⎡
⎢⎢⎣

C0

...

Cn−2

⎤
⎥⎥⎦ and x =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x0

y0

...

xn−1

yn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (6.8)
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where x corresponds to our filament vector m from Section 6.4, we then obtain
J = ∂C/∂x, which is a (n− 1)× 2n matrix. For our model, we only need to use the
first derivative of C:

Ċ = ∂C
∂x

ẋ, (6.9)

as the filaments are more influenced by viscous forces than inertial forces. Using the
virtual forces:

F̂ = JT λ, (6.10)

we have ẋ = γ(F+ F̂). Solving for λ using Eqs. (6.9) and (6.10), we obtain

λ = −(JJT )−1JF,

causing the net force

Fnet = F+ F̂

to be

Fnet = (I− JT (JJT )−1J)F,

where F is the sum of the external forces. These include the straightening forces, the
forces due to motor complexes, and Brownian motion forces. We define the projection
matrix

P = I− JT (JJT )−1J,

so that Fnet = PF.

6.7.4 State Equation

Storing the filament positions in the vector x as in Eq. (6.8), we then use

ẋ = γFnet,

where γ is a diagonal mobility matrix to set up our update equation.

x(t + dt) = x(t)+ γ dtP(B−Gx(t + dt)),

where B includes the Brownian forces and Gx(t + dt) are the forces due to motor
complexes and straightening forces on bent filaments. Rearranging, we obtain

(I+ γ dtPG)x(t + dt) = x(t)+ γ dtPB,
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which is now in the form Ax = b with

A = I+ γ dtPG (6.11)

and

b = x(t)+ γ dt PB,

which we can apply a solver to find x.

6.8 SOLVER

There are a number of solvers that can be applied to large systems of the form Ax = b,
where A is a sparse matrix. If A is symmetric and positive definite, the conjugate
gradient method is generally considered as an ideal choice among iterative methods
[39]. When A is not symmetric, other methods such as biconjugate gradient
(Bi-CG) [40], conjugate gradient squared (CG-S) [39], or biconjugate gradient
stabilized (Bi-CGSTAB) [41] can be applied.

CG-S and Bi-CGSTAB are both variants of Bi-CG. CG-S converges roughly twice
as fast as Bi-CG, but the rate of convergence becomes erratic as one moves closer to
the solution [39, 41]. Bi-CGSTAB has a convergence rate similar to CG-S but without
the erratic convergence rate [35]. As the matrix A in Eq. (6.11) is not symmetric (due
to applying motor complex forces in G in proportion to the attachment distance to the
nearest filament segment end points), we cannot apply the conjugate gradient method.
Instead, we use the biconjugate gradient-stabilized method.

The preconditioned biconjugate gradient-stabilized method as given in Barrett
et al. [35] is reproduced in Algorithm 6.1. If we let the preconditioner matrix M be
the identity, then the residual r(i) reduces to

r(i) = (r(i−1) − αiAp(i))(I − ωiA).

The first factor, (r(i−1) − αiAp(i)), corresponds to the recurrence relation for the resid-
ual in the conjugate gradient, where p(i) is the search direction along which the next
iterate x(i) would be found. The residual, defined as r(i) = b− Ax(i), has the desirable
property of being the negative gradient of the function

f (x) = 1
2xT Ax− xT b.

evaluated at x(i), when A is symmetric. And when A is positive definite, the global
minimum of f (x) occurs at the solution of Ax = b. What we have lost in our case,
because A is not positive definite, is that minimizing f no longer implies we have
solved Ax = b. The second factor in the computation of r(i), that is, (I − ωiA), is
what smooths the convergence over CG-S.
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Algorithm 6.1 Bi-CGSTAB

1{
Compute r(0) = b− Ax(0) for some initial guess x(0).
Choose r̃ for example r̃ = r(0).
for i ∈ {1, 2, . . .}
{

ρi−1 = r̃T r(i−1)

if (ρi−1 = 0)
Method fails

else if (i = 1)
p(i) = r(i−1)

else {
β(i−1) = ρi−1

ρi−2

αi−1

ωi−1

p(i) = r(i−1) + βi−1(p(i−1) − ωi−1v
(i−1))

}
solve Mp̂ = p(i)

v(i) = Ap̂

αi = ρi−1/(r̃T v(i))
s = r(i−1) − αiv

(i)

check norm of s;
if small enough: set x(i) = x(i−1) + αip̂ and stop

solve Mŝ = s

t = Aŝ

ωi = tT s/(tT t)
x(i) = x(i−1) + αip̂+ ωiŝ

r(i) = s− ωit

check convergence; continue if necessary
for continuation it is necessary that ωi /= 0
}

}

6.9 CONCLUSION

In large systems with many types of chemical and force interactions, it can be dif-
ficult to explore the consequences of each type of interaction, especially for those
interactions that have multiple roles at different levels within the system, where a
biological knockdown might only reveal the maximum upstream interaction in the
system. Such systems are optimal grounds for computational modeling, where each
hypothesized mechanism can be implemented and its consequences measured and
compared to experimental results.

There are limitations, though to the complexity of the system, which can be
modeled. Whether it be individual atoms in protein conformation problems or molecu-
lar motors diffusing and interacting with thousands of filaments within the cytoplasm,
simulations that track individual components and their interactions can take much
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longer to complete than simulations that track just their bulk properties. The feasability
of obtaining results and the validity of those results depend on finding the right level
of model complexity. The model must be simple enough to simulate in a reasonable
amount of time while still encapsulating the relevant biological mechanisms. As
our understanding of these mechanisms improves, so will our ability to model sys-
tems that build upon them, and as these models improve so too will our biological
understanding.
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7.1 INTRODUCTION

In this review chapter, we focus on the problem of reconstructing the structure of large-
scale biological networks. By biological networks, we mean graphs whose vertices are
all or a subset of the genes and proteins encoded in a given organism of interest, and
whose edges, either directed or undirected, represent various biological properties.
As running examples, we consider the three following graphs, although the methods
presented below may be applied to other biological networks as well.

• Protein–protein interaction (PPI) network. This is an undirected graph with no
self-loop, which contains all proteins encoded by an organism as vertices. Two
proteins are connected by an edge if they can physically interact.

• Gene regulatory network. This is a directed graph that contains all genes of an
organism as vertices. Among the genes, some called transcription factors (TFs)
regulate the expression of other genes through binding to the DNA. The edges
of the graph connect TFs to the genes they regulate. Self-loops are possible
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if a TF regulates itself. Moreover, each edge may in principle be labeled to
indicate whether the regulation is a positive (activation) or negative (inhibition)
regulation.

• Metabolic network. This graph contains only a subset of the genes as vertices,
namely, those coding for enzymes. Enzymes are proteins whose main function
is to catalyze a chemical reaction, transforming substrate molecules into product
molecules. Two enzymes are connected in this graph if they can catalyze two
successive reactions in a metabolic pathway, that is, two reactions, such that the
main product of the first one is a substrate of the second one.

Deciphering these networks for model organisms, pathogens, or human is currently
a major challenge in systems biology, with many expected applications ranging from
basic biology to medical applications. For example, knowing the detailed interactions
possible between proteins on a genomic scale would highlight key proteins that inter-
act with many partners, which could be interesting drug targets [1], and would help
in the annotation of proteins by annotation transfer between interacting proteins. The
elucidation of gene regulatory networks, especially in bacteria and simple eukaryotes,
would provide new insights into the complex mechanisms that allow an organism to
regulate its metabolism and adapt itself to environmental changes and could provide
interesting guidelines for the design of new functions. Finally, understanding, in de-
tail, the metabolism of an organism and clarifying which proteins are in charge of
its control, would give a valuable description of how organisms have found original
pathways for degradation and synthesis of various molecules, and could help again
in the identification of new drug targets [2].

Decades of research in molecular biology and genetics have already provided a
partial view of these networks, in particular, for model organisms. Moreover, recent
high-throughput technologies such as the yeast two-hybrid systems for PPI provide
large numbers of likely edges in these graphs, although probably with a high rate
of false positives [3, 4]. Thus, much work remains to be done in order to complete
(adding currently unknown edges) and correct (removing false-positive edges) these
partially known networks. To do so, one may want to use information about individual
genes and proteins such as their sequence, structure, subcellular localization, or level
of expression across several experiments. Indeed, this information often provides
useful hints about the presence or absence of edges between two proteins. For example,
two proteins are more likely to interact physically if they are expressed in similar
experiments and localized in the same cellular compartment, or two enzymes are more
likely to be involved in the same metabolic pathway if they are often coexpressed and
if they have homologs in the same species [5–7].

Following this line of thought, many approaches have been proposed in the recent
years to infer biological networks from genomic and proteomic data, most of them
attempting to reconstruct the graphs de novo. In de novo inference, the data about
individual genes and proteins are given and edges are inferred from these data only,
using a variety of inference principles. For example, when time series of expression
data are used, regulatory networks have been reconstructed by fitting various dynam-
ical system equations to the data [8–14]. Bayesian networks have also been used to



INTRODUCTION 167

infer de novo regulatory networks from expression data, assuming that direct regu-
lation can be inferred from the analysis of correlation and conditional independence
between expression levels [15]. Another rationale for de novo inference is to connect
genes or proteins that are similar to each other in some sense [5, 6]. For example,
coexpression networks or the detection of similar phylogenetic profiles are popular
ways to infer “functional relationships” between proteins, although the meaning of the
resulting edges has no clear biological justification [16]. Similarly, some authors have
attempted to predict gene regulatory networks by detecting large mutual information
between expression levels of a TF and the genes it regulates [17, 18].

In contrast to these de novo methods, in this review, we present a general approach
to reconstruct biological networks using information about individual genes and pro-
teins based on supervised machine learning algorithms, as developed through a recent
series of articles [19–26]. The graph inference paradigm we follow assumes that,
besides the information about individual vertices (genes or proteins) used by de novo
approaches, the graph we wish to infer is also partially known, and known edges can
be used by the inference algorithm to infer unknown edges. This paradigm is similar
to the notion of supervised inference in statistics and machine learning, where one
uses a set of input/output pairs (often called the training set) to estimate a function that
can predict the output associated with new inputs [27, 28]. In our paradigm, we give
us the right to use the known edges of the graph to supervise the estimation of a func-
tion that could predict whether a new pair of vertices is connected by an edge or not,
given the data about the vertices. Intuitively, this setting can allow us to automatically
learn what features of the data about vertices are the most informative to predict the
presence of an edge between two vertices. In a sense, this paradigm leads to a problem
much simpler than the de novo inference problem, since more information is used as
an input, and it might seem unfair to compare de novo and supervised methods. How-
ever, as already mentioned, in many real-world cases of interest, we already partially
know the graph we wish to infer. It is, therefore, quite natural to use as much infor-
mation as we can in order to focus on the real problem, which is to infer new edges
(and perhaps delete wrong edges), and, therefore, to use as an input both the genomic
and proteomic data, on the one hand, and the edges already known, on the other.

In a slightly more formal language, we, therefore, wish to learn a function that can
predict whether an edge exists or not between two vertices (genes or proteins), given
data about the vertices (e.g., expression levels of each gene in different experimental
conditions). Technically, this problem can be thought of as a problem of binary clas-
sification, where we need to assign a binary label (presence or absence of an edge)
to each pair of vertices, as explained in Section 7.2.1. From a computational point
of view, the supervised inference paradigm we investigate can, in principle, benefit
from the availability of a number of methods for supervised binary classification,
also known as pattern recognition [28]. These methods, as reviewed in Section 7.2.2,
are able to estimate a function to predict a binary label from data about patterns,
given a training set of (pattern, label) pairs. The supervised inference problem we are
confronted with, however, is not a classical pattern/label problem because the data
are associated with individual vertices (e.g., expression profiles are available for each
individual gene), while the labels correspond to pairs of vertices. Before applying



168 RECONSTRUCTION OF BIOLOGICAL NETWORKS

out-of-the-box state-of-the-art machine learning algorithms, we, therefore, need to
clarify how our problem can be transformed as a classical pattern recognition prob-
lem (Section 7.2.3). In particular, we show that there is not a unique way to do that, and
present in Sections 7.2.4 and 7.2.5, two classes of approaches that have been proposed
recently. Both classes involve a support vector machine (SVM) as a binary classifica-
tion engine, but follow different avenues to cast the edge inference problem as a binary
classification problem. In Section 7.3, we provide experimental results that justify the
relevance of supervised inference and show that a particular approach, based on local
models, performs particularly well on the reconstruction of PPI and regulatory and
metabolic networks. We conclude with a rapid discussion in Section 7.4.

7.2 GRAPH RECONSTRUCTION AS A PATTERN
RECOGNITION PROBLEM

In this section, we formally define the graph reconstruction problem considered and
explain how to solve it with pattern recognition techniques.

7.2.1 Problem Formalization

We consider a finite set of vertices V = (v1, . . . , vn) that typically correspond to the
set of all genes or proteins of an organism. We further assume that for each vertex
v ∈ V , we have a description of various features of v as a vector φ(v) ∈ Rp. Typically,
φ(v) could be a vector of expression levels of the gene v in p different experimental
conditions, measured by DNA microarrays, a phylogenetic profile that encodes the
presence or absence of the gene in a set of p sequenced genomes [6], a vector of p

sequence features, or a combination of such features. We wish to reconstruct a set of
edges E ⊂ V × V that defines a biological network. While in de novo inference, the
goal is to design an algorithm that automatically predicts edges in E from the set of
vertex features (φ(v1), . . . , φ(vn)), in our approach, we further assume that a set of
pairs of vertices known to be connected by an edge or not is given. In other words,
we assume given a list S = ((e1, y1), . . . , (eN, yN )) of pairs of vertices (ei ∈ V × V )
tagged with a label yi ∈ {−1, 1} that indicate whether the pair ei is known to interact
(yi = 1) or not (yi = −1). In an ideal noise-free situation, where the labels of pairs in
the training set are known with certainty, we thus have yi = 1 if ei ∈ E, and yi = −1
otherwise. However, in some situations, we may also have noise or errors in the
training set labels, in which case, we could only assume that pairs in E tend to have
a positive label, while pairs not in E tend to have a negative label.

The graph reconstruction problem can now be formally stated as follows: Given
the training set S and the set of vertex features (φ(v1), . . . , φ(vn)), predict for all pairs
not in S whether they interact (i.e., whether they are in E) or not. This formulation is
illustrated in Figure 7.1.

Stated this way, this problem is similar to a classical pattern recognition problem,
for which a variety of efficient algorithms have been developed over the years. Before
highlighting the slight difference between the classical pattern recognition framework
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Figure 7.1 We consider the problem of inferring missing edges in a graph (dotted edges), where
a few edges are already known (solid edges). To carry out the inference, we use attributes avail-
able about individual vertices such as vectors of expression levels across different experiments
if vertices are genes.

and ours, it is, therefore, worth recalling this classical pattern recognition paradigm
and mentioning some algorithms adapted to solve it.

7.2.2 Pattern Recognition

Pattern recognition, of binary supervised classification, is a well-studied problem
in statistics and machine learning [27, 28]. In its basic setup, a training set T =
{(u1, t1), . . . , (uN, tN )} of labeled patterns is given, where ui ∈ Rq is a vector and
ti ∈ {−1, 1} is a binary label, for i = 1, . . . , N. The goal is then to infer a function
f : Rq → {−1, 1} that is able to predict the binary label t of any new pattern u ∈ Rq

by f (u).
Many methods have been proposed to infer the labeling functionf from the training

set T , including, for example, nearest neighbor classifiers, decision trees, logistic
regression, artificial neural networks, or SVMs. Although any of these methods can
be used in what follows, we will present experiments carried out with an SVM, which
we briefly describe below, mainly for three reasons:

• It is now a widely used algorithm, in particular, in computational biology, with
many public implementations [29, 30].

• It provides a convenient framework to combine heterogeneous features about
the vertices such as the sequence, expression, and subcellular localization of
proteins [19, 31, 32].

• Some methods developed so far for graph inference, which we describe below,
are particularly well-adapted for a formalization in the context of SVM and
kernel methods [22, 24].

Let us, therefore, briefly describe the SVM algorithm and redirect the interested reader
to various textbooks for more details [33–35]. Given the labeled training set T , an
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SVM estimates a linear function h(u) = w�u for some vector w ∈ Rq (here w�u

represents the inner product between w and u) and then makes a label prediction for a
new pattern u that depends only on the sign of h(u): f (u) = 1 if h(u) ≥ 0, f (u) = −1
otherwise. The vector w is obtained as the solution of an optimization problem that
attempts to enforce a correct sign with large absolute values for the values h(ui) on
the training set while controlling the Euclidean norm of w. The resulting optimization
problem is a quadratic program for which many specific and fast implementations
have been proposed.

An interesting property of SVM, particularly for the purpose of heterogeneous
data integration, is that the optimization problem only involves the training patterns
ui through pairwise inner products of the form u�i uj . Moreover, once the classifier is
trained, the computation of h(u) to predict the label of a new point u also involves only
patterns through inner products of the form u�ui. Hence, rather than computing and
storing each individual pattern as a vector u, we just need to be able to compute inner
products of the form u�u′ for any two patterns u and u′ in order to train an SVM and
use it as a prediction engine. This inner product between patternsu and u′ is a particular
case of what is called a kernel and denoted K(u, u′) = u�u′ to emphasize the fact
that it can be seen as a function that associates a number to any pair of patterns (u, u′),
namely, their inner product. More generally, a kernel is a function that computes the
inner product between two patterns u and u′ after possibly mapping them to some
vector space with inner product by a mapping φ, that is, K(u, u′) = φ(u)�φ(u)′.

Kernels are particularly relevant when the patterns are represented by vectors of
large dimensions, whose inner products can nevertheless be computed efficiently.
They are also powerful tools to integrate heterogeneous data. Suppose, for example,
that each pattern u can be represented as two different vectors u(1) and u(2). This could
be the case, for example, if one wanted to represent a protein u either by a vector of
expression profile u(1) or by a vector of phylogenetic profile u(2). Let now K1 and K2
be the two kernels corresponding to inner products for each representation, namely,
K1(u, u′) = u(1)�u(1)′ and K2(u, u′) = u(2)�u(2)′ . If we now want to represent both
types of features into a single representation, a natural approach would be, for example
to concatenate both vectors u(1) and u(2) into a single vector, which we denote by
u(1) ⊕ u(2) (also called the direct sum of u(1) and u(2)). In order to use this joint
representation in an SVM, we need to be able to compute the inner products between
direct sums of two patterns to define a joint kernel Kjoint. Interestingly, some simple
algebra shows that the resulting inner product is easily expressed as the sum of the
inner products of each representation, that is:

Kjoint(u, u′) =
(
u(1) ⊕ u(2)

)� (
u(1)′ ⊕ u(2)′

)

=
(

u(1)

u(2)

)�(
u(1)′

u(2)′

)
(7.1)

= u(1)�u(1)′ + u(2)�u(2)′

= K1(u, u′)+K2(u, u′) .



GRAPH RECONSTRUCTION AS A PATTERNRECOGNITION PROBLEM 171

Consequently, the painstaking operation of concatenation between two vectors of
potentially large dimension is advantageously replaced by simply doing the sum
between two kernels. More generally, if k different representations are given, corre-
sponding to k different kernels, then summing together the k kernels results in a joint
kernel that integrates all different representations. The sum can also be replaced by
any convex combination (linear combination with nonnegative weights) in order to
weight differently the importance of different features [32].

7.2.3 Graph Inference as a Pattern Recognition Problem

Let us now return to the graph reconstruction problem, as presented in Section 7.2.1.
At first sight, this problem is very similar to the general pattern recognition paradigm
recalled in Section 7.2.2: Given pairs of vertices with positive and negative labels, infer
a function f to predict whether a new pair has a positive label (i.e., is connected) or
not. An important difference between the two problems, however, is that the features
available in the graph reconstruction problem describe properties of individual vertices
v and not of pairs of vertices (v, v′). Thus, in order to apply pattern recognition
techniques such as the SVM to solve the graph reconstruction problem, we can follow
one of the two possible avenues.

(1) Reformulate the graph reconstruction problem as a pattern recognition prob-
lem, where binary labels are attached to individual vertices (and not to pairs
of vertices). Then pattern recognition methods can be used to infer the label
of vertices based on their features.

(2) Keep the formulation as the problem of predicting the binary label of a pair of
vertices, but find a way to represent as vectors (or as a kernel) pairs of vertices,
while we initially only have features for individual vertices.

Both directions are possible and have been investigated by different authors, leading
to different algorithms. In Section 7.2.4, we present an instantiation of the first idea,
which rephrases graph reconstruction as a combination of simple pattern recognition
problems at the level of individual vertices. In Section 7.2.5, we present several
instantiations of the second strategies, which amount to defining a kernel for pairs of
vertices from a kernel for individual vertices.

7.2.4 Graph Inference with Local Models

In this section, we describe an approach that was proposed by Bleakley et al. [25]
for the reconstruction of metabolic and PPI networks and successfully applied by
Mordelet and Vert [26] for regulatory network inference. The basic idea is very simple
and can be thought of as a “divide-and-conquer” strategy to infer new edges in a
graph. Each vertex of the graph is considered in turn as a seed vertex, independently
from the others, and a “local” pattern recognition problem is solved to discriminate
the vertices that are connected to this seed vertex against the vertices that are not
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connected to it. The local model can then be applied to predict new edges between
the seed vertex and other vertices. This process is then repeated with other vertices
as seed to obtain edge prediction throughout the graph. More precisely, the “local
model” approach can be described as follows:

(1) Take a seed vertex vseed in V .

(2) For each pair (vseed, v
′) with label y in the training set, associate the same

label y with the individual vertex v′. This results in a set of labeled vertices{
(v′1, t1), . . . , (v′n(vseed), tn(vseed))

}
, where n(vseed) is the number of pairs start-

ing with vseed in the training set. We call this set a local training set.

(3) Train a pattern recognition algorithm on the local training set designed in step
2.

(4) Predict the label of any vertex v′ that has no label, that is, such that (vseed, v
′)

is not in the training set.

(5) If a vertex v′ has a positive predicted label, then predict that the pair (vseed, v
′)

has a positive label (i.e., is an edge).

(6) Repeat steps (1)–(5) for each vertex vseed in V .

(7) Combine the edges predicted at each iteration together to obtain the final list
of predicted edges.

This process is illustrated in Figure 7.2. Intuitively, such an approach can work if
the features about individual vertices provide useful information about whether or not
they share a common neighbor. For example, the approach was developed by Mordelet
and Vert [26] to reconstruct the gene regulatory network, that is, to predict whether
a transcription factor v regulates a gene v′, using a compendium of gene expression

+1

−1

?

?

?

+1

−1

−1

Figure 7.2 Illustration of one binary classification problem that is generated from the graph
inference problem of Figure 7.1, with the local model approach. Taking the shaded vertex as
seed, other vertices in the training set are labeled as +1 or −1 depending on whether they are
known to be connected or to be not connected to the shaded vertex. The goal is then to predict
the label of vertices not used during training. The process is then repeated by shading each
vertex in turn.
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levels across a variety of experimental conditions as features. The paradigm seems
particularly relevant in that case. Indeed, if two genes are regulated by the same TF,
then they are likely to behave similarly in terms of expression level; conversely, if a
gene v′ is known to be regulated by a TF v and if the expression profile of another
gene v′′ is similar to that of v′, then one can predict that v′′ is likely to be regulated
by v. The pattern recognition algorithm is precisely the tool that automatizes the task
of predicting that v′′ has a positive label, given that v′ has itself a positive label and
that v′ and v′′ share similar features.

We note that this local model approach is particularly relevant for directed graphs
such as gene regulatory networks. If our goal is to reconstruct an undirected graph,
such as the PPI graph, then one can follow exactly the same approach, except that
(i) each undirected training pair {v, v′} should be considered twice in step (2), namely
as the directed pair (v, v′) for the local model of v and as the directed pair (v′, v) for
the directed model of v′, and (ii) in the prediction step for an undirected pair {v, v′},
the prediction of the label of the directed pair (v, v′) with the local model of v must be
combined with the prediction of the label of the directed pair (v′, v) made by the local
model of v′. In Bleakley et al. [25], for example, in the prediction step, the score of
the directed pair (v, v′) is averaged with the score of the directed pair (v′, v) to obtain
a unique score for the undirected pair {v, v′}.

In terms of computational complexity, it can be very beneficial to split a large pat-
tern recognition problem into several smaller problems. Indeed, the time and memory
complexities of pattern recognition algorithms such as SVM are roughly quadratic
or worse in the number of training examples. If a training set of N pairs is split into
s local training sets of roughly N/s patterns each, then the total cost of running s

SVM to estimate local models will, therefore, be of the order of s× (N/s)2 = N2/s.
Hence, if a local model is built for each vertex (s = n), one can expect a speedup
of the algorithm of up to a factor of n over an SVM that would work with N

pairs as training patterns. Moreover, the local problems associated with different
seed vertices being independent from each others, one can trivially benefit from
parallel computing architectures by training the different local models on different
processors.

On the other hand, an apparently important drawback of the approach is that the
size of each local training set can become very small if, for example, a vertex has few
or even no known neighbors. Inferring accurate predictive models from few training
examples is known to be challenging in machine learning, and in the extreme case,
where a vertex has no known neighbor during training, then no new edge can ever
be predicted. However, the experimental results, reported by Bleakley et al. [25] and
Mordelet and Vert [26] and in Section 7.3, show that one can obtain very competitive
results with local models in spite of this apparent difficulty.

7.2.5 Graph Inference with Global Models

Splitting the training set of labeled pairs to make independent local models, as pre-
sented in Section 7.2.4, prevents any sharing of information between different local
models. Using a slightly different inference paradigm, one could argue that if a pair
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Figure 7.3 With global models, we want to formulate the problem of edge prediction as a
binary classification problem over pairs of vertices. A pair can be connected (label +1) or not
connected (label −1). However, the data available are attributes about each individual vertices
(central picture). Hence, we need to define a representation for pairs of vertices, as illustrated
on the right-hand picture, in order to apply classical pattern recognition methods to discriminate
between interacting and noninteracting pairs in the graph shown in the left-hand picture.

(v, v′) is known to be connected, and if both v is similar to v′′ and v′ is similar to
v′′′ in terms of features, then the pair (v′′, v′′′) is likely to be connected as well. Such
induction principle is not possible with local models, since the pair (v, v′) is only
considered by the local model of v, while (v′′, v′′′) is only considered by the local
model of v′′.

In order to implement this inference paradigm, we need to work directly with
pairs of vertices as patterns, and in particular, to be able to represent any pair (u, v) ∈
V × V by a feature vector that we denote ψ(u, v). As we originally have only data
to characterize each individual protein v by a vector φ(v), we, therefore, need to
clarify how to derive a vector for a pair ψ(u, v) from the vectors φ(u) and φ(v) that
characterize u and v. This problem is illustrated in Figure 7.3.

As suggested in Section 7.2.2, kernels offer various useful tricks to design features,
or equivalently kernels, for pairs of vertices starting from features for individual
vertices. Let us consider, for example, a simple, although not very useful, trick to
design a vector representation for a pair of vertices from a vector representation of
individual vertices. If each vertex v is characterized by a vector of features φ(v) of
dimension p, we can choose to represent a pair of vertices (u, v) by the concatenation
of the vectors φ(u) and φ(v) into a single vector ψ⊕(u, v) of size 2p. In other words,
we could consider their direct sum defined as follows:

ψ⊕(u, v) = φ(u)⊕ φ(v) =
(

φ(u)

φ(v)

)
. (7.2)

If the dimension p is large, one can avoid the burden of computing and storing
large-dimensional vectors by using the kernel trick. Indeed, let us denote by KV

the kernel for vertices induced by the vector representation φ, namely, KV (v, v′) =
φ(v)�φ(v′) for any pair of vertices (v, v′), and let us assume that KV (v, v′) can be easily
computed. Then the following computation, similar to (7.1), shows that the kernel K⊕
between two pairs of vertices (a, b) and (c, d) induced by the vector representation
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ψ⊕ is easily computable as well:

K⊕ ((a, b), (c, d)) = ψ⊕(a, b)�ψ⊕(c, d)

=
(

φ(a)

φ(b)

)�(
φ(c)

φ(d)

)
(7.3)

= φ(a)�φ(c)+ φ(b)�φ(d)

= KV (a, c)+KV (b, d) .

Hence, the kernel between pairs is here simply obtained by summing individual
kernels, and an algorithm like an SVM could be trained on the original training set of
labeled pairs to predict the label of new pairs not in the training set. Although attractive
at first sight, this formulation has an important limitation. Training an SVM (or any
linear classifier) means that one estimates a linear function in the space of direct sums,
that is, a function for pairs of the form: h(u, v) = w�ψ⊕(u, v). The vector w (of size
2p) can be decomposed as a concatenation of two parts w1 and w2 of size p, that is,
w = w1 ⊕ w2. We can then rewrite the linear function as:

h(u, v) = (w1 ⊕ w2)� (φ(u)⊕ φ(v)) = w�1 φ(u)+ w2�φ(v) .

Hence, any linear classifier h(u, v) in the space defined by the direct sum representa-
tion decomposes as a sum of two independent functions:

h(u, v) = h1(u)+ h2(v) ,

with hi(v) = w�i v for i = 1, 2. This is, in general, an unfortunate property, since it
implies, for example, that whatever the target vertex u, if we sort the candidate vertices
v that can interact with u according to the classifier (i.e., if we rank v according to
the value of h(u, v)), then the order will not depend on u. In other words, each vertex
v would be associated with a particular score h2(v) that could be thought of as its
general propensity to interact, and the prediction of vertices connected to a particular
vertex u would only depend on the scores of the vertices tested, not on u itself. This
clearly limits the scope of the classification rules that linear classifiers can produce
with the direct sum representations, which suggests that this approach should not be
used in general.

A generally better alternative to the direct sum ψ⊕(u, v) is to represent a pair of
vertices (u, v) by their direct product:

ψ⊗(u, v) = φ(u)⊗ φ(v) . (7.4)

If φ(u) and φ(v) each has a dimension p, then the direct product ψ⊗(u, v) is by
definition a vector of dimension p2 whose entries are all possible products between a
feature of φ(u) and a feature of φ(v). An interesting property of the direct product is
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that it encodes features that are characteristic of the pair (u, v), and not merely of u

and v taken separately. For example, let us assume that φ(u) and φ(v) contain binary
features that indicate the presence or absence of particular features in u and v. Then,
because the product of binary features is equivalent to a logical AND, the vector
ψ⊗(u, v) contains binary features that indicate the joint occurrence of particular pairs
of features in u and v. As a result, contrary to the direct sum representation ψ⊕(u, v),
linear classifiers in the space defined by ψ⊗(u, v) could predict that a is more likely to
interact with u than b, while b is more likely to interact with v than a for two different
target vertices u and v.

The price to pay in order to obtain this large flexibility is that the dimension of
the representation, namely p2, can easily get very large. Typically, if an individ-
ual gene is characterized by a vector of dimension 1000 to encode expression data,
phylogenetic profiles, and/or subcellular localization information, then the direct
product representation has 1 million dimensions. Such large dimensions may cause
serious problems in terms of computation time and memory storage for practical
applications. Fortunately, if one works with kernel methods like SVM, a classical
trick allows to compute efficiently the inner product between two tensor product
vectors from the inner products between individual vectors:

K⊗ ((a, b), (c, d)) = ψ⊗(a, b)�ψ⊗(c, d)

= (φ(a)⊗ φ(b))� (φ(c)⊗ φ(d)) (7.5)

= φ(a)�φ(c)× φ(b)�φ(d)

= KV (a, c)×KV (b, d) ,

where the third line is a classical result easily demonstrated by expanding the inner
product between tensor product vectors. Hence, one obtains the kernel between two
pairs of vertices by just multiplying together the kernel values involving each vertex
of the first pair and the corresponding vertex of the second pair.

The direct sum (7.2) and product (7.4) representations correspond to represen-
tations of ordered paired, which usually map a pair (u, v) and its reverse (v, u) to
different vectors. For example, the concatenation of two vectors φ(u) and φ(v) is gen-
erally different from the concatenation of φ(v) and φ(u), that is, ψ⊕(u, v) /= ψ⊕(v, u),
except when φ(u) = φ(v). Hence, these representations are well-adapted to the pre-
diction of edges in directed graphs, where an ordered pair (u, v) can represent an edge
form u to v and the pair (v, u) then represents the different edge from v to u. When
the graph of interest is not directed, then it can be advantageous to also represent
an undirected pair {u, v}. An extension of the tensor product representation was, for
example, proposed by Ben-Hur and Noble [22], with the following tensor product
pairwise kernel (TPPK) representation for undirected pairs:

ψTPPK ({u, v}) = ψ⊗(u, v)+ ψ⊗(v, u) . (7.6)

This representation is the symmetrized version of the direct product representation,
which makes it invariant to a permutation in the order of the two vertices in a pair.
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The corresponding kernel is easily derived as follows:

KTPPK ({a, b} , {c, d}) = ψTPPK({a, b})�ψTPPK({c, d})
= (ψ⊗(a, b)+ ψ⊗(b, a))� (ψ⊗(c, d)+ ψ⊗(d, c))

= ψ⊗(a, b)�ψ⊗(c, d)+ ψ⊗(a, b)�ψ⊗(d, c) (7.7)

+ψ⊗(b, a)�ψ⊗(c, d)+ ψ⊗(b, a)�ψ⊗(d, c)

= 2 {KV (a, c)KV (b, d)+KV (a, d)KV (b, c)} .

Once again, we see that the inner product in the space of the TPPK representation is
easily computed from the values of kernels between individual vertices, without the
need to compute explicitly the p2 dimension TPPK vector. This approach is, therefore,
again, particularly well-suited to be used in combination with an SVM or any other
kernel method.

An alternative and perhaps more intuitive justification for the TPPK kernel (7.7) is
in terms of similarity or distance between pairs induced by this formulation. Indeed,
when a kernel KV is such that KV (v, v) = 1 for all v, which equivalently means that
all vectors φ(v) are normalized to unit norm, then the value of the kernel KV (u, v) is
a good indicator of the “similarity” between u and v. In particular, we easily show in
that case that:

KV (u, v) = φ(u)�φ(v) = 1− ||φ(u)− φ(v)||2
2

,

which shows that KV (u, v) is “large” when φ(u) and φ(v) are close to each other, that
is, when u and v are considered “similar.” An interesting point of view to define a
kernel over pairs in this context is then to express it in terms of similarity: When do we
want to say that an unordered pair {a, b} is similar to a pair {c, d}, given the similarities
between individual vertices? One attractive formulation is to consider them similar if
either (i) a is similar to c and b is similar to d or (ii) a is similar to d and b is similar
to c. Translating these notions into equation, the TPPK kernel formulation (7.7) can
be thought of as an implementation of this principle [22].

At this point, it is worth mentioning that although the tensor product (7.4) for
directed pairs, and its extension (7.6) for undirected pairs, can be considered as “nat-
ural” default choices to represent pairs of vertices as vectors from representations of
individual vertices, they are by no means the only possible choices. As an example,
let us briefly mention the construction by Vert et al. [24] who propose to represent an
undirected pair as follows:

ψMLPK (u, v) = (φ(u)− φ(v))⊗2 = (φ(u)− φ(v))⊗ (φ(u)− φ(v)) . (7.8)

The name MLPK stands for metric learning pairwise kernel. Indeed, Vert et al. [24]
show that training a linear classifier in the representation defined by the MLPK vector
(7.8) is equivalent, in some situations, to estimating a new metric in the space of
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individual vertices φ(v) and classifying a pair as positive or negative depending on
whether or not the distance between φ(u) and φ(v) (with respect to the new metric) is
below a threshold or not. Hence, this formulation can be particularly relevant in cases
where connected vertices seem to be “similar,” in which case a linear classifier coupled
with the MLPK representation can learn by itself the optimal notion of “similarity”
that should be used in a supervised framework. For example, if a series of expression
values for genes across a range of experiments is available, one could argue that
proteins coded by genes with “similar” expression profiles are more likely to interact
than others, and, therefore, that a natural way to predict interaction would be to
measure a “distance” between all pairs of expression profiles and threshold it above
some value to predict interactions. The question of how to chose a “distance” between
expression profiles is then central, and instead of choosing a priori a distance such as
the Euclidean norm, one could typically let an SVM train a classifier with the MLPK
representation to mimic the process of choosing an optimal way to measure distances
in order to predict interactions.

An interesting property of the MLPK representation (7.8) is that, as for the tensor
product and TPPK representation, it leads to an inner product that can easily be
computed without explicitly computing the p2-dimensional vector φMLPK(a, b):

KMLPK ({a, b} , {c, d}) = ψMLPK (a, b)� ψMLPK (c, d)

=
[
(φ(a)− φ(b))⊗2

]� [
(φ(c)− φ(d))⊗2

]

=
[
(φ(a)− φ(b))� (φ(c)− φ(d))

]2
(7.9)

=
[
φ(a)�φ(c)− φ(a)�φ(d)− φ(b)�φ(c)+ φ(b)�φ(d)

]2

= [KV (a, c)−KV (a, d)−KV (b, c)+KV (b, d)]2 .

7.2.6 Remarks

We have shown how the general problem of graph reconstruction can be formulated as
a pattern recognition problem (Sections 7.2.1–7.2.3) and described several instances
of this idea: either by training a multitude of local models to learn the local structure
of the graph around each node (Section 7.2.4), which boils down to a series of pattern
recognition problems over vertices, or by training a single global model to predict
whether any given pair of vertices interacts or not, which requires the definition of a
vector representation (or equivalently of a kernel) for pairs of vertices (Section 7.2.5).
Our presentation has been fairly general in order to highlight the general ideas behind
the approach and the main choices one has to make in order to implement it. Now,
we discuss several important questions that one must also address to implement the
idea on any particular problem.

• Directed or undirected graph. As pointed out in the introduction, some biological
networks are better represented by undirected graphs (e.g., the PPI network),
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while others are more naturally viewed as directed graphs (e.g., a gene regulatory
network). In the course of our presentation, we have shown that some methods are
specifically adapted to one case or the other. For example, the MLPK and TPPK
kernel formulations to learn global models (Eqs. (7.7) and (7.9)) are specifically
tailored to solve problems over undirected pairs, that is, to reconstruct undirected
graphs. On the other hand, the local models (Section 7.2.4) or the global models
with the direct product kernel (7.5) are naturally suited to infer interactions
between directed pairs, that is, to reconstruct directed graphs. However, one can
also use them to reconstruct undirected graph by simply counting each undirected
pair {u, v} as two directed pairs (u, v) and (v, u). In the training step, this means
that we can replace each labeled undirected pair (i.e., undirected edge known
to be present or absent) by two directed pairs labeled by the same label. In the
prediction step, this means that one would get a prediction for the pair (u, v)
and another prediction for the pair (v, u) that have no reason to be consistent
between each other to predict whether the undirected pair {u, v} is connected or
not. In order to reconcile both predictions, one typically can take the average of
the prediction scores of the classifiers for both directed pairs in order to make a
unique prediction score for the undirected pair.

• Different types of edges. Some biological networks are better represented by
graphs with edges having additional attributes such as a label among a finite
set of possible labels. For example, to describe a gene regulatory network, it
is common to consider two types or regulations (edges), namely, activation or
inhibition. In terms of prediction, this means that we not only need to predict
whether two vertices are connected or not, but also by what type of edges they
are connected. A simple strategy to extend the pattern recognition paradigm to
this context is to see the problem not as a binary classification problem, but
more generally as a multiclass classification problem. In the previous example,
one should, for example, assign each pair (u, v) to one of the three classes (no
regulation, activation, inhibition). Luckily, the extension of pattern recognition
algorithms to the multiclass setting is a well-studied field in machine learning for
which many solutions exist [27, 28]. For example, a popular approach to solve
a classification problem with k classes is to replace it by k binary classification
problems, where each binary problem discriminates versus data in one of the k

classes and the rest of the data. Once the k classifiers are trained, they can be
applied to score each new candidate point, and the class corresponding to the
classifier that outputs the largest score is predicted. Other approaches also exist
besides this scheme, known as the one-versus-all strategy. Overall, they show
that the pattern recognition formulation can easily accommodate the prediction
of different edge types just by using a multiclass classification algorithm.

• Negative training pairs. While most databases store information about the pres-
ence of edges and can be used to generate positive training examples, few, if any,
negative interactions are usually reported. This is an important problem since,
as we formulated it in Section 7.2.2, the typical pattern recognition formalism
requires positive as well as negative training examples. In order to overcome this
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obstacle, several strategies can be pursued. A first idea would be to refrain from
focusing exclusively on pattern recognition algorithms, which are not adapted to
the lack of negative examples, and use instead algorithms specifically designed
to handle only positive examples. For example, many methods in statistics for
density estimation or outlier detection are designed to estimate a small region
that contains all or most of the positive training points. If such a region of “pos-
itive examples” is found around pairs known to be connected, then a new pair
of vertices can be predicted to be connected if it also lies in the region. An
algorithm like the one-class SVM [36] is typically adapted to this setting and
can accommodate all the kernel formulations we presented so far. A second idea
would be to keep using algorithms for binary classification and generate negative
examples. Perhaps, the simplest way to do this is to randomly sample pairs of
vertices, among the ones not known to be connected, and declare that they are
negative examples. As the graph is usually supposed to be sparse, most pairs of
vertices randomly picked by this process indeed do not interact and are correctly
labeled as negative. On the other hand, the few pairs that would be wrongly
labeled as negative with this procedure, namely, the pairs that interact, although
we do not know it yet, are precisely the one we are interested to find. There
may then be a danger that by labeling them as negative and training a classifier
based on this label, we could have more difficulties finding them. To overcome
this particular issue of generating false-negative examples in the training set, one
may again consider two ideas. First, try to reduce the quantity of wrongly labeled
negative training pairs by, for example, using additional sources of informations
to increase the likelihood that they do not interact. For example, if one wants to
choose pairs of proteins that are very unlikely to interact, he may restrict himself
to proteins known to be located in different subcellular localization, which in
theory prevent any possibility of physical interaction. While this may increase
the size of the training set, there is also a danger to bias the training set towards
“easy” negative examples [37]. The second idea is to accept the risk of generating
false-negative training examples, but then to be careful at least that the predictive
models never predict the label of a pair that was used during its training. This
can be achieved, for example, by splitting the set of candidate negative pairs
(i.e., those not known to interact) into k disjunct subsets, train a classifier using
k − 1 of these subsets as negative training examples, and using the resulting
classifier to predict the labels of pairs in the subset that was left apart. Repeating
this procedure k times leads to the possibility of predicting the labels for the k

subsets, without ever predicting the label of a negative example that was used
during training. This strategy was, for example, used in Mordelet and Vert [26].

• Presence or absence of errors in the training data. Besides the lack of known
negative examples, one may also be confronted with possible errors in the pos-
itive training examples, that is, false positives in the training set. Indeed, many
databases of biological networks contain both certain interactions and interac-
tions believed to be true based on various empirical evidences but that could be
wrong. This is particularly true, for example, for PPI networks when physical
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interactions have been observed with high-throughput technologies such as the
yeast two-hybrid system, which is known to be prone to many false-positive de-
tections. In that case, we should not only be careful when using the data as positive
training examples, but also we may even consider the possibility of using the
predictive algorithms to remove wrong positive annotations from the training set.
Regarding the problem of training models with false-positive training examples,
this may not be a major obstacle since one of the strengths of statistical pattern
recognition methods is precisely to accept “noise” or errors in the data. On the
other hand, if one wants to further use the models to correct the training data, then
a specific procedure could be imagined, for example, similar to the procedure de-
scribed in the previous paragraph to predict the label of false-negative examples.

7.3 EXAMPLES

Recently, the different approaches surveyed in Section 7.2 have been extensively
tested and compared with other approaches in several publications. In this section,
we review the main findings of these publications, focusing on our three running
examples of biological networks.

7.3.1 Reconstruction of a Metabolic Network

The reconstruction of metabolic networks has been among the first applications that
motivated the line of research surveyed in this Chapter [19–21, 25]. We consider
here the problem of inferring the metabolic gene network of the yeast S. cerevisiae
with the enzymes represented as vertices, and an edge between two enzymes when
the two enzymes catalyze successive reactions. The dataset, proposed by Yamanishi
et al. [21], consists of 668 vertices (enzymes) and 2782 edges between them, which
were extracted from the KEGG database of metabolic pathways [38]. In order to
predict edges in these networks, Bleakley et al. [25] used various genomic datasets
and compared different inference methods. Following Yamanishi et al. [21], the data
used to characterize enzymes comprise 157 expression data measured under different
experimental conditions [39, 40], a vector of 23 bits representing the localization of
the enzymes (found or not found) in 23 locations in the cell determined experimentally
[41], and the phylogenetic profiles of the enzymes as vectors of 145 bits denoting the
presence or absence of the enzyme in 145 fully sequenced genomes [38]. Each type
of data was processed and transformed into a kernel as described in Yamanishi et al.
and Kato et al. [21, 42], and all matrices were summed together to produce a single
kernel integrating heterogeneous data.

On a common five-fold cross-validation setting, Bleakley et al. [25] compared dif-
ferent methods including local models (Section 7.2.4), the TPPK and MLPK kernels
(Section 7.2.5) as well as several other methods: a direct de novo approach, which
only infers edges between similar vertices, an approach based on kernel canonical
correlation analysis (KCCA) [19], and a matrix completion algorithm based on an
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Figure 7.4 Performance of different methods for the reconstruction of metabolic networks (from
Bleakley et al. [25]): ROC (left) and precision/recall (right) curves.

em procedure [42, 43]. On each fold of the cross-validation procedure, each method
uses the training set to learn a model and makes predictions on pairs in the test set.
All methods associate a score with all pairs in the test set, hence by thresholding this
score at different levels, they can predict more or less edges. Results were assessed in
terms of average ROC curve (which plots the percentage of true positives as a function
of the percentage of false positives, when the threshold level is varied) and average
precision/recall curve (which plots the percentage of true positives among positive
predictions, as a function of the percentage of true positives among all positives).
In practical applications, the later criterion is a better indicator of the relevance of a
method than the former one. Indeed, as biological networks are usually sparse, the
number of negatives far exceeds the number of positives, and only large precision
(over a recall as large as possible) can be tolerated if further experimental validations
are expected.

Figure 7.4 shows the performance of the different methods on this benchmark.
A very clear advantage for the local model can be seen. In particular, it is the only
method tested that can produce predictions at more than 80 percent precision. There
is no clear winner among the other supervised methods, while the direct approach,
which is the only de novo method in this comparison, is clearly below the supervised
methods.

7.3.2 Reconstruction of a PPI Network

As a second application, we consider the problem of inferring missing edges in the
PPI network of the yeast S. cerevisiae. The gold standard PPI graph used to perform
a cross-validation experiment is a set of high-confidence interactions supported by
several experiments provided by Von Mering et al. [44] and also used in Kato et al. [42].
After removal of proteins without interactions, we end up with a graph involving 2438
interactions (edges) among 984 proteins (vertices). In order to reconstruct missing
edges, the genomic data used are the same as those used for the reconstruction of the
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Figure 7.5 Performance of different methods for the reconstruction of the PPI network (from
Bleakley et al. [25]): ROC (left) and precision/recall (right) curves.

metabolic network in Section 7.3.1, namely, gene expression, protein localization,
and phylogenetic profiles, together with a set of yeast two-hybrid data obtained from
Uetz et al. [3] and Ito et al. [4]. The later was converted into a positive definite kernel
using a diffusion kernel, as explained in Kato et al. [42]. Again, all datasets were
combined into a unique kernel by adding together the four individual kernels.

Figure 7.5 shows the performances of the different methods, using the same ex-
perimental protocol as the one used for the experiment with metabolic network re-
construction in Section 7.3.1. Again, the best method is the local model, although
it outperforms the other methods with a smaller margin than for the reconstruction
of the metabolic network (Figure 7.4). Again, the ROC curve of the de novo direct
method is clearly below the curves of the supervised methods, although this time it
leads to a large precision at low recall. This means that a few interacting pairs can
very easily be detected because they have very similar genomic data.

7.3.3 Reconstruction of Gene Regulatory Networks

Finally, we report the results of an experiment conducted for the inference of a gene
regulatory network by Mordelet and Vert [26]. In that case, the edges between tran-
scription factors and the genes they regulate are directed; therefore, only the local
model of Section 7.2.4 is tested. It is compared with a panel of other state-of-the-art
methods dedicated to the inference of gene regulatory networks from a compendium
of gene expression data, using a benchmark proposed by Faith et al. [18]. More pre-
cisely, the goal of this experiment is to predict the regulatory network of the bacteria
Escherichia coli from a compendium of 445 microarray expression profiles for 4345
genes. The microarray was collected under different experimental conditions such as
pH changes, growth phases, antibiotics, heat shock, different media, varying oxygen
concentrations, and numerous genetic perturbations. The goal standard graph used to
assess the performance of different methods by cross-validation consists of 3293 ex-
perimentally confirmed regulations between 154 TF and 1211 genes, extracted from
the RegulonDB database [45].
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Figure 7.6 Comparison of the CLR method and the local pattern recognition approach (called
SIRENE) on the reconstruction of a regulatory network: ROC (left) and precision/recall (right)
curves. The curve SIRENE-bias corresponds to the performance of SIRENE with a cross-
validation procedure, which does not take into account the organization of genes in operons,
thus introducing an artificial positive bias in the result.

In Faith et al. [18], this benchmark was used to compare different algorithms,
including Bayesian networks [15], ARACNe [46], and the context likelihood of re-
latedness (CLR) algorithm [18], a new method that extends the relevance networks
class of algorithms [17]. They observed that CLR outperformed all other methods in
prediction accuracy and experimentally validated some predictions. CLR can, there-
fore, be considered as the state-of-the-art among methods that use compendia of gene
expression data for large-scale inference of regulatory networks. However, all the
methods compared in Faith et al. [18] are de novo, and the goal of Mordelet and Vert
[26] was to compare the supervised local approach to the best de novo method on this
benchmark, namely, the CLR algorithm. Using a three-fold cross-validation proce-
dure (see details in Mordelet and Vert [26]), they obtained the curves in Figure 7.6.
We can observe that the local supervised approach (called SIRENE for Supervised
Inference of REgulatory NEtwork) strongly outperforms the CLR method on this
benchmark. The recall obtained by SIRENE, that is, the proportion of known regula-
tions that are correctly predicted, is several times larger than the recall of CLR at all
levels of precision. More precisely, Table 7.1 compares the recalls of SIRENE, CLR,
and several other methods at 80 percent and 60 percent precision. The other methods
reported are relevance network [17], ARACNe [46], and a Bayesian network [15]
implemented by Faith et al. [18].

This experiment also highlights the special care that must be taken when
performing a cross-validation procedure, in particular, to make sure that no artificial
bias is introduced. The curve called SIRENE-bias in Figure 7.6 corresponds to a
normal k-fold cross-validation procedure, where the set of genes is randomly split into
k folds, and each fold is used in turn as a test set. In the case of regulation in bacteria
like E. coli, however, it is known that TFs can regulate groups of genes clustered
together on the genome called operons. Genes in the same operons are transcribed in
the same messenger RNA and have, therefore, very similar expression values across



DISCUSSION 185

Table 7.1 Recall of different gene regulation
prediction algorithms at different levels of precision
(60% and 80%)

Method Recall at 60% Recall at 80%

SIRENE 44.5% 17.6%
CLR 7.5% 5.5%
Relevance networks 4.7% 3.3%
ARACNe 1% 0%
Bayesian network 1% 0%

Source: From Ref. 26.

different experiments. If two genes within the same operon are split in a training and
test set during cross-validation, then it will be very easy to recognize that the one in the
test set has the same label as the one in the training set, which will artificially increase
the accuracy of the method. Hence, in this case, it is important to make sure that,
during the random split into k subsets, all genes within an operon belong to the same
fold. The curve named SIRENE in Figure 7.6 has been obtained with this unbiased
procedure. The important difference between both curves highlights the importance
of the bias induced by splitting operons in the cross-validation procedure.

7.4 DISCUSSION

We reviewed several strategies to cast the problem of graph inference as a classical
supervised classification problem, which can be solved by virtually any pattern recog-
nition algorithm. Contrary to de novo approaches, these strategies assume that a set
of edges is already known and use the data available about vertices and known edges
to infer missing edges. On several experiments involving the inference of metabolic,
PPI, and regulatory networks from a variety of genomic data, these methods were
shown to give good results compared with the state-of-the-art de novo methods, and
a particular implementation of this strategy (the local model) consistently gave very
good results on all datasets.

In a sense, the superiority of supervised methods over de novo methods observed in
the experiments is not surprising because supervised methods use more informations.
As this additional information is available in many real-world applications, it suggests
that supervised methods may be a better choice than de novo ones in many cases. It
should be pointed out, though, that some of the methods we classified as de novo,
for example, Bayesian networks, could easily be adapted to the supervised inference
scenario by putting constraints or prior distribution on the graph to be inferred. On the
other hand, the strength of supervised methods depends critically on the availability
of a good training set, which may not be available in some situations such as inferring
the structure of smaller graphs.

We observe that there is not a single way to cast the problem as a binary classi-
fication problem, which suggests that further research is needed to design optimally
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adapted methods. In particular, the local method, which performs best in the three
benchmark experiments, has obvious limitations such as its inability to infer new
edges for vertices with no edge already known. The development of new strategies
that keep the performance of the local methods for vertices with enough known edges,
but borrow some ideas from, for example, the global models of Section 7.2.5 to be able
to infer edges for vertices with few or no known edge, is thus a promising research
direction.
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FROM THE INTEGRATION

OF GENOMIC DATA AND
CHEMICAL INFORMATION

Yoshihiro Yamanishi
Mines ParisTech - Institut Curie - Inserm U900, Paris, France

8.1 INTRODUCTION

Most biological functions involve the coordinated actions of many biomolecules such
as genes, proteins, and chemical compounds, and the complexity of living systems
arises as a result of such interactions. It is, therefore, important to understand the
biological systems through the analysis of the relationships amongst biomolecules.
The biological system can be represented by a network of proteins by using graph
representation, with proteins as nodes and their functional interactions as edges.
Examples of such biological networks include metabolic network, protein–protein
interaction network, gene regulatory network, and signaling network. A grand chal-
lenge in recent bioinformatics and systems biology is to computationally predict such
biological networks from genomic and molecular information for practical applica-
tions. Recent sequence projects and development in biotechnology have contributed
to an increasing amount of high-throughput genomic data for biomolecules and their
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Figure 8.1 An example of the metabolic pathway in the KEGG pathway database. One box
indicates an enzyme and the number in the box corresponds to the EC number. One circle
indicates a chemical compound.

interactions, including amino acid sequences, gene expression data, yeast two-hybrid
data, and several more. These data are useful sources from which we can computa-
tionally infer various biological networks [1–4].

In this chapter, we focus on the metabolic network, which is an important class of
biological network consisting of enzymes and chemical compounds. Figure 8.1 shows
an illustration of a part of the metabolic network. Recent development of pathway
databases such as KEGG [5] and EcoCyc [6] enables us to analyze the current knowl-
edge about known metabolic networks. Unfortunately, most of the organism-specific
metabolic networks contain many pathway holes or missing enzymes in known path-
ways. Since the experimental determination of metabolic networks remains very chal-
lenging, even for the most basic organisms, there is a need to develop methods to infer
the unknown parts of metabolic networks and to identify genes coding for missing
enzymes in known metabolic pathways [7, 8]. Thanks to the development of homol-
ogy detection tools [9, 10], enzyme genes can be easily found from fully sequenced
genomes using comparative genomics [11], but it is difficult to assign them a precise
biological role in a pathway.

To date, techniques for the reconstruction of metabolic networks have depended
heavily on sequence homology detection [12]. A typical computational approach for
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reconstructing the metabolic network from the genome sequence of a certain organism
is as follows:

(1) Assign enzyme commission (EC) number [13] to enzyme candidate genes by
detecting sequence homology based on comparative genomics across different
organisms.

(2) Obtain the information about ligands such as substrates and products, in which
the enzyme genes are involved, from reaction knowledge based on the EC
number.

(3) Assign each enzyme gene to appropriate positions in the metabolic pathway
maps created from current biochemical knowledge for many organisms.

(4) Visualize the metabolic pathways that are specific to a target organism of
interest.

However, this procedure does not always work well to reconstruct the correct
metabolic pathways and tends to produce many pathway holes or missing enzymes. If
we cannot detect a significant sequence homology with characterized enzyme genes in
other organisms, it is impossible to identify the candidate genes for missing enzymes.
This has been a cause of pathway holes or missing enzymes, as suggested in Karp [7]
and Osterman and Overbeek [8].

For inferring unknown part of the metabolic pathways and finding genes of missing
enzymes, there are two research directions. The first is to use genomic information
such as the use of gene order information along the chromosome of bacterial genomes
[14], gene fusions [15], genomic context [16], gene expression patterns [17], statistical
methods [18], and multiple genomic datasets [19]. The second approach is to use the
information about the chemical compounds with which the enzymes are involved. An
example is the path computation approach [20], where all possible paths between two
compounds are searched by losing the substrate specificity restriction. However, it
has been pointed out that this system tends to produce too many candidate paths, and
it is difficult to select reliable paths. It is more natural to use both genomic data and
chemical information simultaneously, rather than to use each individual information
source.

Recently, several supervised network inference methods with metric learning for
inferring biological networks (e.g., protein network, enzyme network) have been de-
veloped in the framework of kernel methods [19, 21–23]. By supervised we mean that
the reliable a priori knowledge about parts of the true network is used in the infer-
ence process itself. The supervised approach is a two-step process. First, a model is
learned to explain the “gold standard” from available datasets. Second, this model is
applied to new proteins absent from the “gold standard” in order to infer their interac-
tions. While supervised classification is a classical paradigm in machine learning and
statistics, most methods cannot be adapted directly to the network inference problem
because the goal is to predict properties between proteins, not about individual pro-
teins. A straightforward way to use supervised classification for predicting the protein
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network is to apply classifiers such as support vector machine (SVM) to protein pairs
by creating the descriptors or kernel functions for protein pairs [24]. However, the
pairwise SVM requires considerable computational resources and it suffers from a
serious scalability problem. For example, the time complexity of the quadratic pro-
gramming problem for the pairwise SVM is O(n6), where n is the number of proteins
in the biological network, and the space complexity is O(n4), which is just for storing
the kernel matrix.

In this chapter, we review recently developed metric learning algorithms for the
supervised network inference. The corresponding algorithms of the previous methods
are based on kernel canonical correlation analysis [19], distance metric learning [21],
em-algorithm [22], and kernel matrix regression [23]. These algorithms are more
efficient compared with the binary classification framework of protein pairs. For
example, the space complexity of the metric learning algorithms is O(n2). Note that
they are far more efficient than the pairwise SVM requiring O(n4) space.

This chapter also presents an attempt to infer the metabolic networks from the
integration of multiple genomic data and chemical information in the framework of
supervised graph inference [25]. The originality of the methods is the integration of
both genomic and chemical informations describing enzymes in order to predict more
biologically reliable networks. This is made possible by the introduction of chemical
compatibility constraints, representing the possibility of successive chemical reac-
tions involving candidate enzymes. These constraints are built from the chemical
information encoded in the EC number [13] assigned to the enzymes. In general,
these constraints enable the elimination of incompatible predicted enzyme–enzyme
relations from the network predicted by the supervised network inference methods. In
the experiment, we show the usefulness of the supervised method and data integration
method toward the metabolic network reconstruction.

8.2 MATERIALS

8.2.1 Metabolic Network

In this study, we focus on the metabolic pathways of the yeast Saccharomyces cere-
visiae. As a gold standard for a part of the metabolic network, we take the KEGG
PATHWAY database [5]. The metabolic network is a graph, with proteins as vertices
and with edges as enzyme–enzyme relations when two genes code for enzymes that
catalyze successive reactions in metabolic pathways. Figure 8.1 shows an example
of the metabolic network in KEGG. The resulting enzyme network, which contains
668 nodes and 2782 edges as of November 2004, is regarded as a reliable part of the
global metabolic network. This network is based on biological phenomena, repre-
senting known molecular interaction networks in various cellular process.

8.2.2 Genomic Data

8.2.2.1 Gene Expression Data The gene expression data corresponding to
157 experiments, 77 from Spellman et al. [26] and 80 from Eisen et al. [27], are
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used. In the previous work [26], the gene expression levels of the yeast S. cerevisiae
were observed over time in various phases in the cell cycle. In the previous work
[27], the gene expression levels of the yeast S.cerevisiae were observed in many
experimental conditions such as during the diauxic shift, the mitotic cell division cycle,
sporulation, and temperature and reducing shocks. Therefore, a vector of dimension
157 is associated with each gene coding for an enzyme protein.

8.2.2.2 Protein Localization Data The localization data were obtained from
the large-scale budding yeast localization experiment [28]. This dataset describes lo-
calization information of proteins in 23 intracellular locations such as mitochondrion,
Golgi, and nucleus. To each enzyme protein is, therefore, attached a string of 23 bits,
in which the presence and absence of the enzyme protein in a certain intracellular
location is coded as 1 and 0, respectively, across the 23 intracellular locations.

8.2.2.3 Phylogenetic Profile Phylogenetic profiles [29] were constructed
from the ortholog gene clusters in the KEGG database, which describes the sets
of orthologuous proteins in 145 organisms. In this study, we focus on the organisms
with fully sequenced genomes, including 11 eukaryotes, 16 archaea, and 118 bacte-
ria. Each phylogenetic profile consists of a string of bits, in which the presence and
absence of an orthologuous protein is coded as 1 and 0, respectively, across the 145
organisms.

8.2.3 Chemical Information

We obtained the information about enzyme genes from the KEGG GENES database,
in which EC numbers are assigned to enzyme candidate genes. As of November 2004,
the number of genes to which at least one EC number is assigned is 1120. We obtained
the chemical information for the enzyme genes, such as chemical reactions, substrates,
and products from their EC numbers from the KEGG LIGAND database, which
stores 11,817 compounds and 6349 reactions as of November 2004. We collected
organic chemical compounds that are involved in the enzymes catalyzing chemical
reactions. For example, we do not take inorganic compounds (e.g., water, oxygen, and
phosphate) into consideration because such compounds tend to appear in too many
reactions.

8.2.4 Kernel Representation

In order to deal with the data heterogeneity and take advantage of recent works on
kernel similarity functions on general data structures [30], we will assume that all the
data are represented by a positive definite kernel k, that is, a symmetric function k :
X 2 → R satisfying

∑n
i,j=1 aiajk(xi, xj) ≥ 0 for any n ∈ N, and (a1, a2, . . . , an) ∈

Rn. This operation enables us to work in a unified mathematical framework across
different types of datasets.

The gold standard metabolic network consists of a graph, with enzyme genes as
nodes and enzyme–enzyme relations as edges, so a natural candidate is the diffusion
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kernel defined as the matrix G = exp (−βH), where β > 0 is a parameter and L is
the Laplacian matrix of the graph (L = D− A, where A is the adjacency matrix and
D is the diagonal matrix of node connectivity) [31]. In this study, the diffusion kernel
with parameter β = 1 is applied to the gold standard network data, and the resulting
kernel is denoted as G.

The expression data, localization data, and phylogenetic profiles are sets of
numerical vectors, so the Gaussian RBF kernel k(x, x′) = exp(− ‖ x− x′ ‖2 /2σ2)
or the linear kernel k(x, x′) = x · x′ are natural candidates. In this study, the Gaussian
RBF kernel with width parameter σ = 5 is applied to the expression data and phylo-
genetic profiles, and the resulting kernels are denoted as Kexp and Kphy, respectively.
The linear kernel is applied to the localization data, and the resulting kernel is denoted
as Kloc.

All the kernel matrices are supposed to be normalized so that the diagonal elements
are all ones and centered in the feature space.

8.3 SUPERVISED NETWORK INFERENCE WITH METRIC LEARNING

To infer the metabolic gene network from genomic data, we use recently developed
supervised network inference method with metric learning. For simplicity, the
metabolic gene network is sometimes called gene network below.

8.3.1 Formalism of the Problem

Let us formally define the problem of the supervised network inference with metric
learning. Suppose that we are given an undirected graph � = (V, E), where V =
(v1, . . . , vn) is a set of vertices and E ⊂ (V × V ) is a set of edges. The problem is,
given an additional set of vertices V ′ = (vn+1, . . . , vN ), to infer a set of new edges
E′ ⊂ V ′ × (V + V ′) ∪ (V + V ′)× V ′ involving the additional vertices in V ′.

The prediction of the metabolic network is a typical problem, which is suitable
in this framework from a practical viewpoint. In this case, V corresponds to a set of
genes (enzyme genes with known biological roles in pathways) and E corresponds to
a set of known enzyme–enzyme relations (successively catalyzing the reactions). V ′
corresponds to a set of additional genes (enzyme candidate genes) and E′ corresponds
to a set of unknown enzyme–enzyme relations.

The prediction is performed based on available observed data about the vertices in
V and V ′. Suppose that the nodes V = (v1, . . . , vn) and V ′ = (vn+1, . . . , vN ) are rep-
resented by X = (x1, . . . , xn) and X ′ = (xn+1, . . . , xN ), respectively. In this study,
genes belonging to X and X ′ are referred to as training set and prediction set, respec-
tively. For example, genes are represented by various genomic data or experimental
data such as gene expression profiles, localization profiles, and phylogenetic profiles.
The question is how to predict unknown enzyme–enzyme interactions from such
genomic data using the preknowledge about known enzyme–enzyme interactions.
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Figure 8.2 Supervised network inference: training process. Genes in the training set are
mapped onto a feature space, where interacting genes are close to each other.

8.3.2 From Metric Learning to Graph Inference

Suppose that a graph must be inferred on N points (x1, . . . , xN ) in the Euclidean
space Rd , where the distance between the points is based on the observed data. The
simplest prediction strategy is to use the data-based similarity information directly,
that is, putting an edge between the points that are close to each other if the distance
(dissimilarity) between the points is smaller than a fixed threshold δ. This strategy is
referred to as the “direct approach” below.

The supervised graph inference problem can be formulated in the following two-
step procedure:

• Map the original points to a Euclidean space through mappings f : X → Rd .
• Apply the direct approach to infer the edges between the points {f(x), x ∈ X +
X ′}.

Figures 8.2 and 8.3 show an illustration of the procedure. The goal of this projection
is to define a feature space where pairs of interacting genes have similar projection,
so that it becomes possible to infer interaction from similarity in the feature space.
Hence, whenever x interacts with x′, we would like f (x) to be similar to f

(
x′
)
, which

Figure 8.3 Supervised network inference: prediction process. Genes in the prediction set are
mapped onto the feature space. Then, interacting gene pairs are predicted using the nearest
neighbor approach.



196 SUPERVISED INFERENCE OF METABOLIC NETWORKS

ideally would be fulfilled if f (l) (x) was close to f (l)
(
x′
)

for each l = 1, . . . , d. By

the mapping, each gene x is represented by a vector f(x) = (
f (1)(x), . . . , f (d)(x)

)�
,

where d < N and f (l) (x) is the projection of x onto the l-th component.
The problem is reduced to the supervised learning of f using the partially known

graph information on the training dataset. The question is how to estimate the mapping
f , which maps adjacent vertices in the known graph to nearby positions in Rd such
that the direct approach can recover the known graph to some extent.

8.4 ALGORITHMS FOR SUPERVISED NETWORK INFERENCE

In this section, we describe five algorithms that can be used for the problem of super-
vised network inference: (1) kernel canonical correlation analysis (KCCA) [19], (2)
distance metric learning (DML) [21], (3) kernel matrix regression (KMR) [23], (4)
penalized kernel matrix regression (PKMR) [23], and (5) kernel matrix completion
with em-algorithm (em) [22].

8.4.1 Kernel Canonical Correlation Analysis (KCCA)

If the gene network was known beforehand, an “ideal” feature space would be a
subspace defined by functions f (l) (l = 1, . . . , d) that vary slowly between adjacent
nodes of the gene network. Such functions are usually called smooth, and it is known
that the norm ||f ||H associated with a diffusion kernel on a graph exactly quantifies
this smoothness: the smoother f , the smaller ||f ||H [32].

As a result, if the gene network was known, an ideal feature space would be
defined by the projection onto the first principal directions defined by kernel PCA
[33] with a diffusion kernel on the graph [31]. As the total gene network is not
known beforehand, the projections onto this ideal feature space cannot be computed.
Therefore, we propose to constrain it to somehow fit the ideal feature space, at least
on the part of the network known beforehand.

Let K be the kernel representing the genomic information and G be the diffusion
kernel derived from the known gene network. Both of them are restricted to n genes
in the training set, so K and G are then n× n matrices. According to the representer
theorem in the reproducing kernel Hilbert space (RKHS) [34], let us write features
f (x) for genomic data and g(v) for graph as follows:

f (x) =
n∑

j=1

k(x, xj)αj, g(v) =
n∑

j=1

g(v, vj)βj, (8.1)

where α = (α1, α2, . . . , αn)� and β = (β1, β2, . . . , βn)�. Let ||f || and ||g|| be the
corresponding norms. In order to define a feature f such that ||f || be small, as in
the spectral approach, and ||g|| be small simultaneously, as in the ideal representa-
tion, we propose to use the following trick: find two functions f and g such that
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∑n
i=1 f (xi)2 = 1 and

∑n
i=1 g (xi)2 = 1 and that maximize the functional

corr (f, g)× 1√
1+ λ1||f ||2

× 1√
1+ λ2||g||2

, (8.2)

where λ1 and λ2 are positive regularization parameters and corr(f, g) is the correlation
coefficient between f and g. The first term of this product ensures that f “fits” g on the
a priori known part of the network, while the second and last terms ensure that ||f ||
and ||g|| are small simultaneously. Subsequent features can be defined recursively by
minimizing the same functional with additional orthogonality conditions.

The maximization problem of the functional (8.2) can be shown to be equivalent
to the following generalized eigenvalue problem:

(
0 KG

GK 0

)(
α

β

)
= ρ

(
(K + λ1I)2 0

0 (G+ λ2I)2

)(
α

β

)
, (8.3)

where I is an identity matrix, α and β are the eigenvectors associated with eigenvalue
ρ. This problem is usually called KCCA [35, 36].

The features are built from the genomic data kernel k only and are expected to
fit the ideal features on genes in the training set. If one now focuses on the first d

solutions, we obtain a vector of features f(x) = (f (1)(x), . . . , f (d)(x))�, where each
feature can now be generalized to any gene x as

f (l) (x) =
n∑

j=1

α
(l)
j k

(
xj, x

)
, l = 1, 2, . . . , d. (8.4)

This is the set of features of mapped genes before inferring edges between genes.

8.4.2 Distance Metric Learning (DML)

A criterion to assess whether connected (resp. disconnected) vertices are mapped onto
similar (resp. dissimilar) points in R is as follows:

R(f ) =
∑

(v,v′)∈E(f (x)− f (x′))2 −∑
(v,v′)/∈E(f (x)− f (x′))2∑

(v,v′)∈V×V (f (x)− f (x′))2 . (8.5)

A small value of R(f ) ensures that connected vertices tend to be closer than
disconnected vertices in the sense of quadratic error. The mapping f is learned by
finding f , which minimizes the above criterion.

Let us denote by fV = (f (x1), . . . , f (xn))T ∈ Rn the values taken by f on the
training set. If we restrict fV to have zero means as

∑n
i=1 f (xi) = 0, then the criterion
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(8.5) can be rewritten as follows:

R(f ) = 4
f�V LfV

f�V fV

− 2, (8.6)

where L is the combinatorial Laplacian of the graph � = (V, E).
To avoid the overfitting problem and obtain meaningful solutions, we propose to

regularize the criterion (8.6) by a smoothness functional on f based on a classical
approach in statistical learning [37, 38]. We assume that f belongs to the RKHS H
defined by the kernel k onX , and to use the norm of f as a regularization operator. Let
us define by ||f || the norm of f in H. Then, the regularized criterion to be minimized
becomes:

R(f ) = f�V LfV + λ||f ||2
f�V fV

, (8.7)

where λ is a regularization parameter that controls the trade-off between minimizing
the original criterion (8.5) and ensuring that the solution has a small norm in the
RKHS.

In order to obtain a d-dimensional feature representation of the vertices, we propose
to iterate the minimization of the regularized criterion (8.7) under orthogonality con-
straints in the RKHS, that is, we recursively define the l-th featuresf (l) for l = 1, . . . , d

as follows:

f (l) = argminf∈H,f⊥f (1),...,f (l−1)
f�V LfV + λ||f ||2

f�V fV

. (8.8)

Let k be the kernel on the observed dataset X . According to the representer theorem
in the RKHS [34], for any i = 1, . . . , d, the solution to Eq. (8.8) has the following
expansions:

f (l)(x) =
n∑

j=1

α
(l)
j k(xj, x),

for some vector α(l) = (α(l)
1 , . . . , α(l)

n )T ∈ Rn.
Let K be the Gram matrices of the kernel k on the set X such that (K)ij =

k(xi, xj), i, j = 1, . . . , n. The corresponding feature vector f
(l)
V can be written in

terms of α(l) by f
(l)
V = Kvα

(l). The squared norm of feature f (l) in HV is equal to
||f (l)||2 = αT Kvα, so the orthogonarity constraint f (l)⊥f (m) (l /= m) can be written

by α(l)T Kuα
(m) = 0.

Then, the minimization problem of R(f ) is equivalent to finding αwhich minimizes

R(f ) = α�KLKα+ λαT Kα

α�K2α
(8.9)

under the following orthogonality constraints: αT Kα(1) = · · · = αT Kα(l−1) = 0.
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Taking the differential of Eq. (8.9) with respect to α to zero, the solution of the
first vectors α(1) can be obtained as the eigenvectors associated with the smallest
(nonnegative) eigenvalue in the following generalized eigenvalue problem:

(KLK + λK)α = ρK2α. (8.10)

Sequentially, the solutions of vectors α(1), . . . , α(d) can be obtained as the eigenvec-
tors associated with d smallest (nonnegative) eigenvalues in the above generalized
eigenvalue problem.

If one now focuses on the first d solutions, we obtain a vector of features f(x) =
(f (1)(x), . . . , f (d)(x))�, where each feature can now be generalized to any gene x as

f (l) (x) =
n∑

j=1

α
(l)
j k

(
xj, x

)
, l = 1, 2, . . . , d. (8.11)

8.4.3 Kernel Matrix Regression (KMR)

An apparent drawback of the KCCA approach is that the objective function of KCCA
is different from that of correctly predicting the values of the kernel G. In particular,
by computing features g for the node v, the notion of similarity between nodes is
changed, although in this issue, we do not want to change the similarity space for the
graph. We want instead to change the object–object similarity space only for genomic
data object x to make it fit the object–object similarity space with the node v in the
graph. In this section, we propose a variant of the regression model based on the
underlying features in the RKHS by modifying the idea of KCCA.

The ordinary regression model between an explanatory variable x ∈ X and a re-
sponse variable y ∈ R can be formulated as follows:

y = h(x)+ ε, (8.12)

where h : X → R and ε is a noise term. By analogy, we propose to regard (x, x′) ∈
X × X as an explanatory variable and g(v, v′) ∈ R as a response variable in our
context. Assuming the underlying feature f(x) ∈ Rd in the RKHS, we formulate a
variant of the regression model as follows:

g(v, v′) = h(x, x′)+ ε = f(x)�f(x′)+ ε, (8.13)

where h : X × X → R. We refer to this model as kernel matrix regression (KMR)
model. We note that imposing h to be of the form h(x, x′) = f(x)�f(x′) for some
feature f : X → Rd ensures that the regression function is positive definite.

Following a classical approach in kernel methods, we consider features in the
RKHS of the kernel K that possess an expansion of the form:

f (x) =
n∑

j=1

k(x, xj)wj, (8.14)
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where w = (w1, w2, . . . , wn)� is a weight vector and n is the number of objects in the
training set. When d different features are considered, we express them by a feature
vector as f(x) = (f (1)(x), f (2)(x), . . . , f (d)(x))�.

In order to represent the set of features for all the objects, we define fea-
ture score matrices Ft(x) = [f(x1), . . . , f(xn)]� for the training set and Fp(x) =
[f(xn+1), . . . , f(xN )]� for the test set. Let Ktt be a kernel matrix for the training
set itself as (Ktt)ij = k(xi, xj), i, j = 1, . . . , n, and Kpt be a kernel matrix for the
prediction set against the training set as (Kpt)ij = k(xi, xj), i = n+ 1, . . . , N, j =
1, . . . , n. In the matrix form, we can actually compute the feature score matrices
as Ft = KttW for the training set and Fp = KptW for the prediction set, where
W = [w(1), w(2), . . . , w(d)].

Here, we want to find the n× d weight matrix W such that FtF
�
t fits G as much

as possible. If we set A = WW�, this problem can be replaced by finding A, which
minimizes the difference between G and FtF

�
t . It means that, this enables us to

avoid considerable computational burden for computing W itself, even if d is infinite.
Therefore, we attempt to find A(= WW�), which minimizes

L =‖ G−KttAK�
tt ‖2

F , (8.15)

where ‖ · ‖F indicates the Frobenius norm. We can rewrite the above equation in the
trace form as

L = tr
{

(G−KttAK�
tt )(G−KttAK�

tt )�
}

. (8.16)

Taking a differential of L with respect to A and setting to zero, the solution is analyti-
cally obtained by

A = WW� = K−1
tt GttK

−1
tt .

Then, the weight matrix W can be computed as follows:

W = K−1
tt G1/2. (8.17)

If one now focuses on the first d solutions, we obtain a vector of features f(x) =
(f (1)(x), . . . , f (d)(x))�, where each feature can now be generalized to any gene x as

f (l) (x) =
n∑

j=1

w
(l)
j k

(
xj, x

)
, l = 1, 2, . . . , d. (8.18)

8.4.4 Penalized Kernel Matrix Regression (PKMR)

Here, we consider introducing the idea of regularization in the KMR method in the
previous section. To do so, we attempt to find A(= WW�), which minimizes the
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following penalized loss function:

L =‖ G−KttAKtt ‖2
F +λPEN(A), (8.19)

where λ is a regularization parameter and PEN(A) is a penalty term for A defined as

follows. Each positive semidefinite matrix A can be expanded as A =∑d
l=1 w(l)w(l)�.

To each w(l) is associated a feature f (l) : X → R by (8.14), whose norm in the RKHS
of K is given by:

‖ f (l) ‖2
RKHS=

n∑
i,j=1

w
(l)
i w

(l)
j k(xi, xj) = tr(w(l)w(l)�K) .

To enforce regularity of the global mapping f , we therefore define the following
penalty for A:

PEN(A) = 2
d∑

l=1

‖ f (l) ‖2
RKHS= 2

d∑
l=1

tr(w(l)w(l)�Ktt) = 2tr(AKtt) .

In this case, the optimization problem is reduced to finding A, which minimizes

L = tr
{

(G−KttAK�
tt )(Gtt −KttAK�

tt )�
}
+ 2λtr {AKtt} . (8.20)

Taking a differential of L with respect to A and setting to zero, the solution of the
above penalized optimization problem is obtained by

A = K−1
tt (G− λK−1

tt )K−1
tt .

We note that the justification for the penalty used is only valid for positive semidefinite
matrices, which will be obtained at least for small enough λ. Then, the weight matrix
W can be computed as follows:

W = K−1
tt (Gtt − λK−1

tt )1/2. (8.21)

If one now focuses on the first d solutions, we obtain a vector of features f(x) =
(f (1)(x), . . . , f (d)(x))�, where each feature can now be generalized to any gene x as

f (l) (x) =
n∑

j=1

w
(l)
j k

(
xj, x

)
, l = 1, 2, . . . , d. (8.22)

8.4.5 Relationship with Kernel Matrix Completion and em-algorithm

It is possible to tackle the supervised network inference problem from the viewpoint
of the kernel matrix completion. In this section, we explain how the kernel matrix
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completion can be used for the supervised network inference problem and discuss the
relationship between the kernel matrix regression and the em algorithm.

Let k and g be symmetric positive definite kernels defined on an explanatory
variable x and response variable y, respectively. When we compute the kernel matrix
for the explanatory variable x, we obtain an N ×N kernel matrix K, where (K)ij =
k(xi, x

′) (1 ≤ i, j ≤ N), xi belongs to a set X , and N is the number of all objects. On
the other hand, when we compute the kernel matrix for the response variable y, we
obtain an N ×N kernel matrix G, where (G)ij = g(yi, yj) (1 ≤ i, j ≤ n), yi belongs
to a set Y , and n is the number of available objects (n < N). Note that G contains in
fact missing values for all entries (G)ij with max(i, j) > n. We want to estimate the
missing part of G using full Gram matrix K, taking into account a form of correlation
between the two kernels.

In this study, we express each kernel matrix by splitting the matrix into four parts.
We denote by Ktt (resp. Gtt) the n× n kernel matrix for the training set versus itself,
Kpt (resp. Gpt) the (N − n)× n kernel matrix for the prediction set versus the training
set, and Kpp (resp. Gpp) the (N − n)× (N − n) kernel matrix for the prediction set
versus itself:

K =
(

Ktt K�
pt

Kpt Kpp

)
, G =

(
Gtt G�

pt

Gpt Gpp

)
. (8.23)

Note that Kpt and Kpp are known, while Gpt and Gpp are unknown. The goal is to
predict Gpt and Gpp from K and Gtt . In this case, we can predict the potential edges
involving the prediction set by putting an edge between the points that are close to
each other if estimated response kernel similarity between the points is larger than a
fixed threshold δ.

If the KMR model is used for the kernel matrix completion problem, missing part
of G can be estimated as follows.

Prediction set versus training set:

Ĝpt = FpF�t = KptK
−1
tt Gtt . (8.24)

Prediction set versus prediction set:

Ĝpp = FpF�p = KptK
−1
tt GttK

−1
tt K�

pt. (8.25)

Toward the supervised network inference with the kernel matrix completion, the use
of the em algorithm based on information geometry has been proposed [22]. In their
work, the kernel matrix completion problem is defined as finding missing entries that
minimize the Kullback–Leibler divergence between the resulting completed matrix
and a spectral variant of the full matrix. Because of space limitation, the details of the
explanation about this method is not shown in this chapter. For more details, see the
original paper [22].

It is interesting to observe that the final algorithms between em and KMR are
very similar. The em algorithm results in the following equations for estimating the
incomplete parts Ĝpt and Ĝpp:
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Prediction set versus training set:

Ĝpt = KptK
−1
tt Gtt . (8.26)

Prediction set versus test set:

Ĝpp = Kpp +KptK
−1
tt K�

pt +KptK
−1
tt GttK

−1
tt K�

pt. (8.27)

We note that the Ĝpt of the em algorithm is equivalent to that of the kernel matrix
regression. On the other hand, the Ĝpp of the em algorithm is not equivalent to that
of the kernel matrix regression. It differs by Kpp +KptK

−1
tt K�

pt . This stems from
the difference of the geometry space between the two methods. The em algorithm
is based on the information geometry, while the proposed KMR is based on the
Euclidean geometry.

8.5 DATA INTEGRATION

8.5.1 Genomic Data Integration

Suppose that we use P ≥ 1 sorts of heterogeneous genomic data as predictors to infer
the metabolic network, and that they are represented by P kernels K1, . . . , KP . The
function Kp measures the similarity of enzyme genes with respect to the p-th dataset.
A simple data integration is obtained by creating a new kernel as the sum of the
kernels as K =∑P

p=1 Kp. The usefulness of this procedure has already been proved
[19, 39]. We can go further in this strategy by considering weighted sums of kernels
of the form K =∑P

p=1 wpKp, where wp represents the weight associated with the
p-th dataset for predicting metabolic networks. Intuitively, the weight of a dataset
should be related to the relevance of the dataset for predicting metabolic networks.

Therefore, the essential problem is how to determine the weight wp in the integra-
tion process. In this study, we propose to take the weights (w1, . . . , wP ) proportional
to an estimation of prediction accuracy of the corresponding dataset (e.g., ROC scores
−0.5), obtained from experiments on each individual datasets [25]. More complex
algorithm can be imagined to automatically determine the weight in the integration
of heterogeneous data through kernel operation (e.g., convex optimization).

8.5.2 Chemical Compatibility Network

Following the definition of EC numbers [13], we focus on the first three digits in
the EC number because the fourth digit in the EC number is just a serial number
[40]. If the first three digits in the EC numbers are the same between two enzymes,
we merge all compounds involved with the EC numbers into a list of compounds.
If two enzymes share at least one compound across their compound lists, there is a
possibility that the two enzymes catalyze successive chemical reactions in metabolic
networks. We refer to this property as chemical compatibility in this study.
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It should be pointed out that keeping only the first three digits of EC numbers is
also a protection against annotation errors resulting from homology-based EC number
annotation. Indeed, the prediction of the chemical reaction type (corresponding to the
first three numbers) has a higher accuracy than the prediction of the fourth number,
so the information of the fourth digit is not used in our approach.

We regard the chemical compatibility between two enzyme genes as a possible
enzyme–enzyme relation or successive chemical reactions in metabolic networks.
Using the chemical compatibilities among all enzyme genes, we constructed a graph,
with enzymes as nodes and chemical compatibilities as edges. The numbers of nodes
and edges of the resulting graph are 1120 and 40,4853, respectively. Obviously, most
enzyme–enzyme relations in this network are not likely to correspond to biologically
meaningful enzyme–enzyme relations (or biological phenomena). However, this sim-
ple constraint already enables to disregard roughly one-third of the 627,760 possible
edges between 1120 nodes.We refer to this network as the chemical compatibility
network.

8.5.3 Incorporating Chemical Constraint

For each network inference method, we present two approaches to integrate the chem-
ical information contained in the chemical compatibility network, which we refer to
as preintegration and postintegration, respectively [25].

The preintegration strategy consists of considering the chemical compatibility
network as an additional source of information about the enzyme genes, encode it
into a kernel similarity measure, and use it as an additional component when kernels
are integrated through sum or weighted convex combination. Since the data structure
of the chemical compatibility network is a graph, a candidate of the kernel is the
diffusion kernel [31]. In this study, the diffusion kernel with parameter β = 0.01 is
applied to the chemical compatibility network, and the resulting kernel is denoted as
Kche. The rationale behind this approach is to try to enforce some chemical constraint
in the kernel itself, without strictly enforcing all constraints. Indeed, the absence of
an edge between two genes in the chemical compatibility network can be due to the
absence of an EC number assignment, in which case, a lack of an edge in the chemical
compatibility should not be strictly enforced as strong evidences for the presence of
an edge stem from other sources of data.

To the contrary, the postintegration strategy gives a dominant role to the chemi-
cal constraints by strictly enforcing them. It consists of first performing the normal
network inference without chemical information, followed by the selection among
predicted edges of those that fulfill the chemical constraint, namely, the ones that
are present in the chemical compatibility network. With this method, all edges of the
resulting graph necessarily fulfill the chemical constraints.

8.6 EXPERIMENTS

We performed a series of experiments to test the performance of different methods:
KCCA, DML, KMR, PKMR, and em-algorithm on the problem of reconstructing the
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gold standard metabolic network. As a baseline method, we also applied the direct
approach, that is, to predict an edge between two genes x and y when the similarity
value k(x, y) is large enough. In the case of the KCCA, we set the regularization
parameters λ1 and λ2 as 0.1 and 0.1, respectively, and we used 30 features. In the case
of the PKMR, the regularization parameter λ is set to 0.1.

As a measure of the performance, we used the area under the ROC curve (AUC)
score [41], because the performance depends on the threshold given in advance. The
ROC curve is defined as a function of the true-positive rates against the false-positive
rates based on several threshold values. “True positive” means that the predicted gene
pairs are actually present in the gold standard network, while “false positive” means
that the predicted gene pairs are absent in the gold standard network. The curves
can be computed for the direct approach by just inferring the global gold standard
network. The supervised methods require the knowledge of a part of the network in
the training process. We, therefore, evaluated them with the following 10-fold cross-
validation procedure: The set of all nodes is split in 10 subsets of roughly equal size,
each subset is taken apart in turn to perform the training with 90 percent of the nodes,
and the prediction concerns the edges that involve the nodes in the subset taken apart
during training.

Table 8.1 summarizes the experiments performed. For each method, we tested both
the pre- and the postintegration strategies to take into account the chemical constraints.
The comparison results are reported in Tables 8.2 and 8.3. The direct methods seem
to catch little information to recover the metabolic network from the datasets. The
use of the constraint of chemical compatibility seems to have effects of refining the
network predicted by the direct approaches in all the cases. However, these methods
are unpractical in actual applications because of their high false-positive rate against
true-positive rate at any threshold.

In contrast, the supervised network inference methods seem to catch information to
recover the gold standard metabolic network. We observe that the use of the supervised
learning significantly improves the prediction accuracy in all cases. Especially, KML,
PKML, and em-method seem to work well. We observe slight differences between
five supervised methods when individual kernels are used. The phylogenetic profile
kernel significantly outperforms both the expression and the localization kernel with
the KCCA method, while it is roughly at the level of the expression kernel and
above the localization kernel with the DML method, for example. More importantly,
we observe that the preintegration of chemical constraint has little influence on the
accuracy, while the postintegration strategy consistently improves the ROC score in
all cases. Finally, we observe a significant improvement when kernels are combined
with weights.

The overall best result (0.871) is obtained by the PKMR method in conjunction
with a weighted integration of all genomic datasets, combined with the chemical
constraints using the postintegration strategy. The comparison of these experimental
results highlights the accuracy improvements resulting from the use of supervised
approach, the weighted integration of multiple datasets, and the use of the chemical
constraint.

Since we confirmed the validity of the supervised method by the cross-validation
experiments, we finally conducted a comprehensive prediction of a global network
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Table 8.2 AUC score (area under the ROC curves) for different supervised network
inference methods when the chemical information is integrated with the preprocessing

Method Direct KCCA DML KMR PKMR em

Expression 0.502 0.639 0.706 0.701 0.706 0.711
Localization 0.561 0.567 0.577 0.561 0.577 0.540
Phylogenetic profile 0.567 0.747 0.707 0.702 0.707 0.714
Chemical compatibility 0.539 0.750 0.592 0.582 0.592 0.582
Integration 0.574 0.804 0.809 0.829 0.831 0.827
Integration with chem. 0.586 0.800 0.803 0.821 0.827 0.822
Weighted integration 0.595 0.809 0.818 0.838 0.852 0.841

for all enzyme candidate proteins (1120 enzymes in this study) of the yeast. The pre-
dicted network enabled us not only to make new biological inferences about unknown
enzyme–enzyme relations, but also to identify genes coding for missing enzymes in
known metabolic pathways. We take YJR137C as a target protein, for example. The
detailed function of this protein was not clear as of starting this work, although the
first two digits of EC number was known as EC:1.8.-,-. In the predicted network, this
protein is connected to the enzyme proteins YPR167C (EC:1.8.4.8) and YGR012W
(EC:2.5.1.47) in sulfur metabolism shown in Figure 8.4. We can guess that the target
protein might be functionally related to these enzymes. Recently, there has been a re-
port that this protein is annotated as EC:1.8.1.2 according to the MIPS database, where
EC:1.8.1.2 is known to have successive reactions with EC:1.8.4.8 and EC:2.5.1.47,
for example, according to the sulfur metabolism in the KEGG pathway database. Of
course, such inference can be applied to other enzyme candidate proteins.

8.7 DISCUSSION AND CONCLUSION

In this chapter, we present five algorithms for supervised network inference with
metric learning and show application for reconstructing the metabolic network. It
should be pointed out that in this supervised framework, different networks can be
inferred from the same data by changing the partial network used in the learning step.

Table 8.3 AUC score (area under the ROC curves) for different supervised network
inference methods when the chemical information is integrated with the postprocessing

Method Direct KCCA DML KMR PKMR em

Expression 0.571 0.688 0.741 0.723 0. 731 0.740
Localization 0.624 0.626 0.640 0.611 0.620 0.612
Phylogenetic profile 0.629 0.779 0.764 0.778 0.774 0.767
Chemical compatibility – – – – – –
Integration 0.628 0.819 0.817 0.843 0.862 0.846
Integration with chem. – – – – – –
Weighted integration 0.642 0.822 0.820 0.852 0.871 0.859
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Figure 8.4 Sulfur metabolism of the yeast in the KEGG pathway database.

For example, these methods can be applied to not only metabolic network but also
gene regulatory network and protein–protein interaction network. Another strength of
this method is the possibility to naturally integrate heterogeneous data. Experimental
results confirmed that this integration is beneficial for the prediction accuracy of the
method. Moreover, other sorts of genomic data can be integrated, as long as kernels
can be derived from them. As the list of kernels for genomic data keeps increasing
fast [30], new opportunities might be worth investigating.

We also present two strategies to integrate multiple genomic data and chemical
information toward reconstructing the metabolic network. One strategy (pre-
processing) amounts to considering the chemical constraints as another genomic
dataset, while the second strategy (postprocessing) operates as a filter on the pre-
dicted edges to strictly enforce chemical constraints. The cross-validation experi-
ments showed that the methods, in particular, the postintegration strategy combined
with supervised learning on weighted linear combinations of kernels, improved the
prediction accuracy to a large extent. In this study, we focused on the first three digits
in the EC numbers assigned to the enzyme candidate genes and created a chemical
compatibility network to look for biochemically possible edges. However, this pro-
cess tends to produce too many possible enzyme–enzyme relations, similar to the
path computation method, so we might need to develop a method to reduce the candi-
dates of possible enzyme–enzyme relations. One possibility is to eliminate cofactors
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(coenzymes), such as NAD(P)+ and ATP because they tend to appear in too many
reactions, although the definition of a cofactor is a very difficult problem.

The methods presented in this chapter have been successfully used in practi-
cal applications. One application is the prediction of missing enzyme genes in the
metabolic network for the bacteria Pseudomonas aeruginosa from the integration of
gene position along the chromosome, phylogenetic profiles, and EC number infor-
mation [42]. In their work, they attempted to predict several missing enzyme genes in
order to reconstruct the lysine degradation pathway and identified genes for putative
5-aminovalerate aminotransferase (EC: 2.6.1.48) and putative glutarate semialde-
hyde dehydrogenase (EC: 1.2.1.20). To verify the prediction experimentally, they
conducted biochemical assays and examined the activity of the products of the pre-
dicted genes in a coupled reaction and observed that the predicted gene products
catalyzed the expected reactions.

Another application is the extraction of functionally related genes to the response of
nitrogen deprivation in cyanobacteria Anabaena sp. PCC 7120 from microarray data,
phylogenetic profiles, and gene orders on the chromosome [43]. They confirmed the
validity of the prediction result from the viewpoint of protein domains and functional
motifs that are known to be related with nitrogen metabolism. They successufully
obtained a set of candidate genes related with nitrogen metabolism, which can be
depicted as extensions of existing KEGG pathways.

Recently, we developed a Web server named GENIES (GEne Network Inference
Engine based on Supervised analysis), which is freely available and enables us
to carry out most algorithms for supervised gene network inference on the Web
(http://www.genome.jp/tools/genies/). It is possible that the users can up-
load their own datasets and carry out the gene network inference using the methods
presented in this chapter.
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9.1 INTRODUCTION

The newly emerging field of systems biology has been developed toward precise
understanding of the whole mechanism of living cells and organisms. Metabolism
is one of the essential biological systems oriented in this field. It is organized in a
complex network of interconnected reactions, called a metabolic pathway [1], and
its whole behavior results from individual properties of reactions and global prop-
erties of the network organization. An important key for understanding this whole
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metabolic system lies in regulatory mechanism on activities of enzymes catalyzing
chemical reactions involved in metabolism. Metabolic flux analysis (MFA) [2, 3] is
a methodology for quantitatively analyzing those enzymatic activities. The flux of
a reaction, defined by the rate of the reaction, can be regarded as an effective value
for indicating the activity of a certain enzyme catalyzing the reaction. There are two
kinds of approaches for computing a flux distribution over the reactions. The first
approach uses kinetics of chemical reactions and models the time-series changes of
fluxes [4]. These dynamic behaviors can be represented as coupled nonlinear dif-
ferential equations. The second approach introduces a steady-state approximation to
the first approach and reconstructs a prior set of equations into the linear formaliza-
tion by considering the stoichiometry of the chemical reactions [5]. In general, the
equations in both approaches cannot be analytically solved because there are a large
number of intracellular metabolites involved in the chemical reactions. The fluxes of
these reactions cannot be experimentally observed. Thus, the nonlinear equations are
underdetermined. This problem is usually managed in such a way that the equations
are numerically simulated in silico with several kinds of approximating constraints.
Indeed, elementary mode analysis [6] and extreme pathways analysis [7] have been
previously proposed in the second approach and introduce some relevant optimization
functions with respect to the cellular growth maximization or the energy consump-
tion minimization. However, even if these approximation methods are utilized, a
large-scale metabolic pathway cannot be solved only with these methods due to huge
computational costs.

Our long-term goal is to identify master reactions whose fluxes are relatively high
in a metabolic pathway [8]. It is a crucial feature of flux distributions that reac-
tions with fluxes spanning several orders of magnitude coexist under the same condi-
tions [9]. Whereas most metabolic reactions have low fluxes, the overall behavior of
metabolism is dominated by several reactions with very high fluxes. Therefore, we
can divide activities of enzyme reactions into two kinds of states, that is, an activated
state and a nonactivated state. If we could know which chemical reactions are in an
activated or a nonactivated state, it would be helpful to solve the equations using the
previously proposed MFA techniques. Because we can reconstruct a prior set of equa-
tions into more simplified ones as the nonactivated reactions with low fluxes can be
ignored.

In this work, we focus on a logic-based approach that enables us to estimate pos-
sible reaction states in a metabolic pathway. Our approach introduces the logical
viewpoint with respect to causal relations between states of the enzymatic activity in-
fluencing a reaction and concentration changes of metabolites involved in the reaction.
Based on these causal relations, we quantitatively estimate possible states of enzyme
reactions that logically explain the concentration changes of measurable metabolites
obtained from experiments. Computation for this estimation is based on inductive
logic programming (ILP) [10], which is a machine learning technique. ILP studies
inductive learning with a relational representation in first-order predicate logic. The
main task of ILP is to find hypotheses that logically explain a set of observations with
respect to a background theory. In this ILP setting, we can obtain possible states of
enzyme reactions as a hypothesis that logically explains the concentration changes
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of the measurable metabolites with a background theory. In this chapter, we use
CF-induction [11] that is one of the ILP techniques for realizing this task.

CF-induction has a unique feature that can integrate inductive and abductive infer-
ences, preserving its soundness and completeness for finding hypotheses in full clausal
logic. While both inductive and abductive inferences are used to find hypotheses that
account for given observations, their use in applications is quite different. Abduction
is applied for finding specific explanations (causes) of observations obtained by using
the current background theory. On the other hand, induction is applied for finding gen-
eral rules that hold universally in the domain but are missing in the background theory.
In our problem, an explanation obtained by abduction corresponds to an estimation
of enzyme reaction states. If a background theory is complete with respect to the
regulatory mechanism of enzymatic activities, then possible reaction states could be
computed only using abduction. However, since background theories are incomplete,
in general, it is necessary to find such missing rules that represent some unknown
control mechanisms using induction. Therefore, it could be a crucial advantage if
we could analyze metabolic pathways using both abductive and inductive inferences
in CF-induction. We show how CF-induction can work for both estimating possible
reaction states and completing missing causal relations using several examples.

The rest of this chapter is organized as follows. Section 9.2 first explains notions
of metabolic pathways and a basic approach for MFA in brief and than introduces
the logical model representing the causal relations between enzymatic activities
and concentration changes of metabolites. Section 9.3 first introduces the ILP set-
ting for representing the logical formalizations of these relations and than explains
the procedure of CF-induction in order to show how it can realize both abduction
and induction. Section 9.4 shows experimental results obtained by applications of
CF-induction for estimation of possible reaction states from given observations. The
examples include the metabolic network of pyruvate as well as simple topology of
a metabolic pathway. Section 9.5 discusses related work. Section 9.6 concludes this
paper.

9.2 LOGICAL MODELING OF METABOLIC FLUX DYNAMICS

9.2.1 Metabolic Pathways

Whereas cells have different morphologies and structures and the fact that their roles
in the different organisms are varied, their basic functionality is the same. One of
those basic activities of cells is to insure their own survival. Its whole activity can
be summarized in the two points. First, cells need to find the necessary energy for
its activity. This energy is mainly obtained by degradation of mineral or organic
molecules. Second, cells need to manufacture simple molecules necessary for their
survival. The former is called catabolism and the latter anabolism. These two great
activities are regrouped under the name of metabolism and result from a great number
of mechanisms and biochemical reactions. Most of these reactions, unfolding in a cell,
are catalyzed by special molecules called enzymes. Such a large amount of data on
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Figure 9.1 System of mass balance.

metabolism is represented as a network [1], called a metabolic pathway, and has been
stored and maintained in a large-scale database such as KEGG [12].

Recently, the study of metabolic pathways has become increasingly important to
exploit an integrated, systemic approach for simulating or optimizing cellular prop-
erties or phenotypes. One of these significant properties is a metabolic flux defined as
the rate of a biochemical reaction, which can be very often utilized to improve pro-
duction of metabolites in industry [2]. One basic but powerful approach to understand
the steady-state fluxes is metabolite flux balancing, which is based on the stoichio-
metric model of the biochemical reactions. Figure 9.1 represents simple topology of a
metabolic pathway in a cell, which consists of five metabolites A, B, C, D, and E, and
six reactions, each of which connects two certain metabolites. Each flux is placed on
the corresponding reaction in Figure 9.1. Although the concentrations of A, C, D, and
E are experimentally measurable, the concentration of B cannot be measured. Hence,
B is the intracellular metabolite. Based on the enzyme kinetics, the dynamic behavior
of the flux of an enzyme reaction can be represented as the following differential
equation:

dCX

dt
= vin − vout − μCX, (9.1)

where CX is the concentration of a metabolite X, vin (resp. vout) is the sum of fluxes
of reactions for producing (resp. consuming) X, and μCX represents the growth rate
of biomass in a cell. If all the metabolites are in the steady state, the left term of
Eq. (9.1) must be zero, since there are no time-series changes of the concentrations,
and also, it can be assumed that the dilution of components due to biomass growth
(corresponding to the last term of Eq. (9.1)) is neglected [3]. This fact means that for
each metabolite X, the fluxes consuming X are balanced with the ones producing X in
the steady state. Metabolic flux balancing is based on this simple notion. For example,
its balancing in Figure 9.1 can be represented as the following linear equations:

v1 = rA, rD+ v5 = v2, rE + v4 = v5,

v2 + v3+ = v3− + v1, rC + v3− = v3+ + v4. (9.2)

Then, we can analyze the flux distribution based on Eq. (9.2) with the measurable
fluxes rA, rC, rD, and rE. In general, these equations cannot be deterministically
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solved as the number of unknown values such as v1, . . . , v5 corresponding to the
fluxes of intracellular enzyme reactions becomes larger than the number of known
values corresponding to measurable fluxes. The previously proposed methods such as
elementary mode analysis and extreme pathway analysis use optimization functions
in order to solve the equations. Those introduced functions are usually constructed
by assuming the cellular growth maximization or the energy consumption mini-
mization. However, in the case of a large-scale metabolic pathway, we cannot solve
the flux distribution with these approximation methods due to huge computational
cost.

In this work, we propose a new approach that enables us to reduce the complexity
of a given metabolic pathway. One essential feature of enzymatic activities is that
all the activities are not necessarily on the same level. There exist enzymes whose
activities are about 100 or 1000 times higher than other enzymes. This fact allows us
to assume whether each enzyme reaction is in a relatively activated state or not. Then,
if we could estimate which enzyme reactions are in an activated or a nonactivated
state, we could simplify the prior metabolic pathway by ignoring those reactions in
the nonactivated state, which are estimated to have low fluxes. The smaller the target
pathway, the smaller the number of unknown values in the equations obtained from
the pathway. It implies that the possibility of solving the equations with the previously
proposed approximation methods. In our approach, we introduce a logical model that
represents causal relations between enzyme reaction states and concentration changes
of metabolites. Based on the logical model, we estimate possible states that can explain
the observations, which are experimentally observed. In the following, we focus on
those causal relations in enzyme reactions.

9.2.2 Regulation of Enzymatic Activities

The cellular metabolic system has a sophisticated mechanism for dynamically control-
ling the activities of enzymes to meet the needs of a cell. This regulatory mechanism
can be represented as causal relations between enzymatic activities and concentration
changing of metabolites. Here, we consider two simple metabolic pathways: First
one consists of two reactions with three metabolites and second one consists of one
reaction with two metabolites. Note that in the following figures we describe activated
and nonactivated reactions as (back) circles and slashes over arrows corresponding
to reactions, respectively. And also, a upward (resp. downward) arrow represents the
increase (resp. decrease) in a metabolite concentration.

Figure 9.2 corresponds to the metabolic pathway consisting of three metabolites
X, Y , and Z, and two reactions. Figure 9.2 shows that if the concentration of Y tends
to be increasing at some time, provided that the state of enzyme reaction Y → X

(resp. X → Z) is in an activated (resp. nonactivated) state, then the concentration

Y X Z

Figure 9.2 The first relation between reaction states and concentration changes of metabolites.
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Y X

Figure 9.3 The second relation between reaction states and concentration changes of metabo-
lites.

of X will also change to be increasing. This causal relation is a rational assumption
based on Eq. (1.1). Assume that the increase in concentration of X is observed, which
is denoted by a dotted arrow in the figures. Then, it will be possible to estimate the
states of the concentration change of Y and two reactions, so that the estimated states
cause this concentration change of X. One possible case is that the concentration of Y

increases, the reaction Y → X is activated and the reaction X → Z is not activated.
This is because X produced from Y cannot be consumed for generates Z.

Next, we consider Figure 9.3, which represents a metabolic pathway consisting of
two metabolites X and Y , and one reaction. Figure 9.3 shows that even if the reaction
Y → X is activated, the concentration of X must decrease as far as the concentration
of Y decreases. Accordingly, if we observe that the concentration of X decreases, we
can assume the concentration of Y decreases, and the reaction Y → X is activated as
one possible case.

As we see in the above, consideration of these causal relations enables us to esti-
mate possible reaction states that explain the concentration changes of measurable
metabolites. Two causal relations shown in Figures 9.2 and 9.3 are not sufficient for
explaining all the possible cases. In other words, there exist cases that we cannot
estimate possible reaction states using these causal relations only. Although it will be
possible to assume other causal relations a priori, however, it must be crucially diffi-
cult to enumerate the complete causal relations corresponding to the whole regulatory
mechanism on enzymatic activities. This problem brings the necessity to complete
the current causal relations for estimation in some cases. Hence, we need to simulta-
neously realize these two tasks, that is, an estimation of possible reaction states and
completion of missing causal relations.

9.3 CF-INDUCTION

In this section, we explain the procedure of CF-induction to show how it can be used
for solving our problem.

9.3.1 Inductive Logic Programming

First, we review the notion and terminology used for ILP [13] in order to represent
our problem into the logical setting of ILP. A literal is an atom or the negation of an
atom. A clause is the disjunction of literals and is often denoted by the set of literals.
A clause {A1, . . . , Am,¬B1, . . . ,¬Bn}, where Ai and ¬Bj are positive and negative
atoms, respectively, is also written as A1 ∨ · · · ∨ Am ← B1 ∧ · · · ∧ Bn. Any variable
in a clause is assumed to be universally quantified at the front. A definite clause is
a clause that contains only one positive literal. A negative clause is a clause that
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contains only negative literals. A Horn clause is a definite clause or a negative clause;
otherwise it is non-Horn. The length of a clause is the number of literals it contains. A
unit clause is a clause with length 1. A clausal theory is a finite set of clauses that can
be identified with the conjunction of the clauses. A clausal theory is full if it contains
non-Horn clauses. When � is a clausal theory, the complement of �, denoted by �,
is defined as a clausal theory obtained by translating ¬� into CNF using a standard
translation procedure [13].

Let S and T be clausal theories. S logically implies T , denoted as S |= T , if and
only if for every interpretation I such that S is true under I, T is also true under I.
We call |= the entailment relation. For a clausal theory �, a consequence of � is a
clause entailed by �. We denote by Th(�) the set of all consequences of �.

LetC andDbe two clauses.C subsumesD, denotedC " D, if there is a substitution
θ such that Cθ ⊆ D. C properly subsumes D if C " D but D /" C. For a clausal theory
�, μ� denotes the set of clauses in � not properly subsumed by any clause in �.

In the logical setting of ILP, a background theory and observations are given as
inputs and represented as clausal theories. Let B and E be a background theory and
observations, respectively. Then, the task of ILP [11] is to find a clausal theory H

such that

B ∧H |= E, (9.3)

where B ∧H is consistent. We call such a clausal theory H as a hypothesis with
respect to B and E. If no confusion arises, a “hypothesis with respect to B and E”
will simply be called a “hypothesis.” If H consists of only literals, we especially call
H as an abductive explanation.

EXAMPLE 9.1

Assume the following background theory B and observations E:

B = {linked to(a, b),

can reach(X, Y ) ← can reach(X, Z) ∧ linked to(Z, Y )}.
E = {can reach(a, c)}.

We denote capital and small letters in the formulas as variables and particular ob-
jects, respectively. B is represented with the following two predicates: The predicate
linked to(X, Y ) means that a node X is directly linked to a node Y , and the predicate
can reach(X, Y ) means that a node X can reach a node Y , that is, there is a path
from X to Y . B consists of the information on the connection of a network and an
incomplete definition of the predicate can reach(X, Y ). Since only B cannot logi-
cally explain the observations E, we need some hypotheses that complete the prior
background theory. Suppose the following clausal theory:

H1 = {can reach(a, b), linked to(b, c)}.
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Then, H1 is an abductive explanation since B ∧H1 |= E, B ∧H1 is consistent and
H1 consists of literals. Next, suppose the following clausal theory H2:

H2 = {can reach(X, Y ) ← linked to(X, Y ), linked to(b, c)}.

H2 is also a hypothesis, since B ∧H2 |= E and B ∧H2 is consistent. Whereas both
H1 and H2 imply an extensional linkage from the node b to the node c, H2 completes
a missing definition of the predicate can reach(X, Y ).

Given incomplete rules in the prior background theory such as the one in this example,
we need not only abductive inference but also inductive inference. Our problem
also needs two types of inferences. The abductive problem is to estimate possible
reaction states that logically explain the observations with the prior background theory.
The inductive problem is to find causal rules that are missing in the background
theory.

We represent our problem in the ILP setting. The metabolic pathway topology
in Figure 9.1 can be represented as the following clausal theory T consisting of
facts:

T = {reac(a, b), reac(b, d), reac(d, e), reac(e, c), reac(b, c), reac(c, b)},

where the literal reac(X, Y ) means that there is a reaction between the substrate X

and the product Y . Along with the logical representation of topology, we formalize
the causal relations in Figures 9.2 and 9.3 as the following two clauses (9.4) and (9.5),
respectively:

con(X, up) ← reac(Y, X) ∧ reac(X, Z)

∧ con(Y, up) ∧ act(Y, X) ∧ ¬act(X, Z), (9.4)

con(X, down) ← reac(Y, X)

∧ con(Y, down) ∧ act(Y, X), (9.5)

where the literal con(X,up) (resp. con(X, down)) means that the concentration of
the metabolite X increases (resp. decreases), and the literal act(X, Y ) means that the
reaction X → Y is activated. Note that both (9.4) and (9.5) are non-Horn clauses.

In the ILP setting of our problem, the background theory B consists of the above
logical formulae. Along with B, observations E are given as concentration changes of
measurable metabolites obtained from experimental results. Using these two inputs B

and E, we need to compute hypotheses that not only estimate possible reaction states
but also complete missing causal relations in B. In this chapter, we use CF-induction
for these two tasks, that is, estimation and completion, which is one of the ILP tech-
niques and can realize both abductive and inductive inferences.
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9.3.2 Abduction and Induction in CF-induction

Computation of CF-induction is based on inverse entailment (IE) [14]. By the prin-
ciple of IE, Eq. (9.3) is logically equivalent to find a consistent hypothesis H such
that

B ∧ ¬E |= ¬H. (9.6)

IE is the basis of many successful Horn clause systems such as Progol [14, 15], which
have been used in real application domains.

Recently, IE methods have been developed for full clausal theories to enable the
solution of more complex problems in richer knowledge representation formalisms.
One such method is CF-induction [11], which has two important benefits: Unlike
some related systems, such as FC-HAIL [16], CF-induction is complete for finding
full clausal hypotheses; and unlike other related systems, such as the residue procedure
[17], CF-induction can exploit language bias to focus the procedure on some relevant
part of the search space specified by the user.

The principle of CF-induction is based on the notion of characteristic clauses,
which represents “interesting” consequences of a given problem for users [18].
Each characteristic clause is constructed over a subvocabulary of the representation
language called a production field. A production fieldP is defined as a pair 〈L,Cond〉,
where L is a set of literals closed under instantiation and Cond is a certain condition
to be satisfied, for example, the maximum length of clauses, the maximum depth of
terms, and so on. When Cond is not specified, P is simply denoted as 〈L〉. A clause C

belongs to P = 〈L,Cond〉 if every literal in C belongs to L and C satisfies Cond. For
a set � of clauses, the set of consequences of � belonging to P is denoted ThP(�).
Then, the characteristic clauses of � with respect to P are defined as:

Carc(�,P) = μThP(�).

Note that Carc(�,P) can, in general, include tautological clauses [18].
When a new clause F is added to a clausal theory, some consequences are newly

derived with this additional information. The set of such clauses that belong to the
production field is called new characteristic clauses. Formally, the new characteristic
clauses of F with respect to � and P are defined as:

NewCarc(�, F,P) = Carc(� ∪ {F },P)− Carc(�,P).

In the following, we assume the production field P = 〈L, max length〉, where L is
a set of literals reflecting an inductive bias whose literals are the negations of those
literals we wish to allow in hypothesis clauses and max length is the maximum length
of clauses in the complements of those hypotheses we wish to find. When no inductive
bias and conditions are considered, P is just set to 〈L〉, where L is the set of all literals
in the first-order language. We say H is a hypothesis with respect to B, E, and P if
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and only if H is a hypothesis with respect to B and E and satisfies the following two
conditions:

(1) For every literal L appearing in H , its complement L is in L.

(2) The maximum length of the clauses in the complement of H is less than or
equal to max length.

Then, it holds that for any hypothesis H with respect to B, E, and P,

B ∧ E |= Carc(B ∧ E,P) |= ¬H ; (9.7)

B |= Carc(B,P) /|= ¬H. (9.8)

The two formulae above follow from the principle of IE and the definition of
characteristic clauses. In particular, Formula (9.7) implies that we can use character-
istic clauses to construct intermediate bridge formulae for IE. Formula (9.8) ensures
the consistency of the hypothesis and background theory. As explained in Inoue [11],
this can always be ensured by including at least one clause from NewCarc(B, E,P)
in an intermediate bridge formula [11], which is defined as a clausal theory satisfying
the following conditions:

(1) Each clause Ci ∈ CC is an instance of a clause in Carc(B ∧ E,P).

(2) At least one Ci ∈ CC is an instance of a clause from NewCarc(B, E,P).

Let B, E be clausal theories and P be a production field. Then, it is known that for
any hypothesis H with respect to B, E, and P, there exists a bridge formula CC with
respect to B, E, and P such that H |= ¬CC [11].

This fact shows that any hypothesis can be computed by constructing and general-
izing the negation¬CC of a set of characteristic clauses CC. In CF-induction, a bridge
formula CC is first selected. Then, a clausal theory F is obtained by skolemizing¬CC

and translating it to CNF. Finally, H is obtained by applying a series of generalizers
to F under the constraint that B ∧H is consistent. Many such generalizers have been
proposed such as reverse skolemization [19] (converting Skolem constants/functions
to existentially quantified variables), anti-instantiation (replacing ground subterms
with variables), anti-weakening (adding some clauses), anti-subsumption (dropping
some literals from a clause), inverse resolution [20] (applying the inverse of the res-
olution principle), and Plotkin’s least generalization [21]. Using those generalizers,
CF-induction computes hypotheses in the following procedure:

Step 1. Compute Carc(B ∧ E,P);

Step 2. Construct a bridge formula CC;

Step 3. Convert ¬CC into the CNF formula F ;

Step 4. H is obtained by a generalizer to F under the constraint that B ∧H is con-
sistent.
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EXAMPLE 9.2

Recall Example 9.1. Let the background theory B and observations E be the same as
in Example 9.1. We show how CF-induction computes the hypotheses H1 and H2 in
Example 9.1. Suppose the following production field P:

P = 〈{linked to(X, Y ),¬linked to(X, Y ),¬can reach(X, Y )},
max length = 2〉.

Then, NewCarc(B,E,P) and Carc(B ∧ E,P) are as follows:

NewCarc(B, E,P) = {¬can reach(a, c),

← can reach(a, Z) ∧ linked to(Z, c),

← can reach(a, a) ∧ linked to(b, c)},
Carc(B ∧ E,P) = {linked to(a, b)} ∪NewCarc(B, E,P) ∪ Taut,

where Taut denotes the tautological clauses in Carc(B ∧ E,P). Let CC1 be the clausal
theory {← can reach(a, b) ∧ linked to(b, c)}. Since the clause in CC1 is an instance
of the clause ← can reach(a, Z) ∧ linked to(b, Z) in NewCarc(B,E,P), CC1 is a
bridge formula. The clausal theory F1 obtained by converting ¬CC1 into the CNF
formula is

{can reach(a, b), linked to(b, c)}.

F1 is the same as the abductive explanation H1 in Example 9.1. Since B ∧ F1 |= E

and B ∧ F1 are consistent, F1 is a hypothesis with respect to B and E. Note that the
complement of each literal in F1 belongs to P and the length of the clause in F1 is 2,
which is equal to max length in P. Hence, F1 is a hypothesis with respect to B, E,
and P.

Next, let CC2 be the following clausal theory:

{← can reach(a, b) ∧ linked to(b, c), linked to(a, b)}.

Since CC2 includes an instance of a clause in NewCarc(B,E,P), CC2 is also a bridge
formula. The clausal theory F2 obtained by converting ¬CC2 into the CNF formula
is as follows:

F2 = {can reach(a, b) ← linked to(a, b), (9.9)

linked to(b, c) ← linked to(a, b)}. (9.10)

Assume that we apply both a dropping and an anti-instantiation generalizers in such
a way that the terms a and b appearing in the clause (9.9) are replaced by variables X
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and Y , respectively, and also the literal linked to(a, b) in the clause (9.10) is dropped.
Then, the following clausal theory F ′2 is constructed:

F ′2 = {can reach(X, Y ) ← linked to(X, Y ), linked to(b, c)}.

Since B ∧ F ′2 |= E and B ∧ F ′2 are consistent, F ′2 is a hypothesis with respect to B

and E. Note that the complement of each literal in F ′2 belongs to P and the maximum
length of the clauses in F ′2 is 2, which is equal to max length in P. Hence, F ′2 is also
a hypothesis with respect to B, E, and P. F ′2 is the same as H2 completing a missing
definition of the predicate can reach(X, Y ).

As we see in the above example, abductive explanations can be computed without
any applications of generalizers in CF-induction. Let H be an abductive explanation
with respect to a background theory B, observations E, and a production field P. H

is minimal if no proper subconjunction H ′ of H satisfies B ∧H ′ |= E. The set of
minimal abductive explanations with respect to B, E, and P is the set of formulas,
each of which is the negation of a clause in NewCarc(B,E,P) [18].

In contrast with abductive computation, computing inductive hypotheses in CF-
induction needs some generalizers in CF-induction when they include variables.

9.4 EXPERIMENTS

In this section, we show what kinds of hypotheses the current implementation of
CF-induction can find using two examples. The simple pathway in the first example
corresponds to Figure 9.1, and the metabolic pathway of pyruvate is used in the second
example.

9.4.1 A Simple Pathway

Define a background theory B as follows:

B = T ∪ {con(a, up), (9.4), (9.5),

← con(X, up) ∧ con(X, down)}, (9.11)

where the rule (9.11) means that concentrations of any metabolites cannot be up and
down at the same time. Note here that con(a, up) can be regarded as an input signal
to the metabolic system. So it is put into B. In the following figures, concentration
changes, which are observed and included in B, are represented as dotted bold arrows.
Here, we assume the measurable concentration changes as follows:

E = {con(d, up), con(c, down), con(e, down)}.



EXPERIMENTS 225

BA

C

D

E
Figure 9.4 The first hypothesis H1.

As a hypothesis with respect to B and E, the following clausal theory is considered:

H1 = {con(e, down) ← ¬act(d, e) ∧ act(e, c),

act(a, b), act(e, c), act(b, d),¬act(b, c),¬act(d, e)}.

Figure 9.4 shows the reaction states in H1. According to H1, although the reactions
A → B, B → D, and E → C are activated, the reactions B → C and D → E are not
activated. This estimation of reaction states is realized using abduction. On the other
hand, we cannot explain the reason why the concentration of E decreases only with
abductive hypotheses. However, CF-induction outputs a new rule worth considering
as an answer, that is, “the concentration of E decreases if the reaction D → E is not
activated and the reaction E → C is activated.”

As another hypothesis, the following clausal theory can also be considered:

H2 = {con(X, down) ← ¬act(Y, X) ∧ con(Y, up),

act(a, b), act(b, d),¬act(b, c),¬act(d, e)}.

Figure 9.5 shows the states of reactions in H2. Compared with H1, the rule for ex-
plaining the concentration change of E is more general, and also H2 does not say
whether the reaction E–C is activated or not. These two hypotheses can be computed
using the current implementation of CF-induction. Let a production field P be as
follows:

P = 〈{con(X, Y ),¬con(X, Y ),¬act(X, Y ), act(X, Y )},
max length = 6〉.

BA

C

D

E
Figure 9.5 The second hypothesis H2.
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Here, we set the maximum search depth for computing the characteristic clauses in
CF-induction as 4. The current system outputs the following NewCarc(B, E,P) and
Carc(B ∧ E,P) consisting of 30 and four clauses, respectively:

NewCarc:
(1)[-con(c,down),-con(b,up),-act(b,d),act(d,e),-con(e,down)]

...
(9)[-con(e,down),-act(e,c),-act(a,b),act(b,c),-act(b,d),act(d,e)]

...
(30)[-con(c,down),-con(d,up),-con(e,down)]

Carc:
(1)[-con(_0,up),-con(_0,down)] (2)[con(a,up)]
(3)[con(_0,_1),-con(_0,_1)] (4)[-act(_0,_1),act(_0,_1)]

We construct a bridge formula CC1 in such a way that both instances of the fourth
clause in Carc(B ∧ E,P) and the ninth clause in NewCarc(B,E,P) are manually
selected.

CC:[
[-con(e,down),-act(e,c),-act(a,b),act(b,c),-act(b,d),act(d,e)],
[-act(d,e),act(d,e)], [-act(e,c),act(e,c)]]

The system automatically computes the clausal theory F1 obtained by converting
¬CC1 into the CNF formula.

-CC:[
[con(e,down),act(d, e),-act(e, c)], [act(e,c),act(d,e)],
[act(a,b),act(d,e),-act(e,c)], [-act(b,c),act(d,e),-act(e,c)],
[act(b,d),act(d,e),-act(e,c)], [-act(d,e),act(e,c)],
[-act(d,e),-act(e,c)]]

Third, we apply a dropping generalizer to F1 in such a way that relevant nine literals
in F1 consisting of 18 literals are dropped. Then, the clausal theory corresponding to
H1 is constructed. Last, the system performs the consistency checking of H1. Since
H1 ∧ B is consistent, it successfully outputs H1.

Hypothesis:[
[con(e,down),act(d,e),-act(e,c)], [act(e,c)],
[act(a,b)], [-act(b,c)],
[act(b,d)], [-act(d,e)]]

Next, we change the maximum search depth to 6. Then, NewCarc(B, E,P) (resp.
Carc(B ∧ E,P)) increases to 137 (resp. 84) clauses. We construct another bridge
formula CC2 in such a way that one clause in NewCarc(B, E,P), two clauses, and
two instances of a clause in Carc(B ∧ E,P) are selected. After converting¬CC2 into
the CNF formula F2, we apply both a dropping and an anti-instantiation generalizers
to F2 in such a way that 15 literals in F2 consisting of 27 literals are dropped and four
ground terms are replaced by variables. Then, the clausal theory corresponding to H2
is constructed.
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Table 9.1 Performance of abductive explanations in
CF-induction

Test data (depth = 6, max length = 6)

{con(c, down)} {con(d, up)} {con(e, down)}
NH 21 22 22
NP 8 2 7
Ratio (%) 38 9 32
Time (ms) 6915 11,360 10,751

Both H1 and H2 need inductive inference to be constructed. In general, it becomes
necessary to apply inductive inference for completing missing causal relations in our
problem. Along with this completion task, inductive inference will be necessary to
find efficient hypotheses that have high predictive accuracy to unknown observations.
Table 9.1 shows the performance of abductive explanations obtained by CF-induction.
As we mentioned in the previous section, each minimal abductive explanation is the
negation of a clause in NewCarc(B, E,P). Then, we evaluate the performance of
these minimal abductive explanations based on a leave-one-out strategy [22]. First,
we select one clause C in observations E as a test example. Second, for each clause
D in NewCarc(B, E− {C},P), we check whether or not D is consistent with B and
B ∧D |= {C}, that is, D can also explain the test example {C}. NH and NP in Table
9.1 denote the number of minimal abductive explanations with respect to B, E − {C},
andP and the number of those explanations that can also explain the test example {C}.
In this experiment, CF-induction can actually compute such abductive explanations
that accurately predict an unseen observation (test example) for each case. However,
we notice that the ratio of NP to NH is not so high in Table 9.1. It shows that few
explanations may succeed with the prediction of an unseen example, whereas most of
them cannot. This fact, thus, makes both abductive and inductive inferences necessary
for improving the predictive accuracy of hypotheses.

9.4.2 A Metabolic Pathway of Pyruvate

Next, we consider the metabolic pathway of pyruvate (see Figure 9.6). The logical
representation of topology in Figure 9.6 is as follows:

T ′ = {terminal(ethanol), reac(pyruvate, acetylcoa),

reac(pyruvate, acetaldehyde), reac(glucose, glucosep),

reac(glucosep, pyruvate), reac(acetaldehyde, acetate),

reac(acetate, acetylcoa), reac(acetaldehyde, ethanol)},

where the predicate terminal(X) means that there is no reaction where X is consumed.
If the metabolite X is terminated and the reaction, where X is produced, is activated,
then the concentration of X must increase. However, this consequence cannot be de-
rived only using the previous causal rule (9.4), which concerns with the concentration
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Acetate

AcetaldehydePyruvate

Glucose-P

Ethanol

Glucose

Acetylcoa

Figure 9.6 Metabolic pathway of pyruvate.

increase of a metabolite. Thus, we construct the following new causal rules obtained
by incorporating the concept of “terminal” with the rule (9.4):

blocked(X) ← reac(X, Z) ∧ ¬act(X, Z), (9.12)

blocked(X) ← terminal(X), (9.13)

con(X, up) ← reac(Y, X) ∧ act(Y, X) ∧ blocked(X), (9.14)

where the predicate blocked(X) means that metabolite X cannot be consumed. Define
a background theory B as follows:

B = T ′ ∪ {(9.12), (9.13), (9.14), con(glucose, up)}.

Next, we input the following observations E:

E = {con(ethanol, up), con(pyruvate, up)}.

Then, the following clausal theories H3 and H4 are considerable as hypotheses with
respect to B and E.

H3 = {act(glucosep, pyruvate),

¬act(pyruvate, acetylcoa), act(acetaldehyde, ethanol)}.
H4 = {con(Y, up) ← act(X, Y ) ∧ con(X, up),

act(glucosep, pyruvate), act(acetaldehyde, ethanol),

act(pyruvate, acetaldehyde), act(glucose, glucosep)}.
Figures 9.7 and 9.8 show the states of reactions in H3 and H4, respectively. Compared
with H3, H4 includes a new general rule concerning the mechanism of how concentra-
tions of metabolites increase. Both H3 and H4 can be generated using CF-induction.
Let a production field P be as follows:

P = 〈{con(X, Y ),¬con(X, Y ),¬act(X, Y ), act(X, Y )},
max length = 6〉.
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Figure 9.7 The first hypothesis H3.

We set the maximum search depth as 4. Then, the system of CF-induction computes
NewCarc(B,E,P) consisting of six clauses and Carc(B ∧ E,P) consisting of three
clauses as follows:

NewCarc:
(1)[-act(acetaldehyde,ethanol),-con(pyruvate,up)]
(2)[-con(ethanol,up),-act(glucosep,pyruvate),

act(pyruvate,acetylcoa)]
(3)[-con(ethanol,up),-act(glucosep,pyruvate),

act(pyruvate,acetaldehyde)]
(4)[-act(acetaldehyde,ethanol),-act(glucosep,pyruvate),

act(pyruvate,acetylcoa)]
(5)[-act(acetaldehyde,ethanol),-act(glucosep,pyruvate),

act(pyruvate,acetaldehyde)]
(6)[-con(ethanol,up),-con(pyruvate,up)]

Carc:
(1)[con(glucose,up)]
(2)[-act(_0,_1),act(_0,_1)]
(3)[con(_0,_1),-con(_0,_1)]

Since H3 is an abductive explanation, there exists a clause C in NewCarc(B, E,P)
such that ¬C is a subconjunction of H3. Indeed, the fourth clause in
NewCarc(B,E,P) is the one corresponding to ¬H3. Hence, a bridge formula for
finding H3 can be constructed with only one clause. Moreover, no generalizers are
necessary to generate H3. On the other hand, a bridge formula for finding H4 can
be constructed with the first and fifth clauses in NewCarc(B, E,P), and the first
clause, four instances of the second clause, and one instance of the third clause in

Acetate

AcetaldehydePyruvate

Glucose-P

Ethanol

Glucose

Acetylcoa

Figure 9.8 The second hypothesis H4.
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Carc(B ∧ E,P). After constructing this bridge formula, CF-induction can output H4
using both a dropping and an anti-instantiation generalizers.

9.5 RELATED WORK

Tamaddoni-Nezhad et al. studied an estimation of inhibitory effects on metabolic
pathways using ILP [23]. Inhibition of enzyme functions plays an important role on
dynamically controlling enzymatic activities on metabolism. They have also introdu-
ced the logical modeling of metabolic pathways and firstly showed the possibility
of application of ILP to qualitatively analyze metabolic pathways with their logical
model on inhibitory effects to concentration changes of metabolites. Here, we refer
to three points as the difference compared with their work.

The first point is the difference of main goal that we try to solve using ILP. Our
long-term goal is a more precise modeling of the flux distribution corresponding
to dynamics on enzymatic activities. Previously proposed techniques in MFA that
quantitatively analyze the flux distribution can have the limitation of those applications
to a large-scale metabolic pathway. Using ILP, we can estimate possible reaction states
in metabolic pathways, which enable us to reconstruct the prior pathway into more
simplified one by removing enzyme reactions with low fluxes. In other words, we
intend to reduce the complexity of a given metabolic pathway. In contrast, they have
focused on the inhibitory effects of particular toxins affected to objects to be examined,
which are used as drugs.

The second point is the difference of ILP techniques applied to problems. They
have used Progol5.0 [15], which is one of the successful ILP systems and can also
compute both inductive and abductive hypotheses. Compared with Progol5.0, CF-
induction preserves the soundness and completeness for finding hypotheses and can
use not only Horn but also non-Horn clauses in the knowledge representation for-
malisms. Tamaddoni-Nezhad et al. [23] have evaluated the predictive accuracy of
both abductive explanations and inductive hypotheses obtained by Progol5.0 in the
metabolic pathway consisting of 76 enzyme reactions and 31 metabolites. The dataset
of this metabolic pathway is available on their Web site. Then, it will be interesting
to evaluate the hypotheses obtained by CF-induction using the dataset. Note that in
an initial experiment with this dataset, CF-induction computes 66 abductive expla-
nations, including the unique output of Progol5.0 when we set the maximum search
depth as 5 and put the maximum length of a production field as 15. The following ex-
ample is concerning an inductive hypothesis introduced in Tamaddoni-Nezhad et al.
[23]. We show how CF-induction can compute the same inductive hypothesis as the
one obtained by Progol5.0 using the next example.

EXAMPLE 9.3

Define a background theory B and an observation E to be as follows:

B = {con(X, up) ← reac(X, Y, Z) ∧ inh(X, Y, Z),

reac(s, e, p), class(e, c)},
E = con(s, up).
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The predicate reac(X, Y, Z) includes the new term Y , which denotes an enzyme cat-
alyzing the reaction X → Z. The predicate inh(X, Y, Z) means that the reaction be-
tween a substrate X and a product Z, catalyzed by an enzyme Y , is inhibited. Note
that those reactions that are inhibited might be regarded as nonactivated reactions.
However, the activated state does not necessarily always correspond to the noninhib-
ited state because there are other factors that cause the nonactivated state. We, thus,
distinguish the inhibited state from the nonactivated state. Along with the predicate
inh(X, Y, Z), the predicate class(X, Y ) is newly introduced. It means that an enzyme
X belongs to an enzyme class Y .

Tamaddoni-Nezhad et al. [23] introduced the following inductive hypothesis H :

H = inh(s, X, p) ← class(X, c).

Suppose the following production field:

P = 〈{inh(X, Y, Z),¬inh(X, Y, Z), class(X, Y )}〉.

NewCarc(B,E,P) and Carc(B ∧ E,P) are computed as follows:

NewCarc(B, E,P) = {¬inh(s, e, p),¬con(s, up)},
Carc(B ∧ E,P) = {class(e, c),¬inh(s, e, p)}.

Let a bridge formula CC be the clausal theory {¬inh(s, e, p), class(e, c)}. Then,
the clausal theory F is obtained by translating ¬CC into CNF as follows:

F = inh(s, e, p) ← class(e, c).

If we apply an anti-instantiation generalizer to F in such a way that the ground
term e appearing in F is replaced with the variable X, then the hypothesis H can be
generated.

The process of computing the above inductive hypothesis can be sketched in
Figure 9.9. This hypothesis is constructed using an abductive explanation. Hence, it
is necessary to generate abductive explanations in advance for constructing inductive
hypotheses. Indeed, Progol5.0 first computes an abductive explanation and second
finds the inductive hypothesis using the abductive explanation. In other words, Pro-
gol5.0 performs abduction and induction processes, step by step. On the other hand,

Figure 9.9 Integrating abduction and induction for finding hypotheses.
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CF-induction can realize them with one process. This difference of those mechanisms
for integrating abduction and induction is the last and crucial point. In our problem
setting, we need to not only estimate possible reaction states but also complete miss-
ing causal relations in the prior background. CF-induction can realize these two tasks
simultaneously using both abduction and induction.

There are several works that have been studied on applications of ILP techniques
to biology [24, 25]. King et al. showed that hypothesis-finding techniques can help
to reduce the experimental costs for predicting the functions of genes in their project
called robot scientist [24]. Besides, Zupan et al. have developed a system based on
abduction, which enables us to find new relations from experimental genetic data for
completing the prior genetic networks [25].

9.6 CONCLUSION AND FUTURE WORK

We have studied a logic-based method for estimating possible states of enzyme re-
actions. Since this method can help us to understand which enzyme reactions are
activated, it can be potentially used in MFA in that it is important for optimizing or
improving production and identifying master reactions that have high fluxes. In this
work, we have showed how CF-induction can realize not only estimation of possible
reaction states but also completion of the current causal relations.

On the other hand, it is still far from our long-term goal that we construct a new
technique integrating our logic-based analysis with previously proposed MFA meth-
ods. As an important work, we point out the necessity of realizing an efficient search
algorithm, which enables CF-induction to automatically find relevant hypotheses.
Although CF-induction has several theoretical merits, it cannot necessarily be ac-
complished as a sophisticated inductive system that automatically computes the hy-
potheses users wish to obtain. We intend to address this issue by considering the notion
of compression that other ILP systems have introduced. Other important future work
is the evaluation of the estimated reaction states that CF-induction computes. In our
current project [8], we intend to use statistical relational leaning techniques to evaluate
those estimations that are computed by CF-induction. Besides, it will be interesting
that we actually compute the flux distribution from the simplified equations con-
structed by removing the estimated reactions with low fluxes and compare it with the
result of other MFA techniques.
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10.1 INTRODUCTION

Analyses of genetic networks are important topics in computational systems biology.
For that purpose, mathematical models of genetic networks are needed, and thus
various models have been proposed or utilized, which include Bayesian networks,
Boolean networks (BNs), and probabilistic BN, ordinary and partial differential
equations, and qualitative differential equations [1]. Among them, a lot of studied
have been done on the BN. BN is a very simple model [2]: Each node (e.g., gene) takes
either 0 (inactive) or 1 (active), and the states of nodes change synchronously accord-
ing to regulation rules given as Boolean functions. Although such binary expression is
very simple, BN is considered to retain meaningful biological information contained
in the real continuous domain gene expression patterns. Furthermore, a lot of theoret-
ical studies have been done on the distribution of length and number of attractors for
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randomly generated BNs with average indegree K, where an attractor corresponds
to a steady state of a cell. However, exact results have not yet been obtained.

In 2002, probabilistic Boolean network (PBN) was proposed as a stochastic ex-
tension of BN [3]. Although only one Boolean function is assigned to each node in
a BN, multiple Boolean functions can be assigned to each node in a PBN, and one
Boolean function is selected randomly per each node and per each time step. After its
invention, various aspects of PBN have been studied. Among them, control of PBNs
is quite important [4] because one of the important challenges of systems biology is
to establish a control theory of biological systems [5, 6]. Since biological systems
contain highly nonlinear subsystems and PBNs are highly nonlinear systems, devel-
opment of control methods for PBNs may be a small but important and fundamental
step toward establishment of control theory for biological systems.

Based on the above discussions, in this chapter we focus on BNs and PBNs. In
particular, we focus on computational aspects of identification of steady states and
finding of control actions for both BNs and PBNs. We give a brief introduction of
these models and review works on the following problems.

BN-ATTRACTOR Given a BN, identify all singleton attractors and cyclic attrac-
tors with short period.

BN-CONTROL Given a BN, an initial state, and a desired state. find a control
sequence of external nodes leading to the desired state.

PBN-STEADY Given a PBN, find the steady-state distribution.

PBN-CONTROL Given a PBN along with cost function and its initial state, find
a sequence of control actions with the minimum cost.

As mentioned above, attractors in a BN correspond to steady states. Therefore, we
discuss two problems on two models with focusing on the works mainly done by the
authors and their colleagues.

10.2 BOOLEAN NETWORK

As mentioned in Section 10.1, BN is a model of genetic networks [2]. Although BN
was proposed in 1960s, extensive studies have been done on BN.

A BN G(V, F ) consists of a set V = {v1, . . . , vn} of nodes and a list F =
(f1, . . . , fn) of Boolean functions. Each node corresponds to a gene and takes ei-
ther 0 (gene is not expressed) or 1 (gene is expressed) at each discrete time t. The
state of node vi at time t is denoted by vi(t), where the states on nodes change syn-
chronously according to given regulation rules. A Boolean function fi(vi1 , . . . , vik )
with inputs from specified nodes vi1 , . . . , vik is assigned to each node, where it rep-
resents a regulation rule for node vi. We use IN(vi) to denote the set of input nodes
vi1 , . . . , vik to vi. Then, the state of node vi at time t + 1 is determined by

vi(t + 1) = fi(vi1 (t), . . . , viki
(t)).
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Here, we let

v(t) = [v1(t), . . . , vn(t)],

which is called a gene activity profile (GAP) at time t or a (global) state of BN at time
t. We also write vi(t + 1) = fi(v(t)) to denote the regulation rule for vi. Furthermore,
we write

v(t + 1) = f(v(t))

to denote the regulation rule for the whole BN. We define the set of edges E by

E = {(vij , vi)|vij ∈ IN(vi)}.

Then, G(V, E) is a directed graph representing the network topology of a BN. An
edge from vij to vi means that vij directly affects the expression of vi. The number
of input nodes to vi (i.e., |IN(vi)|) is called the indegree of vi. We use K to denote
the maximum indegree of a BN, which plays an important role in analysis of BNs.

An example of BN is given in Figure 10.1. In this example, the state of node v1
at time t + 1 is determined by the state of node v2 at time t. The state of node v2 at
time t + 1 is determined by the logical AND of the state of v1 and the negation (i.e.,
logical NOT) of the state of v3 at time t + 1. The state of node v3 at time t + 1 is
determined by AND of the state of node v1 and NOT of the state of node v2 at time t.
We use x ∧ y, x ∨ y, x⊕ y, x to denote logical AND of x and y, logical OR of x and
y, exclusive OR of x and y, and logical NOT of x, respectively.

The dynamics of a BN can be well-described by a state transition diagram shown
in Figure 10.2. For example, an edge from 101 to 001 means that if GAP of BN is
[1, 0, 1] at time t, GAP of BN becomes [0, 0, 1] at time t + 1. From this diagram, it
is seen that if v(0) = [1, 0, 1], GAP changes as:

[1, 0, 1] =⇒ [0, 0, 1] =⇒ [0, 0, 0] =⇒ [0, 0, 0] =⇒ · · ·

v3

v1

v2

v1(t+1) = v2(t)

v3(t+1) = v1(t) ∧ v2(t)

v2(t+1) = v1(t) ∧ v3(t)

Figure 10.1 Example of a Boolean network.
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0 1 0

0 1 1

1 0 0

1 1 1

1 1 0 0 0 0

0 0 1

1 0 1

Figure 10.2 State transition diagram for BN in Figure 10.1.

and the same GAP [0, 0, 0] is repeated after t = 1. It is also seen that if BN begins from
v(0) = [1, 1, 1], [1, 0, 0], and [0, 1, 1] are repeated alternatively after t = 0. These
kinds of sets of repeating states are called attractors, each of which corresponds to
a directed cycle in a state transition table. The number of elements in an attractor
is called the period of the attractor. An attractor with period 1 is called a singleton
attractor, which corresponds to a fixed point. An attractor with period greater than 1 is
called a cyclic attractor. In the BN of Figure 10.1, there are three attractors: {[0, 0, 0]},
{[1, 1, 0]}, {[1, 0, 0], [0, 1, 1]}, where the first and second ones are singleton attractors
and the third one is a cyclic attractor with period 2.

10.3 IDENTIFICATION OF ATTRACTORS

Since attractors in a BN are biologically interpreted so that different attractors corre-
spond to different cell types [2], extensive studies have been done for analyzing the
number and length of attractors in randomly generated BNs with average indegree
K. Starting from [2], a fast increase in the number of attractors has been seen [7–9].
Although there is no conclusive result on the mean length of attractors, it has been
studied by many researches [2, 8]. Recently, several studies have been done for on
efficient identification of attractors [10–13], whereas it is known that finding a single-
ton attractor (i.e., a fixed point) is NP-hard [13, 14]. Devloo et al. developed a method
using transformation to a constraint satisfaction problem [10]. Garg et al. developed
a method based on binary decision diagrams (BDDs) [11]. Irons developed a method
that makes use of small subnetworks [12]. However, theoretical analysis of the aver-
age case time complexity was not performed in these works. We recently developed
algorithms for identifying singleton attractors and small attractors and analyzed the
average case time complexities [13]. In this section, we overview our results on the
identification of attractors.

10.3.1 Definition of BN-ATTRACTOR

As mentioned in the previous section, starting from an initial GAP, a BN will even-
tually reach a set of global states called an attractor. Recall that attractors correspond
to directed cycles in a state transition diagram, and there are two types of attractors:
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singleton attractors (i.e., attractors with period 1) and cyclic attractors (i.e., attractors
with period greater than 1). The set of all GAPs that eventually evolve into the same
attractor is called the basin of attraction. Different basins of attraction correspond to
different connected components in the state transition diagram, and each connected
component contains exactly one directed cycle.

In this chapter, the attractor identification problem (BN-ATTRACTOR) is defined
as a problem of enumerating all attractors for a given BN. However, it is very difficult
to find attractors with long periods. Thus, we focus on identification of singleton
attractors and identification of attractors with period at most given threshold pmax.
That is, we enumerate all singleton attractors or all attractors with period at most pmax.
This problem is referred as BN-ATTRACTOR-pmax in this chapter. The singleton
attractor identification problem corresponds to BN-ATTRACTOR-1.

10.3.2 Basic Recursive Algorithm

We can identify all attractors if a state transition diagram is given. However, the size
of the diagram is O(2n), since there are 2n nodes in the diagram. Thus, the naive
approach using a state transition diagram takes at least O(2n) time. Furthermore, if
the regulation rules are given as vi(t + 1) = vi(t) for all i, the number of singleton
attractors is 2n. Thus, O(2n) time is required in the worst case if all the singleton
attractors are to be identified. On the other hand, it is known that the average number
of singleton attractors is 1 regardless of the number of genes n and the maximum
indegree K [15]. Based on these facts, we developed a series of algorithms for BN-
ATTRACTOR-1 and BN-ATTRACTOR-pmax with short period pmax [13], each of
which examines much smaller number of states than 2n in the average case. In this
section, we review the basic version of our developed algorithms, which is referred
to as the basic recursive algorithm.

In the basic recursive algorithm, a partial GAP (i.e., profile with m (< n) genes) is
extended one by one toward a complete GAP (i.e., singleton attractor), according to
a given gene ordering (i.e., a random gene ordering). If it is found that a partial GAP
cannot be extended to a singleton attractor, the next partial GAP is examined. The
pseudocode of the algorithm is given below, where this procedure is invoked with
m = 1.

Algorithm 10.1

BasicRecursive (v,m):
if m = n + 1
then Output [v1(t), v2(t),..., vn(t)], return;

for b = 0 to 1 do
vm(t) := b;

if it is found that f j(v(t)) /= v j(t) for some j ≤ m

then continue
else BasicRecursive(v,m + 1);

return.
End pseudo-code.
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At the m-th recursive step, the states of the first m− 1 genes (i.e., a partial GAP) are
already determined. Then, the algorithm extends the partial GAP by letting vm(t) = 0.
If either vj(t + 1) = vj(t) holds or the value of vj(t + 1) is not determined for each
j = 1, . . . , m, the algorithm proceeds to the next recursive step. That is, if there is a
possibility that the current partial GAP can be extended to a singleton attractor, it goes
to the next recursive step. Otherwise, it extends the partial GAP by letting vm(t) = 1
and executes a similar procedure. After examining vm(t) = 0 and vm(t) = 1, the algo-
rithm returns to the previous recursive step. Since the number of singleton attractors
is small in most cases, it is expected that the algorithm does not examine many partial
GAPs with large m. The average case time complexity is estimated as follows [13].

Assume that we have tested the first m out of n genes, where m ≥ K. For all i ≤ m,
vi(t) /= vi(t + 1) holds with probability

P(vi(t) /= vi(t + 1)) = 0.5 ·

(
m

ki

)
(

n

ki

) ≈ 0.5 ·
(m

n

)ki ≥ 0.5 ·
(m

n

)K

,

where we assume that Boolean functions of ki (< K) inputs are selected at random
uniformly. If vi(t) /= vi(t + 1) holds for some i ≤ m, the algorithm cannot proceed
to the next recursive level. Therefore, the probability that the algorithm examines the
(m+ 1)th gene is no more than

[1− P(vi(t) /= vi(t + 1))]m =
[

1− 0.5 ·
(m

n

)K
]m

.

Thus, the number of recursive calls executed for the first m genes is at most

f (m) = 2m ·
[

1− 0.5 ·
(m

n

)K
]m

.

Here, we let

s = m

n
and F (s) = [2s · (1− 0.5 · sK)s]n = [(2− sK)s]n.

Then, the average case time complexity is estimated by computing the maximum
value of F (s). Although an additional O(nm) factor is required, it can be ignored,
since O(n2an) # O((a+ ε)n) holds for any a > 1 and ε > 0.

Recall that our purpose of the analysis is to estimate the average case time com-
plexity as a function of n. Thus, we only need to compute the maximum value of the
function g(s) = (2− sK)s, which can be obtained by a simple numerical calculation
for fixed K. Then, the average case time complexity of the algorithm can be estimated
as O((max(g))n). The average case time complexities for K = 2, . . . , 8 are obtained
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Table 10.1 Theoretically estimated average case time complexities of basic,
outdegree-based, and BFS-based algorithms for the singleton attractor detection
problem [13]

K 2 3 4 5 6 7 8

Basic 1.35n 1.43n 1.49n 1.53n 1.57n 1.60n 1.62n

Outdegree based 1.19n 1.27n 1.34n 1.41n 1.45n 1.48n 1.51n

BFS based 1.16n 1.27n 1.35n 1.41n 1.45n 1.50n 1.53n

Source: [13]

as in the first row of Table 10.1. From the table, it is seen that for small K, the basic re-
cursive algorithm is much faster than the naive algorithm that takes at least O(2n) time.
That is, the basic recursive algorithm does not examine all GAPs in the average case.

We obtained variants of this basic recursive algorithm by sorting nodes accord-
ing to various orderings before invoking the recursive procedure [13]. In particular,
we used the orderings of nodes according to the outdegree and breadth-first search
(BFS). For these algorithms, we obtained theoretical estimates of the average case
time complexity (see Table 10.1). Since some approximations were included in our
theoretical analyses, we also performed computational experiments. As a result, good
agreements were observed. We also extended the basic recursive algorithm for identi-
fying cyclic attractors with short period [13]. Although the extended algorithm is not
efficient compared with those in Table 10.1, it still works in o(2n) time in the average
case, and the result of computational experiment suggested that it is actually faster
than the naive algorithm for small K.

10.3.3 On the Worst Case Time Complexity of BN-ATTRACTOR

We have considered the average case time complexity in the above discussion. It is also
very important to consider the worst case time complexity. As mentioned above, there
exist 2n attractors in the worst case and thus the identification problem takes �(2n)
time in the worst case. However, it may be possible to develop an o(2n) time algorithm
if we consider the singleton attractor detection problem (i.e., decide whether or not
there exists a singleton attractor). It has been shown that the detection problem can be
solved in o(2n) time for constant K by a reduction to the satisfiability problem for CNF
(conjunctive normal form) [16]. It has also been shown that the detection problem can
be solved in o(2n) time for general K if Boolean functions are restricted to AND/OR
of literals [16]. However, no o(2n) time algorithm is known for more general cases.
Therefore, development of such an algorithm is left as an open problem.

10.4 CONTROL OF BOOLEAN NETWORK

As mentioned in Section 10.1, development of control theory/methods for biological
systems is important, since biological systems are complex and contain highly non-
linear subsystems, and, thus, existing methods in control theory cannot be directly
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applied to control of biological systems. Since BNs are highly nonlinear systems, it
is reasonable to try to develop methods for control of BNs.

In 2003, Datta et al. proposed a dynamic programming algorithm for finding a
control strategy for PBN [4], from which many extensions followed [17–20]. In their
approach, it is assumed that states of some nodes can be externally controlled, and the
objective is to find a sequence of control actions with the minimum cost that leads to a
desirable state of a network. Their approach is based on the theory of Markov chains
and makes use of the classical technique of dynamic programming. Since BNs are
special cases of PBNs, their methods can also be applied to control of BNs. However,
it is required in their methods to handle exponential size matrices, and, thus, their
methods can only be applied to small biological systems. Therefore, it is reasonable
to study how difficult it is to find control strategies for BNs. We showed that finding
control strategies for BNs is NP-hard [21]. On the other hand, we showed that this
problem can be solved in polynomial time if BN has a tree structure. In this section,
we review these results along with the essential idea of Datta et al. [4].

10.4.1 Definition of BN-CONTROL

In this subsection, we review a formal definition of the problem of finding control
strategies for BNs (BN-CONTROL) [21].

In BN-CONTROL, we modify the definition of BN in order to introduce control
nodes (see also Figure 10.3). We assume that there are two types of nodes: inter-
nal nodes and external nodes, where internal nodes correspond to usual nodes (i.e.,
genes) in BN and external nodes correspond to control nodes. Let a set V of n+m

nodes be V = {v1, . . . , vn, vn+1, . . . , vn+m}, where v1, . . . , vn are internal nodes and
vn+1, . . . , vn+m are external nodes. For convenience, we also use xi to denote an ex-
ternal node vn+i. We let v(t) = [v1(t), . . . , vn(t)] and x(t) = [x1(t), . . . , xm(t)]. Then,
the state of each internal node vi(t + 1) (i = 1, . . . , n) is determined by

vi(t + 1) = fi(vi1 (t), . . . , viki
(t)),

Figure 10.3 Example of BN-CONTROL.
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where each vik is either an internal node or an external node. Thus, the dynamics of
a BN is described as

v(t + 1) = f(v(t), x(t)),

where x(t)s are determined externally.
Suppose that the initial states of internal nodes v0 at time t = 0 and the desired

states of internal nodes vM at time t = M are given. Then, the problem is to find a
sequence of 0–1 vectors 〈x(0), . . . , x(M)〉, which leads the BN from v(0) = v0 to
v(M) = vM . There may not exist such a sequence. In such a case, “none” should be
the output.

An example of BN-CONTROL is given in Figure 10.3. In this example, v0 =
[0, 0, 0] and vM = [0, 1, 1] are given as an input (along with BN), where M = 3.
Then, the following is computed as a desired control sequence:

〈x(0) = [0, 1], x(1) = [0, 1], x(2) = [1, 1], x(3) = [0, 0]〉,

where x(3) is not relevant.

10.4.2 Dynamic Programming Algorithms for BN-CONTROL

In this subsection, we review two dynamic programming algorithms: one is a simpli-
fied version of the algorithm for PBNs [4], the other one is developed for BNs with
tree structures. The former one can be applied to all types of BNs but takes exponential
time. The latter one works in polynomial time but can only be applied to BNs having
tree structures.

First, we review the former one [4]. We use a table D[a1, . . . , an, t], where each
entry takes either 0 or 1. Here, D[a1, . . . , an, t] takes 1 if there exists a control
sequence 〈x(t), . . . , x(M)〉, which leads to the desired state vM beginning from the
state a = [a1, . . . , an] at time t. This table is computed from t = M to t = 0 by using
the following procedure:

D[a1, . . . , an, M] =
{

1, if [a1, . . . , an] = vM,

0, otherwise,

D[a1, . . . , an, t − 1] =

⎧⎪⎨
⎪⎩

1, if there exists (b, x) such that D[b1, . . . , bn, t] = 1

and b = f(a, x),

0, otherwise,

where b = [b1, . . . , bn]. Then, there exists a desired control sequence if and only
if D[a1, . . . , an, 0] = 1 holds for a = v0. Once the table is constructed, a desired
control sequence can be computed using the the standard traceback technique in
dynamic programming.
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In this method, the size of table D[a1, . . . , an, t] is clearly O(M · 2n). Moreover,
we should examine pairs of O(2n) internal states and O(2m) external states for each
time t. Thus, it requires O(M · 2n+m) time, excluding the time for calculation of
Boolean functions. Therefore, this algorithm is an exponential time algorithm.

Next, we review the latter one [21]. This algorithm can only be applied to BNs,
in which the network has a tree structure (i.e., G(V, E) is connected and there is no
cycle). Since the algorithm is a bit complicated, we show here a simple algorithm for
the case in which the network has a rooted tree structure (i.e., all paths are directed
from leaves to the root). Although dynamic programming is also used here, it is used
in a significantly different way from the above.

We define a table S[vi, t, b] as below, where vi is either an internal node or an
external node in a BN, t is a time step, and b is a Boolean value (i.e., 0 or 1). Here,
S[vi, t, b] takes 1 if there exists a control sequence (up to time t) that makes vi(t) = b.

S[vi, t, 1] =
{

1, if there exists 〈x(0), . . . , x(t)〉 such that vi(t) = 1,

0, otherwise.

S[vi, t, 0] =
{

1, if there exists 〈x(0), . . . , x(t)〉 such that vi(t) = 0,

0, otherwise.

Then, S[vi, t, 1] can be computed by the following dynamic programming procedure.

S[vi, t + 1, 1] =

⎧⎪⎨
⎪⎩

1, if there exists [bi1 , . . . , bik ] such that fi(bi1 , . . . , bik ) = 1

holds and S[vij , t, bij ] = 1 holds for all j = 1, . . . , k,

0, otherwise.

S[vi, t, 0] can be computed in a similar way. It should be noted that each leaf is
either a constant node (i.e., an internal node with no incoming edges) or an external
node. For a constant node, either S[vi, t, 1] = 1 and S[vi, t, 0] = 0 hold for all t, or
S[vi, t, 1] = 0 and S[vi, t, 0] = 1 hold for all t. For an external node, S[vi, t, 1] = 1
and S[vi, t, 0] = 1 hold for all t. Since the size of table S[vi, t, b] is O((n+m)M), this
dynamic programming algorithm works in polynomial time, where we assume that the
value of each Boolean function can be computed in polynomial time. A desired control
sequence can also be obtained from the table in polynomial time using the traceback
technique. In order to extend this algorithm to BNs with general tree structures, other
procedures are required. Since these procedures are a bit complicated, we omit details.
Interested readers are referred to Akutsu et al. [21].

10.4.3 NP-hardness Results on BN-CONTROL

We have shown two dynamic programming algorithms for BN-CONTROL. However,
the general version takes exponential time and can only be applied to small size BNs
(e.g., BNs with at most 20–30 nodes). Therefore, it is reasonable to ask whether or not
there exists a polynomial time algorithm. However, we have shown that the problem
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x1 ⁄ x2 ⁄ x3 x1 ⁄ x2 ⁄ x4 x1 ⁄ x3 ⁄ x4

x4x3x2x1

v2v1 v3

Figure 10.4 Example of reduction from 3SAT to BN-CONTROL.

is NP-hard [21], which means it is impossible (under the assumption of P /= NP) to
develop a polynomial time algorithm for the general case.

The proof is done by using a simple reduction from 3SAT to BN-CONTROL.
Let y1, . . . , yN be Boolean variables (i.e., 0–1 variables). Let c1, . . . , cL be a set
of clauses over y1, . . . , yN , where each clause is a disjunction (logical OR) of at
most three literals. Then, 3SAT is a problem of asking whether or not there exists an
assignment of 0–1 values to y1, . . . , yN , which satisfies all the clauses (i.e., the values
of all clauses are 1).

From an instance of 3SAT, we construct a BN as follows (see also Figure 10.4).
We let the set of nodes V = {v1, . . . , vL, x1, . . . , xN}, where each vi corresponds to
ci and each xj corresponds to yj . Suppose that fi(yi1 , . . . , yi3 ) is a Boolean function
assigned to ci in 3SAT. Then, we assign fi(xi1 , . . . , xi3 ) to vi in the BN. Finally,
we let M = 1, v0 = [0, 0, . . . , 0], and vM = [1, 1, . . . , 1]. For example, an instance
of 3SAT {y1 ∨ y2 ∨ y3, y1 ∨ y2 ∨ y4, y1 ∨ y3 ∨ y4} is transformed into the instance
of BN-CONTROL shown in Figure 10.4. Then, it is easy to see that the above is a
polynomial time reduction, which completes the proof.

It is also shown in Akutsu et al. [21] that the control problem remains NP-hard
even for BNs having very restricted network structures. In particular, it is shown
that it remains NP-hard if the network contains only one control node and all the
nodes are OR or AND nodes (i.e., there is no negative control). However, it is unclear
whether the control problem is NP-hard or can be solved in polynomial time if a
BN contains a fixed number of directed cycles or loops (it is unclear even for the
case of two cycles). Deciding the complexity of such a special case is left as an open
problem.

Although we have shown negative results, NP-hardness does not necessarily mean
that we cannot develop algorithms, which work efficiently in most practical cases.
Recently, Langmund and Jha proposed a method using techniques from the field
of model checking and applied it to a BN model of embryogenesis in Drosophila
melanogaster with 15,360 Boolean variables [22]. Such an approach might be useful
and thus should be studied further.
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10.5 PROBABILISTIC BOOLEAN NETWORK

In a BN, one regulation rule (one Boolean function) is assigned to each node, and
thus transition from v(t) to v(t + 1) occurs deterministically. However, real genetic
networks do not necessarily work deterministically. It is reasonable to assume that real
genetic networks work stochastically by means of the effects of noise and elements
other than genes. To introduce noise into a BN, the noisy Boolean network was
proposed in Akutsu et al. [23]. Soon after, PBN was introduced by Shmulevich et al.
[3], and since many studies have been done on PBNs [24]. In this section, we briefly
review the definition of PBN.

PBN is an extension of BN. The difference between BN and PBN is only that
in a PBN, for each vertex vi, instead of having only one Boolean function, there
are a number of Boolean functions (predictor functions) f

(i)
j (j = 1, 2, . . . , l(i)) to be

chosen for determining the state of gene vi. The probability of choosing f
(i)
j is c

(i)
j ,

where c
(i)
j should satisfy the following:

0 ≤ c
(i)
j ≤ 1 and

l(i)∑
j=1

c
(i)
j = 1 for i = 1, 2, . . . , n.

Let fj be the jth possible realization,

fj = (f (1)
j1

, f
(2)
j2

, . . . , f
(n)
jn

), 1 ≤ ji ≤ l(i), i = 1, 2, . . . , n.

The probability of choosing such a realization in an independent PBN (the selection
of the Boolean function for each gene is independent) is given by

pj =
n∏

i=1

c
(i)
ji

, j = 1, 2, . . . , N,

where N =∏n
i=1 l(i) is the maximum possible number of different realizations of

BNs.
An example of PBN is given in Figure 10.5. Suppose that GAP of PBN at time

t is [0, 0, 0]. If (f (1)
1 , f

(2)
1 , f

(3)
1 ) is selected with probability 0.8× 0.7 = 0.56, GAP

at time t + 1 is still [0, 0, 0]. Similarly, if (f (1)
1 , f

(2)
2 , f

(3)
1 ) is selected with proba-

bility 0.8× 0.3 = 0.24, GAP at time t + 1 is still [0, 0, 0]. On the other hand, if
(f (1)

2 , f
(2)
1 , f

(3)
1 ) is selected with probability 0.2× 0.7 = 0.14 or (f (1)

2 , f
(2)
2 , f

(3)
1 ) is

selected with probability 0.2× 0.3 = 0.06, GAP at time t + 1 becomes [1, 0, 0].
Therefore, we have the following transition probabilities:

Prob(v(t + 1) = [0, 0, 0] | v(t) = [0, 0, 0]) = 0.8,

Prob(v(t + 1) = [1, 0, 0] | v(t) = [0, 0, 0]) = 0.2,
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v3(t+1) = v1(t) ∧ v2(t)

Boolean function Probability

v1(t+1) = v2(t)

v3(t)v2(t+1) = v1(t) ∧

0.8

0.2

0.7

0.3

1.0

v1(t+1) = v2(t)

v2(t+1) = v3(t)

v2 v3

v1

f (1)
1

f (1)
2

f (2)
1

f (2)
2

f (3)
1

Figure 10.5 An example of PBN.

where the probabilities of the other transitions from [0, 0, 0] are 0. For another ex-
ample, the (nonzero) transition probabilities from [0, 0, 1] are as follows:

Prob(v(t + 1) = [0, 0, 0] | v(t) = [0, 0, 1]) = 0.56,

Prob(v(t + 1) = [0, 1, 0] | v(t) = [0, 0, 1]) = 0.24,

Prob(v(t + 1) = [1, 0, 0] | v(t) = [0, 0, 1]) = 0.14,

Prob(v(t + 1) = [1, 1, 0] | v(t) = [0, 0, 1]) = 0.06.

The transition probabilities of a PBN can be represented by using 2n × 2n matrix
A. For each a = [a1, . . . , an] ∈ {0, 1}n, let

id(a) = 2n−1an + 2n−2an−1 + · · · + 2a2 + a1 + 1.

Then, A is defined by

Aij = Prob(v(t + 1) = b | v(t) = a),
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where i = id(b) and j = id(a). For example, the transition matrix of the PBN of
Figure 10.5 is as follows:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.8 0.56 0.2 0.14 0 0 0.06 0.14

0 0 0 0 0.24 0.56 0 0

0 0.24 0 0.06 0 0 0.14 0.06

0 0 0 0 0.56 0.24 0 0

0.2 0.14 0.8 0.56 0 0 0.24 0.56

0 0 0 0 0.06 0.14 0 0

0 0.06 0 0.24 0 0 0.56 0.24

0 0 0 0 0.14 0.06 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

For example, the first column of this matrix represents the transition probabilities from
[0, 0, 0]. The second column represents the transition probabilities from [0, 0, 1]. As
seen from this matrix, the dynamics of a PBN can be understood in the context of a
standard Markov chain. Thus, the techniques developed in the field of Markov chain
can be applied to PBNs, as explained in the following sections.

10.6 COMPUTATION OF STEADY STATES OF PBN

10.6.1 Exact Computation of PBN-STEADY

A PBN is characterized by its steady-state distribution. To compute this probability
distribution, an efficient matrix-based method has been developed in Zhang et al. [25].
The method can be used to analyze the sensitivity of the steady-state distribution in a
PBN to the change of input genes, connections between genes, and Boolean functions.
It is a matrix-based method (a deterministic method) that can solve the steady-state
probability distribution more accurately than Markov chain Monte-Carlo (MCMC)
method (a probabilistic method). In fact, an MCMC method has been proposed in
Shmulevich et al. [26] to estimate the steady-state distribution of a PBN. In the
MCMC method, it regards a PBN as a Markov chain. Then, by simulating the un-
derlying Markov chain for a sufficiently long time (in steady state), one can get the
approximation of the steady state probability distribution. It can be successfully used
only if we are sufficiently confident that the system has evolved to its steady state.

The main idea of the matrix-based method is two-fold. The method consists of
two steps: an efficient method for generating the transition probability matrix of the
underlying PBN and the power method for computing the steady-state probability dis-
tribution. To generate the transition probability matrix A efficiently, one has to take
advantage of the sparsity of the matrix. Given a state i, if a specific Boolean function
can lead it to a state j, then Aji will have a value corresponding to the probability of
this BN. If another BN also can lead i to j, then the probability will be greater by the
probability corresponding to the BN. When comparing to the method in Shmulevich
et al. [3], which has a complexity of about O(N22n), the proposed matrix-based
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method is of O(N2n). Once the transition probability matrix is generated to solve
for the steady state distribution of a PBN, an iterative method, the power method,
is employed for this duty. Actually, power method is used for solving the largest
eigenvalue in modulus (the dominant eigenvalue) and its corresponding eigenvector
of a square matrix. We remark that if the underlying Markov chain of the PBN is
irreducible, then the maximum eigenvalue of the transition probability matrix is one
and the modulus of the other eigenvalues are less than one. Moreover, the eigenvector
corresponding to the maximum eigenvalue is the steady state distribution vector. In
the power method, given an initial vector x(0), one has to compute x(k) = Ax(k−1) until
‖x(k) − x(k−1)‖∞ < ε satisfying some given tolerance ε. Here, x(k) is the kh approxi-
mate of the steady state distribution. It is to be noted x(k) is not an n-dimensional 0–1
vector, but a 2n-dimensional real vector. The main computational cost of the power
method comes from the matrix–vector multiplications. The convergence rate of the
power method depends on the ratio of |λ2/λ1|, where λ1 and λ2 are, respectively, the
largest and the second largest eigenvalue of the matrix A.

10.6.2 Approximate Computation of PBN-STEADY

The problem of computing the steady-state distribution of a PBN is a problem of
huge size when the number of genes n increases. Ching et al. [27] an proposed
approximation method for computing the steady-state distribution of a PBN based
on neglecting some BNs with very small probabilities during the construction of the
transition probability matrix. One actually observes that in many realizations of a
PBN, a large number of BNs have very small chance of being chosen. In fact, this
was shown mathematically in Ching et al. [27] under some reasonable assumptions.
Therefore, the proposed approximation method is to consider only those BNs with
probability greater than a given threshold. Suppose the steady-state probability vector
of the original transition matrix Ãx = x is X. There are n0 Boolean networks being
removed whose corresponding transition matrices are (A1, A2, . . . , An0 ) and their
probability of being chosen are given by p1, p2, . . . , pn0 , respectively. Then, after
the removal of these n0 Boolean networks and making a normalization, one can obtain
a perturbed transition probability matrix Â. Suppose that the corresponding steady
state distribution vector satisfying the linear system Âx = x is X̂, then it is shown in
Ching et al. [27] that

E
(‖ÃX̂− X̂‖∞

)
< (p1 + p2 + · · · + pn0 )(2+ 2n)‖X̂‖∞.

If ‖X‖∞ is equal to or very close to ‖X̂‖∞, one can see

E

(‖ÃX̂− X̂‖∞
‖X‖∞

)
< (p1 + p2 + · · · + pn0 )(2+ 2n).

Here, ||X||∞ = maxi{|Xi|}. Numerical experiments in Ching et al. [27] indicate that
the approximation method is efficient and effective. Moreover, the approximation
method can be extended to the case of context-sensitive PBN.
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10.7 CONTROL OF PROBABILISTIC BOOLEAN NETWORKS

In this section, we review the control problem and methods on PBN introduced in
Datta et al. [4].

In BN-CONTROL, we introduced external nodes into the standard BN. For control
of PBN (PBN-CONTROL), we generalize the concept of external nodes. We assume
that the transition matrix depends on m bit control inputs x ∈ {0, 1}m, and the matrix
is represented as A(x).

As in the case of BN-CONTROL, we assume that the initial state v(0) is given.
However, instead of considering only one desired state, we consider the cost of the
final state. We use CM(v) to denote the cost of GAP v at time t = M. Furthermore, we
consider the cost of application of control x to GAP v at time t, which is is denoted by
Ct(v, x). Then, the total cost for control sequence X = 〈x(0), x(1), · · · , x(M − 1)〉 is
defined by

JX(v(0)) = E

[
M−1∑
t=0

Ct(v(t), x(t)) + CM(v(M))

]
,

where E[· · ·] means the expected cost when PBN transits according to the transition
probabilities given by A(x). Then, PBN-CONTROL is defined as a problem of finding
a control sequence X that minimizes JX(v(0)).

10.7.1 Dynamic Programming Algorithm for PBN-CONTROL

As in BN-CONTROL, PBN-CONTROL can be solved by using dynamic programm-
ing [4]. In order to apply dynamic programming, we need to define a table. Here, we
define J∗t (v) to be the minimum cost of the optimal control sequence, in which PBN
starts from GAP v at time t. Then, J∗t (v) is a table of size 2n × (M + 1) because there
exist 2n possible GAPs. The elements of the table are filled from t = M to t = 0, and
the desired minimum cost is given by J∗t (v(0)).

For the case of t = M, the following clearly holds:

J∗M = CM(v).

Next, we assume that we have already obtained the minimum cost J∗t+1(u) beginning
from GAP u at time t + 1. Then, it is not difficult to see that J∗t (v) can be computed
by:

J∗t (v) = min
x

E
[
Ct(v, x)+ J∗t+1(u)

]

= min
x

⎡
⎣Ct(v, x)+

2n∑
j=1

Aij(x(t)) · J∗t+1(u)

⎤
⎦ ,
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where i = id(u), j = id(v), and the minimum is taken over x ∈ {0, 1}m. Once this
table is constructed, we can obtain an optimal control sequence by applying the
traceback technique.

Datta et al. demonstrated the usefulness of this dynamic programming algorithm
by means of application to simulation of a small network including WNT5A gene,
which is known to be related to Melanoma [4].

10.7.2 Variants of PBN-CONTROL

Dougherty et al. have proposed several extensions of PBN-CONTROL along with
their algorithms. The major extensions are as follows.

• Imperfect information case [17]. In PBN-CONTROL, it is assumed that states
of all genes are available. However, in many real cases, states of only a limited
number of genes are available. Thus, Datta et al. proposed a control strategy that
can be used when perfect information about states of genes is not available.

• Context sensitive PBN [19]. In a PBN, regulation rules change at every time step.
However, it is not plausible that regulation rules change so frequently. Therefore,
PBN is extended to the context-sensitive PBN, in which change of regulation
rules only occurs with probability q. Besides, in order to cope with noise, it is
also assumed that there is a random gene perturbation at each time for each node
with probability p. Pal et al. gave a control strategy for this extension of PBN.

• Infinite horizon control [20]. In PBN-CONTROL, we considered finite horizon
control: The target time step is given in advance and the scores for short periods
are taken into account. However, it may be more appropriate in some cases to
consider long range behavior of cells. Therefore, Pal et al. formulated the infinite
horizon control of PBNs and proposed some methods to solve the problem.

• Application of Q-learning [18]. As mentioned before, almost all of the methods
for control of general BNs and PBNs take exponential time. Furthermore, control
problems have been proven to be NP-hard. However, we still need efficient
methods. Faryabi et al. applied Q-learning to find a sequence of control actions.
Here, Q-learning is a reinforcement learning method. Their proposed method
has two advantages: (1) the method has a polynomial update time and (2) the
method is model-free, that is, it is not needed to give A(x) in advance. However,
it seems that an exponential number of samples are needed to obtain meaningful
results.

We have also developed variants of PBN-CONTROL as below.

10.7.2.1 Integer Programming Model for Control of PBNs Ng et al. [28]
proposed a discrete linear control model taking into considerations the following
network dynamics:

x(k + 1) = αkAx(k)+ βkBu(k). (10.1)
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Here, x(k) is the state probability distribution at time k and is a 2n-dimensional real
vector. The matrix A is the one-step transition probability matrix for representing the
network dynamics. The matrix B is the control transition matrix. The two parameters
αk and βk are nonnegative, such that αk + βk = 1 and βk represents the intervention
strength of the control in the network. The vector u(k) is the control vector on the
states, with ui(k), i = 1, 2, . . . , m taking on the binary values 0 or 1. It can be set
in each column to represent the transition from one specific state to another on a
particular gene. Through the control matrix B, the controls are effectively transferred
to different possible states in the captured PBN. We note that ui(k) = 1 means that
the active control is applied at the time step k, while ui(k) = 0 means that the control
is not applied. If there are m possible controls at each time step, then the matrix B

is of the size 2n ×m. Starting from the initial state probability distribution x(0), one
may apply the controls u(0), u(1), . . . , u(T − 1) to drive the probability distribution
of the genetic network to some desirable state probability distribution at each time
step in a period of T . The discrete control problem can be formulated as an integer
programming (IP) model and be efficiently solved by LINGO software.

10.7.2.2 Control of PBNs with Hard Constraints A control model for PBNs
with hard constraints has been proposed in Ching et al. [29]. The control model differs
from those mentioned above in the assumption that only a finite number of controls
or interventions are allowed. The control problem can be considered as a discrete
time control problem. Beginning with an initial probability distribution x0, the PBN
evolves according to two possible transition probability matrices A0 and A1. With-
out any external control, it is assumed that the PBN evolves according to a fixed
transition probability matrix A0. However, when a control is applied, the PBN will
then evolve according to another transition probability matrix A1 with more favorable
steady states, but it will return back to A0 again when no more control is applied to
the network. The maximum number of controls that can be applied during the finite
investigation period T (finite horizon) is K where K ≤ T . The objective here is to
find an optimal control policy such that state of the network is close to a target state
vector z. The vector z can be a unit vector (a desirable state) or a probability distribu-
tion (a weighted average of desirable states). To facilitate our discussion, we define
the following state probability distribution vectors x(ikik−1 · · · i1) = Pik · · ·Pi1x0 to
represent all the possible network state probability distribution vectors up to time k.
Here, i1, . . . , ik ∈ {0, 1} and

∑k
j=1 ij ≤ K and ikik−1 · · · i1 is a Boolean string

of size k. We then define

U(k) =
⎧⎨
⎩x(ikik−1 . . . i1) : i1, . . . , ik ∈ {0, 1} and

k∑
j=1

ij ≤ K

⎫⎬
⎭

to be the set containing all the possible state probability vectors up to time k. Two
mathematical formulations for the optimal control problem are proposed. The first
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one is to minimize the terminal distance with the target vector z, that is,

min
x(iT iT−1···i1)∈U(T )

||x(iT iT−1 · · · i1)− z||2. (10.2)

The second one is to minimize the overall average of the distances of the state vectors
x(it . . . i1) (t = 1, 2, . . . , T ) to the target vector z, that is,

min
x(iT iT−1···i1)∈U(T )

1

T

T∑
t=1

||x(it · · · i1)− z||2. (10.3)

Both problems can be solved by using the principle of dynamic programming.

10.8 CONCLUSION

In this chapter, we have overviewed two fundamental problems, analysis of steady
states, and control, on two basic models (BN and PBN) of genetic networks, with
focus on the authors’ works. Although BNs and PBNs may be too simple as a model
of genetic networks, some of the results are meaningful. At least, the negative NP-
hardness results should still hold for more general models. Since biological networks
are considered to contain highly nonlinear subnetworks like BNs and PBNs, the
negative results suggest difficulty of computation of steady states and optimal control
actions for real networks.

In order to apply the reviewed methods to real biological networks, there are
several challenges. One of the important challenges is to break the barrier of time
complexity. Almost all of the reviewed algorithms take exponential time and thus can
only be applied to small size subnetworks. Besides, all the problems are NP-hard.
However, NP-hardness does not necessarily mean that we cannot develop efficient
algorithms for real instances. Thus, the development of practically fast algorithms is
left as an important future work.

Another important challenge is to combine BNs and/or PBNs with continuous lin-
ear and/or nonlinear models. In BNs and PBNs, gene expression levels are simplified
into either 0 or 1. Of course, it seems not difficult to extend models and algorithms,
so that a fixed number of gene expression levels are treated. However, such discrete
models would still be insufficient. It seems that negative feedback loops without os-
cillation, which are quite popular in linear systems and real biological subnetworks,
are hardly expressed by using such discrete models as BNs and PBNs. It also seems
that some parts of biological systems are well-represented by continuous models,
and some other parts are well-represented by discrete models. Besides, rigorous the-
ories and useful methods have been developed in the fields of linear control and non-
linear control. Therefore, development of a hybrid mathematical model that combines
BN/PBN with continuous models and development of analysis and control methods
on such a model are important challenges, which may lead to the ultimate goal of
computational systems biology.
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11.1 INTRODUCTION TO PROBABILISTIC METHODS

Evolutionary forces such as mutation, drift, and to a certain extent selection are
stochastic in their nature. It is thus not surprising that probabilistic models of sequence
evolution quickly became the workhorse of molecular evolution research. The long,
ongoing effort to accurately model sequence evolution stems from two different
needs. The first is that of evolutionary biologists: Models of sequence evolution allow
us to test evolutionary hypotheses and to reconstruct phylogenetic trees and ancestral
sequences [1–3]. The second is that of bioinformaticians and system biologists—
probabilistic/evolutionary methods are critical components in numerous applications.
For example, the construction of similarity networks is based upon all-against-all
homology searches. Each pairwise evaluation is done using tools such as Blast
and Blat [4, 5], which rely on evolutionary models. Additional examples include
gene finding and genome annotation [6], alignment algorithms [7, 8], detecting
genomic regions of high and low conservation [9, 10], prediction of transcription-
factor binding sites [11], function prediction [12], and protein networks analysis
[13, 14]. In this chapter, we describe how probabilistic models are used to study
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substitution rates, that is, the rate at which mutations become fixed in the population.
We focus on the variation of substitution rates among sequence positions (spatial
variation). Our goal is to provide the needed mathematical and conceptual aspects of
modeling rate variation in sequence evolution.

11.2 SEQUENCE EVOLUTION IS DESCRIBED USING
MARKOV CHAINS

We start with a very simplified model of sequence evolution through which we intro-
duce basic principles of probabilistic evolutionary models. After describing the model,
we discuss its shortcomings as the motivation for the use of more complicated, yet
more realistic models.

Consider a sequence of length 100 base pairs. The model assumes that each
nucleotide is equally likely to appear, and that all substitutions from one state
to another have the same fixation probabilities. Specifically, we assume that
the nucleotide at each position is randomly drawn with equal probabilities:
πA = πG = πC = πT = 1/4. Once the first sequence is drawn, we let it evolve
through generations. In any given generation, each nucleotide can change with a
very small probability p. If a change occurs, the new nucleotide is drawn with
equal probabilities (1/3). Although this model is clearly oversimplified, various
questions regarding the evolutionary process can be addressed. For example, does
the sequence composition change over time (what will be the character distribution
after many generations)? What is the substitution rate (what will be the distribution
of the number of changes per generation per position)? What is the probability that
nucleotide A is replaced with nucleotide C after t generations? Fortunately, these
computational questions can be answered, once we describe the evolutionary process
at each position as a discrete Markov chain [15], summarized by the following matrix:

P =

A C G T

A

C

G

T

⎡
⎢⎢⎢⎣

1− p p/3 p/3 p/3

p/3 1− p p/3 p/3

p/3 p/3 1− p p/3

p/3 p/3 p/3 1− p

⎤
⎥⎥⎥⎦ .

The term Pij(t) denotes the probability that character i will end up being character
j after t generations. From the theory of Markov chains, this value is [Pt]ij . that is,
the i, j entry in matrix P , which is raised to the power of t. From the equality of
the transition probabilities among all characters, it is clear that after a long time, the
average nucleotide frequency of each nucleotide remains 1/4 (this is formally termed
the stationary distribution). Finally, the number of generations until a substitution
occurs (the waiting time of the process) is geometrically distributed with parameter p.

Our first extension of this model is to switch from a discrete time scale (measured
in generations) to a continuous time scale (measured in years). This is biologically
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reasonable because generations are seldom synchronized nor do they have a fixed
length. This generalization is standard in Markov process theory—instead of assuming
that the waiting times are geometrically distributed, we now assume that they are
exponentially distributed. Such an assumption leads to a continuous time Markov
process. The heart of the model is the instantaneous rate matrix Q. In this matrix, the
diagonal values are related to the waiting time of each character, that is, the waiting
time of character i is exponentially distributed with parameter −qii (where qij is the
entry of row i and column j of the Q matrix). Given that a substitution has occurred,
the probability that i changes to j is given by −qij/qii. Furthermore, the number of
substitutions from character i to character j in a small time interval dt is qij × dt. For
the model described above, the Q matrix is:

Q =

A C G T

A

C

G

T

⎡
⎢⎢⎢⎣
−3α α α α

α −3α α α

α α −3α α

α α α −3α

⎤
⎥⎥⎥⎦ .

In this matrix, α is referred to as the instantaneous rate between any two states.
Higher values of α specify a process in which more substitutions occur in each
time interval. The substitution probabilities can be obtained by exponentiating the
Q matrix.

Specifically, Pij(t), the probability that character i will end up being character j

after t time units equals [eQt]ij . The model described by the matrix Q above is termed
the JC model after its developers [16], who also provided explicit formulae for Pij(t),
eliminating the need for matrix exponentiations:

Pij(t) = 1− e−4αt

4
Pii(t) = 1+ 3e−4αt

4
. (11.1)

An important characteristic of the JC model is that it is time reversible: πxPxy(t) =
πyPyx(t). Explicitly, the probability of the event “start with x and evolve to y” is
equal to the probability of the event “start with y and evolve to x.” This implies that
πxQxy = πyQyx. Note, however, that time reversibility does not impose the Q matrix
to be symmetric.

For any continuous time Markov process, the expected number of character
transitions in t time units is the summation over all nondiagonal entries:

d =
∑

i

∑
j /= i

πiQijt. (11.2)

For the JC model, this is simply: d = 3αt.
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11.2.1 Estimating Pairwise Distances

We next show how the JC model is used to estimate the distance between two given
sequences. Consider the sequence ACCA evolving through time to ACCG. We know
that at least one substitution has occurred, but if we consider backward and multiple
substitutions, it is possible that various other substitutions have occurred. Using like-
lihood calculations, we can estimate the number of substitutions that have occurred.
The likelihood of observing the two sequences above is the probability of starting with
ACCA multiplied by the replacement probabilities. Assuming site independence, the
likelihood is

L(t, α) = πAPAA(t)× πCPCC(t)× πCPCC(t)× πAPAG(t), (11.3)

L(t, α) =
(

1

4

)4 (1− e−4αt

4

)(
1+ 3e−4αt

4

)3

. (11.4)

As α and t are usually unknown, one can estimate their values by maximizing the
likelihood function. Since the two parameters always appear in the form of α× t, it
is clear that one cannot evaluate each parameter separately. In fact, in all evolutionary
models, the parameters of the rate matrix Q and time appear as such multiplications.
However, if the product α× t is estimated, d above can thus be estimated. The α

parameter is usually set to a fixed value of 1/3 and by doing so d = 3αt = t, and thus
optimizing t is equivalent to optimizing d. In other words, in this setting, one can
think of t not as time measured in years, but rather as evolutionary time measured in
substitutions per site. In fact, for all evolutionary models, d is always set equal to t

and the equation above becomes:

d =
∑

i

∑
j /= i

πiqijt =
∑

i

∑
j /= i

πiqijd = d
∑

i

∑
j /= i

πiqij (11.5)

⇒
∑

i

∑
j /= i

πiqij = 1.

Thus, by normalizing Q so that the average instantaneous rate is one, it is ensured
that in a branch of length t, we expect that the average number of substitutions across
all sites will also be t.

For the JC model, a closed-form formula for the distance d that maximizes the
likelihood can be obtained [17]:

d̂ = −3

4
ln

(
1− 4

3
p̂

)
, (11.6)

where p̂ is the proportion of sites, which differ between the two compared sequences.
In the example above, p̂ = 0.25 and thus d̂ ∼= 0.3. Notably, for more complicated
models, no such closed-form formula exists, and the distance estimate is obtained by
numerically maximizing the likelihood function.
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Figure 11.1 A rooted tree (left) and an unrooted tree (right) and their associated branch lengths.
The assignment for one position of the sequence is shown.

11.2.2 Calculating the Likelihood of a Tree

The JC model, although an extreme oversimplification of the evolutionary process,
is already very powerful. For example, given a set of sequences from various
organisms, one can estimate the number of substitutions that have occurred between
each sequence pair. Given these distance estimates, a phylogenetic tree can easily be
reconstructed, for example, using the neighbor joining (NJ) method [18].

Given the model, one can compute the likelihood of a given tree, that is, the
probability of observing the sequence data given the tree topology (T ), the branch
lengths (t), and the model (M). The likelihood for the rooted tree in Figure 11.1 is:

P(data | T, t, M)

=
∑

x,y,z={ACGT }
πxPx→y(t5)Px→z(t6)Py→T (t1)Py→T (t2)Pz→G(t3)Pz→A(t4).

(11.7)

This is the likelihood of a single position. The likelihood of the entire dataset is
achieved by assuming that all positions are conditionally independent:

P(data | T, t, M) =
N∏

i=1

(Di | T, t, M), (11.8)

N is the sequence length and Di are the data represented by column i of the alignment.
Using this computation, we can go over many trees and rank them according to
their likelihood. The maximum-likelihood (ML) tree reconstruction method chooses
the tree with the highest likelihood score. In practice, the number of possible trees
is enormous, and thus, available tree reconstruction programs use heuristic search
strategies, rather than calculate the likelihood of all possible trees [19].

11.2.2.1 Rooted versus Unrooted Trees When constructing phylogenetic
trees, we would ultimately like to obtain a rooted tree, a tree in which one node,
called the root, specifies the common ancestor of all sequences. In such a tree, the
directionality of time is defined. However, in most tree-reconstruction methods,
including those that employ likelihood computations, only unrooted trees can be
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obtained. When the likelihood is computed using a time-reversible model, the
position of the root does not affect the likelihood score.

For any time reversible model, the likelihood of the position shown in Figure 11.1
is:

P(data | T, t, M) = (11.9)

∑
x

∑
y

∑
z

πxPx→y(t5)Px→z(t6)Py→T (t1)Py→T (t2)Pz→G(t3)Pz→A(t4) =

∑
z

∑
y

πyPy→T (t1)Py→T (t2)Pz→G(t3)Pz→A(t4)
∑

x

Py→x(t5)Px→z(t6) =

∑
z

∑
y

πyPy→T (t1)Py→T (t2)Pz→G(t3)Pz→A(t4)Py→z(t5 + t6).

The second line is obtained from the reversibility property and the third line from
the Chapman–Kolmogorov equation (Pt1+t2 = Pt1Pt2 ). Thus, the likelihoods for the
rooted and unrooted trees are the same, where for the unrooted tree in Figure 11.1,
the likelihood is computed after the root is arbitrarily set to node y. Felsenstein [20]
developed an efficient postorder tree traversal algorithm to compute the likelihood of
an unrooted tree.

11.2.3 Extending the Basic Model

While the JC model paved the way to probabilistic analysis of sequence data, it as-
sumes biologically unrealistic assumptions, which may lead to erroneous conclusions:

(1) The substitutions probabilities as well as the initial character probabilities are
assumed to be identical for all character states.

(2) All positions are assumed to evolve under exactly the same process.

(3) All positions are assumed to evolve independently of each other.

A great deal of research was devoted to develop computationally feasible models,
which alleviate these unrealistic assumptions. Regarding the first assumption, the in-
troduction of several parameters in the substitution matrix resulted in a nested series of
models such as the K2P model that assumes unequal rates of transition and transver-
sion [21], the F81 model that allows any value for the nucleotide frequencies [20] and
the most general time reversible model, GTR, in which a parameter is assumed for
each substitution type [22].

When analyzing amino acid sequences, there are 190 different types of substitu-
tions. If a parameter is assumed for each such substitution type, a large number of
parameters should be estimated afresh for each protein dataset analyzed. Estimating
such large number of parameters from a small dataset is likely to result in large errors
associated with each estimated parameter and in over fitting of the model to the data
[23]. For this reason, researchers have evaluated amino acid matrices from a large set
of aligned amino acid sequences (often, the entire protein sequence databank). Using
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these matrices, one can compute the likelihoods of a given multiple sequence align-
ment of protein sequences without optimizing any parameter of the Q matrix. The first
such empirical matrix was developed by Dayhoff et al. [24]. When more data became
available, updated matrices were computed, such as the JTT matrix [25] and the WAG
matrix [26]. Since mitochondrial and chloroplast proteins evolve under genetic codes
different from nuclear proteins, empirical amino acid substitution matrices were also
estimated for mitochondrial proteins [27] and for chloroplast proteins [28].

11.3 AMONG-SITE RATE VARIATION

When examining a multiple sequence alignment, such as that presented in Figure 11.2,
it is typical that some positions vary more than others. There are two explanations

Figure 11.2 Multiple sequence alignment and a phylogenetic tree of six lysozyme c sequences.
Data from Yang et al. [29].
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for this observation. The first is that these variations result from the stochastic nature
of amino acid substitutions. Meaning, all positions evolve under the same stochastic
process, but some positions experienced more substitutions than others simply by
chance. An alternative explanation is the existence of an additional layer of variation
caused by differences in the evolutionary process among positions. Two indications
favor the second explanation. The first is based on biological knowledge. It is widely
accepted that the intensity of purifying selection varies across protein positions. For
example, positions that are associated with the active site of enzymes are under strong
purifying selection compared to the remaining protein sites. These positions will
thus exhibit little sequence variation relative to the other positions among analyzed
sequences.

The second argument in favor of the second hypothesis is statistical in nature and
is illustrated here using the lysozyme c dataset (Figure 11.2(a)). For each of the 128
positions of the alignment, we counted the observed number of different character
states. In Table 11.1, we present the number of positions in which a single character
state is observed, the number of positions in which two character states are observed,
and so on. We next simulated sequences according to the JTT amino acid replacement
model, keeping the tree topology and branch lengths as in Figure 11.2(b). All positions
were simulated under the same evolutionary process, implying a homogenous rate
distribution among all positions (see below). The average and standard deviation of
the number of positions in the simulated alignments for which there are 1, . . . , 6
character states, out of 100 simulations runs, are also shown in Table 11.1. As can
be seen, there are large discrepancies between the observed and simulated patterns.
Since the simulations reflect our expectation from the model, it can be concluded that
the data and the model do not agree well.

The above arguments illustrate the inadequacy of the simple model, suggesting
that the assumption of homogenous stochastic process for all sites is unrealistic and
that variation of the stochastic process among sites must be taken into account. This
can be achieved by assuming that there are several types of sites, each evolving under

Table 11.1 Observed and simulated number of character states in the
lysozyme c dataset∗

Number of Simulated under Simulated under
character homogenous rate among-site rate
states Observed distribution variation model

1 46 33.9± 4.8 44.1± 5.3
2 44 56.7± 5.5 43.0± 5.3
3 29 30.4± 4.5 28.4± 4.9
4 8 6.4± 2.2 10.6± 3.3
5 1 0.6± 0.8 1.9± 1.4
6 0 0.03± 0.17 0.13± 0.37

∗ The quantile gamma discretization technique with four rate categories was used to model among site rate
variation (see section 4). The log-likelihood of the data under the homogenous model was –1044, and the
log-likelihood of the among-site rate variation was –1035.8, with an ML estimate of α = 1.3.
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a different stochastic process. Since our focus is on the variation in the number of
substitutions, we assume that these types differ in their waiting times. If process
A is identical to process B except that all waiting times of A are halved, then the
Q matrix of process A is simply twice the Q matrix of process B. Thus, sites are
characterized by Q matrices differing from each other up to a multiplication factor,
which is termed the evolutionary rate of the process. The most straightforward model
accounting for among-site rate variation is to assume that all sequence positions have
the same substitution matrix, Q, with each site characterized by its own evolutionary
rate. Thus, site i is characterized by the matrix Q× ri, where ri is the evolutionary rate
of site i. Recall that for a process M characterized by a rate matrix Q, Pij(t | M) =
[eQ×t]ij . Thus, for a site with a process M ′ characterized by an evolutionary rate
ri, the substitution probabilities become Pij(t | M ′) = [e(Q×ri)×t]ij = [eQ×(ri×t)]ij =
Pij(ri × t | M). This implies that when computing the likelihood of a site with a rate
r, instead of multiplying the Q matrix by r, the likelihood can be obtained simply by
multiplying all the branches by r and using the original Q. Since the branch lengths
are indicative of the average number of substitutions, this implies that a site with an
evolutionary rate of 2 experiences on average twice as many substitutions as a site
with an evolutionary rate of 1.

A common approach to model rate heterogeneity among sites is to assume that there
are K possible rate categories (r(1), . . . , r(K)) with associated probabilities (p(1), . . . ,

p(K)). The rates and their associated probabilities are collectively termed θ. The rate of
site i (ri) can be any one of these K possible rates, according to their associated prob-
abilities. Formally, a distribution � over the possible evolutionary rates is assumed,
and the rate ri is in fact a random variable drawn from �.

When computing the likelihood of position i, we usually do not know the actual
value of ri, and we thus need to consider all possible rate assignments:

P(Di | T, t, M, θ) =
K∑

k=1

p(k)P(Di | T, t, M, r(k)). (11.10)

Recall that in the homogenous rate model, we normalized Q so that the average num-
ber of substitutions along a branch of length t equals t (see Eq. (11.5)). This equality
still holds for heterogeneous rate models, but now, the average number of substitu-
tions along a branch of length t equals

∑K
k=1

∑
i

∑
i /= j πiqijr

(k)tp(k). Equating this
expression to t, we obtain:

K∑
k=1

∑
i

∑
i /= j

πiqijtr
(k)p(k) = t ⇒

K∑
k=1

r(k)p(k)
∑

i

∑
i /= j

πiqij = 1 ⇒ (11.11)

K∑
k=1

r(k)p(k) = 1.
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The third line is obtained from the second line because Q is normalized. We
conclude that in order for the branch lengths to indicate the average number of substi-
tutions per site, the weighted average over all rates, that is, the expected rate, must be 1.

11.4 DISTRIBUTION OF RATES ACROSS SITES

The model described above assumes that each site is assigned a specific rate from
a predefined rate distribution. The challenge is to find a distribution that balances
between the number of free parameters and its flexibility to model a range of datasets
that differ in their among-site rate variation pattern. One option is to assign each site
its own rate (r1, . . . , rN ). This model requires N − 1 parameters to be inferred (since
the average rate is constrained to equal 1). This is, however, a model very rich in
parameters. When so many parameters are inferred, there is a high probability that
the model overfits the data, unless a very large number of sequences are available
[30]. The error associated with each parameter is also very large in such cases.
Thus, it is desirable to search for a model with significantly less parameters, which
still captures the inherent variability of rates among sites. For example, one can a
priori assume the existence of three rate categories {r(1), r(2), r(3)} with associated
probabilities {p(1), p(2), p(3)}. In this case, θ = {r(1), r(2), r(3), p(1), p(2), p(3)}, and
the likelihood of the data can be computed using Eq. (11.10). In most cases, the
parameters are unknown and can be inferred using ML: θ = argmaxP(Di | T, t, M, θ).
Since

∑
i p

(i) = 1 and
∑

k p(k)r(k) = 1 , this requires optimizing four parameters
(or in general 2K − 2; K being the number of categories). While significantly fewer
parameters are inferred in this model, for small values of K, the model tends not to
represent the entire repertoire of rates, while for large values of K, there are many
parameters and the model tends to overfit the data. It is possible to reduce the number
of parameters by approximately half, by either fixing all rate probabilities to be
equal or to set the rates to fixed values and optimize only their probabilities. Susko
et al. [31] applied the latter with 101 rates in the range of [0, 10]. This variant still
estimates dozens of free parameters, which is usually justified only for extremely
large datasets. Fortunately, models were suggested in which a large repertoire of rates
are allowed, yet the number of parameters is relatively very small. These models
take advantage of classical continuous distributions.

11.4.1 The Gamma Distribution

Yang [32] suggested using the continuous gamma distribution to model among-site
rate variation. In this model, it is assumed that the rate at each site is independently
sampled from a gamma distribution. This distribution has two parameters: a shape
parameter, α, and a scale parameter, β. A variable R is gamma distributed, denoted
by R ∼ �(α, β), if its density function is

g(r; α, β) = βα

�(α)
e−βrrα−1. (11.12)
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Figure 11.3 The gamma distribution. The ˛ parameter specifies the distribution shape. When ˛

is close to zero, the distribution is L-shaped, whereas high ˛ values correspond to a bell-shaped
distribution.

The mean of the gamma distribution is α/β and the variance is α/β2. Since the mean
of the rate distribution should equal 1, β is fixed so that β = α. Hence, the shape
of the gamma distribution is determined by a single positive parameter, α, which
is indicative of rate variation. When α = 1, the gamma distribution reduces to the
exponential distribution with parameter 1. When α is higher than 1, the distribution is
bell-shaped suggesting little rate heterogeneity. In the case of α < 1, the distribution
is highly skewed and is L-shaped, which indicates high levels of rate variation. This
flexibility makes the distribution suitable for accommodating different levels of rate
variation in different datasets (Figure 11.3). To compute the likelihood of site i, Li,
under a continuous gamma distribution, the following expression is computed:

Li =
∫ ∞

0
P(Di | T × r)g(r; α, α)dr (11.13)

Here, T × r indicates a tree topology as in T , in which all branches are multiplied by
the factor r. The α parameter is optimized by maximizing the likelihood of the entire
dataset:

α = argmax
N∏

i=1

Li (11.14)

While it is possible to compute the likelihood under this continuous gamma distri-
bution for pairwise sequences [33], no polynomial algorithm is available to compute
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the likelihood of a tree (three or more sequences). In order to avoid this computa-
tional difficulty, the continuous gamma distribution is approximated by a discrete one.
Accordingly, the actual range of r(0,∞) is divided into C rate categories, such that the
integral in Eq. (11.13) is approximated by a weighted sum over a set of discrete rates:

Li �
C∑

j=1

P(Di | T, t, M, r(j))p(j), (11.15)

where (r(1), . . . , r(C)) are representative rates and (p(1), . . . , p(C)) are the correspond-
ing rate probabilities. These rates and probabilities should be chosen so as to approx-
imate the desired gamma distribution most accurately. Naturally, the more discrete
categories are used, the better the approximation will be. However, the computation
time increases linearly with the number of categories. The challenge is thus to use a
method that approximates the continuous distribution most accurately, yet uses as few
rate categories as possible. Several alternatives for this task are possible. We note that
in all approximations described below, only a single parameter, α, is optimized from
the data. Once α is set, the rates and their associated probabilities are determined
according to the numerical approximation procedure. The various approximation
techniques differ in this numerical procedure.

11.4.2 Numerical Approximation of the Continuous
Gamma Distribution

The discrete gamma distribution, as suggested by Yang [34], is by far the most widely
used method to account for among-site rate variation and is implemented in most
available phylogenetic programs. In this “Quantile” method, the rates are chosen
such that all categories have an equal weight of 1/K. Two alternatives for such a
discritization of the gamma distribution were suggested in Yang [34]. In the first
alternative, the mean of each category is used to represent all the rates within that
category. For a category i with boundaries a and b, the average rate is:

r(i) = K

∫ b

a

rg(r; α, α)dr. (11.16)

The inner boundaries (the boundaries besides 0 and ∞) are calculated as the
(1/K, 2/K , . . . , K − 1/K) quantiles of the gamma distribution. In the second alterna-
tive, the medians are used to represent each discrete rate category. In this case, the rep-
resentative rates, (r(1), . . . , r(K)) are calculated as the (1/2K, 3/2K, . . . , 2K − 1/2K)
quantiles of the gamma distribution. In this case, the rates have to be normalized so
that the average over all rates is 1. We note that Yang [34] recommended using the
mean rather than the median discretization method.

A second approximation was suggested by Felsenstein [30] and is based on the
generalized Laguerre quadrature technique. In this approach, both the rates and their
associated probabilities that give the best fit to the continuous distribution are searched



DISTRIBUTION OF RATES ACROSS SITES 269

for (unlike the quantile approximation, in which only optimal rates are determined).
For implementation details, see Mayrose et al. [35]. The quadrature method seems
to better approximate the continuous gamma distribution compared to the quantile
approximation, since the likelihood of the tree is less sensitive to the exact number
of rate categories. It, thus, seems that using the quadrature method can be more eco-
nomical in terms of the number of discrete categories used, which results in reduced
computation time.

In both discretization techniques detailed above, because the gamma distribution
depends on the α parameter, different values of α specify a different set of discretized
rates. Thus, the terms P(Di | T, t, M, r(j)) are recomputed over and over during the
process of α optimization, thus rendering it computationally expensive. Susko et al.
[31] devised an alternative procedure, in which the rate categories (r(1), . . . , r(K))
are set to predefined fixed values, and only their associated probabilities are
allowed to vary when different α values are considered during optimization. In this
approximation, the expensive computations of P(Di | T, t, M, r(j)) are computed
only once during optimization for all α values considered. Thus, for a fixed tree and
a fixed Q matrix, a larger number of rate categories can practically be used, resulting
in more accurate approximations.

Using the techniques to model rate variation described above, we can now evaluate,
using simulations, the fit of among-site rate variation models to the observed number
of character states observed in each position for the lysozyme c data. As can be seen in
Table 11.1, using a discrete gamma model provides a significant better fit to the data
compared with the homogeneous model. Moreover, to statistically compare between
the fits of the two models to the lysozyme c data, the corresponding log-likelihoods
are compared using the likelihood ratio test statistic (for details about model selection,
see Yang [3]). Using this test, the among-site rate variation model fits the lysozyme
c data significantly better than the homogeneous model (P value <10−4).

11.4.3 Alternative Rate Distributions

In a multiple sequence alignment, some sites are extremely conserved, showing no
variation across the entire set of sequences analyzed. If these sites are abundant, it
might be that the gamma distribution will either capture the rate of these slowly
evolving sites or the fast evolving sites, but not both. In other words, the gamma
distribution might not be flexible enough to capture the distribution of evolutionary
rates in real sequences. Susko et al. [31] devised a statistical test that evaluates the
fit of the gamma distribution to real sequence data. In five out of the 13 datasets
tested, the gamma distribution was rejected. Their analysis showed that the gamma
distribution mainly failed to fit positions evolving with high rates.

Inching toward more flexible rate distributions, Gu et al. [36] suggested the gamma
+ invariant model. In this model, the rate distribution is composed of a gamma
distribution, which is augmented with an additional rate category in which the rate
equals zero. The probability of this category is an additional free parameter estimated
from the data. Adding this parameter often significantly increases the fit of the model
to the data. Although the gamma + invariant model is intuitively very appealing, the
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estimates of the model parameters are highly sensitive to taxon sampling [37, 38]. In
addition, the high correlation between the proportion of the invariable sites and the
gamma shape parameter indicates model inadequacy [37].

Kosakovsky Pond and Frost [39] developed a hierarchical approach, which allows
generating rate distributions based on three parameters. In their method, a beta dis-
tribution (with two parameters) determines the quantiles (the boundaries of the rate
categories) of an underlying distribution (e.g., a one parameter gamma distribution).
The representative rate of each category is then computed as the posterior expecta-
tion of the underlying rate distribution in that interval. Notably, the two parameters
of the beta distribution only define the form of the discretization, while the form of
the underlying continuous distribution stays the same. This technique significantly
increases the flexibility of the underlying rate distribution, resulting in a better fit of
the model to real datasets.

We have previously suggested modeling the distribution of evolutionary rates by
a mixture of gamma distributions [35]. The models assume the existence of a few
gamma distributions, each with its own set of parameters. These parameters, as well
as the probability of each gamma distribution, are estimated using ML from the
data. By choosing the number of gamma components, a range of distributions with
growing expressiveness with corresponding increase in the number of parameters is
considered. The model can thus accommodate a multimodal rate distribution unlike
the gamma and the log-normal distributions that are always unimodal. The strength
in this approach is that when more data are available, more flexible rate distributions
can easily be obtained.

While the gamma distribution is by far the most commonly used, several other rate
distributions were suggested. The log-normal rate distribution was first suggested by
Olsen [40] for pairwise distances and was discussed in Felsenstein [30]. No large-
scale comparison was performed to test which of these two distributions better reflect
rate variation in sequence data. As stated in Felsenstein [30], in essence, any contin-
uous distribution on the interval (0,∞) may be appropriate to model among-site rate
variation, and the log normal and the gamma distributions are simply the two best
known distributions on this interval.

The approaches described above assume a specific underlying rate distribution,
from which the rate at each site is sampled. A different approach for modeling rate
variation among sites was suggested in Huelsenbeck and Suchard [41]. They have
developed a Bayesian nonparametric method in which sites are partitioned to rate
classes, that is, some sites are assigned to rate class 1, some to rate class 2, and so
on. The novelty in their method is that the sites are partitioned to rate classes not in
a deterministic way, but rather many possible partitions are considered, that is, the
partitioning is itself a random variable with a Dirichlet process prior. The posterior
distribution of rates, partitions, and other parameters are then inferred using a Markov
chain Monte Carlo (MCMC) approach.

Morozov et al. [42] have also developed a method to model among-site rate
variation without assuming an underlying rate distribution. In their method, either
Fourier or wavelet models are applied to account for among-site rate variation. They
have shown that using such a modeling approach improved the fit of the model to
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the data compared with the standard gamma approach. Clearly, more studies are
needed to elucidate how such models influence tree reconstruction and site-specific
rate estimation (see Section 11.5).

11.5 SITE-SPECIFIC RATE ESTIMATION

The heterogeneous rate models described above aimed at presenting a better descrip-
tion of the evolutionary process. These models were found to be an important com-
ponent when predicting functional sites and regions in DNA and protein sequences.
This task is achieved by estimating site-specific evolutionary rates. The assumption
here is that the degree to which a site is free to vary depends on its functional (and
structural) importance; a site that plays an essential role, such as the one within the
active site of an enzyme, is unlikely to change over evolutionary time and will have
a low evolutionary rate.

Detecting conserved regions in DNA and protein sequences is of central impor-
tance to various bioinformatics methods and is widely used to direct molecular biol-
ogy experiments. Examples include the detection of active sites [43], the detection
of splicing regulatory elements [44] and of promoters [45], and the prediction of
three-dimensional structures [46]. Previous approaches for detecting conserved evo-
lutionary regions were not based on probabilistic models, but rather on counting or
entropy techniques (reviewed in Valdar [47]). Most of these methods ignore the phy-
logenetic tree and do not allow any parameters to be learnt from the data analyzed,
thus implicitly making the unrealistic assumption that all sequence data evolve under
the same stochastic process. Evolutionary biologists equate conservation and low rate
of evolution. It is this observation that places the problem of conservation estimation
in the realm of probabilistic evolutionary models. This placement benefits the field
of conservation inference with the set of built-in tools that come with evolutionary
models such as its statistical robust nature of inference.

Given a fixed phylogenetic tree and its associated branch lengths, site-specific rates
can be inferred based on the ML paradigm [10, 48]. The most likely rate of site i is the
one that maximizes the site’s likelihood: ri = argmaxP(Di | T, t, M, r). Pupko et al.
[10] have shown that the ML rate inference method outperforms the nonprobabilis-
tic maximum parsimony approach: It enabled detecting conserved protein–protein
interacting domains that were undetected by the parsimony approach.

Bayesian inference of site-specific evolutionary rates is an alternative to the ML
framework [49, 50]. In this case, a prior distribution over the rates is assumed. Using
Bayes theorem, we can calculate the posterior probability density of rate, r, at site i:

P(ri = r | Di, T, α) = P(Di | r, T )p(r | α)∫∞
r′=0 P(Di | r′, T )p(r′ | α)dr′

, (11.17)

where P(Di | r, T ) is computed as explained above. p(r | α) is the prior distribution
over the rates. As stated above, evaluating the denominator cannot be computed
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efficiently and so a discrete approximation is used:

P(ri = r(j) | Di, T, α) � P(Di | r(j), T )p(r(j) | α)∑K
k=1 P(Di | r(k), T )p(r(k) | α)

, (11.18)

p(r(j) | α) is the prior distribution of category j and K is the number of discrete
categories. The site-specific estimate in such a case is the expectation over the posterior
rate distribution:

E(ri | Di, T, α) �
K∑

j=1

r(j)P(r(j) | Di, T, α). (11.19)

Confidence intervals around estimated rates can also be extracted from the posterior
rate distribution [51]. Using simulations, we have previously shown that a discrete
gamma prior provides more accurate rate estimations compared to the ML approach
[49].

This Bayesian approach is an empirical one, since the prior is determined, in part,
by the data. Specifically, the α parameter of the gamma prior distribution is estimated
using ML based on the entire dataset and is considered as “true” for the rate estimation
step. The tree topology and its associated branch lengths are also assumed to be given
or inferred prior to the rate estimation. However, it is often the case that a large
uncertainty exists regarding the tree topology, branch lengths, and model parameters
(such as α). We have previously developed a full Bayesian approach that uses MCMC
methodology to integrate over the space of all possible trees and model parameters
[52]. This comprehensive evolutionary approach was shown to outperform methods
that are based only on a single tree. However, the increase in rate estimation accuracy
comes at the expense of running time.

11.6 TREE RECONSTRUCTION USING AMONG-SITE RATE
VARIATION MODELS

Estimating the phylogeny underlying the evolution of a set of sequences is the most
common use of probabilistic evolutionary models. Numerous studies (e.g., [53]) have
shown that tree reconstruction using either the ML or the closely related Bayesian
approach outperforms classical approaches such as the maximum parsimony [54]
or distance-based methods (e.g., neighbor joining [17]). When reconstructing
the tree using either the ML or the Bayesian paradigms, an underlying model of
sequence evolution is always assumed, and all early models shared the assumption
of homogeneous rate across sites. Following the realization that the homogeneous
rate assumption is unrealistic, the impact of this oversimplified assumption on tree
reconstruction accuracy was evaluated.

The importance of accounting for among-site rate variation in tree reconstruction
was demonstrated in Sullivan and Swofford [55]. They have shown that ignoring
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rate variation can lead to systematic errors in tree inference. For example, rodent
monophyly is rejected with a high bootstrap value when rate variation among sites is
ignored, while the opposite is concluded when among-site rate variation is integrated.
Supporting the observation that ignoring among-site rate variation can mislead phy-
logeny inference, Silberman et al. [56] found that deep branching position of rapidly
evolving lineages might be an artifact of long branch attraction, especially when
among-site rate heterogeneity is ignored.

Sullivan and Swofford [57] have conducted a simulation study to evaluate the
impact of ignoring among-site rate variation on tree reconstruction. They showed that
when data are simulated under among-site rate variation and analyzed using models
that assume rate homogeneity, not only is the performance of the reconstruction
algorithms poor, but also, for some tree topologies, the performance decreases with
increased sequence length. This indicates that ignoring among-site rate variation can
lead the reconstruction method to converge to the wrong tree topology, even when
ample data are available.

In tree reconstruction under the ML paradigm, one searches the tree topology and
its associated set of branch lengths that maximize the probability of the data given
the model. However, as discussed above, the model includes various parameters that
should also be optimized. In an exhaustive search, it is required to find the most likely
set of tree topology, branch lengths, and model parameters. For example, when the
rate is assumed to be gamma distributed, the most likely estimate of alpha should be
evaluated for each tree topology, together with its most likely branch lengths. However,
optimizing alpha afresh for each tree topology is computationally expensive and
infeasible even when a moderate number of sequences are analyzed. This stems from
the exponential dependency between the number of sequences and the number of tree
topologies. Yang [34] suggested that for the gamma distribution, parameters would be
stable across tree topologies. This claim was refined in Sullivan et al. [58]. They have
shown that if the parameters are estimated from trees in which the bipartitions that
are strongly supported by the data are maintained, then the estimates are relatively
accurate. Thus, a successive-approximation approach was suggested in Sullivan et al.
[59]. In this approach, an initial tree is first reconstructed (e.g., using neighbor joining)
and the parameters are then estimated using this tree topology and remain fixed during
the next tree topology search. Once the best tree is found, model parameters are
estimated again and the search is repeated using these newly optimized parameters.
The search ends when the same tree topology is obtained in two successive iterations.
This approach was shown to perform well on both real and simulated data.

The situation is more complicated when distance-based methods are used to infer
the tree topology. Distance methods are fast relative to either the ML or the maxi-
mum parsimony tree search criteria and are often used when the number of sequences
is in the order of hundreds or thousands. While it is clear that ignoring rate vari-
ation in distance-based methods is inadequate and can lead to erroneous inferred
trees, accounting for among-site rate variation in such methods is not trivial. One
approach would be to optimize rate variation parameters for each pair of sequences
independently. However, the variability of rates in a protein is generally common to
all sequences across a given multiple sequence alignment. Thus, there is no reason
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to estimate the rate parameters for each pair of sequences separately. Moreover, such
estimation of many parameters from scant data is likely to result in high errors. Thus,
a preferable approach would be to use all sequences simultaneously in order to esti-
mate the rate parameters globally. Such estimation, however, requires knowledge of
the tree topology and branch lengths, which are the target of the optimization rather
than its input. An iterative process of optimization, first suggested in Silberman [56],
is an obvious solution: First, distances are estimated assuming no rate variation (or
an arbitrary set of parameters, e.g., α = 1 for the gamma distribution). Following this
initial pairwise distance estimation, a tree is constructed, the parameters are reesti-
mated, and the process is repeated until convergence is obtained. We have shown
that such an approach outperforms tree reconstruction when either among-site rate
variation is ignored or when the α parameter of the gamma distribution is estimated
for each pair of sequences [60].

In Ninio et al. [60], we have suggested two alternatives for the iterative distance
approach described above. In the first, site-specific rates are estimated using the pos-
terior mean approach (Section 11.5 above). These site-specific rates are then used
when pairwise distances are computed. One potential problem with this alternative
is that a parameter is evaluated for each site, which can lead to high errors in rate
estimation that in turn can reduce the accuracy of distance estimation. To overcome
this potential problem, we suggested accounting for the uncertainties in site-specific
rate estimation. This is done by computing a posterior rate distribution for each site.
This posterior rate distribution (rather than the single rate estimate) is used when
computing the pairwise distances. We have shown that these alternatives significantly
increase the accuracy of distance estimation and the performance of distance-based
tree reconstruction.

11.7 DEPENDENCIES OF EVOLUTIONARY RATES AMONG SITES

All of the models described above share one recurrent shortcoming: They assume
that the rate at each site is independently drawn from the same rate distribution,
and thus no spatial correlation among rates exists. However, biological intuition
dictates that positions within the same sequence region evolve at similar rates, which
typify the structural and functional importance of the region as a whole. In other
words, it is unrealistic to assume that the posterior distribution of the rate at site i is
not influenced by the rate at site i− 1.

Spatial correlation can be accounted for simply by using a sliding window
approach [61]. Yang [29] and Felsenstein and Churchill [62] suggested model-based
approaches, which take into account a correlation between the evolutionary rates
at adjacent nucleotides by using a hidden Markov model (HMM). These models
have been shown to provide a better fit for DNA data and may improve site-specific
rate inference [62]. While some regions clearly display autocorrelation of rates, this
might not hold for all sequence regions. The protein’s three-dimensional structure
and function result from complex interactions between amino acids, which are not
linearly proximate. For instance, the catalytic site of an enzyme is often composed
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of sites that are distant in the linear sequence of the protein. Thus, the level of
correlation between the evolutionary rates of these linearly distant sites may be
stronger than the correlation between the linear adjacent sites. We have previously
proposed a model that allows adjacent rates to be correlated at certain regions of the
protein and independent at other regions. We have shown that such a model better
captures among-site rate variation than the standard HMM [63].

While HMMs impose a unidirectional flow of information (i.e., site n depends on
site n− 1), Markov random fields allow the rate at each site to depend on the rate of
the site before and after it simultaneously. Such a model was developed to account
for dependencies among codon positions [64, 65]. When the three-dimensional
structure of a protein is available, rate dependencies between amino acid sites that
are in close proximity in space should be taken into account. Such dependencies
can be incorporated into a graph, where an edge between two positions represents
dependency. The distance between each two vertices in the graph represents
the proximity of the corresponding residues in three-dimensional. This kind of
representation may facilitate the use of powerful computational tools from the field
of graph theory for inferring conserved regions in proteins.

11.8 RELATED WORKS

The concepts and tools developed to account for among-site rate variation were ap-
plied, extended, and modified to fit a host of related data and computational tasks.
Here, we briefly review some of these extensions.

In a similar manner to the problem of tree reconstruction, among-site rate variation
was also shown to be important for reconstruction of ancestral sequences. In this
problem, one searches for the set of characters in the internal nodes of the tree that
maximizes the probability of the data. We note that while for phylogeny reconstruction
the likelihood is computed by summing over all possible character assignments to the
internal nodes, in ancestral sequence reconstruction, a single set of character states that
maximizes the probability of the data is searched for. Moreover, when reconstructing
ancestral states—the tree topology and branch lengths are first computed and are
then considered “fixed” for the character reconstruction step. The impact of model
assumptions, including among-site rate variation on ancestral state reconstruction,
was recently discussed in detail (see [66]) and hence will not be elaborated here. We
only note that among-site rate variation is critical for obtaining accurate estimates of
the probabilities of each ancestral character state, mainly in fast evolving sites.

While the approach presented in Section 11.5 allows determining site-specific
evolutionary rates, the obtained estimates are relative to the sequence being studied.
For example, a site-specific rate of 0.5 indicates a site twice as conserved relative to the
average conservation across all positions in that protein. When the goal is to compare
conservation scores across different sequences, or when one wishes to test if a specific
site evolves under purifying, neutral, or positive Darwinian selection, it is meaningless
to compare these relative rates. For such tasks, the most common approach is to
contrast the ratio of nonsynonymous (Ka) to synonymous (Ks) substitutions [67–72].
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Early probabilistic-based methods to compute Ka/Ks ratios were shown to be
superior to simple counting methods. However, these methods did not account for the
heterogeneity of the evolutionary selection pressure among protein sites. In Nielsen
and Yang [73] and in Yang et al. [72], Bayesian models were developed that account
for such selection heterogeneity. In these models, a prior distribution of the Ka/Ks
ratio is assumed. To this end, a similar methodology that was developed for among-
site rate variation is applied to model Ka/Ks variation. In the latter, codon sequences
are analyzed, while in the former nucleotides or amino acids are usually analyzed.

Similar to the development of models, which account for spatial correlation of
evolutionary rates in proteins, it was also recently recognized that better estimates
of Ka/Ks ratio can be obtained if spatial correlations in Ka rates are accounted for.
Furthermore, it was realized that Ks rates also vary substantially among sites [74].
This is explained, for example, by purifying selection exerted on some synonymous
sites in order to maintain mRNA stability. Indeed, Pond and Muse [75] have developed
a probabilistic model that takes Ks variation into account. In their model, the Ka and
the Ks rates are assumed to be sampled independently from an underlying distribution
such as gamma. We have extended this model to allow both the Ka and the Ks to vary
among sites and to correlate with the related Ka and Ks rates of adjacent sites. This
was achieved by assuming two independent HMMs across the sequence—one for Ka
and one for Ks. We have shown that such a model better fits biological data and is
more conservative in inferring positive Darwinian selection [76].

Finally, the methodology developed to account for among-site rate variation, while
describing the evolution of single characters such as amino acids and codons, was
extended to model rate variation of larger units, for example, genes and introns. In
such approaches, a site corresponds to a single genomic locus, and gene or intron pres-
ence and absence are modeled by the characters “1” and “0,” respectively. Since the
evolutionary rate distribution over different loci is not homogeneous, a gamma prior
distribution over the locus rate is assumed. This approach was used, for example, in
Cohen et al. [77] to model the evolution of gene presence and absence across genomes,
and in Carmel et al. [78] to study the dynamics of intron gains and losses. These ex-
tensions demonstrate the applicability and importance of rate variation models as a
general tool in bioinformatics and genome research.
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12.1 INTRODUCTION

Understanding the interactions between biomolecules within a cell and between cells
and their environment is one of the major challenges in computational biology. Al-
though every cell in an organism contains the same genetic material, its expression
profile depends on the tissue type, developmental stage, and the extracellular sig-
nals it receives at the given point in time. Cells exert various ways to regulate the
expression of their genes. Chromatin structure, for example, can make large parts
of the genome transcriptionally silent or potentially active. Also, posttranscriptional
and posttranslational mechanisms can influence the amount and the activity of the
available proteins and noncoding genes in a cell. The best studied mechanism for
gene expression control, however, is the transcription regulation at the individual
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Figure 12.1 Schematic representation of a typical eukaryotic promoter. The transcription start
site (TSS), the core promoter, and the enhancer elements are depicted.

gene level. Transcription factor (TF) proteins recognize short DNA “signals”
(typically 6–15 base pairs long) in the vicinity of the genes’ transcription start sites
(TSSs) and enhance or suppress their expression. These DNA signals are commonly
referred to as transcription-factor binding sites (TFBSs) or—more general—as cis-
regulatory elements. A broad classification of the role of these regulatory elements can
be done on the basis of their distance from the gene’s TSS (Figure 12.1). The region
located in the first 300–500-bp upstream of the TSS constitutes the core promoter of
the gene and frequently contains binding sites for general TFs, like the TATA-box and
the CAAT-box. Core promoters are relatively conserved regions across all vertebrates
[1, 2]. Farther upstream are located the TF binding sites that are responsible for the
gene’s expression specificity (i.e., when and where the gene is expressed). The timely
and tissue-specific expression of all genes is crucial for the cell itself and the organism
as a whole. Expression is usually regulated by sets of TFs, whose binding sites are
closely located in the genome, and the TFs themselves can directly interact with each
other. These sets of sites are known as cis-regulatory modules (CRMs.) CRMs can
be found few kilobases around the TSS. Finally, in complex eukaryotic organisms,
some TF target sequences can be found tens of thousands of bases away from the
TSS. These regions are usually called enhancers, and their main role is to fine-tune
genes’ regulation, usually through protein–protein interactions. Figure 12.1 presents
some of the features of a typical eukaryotic promoter.

TF genes interact with each other either directly (i.e., by forming protein com-
plexes) or indirectly (i.e., by regulating each other’s expression). TFs act individually
(as monomers) or in complexes (as homo- or hetero-multimers). This creates a net-
work of interactions that characterizes a cell’s response to a particular stimulus. Fo-
cusing only on TF genes, one can construct the network of all regulatory interactions.
Figure 12.2 shows some of the simple components of the TF interaction networks
that have been observed [3]. Reverse engineering refers to the traditional mathemati-
cal inverse problem, which is to infer the gene regulatory circuit (network topology)
from gene expression data. Genes can be represented as nodes in a graph, where
edges represent the direct interactions between genes. There are two broad classes
of reverse-engineering algorithms for gene regulatory networks [4]: those based on
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Figure 12.2 Network components. Regulatory network components are presented with respect
to their interactions (a) or the layers of the signal transduction (b). Data from Alon [3] and Lee
et al. [48].

the “physical interactions” that aim at identifying interactions among transcription
factors and their target genes (gene-to-sequence) and those based on the “influence
interactions” that try to relate the expression of a gene to the expression of the other
genes in the cell (gene-to-gene).

A number of approaches have been developed for modeling regulatory networks.
A broad taxonomical organization suggests four major methodological categories for
these approaches. The first includes optimization methods based on the maximization
of a high-dimensional objective function associated with different network topologies
such as Bayesian networks [5, 6] or chain functions [7]. An objective function used
frequently is the log-likelihood of the network topology given the observed data. The
second category includes a variety of regression techniques to fit the observed data
to an empirical a priori model of the underlying biochemical interactions [8–10]. A
third group includes integrative bioinformatics approaches that combine data from a
number of independent clues, such as known protein–protein and protein–DNA inter-
actions (from databases or literature), expression data, or DNA binding motifs [11–
13]. The fourth category includes statistical/information theoretical methods [14, 15],
which define two-way or higher order probabilistic measures of gene correlation to
distinguish potential interactions from background noise. Models of gene regulatory
networks can also be divided according to the representation of the network states (dis-
crete vs. continuous), the nature of the data (static vs. dynamic over time or different
conditions), the representation of gene associations (qualitative vs. quantitative), the
dependencies between genes (linear vs. nonlinear), the nature of the model (determin-
istic vs. stochastic), and the location of the genes in the cells (nonspatial vs. spatial).

This chapter focuses on the “physical interaction” networks. First, we will give an
overview of the physical basis of transcription regulation and the representation of
the regulatory DNA patterns. Then, we will survey some of the physical interaction
algorithms for reverse engineering of gene expression data. The coverage of the algo-
rithms is not exhaustive and is biased toward what we believe are the more practical
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methods. We attempt to cover at least one method from each class of algorithms of
this broad category.

12.2 FUNDAMENTALS OF GENE TRANSCRIPTION

12.2.1 Physical Basis of Transcription Regulation
and Representation of DNA Patterns

Each TF recognizes a set of DNA binding sites with high affinity. It usually achieves
this by placing one or more �-helices in the major groove of the DNA. The specific
DNA target recognition results from the molecular contacts (hydrogen bonds, electro-
static interactions, etc.) between the amino acids and the DNA bases. Contacts from
and to the backbone of the protein or DNA also contribute to the overall binding affin-
ity (how strongly a target sequence is bound), although their contribution to binding
specificity (how more strongly a sequence is bound compared to a random sequence)
is generally assumed to be secondary [16]. Sometimes, nonbase-specific DNA inter-
actions contribute to the target recognition. This is usually referred in the literature as
“indirect readout.” An example is the CAP (or CPR) protein, which bends the DNA
upon binding. In this case, in addition to the specific base–amino acid contacts, the
overall sequence of the DNA target needs to have some degree of “bendability,” thus
restricting further the repertoire of tolerated changes.

Preferred binding sites of a TF can be discovered and verified by in vitro target
selection experiments (e.g., SELEX [17] or protein-binding microarrays [18]) or by
biochemical analysis of the upstream regions of its known target genes. The length
and the number of optimal targets vary, depending on the TF in question. For example,
c-myc oncogene in mammals and Ultrabiothorax (Ubx) gene in Drosophila have a
very restricted set of targets (CACGTG and ATTA, respectively), whereas the pattern
of p53 is more degenerate (Figure 12.3). There are many ways to represent the TF
binding preferences [19], but the most popular so far has been proven to be the
position-specific scoring matrices (PSSMs) or position weight matrices (PWMs.)

PSSM models are 4XL weight matrices, where L is the length of the DNA binding
motif (the single targets of most TFs are of a given length L, which is a characteristic
of the TF). To generate a PSSM model, the known sites of a given TF are aligned and
a 4XL frequency table is calculated. Column I in this table consists of the four base
frequencies at position I of the alignment. The PSSM model typically consists of the
log-likelihood ratios of the observed frequencies against the background frequency of
the corresponding base. We note that the average log-likelihood ratio in each position
is the relative entropy, formally defined as:

RH(I) =
T∑

b=A

f (b, I) ln
f (b, I)

Pref (b)
, (12.1)

where f (b,I) is the estimated frequency of base b at position I of the pattern and
Pref (b) is background frequency of base b (e.g., in the genome). Averaging over all
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Figure 12.3 Types of DNA patterns. Ubx and c-myc have very restricted repertoire of binding
sites (a), whereas p53 targets are more degenerate (b).

L positions, we obtain the average relative entropy of the motif. A number of motif
finding algorithms identify patterns that maximize either the overall log-likelihood of
the motif or its relative entropy.

There is an interesting theoretical interpretation of the PSSM models. Through a
Boltzmann theory perspective, a PSSM model can be viewed as the average binding
specificity of a TF protein to its DNA targets. There are examples in the literature that
show that the PSSM score is in agreement with binding energy measurements [20].
One general assumption of the PSSM models is the position independence, that is, the
observed base frequencies in one position are independent of the frequencies in any
other position. According to the thermodynamic model, this corresponds to energetic
additivity, that is, each base position contributes independently of the others to the total
binding energy. Energetic additivity is a simplification of the physical properties of the
TF–DNA interactions and it does not hold in general [21, 22]. However, in practice,
it has been found to be a good approximation in modeling binding affinities [23].
In addition, additive models require a significantly smaller number of parameters.
These two properties have made additive models very useful and contributed to their
popularity.

12.2.2 High-Throughput Data: Microarrays, Deep Sequencing,
ChIP-chip, and ChIP-seq

The last couple of decades have seen the emergence of new technologies that revolu-
tionized the biological research. Large-scale sequencing has now advanced to the point
of sequencing millions of bases per day. This allows the genome sequencing of a small
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organism (e.g., a bacterium) to be completed in few weeks. Also, gene expression
arrays or microarrays have been used routinely up to now to determine simultane-
ously the expression levels of all genes in a cell [24], or the in vitro [18] and in vivo
[25] DNA preferences of a TF. Microarrays are slides that host, in an orderly fashion,
probes of thousands of genes of an organism. For identifying the genes’ expression,
mRNA from the cells of interest is isolated, reverse transcribed, PCR amplified, la-
beled with a fluorochrome, and hybridized on the slide. Genes that are expressed in
the sampled cells are expected to “light up” the corresponding probes in the array. The
higher the number of mRNA copies in the cell, the strongest the signal is expected to
be. However, problems related to cross-hybridization as well as technical biases can
make the hybridization signals sometimes inaccurate for quantitative modeling. That
said, microarrays have been used extensively in many biological applications, from
cell type classification (e.g., distinguishing between two types of cancer) to modeling
the dynamics of cells in response to a given stimulus. Since the first application of
microarrays in biological research in 1995 [24], there have been many technological
improvements. However, recent advances in high-throughput DNA sequencing tend
to make the hybridization-based methods less appealing in research for determining
genes’ expression. These new deep sequencing technologies provide a unique oppor-
tunity for measuring genes’ expression with an unprecedented accuracy [26]. They
can produce hundreds of thousands of 200-bp reads in one run, which leads to an un-
biased and more accurate measurement of the expression of all genes in the genome,
known and novel, protein coding and noncoding, and small and large. In addition, they
avoid problems of cross-hybridization and probe selection that made the microarray
data less robust. Most gene network modeling algorithms use microarray data as their
primary source of information, although they can be easily adapted to accommodate
other gene expression measurements.

Chromatin immunoprecipitation (ChIP) [25] is a biochemical procedure for captur-
ing genomic regions that are associated in vivo with a protein of interest, for example,
a TF. Briefly, proteins are cross-linked onto the DNA with formaldehyde; cells are
lysed and sonicated to fractionate the genomic DNA; the protein–DNA complexes are
precipitated with an antibody against the protein of interest; cross-links are reversed,
and DNA fragments are purified, amplified, and labeled with a fluorochrome and hy-
bridized on specific microarrays. These arrays contain probes for the promoters of the
genes in an organism or the whole genome (“tiling arrays”). Many physical interaction
algorithms can use information from ChIP-microarray (or ChIP-chip) experiments to
guide the TF–gene associations. But, like with the measurement of gene expression
data, the measuring of the in vivo protein–DNA interactions has benefited from the
advancement of direct sequencing methods. Instead of hydridizing the precipitated
DNA to a microarray, one can now directly deep sequence it (ChIP-seq), resulting in
a finer mapping of the genomic locations where the TF binds.

The effect of the high-throughput technologies in biological research is profound.
Because of the fact that vast amount of data can be generated quickly, the research
philosophy has now shifted from the traditional reductionist approach that dominated
the research efforts in the past (i.e., studying the parts in the hope they will ultimately
reveal the whole) to a truly holistic approach that puts the systems biology in the center.
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12.3 PHYSICAL INTERACTION ALGORITHMS

Physical interaction algorithms are those reverse-engineering algorithms that aim at
identifying interactions among TFs and their target genes (gene-to-sequence interac-
tions). Microarray measurements, of course, do not necessarily reflect the transcrip-
tion factor activities (TFAs) in all cases, since posttranscriptional and posttranslational
modifications may play an important role for determining the activity of a TF. Nev-
ertheless, for practical purposes, all physical network algorithms focus on the TFAs
that can be deduced from microarray data.

Practically, physical interaction algorithms have two goals. One is to identify
the genes regulated by a TF (or a set of TFs). In other words, they aim to recon-
struct the connectivity structure and weights of the network. Second, they aim to
reconstruct the activity profile of each TF from the gene expression data. An advan-
tage of this strategy, compared to influence interaction algorithms, is that it reduces
the dimensionality of the problem by analyzing only the interactions between TFs and
their putative target genes (instead of all-against-all). It also enables the use of genome
sequence data (“static data”), in combination with gene expression data (“dynamic
data”), in order to enhance the sensitivity and specificity of the predicted interactions.
The limitation of this approach is that it can only describe the regulatory control
exercised by TFs.

Some physical interaction algorithms depend on the prediction of sets of coregu-
lated genes, while others construct a more general model without such assumptions.
Some of the algorithms represent regulatory activities as a function of the mRNA
measurements, while others treat the regulatory activities as hidden variables. Finally,
some of the algorithms can model complex cis-regulatory logic of multiple interact-
ing TFs binding closely located DNA targets (cis-regulatory modules or CRMs). In
the following, we will review four classes of physical interaction algorithms: the
clustering-based approaches, the regression-based models, the network component
analysis methods, and the factor analysis methods.

12.3.1 Basic Definitions

Throughout this chapter, we assume that we are given a set of N genes, G = {g1, . . . ,
gn, . . . , gN}, and an N ×M gene expression matrix, Z. We also assume that the gene
expression values are normalized to correct for systematic or technical biases. The
gene expression matrix, Z, may consist of time series gene expression data of the
N genes in M time points T = {t1, . . . , tm, . . . , tM} (or simply T = {1, . . . , m, . . . ,
M}), or steady-state measurements of the N genes under M different conditions C =
{c1, . . . , cm, . . . , cM}. In the former case, we will try to model the gene expression that
dynamically changes with time, while in the latter, we will try to predict relationships
by analyzing steady-state gene expression levels in various conditions. In all cases,
znm represents the expression level of gene n in condition or time point m.

The term “identifiable network” refers to a network that (1) Eq. (12.2) (see below)
has an essentially unique solution under certain constrains and (2) it can be distin-
guished from another network characterized by these constraints.
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12.3.2 Problem Formulation

Given the N ×M gene expression data Z as defined before, all physical network
algorithms but the clustering-based approaches aim at decomposing Z as a product
of two matrices, plus some residual terms:

Z = XY + E, (12.2)

where X is an N × L connectivity matrix (also known as the factor-loading matrix).
Each column in X describes the strength of interaction between one of the L transcrip-
tion factors and the N potential gene targets. The entries of X can either be binary (0
or 1) or numeric (e.g., from ChIP-chip data), with a zero value indicating no physical
binding between a transcription factor and a target. Y is an L×M matrix that repre-
sents the TFAs of the L transcription factors for each of the M samples. It is a vector
of L hidden variables also known as factors. Finally, E is an N ×M matrix containing
error terms. In practical applications, the number L of factors is always smaller than
or equal to the number N of observed variables. So, the problem can be formulated
as: given the gene expression data, Z, identify X and Y that best represent the data.

12.3.2.1 Identifiability Problems The decomposition of the matrix Z into two
matrices X, Y, and the residual term E according to Eq. (12.2) is an inverse problem
whose solution is, in general, not uniquely defined unless further assumptions on
the matrices X or Y are made. In order to show this, let us consider a nonsingular
L× L matrix Q. Furthermore, let us define X1 = XQ and Y1 = Q−1Y. By inserting
the nonsingular matrix Q into Eq. (12.2) defined above, we obtain Z−E = XQQ−1Y
= (XQ).(Q−1Y) = X1 Y1. This clearly shows that Z cannot be uniquely decomposed
unless further assumptions are either made on the connectivity matrix X, on the TFAs
matrix Y, or on both X and Y.

Classical dimensional reduction algorithms such as principal component analysis
(PCA) or independent component analysis (ICA) will identify a connectivity matrix X
such that the reconstructed TFA matrix Y verifies orthogonality or statistical indepen-
dence criteria, respectively. In the case of gene regulatory networks, such assumptions
are not biologically meaningful. For example, the statistical criterion in the case of
ICA lacks biological explanations. Therefore, physical interaction algorithms aim at
finding a mathematical decomposition that makes no statistical assumptions and that
at the same time will incorporate prior biological knowledge into the decomposition.

12.3.3 Clustering-Based Approaches

Clustering-based approaches are trying to identify the TFs that control the expression
of certain genes. Assuming that genes that are controlled by the same TFs will show
similar expression patterns, the clustering-based approaches first group genes based on
their expression profiles. Then, the promoters of the genes in each cluster are analyzed
for common cis-regulatory signals. Figure 12.4 presents the workflow diagram of
these methods.
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Figure 12.4 Schematic representation of the methodology followed by the clustering-based
approaches for reconstructing TF–DNA relationships.

Algorithm 12.1 General Clustering-Based Approach

Input:

– X = gene expression data

– Upstream DNA sequence of each gene

Output:

– Set of clusters

– Potential binding sites of each cluster.

Begin

- Identify co-expressed genes using a clustering
algorithm.

- Identify the overrepresented motifs in each cluster
using a motif-finding algorithm.

End Begin

Clustering-based approaches were introduced by Tavazoie et al. [27]. They used the
k-means algorithm with the Euclidean distance metric to cluster the gene expression
profiles. However, other clustering methods can also be used. For a recent survey of
approaches using different clustering algorithms, we refer the reader to Xu et al. [28].
Note that some of the approaches described in Xu et al. [28] have been developed
specifically for dealing with time series data (long or short) or steady-state data in
multiple conditions, while others are more general.

For DNA motif finding, Tavazoie et al. used the AlignACE algorithm [29].
Again, there are a number of alternative algorithms one can use, reviewed recently
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by Das and Dai [30] and GuhaThakurta [31]. In 2005, Tompa et al. [32] per-
formed an extensive comparison and assessment of the performance of 14 motif
finders.

One limitation of some of the clustering-based methods (including Tavazoie’s et al.
method [27]) is that genes may exhibit similar expression patterns only in a subset of
the time points or conditions. This can be attributed to the complexity of transcription
regulation (especially in eukaryotes). Different sets of TFs may be active at different
conditions and hence influence a given set of genes to a different degree. Requiring
the genes of a cluster to have similar expression patterns in all conditions makes more
tight clusters at the expense of a reduced number of members per cluster. This, in turn,
will make the identification of DNA motifs more difficult. However, instead of using
a clustering algorithm that only allows genes to belong to one cluster, other groups
have suggested the use of biclustering techniques [33]. Biclustering algorithms refer
to a distinct class of algorithms that perform simultaneous row–column clustering,
and they are generally able to identify local behaviors of the dataset analyzed [34].
One advantage of biclustering algorithms is that genes may be grouped together in
one subset of conditions (or time points), and grouped together with other genes in
a different subset of conditions (or time points). Allowing participation in more than
one cluster increases the number of genes per cluster, but retaining homogeneous
clusters with respect to the TFs that might regulate their expression. On the other
hand, biclustering algorithms require, in general, a larger number of samples, which
might not be always available.

Beer and Tavazoie presented in 2004 [35] an extension to the original Tavazoie
et al. algorithm [27]. After clusters and DNA motifs have been identified, the method
proceeds with an enrichment step, in which each motif is used to scan the promoters of
all genes (not only those belonging to the specific cluster where the motif originated)
to predict more putative targets. Various characteristics of the targets (e.g., orientation,
spacing, order, etc.) are converted to binary variables and used as an input (parent
nodes) to a Bayesian network model. The parent nodes are then evaluated in their
ability to predict expression data based on a greedy, iterative procedure. In each
iteration, the best predictor is added to the model until convergence. The authors
showed that this method performs better than the original Tavazoie et al. [27] and
comparable to REDUCE [36] (see below).

Clustering-based approaches have been extensively exploited for analyzing mi-
croarray data. In the above, we only discuss some representative examples. Other
examples include the work of Segal et al. [37, 38] in which they used the expectation-
maximization (EM) algorithm (see below) on probabilistic graphical models to
identify the optimal number of clusters and associated motifs that best explain the
expression data. GRAM [39] is another cluster-based algorithm, in which the re-
sulting clusters contain genes that are coexpressed (based on gene expression data)
and associated with the same set of TFs (based on ChIP-chip data). Notably, a num-
ber of studies reported that the use of ChIP-chip data in the place of motif pre-
dictions significantly improves the performance of the clustered-based algorithms
[40, 41].
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12.3.4 Sequence- or ChIP-Based Regression Methods

Sequence- or ChIP-based regression algorithms model TFAs as hidden variables and
try to infer them from gene expression data in combination with DNA sequence data
and/or ChIP-chip data.

12.3.4.1 Sequence-Based Linear Regression Bussemaker and Siggia [36]
presented REDUCE, an algorithm that predicts binding motifs from microarray and
promoter (sequence) data without the need for clustering. The justification for this
approach is that with the exception of ribosomal and few other gene categories, most
other genes do not belong to clusters of reasonable size to allow for efficient motif
detection. REDUCE reports statistically significant patterns (oligomers, individual or
in pairs with fixed spacing and combinations of those) in the promoters of the genes
that affect gene expression. Its major assumption is additivity of the contributions of
the DNA motifs to the overall (log)expression of the downstream gene. One of the
advantages of this method is that it has no adjustable parameters. Motifs are reported
on the basis of their user-defined P value cutoff. Below, we outline the main steps of
the REDUCE algorithm of Bussemaker and Siggia [36].

Algorithm 12.2a REDUCE algorithm [36]

Input:

– Z = Gene expression data

– Upstream DNA sequence of each gene

Output:

– X = Number of occurrence of a given motif

– Y = Transcription factor activity (TFA) profiles

Begin

– Generate a set of motifs using all possible
combinations of nucleotides up to length 7.

– For each experiment, construct a smaller set (number of
motifs# number of genes), which contains motifs that
significantly correlate with the expression data.

– Divide the motifs into several classes of related and
overlapping motifs.

– Use the forward selection procedure to find one
representative for each class.

– Then, check the independent and linear contributions of
the significant motifs to the log expression level.

– Compute an activity value for every significant motif.

– For each significant set of motifs in an experiment,
construct a TFA profile.

End Begin
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As we mentioned above, the REDUCE model assumes additivity of the contribu-
tions of the DNA binding motifs defined as [36]:

Zn = Z0 +
∑
m∈M

YmXmn, (12.3)

where Z0 is the baseline expression level of gene n (in terms of log2 ratio of two cell
populations), and Zn is the observed (log)ratio of expression. Xmn is the number of
occurrences of motif m in the regulatory region (analogous to a quantitative measure
of connectivity) and Ym is the best PSMM score obtained in the upstream sequences
(analogous to TFA). The model accounts for both activator and repressor TF proteins
(positive and negative values of Ym, respectively).

REDUCE performs multivariate linear regression to estimate the TFAs (Ym in
Eq. (12.3). There are a number of extensions and improvements of this algorithm
published in the following years [42, 43]. Also, Conlon et al. [44] developed another
algorithm based on the same idea. Genes are initially ranked according to their ex-
pression level; motifs are identified in their promoters using program MDscan [45]
with a library of PSSM models; linear regression is performed between PSSM scores
and expression levels to remove insignificant motifs; finally, sets of motifs (CRMs)
are identified with stepwise regression.

12.3.4.2 Multivariate Least Squares Regression Another regression-
based algorithm is MA-Networker, which was developed by Gao et al. [46]. Unlike the
sequence-based approaches that use sequence analysis to infer TFAs, MA-networker
does so by using ChIP-chip data. MA-Networker first constructs a set of significant
TFs using a backward selection algorithm. Unlike forward selection that REDUCE
uses (adding one model at a time), the backward selection algorithm of Gao et al. [46]
starts by fitting a model with all the variables of interest. Next, the least significant vari-
able is dropped in each round, as long as it is not significant at a chosen critical level.
Then, the algorithm continues by iteratively refitting reduced models and applying
the same rule until all remaining variables are statistically significant. MA-Networker
iteratively removes TFs that have insignificant P values based on the F -test.

Algorithm 12.2b MA-Networker [46]

Input:

– Z = Gene expression data

– X = ChIP-chip data

Output:

– Y = Transcription factor activity (TFA) profile

Begin

– Construct a set of significant TFs using backward
selection. This is done by iteratively removing
TFs, which have insignificant p-values based on the
F-test.
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– Construct a TFA profile for each TF using microarray
and ChIP-chip data.

End Begin

The multivariate regression model used to obtain the transcription factor activity
profiles is given by:

Zgt = Zg0 +
∑
f

YftXfg, (12.4)

where Zgt represents the mRNA expression log-ratio of gene g in condition or time
point t, Zg0 represents a baseline expression log-ratio of gene g, Xfg represents the
ChIP log-ratio for TF f and the promoter region of gene g, and Yft the inferred activity
of TF f at condition or time point t. The unknown parameter Yft is found by minimi-
zing the error between model and experimental data.

12.3.4.3 Partial Least Squares Regression The approach proposed by
Boulesteix and Strimmer [47] used partial least squares (PLS) regression to infer
TFAs from gene expression data and DNA–protein binding experiments (ChIP-chip).
PLS is an extension of multiple linear regression model. This method allows the de-
tection of functional interactions between TFs. In addition, Boulesteix and Strimmer
[47] showed that their method was able to detect false-positive calls in the ChIP-chip
data. It also attempts to predict whether a TF enhances or represses the transcription
of its target genes.

One of the advantages of the PLS method is that it performs well with small
samples, even if the predictors (TFAs) are nonindependent. However, it strongly
depends on availability of extensive ChIP-chip datasets, which are currently available
only for yeast [48]. Below, the main steps of the PLS algorithm are highlighted.

Algorithm 12.2c PLS Algorithm [47]

Input:

– Z = Gene expression data

– X = ChIP-chip data

Output:

– Y = Transcription factor activity (TFA) matrix.

Begin

1. Center X and Z to column mean zero, resulting in
matrices X1 and Z1; scale the input matrices to unit
variance.

2. Using the linear dimension reduction T = X1R, the L
predictors in X1 are mapped onto K≤ rank(X1) ≤ min(L,N)
latent components in T (an N× K matrix).
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3. Assuming the model Z1 = TQ′ + E, Z1 is regressed by
ordinary least squares against the latent components
T (also known as X-scores) to obtain the loadings
Q (a M× K matrix), that is, Q = Z1

′T(T′T)−1.

4. The PLS estimate of the coefficients Y1 in Z1 = X1Y1 + E
is computed from estimates of the weight matrix R and
the Z-loadings Q via Y1 = RQ’.

5. The coefficients Y for the original Z = XY + E are
computed by rescaling Y1.

End Begin

The PLS algorithm was validated using synthetic data, as well as real biological
data (the Escherichia coli data from the Kao et al. study [49]). It was found to be
as good as the original NCA algorithm [50] that we discuss below, but it has the
advantage that it can be applied to any arbitrary topology.

12.3.5 Network Component Analysis Methods

Network component analysis (NCA) is a technique for inferring the dynamics of reg-
ulatory networks. NCA relies on predefined biological constrains in the connectivity
structure of the network to restrict the decomposition solution space. NCA algorithm
was pioneered by Liao et al. [50], and it was later generalized by Tran et al. [51].
More recently, Chang et al. [52] proposed a fast version of the network component
analysis (FastNCA) framework.

12.3.5.1 Network Component Analysis Algorithm To solve the inverse
problem of Eq. (12.2), that is to recover X and Y from Z, Liao et al. [50] pro-
posed the NCA framework, which is based on the following three constraints re-
ferred to as NCA criteria: (1) the connectivity matrix X must have full-column rank;
(2) when an element in the regulatory domain is removed along with all the out-
put elements connected to it, the connectivity matrix of the resulting network is still
of full-column rank; and (3) the TFA matrix Y must have full-row rank. When the
identifiability properties of X are true (see Section 12.3.1), then criteria (1) and (2)
are verified and NCA decomposes the data matrix Z into matrices X and Y by min-
imizing E under the constraint that the network structure or the nonzero entries of
the matrix X is conserved. The NCA algorithm restricts the solution space by tak-
ing advantage of the sparsity of the true biological connections and constraining
matrix X with the use of zero elements in predefined positions. NCA assumes that
a unique (or essentially unique) decomposition of Z to X and Y can be achieved
up to a diagonal L× L matrix. Once the NCA criteria [50] for essentially unique
decomposition are satisfied, NCA can find this decomposition by using bilinear
optimization [51].
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Algorithm 12.3a Network Component Analysis Algorithm [50]

Input:

– Z = Gene expression data

– SX = Set of X matrices that have zero elements in the
predesignated position.

Output:

– X = Connectivity matrix

– Y = Transcription factor activities (TFA) matrix

Begin

– Initialize X = X(0), where X(0) ∈ SX:

– Given X(0), find Y(1) ∈ RLxM such that ||Z− X(0)Y(1)||F via
QR factorization.

– Given Y(1), find X(1) ∈ SX such that ||Z− X(1)Y(1)||F via QR
factorization.

– Repeat step 2 then 3 until the residual ||Z – X(n)Y(n)||F is
less than a specific tolerance.

– Normalize the matrices X by a diagonal matrix Q and Y
by Q−1.

End Begin

The normalization condition can be chosen such that the average value of a matrix
entry in X is unity. A corresponding choice of such diagonal elements of Q is:

Qll = 1

K

K∑
k=1

|Xkl|, (12.5)

where K is the total number of nonzeros in the lth column of matrix X.
Liao et al. [50] biochemically validated the NCA algorithm on a network of seven

solutions of three hemoglobin genes. Absorbance spectra measurements were used
as the primary source of data. Liao et al. [50] found that NCA outperforms PCA and
ICA.

12.3.5.2 Generalized Network Component Analysis NCA described
above is developed based on assigning constraints only to the connectivity matrix
X. In many biological networks, the criteria for essential uniqueness [50] that the
NCA method assume cannot be satisfied. The generalized NCA (gNCA) [51] method
extends the standard NCA, so that constraints can be imposed on both the connec-
tivity matrix X and the regulatory signal matrix Y, thus restricting further the search
space. The authors used time series microarray data from E. coli (wild-type strain and
an arcA deletion strain grown on glucose minimum medium) to test their method,
although they did not verify their predictions afterwards.
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Algorithm 12.3b Generalized Network Component Analysis Algorithm [51]

Input:

– Z = Gene expression data

– SX = Set of X matrices that have zero elements in the
predesignated position.

– SY = Set of Y matrices that have zero elements in the
predesignated position.

Output:

– X = Connectivity matrix

– Y = TFA matrix

Begin

– Given X(0); find Y(1) ∈ SY such that ||Z− X(0)Y(1)||F is
minimum by using QR factorization.

– Given Y(1); find X(1) ∈ SX such that ||Z− X(1)Y(1)||F by
using QR factorization.

– Repeat step 2 then 3 until the residual ||Z - X(n)Y(n)||F

is less than a tolerance.

– Finally, the matrices X and Y are normalized by a
chosen scaling matrix Q.

End Begin

Tran et al. [51] emphasized that in the gNCA framework the distinguishability of
a given biological network from others need to be tested. A potential drawback of
the bilinear optimization scheme used in the gNCA framework is that multiple local
minima may exist. This problem can be addressed by running the algorithm multiple
times with different initializations. Stable solutions are those that appear frequently.
A technical potential problem is that noninvertible matrices may destabilize the nu-
merical algorithm and result in physically unreasonable solutions [51]. In order to
address this problem, Tran et al. redefine the optimization objective function using
the Tikhonov regulation method (NCA-r).

12.3.5.3 Fast Network Component Analysis The standard NCA algorithm,
as described above, has two potential limitations: It is computationally unstable and
can be trapped in local minima. The NCA-r algorithm with Tikhonov regularization
[51] addresses mainly the first issue. The recently developed FastNCA algorithm [52]
is based on matrix factorization and projection, and it attempts to account for both
issues.

Indeed, it was shown by Chang et al. [52] that FastNCA provides a much faster
analytical solution than NCA and NCA-r without having the above limitations. In
particular, it is one order of magnitude faster than NCA and two orders of mag-
nitude faster than NCA-r. Also, they showed that in the case of random Gaussian
noise, K can be chosen as K = L (see Algorithm 12.3c), with good performance and
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superior computational efficiency. Finally, Chang et al. [52] showed that FastNCA
is not sensitive to either (small) inaccuracies of the initially defined network struc-
ture or correlations between input signals. In real cell cycle microarray data, they
found FastNCA to predict the activities of cell cycle regulators at levels comparable
to the semi-quantitative data obtained by Lee et al. [48]. The major disadvantage of
FastNCA and the original NCA algorithms is that they only work well on networks
that are NCA compliant. That is, the three NCA criteria (as they stated above) must
be strictly satisfied. The FastNCA algorithm is summarized below.

Algorithm 12.3c Fast Network Component Analysis Algorithm [52]

Input:

– Z = Gene expression data,

Output:

– X = Connectivity matrix

– Y = TFA matrix

Begin

– Perform a rank-K Eckart-Young Mirsky (EYM)
approximation of Z by singular values decomposition
(SVD) as ZK = UK�KVK

T, and let W = UK.

– Estimation of X

• For l = 1 to L

◦ Re-order rows of W so that the lth column of X has

the structure xl =
[

x
′
l

0

]
.

◦ Partition W =
[

Wc

Wr

]
conformally with this structure.

◦ Do SVD for Wr, and get the last K − L + 1 right singular
vectors. Denoted as a matrix V0.

◦ Compute the x
′
l = the first left singular vector of

WcV0V
T

0.

– Estimate the TFA matrix by: Y = (XTX)−1XTZK.

End Begin

12.3.6 Factor Analysis Methods

Factor analysis (FA) methods treat the expression data as the observed variables that
can be explained by (fewer) hidden variables, the TFAs. Unlike NCA and some regres-
sion algorithms, FA methods do not rely heavily on any knowledge of the connectivity
matrix. The fact that FA algorithms try to reconstruct both the connectivity matrix
and the TFAs makes the task more difficult. To enforce sparsity in the connectivity
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matrix, FA methods utilize matrix rotation (e.g., orthogonal rotation), while Bayesian
FA methods do so by the incorporation of appropriate priors. The error terms, E (see
Eq. (12.2), in FA models are assumed to be multivariate, normally distributed with
zero mean, so the expression values, A, are also multivariate, normally distributed.
Next, we review some of the FA algorithms.

12.3.6.1 FA Parameters In the FA models, the TFA profiles (factors) are as-
sumed to be normally distributed with mean zero and covariance matrix �y. It has
been proposed by many groups [53–55] that setting the TFA covariance matrix to
be equal to the identity matrix (IK) can solve the network’s identifiability problem
(i.e., an essentially unique solution exists, see above). Other solutions for the TFA
covariance matrix have been suggested, including Sabatti and James [56] �y = σ2

yIK

(with σy being a constant value), and West [57] suggesting the more general prior
�y = diag(σ2

y1, . . ., σ
2
y2). A detail presentation of many FA methods can be found in

the Pournara and Wernisch review article [58].
The main differences between the existing FA models lie in the assignment of the

prior distribution of the connectivity matrix, X, and its covariance matrix. In order to
enforce sparsity on the connectivity matrix, Tipping [59], initially, and Fokoue [60],
later, suggested independent normal priors on each element of X and gamma prior
on the X’s covariance matrix [58]. West [57], on the other hand, suggested a mixture
prior on the elements of X to tackle the same problem.

12.3.6.2 FA Optimization Algorithms and Implementation Details Var-
ious strategies have been implemented in the context of FA algorithms long before
their application in microarray data. For example, Hinton et al. developed an EM al-
gorithm for FA models applied to image processing [61] and an exact EM algorithm
for mixtures of FAs [53]. More recently, Utsugi and Kumagai [54] suggested a Gibbs
sampler for mixtures of FAs.

The first time FA algorithms were applied in biological data was with the work of
West in 2003 [57]. They used MCMC Bayesian FA approach to analyze breast cancer
gene expression data. Sabatti and James [56] recently followed the same idea, but
information about the connectivity matrix is provided in advance. This is achieved
by first run of their Vocabulon algorithm [62] to calculate the probability that a given
promoter could be bound by a TF. TF binding preferences are inferred from a set
of PSSM models. This is similar to the requirement of a predefined connectivity
matrix that some regression [47] and NCA algorithms [50] have been used in the
past.

In the following, we outline the EM algorithm of Ghahramani and Hinton [53],
which consists of two steps: (1) the E-step, in which, in every iteration, the expected
values and the variances of the TFAs are calculated, given the current X and covariance
of X; and (2) the M-step, in which, the values of X and covariance of X are calculated,
given the current values of the TFAs.
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Algorithm 12.4 The EM Algorithm of Ghahramani and Hinton

Input:

– Z = Gene expression data

Output:

– X = Connectivity matrix

– Y = TFA matrix

Begin
E-step: given the current X and � (covariance matrix,) for
each gene n, compute the expected values and the variances of
the factors:

E(yn|zn,X,�) = Czn

(E(yn(yn)′|zn,X,�) = I - CA + Czn(zn)′C′

C = X′(� + XX′)-1

M-step: given the expected value of the factors, which
calculates the values of X and �.

X =

⎛
⎝ N∑

n = 1

znE(yn|znX,�)′

⎞
⎠
⎛
⎝ N∑

i = 1

E(yi(yi)′|ziX,�)

⎞
⎠
-1

� =
1

N
diag

⎛
⎝ N∑

n = 1

zn(zn)′−XE(yn|znX, �)(zn)′

⎞
⎠

End Begin

12.4 CONCLUSION

In this chapter, we presented one major class of algorithms for modeling gene reg-
ulatory networks: the physical interaction network algorithms (for a summary, see
Table 12.1). One advantage of the physical interaction network algorithms is that
they model the potential effect of TF proteins to other genes. This is particularly im-
portant not only for identifying molecular interactions in the cell but also for assisting
the identification of potentially crucial subnetworks, hence helping to understand the
molecular processes and—subsequently—the selection of particular gene targets for
drug development.

The algorithms presented here are representative of the approaches employed for
the identification of interactions between TFs and genes using expression data, ge-
nomic sequence or ChIP data, and prior biological knowledge. The clustering-based
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approaches have been developed under the assumption that the genes that are regulated
by the same set of TFs will exhibit similar expression patterns. In other words, coreg-
ulation leads to coexpression. However, in practice, all clustering-based approaches
operate under the reverse assumption (coexpression implies coregulation), which is
not expected to be generally true. For example, one can imagine a case where two
distinct sets of TFs produce similar expression profiles for their target genes, espe-
cially when few conditions or time points are sampled. This problem can only be
addressed by using external information about the biological function of the genes in
a cluster. For example, one might like to partition the cluster further using pathway
information (e.g., from the GO database [63]). The subclusters will then contain genes
that are coexpressed and belong to the same pathway. These genes are more likely to
be regulated by the same TFs.

Sequence- or ChIP-chip-based regression models try to circumvent the clustering
paradigm. The REDUCE algorithm [36] and the MA-Networker [46] algorithm as-
sume that the expression of a gene is the result of additive contributions of a set of
regulators. In REDUCE, the contributions are based on the number of motif occur-
rences in the upstream sequence of a gene in combination with the corresponding
TFAs. In MA-Networker, the contributions are based on the TFs ChIP log-ratio. In
both cases, TFAs are inferred through a linear regression model, implying that the TF
contributions are additive. The extent to which this assumption is true needs further
investigation, especially for organisms with intricate gene regulation like the complex
eukaryotes.

NCA algorithms provide an elegant way to decompose the gene regulatory net-
works. They require that the networks under study are “NCA compliant”, that is,
they satisfy the three criteria proposed by Liao et al. [50] (see above). For biological
networks, this is somewhat restrictive from many aspects, but mainly because the
connectivity matrix needs to be known a priori in order to test one of the criteria.
This is not feasible for many practical applications.

FA algorithms avoid this problem by calculating concurrently both the connec-
tivity matrix and the matrix with the TFA profiles. One of the advantages of the FA
algorithms is that their way of modeling the gene networks closely resembles the
nature of biological data: A number of observed variables (gene expression data) are
represented by a smaller number of hidden variables (TFAs). Another advantage of
the Bayesian FA algorithms, in particular, is that they can incorporate prior informa-
tion or enforce sparsity of the matrix through priors. In a comparative study of five
FA algorithms on simulated and real biological data, Pournara and Wernisch [58]
found all five to perform similarly well. The authors demonstrated that given a sparse
biological network, FA algorithms can reconstruct the TFAs in the absence of a priori
connectivity information. They also showed that averaging the connectivity matrix
values obtained from all algorithms generally improves the performance.

This chapter offers an introduction to the physical network algorithms (TF to
sequence interactions) and presents few representatives of what we think are the
four major categories. This presentation cannot be exhaustive. There is a plethora of
algorithms developed in the past few years, and interested readers can refer to recent
reviews [4, 64] for more information.
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12.4.1 Future Prospects and Challenges

The existing algorithms perform reasonably well in reconstructing artificial and real
data, especially those derived from simpler, unicellular organisms. However, some
recent discoveries come to complicate further the network inference and challenge the
efficiency of the existing algorithms. For example, it has been shown [65, 66] that the
CTCF protein binds to the DNA in a sequence-specific manner and transcriptionally
isolates parts of the promoter region of the genes. This will naturally complicate
models that are based on TF binding site prediction to model regulatory networks.
Also, the ENCODE project [67] reported that TF binding sites are present upstream
as well as downstream from the genes’ transcription start sites. This will definitely
affect the physical interactions algorithms, as it will become necessary to extend the
search space for binding motifs.

More worrisome is the fact that they found that a large part of the genome is
transcribed. Although the biological role of all these transcripts is yet unknown, it
is highly likely that they would need to be considered in the construction of regula-
tory networks in the future. microRNA (miRNA) genes, in particular, are known to
play an important role in silencing other genes [68]. miRNA genes are short (22–25
nucleotides long) noncoding genes and can downregulate protein-coding genes by
means of base complementarity to their mRNA transcripts [69], which leads to an
acceleration in the mRNA degradation rate or blocking of translation. One miRNA
gene can have many targets and multiple miRNA genes can target a mRNA.

Despite the importance of miRNAs in gene regulation, there is only one algo-
rithm that incorporates miRNA genes in reconstructing regulatory networks [70].
This is in part due to the scarcity of high-throughput data for miRNA gene expression
and in part due to the lack of knowledge about their transcription. Although many
studies have shown that miRNA genes are transcribed by RNA polymerase II with
mechanisms similar to those of protein-coding genes [1, 71, 72], their precise start
of transcription is still unknown for the most cases. The principles behind many of
the algorithms presented in this chapter, however, could easily accommodate miRNA
genes once the details of their transcription become known. We should note, however,
that microarray techniques cannot distinguish the protein-coding genes that are trans-
lationally repressed by miRNA genes, hence imposing another challenging problem
for network modeling.

In the last 12 years since its appearence in the biological research field, microarray
data transformed the way research is conducted. We have progressed from the one-
gene-one-hypothesis reductionist approach to the holistic view of systems biology.
Reconstructing gene regulatory networks from microarray and ChIP-chip data has
met reasonable success, but the complicated biological world raises more challenges.
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13.1 INTRODUCTION

Each individual human gene is under the control of a large set of transcription factors
that can bind upstream and downstream of its transcription start site (TSS) [1]. These
sites typically arrange into collections of neighboring sites, the so-called modules
or enhancers. Modules of transcription factors that act on focused genomic regions
have been shown to be far more effective than individual factors on isolated locations
and can act from large distances up to hundreds of thousands of base pairs. In an
ideal case, such transcription factor modules can be identified by parallel and com-
parative analysis of their binding sites. Here, bioinformatics approaches can be of
great help, in case they can predict the actions of the transcription factors precisely
enough [2].
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13.2 NUCLEAR RECEPTORS

Nuclear receptors (NRs) form a superfamily with 48 human members, of which most
have the special property to be ligand-inducible [3, 4]. This property has attracted
interest in the NR family as possible therapeutical targets. NRs are the best charac-
terized representatives of approximately 3000 different mammalian proteins that are
involved in transcriptional regulation in human tissues [5]. NRs modulate genes that
affect processes as diverse as reproduction, development, inflammation, and general
metabolism. They were first recognized as the receptors for the steroid hormones
estradiol (ER � and �), progesterone (PR), testosterone (AR), cortisol (GR), and
aldosterol (MR) for thyroid hormones (TR � and �) and for the biologically active
forms of the fat-soluble vitamins A and D, all-trans retinoic acid (RAR �, �, and �),
and 1�,25-dihydroxyvitamin D3 (VDR). This group of 12 NRs constitutes the classic
endocrine NR subgroup. They can be defined functionally as being able to bind their
specific ligand with a Kd of 1 nM or less [3]. The 36 remaining NRs are structurally
related to the endocrine NRs but were orphans at the time of their cloning because
neither their ligands nor their physiological functions were initially known [6]. Dur-
ing the past 17 years, however, natural and synthetic ligands have been identified for
nearly half of these receptors. They now form the group of adopted orphan NRs [7].
Interestingly, most of the latter group of NRs have as their natural ligands dietary
components, such as lipids or exogenously derived compounds, which are encoun-
tered in the micro- to millimolar concentration range. Subsequently, these receptors
have activation thresholds (in terms of Kd) in the same molar range. This functionally
separates them from the endocrine receptors. The current model of NR signaling is
schematically depicted in Figure 13.1.

Figure 13.1 Molecular mechanism of NR action. NRs interact with discrete sequences in the
proximity of genes to modulate transcription, a process that is governed by chromatin status and
the availability of ligand and coregulators.
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13.2.1 NRs as a Link between Nutrition Sensing and
Inflammation Prevention

The interrelation of NRs, their diet-derived ligands, and metabolizing enzymes is a
central issue in the new discipline nutrigenomics, which is the study of the impact of
nutrient-derived compounds on the genome. It also encompasses the effects of food
on physiological functions such as resistance to external assault from opportunistic
pathogens [8]. For example, both nutritional overload and undernourishment have
implications for immune function, and consequently, metabolism and immunity are
closely linked [9]. Starvation and malnutrition can suppress immune function and
increase susceptibility to infections, whereas obesity is associated with a state of
aberrant immune activity and increasing risk for associated inflammatory diseases,
including airway inflammation and fatty liver disease, a condition that impairs those
organs’ role in immunity [10].

One emerging concept in context of many diseases is the role of the immune sys-
tem. Taking the nutrigenomics perspective and recognizing the lifestyle changes in
the Western society, obesity can be taken as an example of a disease state character-
ized by a strong link with immune functions. Moreover, obesity is a strong risk factor
to develop type 2 diabetes and atherosclerosis, making it one of the major health con-
cerns of the industrialized world. In obesity, adipose tissue becomes inflamed both
via infiltration by macrophages and as a result of adipocytes themselves producing
inflammatory cytokines [11, 12]. Inflammation of adipose tissue is a crucial step in
the development of peripheral insulin resistance [9]. In addition, in proatheroscle-
rotic conditions, such as obesity and dyslipidemia, macrophages accumulate lipid
to become foam cells in vessel wall plaques, where local inflammation is initiated.
Inflammation itself is not problematic, if it is controlled and short term. During mi-
crobial infection, the inflammatory response defends the body while suppressing
appetite and conserving fuel. An ill body is capable of defending itself by releasing
adrenal steroids, mobilizing massive amounts of fuel, and finally suppressing inflam-
mation once the pathogen is cleared. Concerning the latter aspect, the role of NRs
is well-recognized. In fact, natural and synthetic GR ligands are used primarily as
anti-inflammatory agents [13]. Other NRs, such as VDR, PPAR, RAR, and liver X
receptor, also protect against inflammation. These receptors have the combined abil-
ity to manage energy and inflammation, indicating the important synergism between
these two systems (Figure 13.2).

The duality between inflammatory and metabolic pathways is also highlighted by
the overlapping biology and function of macrophages and adipocytes in obesity [9].
Gene expression of both cell types is highly similar; macrophages express many, if
not the majority of “adipocyte” gene products, such as lipid-metabolizing and trans-
porting proteins, while adipocytes can express many “macrophage” proteins, such
as cytokines [14]. Inflammatory pathways can be initiated by extracellular media-
tors, such as cytokines and lipids, or by intracellular stresses, such as endoplasmic
reticulum stress or excess reactive oxygen species production by mitochondria. NRs
oppose these inflammatory pathways by promoting nutrient transport and metabolism
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Figure 13.2 Potential interactions of NRs with complex processes. NR target genes regulated
many physiological functions. When these pathways are dysregulated, they eventually result in
disease states.

and antagonizing inflammatory activity. In conditions of overnutrition, this becomes
a particular challenge.

The commonality between distinct physiologic branches suggests that the NR
superfamily should be investigated by systems biology approaches as an intact func-
tional dynamic entity. Recent studies by the NURSA consortium (www.nursa.org)
have provided evidence supporting this concept. They examined the expression of all
NRs in both macrophages stimulated by the stress ligands, lipopolysaccharide, and
IFN� [15] and adipocytes induced by GR and PPAR� ligands [16]. In both cases, a
subset of NRs was readily detectable with some of them, for example, VDR, rising
in expression levels at various time points during the induction process. This implies
new, presently overlooked roles for these NRs and their ligands. Furthermore, the dis-
covery of increases in expression of certain NRs at intermediate and late time points
indicates the importance of a multitude of NRs in the proper execution of complex
processes. These and other observations suggest that larger organizational principles
exist on the level of transcription factors and of enzyme complexes in the nucleus, the
cytoplasm, and membranes that contain NRs or their target gene products. A molec-
ular understanding of how the NR superfamily integrates important physiological
aspects will provide a conceptual basis for the treatment of complex human diseases
(Figure 13.2).

13.2.2 NRs and System Biology

Until recently, approaches to diseases and gene function, in general, tended to focus
on one gene at a time. In the last 10 years, high-volume research approaches have
allowed scientists to grasp the total information contained within a cell concerning
transcriptional activity, protein content, and metabolites. One way to monitor and
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analyze these massive amounts of data is systems biology, which aims both to re-
duce experimental data to meaningful paradigms and also build up in silico testable
hypotheses [17]. However, systems biology can do more than describing generic
patterns within gene expression. The fine regulation of the NR network is specific
to each human individual and depends on the constellation of regulatory small nu-
cleotide polymorphisms (SNPs) in his/her genome [18]. It is envisaged that some of
these regulatory SNPs will affect the binding of NRs to a subset of REs in their target
genes. This could determine an individual’s susceptibility to age-related diseases such
as type 2 diabetes, atherosclerosis, cancer, and Alzheimer’s disease.

Systems biology will also help to identify biomarkers (whether it be genes, proteins,
or metabolites) for the early detection of these diseases [19]. NRs are able to integrate
various central physiological actions in the human body. Therefore, NR signaling will
benefit from an analysis with systems biology methodology on the level of (i) binding
sites and changes of chromatin packaging in NR target genes, (ii) comparative mRNA
expression of NR target genes in various human tissues, (iii) analysis of key NR target
proteins and metabolites, and (iv) physiological consequences of NR signaling.

This review focuses on the PPAR subfamily of NRs studied within a Marie Curie
research training network of 14 research teams (www.uku.fi/nucsys), which is
funded by the FP6 program of the European Union.

13.3 THE PPAR SUBFAMILY

PPARs are adopted NRs that were initially described as the sensors for compounds
that induce peroxisome proliferation in rodents [20], but now they are know to be
important sensors of cellular levels of fatty acids and fatty acid derivatives that are
mainly derived from the lipoxygenase and cyclooxygenase pathways [3]. Polyunsatu-
rated fatty acids activate the three PPAR subtypes with relatively low affinity, whereas
fatty acid derivatives show more binding selectivity [21]. PPARs are prominent play-
ers in the metabolic syndrome because of their role as important regulators of lipid
storage and catabolism [22], but they also regulate cellular growth and differentiation
and, therefore, have an impact on hyperproliferative diseases such as cancer [23].
Bioinformatics approaches to identify genomic targets of PPARs and important regu-
latory modules with colocalizing PPREs, as they will be described below, should have
a major impact on understanding the role and potential therapeutic value of PPARs
in complex disease.

The three PPAR subtypes �, �/�, and � are coexpressed in numerous cell types
from either ectodermal, mesodermal, or endodermal origin, although their concentra-
tion relative to each other varies widely [24, 25]. PPAR� is highly expressed in cells
that have active fatty acid oxidation capacity, including hepatocytes, cardiomyocytes,
enterocytes, and the proximal tubule cells of the kidney [26]. This PPAR subtype is
a central regulator of hepatic fatty acid catabolism and glucose metabolism. Further-
more, it potently represses the hepatic inflammatory response by downregulating the
expression of numerous genes such as various acute phase proteins. PPAR� is the
molecular target for the hypolipidemic fibrates, a group of drugs that are prescribed
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for their ability to lower plasma triacylglycerols and elevate plasma high-density
lipoprotein levels. PPAR�/� is expressed ubiquitously and often displays higher ex-
pression levels than PPAR� and �. It stimulates fatty acid oxidation in both adipose
tissue and skeletal muscle, regulates hepatic very low density lipoprotein production
and catabolism, and is involved in wound healing by governing keratinocyte differ-
entiation [27]. PPAR� is expressed predominantly in adipose tissue and the immune
system and exists as two distinct protein forms �1 and �2, which arise by differential
TSSs and alternative splicing [26]. PPAR� is the master regulator of adipogenesis and
regulates cell cycle withdrawal, as well as induction of fat-specific target genes that are
involved in adipocyte metabolism [28]. PPAR� stimulates the expression of numerous
genes that are involved in lipogenesis, including those for adipocyte fatty acid-binding
protein, lipoprotein lipase, and fatty acid translocase. The general role for PPAR� in
the regulation of lipid metabolism is underlined by the therapeutic utilization of the
PPAR� ligands thiazolidinediones in obesity-linked type 2 diabetes [29].

Being transcription factors, the role that each PPAR subtype plays in different
disease settings is reflected by the number and kind of target genes regulated in
each tissue type. Current technologies allow researchers to address transcriptional
regulation on a transcriptome-wide level using microarrays. A good example of a
transcriptional approach in the PPAR field is the nutrigenomics initiative addressing
PPAR� target genes in liver and other metabolically active tissues [30, 31]. Integration
of several microarray studies comparing wild-type and PPAR� knockout mice, and
high-fat diet-induced response to synthetic ligand response, identified several novel
PPAR target genes functioning in hepatic lipid metabolism that had not been identified
before despite much research dedicated on characterizing the role of PPARs in these
pathways [32].

13.3.1 Global Datasets that Identify a Central Role for
PPARs in Disease Progression

Within the field of top–down systems biology, emphasis is on network perturbations to
understand disease. An important challenge will be to identify the critical networks
where NRs play a role. Recently, two association studies that aimed to link gene
expression profiles to clinical traits and identify underlying genetic loci suggest that a
critical macrophage network is associated with clinical traits for metabolic syndrome
in mouse and human [33, 34]. The mouse study identified associations of this network
with glucose and insulin levels, blood pressure, aortic lesion formation, and obesity,
whereas the human study focused on genetics of obesity only. PPAR� is one member
of that network and the association of the expression level was validated by single
gene perturbation in mouse. Furthermore, in a study of macrophage activation, where
transcription factor expression profiles and target gene profiles were correlated and
supported by binding site search data, PPAR�, retinoid X receptor (RXR) �, GR, and
estrogen-related receptor-1 were differentially regulated [35]. The target genes found
with TRANSFAC motif of PPAR�–RXR (which according to our experience does
not differ significantly from PPAR�-binding profile) were identified from a cluster
with early and sustained induction profile, the members of which were suggested to
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maintain the response. In effect, such global and unbiased approaches also suggest a
critical role for macrophages in determining key clinical phenotypes and an important
role of PPARs in macrophage function as was already discussed earlier.

To understand more deeply the function of PPARs in cells, global binding site
occupancy data will be needed to validate in silico predictions and to understand
differences between tissues that vary on chromatin organization level. This type of
data collection for transcription factors and chromatin modifications is the focus of
the ENCODE project [57]. From the NR superfamily, RAR� and hepatocyte nuclear
factor � (HNF4� ) are represented. RAR� is studied in connection with neutrophil dif-
ferentiation together with other transcription factors, coregulators, and histone modi-
fication in retinoic acid stimulated cells (Affymetrix chromatin immunoprecipitation
(ChIP)-chip track [36]). HNF4� is studied together with other key liver transcription
factors and histone 3 acetylation that marks active regions in liver cells (Uppsala ChIP
track [37]). ChIP-chip data exist also for ER� [38], and it is now recognized that distal
binding sites are widely used by NRs and that their arrangement into modules with
other transcription factors is being explored.

13.3.2 PPAR Response Elements

An essential prerequisite for the direct modulation of transcription by PPAR ligands
is the location of at least one activated PPAR protein close to the TSS of the respective
primary PPAR target gene. This is commonly achieved through the specific binding
of PPARs to a DNA-binding site, a so-called PPRE, and DNA looping toward the TSS
[39]. In detail, the DNA-binding domain of PPARs contacts the major groove of a
double-stranded hexameric DNA sequence with the optimal AGGTCA core binding
sequence. PPARs bind to DNA as heterodimers with RXR [40] (Figure 13.1). PPREs
are, therefore, formed by two hexameric core-binding motifs in a direct repeat orien-
tation with an optimal spacing of one nucleotide (DR1), where PPAR occupies the
5′-motif [41]. However, characterization of PPREs from regulated gene promoters has
resulted in a large collection of PPREs that deviate significantly from this consensus
sequence. An extensive binding data collection for PPARs was recently published
[42], where more critical deviations and well-tolerated deviations from the consen-
sus were identified. In the following paragraphs, we will focus on the importance of
binding site prediction for the systems biology approach.

13.4 METHODS FOR IN SILICO SCREENING OF
TRANSCRIPTION FACTOR-BINDING SITES

Statistically, a NR core-binding motif, such as RGKTSA (R=A or G, K=G or T, S=
C or G), should be found, on average, in every 256 bp of genomic DNA. Furthermore,
dimeric assemblies of such hexamers should show up as direct repeats every 65,536 bp
and as everted repeats every 32,768 bp in a random sequence. Therefore, an in silico
screen of the human genome would identify for every NR on an average of 50,000–
100,000 putative REs. Since NR proteins have an abundance of at most a few thousand
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molecules per cell, a biologically realistic number of NR target genes per cell should
be closer to this number. If we also consider the fact that many NR target genes
appear to have more than one functional RE for any given NR, it could be expected
that the real number of NR target genes in any cell type is much less than the number
of NR molecules. These calculations make it obvious that not every putative NR-
binding site is used in nature in any cell at any given time. Further background on the
bioinformatics of NRs is summarized by Danielsen [43].

The specificity of PPARs for their binding sites allows constructing a model to
describe the PPRE properties that can be used to predict potential binding sites in ge-
nomic sequences. For this, the PPAR-binding preference, often expressed as position
weight matrix (PWM), has to be described on the basis of experimental data such as
series of gel shift assays with a large number of natural binding sites [44–47]. How-
ever, PPAR–RXR heterodimers do not only recognize a pair of the consensus-binding
motifs AGGTCA, but also a number of variations to it. Independent of the individual
PWM description, this leads to a prediction of PPREs every 1000–10,000 bp of ge-
nomic sequence. This probably contains many false-positive predictions, which are
mainly due to scoring methodology and the limitations that are imposed by the avail-
able experimental data. For example, the quantitative characteristics of a transcription
factor, that is, its relative binding strength to a number of different binding sites, are
neglected in a position frequency matrix, where simply the total number of observa-
tions of each nucleotide is recorded for each position. Moreover, in the past, there
was a positional bias of transcription factor-binding sites upstream in close vicinity
to the TSS. This would be apparent from the collection of identified PPREs but is
in contrast with a multigenome comparison of NR-binding site distribution [48] and
other reports on wide-range associations of distal regulatory sites [49]. Genome-wide
approaches for the identification of NR REs and NR target genes are reviewed by
Tavera-Mendoza et al. [50].

Internet-based software tools, such as TRANSFAC [51], screen DNA sequences
with databases of matrix models. One approach used PWMs to describe the binding
preferences of PPARs using all published PPREs [52]. The accuracy of such methods
can be improved by taking the evolutionary conservation of the binding site and that of
the flanking genomic region into account. Moreover, cooperative interactions between
transcription factors, that is, regulatory modules, can be taken into account by screen-
ing for binding site clusters. The combination of phylogenetic footprinting and PWM
searches applied to orthologous human and mouse gene sequences reduces the rate of
false predictions by an order of magnitude but leads to some reduction in sensitivity
[53]. Recent studies suggest that a surprisingly large fraction of regulatory sites may
not be conserved but yet are functional, which suggests that sequence conservation
revealed by alignments may not capture some relevant regulatory regions [54].

In effect, these approaches and tools are still insufficient, and there has to be a
focus on the creation of bioinformatics resources that include more directly the bio-
chemical restrains to regulate gene transcription. One important aspect is that most
putative REs are covered by nucleosomes, so that they are not accessible to the re-
spective transcription factor. This repressive environment is found in particular for
those sequences that are either contained within interspersed sequences, are located



BINDING DATASET OF PPREs AND THE CLASSIFIER METHOD 317

isolated from transcription factor modules or lie outside of insulator sequences mark-
ing the border of chromatin loops [55]. This perspective strongly discourages the idea
that isolated, simple PPREs may be functional in vivo. In turn, this idea implies that
the more transcription factor-binding sites a given promoter region contains and the
more of these transcription factors are expressed, the higher is the chance that the
chromatin on this area of the promoter becomes locally opened.

The PAZAR information mall [56] is a tertiary database that is build on the re-
source of a multitude of secondary databases and provides a computing infrastructure
for the creation, maintenance, and dissemination of regulatory sequence annotation.
The unambiguous identification of the chromosome location for any given transcrip-
tion factor-binding site using genomic coordinates allows to link the results from
“big biology” projects, such as ENCODE [57], and other whole genome scans for
histone modification and transcription factor association. Unfortunately, so far, only
a few boutiques have been opened inside the PAZAR framework. In order to benefit
from binding site predictions, it is still necessary to explore dedicated resources. For
example, the well-known regulator of cell cycle progression, the transcription factor
p53, has an own dedicated database (p53FamTaG) for integration of gene expression
and binding site data [58].

13.5 BINDING DATASET OF PPREs AND THE CLASSIFIER METHOD

A general requirement for systems biology approaches is the existence of coherent and
informative quantitative datasets. Approaches for NR RE predictions have been based
on a collection of disparate binding data and in general lack quantitative compari-
son of different experimental results. To combine evidence from several publications
for an efficient binding model has challenges, thus creating a demand for a coher-
ent binding dataset. The recently published classifier method [42] used the in vitro
binding preferences of the three PPAR subtypes on a panel of 39 systematic single
nucleotide variations of the consensus DR1-type PPRE (AGGTCAAAGGTCA) [59]
as an experimental dataset. Since then, similar datasets have been created for other
transcription factors [60]. One way to utilize such a data type is to create an affinity
matrix as was chosen for p53. However, initial trials to correlate binding strength
of a multiple variant dataset to matrix scores were discouraging and an alternative
more empirical, approach was chosen. The single nucleotide variants were sorted into
three classes, where in class I the PPAR subtypes are able to bind the sequence with
a strength of 75 ± 15 percent of that of the consensus PPRE, in class II with 45 ±
15 percent, and in class III with 15 ± 15 percent. Although the overall binding pat-
tern of the three PPAR subtypes showed no major differences, some variations gave
rise to a PPAR subtype-specific classification. Additional 130 DR1-type PPREs were
sorted on the basis of counting increasing number of variations from the consensus
and taking into account the single nucleotide variant binding strength. Those variants
that alone decrease the binding only modestly (class I) could be combined with even
three deviations from consensus still resulting in more than 20 percent binding rel-
ative to consensus. Other combinations resulted in faster loss of binding detailed in
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11 categories, where such combinations still resulted in more than 1 percent relative
binding. The in silico binding strength predictions of PPAR–RXR heterodimers were
confirmed by gel shift assays for the six PPREs of the uncoupling protein 3 gene
and showed a deviation of less than 15 percent, outperforming the affinity matrix and
weight matrix that were created using the same datasets.

The main advantage, when comparing the classifier to PWM methods, is a clear
separation between weak PPREs and those of medium and strong strength [42]. For the
discovery of potential binding sites, this is extra information that could be especially
of interest in processes considered context dependent, for example, for PPREs that
reside in genomic context of transcription factor modules. Predicting the strength of
PPAR binding can be a predictor of how prominent effect this receptor can have on a
target gene. For example, if binding is easily competed by other transcription factors,
the effect may not manifest in most tissues or it may manifest only in tissues expressing
all transcription factors of a module containing the PPRE. As an example of the latter
case, the insulin-like growth factor binding protein 1 gene has a weak PPRE located
inside a well-conserved area (suggesting the presence of other transcription factor-
binding sites) and was only in liver responsive to PPAR ligands [59]. In contrast, genes
with strong PPREs, such as carnitine palmitoyltransferase 1A and angiopoietin-like
4, are PPAR responsive in many tissues (Heinäniemi et al., unpublished data).

13.6 CLUSTERING OF KNOWN PPAR TARGET GENES

The data added by binding strength analysis and by covering a larger regulatory
region (±10 kB) was examined with all 38 human genes that are known to be primary
PPAR targets together with their mouse ortholog. The clustering by predicted binding
strength and evolutionary conservation of their PPREs resulted in four groups [42].
In general, clusters I–II contain genes that are well-conserved between human and
mouse. Cluster I contains genes that carry multiple conserved PPREs, while genes in
cluster II have only one or two strong or medium conserved PPRE in human, which
are found in comparable strength and location in the mouse. Cluster III contains genes
that have strong or medium PPREs in one species that are conserved only as weak
PPREs in the other species. Finally, cluster IV contains more than 25 percent of all
tested genes, which have the common property that they carry one or more PPREs,
but none of them is conserved. These examples suggest that regulation of target gene
can survive turnover of binding sites and might even benefit from it.

The clustering analysis indicated some useful features for whole genome PPRE
screens. The presence of strong PPREs or more several medium strength PPREs
within the 20 kB surrounding the annotated TSS of a gene was a strong indication
for a PPAR target gene. In this way, 28 out of the 38 human genes would have been
identified as PPAR targets. Similarly, for 29 of these 38 genes, the analysis of their
murine ortholog would have come to the same conclusion. A combination of these
two criteria (passing the threshold in either the human or mouse ortholog) would have
identified 37 out of the 38 genes as PPAR targets. In this approach, full alignment
is not required, just preservation of what could be called PPAR-binding potential.
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The more strong PPREs a gene has accumulated, the smaller the chances are that
given all 250 human tissues, none of these sites would get accessible or be built into
a regulatory module with other transcription factor-binding sites.

13.6.1 A Look at PPREs in their Genomic Context:
Putative Target Genes and Binding Modules

In the paper described above, the gene-dense human chromosome 19 (63.8 MB, 1445
known genes) and its syntenic mouse regions (956 genes have known orthologs) were
selected for an in silico screening based on the above explained criteria, that is, both
species were investigated for medium and strong PPREs (based on a PPAR� predic-
tion) [42]. Interestingly, 20 percent of genes of chromosome 19 contain a colocalizing
strong PPRE, and additional 4 percent have more than two medium PPREs or a
proximal medium PPRE. Experimentally, a complete evaluation of the selectivity of
any such screen is complicated by the restricted expression profiles of the predicted
genes, which prevents simple readouts from individual target tissues. When requiring
the detection in human and mouse, 12.1 percent of genes from chromosome 19 were
predicted as PPAR targets. As has been outlined in the previous discussion, a bind-
ing site screen will gain more power, when it can be integrated with other genomic
screens, both experimental and bioinformatics. In a vision for future of targeting reg-
ulatory modules with colocalizing PPREs, a PPRE track provided by bioinformatics
approaches can be compared against evidence of other regulatory modules provided
by conservation analysis and screens for other transcription factors (Figure 13.3).
Experimental data comparing regulation in a disease state versus normal cells can
be visualized in the same context to detect overlap in functional binding sites. Given
the high interest of the scientific community to better characterize binding profiles
of different transcription factors and the improved experimental techniques to detect
genome-wide binding events, such additional tracks combined with a PPRE-binding
track could be available in near future. Importantly, these datasets will motivate stud-
ies that aim to integrate the knowledge with systems biology methodology in order
to model NR function in healthy versus disease state in various human tissues.

13.7 CONCLUSION

The identification of genes showing a primary response to NRs and their ligands,
the so-called NR regulome, can be used as a prediction of their therapeutic potential
as well as their possible side effects. Methods incorporating both experimental- and
informatics-derived evidence to arrive at a more reliable prediction of NR targets
and binding modules can bring all available data together with the aim to predict
outcome in a specific context. Taking the chromosome 19 in silico screening trial for
PPREs as an example and extrapolating the results to the whole human genome, we
suggest that approximately 10 percent of all human genes (an estimate of 2000–2500
genes) have the potential to be directly regulated by a specific NR by their RE content
within 10-kB distance to their TSS. Translated to regulatory modules that colocalize
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Figure 13.3 The superimposition of the PPRE tracks on other genome-wide datasets can reveal
promising PPRE-containing binding modules for targeted therapy via PPAR activation. In this
imaginary setting, transcription factor 1 (black triangles) is known to be one main regulator of
the hypothetical gene X, and this regulation is altered in diabetes. Transcription factor 2 (repre-
sented by white squares) synergistically activates gene X but is lost in insulin-resistant beta cells.
ChIP data comparing normal and disease state-binding profiles for this transcription factor reveal
two main regulatory modules under normal conditions and a weaker binding in insulin-resistant
samples due to loss of transcription factor 2. Combining these datasets with knowledge of PPAR
binding and target genes will create hypothesis about their potential role in this disease setting.
The gene is characterized by high enrichment of strong PPREs in several species providing
strong evidence that PPARs can regulate this gene. A colocalizing PPRE in module 2 could en-
able PPARs to replace ranscription factor 2 in this module and to restore strong activation of the
gene.

with REs, an even larger number of genomic regions could be targeted by a given
NR. In conclusion, in this chapter, we have addressed the identification of direct
targets using genomic sequences and binding data. In parallel, we have discussed the
potential of looking for NR REs inside regulatory modules foreseeing that in future,
very likely, the emphasis will shift from target genes to target regulatory modules to
alter a physiological response and from individual genes to whole genome response.
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14.1 SOME BACKGROUND, MOTIVATION, AND OPEN QUESTIONS

Life mechanisms have been addressed in microbiology with a model-organism
approach that has dominated the history of biology of the past century. Today, the
large availability of genomic data coming from genome sequencing and from new
high-throughput technologies has changed radically the nature of investigations that
are envisaged in molecular biology. For the first time, an organism and its chang-
ing environment can be considered together and in concert with a multitude of other
organisms. Evolutionary hypothesis start to be tested at a large scale.

Even though the experimental power is present, our understanding of microbe–
environment interactions is still in its infancy, and upcoming discoveries and advances
in geomicrobiology are likely to come from all areas of this discipline. This is a
particularly good time for experimentalists to interact together with bioinformati-
cians, biomathematicians, and biophysicists for defining new experimental questions,
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analyze large amount of data, and model phenomena that characterize the new
dimension within which microbiology lives today.

Microorganisms, Genome Sequences, and Comparative Genomics. The avail-
ability of a large number of genomes provides the possibility to study biodiversity
between species, within species, and even within strains by comparing what is miss-
ing and what is common at a genetic level. Satisfactory formal methods and models
to study similarities within the diversity have been developed, but methods to study
differences within a diversity are much harder to envisage. On the experimental level,
we experience a similar situation. Interaction and back-and-forth between experi-
mentalists and bioinformaticiens/modelers, which can direct both experiments and
modeling, is demanded in such a setting.

Evolutionary questions concerning chromosomal integrity, genomic expansion,
chromosomal rearrangements, mobility of genetic elements, lateral gene transfer,
gene share and gene loss among strains and across species, gene creation, evolution
of duplicated genes, modular gene organization, gene essentiality and chromosomal
organization, and sexual proliferation are at the heart of microbiology today and they
need to be addressed. In fact, any question concerning the way that noncoding infor-
mation in genomes, genes, and genome architecture influence and direct the biology
of the microbe, such as its virulence or adaptiveness under specific environmental
conditions, constitutes a major preoccupation in the field of microbiology. Adaptive
and nonadaptive processes in a cell, including genomic adaptiveness (for bacteria,
viruses, and eventually eukaryotic unicellular organisms), networks adjustment un-
der changes in environmental conditions, and modular rearrangements in genome
architecture are other key questions for microbiology. Together with this, the un-
derstanding of structural and functional relations in proteins, the fate of duplicated
protein sequences, and speciation via divergent evolution of duplicated genes, are
also key concerns.

Microorganisms and their Organization. What information can we extract from
genomes concerning the biology of the organism? Statistical analysis has lead to
the identification of statistical conditions (purely based on composition and on no
biological information about the life of the organism) to determine the optimal growth
temperature of a bacteria, to organize bacteria with respect to their ecological niche, to
determine which genes are essential for the life of a unicellular organism, to determine
essential metabolic networks, among others. These results are intimately connected
to the evolutionary processes that an organism has undergone and any insight into
the origins of evolutionary pressures is most useful for a correct understanding of
the evolutionary history of the organism. It is this history that justifies today the
specificities of the organism’s life.

Several types of measures that induce organismal classifications might be
introduced. Some of these measures try to detect environmental organization, some
other physiological similarities, and others phylogenetic proximity. Differences be-
tween phylogenetic, physiological, and environmental information lead to different
classifications of the microbial world. Such organizational differences are bound to
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be important for the understanding of evolution. In this respect, it might be that the
understanding of the metagenomic data (i.e., DNA data coming from environmen-
tal genomic analysis, corresponding to multispecies communities of organisms that
usually either have not been attempted to culture or have been resistant to cultur-
ing efforts) will be possible only if these three conceptually different classification
paradigms for organisms will be cleared out.

Another important paradigm for classification that has risen in these last years is
induced by chromosomal rearrangements. It has been observed that it does not corre-
spond to phylogenetic organization. What sort of biological information is associated
with genome reorganization? Is it dependent on environmental pressure? Or perhaps
on physiological constraints?

Microorganisms, Metagenomics, and Comparative Genomics. In recent years,
it became clear that comparative genomics will soon include metagenomic data and
metagenomic reconstruction of partial metabolic information for different ecological
niches. This new incoming information will no doubt bring a fresh view on more
classical model organisms. The study of the microbe–environment relation demands
to take into consideration the fact that the 99% of the microorganisms visualized
microscopically in environmental samples are not cultivated by routine techniques.
This reality underlies the difficulty to make sound ecological inferences based on
metabolic properties of a few cultivable species.

Even if this point should be addressed, we need to keep in mind that cultivable
species propose a setting where environmental conditions and changes in environ-
mental conditions can be tested and where the behavior of microbial populations can
be modeled and analyzed. The hemiascomycetes (to which bakery yeast belongs),
for instance, constitute a group of species that are very useful for learning because
characterized by a compact genome, very different ecological niches, and an easy
experimental handling of several of the species.

Microorganisms and Population Genetics. The fundamental principle underpin-
ning microbial population dynamics is that the survival of a given individual microor-
ganism is ultimately dependent on the metabolic activity of others in its ecosystem.
In this respect, the inclusion of the view of population genetics within the approaches
to genome analysis for understanding diversity of microbial communities and cul-
tures seems necessary. The microbe–environment interaction might turn out to be
entangled with population processes in microbial species, such as natural selection,
demography, and migrations, and the population genetics perspectives might turn out
to provide the conceptual tools for this understanding.

Microorganisms, Metabolism, and Environment. Microorganisms are intimately
involved in transforming inorganic and organic compounds to meet their nutritional
and energetic needs. Because the metabolic waste from one type of species nearly
always provides substrate for another, there is an interdependence between species
growing in close proximity to one another, or alternatively, the communities can be
spatially separated and elemental cycling may take on more complex and convoluted
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pathways. The power of microbial communities is fundamental for life and, today,
experiments can be conceived to meaningfully study microbial communities at dif-
ferent scales.

Questions concerning networks response to environmental changes affecting
microbial eukaryotic and/or prokaryotic communities might be addressed. The func-
tioning of regulation networks will be understood in terms of population biology and
interactions (competition or collaboration) among species.

Adaptiveness is another important phenomena concerning microbial organisms
interacting with their environment. It might be addressed in silico within the context
of genetic variability for bacterial/viral species/strains based on the available data.
Questions on genetic exchanges within species and across species might be also
ground for interdisciplinary work.

In this chapter, we address those computer scientists and mathematicians who want
to learn about some open questions on the bioinformatics of microbial organisms.
We look at microbial organisms with available complete genomic sequences and
demonstrate that we can read evolution signals out of them and derive meaningful
biological information about an organism. The approach is not comparative. We start
from a genome, realize a statistical analysis of its genes, and derive insights into the
biology of the organism guided by statistical biases of codon usage. We aim to find
a general method that can be applied to organisms whose genome is known but for
which not much biological information is available. Results involve the formalization
of microbial spaces, metabolic network comparison, minimal gene sets, host-phage
adaptation, and gene chromosomal organization. One of the main motivations for
this work is to search for a pool of genes that are essential for an organism. This
question is fundamental if we think of synthesizing a genome from scratch and of
attaining genome minimization conditioned by specific environmental conditions and
metabolic activities [1–3].

The guideline to all results presented here is to derive insights into microbial
physiology and habitat directly from genome sequences by means of a purely statis-
tical analysis and an appropriate design of algorithms.

14.2 A FIRST STATISTICAL GLIMPSE TO GENOMIC SEQUENCES

Proteins are formed out of 20 amino acids that are coded in triplets of nucleotides,
called codons. The four nucleotides (A, T, C, G) define 64 codons used in the cell.
Codons are not uniformly employed in the cell, but on the contrary, certain codons
are preferred and we speak about codon bias. There are several kinds of codon biases
and some of them are linked to specific biological functions. Statistical analysis of
DNA sequences and, in particular, of codon bias was performed from the moment
long chunks of DNA sequences were publicly available in the early 1980s [4, 5], and
the roots for these studies can be traced back to the 1960s [6, 7]. However, with the
increasing number of bacterial genome sequences from a broad diversity of species,
this field of research has been revivified in the last few years [8–17].
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Biased codon usage may result from a diversity of factors: GC content, preference
for codons with G or C at the third nucleotide position [18], a leading strand richer
in G+ T than a lagging strand [18], horizontal gene transfer that induces chromo-
some segments of unusual base composition [19], and, in particular, translational bias
that has been frequently noticed in fast growing prokaryotes and eukaryotes [20–25].
Three main facts support the idea of “translational impact”: highly expressed genes
tend to use only a limited number of codons and display a high codon bias [4, 20], pre-
ferred codons and isoacceptor tRNA content exhibit a strong positive correlation [19,
26–28], and tRNA isoacceptor pools affect the rate of polypeptide chain elongation
[30, 31].

To study the effect of translational bias on gene expression, Sharp and Li [20]
proposed to associate with each gene of a given genome a numerical value, called
Codon Adaptation Index or CAI for short, which expresses its synonymous codon
bias (see appendix for the definition). The idea is to compute a weight (representing
relative adaptiveness) for each codon from its frequency within a chosen small pool
of highly expressed genes S and combine these weights to define the CAI(g) value of
each gene g in the genome. For Sharp and Li, the hypothesis driving the choice of S is
that, for certain organisms, highly expressed genes in the cell have highest codon bias,
and these genes, made out of frequent codons, are representative for the bias. Based on
this rationale, one can select a pool of ribosomal proteins, elongation factors, proteins
involved in glycolysis, possibly histone proteins (in eukaryotes) and outer membrane
proteins (in prokaryotes), or other selections from known highly expressed genes to
form the representative set S. Then, CAI values are computed and are checked to be
compatible with genes known to be highly or lowly expressed in the cell. If this is the
case, then predictions are drawn with some confidence on expression levels for genes
and open reading frames, even with no known homologues. Even if conceptually
clear, this framework has been misused several times in the literature and incorrect
biological consequences have been derived for gene expression levels of organisms
that do not display a dominant translational bias, as discussed in Grocock and Sharp
[32]. This confusion motivated us to search for a methodology based on a precise
mathematical formulation of the problem to detect the existence of translational bias.

However, the main motivation for us came from the recognition that an increasing
number of genome sequences will be available for organisms for which biological
knowledge consists merely of a sketched morphological and ecological description.
For these organisms, it might not be evident how to define the reference set S, nor how
to identify a reliable testing set that can ensure that predictions meet a satisfiable confi-
dence level. Still, one would like to detect if translational bias holds for these genomes
and if so, to predict their gene expression levels. If not, one would like to know the
origin of their dominating bias and use this information for genome comparison.

14.3 AN AUTOMATIC DETECTION OF CODON BIAS IN GENES

We proposed a simple algorithm to detect dominating synonymous codon usage bias
in genomes [33]. The algorithm is based on a precise mathematical formulation of the
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problem that leads to use the Self-Consistent Codon Index (SCCI) (strongly correlated
to the CAI measure in translationally biased organisms) as a universal measure of
codon bias, which is a measure for biases of possibly different origins (and not only
for translational bias, as CAI was originally introduced for). The formal definitions
of SCCI and CAI are given in the appendix.

The idea of the algorithm is simple. It is an iterative algorithm that at iteration i+ 1
computes codon weights based on a set S of genes selected at iteration i, then ranks
all genes with respect to their SCCI value, and selects a new set S, which has half
the cardinality of the set determined at iteration i (if at the ith iteration, the selected
set is already constituted by the 1 percent of all genes, then the new set will also be
constituted by 1 percent of genes) and whose genes score the highest. The process is
repeated until 1 percent of genes have been selected and convergence is reached. At
the start, S is the set of all genes.

With the set of coding sequences as a sole source of biological information, the
algorithm provides a reference set S of genes that is highly representative of the
dominant codon bias. This set is used to compute the SCCI of genes not only for or-
ganisms whose biology is well known but also for those whose functional annotation
is not yet available. An important application concerns the detection of a reference
set characterizing translational bias that is known to correlate to expression levels
in many bacteria and small eukaryotes; it detects also leading–lagging strands bias,
GC-content bias, GC3 bias, and horizontal gene transfer. In general, the algorithm
becomes a key tool to predict gene expression levels and to compare species. The
approach has been validated on 96 slow-growing and fast-growing bacteria and ar-
chaeal genomes, Saccharomyces cerevisiae, Plasmodium falciparum, Caenorhabditis
elegans, and Drosophila melanogaster.

14.4 GENOMIC SIGNATURES AND A SPACE OF GENOMES FOR
GENOME COMPARISON

On the basis of this analysis, we propose a novel formal framework to interpret ge-
nomic relationships derived from entire genome sequences rather than individual loci.
This space allows to analyze sets of organisms related by a common codon bias sig-
nature (at times, more than one kind of bias influences the same genomic sequence
and the ensemble of these overlapped biases defines what we call the signature of a
genome) [34]. We give a number of numerical criteria to infer content bias, transla-
tional bias, and strand bias for genome sequences. We show in a uniform framework
that genomes of quite different phylogenetic relationship share similar codon bias;
other genomes grouped together by various phylogenetic methods appear to be sub-
divided into finer subgroups sharing different codon bias characteristics; Archaea
and Eubacteria share the same codon preferences when AT3 or GC3 bias is their
dominant bias; archaeal genomes satisfying translational bias use a more sharply dis-
tinguished set of preferred codons than bacterial genomes do. Our analysis, based on
96 eubacterial and archaeal genomes, opens the possibility that this space might re-
flect the geometry of a prokaryotic “physiology space”. If this turns out to be the case,
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the combination of the upcoming sequencing of entire genomes and the detection of
codon bias signatures will become a valuable tool to infer information on the physiol-
ogy, ecology, and possibly, ecological conditions under which bacterial and archaeal
organisms evolved. For many organisms, this information would be impossible to be
detected otherwise. More recently, our algorithm has been applied to more than 300
genomes and our hypothesis of environmental signature has been supported at larger
scale [35].

Spaces for environmental and physiological classification represent a bacterial
classification alternative to phylogeny and they are closer to the living conditions of
the organism. With a growing number of genomic data available, it becomes more and
more important to have new alternative organizational schemes to understand bacterial
populations and the biology of single organisms within their living environment. The
algorithmic idea working for bacteria should be revisited for metagenomic sequences
for instance and adapted for viral genomes. On such spaces, hypotheses such as
adaptability of a virus to the codon bias of its host can be checked and preliminary
analysis support this hypothesis (see Section 14.8).

14.5 STUDY OF METABOLIC NETWORKS THROUGH SEQUENCE
ANALYSIS AND TRANSCRIPTOMIC DATA

Genes with high codon bias describe in meaningful ways the biological characteristics
of the organism and are representative of specific metabolic usage [36]. In silico
methods exploiting this basic principle are expected to become important in learning
about the lifestyle of an organism and explain its evolution in the wild. We demonstrate
that besides high expressivity during fast growth or glycolytic activities, which have
been very often reported, the necessity for survival under specific biological conditions
has its traces in the genetic coding [36]. This observation opens the possibility to
predict rare but necessary metabolic activities through genome analysis.

High expression of certain classes of genes, like those constituting the translational
machinery or those involved in glycolysis, are correlated particularly well in the case
of fast-growing organisms. By shifting the paradigm toward metabolic pathways, we
notice that several energy metabolism pathways are correlated with high codon bias in
organisms known to be driven by very different physiologies, which are not necessarily
fast growing and whose genomes might be very homogeneous. More generally, we
derive a classification of metabolic pathways induced by codon analysis and show
that genetic coding for different organisms is tuned on specific pathways and that
this is a universal fact. The codon composition of enzymes involved in glycolysis
for instance, often required to be rapidly translated, is highly biased by dominant
codon composition across species (this is indicated by the high CAI value of these
enzymes). In fast growers, the numerical evidence is definitely far more striking than
for other organisms (that is, the absolute difference between the CAI value of these
enzymes and the average CAI value for genes in the genome is “large”), but even for
Helicobacter pylori, a genome of rather homogeneous codon composition, enzymes
involved in glycolytic pathways happen to be biased above average. In the same
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manner, one detects the crucial role of photosynthetic pathways for Synechocystis or
of methane metabolism for Methanobacterium.

mRNA transcriptional levels collected during the S. cerevisiae cell cycle under
diauxic shift [37] (here, glucose quantities decrease in the media during cell cycle
and yeast goes from fermentation to aerobic respiration), have been used to analyze
the yeast metabolic network in a similar spirit as done with codon analysis. A classi-
fication of metabolic pathways based on transcriptomic data has been proposed, and
we show that the metabolic classification obtained through codon analysis essentially
“coincides” with the one based on (a large and differentiated pool of) transcriptomic
data. Such a result opens the way to explain evolutionary pressure and natural se-
lection for organisms grown in the wild, and hopefully, to explain metabolism for
slow-growing bacteria, as well as to suggest best conditions of growth in the labora-
tory.

It is an open question whether this kind of analysis can contribute to the recon-
struction metabolic information from metagenomics data.

14.6 FROM GENOME SEQUENCES TO GENOME SYNTHESIS:
MINIMAL GENE SETS AND ESSENTIAL GENES

The aim of creating a synthetic genome that, when inserted into a cell, can live and
replicate, possibly producing clean energy or curbing global warming [1], recently
increased the interest on the fundamental question of determining which genes are
essential to a microbe.

Computational and experimental attempts tried to characterize a universal core
of genes representing the minimal set of functional needs for an organism. On the
basis of an increasing number of available complete genomes, comparative genomics
[38–44] has concluded that the universal core contains less than 50 genes. In con-
trast, experiments [26, 45–57] suggest a much larger set of essential genes (certainly
more than several hundreds, even under the most restrictive hypotheses) that is depen-
dent on the biological complexity and the environmental specificity of the organism.
Highly biased genes, which are generally also the most expressed in translationally
biased organisms, tend to be overrepresented in the class of genes deemed to be es-
sential for any given bacterial species. Also, all functional classes are represented
by highly biased genes and within different species, highly biased genes with the
same functional role need not be homologous. This association between highly bi-
ased genes and essential genes is far from perfect; nevertheless, it allows to propose
a new computational method based on SCCI to detect to a certain extent ubiquitous
genes, nonorthologous genes, environment-specific genes, genes involved in stress
response, and genes with no identified function but highly likely to be essential for
the cell. Most of these groups of genes cannot be identified with previously attempted
computational and experimental approaches. Notice, for instance, that comparative
genomics infers conclusions only for homologous genes and that certain nonhomolo-
gous highly biased genes could not be identified by this approach. Also, experiments
are run under optimal living conditions for the organisms and stress response genes
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cannot be identified by experiments. The large spread of lifestyles and the unusually
detectable functional signals characterizing translationally biased organisms suggest
to use them as reference organisms to infer essentiality in other microbial species.
In Carbone [58], we analyze in detail 27 organisms belonging to a large variety of
phylogenetic taxa, γ and δ proteobacteria, firmicutes, actinobacteria, thermococcales,
and methanosarcinales; they do not display strong GC nor AT content and are char-
acterized by different optimal growth temperatures [34]. We also discuss the case of
small parasitic genomes, and data from the analysis are compared with those from
previous computational and experimental studies.

14.7 A CHROMOSOMAL ORGANIZATION OF ESSENTIAL GENES

Patterns in chromosomal locations of essential genes have been examined and large-
scale features of bacterial chromosomes were derived [59] (Mathelier and Carbone,
manuscript in preparation). We wanted to check whether essential genes are organized
in regularly spaced groups within the genome, possibly depending on transcription
regulation patterns or on common functional activities of genes in the groups. Both
these possibilities explaining the distribution of genes as a product of structural pe-
riodicity are attractive. The localization of certain essential genes along structural
chromosomal “faces” would have the advantage of creating spatial subregions in
which essential genes could be accessed by limited diffusion of RNA polymerase
or RNA polymerase fixed in factories. The solenoid model [60, 61] and the rosettes
model of chromosomes have been proposed as possible functional and spatial or-
ganizations of the chromosome. The idea behind these models is to bring close in
space different genes through an encoded three-dimensional genomic organization.
The solenoid model organizes loops of DNA along a solenoidal three-dimensional
arrangement and the rosettes model organizes DNA loops radially in a flower-like
three-dimensional structure.

It has been shown that groups of genes regulated by the same transcription factors
in Escherichia coli reveal chromosomal periodicity [61] and that evolutionarily con-
served gene pairs in E. coli also reveal chromosomal periodicity [62]. We considered
the pool of core genes detected by the methodology described above and checked
whether these genes are periodically spaced or not. Genomic core’s genes have to
be either highly expressed or rapidly expressed and we wanted to test the hypoth-
esis that a structured organization of their regulatory elements could help to reach
fast expression. We studied on a large scale the chromosomal organization of some
tens of bacterial and archaeal organisms and find that most of these genomes present
periodic distribution of their core genes along their chromosome [59] (Mathelier
and Carbone, manuscript in preparation). This property is not proved to hold for all
microbial genomes, but, still, it generates important questions on the impact of envi-
ronmental pressures, selective bias, and gene rearrangement constraints in microbes.
We observe that a genome might display several significant periods on the different
strands and that the amplitude of the signal can vary considerably from strand to strand
and from organism to organism. We computed a period of about 33 kb between core
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genes on the chromosomal strands of E. coli with a very pronounced amplitude of the
signal. This seems to indicate that a chromosomal organization is hunted to help the
expression of essential genes, especially within the lagging strands. We also observed
that functional grouping of core genes explains chromosomal periodicity better than
shared transcription regulators.

Periods computation is based on a signal-processing parameterized model and a
Fourier transform analysis. Significance of the periods is established by comparing
the amplitude of this signal with a random model by generating appropriate random
genomes (with the same number of genes and the same distribution of distances
between pairs of adjacent genes). Further investigations on the impact of struc-
tural organization on transcription mechanisms of bacterial organisms need to be
addressed.

14.8 VIRAL ADAPTATION TO MICROBIAL HOSTS AND
VIRAL ESSENTIAL GENES

The notion of SCCI and the algorithmic approach used to study bacterial species have
been recently used to analyze viral genomes and adaptation to their host [63]. Size and
diversity of bacteriophage population asks for methodologies to quantitatively study
the landscape of phage differences. Statistical approaches are confronted with small
genome sizes forbidding significant single-phage analysis and comparative methods
analyzing full-phage genomes represent an alternative to difficult interpretation due to
Lateral Gene Transfer, which creates a mosaic spectrum of related phage species. On
the basis of a large-scale codon bias analysis of 116 DNA phages hosted by 11 trans-
lationally biased bacteria belonging to different phylogenetic families, we observe
that phage genomes are almost always under codon selective pressure imposed by
translationally biased hosts and propose a classification of phages with translationally
biased hosts that is based on adaptation patterns.

The codon bias measure used in the analysis is the SCCI. Namely, SCCI values
reflect codon composition of phage genes relative to host codon composition and
provide a numerical index of the advantage taken by phage genes once translated in
the host environment. This advantage is expected to be higher when phage gene codon
composition is biased toward host codon composition. Through our computational
method based on SCCI, we compare phages sharing homologous proteins, possibly
accepted by different hosts, and observe that throughout phages, independently from
the host, capsid genes appear to be the most affected by host translational bias. For
coliphages, genes involved in virion morphogenesis, host interaction, and ssDNA
binding are also affected by adaptive pressure. If phage genomes were to contain a pool
of essential genes, these functional classes could suggest appropriate candidate genes.
Adaptation significantly affects long and small phages. We analyze in more details the
Microviridae phage space to illustrate the potentiality of the approach. Surprisingly,
we can reconstruct the phylogenetic tree of the large phage pool defined around phage
φX174 [47] using exclusively codon bias information. Also, the adaptation analysis
of the set of Microviridae phages defined around phage φMH2K shows that phage
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classification based on adaptation does not reflect bacterial phylogeny. This result
highlights that adaptation patterns in phages might be profitably used to unravel the
intricate mosaic of phage speciation.

The numerical finding provided by this and future studies of phage–host coevo-
lution will hopefully be useful in clarifying the role of phages as therapeutic agents
against bacteria [65] and in organizing metagenomic data.

14A.1 APPENDIX

14A.1.1 Some Comments on the Mathematical Methods

In this text, a coding sequence is represented by a 64-dimensional vector whose
entries correspond to the 64 relative codon frequencies in the sequence. Recall that
the frequency of a codon i in a sequence g is the number of occurrences of i in g

(where g is intended to be split in consecutive nonoverlapping triplets corresponding
to amino acid decomposition), and that the relative frequency of i in g is the frequency
of i in g divided by the number of codons in g. For each vector representing a coding
sequence, the sum of its entries must equal 1. Hence, a coding sequence is a point
in the 64-dimensional space [0 · · · 1]64, where no special assumption is made on the
space nor on the coordinate system.

For each genome sequence G and some set of coding sequences S in G, codon
bias is measured with respect to its synonymous codon usage. Given an amino acid
j, its synonymous codons might have different frequencies in S; if xi,j is the number
of times the codon i for the amino acid j occurs in S, then one associates to i a weight
wi,j relative to its sibling of maximal frequency yi in S

wi,j = xi,j

yj

.

A codon with maximal frequency in S is called preferred among its sibling codons.
SCCI associated to g in G, is a value in [0, 1], defined as

SCCI(g) =
(

L∏
k=1

wk

)1/L

where L is the number of codons in the gene and wk is the weight of the kth codon
gene sequence. Genes with SCCI value close to 1 are made by highly frequent codons.

When the reference set S is predefined to be a set of highly expressed genes in
the organism, then the index issued by the SCCI formula corresponds to the known
Codon Adaptation Index introduced by Sharp and Li [20]. The computation of the
reference set S in the definition of SCCI is based on a pure statistical analysis of all
genes in a genome and does not rely on biological knowledge of the organism. This
allows us to compute weights for organisms of unknown lifestyle.

The name SCCI was employed for the first time by Carbone [58], while in Carbone
[33] and Carbone and Madden [36] the notion is called CAI, even though it does not
exclusively refer to codon adaptation. Notice that CAI is always employed with a
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manual and explicit choice of S, while the formula SCCI (i.e., CAI parameterized
with S) turns out to be a universal measure to study codon bias. Codon weights,
reference set S, and SCCI values are calculated with the program CAIJava [33],
available at www.ihes.fr/∼carbone/data.htm.

All results cited in this review are obtained using very simple mathematical and
algorithmic notions that are fully described in Carbone [33], Willenbrock et al. [34],
and Carbone and Madden [36]. The statistical analysis and numerical thresholds
we propose are realized in a 64-dimensional codon space. Multivariance statistical
methods have been employed as visualization tools, but none of the formal results
or the biological conclusions are inferred from the three-dimensional projections.
Both space of genes and space of organisms in 64 dimensions and distances between
organisms are defined as �1-distances.

14A.1.2 Complete Genomes Available

In June 2008, 2623 viruses (of which 495 are phages), 56 eukaryotes, 53 archaea,
and 729 bacteria are completely sequenced and present in the NCBI database at the
address http://www.ncbi.nlm.nih.gov/sites/entrez?db=genome.
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15.1 INTRODUCTION TO TEXT MINING

Text mining is the process of automatically deriving information from text (as opposed
to data mining that works on structured data). This process starts with accessing
the relevant literature and ends with extracting the desired pieces of information.
Access mostly is provided by Web-based search tools, the best known of which is
PubMed [1]. PubMed currently contains citations from close to 18 million publica-
tions in the biomedical domain (biology, biochemistry, medicine, and related fields),
from approximately 5200 journals, since 1865. Up to 4000 citations (abstract and bib-
liographical information) are added to PubMed per day, which necessitates automated
means to efficiently handle searches for high-quality information.
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Text mining falls into several tasks, most of which depend on each other, but few
of which have been sufficiently solved. The first task is information retrieval (IR):
given a user’s query, find the (most) relevant documents containing the keywords
or, even better, providing an answer to the question the user actually has in mind.
The later part is also called question answering (QA), where the task is not only
to find relevant documents but also to extract the answer to the query from them.
Information retrieval is often solved by keyword queries, as in PubMed [1], which
returns the most recent abstracts containing the query. PubMed goes a step farther,
expanding the initial set of keywords to related terms: a search for “cancer” will
also find abstracts that mention neoplasms instead of cancer. Another related
task is text summarization, which aims to summarize one or multiple documents
with respect to a certain problem. An example is Entrez Gene [2], a database
of genes, which contains a short summary for every entry, describing known
functions, implications in diseases, and so on of the gene or the gene’s products.
These summaries are currently all manually compiled from various publications
studying the gene and significant efforts are under way to automatize this curation
process.

The next groups of tasks for text mining relates to information extraction; the
most prominent is named entity recognition (NER), referring to the search for
genes, proteins, diseases, drugs, and so on, mentioned in a text (we will call these
biomedical entities in the remainder). In addition, instead of only recognizing that
a name refers to a particular class of entities, entity mention normalization (EMN)
tries to actually identify the entity, usually by searching a reference to a database.
For instance, consider the name p53, which may stand for a large number of different
yet orthologous genes; the task for EMN is to pick, when p53 appears in a text,
the correct one of these genes by identifying a corresponding database entry, for
instance in Entrez Gene. Only then can the right set of additional information
(function, species, sequence, etc.) become available to the user. Word sense dis-
ambiguation (WSD), on the other hand, tries to tell apart entities of different kinds
that share the same name; cancer mostly refers to a disease, but in some contexts,
it also refers to the genus of various crab species. Once entities are recognized,
classified, and properly resolved, relation mining (RM) searches for evidence for
associations between them, such as protein–protein interactions or gene–disease
associations.

In the biological domain, an abundance of data of various types, degrees of
detail, and quality is available. Much of these are stored in curated databases,
that is, databases whose content is maintained by human experts. Among these
databases, some store information on single types of biomedical objects, such as
proteins (e.g., UniProt [3]), genes (e.g., NCBI Entrez Gene [2]), and drugs (e.g.,
DrugBank [4]); or on associations between these, such as protein–protein interactions
(IntAct [5], MINT [6], etc.), drug–protein and target–disease relations (TTD [7]
etc.), or metabolic pathways and other processes (e.g., KEGG [8]). The curation
process for most of these databases relies on trained experts extracting supportive
information from scientific publications and updating the database accordingly.
Far from being able to deliver off-the-shelf solutions for handling such curation
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automatically, research in text mining currently focuses on aiding database curators
and researchers in biology, medicine, and interdisciplinary fields, who search for sin-
gle, specific, and accurate pieces of information in literature collections. With novel
high-throughput data generation techniques, manual curation is not sufficient any
longer [9]. A second focus of text mining research is to help in the interpretation of
high-throughput screens such as gene expression or RNA interference screens, which
typically generate large clusters of genes with somehow similar behavior. Identifying
relationships within such clusters such as protein interactions or shared function is
important to gain deeper insights. Text mining can also serve directly to cluster genes
by phenotype [10]. In Lage et al. [11], for example, candidate genes for diseases
are identified by clustering genes based on phenotype terminology extracted from a
database with text mining. In addition to search and curation, knowledge extracted
from the literature, combined with knowledge from databases, helps generating
hypotheses, which can then be further verified. Examples for improving protein func-
tion prediction with results from text mining are given in Gabow et al. [12] and Groth
et al. [10].

With Ali Baba, we provide means to efficiently search and browse PubMed
citations, extract basic information, and link these to additional information avail-
able from relevant databases [13]. The basic idea behind Ali Baba is to display the
contents of a collection of PubMed abstracts as a graph, that is, biomedical entities are
nodes, and connections between those refer to potential associations, for example, in-
teractions between proteins. Ali Baba, therefore, parses abstracts selected by the user
for proteins, diseases, enzymes, and so on, and searches for potential relationships.
The resulting graph should be understood as a summary of all abstracts, restricted to
molecular biology entities and their associations. Figure 15.1 shows an example of
such a graph, which resulted from 20 abstracts for the query “glutamate metabolism.”
Clicking on nodes and edges accesses the original text that contains them (see lower
right panel in the figure). Each node is linked to one or more entries in a relevant
biological databases; for instance, proteins are linked to UniProt and drugs to either
DrugBank or MeSH.

In the remainder of this chapter, we will present the Ali Baba tool, starting with
examples relevant to systems biology. We describe the functionality of Ali Baba
from a user’s perspective in Section 15.2. In Section 15.3, we give an overview of
the techniques underlying Ali Baba and present quantitative assessments of the core
techniques. We conclude the chapter with a discussion of related tools and future
perspectives for biomedical text mining.

From the Web page http://alibaba.informatik.hu-berlin.de/, users
launch Ali Baba via Java Web Start.1 Installation instructions for this environment
can be found on the Web page, although it is nowadays available on most systems
by default. The Web page also provides a manual, further information, answers to
frequently asked questions, as well as additional examples. As a convention for this
chapter, we will write user queries to Ali Baba enclosed in double quotations marks

1Java Runtime Environment 1.5 or higher has to be installed previously.
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Figure 15.1 Ali Baba graph resulting from a query for “glutamate metabolism.” Highlighted is
the protein “interferon–gamma.” Associated proteins and cells can be seen in the Object panel
(upper right), with the supporting evidence being shown in the Text panel (lower right).

(“query”), entities such as genes and diseases in italics (Dickkopf), and actions a user
can take as well as items in Ali Baba in teletype (File menu).

15.2 ALI BABA AS A TOOL FOR MINING BIOLOGICAL FACTS FROM
LITERATURE

In this section, we demonstrate how to use Ali Baba to find answers to typical
questions in systems biology and biomedical research. In the former area, typical
questions one may want to answer refer to the formation of protein complexes, the
regulation of gene expression, signaling cascades, metabolic pathways, or genetic
linkage of diseases. Clinicians might seek for explanations of symptoms or for new
therapies and drugs for diseases. We have chosen the following two examples for
showing how to use Ali Baba:

• Which proteins are involved in the activation or recognition mechanism for
PmrD?

• What are the risk factors of treating G6PD-deficient malaria patients with
primaquine?

As a third example, we will show how to combine the known pathway for Wnt
signaling from KEGG with a graph representing latest findings for the protein
Dickkopf from the literature.
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15.2.1 Which Proteins are Involved in the Activation or
Recognition Mechanism for PmrD?

To find an answer, we first have to translate this question into the PubMed query
language. In this case, we formulate the query as “PmrD (activation OR recognition)”
and enter it into Ali Baba’s query field located at the top of the application window.
This results in a graph of nodes (representing entities) in different colors connected by
edges (representing interactions and other associations) displayed on the large main
panel—the Graph view (Figure 15.2). Pressing the F9 key or the Play/Pause
button on the bottom of the application window toggles the animation of the graph
on or off.

In the upper righthand panel (Objects), all entities are shown as a tree, sorted
by their categories (protein, drug); each category has its unique color that is used
throughout the Ali Baba application—proteins in green, diseases in pink, cells in
light blue, tissues in orange, drugs in brown, and species in blue. The number in
brackets next to each category name tells us how many instances of this category
were found in the PubMed result. A left click with the mouse on the node for PmrD
in the graph also opens this protein in the tree and shows the different categories its
direct neighbors in the graph belong to: proteins, drugs, species and so on. These
categories contain objects that are related to PmrD. In the lower right panel, all
sentences from the PubMed abstracts that mention protein PmrD are shown in the
Text view. Opening a category below PmrD in the tree and clicking on one of the
objects listed shows all sentences from the abstracts that are evidence for a relation
between this object and PmrD. The same effect can be seen when clicking on the
edge between the two objects in the graph.

Proteins related to PmrD are PhoP, PhoQ, ugd, PmrA, and PmrB.2 Reading the
text snippets, we can quickly verify that each of the proteins is indeed involved in
either activation or recognition of PmrD or closely related to it. Figure 15.2 (top)
shows all proteins found in the texts. The selected node PmrD is highlighted with
a blue and its direct neighbor nodes with a red border showing the answer to the
question also graphically.

15.2.2 What are the Risk Factors of Treating G6PD-Deficient
Malaria Patients with Primaquine?

Figure 15.2 (bottom) shows the resulting graph for the PubMed query “primaquine
malaria g6pd deficiency.” The graph shows a connection between G6PD (defi-
ciency), vivax malaria (patients), and their treatment with primaquine. The risk factors
hemolytic anemia/hemolysis and methemoglobinemia are directly connected to G6PD
and primaquine. Other nodes in the graph present more information on studied pop-
ulations, the viral origin, infected cells, and information on the disease. Each object
recognized by Ali Baba is linked to an appropriate external resource or database.
In the upper part of the Text view, objects selected in either the graph or tree are

2PubMed result from March 2008. This may change as new documents are added to PubMed every day.



348 ALI BABA: A TEXT MINING TOOL FOR SYSTEMS BIOLOGY

Figure 15.2 Top: The result for the PubMed query “PmrD (activation OR recognition)” as shown
by Ali Baba. The selected node PmrD is framed in blue and all its direct neighbors in red.
Bottom: The graph for query “primaquine malaria g6pd deficiency” (see text).

shown by name and by all synonyms encountered in the abstracts. A mouse click on
one of the names opens the database entry page for this particular object in the web
browser. We select the node primaquine and click on its name, appearing as a link in
the Text view, which brings us to its entry page in DrugBank, a comprehensive
database that combines drug data and drug target information. We follow the same
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procedure for the protein G6PD and the disease hemolytic anemia, which opens the
UniProt/SwissProt page and the entry page from the Medical Subject Headings of
the National Library of Medicine, respectively. The three pages together with the
network and annotated texts in Ali Baba offer a lot of background information on
this particular question. Ali Baba can thus serve as a starting point for information
retrieval in biology and biomedicine.

15.2.3 The Wnt Signaling Pathway

The Wnt signaling pathway is a complex network of proteins well known for their roles
in embryogenesis and cancer, but also involved in normal physiological processes in
adult animals [14]. To load the pathway for the first time, we open the File menu
and select Update KEGG files. After the update process is complete, we go to
the File menu again and select Open KEGG file. In the next dialog, all available
pathways are shown. The list is downloaded directly from the KEGG server and is,
therefore, always up-to-date. Note that the list needs to be downloaded only once
or when significant changes in KEGG are expected. Selecting, for instance, the Wnt
signaling pathway will display the corresponding graph. KEGG pathways have a
distinct layout that helps to get a better overview on the network. To view the pathway
in its original presentation, as known from KEGG, we open the View menu and
choose the Coordinates layout.

Figure 15.3 (top) shows the resulting Wnt signaling pathway of protein interactions.
One of the proteins involved is Dickkopf, which functions as an inhibitor of the Wnt
signaling pathway. The literature contains many references to this protein. From
January to March 2008, about 30 articles have been published already that mention
Dickkopf or one of its synonyms. To append a graph for Dickkopf from the literature to
the Wnt signaling pathway from KEGG, we enable the option Append queries
from the Preferences menu and then enter the query “dickkopf.” The result is
shown in Figure 15.3 (bottom). The appended graph does not come with distinct
layout and is thus just scrambled around the upper left of the pathway, but we can
see clearly many new relations for protein Dickkopf and other proteins from the
pathway. Furthermore, textual evidences are added to some of the pathway proteins
and relations as they were found in the abstracts. This can be repeated with other
queries to PubMed, although the resulting network will quickly become too complex
to oversee. For such cases, users may either use the various Display filter
options or simply go to the View menu and switch to Tree View only, which
hides the graph and shows only the tree (that contains the same information as the
graph) and the texts.

15.3 COMPONENTS AND USAGE OF ALI BABA

In this section, we describe in detail the different components of Ali Baba, their
usage, and the features they offer. The components are sorted by Views, Navigation,
Filters, Storage and retrieval, and the Graph editor.
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Figure 15.3 Top: The Wnt signaling pathway loaded into Ali Baba and presented using the
original KEGG layout. Bottom: A graph from the literature for query “dickkopf” appended to the
Wnt signaling pathway. Most of these appended texts discuss entities (upper left) related to
Dickkopf and catenin beta-1, as indicated by the large number of edges toward either protein.
Textual evidence for such relations can be viewed in the right panel after selecting an entity node
from the graph.

15.3.1 Views

The application window of Ali Baba is divided into three sections and the PubMed
query bar at the top. The left main section is the Graph view that displays
PubMed and KEGG networks graphically with nodes representing objects and edges
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representing associations between two objects. Nodes come in different colors for
the different categories they belong to proteins (green), cells (light blue), diseases
(pink), drugs (brownish), tissues (orange), and species (blue). Metabolic pathways
from KEGG contain also compounds (grey) and reactions (pink). The right-hand side
of the application window is divided into a Tree view that displays all nodes and
interconnections and a Text view that primarily displays annotated abstracts and
text snippets that are evidence for selected objects and relations. On top of the Tree
view are two tabs labeled Objects and Texts. Selection of the Texts tab shows the
list of articles that matched the query in the original PubMed result order instead of
the objects tree. After selection of an article, the complete abstract is shown in the
Text view below.

In the View menu, users can select between a graph only view, a tree
(and text) only view, or both (default). The View menu also offers to choose
between different layouts for displaying the graph. By default, the force feedback
layout is applied that tries to arrange nodes with a maximal distance to each other,
only bounded by the length of the edges. The maximum edge length can be
altered using the slider in the bottom panel. The Radial layout applies a circular
arrangement of nodes around a selected node in the middle. The Coordinates
layout lets the user define the arrangement of nodes by clicking on a node and
dragging it around with the mouse or shows a predefined layout as in case of KEGG
graphs.

15.3.2 Navigation

Navigation of the network in Ali Baba is always possible using either the graph or
the tree. A click on a node in the graph scrolls to and opens the corresponding node
in the tree, whereas a double-click on a node in the tree highlights the corresponding
node in the graph with a blue frame and its direct neighbors with a red frame. To
move around in the graph, press and hold the left mouse button. To zoom in or out
of the graph, either use the mouse wheel or the magnifier icons on the bottom
left. For complex networks, it can be very difficult to find a node by looking at the
graph alone. To assist the user, we placed another search field on the bottom of the
graph view that highlights all nodes that match the entered string. Nodes that represent
objects whose name or one of its synonyms contain the entered character string will
appear larger than others. Nodes in the tree are sorted by category and alphabetically
within categories.

The Text view on the right-hand side primarily shows sentences related to the
currently selected node or edge. Next to each sentence is a link called more. A click
on the link shows the complete abstract. At the end of each abstract is a list of resolved
abbreviations found in the text (if any) and the link Show related abstracts
as new graph, which operates on the Related Articles feature of PubMed and
initiates a new query that results in a new graph. When the append query option
is enabled (Preferences menu), the new graph is added to the current one. The
Text view does not only show the annotated abstracts but also contains links to
PubMed (as PubMed ID) and to external databases for selected objects. Proteins link
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to UniProt, diseases, tissues, and cells link to the Medical Subject Headings of the
National Library of Medicine, drugs link to DrugBank, and species to the NCBI
taxonomy.

15.3.3 Filters

Ali Baba provides many ways to filter networks. This reduces complexity and helps
to focus on certain aspects of the network. The types of categories shown by Ali Baba
can be configured in the Filter Preferences dialog (located in the Prefer-
ences menu). By default, all categories are selected; deselecting, e.g., the category
“drugs” will hide all nodes in the graph and tree that refer to drugs. Users only inter-
ested in proteins and protein interactions can deselect all categories but proteins, as
was shown for the PmrD example in Figure 15.2.

Nodes of an extracted graph from the literature usually differ in their number of
neighbors. Some nodes are hubs, that is, they are directly connected to many other
nodes. There are also nodes that do not have a single neighbor and are thus isolated.
Ali Baba offers to filter nodes by their degree, that is, their number of direct neighbors
in the graph. In the Filter preferences, users can select the checkbox for the
node degree filter. This will bring up an additional slider below the graph view. Moving
the slider from left to right increases the degree threshold and hides nodes with a lower
degree. For example, moving the slider one step to the right from its very left position
will hide all isolated nodes in the graph. Moving the slider to the left will show these
nodes again.

Two directly connected nodes have a distance of one, as the shortest path between
them contains one edge. Computing the neighborhood of a node that is reachable
within a certain distance offers another convenient way to filter networks. The graph
layout Path length hides all nodes with a distance to a selected node above a
chosen limit. Enabling this layout mode from the View menu will show a text box
containing the currently active limit next to the confidence slider on the bottom. A
mouse click on the up-arrow to the left of the box increases the limit, a click on the
down-arrow decreases it. A click on a node in the graph afterward will only show its
neighbors that are reachable within this distance.

Besides filtering by node properties, filtering edges between nodes is also possible.
Use the confidence slider on the bottom to hide or show more edges. Moving
the slider to the left lowers the confidence threshold and shows more unconfident
edges between objects, while moving the slider to the right increases the threshold
and removes edges with a lower confidence value. Please refer to the next section on
how confidence values for edges are computed.

Many terms in the biomedical domain are ambiguous. For example, the term ad-
hesion can refer to the pathological process or the biological process of cell adhesion.
The term cancer can refer to a disease or the crab. To help text mining systems distin-
guish between the different meanings of an ambiguous term, training data is needed
to learn about the classification problem. Ali Baba offers a feedback mode to
let users report on falsely recognized entities. To activate the feedback mode,
select the checkbox on the bottom of the text view. Whenever the user highlights a
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part of the text with the mouse (as for copy and paste), a dialog will appear that asks
for correction by either selecting a new category or unmark the annotated term. The
data are stored anonymously at the server and will be used to retrain the word sense
disambiguation component of Ali Baba from time to time (see also next section). A
better classification of ambiguous terms eventually helps to reduce graph complexity
as their will be, e.g., only one node for cancer instead of two when Ali Baba was
able to decide that all underlying texts discuss the disease and not the species.

15.3.4 Storage and Retrieval

All graphs in Ali Baba can be stored locally on the user’s computer. To store or
re-open a graph go to the File menu and select Save as file or Open file,
respectively. Files are stored in GraphML format. Select Save as image in the
File menu to save the current graph as an image. As opposed to the GraphML
format, this image cannot be re-opened in Ali Baba.

Ali Baba has access to two sources of biological data, PubMed and KEGG (and
provides links to many other databases for recognized entities). While networks from
PubMed have to be extracted using text mining techniques, KEGG graphs can be
loaded directly into Ali Baba. Kyoto Encyclopedia of Genes and Genomes (KEGG)
is a bioinformatics resource aiming to completely represent the cell and the organism
to enable computational prediction of higher-level cellular processes and organism
behavior. We integrated KEGG into Ali Baba because of the data available on cellular
pathways, which are of interest to many biologists and can serve as high-confidence
building blocks for larger networks. Users of Ali Baba interested in KEGG pathways
Update KEGG files from the File menu. This retrieves the data from the
KEGG FTP server and stores all data needed for Ali Baba locally. Note that this
might take a few minutes depending on the network’s bandwidth and occupies up to
60 MB on the user’s hard drive. This update process needs to be done only once or if
new pathways are available.

KEGG graphs are loaded into Ali Baba by choosing Open KEGG file from
the File menu. After a little delay, a dialog opens and lists all available pathways
from KEGG alphabetically, first all regulatory pathways followed by all metabolic
pathways. This list is always up-to-date, downloaded directly from the KEGG server,
which causes the delay. For finding a specific pathway, the user can enter a part of the
name into the search field below the list box.

To append a new graph to an existing one, either loaded from PubMed, from
KEGG, or from a local file, users can enable the Append queries option from
the Preferences menu. This way it is possible to build up networks incrementally.

15.3.5 Graph Editor

Ali Baba features a build-in editor that allows for easy manipulation or creation
of graphs by the user. To add a new node to the graph, right-click with the mouse
anywhere in the white space. A context menu appears with the option Add node.
This dialog lets the user choose a name and category for the new node. A right–click
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on an existing node offers user to edit this node (change its name or category), delete
it, or add a new edge starting from this node. To add an edge, a target node has to be
specified from a list of all available nodes. A more convenient method to add an edge
is by clicking on the source node while holding the Ctrl–key and then moving the
mouse over the target node, still holding the Ctrl–key. Clicking again on the target
node finally adds the edge to the graph. A right–click on an existing edge opens a
context menu with the option to edit or delete it. Remember to save the graph in a
local file after editing to prevent its loss.

15.4 ALI BABA’S APPROACH TO TEXT MINING

Ali Baba processes PubMed abstracts using several building blocks. Most of them
are arranged as subsequent components, where every component uses results from
previous components. Figure 15.4 shows the main components and flow of data
in Ali Baba. In this section, we want to focus on these components, rather than
implementation aspects of the Web server, database, and Ali Baba’s user interface
(which has been discussed in the previous section). The components can be divided
into three main blocks: natural language processing, named entity recognition, and
relation mining, which we will discuss in the following. We finish this section by
presenting evaluations of some of the components, which will help users to estimate
the quality of Ali Baba’s predictions.

15.4.1 Natural Language Processing

The first step in Ali Baba is to analyze each abstract with “basic” natural language
processing (NLP) components. Sentence boundaries have to be detected so that sub-
sequent components can deal with data on a sentence level. Ali Baba applies a set
of heuristic rules to decide whether a period (colon, semicolon) marks a sentence

Figure 15.4 Overview of the data flow in Ali Baba. After a user submits a query, this is send
to PubMed and resulting abstracts are retrieved. The abstracts are processed to find names
of entities and relations between them. Grounding helps to map together identical entities that
appear with different names, so that they become a single node in the resulting graph.
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end or has a different meaning. An exampe for such rules is a regular expression
recognizing the sequence “lower case character–period–white space–upper case char-
acter” that recognizes most sentence boundaries. In a similar way, other expressions
try to deal with false positives occurring, for instance, after common abbreviations
(such as “vs.” and “ca.”). This task is much easier in case of decimal points than,
for instance, nonstandard abbreviations, which occur quite often in scientific texts.
Another step in this preprocessing is part-of-speech tagging, that is, assigning to each
word its semantic class (e.g., noun or adverb) helps for matching precompiled patterns
against a sentence, which we will explain later in this section. In our case, we use
the TnT–tagger [15] for this task. Ali Baba also tries to resolve abbreviations; this
is necessary because most abbreviations are ambiguous and might potentially refer
to a gene, trauma, or laboratory technique, like “PCR” does. Finding the correct long
form then solves such issues. We use an adaptation of the algorithm presented by
Schwartz and Hearst [16] to solve to map abbrevations to their long forms.

15.4.2 Named Entity Recognition and Identification

Ali Baba searches PubMed abstracts for different kinds of biomedical entities, such
as proteins and diseases (see Table 15.1). Our basic approach for named entity recogni-
tion (NER) is dictionary based, that is, we compile lists of known names and synonyms
of entities from various sources and match these lists against text. The main advantage
of such an approach is that for each name, a database identifier is immediately avail-
able (or multiple identifiers in case of, for instance, multiple proteins sharing the same
name). This helps users of Ali Baba to easily get to more information on each entity
(by following a link to the underlying database entry, e.g., to KEGG). It also allows
Ali Baba to map an entity that occurs with different names across multiple text to
the same instance; thus, occurrences of “Fas ligand” and “CD95L” would result in a
single node for this protein in the graph. The main disadvantage of dictionary-based
NER comes with the immense variety names for all instances of all entity classes;
by far not all variations of a name can possibly be enumerated, let alone stored in a

Table 15.1 Biomedical entities currently covered in ALI BABA, with numbers of
entries and sources

Biomedical entity Source Number of entries

Cells MeSH, tree A11 [17] 1074
Compound KEGG [8] 22,635
Disease MeSH, tree C 18,100
Drug MeSH, tree D03–6; DrugBank [4] 14,177 + 25,698
Enzyme KEGG 23,063
Gene/protein UniProt/Swiss–Prot [3] 234,497
Species NCBI Taxonomy [18] 208,143
Tissue MeSH, tree A10 595
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database (which has a different purpose than collecting spelling variations). Common
variations of names can be categorized as follows:

• orthographic: IFN-gamma, IFN-γ; IL-1, IL1
• morphological: Fas ligand, Fas ligands
• lexical: hepatitic leukaemia, liver leukemia; tumor, tumour
• structural: cancer in humans, human cancers
• acronyms/abbreviations: FADD; TFF3
• synonyms: neoplasm, tumor, cancer, carcinoma
• eponyms: Addison’s disease, Addisonian syndrome
• paragrammatical: (mostly typos)

There are two main strategies to deal with variations in dictionary-based ap-
proaches. The first is to compile a concise dictionary with names as gathered from
the database. Recognizing names then relies on inexact string matching, for instance,
using alignment to allow for some variations. The second strategy is to generate a
“loose” dictionary that already includes typical deviations of spelling. We follow the
second strategy. Starting with a list of terms reflecting names for entries in a biologi-
cal database, we compile regular expressions that allow for variations such as plural
forms, hyphenation, and capitalization. Variations for obvious abbreviations (“IFN”)
are introduced as well. For example, the following regular expression covers many
variations of the protein names “IFN-gamma” and “CD95L,” respectively:

(I(FN|fn)|ifn)[ \-_]?([Gg](amma)?|{gamma})s?
(CD|Cd|cd)[ \-_]?95[ \-_]?[Ll](igand)?

({gamma} depicting the Greek letter γ). Species often are referred to using their
Latin name. Quite some possibilities for abbreviating or altering such names exist.
The genus might appear with or without an initial capital and might be abbreviated
using the first letter (“Mycobacterium tuberculosis,” “M. tuberculosis”), and also
the species might the a short form (mostly consisting of three letters, “M. tub.”). In
addition, the individual terms might differ in their case and number (“S. attenuatas”,
“S. attenuata”). Quite often, “ae” appears as “e” (“F. iinumaes,” “F. iinumes”). Taken
together, for instance, the name “Phaeoacremonium inflatipes” should be transformed
into the regular expression

[Pp]([.]|ha?eoacremonium)?[ \-_]*[Ii]nflatipes .

We built a finite state automaton covering all expressions that we generated in the
described way, using the Monq JFA package [19]. Arbitrary text is then streamed
against this automaton and searching becomes linear in the length of the text.

15.4.3 Word Sense Disambiguation

Another problem for named entity recognition is ambiguity of (biomedical and
common English) terms. Word sense disambiguation (WSD) is the problem of
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assigning to an ambiguous term in a given context its correct sense [20]; WSD can
thus be seen as a classification task [21]. To approach the WSD problem for polysemy
and homonymy often is based on the one-sense-per-discourse assumption [22]. This
assumption says that, whenever an ambiguous term appears multiple times in the
same discourse (abstract, paragraph, text, etc.), all occurrences most likely share the
same sense.3 For instance, it is not very likely to find a text that contains the term
“lamb” both in the sense species and as an abbreviation for the protein “laminin
subunit beta-1 precursor.” Consequently, one can use the entire discourse of a term
as indicator for its sense. We build on this observation by learning a model for word
senses from entire texts (mostly paragraphs or scientific abstracts) containing the word
sense one or multiple times. Given an ambiguous term with unknown sense within
a discourse, we use an SVM to classify the term to its correct sense using the model
learned before. Our strategy to automatically find a large enough training sample is to
search for texts that contain a term in a given sense, plus other terms that are related
to it. For instance, for an ambiguous abbreviation, we may also search for the correct
long form; for protein names, we may look for known and unambiguous synonyms.

Our method immediately reaches a median success rate of 93.7% as evaluated by
cross-validation on 304 terms. We also studied an extension of the training set using
abstracts from different terms of the same sense; this was necessary because not for all
ambiguous terms there exists enough training data. The extension takes into account
training data from other terms that have the same sense. For instance, if there were
no sufficient amount of examples for the term “Beta” as a species, we may add texts
discussing other species. To improve the quality of the data, we might exploit the
hierarchy given with the NCBI Taxonomy (for species), that is, searching texts that
mention the family of “Amaranthaceae” that “Beta” belongs to, or even higher-ranked
entries. Such a strategy not only increases the reach of our method but also improves
its performance to a median success rate of 97 percent for 422 terms. Still, terms for
which we cannot find at least one training example cannot be analyzed by our method.

15.4.4 Relation Mining

In Ali Baba, we employ two different strategies to search for (pairwise) associations
between biomedical entities. With a cooccurrence-based method, we assume the
existence of some kind of association whenever two entities (for instance, a gene and
a disease) are mentioned together in a single sentence. Such strategies fail to pick up
only very few instances (e.g., when they are discussed across multiple sentences),
but result in incorrect assignments for all coincidental occurrences of two entities.
The assumption that a cooccurrence of two entities justifies the prediction of an
associations holds better for some kinds of relations than for others: genes will
most often be mentioned only with diseases or with tissues when there is a real
association; two proteins mentioned together, however, will not justify the prediction
of a protein–protein interaction. For this later case, and also for cellular locations
of proteins, we thus pursue another strategy, based on pattern recognition. Pattern

3Gale et al. [22] showed that this holds in 98% of all cases.
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recognition is comparable to finding sequence motifs within proteins, as contained,
for instance, in the Prosite database [23]. In our case, a motif describes a (partial)
sentence typically used by authors to describe a protein–protein interaction (or
subcellular location, respectively). As an example, consider the following motif
(called pattern) for recognizing protein–protein interactions:

PROTEIN expression is regulated by PROTEIN,

which matches the sentence

“DR4 expression is regulated by NF–kappaB”.

Note that for recognizing a pattern, the exact name of a protein is not important, thus
we may express it using the markup PROTEIN: any sentence that has the name of
a protein at that particular position will potentially match the pattern. In the same
manner, the words “expression” and “regulated” might be replaced with other words
referring to similar behavior (e.g., “activity”, “inhibited”), essentially retaining the
meaning of matching sentences (a protein–protein or protein–gene interaction).
We may use the markup I-NOUN and I-VERB-D to refer to similar, interaction-
indicating (I) nouns and verbs in past tense (D), respectively. Additionally, replacing
“by” with markup for prepositions and “is” with markup for verbs results in the
pattern

PROTEIN I-NOUN VB I-VERB–D PREP PROTEIN,

which matches the sentences

“IL-8 production is inhibited by IL-10” and
“CCN3 transcription is up-reglated by p53”.

We have compiled sets of such patterns for both applications [24–26]. While Prosite
patterns are regular expressions matching sequences (i.e., they have markup for
wild cards and variable positions), we use alignment as a matching strategy to
allow for variations in the sentence. For instance, it is very often the case that a
determiner (“a,” “the”) is inserted right before a noun or nominal phrase, as is
an adverb before a verb. The aforementioned pattern thus should also match the
sentence

“DR4 expression is negatively regulated by the NF–kappaB.”

We have shown in Hakenberg et al. [24] how large sets of patterns can be compiled
automatically, especially without the need of a manually annotated training sample.
To do so, we analyze groups of similar sentences that discuss protein–protein inter-
actions by computing a multiple sentence alignment (see MSA in bioinformatics).
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This results in consensus patterns, which can best be explained in terms of a sequence
logo:4
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(where P refers to a protein at the given position; N to a noun in singular, S in plural;
W and V to verbs in different tenses; E to a preposition; and D to a determiner.)

For both strategies, cooccurrence-based search and pattern recognition by align-
ment, we calculate confidence scores that estimate the reliability of a match. In the
case of alignment, the confidence score is derived from the alignment score; know-
ing a pattern, one can compute the maximal alignment score (for a potential perfect
match). A confidence score for a match with an arbitrary sentence is thus the fraction
of the alignment score for this match and the maximal score. To compute confidence
scores for cooccurrences of two biomedical entities, we consider the distance of the
two names in a sentence as well as biomedical entities (type and number) occurring in
between the two names. In general, shorter distances give a higher confidence, while
many intermediate names of the same type(s) point to conjunctions and thus lower
the score.

15.4.5 Evaluation of Components

Of major importance for algorithms that predict an outcome—such as the Ali Baba
components that, for instance, predict that a name encountered in a text refers to a
gene—are quality assessments. A standard way to evaluate different methods is to
compare the predictions to a gold standard (benchmark). Such a comparison provides
measures for how good a method performance is. The metrics we will use in this
section to measure performance are precision, recall, and f-measure. They are all
based on the predictions a method generates as compared to the benchmarked, which
can be grouped as follows:

• True positive (TP): the method makes a prediction that is indeed correct (e.g., it
predicts a gene name that indeed is a gene name).

• False positive (FP): the method makes a prediction that is wrong (e.g., it predicts
something to be a gene name, but it is not).

• False negative (FN): the method misses to make a prediction (e.g., it misses a
gene name).

4Created with WebLogo, available at http://weblogo.berkeley.edu/.
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• True negative (TN): the method does not make a prediction on a certain item,
which is correct (e.g., it correctly predicts that a name does not refer to a gene).

We can use these counts to estimate performance in a standardized way. The precision
of a method states how many of the predictions are correct

precision = TP

TP + FP
. (15.1)

The recall measures how many of the correct instances a method has predicted

recall = TP

TP + FN
. (15.2)

The f-measure combines these two metrics into a harmonic mean,

f-measure = 2 · precision · recall

precision+ recall
. (15.3)

(Note that there are also formulations of the f-measure that weight precision and recall
differently.)

Several standardized benchmarks exist for evaluating the performance of text min-
ing tools in terms of precision, recall, and f-measure. Most of them handle the recog-
nition of named entities, that is, finding mentions of proteins, and so on in a text;
some cover the extraction of relations (protein–protein interactions as an example).
In such benchmarks (also called corpora as they deal with text), positive instances
are annotated by human curators and an automated text mining method is measured
by comparing annotations with predictions. An overview of some benchmarks can be
found in BioCreative [27].

15.4.5.1 Named Entity Recognition for Proteins One of the most often
used benchmarks for biomedical named entity recognition of genes and proteins are
the BioCreative 1 and BioCreative 2 GM data sets [28]. They consist of 15,000
sentences for training, and the actual evaluation is performed on another set of 5000
sentences. All in all, there are 6331 gene names in the evaluation set. On this set,
Ali Baba achieves an f-measure of 62 percent, with a precision of 73 percent at
54 percent recall. The current bestperforming approaches achieve an f-measure of up
to 88 percent [29–31], all using machine-learning strategies. However, these systems
are not suitable for online-processing because classification generally is much slower
than dictionary matching, and they also do not solve the EMN problem. In contrast,
Ali Baba is capable of assigning UniProt IDs to proteins, enabling the user to get
to more detailed background information; such a task can only be sufficiently solved
using dictionaries instead of machine learning, as demonstrated in Hakenberg et al.
[25, 32].
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15.4.5.2 Extraction of Protein–Protein Interactions A standard bench-
mark for a pipeline of subsequent text mining tasks, ultimately testing predictions
of protein–protein interactions found in text, is another part of the BioCreative 2
challenge, the IPS task. The goal is to find protein–protein interactions for which a
publication provides evidence for physical interactions or colocalizations [33]. In ad-
dition, systems have to provide the correct UniProt ID for each participating protein.
The system we propose in Hakenberg et al. [24] achieves an f-measure of 24 percent for
this joint task, with the current best system obtaining 30 percent [34]. On the Spies cor-
pus [34], which deals with the task of extraction of protein–protein interactions alone,
we achieve an f–measure of 61%, with a precision of 75 percent at 52 percent recall.

15.5 RELATED BIOMEDICAL TEXT MINING TOOLS

PubMed is the most complete and most prominent source of literature in the biomed-
ical domain [1]. It currently indexes about 18 million publications, with metadata on
authors, journals, keywords from the MeSH terminology, and so on. Its search inter-
face is accessed more than 2,600,000 times a day [35]. The availability of the Entrez
Programming Utilities [36] and the accessibility of indexed citations in XML format
highly promote research and development of text mining techniques and alternative
search interfaces to PubMed. There are numerous tools available to the biomedical
community that support the retrieval and browsing of publications, and tools that
build on retrieval systems to extract information on biomedical entities and relations
from text. Here, we present a few example tools for each type of task.

15.5.1 Document Retrieval and Summarization

GoPubMed accepts user queries and forwards them to PubMed [37]. Returned doc-
uments are sorted into the categories of the gene ontology (GO) and Medical Subject
Headings (MeSH). These hierarchies can be used to navigate through the result set by
showing only documents related to a selected category node. Identified GO and MeSH
terms are highlighted in the text. HubMed offers many features to literature retrieval
and browsing, such as clustering of articles in PubMed Central by their citation links
or by the relatedness score computed by PubMed [38]. Connections between articles
are visualized as a dynamic graph by a Java applet. It also calls the external Web
service Whatizit [39] to identify and highlight GO terms, protein names, and drug
names in text. botXminer imports Medline XML files into an Oracle database [40].
This allows for more advanced queries, such as proximity searches with NEAR and
searches with WILDCARDs. Grouping of articles by MeSH terms, authors, key-
words, chemicals, and gene symbols is also possible. Groups of articles are presented
either as a hyperlinked table or as a graph image.

15.5.2 Entity Extraction

Whatizit can perform entity recognition on arbitrary text or on PubMed abstracts
matching a user query [39]. It is also accessible as a Web service that can be called
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from other applications (e.g., see HubMed). It comprises many modules to recognize
a wide range of different types of entities, such as proteins, diseases, drugs, organisms,
GO terms, and so on. KMedDB searches PubMed abstracts related to different types
of biochemical kinetic parameters [41]. In addition, users can filter for abstracts that
also mention a certain enzyme, a chemical compound, or a species. All of the following
tools for relation mining also present users with recognized entities in text.

15.5.3 Relation Mining

EBIMed performs co-occurrence analysis on PubMed abstracts [42]. It provides an
overview of co-occurrences of proteins, species, drugs, and GO terms. It searches all
PubMed abstracts that fit a user query and presents the resulting associations in tabular
form. iHOP offers access to the underlying literature by means of a network of genes
and proteins [43, 44]. Users access the information by searching for gene names.
The result is presented as a list of relevant sentences, which can then be selected
to build a network graph. Clicking on a node or an edge in the graph re-sorts all
sentences and highlights the selected fact. Chilibot constructs relationship networks
among biological concepts, genes, proteins, or drugs [45]. It can be queried with a
pair of gene names or with lists of gene names and keywords. As a result, it presents
relevant sentences from PubMed abstracts and a graphical network with gene and
concept nodes connected by text mined relations. Info-PubMed helps users to find
information about biomedical entities such as genes, proteins, and the interactions
between them [46]. All information are presented in the form of highlighted text
snippets and as a graphical network.

15.6 CONCLUSIONS AND FUTURE PERSPECTIVES

Concerning biomedical text mining in general, there have been some recent efforts
that point out where the field could be headed in the near future. The BioCreative
evaluation challenge, which started in 2003, brings together researchers studying
various tasks in biomedical text mining (currently, named entity recognition,
entity mention normalization, gene ontology–annotation of proteins, extraction
of protein–protein interactions, and experimental methods) in a competition-style
format [27]. In other fields of bioinformatics, similar competitions are known,
among them CASP [47] and CAPRI [48], for the prediction of protein 3D structure
or protein–ligand docking, respectively. These evaluations give insight into the
state-of-the-art, both for researchers in text mining (What are the best performing
methods; What are promising ideas?) and users from the biomedical domain (What
can already be done using text mining; How reliable are text mining methods; Where
to obtain them?). We see that over the last years, work on biomedical text mining has
focused on extracting protein-centered information: recognition and identification
of protein names (and few other types of entities such as cell types and mutations),
extracting protein–protein interactions, associations of proteins with other types of
entities (GO terms, mutations, diseases); but very few solutions for other, especially
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more advanced applications of text mining have been proposed (and some of the more
basic tasks have also not been sufficiently solved). This was mainly caused by the lack
of tools that yield sufficient performance on various ‘basic’ subtasks. Only recently
(approximately since early 2007), tools have become available that solve subtasks to
a degree comparable with human annotators.5 Thus, researchers in text mining can
now start to use these ‘basic tools’ as input for their advanced applications, instead of
building such tools themselves. One initiative that provides researchers as well as po-
tential users with a framework that brings together approaches to various tasks is the
BioCreative Meta–Server project [49]. At the time of writing, roughly a dozen groups
provide their tools for named entity recognition, identification, and so on, to this
framework, where it can be accessed either as a search engine that annotates retrieved
texts, and also through an API to include predictions as input to advanced text mining
solutions.

Fundel et al. scanned 1 million Medline abstracts for protein–protein interactions
with their RelEx tool, finding more than 150,000 such instances [50]. With an eval-
uated precision and recall of 80 percent of RelEx, one can estimate that in abstracts
alone, there might be around 600,000 protein–protein interactions ‘hidden’ in text
(with the simplified assumption that more than 4 million abstracts discuss genes
and/or proteins; this estimate contains duplicate mentions). This figure is consistent
with results reported for the PreBIND system [51]; according to that study, Medline
contained 300,000 interactions from the three organisms human, mouse, and yeast
alone. Extending the search to full text publications will further increase this estimate.
Compared to amounts of interaction stored in renowned databases, among them DIP
(ca. than 56,000), IntAct (ca. 105,000), and MINT (ca. 105,000), one clearly sees
the necessity to provide means of accessing information contained in text. This will
enable researchers to view and analyze more exhaustive information than is currently
available from databases alone. In addition, depending on the database under con-
sideration, as much as half of the data originate from large-scale, high-throughput
screening assays (such as yeast two-hybrid screens and BiFC; comprising, for in-
stance, ca. 70% of data in IntAct), which are much less reliable than small-scale
experiments (for instance, co-immunoprecipitation or tandem affinity purification).
Assuming that only protein–protein interactions discovered in small-scale experi-
ments are reliable enough to be discussed in an abstract, information extraction will
find specifically these high-quality data; most publications contain only verified in-
teractions in their main body, and provide results from high-throughout screens as
tables, figures, or supplementary information.

Another open topic, although it has been addressed in some recent studies, is the
integration on information obtained from databases with information extracted from
publications. Knowledge integration necessitates the mapping of biomedical concepts
as found in a text to their respective pendants in databases. Entity mention normaliza-
tion has been successfully applied to some entity types and remains open for others.

5If one considers the pairwise inter-annotator agreement, measured in various studies to be around 90%;
for instance in Morgan et al. [53].
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Especially the handling of complex terms, for instance, from the GO, has proven a
difficult task; this holds both for recognition (e.g., GO concepts that labels consist
of five or more words will seldom be found literally in any piece of text) and the
disambiguation/normalization (consider the GO term “development,” which has nine
different meanings, only one referring to the sense in GO). PolySearch [52] is one
of the first available tools that can query PubMed and various databases at the same
time, resulting in an integrated view of knowledge on certain facts. While the infor-
mation from databases is certainly of a higher quality than information automatically
extracted from text, the most recent knowledge, with some surprising nuggets and
significant new findings, might only be found in publications.
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VALIDATION ISSUES

IN REGULATORY
MODULE DISCOVERY
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16.1 INTRODUCTION

Over the last decade, many new techniques have emerged for measuring the func-
tional activity of genes. These include measurements of individual genes through
their transcriptional activity, the interaction of their products, or by in vitro exper-
iments with synthesized DNA. For each measurement technique a different set of
data is created, each containing information on the functioning of genes, but under
differing conditions and with different degrees of experimental error. At the same
time, summary information of accepted gene behavior is being collected in the form
of the gene ontology database and annotation terms for individual genes. These re-
sources represent accumulated knowledge rather than individual experimental data.
Current research is being undertaken to investigate ways in which these rich but
diverse sources of information about gene behavior can be combined to provide a
more accurate interpretation of experimental work. The goals are two-fold. Firstly,
fusing data from diverse sources can be used to stabilize the results from individ-
ual experiments. For example, microarray experiments have been generally found
to produce data of high variance, and therefore require some form of regularization
before results can be interpreted. Secondly, when the data are processed to infer some
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higher organization among genes, it is essential to have some form of validation of the
results.

Work in molecular biology has focused both on identifying the function of indi-
vidual genes and the way in which they interact in regulation processes. In nature,
complex functions of living cells are carried out through the concerted activities of
many genes and gene products that are organized into coregulated sets also known
as regulatory modules [1]. Understanding the organization of these sets of genes will
provide insights into the cellular response mechanism under various conditions. Re-
cently, a considerable volume of data on gene activity, measured using several diverse
techniques, has become widely available. By fusing these data using an integrative
approach, it may be possible to unravel the regulation process at a more global level.
Although an integrated model could never be as precise as one built from a small
number of genes in controlled conditions, such global modeling can provide insights
into higher processes in which many genes are working together to achieve a task.
Various techniques from statistics, machine learning, and computer science have been
employed by researchers for the analysis and combination of the different types of
data in an attempt to understand the function of regulatory modules.

There are two underlying problems resulting from the nature of the available data.
Firstly, each of the different data types (microarrays, DNA-binding, protein–protein
interaction, and sequence data) provides a partial and noisy picture of the whole
process. They need to be integrated in order to obtain an improved and reliable pic-
ture. Secondly, the amount of data that is available from each of these techniques
is severely limited. To learn good models, we need considerable amounts of data.
Unfortunately, data are only available for a few experiments of each type. These two
problems are often cited as a reason for taking an integrative approach. However,
integration will filter and obscure some of the information in the actual experimental
results, and thus proper validation methods are required to test the effectiveness of any
approach.

16.2 DATA TYPES

Various types of data are used to identify regulatory mechanisms. These are primarily
generated by molecular biologists using experimental techniques. In most cases, a
considerable amount of data processing must be applied before the results can be
interpreted.

One of the most important sources of data is genome-wide measurement of mRNA
expression levels carried out using microarrays. These have received considerable at-
tention in the last 6 years and various technologies for microarray measurement have
been developed [2]. Microarrays allow simultaneous measurement of the expression
levels of a large number of genes. Similar expression profiles identify genes that
may be controlled by a shared regulatory mechanism. An important point to note is
that coregulation does not necessarily imply only positive correlation of expression
values, as some of the genes might be downregulated, while others may be upregu-
lated [3]. Processing microarray data to make different experiments as far as possible
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comparable is known as normalization. A good overview of techniques for normal-
ization and analysis is provided by Quackenbush [4] and a detailled discussion of the
statistical issues involved is given by Smyth [5].

Spellman was one of the microarray pioneers who studied the global expression
of genes [6]. He studied both the expression variation at various time points in the
yeast cell cycle, and, along with other researchers [7], the response of the yeast genes
when subjected to various kinds of stress.

A second major source of data is transcription factor–DNA binding data, which
is generated as a result of the chromatin immunoprecipitation (ChIP) technique, also
popularly known as the ChIP–chip assay. The technique is used to determine whether
proteins, including transcription factors, will bind to particular regions of the chro-
matin within living cells. Harbison et al. determined the global genomic occupancy
of 203 transcription factors in yeast, which are all known to bind to DNA in the
yeast genome [8]. Lee et al. produced a similar yeast dataset for a smaller number
of transcription factors [9]. Both these researchers reported results in the form of a
confidence value (statistical P value) of a transcription factor attaching to the pro-
moter region of a gene. The reason behind using statistical techniques was to reduce
the experimental errors inherent in microarray technology and to account for multiple
cell populations. One of the prominent problems with such approaches is that in order
to infer whether a transcription factor is attached to the promoter sequence or not, we
have to choose an arbitrary artificial threshold of the P-value.

Transcription factor binding motifs are sequence patterns observed in the intergenic
regions of the genome usually located upstream of the genes. They are thought to
be responsible for allowing access of transcription factors to binding sites. Initial
approaches to identifying these were based on first clustering genes by coexpression
and then looking for common sequences in the upstream regions of the genes located
in the same cluster. Kellis et al. used comparative genome analysis between three
related yeast species to find these motifs [10].

Protein–protein interaction (PPI) data for human and other organisms are available
as a result of advances in technologies like mass spectroscopy and yeast two-hybrid
assays. There has been a tremendous growth in this type of data in the recent years.

16.3 DATA INTEGRATION

There has been a considerable volume of recent research into data integration in ge-
netics. The methods are often specific to the formalisms used to infer dependency
structures from data. Causal networks, for example, Bayesian nets, have been a popu-
lar approach to identify the gene regulatory process [11–14]. However, when applied
to experimental data alone, the results were poor due to the fact that the data were,
and still are, very sparse compared to the large number of variables (genes) that need
to be modeled. This is typical of small sample size problems in general. Moreover,
there is cyclical feedback operating in gene networks and inference networks gen-
erally only handle acyclic relationships among the variables. They need an explicit
model of time to be able to deal with feedback. The overall performance of these
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models was not good and not many verifiable findings were made [12]. In order to
improve upon the results, work was done to incorporate better prior knowledge in
the Bayesian network-based modeling. Imoto et al. combined PPI, DNA binding,
promoter element motifs as well as literature text mining [15]. Tanay et al. also used
similar diverse datasets to build Bayesian network models [16, 17].

A more promising pragmatic approach, which we call weakly supervized mod-
ule identification, did yield very good results and is still used in current research
[1, 18]. The method takes a list of potential regulators and the microarray expression
data as input. An initial clustering of the genes is carried out, which is then refined
using an iterative procedure, based on the expectation maximization (EM) algorithm.
For each cluster of genes, it searches for a regulation program that provides the best
prediction of the expression profiles of genes in the module as a function of the expres-
sion of a small number of genes from the regulator set. After identifying regulation
programs for all clusters, the algorithm re-assigns each gene to the cluster whose pro-
gram best predicts its behavior. It iterates till convergence, refining both the regulation
program and the gene partition in each iteration. To test the method, they integrated
a set of regulators from the Saccharomyces Genome Database (SGD) and the Yeast
Proteome Database (YPD). They obtained modules that showed significant similarity
in promoter element motifs as well as in the database compiled by the Gene Ontology
Consortium (2001). Despite its success, one of the biggest shortcomings of this re-
search was that the biological prior knowledge that was incorporated was almost of an
insignificant level. Only the names of transcription factors were employed by Segal.
At about this time, more significant prior knowledge started becoming available in
the form of ChIP–chip DNA binding data and other sources as described in an earlier
section. The next step of research focused on ways of integrating these datasets in
order to find gene modules.

The algorithm called Signature [19] takes a similar approach, clustering genes and
conditions together using expression data. The input to the algorithm is a set of genes
and, in the first step, the experimental conditions under which these genes change
their expression above a threshold are chosen. In the second stage, all genes that have
changed expression significantly under these conditions are selected. The consistency
of the clustering result is evaluated by analyzing the recurrence of the output gene
sets in their resulting modules when the input is mixed with irrelevant genes. The
idea is that the results of any good algorithm should not deviate too much when slight
perturbations are introduced in the data. A module is considered to be reliable if it
is obtained from several distinct slightly perturbed input gene sets. Since the clusters
are refined in two stages, there can be no guarantee that the results are clustered in an
optimal manner. A better formulation might be to use the EM algorithm in order to
maximize the objective function.

The Genetic Regulatory Modules (GRAM) algorithm uses a more strongly super-
vized method for discovering regulatory modules. It combines microarray expression
data with DNA-binding data. DNA-binding data provide direct physical evidence of
regulation and thus offer an improvement on previous work in which only indirect
evidence of interaction was used for prior information [20]. Similar work was carried
out by Lemmens et al. [21]. In this work, a very simple and intuitive algorithm was
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used to find coregulated sets of genes that have similar expression profiles, the same
binding transcription factors, and a commonality of motifs. The principal difference
from earlier algorithms is that where others used motif information to validate their
results, Lemmens et al. used it in order to find the modules itself. All parameters,
such as the cutoff for various datasets, have been chosen without much justification,
and the basic idea seems very similar to the work in GRAM. Some of the comparison
metrics used do not seem very sound, for example, average functional enrichment
values have been calculated for the modules without normalizing to account for the
size of the modules. Similarly, summary statistics like the minimum and maximum
number of genes in the modules do not provide relevant information for comparing
the algorithms.

Tanay et al. analyzed several diverse datasets in an attempt to reveal the modular
organization of the yeast regulation system. They defined modules as groups of genes
with statistically significant correlated behavior across the diverse datasets. Their al-
gorithm is called Statistical-Algorithmic Method for Bicluster Analysis (SAMBA)
and is an extensible framework that can be easily updated as new datasets become
available. In their analysis, they have integrated expression, PPI, and DNA-binding
datasets. The positive aspect of their approach is that it utilizes all sources of infor-
mation in one uniform representation and only requires a measure of similarity of
genes across a subset of properties. It also allows overlapping modules (with com-
mon genes), which is not a feature of traditional clustering algorithms. One of the
limitations of their approach is that all sources of data are assigned equal weights and
it is not possible to weigh them separately according to reliability or importance [16].
More recently, they analyzed more diverse datasets and focused more on the biologi-
cal significance of the results, explaining them much more fully. They proposed that
work should be carried out on integration across species on the basis that transcription
modules are highly conserved among species.

Huang and Pan investigated clustering solutions using a K-medoids algorithm
[22]. They incorporated prior knowledge by modifying the distance metric used
while clustering. They clustered microarray expression data while deriving biological
knowledge about the known similarity between pairs of genes from gene ontology.
The authors used a shrinkage approach for the distance metric to shrink it toward
zero in cases where there is strong evidence that two genes are functionally related.
In a later piece of work, Pan used known functions of genes from existing biological
research to assign different prior probabilities for a gene to belong to a cluster [23]. He
developed an expectation maximization algorithm for this stratified mixture model.

Troyanskaya et al. developed a generic meta framework, known as Multisource
Association of Genes by Integration of Clusters (MAGIC), for integration of diverse
sources of data. It is called “meta” because it does not directly integrate the datasets
but uses results from other techniques like clustering and combines them with other
evidence [24]. Their proposed framework is based on a Bayesian network whose
conditional probability tables have been built with the advice of yeast genetic experts.
Given a pair of genes, it outputs the probability that they are functionally related after
weighing the evidences from various sources. Evaluation of the predictions from the
system was done using gene ontology data.
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Most of the techniques that we have described work well for real (numerical) data
but are less effective when dealing with string data, for example, gene sequences,
or graph data such as protein interactions. In many cases, ad-hoc techniques have
been deployed. In an approach to this problem, Lanckriet et al. proposed a framework
where such diverse data could be merged in a principled manner [25]. It is based on
kernel methods in which algorithms work on kernel matrices that are derived from
pairwise similarity among variables using so-called kernel functions [26]. If a valid
kernel function can be defined to encode the similarity between two variables, then the
methods are applicable regardless of the different types of data—strings, vectorial or
graphical—being used. This framework will provide a means to integrate more diverse
types of data when they become available in the future. The original paper proposed
the framework only for supervized learning, but extensions to unsupervised learning
are possible.

16.4 VALIDATION APPROACHES

In essence, discovery of regulatory mechanisms comes down to clustering genes that
show similar behavior in some context, for example, co-expression in a microarray
experiment. The validation problem is to determine how good the resulting clusters
are. As yet, no generally accepted method has emerged to address it. Approaches
may be divided into those that are purely statistical (internal validation) and those that
take into account some measure of biological significance of the clusters (external
validation). The term external meaning that further information, not involved in the
clustering process, is used for the validation. In contrast, internal validation uses only
the data from which the clusters are derived. Those in the latter class are drawn from
traditional statistical methods [27], and more recent approaches stem from studies
into data mining [28].

16.4.1 Internal Validation Methods

Traditional internal methods use three criteria to validate a set of clusters: com-
pactness, separation, and connectedness. The first two criteria have their roots in
well-known statistical pattern classification work. Generally, the input data are used
to create an affinity (or similarity) matrix from the measurements. Genes that are
strongly correlated in the measurement space have high similarity values in the affin-
ity matrix. Spectral clustering is then used to partition the affinity matrix. The matrix
can be re-ordered so that clustered items are located together in submatrices about
the diagonal. Ideally, gene pairs in each individual cluster will have high similarity
values and the compactness can be measured by finding the average similarity in
the submatrix corresponding to each cluster. Separation can be estimated from the
affinity matrix elements outside the class submatrices. These elements represent the
degree of similarity of genes belonging to different classes and should ideally be zero.
These two measures validate the clusters in a manner analogous to the way in which
Fisher’s linear discriminant analysis finds the space where a set of classes have the
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smallest within-class variance (compactness) and maximal between-class variance
(separation). Connectedness is a different concept that looks at the overlapping be-
tween classes. The most connected classes are those with a Gaussian distribution.
Those with multimodal distributions have poorer connectedness. We can assess this
by testing the nearest neighbors to a class centroid to see what proportion belong to
that class. The use of these individual measures and the methods for combining them
are rather heuristic in nature, and the results will be dependent on the data used.

Another important class of statistial methods that can be used to validate a cluster-
ing solution is resampling. Following this approach, bootstrap datasets are drawn from
the original data by sampling with replacement. Each bootstrap set is then clustered
and the resulting set of clusters is examined for consistency. Consistent clustering
between the different bootstrap datasets is taken to be an indication that the clustering
solution is good.

Comparision of different clustering solutions can be done using a well-established
measure of cluster similarity, namely the adjusted Rand Index. Milligan and Cooper
[29] carried out an extensive empirical study on several such measures and found this
index effective even when comparing partitions with different numbers of clusters.
The Rand index works by pairwise matching on each of the clusters that are being
compared. Given two clusterings C1 and C2 of the same dataset, we define:

• N11: the number of pairs of objects in the same cluster in both C1 and C2.
• N00: the number of pairs of objects in different clusters in both C1 and C2.
• N01: the number of pairs of objects in different clusters in C1 but same cluster

in C2.
• N10: the number of pairs of objects in the same cluster in C1 but different clusters

in C2.

The Rand index is simply the fraction of items in agreement to the total

N11 +N00

N11 +N00 +N01 +N10
. (16.1)

When the two partitions are identical, the Rand Index is 1, whereas it reaches 0 when
they have nothing in common. Unfortunately, the expected value of the Rand index
for two random partitions is not zero. The adjusted Rand index corrects for this, in
effect normalizing the range [30]. It takes the form

index− randomexpectation

maximumindex− randomexpectation
. (16.2)

Its maximum is bounded at 1, but it returns zero for random clusters.
Some evaluation of other statisticals methods for validating clusters in gene ex-

pression data has been carried out by Yang et al. [31].
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16.4.2 Measures of Biological Significance

External measures of the quality of a clustering solution are made by using other
knowledge about the functioning of the genes in a cluster. To this end, genes can tagged
with labels, referred to as annotations, attributes, or terms, that give an indication
of their known functions. Early attempts to create curated databases describing gene
function were inconsistent in their use of terms. However, the Gene Ontology Consor-
tium was recently formed to provide a unified description vocabulary that is generally
accepted and continuously evolving [32]. An important publicly available source of
genetic knowledge is the The Gene Ontology (GO) database, which provides a set of
standard terms that can be used to annotate individual genes. The terms are divided
into three groups corresponding to cellular components, biological processes, and
molecular functions. Generally, the terms describe functionality without reference to
specific conditions in which those functions are carried out. Examples of molecular
function are catalytic activity, transporter activity, and binding. Genes are annotated
with terms on the basis of accepted experimental evidence that may originate from
many sources. The sources are also recorded, since some provide better evidence of
the annotation than others. The ontology is created by a set of relations between terms.
This forms a semantic network in which each node is a term and the directed arcs are
the relations. The relations are is a and part of . For example, a nuclear chromosome
is a chromosome and a nucleus is part of a cell, since there are other parts of a cell
and not all cells have nuclei. These relations impose a partial ordering on the terms,
with those at higher levels expressing more generality. A term may have multiple
parents, and a constraint is that all parents of a term must be applicable to any gene an-
notated by that term. The descriptive power of the GO database makes it attractive for
research into gene function in cell regulation. It encapsulates the prior knowledge of
gene function that should be used when making any inference from new experimental
data.

Applying the knowledge encapsulated in the GO database to cluster validation
is not straightforward and is currently an active area of research. There are many
terms, and in a given set of experimental data, each term may be more or less
significant as a cluster discriminant. One approach to deciding the significance
of a particular annotation within a cluster is to ask whether there are more genes
annotated to that term than would be expected in a random cluster. For this
purpose, the hypergeometric distribution has been investigated by several researchers
[33–35]. The hypergeometric distribution is calculated for a particular term
using

p =

(
M

x

)
×
(
N −M

n− x

)
(
N

n

) , (16.3)
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where p is the probability that if n genes are selected at random from the background
set then x of them will be annotated by the term in question. N and M describe the
background set of genes, N is the number and M the number annotated with the term in
question. The background set of genes will in general represent all the genes involved
in the experiment. Terms with high p values are less effective at discriminating classes
than those with low p values.

Given a clustering solution where the genes are labeled by the GO terms that form
significant discriminants for that experiment, the question of assessing the quality of
that clustering solution can be looked on as a multivariate problem. Each annotation
term used in the total that has been clustered can be considered a variable and each
gene in a cluster will contain a binary value for that term (annotated or not), which can
be organized as a binary attribute vector. Cluster quality methods based on the attribute
vector have been investigated [36]. A promising approach uses information theory
[37]. This method is based on calculating the mutual information between the clusters
and the attributes. For each term, the number of genes annotated by that term in the
cluster is counted. This forms a matrix between the clusters and the terms which can
be normalized into a joint probability distribution. Calculating the Kullback–Leibler
divergence of this distribution returns the mutual information between the clusters
and the terms attributed to their genes. A high value of this entropy indicates a high
degree of biological significance in the cluster. A low value indicates that the terms
are distributed evenly among the clusters and thus the clusters do not have much
biological significance. A popular quality measure is the z-score, which is computed
by comparing the mutual entropy of a given partition to the expectation for random
partitions.

An approach, known as Renisk’s similarity, combines both statistical and topo-
logical information, and has been extensively studied [38]. In GO, the information
shared by two terms is computed from the set of common ancestors. In general,
the higher up in the ontology a term is, the lower the information associated with
it. The objective is, therefore, to find the lowest common ancestral term and use
its information content as the similarity measure. The information is equated to
the negative log of the probability that a gene is annotated to that term or its
descendents.

One important question to be resolved in using the GO to validate a clustering
solution is the level of detail at which any of the above tests are applied. To increase
the generality, terms can be replaced by their ancestors at a given level of the ontology.
The higher the level to which the terms are projected, the smaller the total number
of terms in any validation problem. This integrative process could offer significant
advantages in reducing noise and stabilizing the results, but requires further study
into how the optimal level could be found.

Some recent studies have looked into the question of combining statistical and
biological validation methods [39]. A comparison of statistical and ontology-based
approaches to validation was carried out by Bolshakova et al. [40], and a method for
resolving differences in the results of differing validation methods has been investi-
gated by Pihur et al. [41].
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16.5 CONCLUSIONS

In modern molecular biology, there is increasingly a chain of processing steps that
must be undergone before any experimental results can be interpreted. At the lowest
level, microarray experiments require normalization, and at higher levels of abstrac-
tion, data fusion and integration is required to stabilize experimental results. This
processing separates the scientist from the data and may introduce errors and arte-
facts. There is, therefore, a need for proper validation of any high-level functionality
interpreted from experimental data.

GO is emerging as a powerful resource for recording accepted knowledge about
gene functions in a way that allows automatic statistical testing and analysis. Vali-
dation methods have been proposed and have met with some success; however, the
field is still in its infancy. The information richness of the emerging GO offers the
potential for development of powerful new validation methods.
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Conventional biological studies focus on one gene or one protein at a time. Life,
however, is a complex system that is not subject such a reductionalist approach. In
today’s postgenomic era, biologists believe that many genes and proteins interact in
various fashions and that the deciphering and modeling of interaction among them
would help better reveal and understand the mechanisms of living systems [1]. The
emerging field of systems biology attempts to investigate such complex biological
interaction from a systems viewpoint instead of individual molecules or components.
New computational techniques are much needed for this new scientific endeavor,
and, in particular, imaging plays an important role of providing objective, repeatable,
quantitative phenotyping measures for complementing and correlating with large-
scale genotyping studies. In this chapter, we will discuss the computational imaging
and modeling techniques used in systems biology studies.

Computational techniques in systems biology can be roughly categorized into two
broad classes: bioinformatics and bioimage informatics. Bioinformatics in systems
biology mainly focuses on the biomarker discovery, including high-throughput molec-
ular data analysis, molecular networks reconstruction from high-throughput data,
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molecular networks analysis, and so on. Bioimage informatics, on the other hand, ad-
dress issues of image phenotyping, secondary screening, target validation, drug lead
selection, and so on. The two classes of techniques are not necessarily orthological
and are often integrated in solving complex problems. For example, Figure 17.1 exem-
plifies a systems biologic oriented workflow for biomarker discovery and validation,
involving both bioinformatics (left) and bioimage informatics (right). The biomarker
can be identified directly from the high-throughput data, such as gene microarray and
mass spectrometry, as well as from the integrated molecular networks, such as gene
regulatory networks, protein–protein interaction networks, and metabolic signaling
networks. The molecular networks can be reconstructed from the high-throughput
biological data by computational modeling means and integrated with the existing
knowledge from the literatures and the databases, such as (KEGG) Kyoto Encyclo-
pedia of Genes and Genomes and (DIP) Database of Interacting Proteins. Once we
have identified certain candidate biomarkers, the next step is to validate them by bio-
logical experiments, such as knockout experiments using RNAi (RNA interference)
and PCR (polymerase chain reaction). The validation provides valuable feedback for
the next iteration of biomarker discovery process. The biomedical imaging provides
multidimensional functional and morphologic features of biological systems under
investigation and plays an important role in the biomarker validation, for example,
high content screening for in vitro experiments and molecular imaging for in vivo
experiments.

Figure 17.1 Systems biology approach that integrates bioinformatics and biomedical imaging
in iterative biomarker discovery and validation.
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The rest of the chapter is organized as follows. First, computational issues related
to several high-throughput biotechniques and molecular networks are introduced in
Section 17.1. Second, the computational issues related to biomedical imaging tech-
niques are presented in Section 17.2. Then, more recent works on the systems biology
fusing bioinformatics and biomedical imaging together are reviewed in Section 17.3.
Finally, Section 17.4 provides a summary of the chapter.

17.1 BIOINFORMATICS

In this section, we briefly introduce major high-throughput biotechniques that are use-
ful in the studies of systems biology, including techniques in genomics, proteomics,
and metabonomics.

17.1.1 Gene Microarray

Gene microarray is one kind of oligonucleotide microarray used to measure simulta-
neously the expression levels for hundreds of thousands of genes. Gene microarray
is a powerful tool in pharmaceutical and clinical research, as well as in basic biology
research. It can be used to study the effects of certain treatments and diseases, as well
as the regulatory relationship between genes. We can also use gene microarray to
identify genes related to specific disease or phenotype by comparing gene expressions
in different cells or tissues. The huge amount of data generated by gene microarray
experiments is explored to answer fundamental questions about gene functions and
their interdependence and hopefully to provide answers to questions like what type
of disease affects a cell or which genes have strong influence on this disease.

Since there exist hundreds of thousands of coding genes while only tens or hundreds
of samples in microarray data, feature reduction or gene selection is the necessary
step for biomarker discovery. There are two major approaches: one is filter methods
and the other is wrapper methods. Filter methods select the best features according
to a reasonable criterion from prior knowledge, with the criterion independent of the
real problem. Wrapper methods search through the space of possible features and
evaluate each subset by running a model on the subset. Wrapper methods can be
computationally expensive and have a risk of overfitting to the model. Many gene se-
lection methods have been proposed, for example, the support vector machine method
[2], the genetic algorithm [3], the perceptron method [4], Bayesian variable selection
[5, 6], and the voting technique [7]. We also developed new methods in our laboratory,
such as a mutual information-based method for gene and feature selection [8] and a
logistic regression model based method for feature selection [9].

17.1.2 Mass Spectrometry

Mass spectrometry (MS) is one of the most important high-throughput techniques
emerging in the last decade for the proteomics field. MS can be used in the
protein–protein interaction detection [10, 11] and the proteomics-based biomarker
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selection [12, 13]. MS can also be applied to differentiate between patient samples,
such as diseased from normal controls or to select patients who are most likely to
benefit from a particular treatment, and, therefore, is promising in delivering early
diagnosis and prognosis, as well as monitoring disease progression and treatment
response. Currently, there are two leading MS techniques: surface-enhanced laser
desorption ionization–time of fight (SELDI-TOF) [14, 15] and matrix-assisted laser
desorption ionization–time of fight (MALDI-TOF) [16, 17]. More sophisticated MS
techniques are also arising, such as inductively coupled plasma–mass spectrometry
(ICP-MS) [18], nanostructure–initiator mass spectrometry (NIMS) [19]; however,
the bioinformatics algorithms for these new high-throughput MS techniques are
much less established.

Despite their important role in biomarker discovery, only a few published papers
dealt with the preprocessing of the MS data. Most researchers obtained the peaks
directly from the raw data with the software provided by the equipment vendors.
Making sense out of these high-dimensional complex MS data is challenging and
necessitates the use of a systematic analytic strategy. The computational proteomic
issues consist of low-level processing, biomarker selection, sample classification and
prediction, and protein/peptide identification. For the SELDI data, each peak may
correspond to a real protein or peptide. In Yasui et al. [20], the peaks are obtained by
examining whether the intensity at the point is the highest among its nearest N points
neighborhood set. If it is the highest, it is then considered as a peak. To calibrate the
protein m/z measurements across samples, a shift window of size 0:2 percent of the
m/z is defined. Since there is much noise embedded in MS data, the detection of peaks
will not be accurate.

On the other hand, MALDI data have a higher resolution than SELDI data. Each
true peak corresponds to a cluster of isotopic peaks. For the baseline correction and
denoizing, most methods used to handle SELDI data can be applied to process MALDI
data. The undecimated discrete wavelet transform is applied to do the denoizing first
in [21]. Another paper [22] uses the continuous wavelet transform. A method to
detect the peaks in MALDI data is included in Yu et al. [23]. The median values
within the local neighborhood are computed first and the baseline is obtained by the
cubic interpolation. Then, Gaussian filter is applied to smooth the baseline-corrected
data. A Gabor quadrature filter is applied to extract the envelope signal and obtain
the monoisotopic peak for the isotopic peaks. At last, the local maximum search is
applied to identify the peaks. The Gabor filter depends on the real data to identify the
monoisotopic peak. If the intensity is not large, it may be able to smoothen the peaks.
In brief, peak identification is still an open and unresolved research issue.

17.1.3 Molecular Networks and Pathways

One active research area of systems biology is the study of the interactions between
the components of a biological system by interaction networks and of showing that
how these interactions give rise to the function and behavior of the system [24, 25].
Many complicated systems can be represented as networks of interactions among
individual components. The network properties can characterize the whole system
and its individual components [26–28] at the same time; thus, they are generally
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able to be applied to many disciplines. Examples include social networks (e.g., sci-
entific collaboration networks), technological networks (e.g., world wide Web and
power grids), and biological networks (e.g., neural networks, cellular, and metabolic
networks) [29, 30]. A network model often abstracts the components as nodes (ver-
tices) and their relationships as edges (lines) in a graph, where the weights compa-
nying with nodes and/or edges represent the degree or constraint of the relationships
[30].

There are three main molecular networks: gene regulatory networks, protein–
protein interaction networks, and metabolic networks. Network modeling is the es-
sential step in the study of biological networks, which attempts to mathematically
describe the interactions among the components. The gene regulatory networks are
modeled by directed and undirected graphs [31, 32], Bayesian networks [33, 34],
boolean networks [35, 36], differential equations [25, 37, 38], and stochastic equa-
tions [39, 40]. The major challenge in the reconstruction of gene regulatory networks
from experimental data is the dimensionality problem, that is, the number of genes
far exceeds the number of conditions. A typical gene expression dataset consists of
less than 100 conditions with respect to tens of thousands of genes. Therefore, the re-
construction problem is underdetermined. Some biological plausible criteria such as
sparsity are introduced as constraints to solve the problem. We refer readers to Jong
[31] and Gardner and Faith [41] for more detailed review. For the protein–protein
interaction networks, the undirected graphs are often used. High-throughput physical
protein–protein interactions are detected by yeast two hybridization system [42] and
mass spectrometry [43, 44]. On the basis of the experimental datasets, a whole array
of computational algorithms has been developed to infer the protein–protein inter-
actions. For instance, there are the gene fusion (Rosetta Stone) method [45, 46], the
phylogenetic profile method [47], the interaction domain pair profile method [48],
the probabilistic method [49], the SVM (support vector machine)-based method [50],
the LP (linear programming)-based approach [51], the association method [52], the
EM algorithm [53], and the APM (assocaite probabilistic method) method [24]. An
organism’s metabolic system is the basic chemical system that generates essential
components, such as amino acids, sugars, and lipids, and the energy required to syn-
thesize them and to use them in creating proteins and cellular structures [54]. In
recent years, several genome-scale metabolic networks for different organisms are
reconstructed from the genomic data in silico [54–59].

Besides the three main molecular networks, there exist many other types of biolog-
ical networks such as gene co-expression network [60], functional linkage network
[61], protein structure network [62], protein folding network [63], protein domain in-
teraction network, and so on. Some of them may share similar mathematical models
and analysis methods, while others would need the development of new computational
models and methods.

17.2 BIOIMAGE INFORMATICS OF HIGH-CONTENT SCREENING

High-content screening (HCS) is a powerful tool for simultaneously studying the
response of a population of cells under a range of different chemical, genetic, or
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radiological perturbations in the model cell-based assays. These assays are widely
used in disease diagnosis and prognosis, drug target validation, and compound lead
selection. The ability to visualize, trace, and quantify cellular morphologies at high
spatial and temporal resolutions is essential for the understanding of biological pro-
cesses and for the development of effective therapeutic agents. Current optical mi-
croscopy techniques coupled with the large arsenal of fluorescent and other labeling
methods generate a tremendous number of images that need to be processed and quan-
titated. However, the development of computerized tools for analyzing these images
has not kept pace with the hardware development [64].

Within the bioimage informatics pipeline, we identify five top-level stages: screen-
ing and image acquisition; image processing; information/database management; data
modeling and statistical analysis; and system–biology integration. In this section, we
focus on the computational models and algorithms used in the image-processing
stage, which includes four major steps: (1) image preprocessing; (2) cell detec-
tion, segmentation, and centerline extraction; (3) cell tracking and registration; and
(4) feature extraction. We refer interested users to Zhou and Wong [65] for more
details.

17.2.1 Image Pre-processing

The goal of image pre-processing is, to improve the quality of raw images prior to
image segmentation and feature extraction, by employing a series of computational
methods. Image pre-processing generally consists of three parts: image restoration,
noise removal, and contrast enhancement [66, 67]. Image restoration often decon-
volutes the degraded image from the microscope using the point spread function
provided by the microscopy manufacturer [68]. Noise removal often uses a median
filter to remove the pepper noise generated by CCD detectors in optical fluorescent
microscopy. This median filter can preserve high-frequency information describing
cell edges in high-content microscopic images. Background correction is important
in microscopy image processing. Due to uneven illumination over the field of view,
there can be a large variation in image intensity. A data-driven method is often im-
plemented to remove variations in intensity [69]. In image contrast enhancement, an
active contrast adjust algorithm is deployed to enhance image contrast and reduce
nonuniform image intensity from uneven light illumination. Our studies indicate that
nearest-neighbors deblurring filters [70, 71] work well. Blind deconvolution and max-
imum likelihood deconvolution methods [72] are extensively studied in the literature.
They are theoretically useful, but often fail when dealing with real applications be-
cause the point spread function is generally unknown.

17.2.2 Cell Detection, Segmentation, and Centerline Extraction

After image pre-processing, the cells and their boundaries must be identified before
any cell feature can be extracted. Cell or nucleus detection is an important task in
biological image analysis.
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17.2.2.1 Cell Detection In recent years, successful efforts have been made in
the development of image analysis methods for two-dimensional object detection.
Sjostrom et al. [73] used an artificial neural network for automated cell counting.
Chen et al. [74] developed a cellular image analysis method to segment, classify, and
track individual cells in a living cell population. Yang and Parvin [75] detected blob
objects by analyzing the Hessian matrix of each pixel. They also proposed a method
based on iterative voting along the gradient direction to determine the centers of blobs
[76]. Byun et al. [77] utilized the inverted Laplacian of the Gaussian for blob detection
in the application of detecting nuclei in immunofluorescent retinal images.

Throughout these different kinds of detection methods, a persistent problem is
over- and underdetection. An essential aspect of solving this problem is for the image
segmentation step to offer “seeds” to reduce the over- and underdetection problem.
There is no efficient method of detecting the local intensity maxima directly, however.
Recently, we proposed a cell- and nucleus-detection method employing a Gaussian
filter to generate local-intensity maxima inside the cell nuclei image map [78]. After
computing the smooth-gradient vector flow field and the motion of the pixels of the
cells in the smooth-gradient vector flow field, we replaced detection of the local-
intensity maxima with detection of the central point of the object with the most
pixels.

In three-dimensional (3D) nucleus detection, manual neuron detection and seg-
mentation is a time-consuming task because it requires the comparison of each slice
to its successive and predecessive slices in order to track the different cross-sections
of each neuron. In automating this process, the first step is to develop an efficient
segmentation method that can be used on each optical slice. Belien et al. [79] devel-
oped a contour-based 3D segmentation method. Their find-object algorithm examines
successive images to ascertain overlapping areas. Lin et al. [80] presented an accu-
rate 3D watershed segmentation method followed by 3D object feature selection for
merging and breaking objects in confocal image stacks. Ortiz de Solorzano et al.
[81], on the other hand, applied a semi-automatic method for segmentation based
on watershed and morphological reconstruction followed by the analyst’s classifica-
tion. We recently proposed a new automated approach for accurate cell segmentation
in different slices of such 3D confocal microscope images [82]. This contour-based
method performs well in comparison with the well-known watershed segmentation
algorithm that was introduced by Vincent and Sollie [83].

17.2.2.2 Cell Segmentation Cell segmentation is a challenging issue in HCS
because of the problem of touching spots. Generally speaking, cell segmentation
can be categorized into two classes: nucleic segmentation and cytoplasm segmenta-
tion. Nucleic segmentation has been extensively studied in recent years and several
automated nuclei segmentation and cytoplasm-segmentation methods have been in-
troduced. These methods can be roughly classified into three categories: deformable
models [84–86], Voronoi diagrams [87, 88], and watershed methods [74].

17.2.2.3 Neurite Centerline Extraction Automated extraction and labeling
of all the neurite segments in a fluorescence microscopy neuron image is one of the
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fundamental goals of neuron image processing. We observe that a neurite segment can
be treated as a bright, elongated wire-like structure surrounded by a dark background.
In this way, the problem can be mapped to the problem of extracting line structures
from digital images, for which there are two major approaches: direct exploratory
tracing algorithms [89–93] and line-pixel detection algorithms [94–97]. Given the
increasing development of high-throughput screening of neuron-based assays, there
is a need for the development of an automated image analysis algorithm that can
extract and label neurite segments accurately and completely with minimum user in-
tervention. Toward this end, we proposed a number of novel algorithms for automatic
labeling and tracing of neurite segments in microscopy neuron images, including
one that selects the starting and end points automatically and links the lines using
dynamic programming techniques, and another that uses the curvilinear structure
detection method [98, 99].

17.2.3 Cell Tracking and Registration

Based on the results of cell detection and segmentation, the next step is cell tracking
and registration. There are many published reports on cell-tracking methods. In a
review paper [100], the authors discussed five single matching algorithms frequently
applied to the problem of particle tracking: the centroid method, the Gaussian fit
method, the correlation method, the sum absolute difference method, and the inter-
polation method. In [74], we proposed an improved matching algorithm. Mean shift
[101], Kalman filter [102], mutual information [103, 104], and fuzzy logic inference
methods [105, 106] are also applied to cell-tracking problem. Ideally, parallel track-
ing can track all cells according to one objective function. In a sense, it is an optimal
method, but it is computationally costly. Suppose xi(t) is the ith cell in frame t and
the number of cell nuclei in frame t and t+ 1 are m and n, respectively. We match the
correspondence between nuclei at time t and t + 1 by computing a similarity metric
U(t) = {uij(t)}, where uij(t) = sij(t) = dij(t), i = 1, 2, . . ., m and j = 1, 2, . . ., n, is the
cosine similarity of xi(t) and xj(t + 1). dij(t) is the distance of xi(t) and xj(t + 1). In
this kind of method, the challenge is to find the optimal match for all cell sequences.
In our recent study, a tree structure matching is applied on our subgraph [107]; that is,
we search all the possible pairs locally in the subgraphs and find the pairs with highest
summation of weights. After the favorite matching and local tree (FMLT) matching,
we can find a group of optimal one-to-one matching.

17.2.4 Feature Extraction

After cell detection, segmentation, and tracking, a lots of cell features can be extracted
from images. The basic cell feature group includes measurements of cell area, shape,
size, perimeter, intensity, texture, Zernike moment, and Haralick texture. Zernike mo-
ment and Haralick texture are calculated from processed protein localization images
as described by Boland et al. [108]. Zernike moments are calculated using an or-
thogonal basis set, that is, the Zernike polynomials, which are defined over the unit
circle. On the other hand, Haralick texture features are statistics calculated on the
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gray level co-occurrence matrix derived from each image. Some features such as the
coefficients coming wavelet transformations and time frequency transformations are
also studied. We have done some preliminary investigations of the extraction of more
specific features [109]. For feature extraction, additional image features specific to
the different cell phenotypes, such as the spiky region, ruffling region [69], and actin
acceleration region, can be identified [109]. Scientists sometimes consider features
at the image level, termed image descriptors, such descriptors are usually set as the
global information about the whole image, such as the mean of the cell intensity, cell
area, or other descriptors.

17.3 CONNECTING BIOINFORMATICS AND BIOMEDICAL IMAGING

Information obtained from bioinformatics studies such as high-throughput genomics,
proteomics, and metabonomics can be correlated with biomedical imaging to aid in
the understanding of molecular interactions and disease pathways. For instance, cell-
based screening assays can be used to distinguish between phenotypes and investigate
interactions between signaling pathways and are useful in determining the interaction
between drug candidates and target genes. Molecular imaging offers the possibil-
ity of imaging in vivo gene expression and protein–protein interactions. HCS can
output screening hits and functional effectors. Starting from those effectors, we can
study their interactions from a systems viewpoint such as that of metabolic networks.
Metabolic networks can give biologists hints such as which genes/proteins/enzymes
are in the pathway under study, they can then again use cellular imaging to validate
them. In this section, we briefly discuss how to connect bioinformatics to biomedical
imaging within systems biology framework and review some recent development of
systems biology approach in this direction.

17.3.1 Cellular Networks Analysis by Using HCS

Cellular networks are composed of complexes of physically interacting macro-
molecules (mainly proteins) or of dispersed biochemical activities coordinated by
rapidly diffusing secondary messengers, metabolic intermediates, ions, and other
small solutes. These networks can be regarded as 3D maps depicting pathways from
which higher cellular functions emerge. The dynamics of molecular interactions
within these reaction cascades can be assessed in a living cell by the application of
fluorescence microscopy, which allows one to correlate such phenomena as cell-cycle
progression, cell migration and motility, secretion, volume control and regulation of
growth, and morphogenesis and cell death.

Within fluorescence microscopy, the development of genetically encoded variants
of green fluorescent proteins (GFP) as tags for proteins and indicators of small solutes
(Ca2, other ions, cAMP, ATP, GTP, inositol phosphates, etc.) has revolutionized our
insights into “live” biochemistry at the microscopic level, with the advantage of
preserving the cells biochemical connectivity context, compartmentalization, and
spatial organization [110]. This development parallels recent progress in genomics,
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proteomics, and metabonomics, through which functional attributes are assigned to
genes and gene products by alignment to well-characterized sequences or by compar-
ison to models. However, only a small percentage of newly identified products can
presently be categorized in this manner, and further progress depends on the collec-
tion of huge amounts of experimental data from functional and microscopic imaging
bioassays.

The analysis of genetically expressed GFP-based fluorochromes is destined to
follow the dynamic trafficking and clustering of gene products and the study of
spatial–temporal distribution patterns of small solutes in living cells kept under nor-
mal physiological conditions. HCS will add a new dimension to these studies, with an
emphasis on membrane-embedded receptors, transporters and channels, the diffusiv-
ity of cytosolic enzymes, ions and small solutes (metabolites) in cytosol, endoplasmic
reticulum and mitochondria, and the supermolecular assembly of signaling factors at
the cell cortex and in the nucleus.

17.3.2 Gene Function Annotation by Using HCS

Biomedical imaging techniques not only are good validation tools but also provide
powerful support for quantitative and large-scale biological studies, much like bioin-
formatics. Gene function annotation is a common task in bioinformatics. The tradi-
tional bioinformatics uses the genomics information, such as sequence similarity and
gene expression profile, to prediction gene functions. Cluster analysis is a predomi-
nant means to group gene functions, and numerous publications have been dedicated
to describe gene clustering analysis-based gene expression and microarray data. The
pilot study of Kiger et al. [111] detected the morphological phenotypes for 160 genes.
Their work suggests that it is possible to use RNAi screening to functionally char-
acterize a large set of genes and, to identify functional modules, by grouping genes
according to morphological criteria. Recently, there have been a few studies of gene
function based on cellular features, image descriptors, and phenotypes [112, 113]. In
these studies, it has been verified that 16 phenotype classes of the 23 defined phe-
notype classes are indeed implicated in specific biochemical pathways for genes of
known function. It has also been shown that the strength of combined phenotypic
and bioinformatics analysis can give considerable predictive information about the
function of previously uncharacterized genes.

17.3.3 Association Studies with Clinical Imaging Traits

In addition to the cell-based image features described in the last subsection, there are
also strong correlation between clinical phenotypic image features and gene expres-
sion profiles. Segal et al. [114] studies the correlation between the gene expression
and the clinical imaging traits in primary human liver cancer. They found the dy-
namic imaging traits in noninvasive computed tomography (CT) are systematically
correlated with the gene expression. The association map between imaging features
on three-phase contrast enhanced CT scans and gene expression patterns of 28 human
hepatocellular carcinomas (HCC) are created as follows. First, 32 most informative
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imaging traits are identified from the initial 138 distinctive imaging traits presented in
one or more HCCs, based on their frequency and prominence in the data, interobserver
agreement between two radiologists and independence from other traits as determined
by Pearson correlation among the traits. Second, the gene expression data of 6732
genes in HCC samples are clustered into 116 gene modules. Then, each gene modules
is associated with specific combinations of imaging traits. The obtained association
map can be used to reconstruct the gene expression profiles from imaging traits. Com-
binations of 28 imaging traits can predict 78% of the gene expression profiles. On the
other hand, the association map can also identify the potential biological processes
underlying specific imaging traits, based on the associated gene expression profiles.
This work shows the noninvasive imaging can detect the genomic activity of human
liver cancer; therefore, it is promising for the delivery of personalized medicine in
the near future.

Kantarci et al. [115] show another systems biology approach for disease gene
discovery by integrating the genome-wide association study (GWAS) and clinical
imaging. The genome regions related to the Donnai–Barrow syndrome (DBS) and
facio-oculo-acoustico-renal (FOAR) are firstly identified by identity by descent (IBD)
from SNP array data for four individuals with DBS in a large family. The largest region
of IBD is further refined by using microsatellite markers with linkage of disequilib-
rium (LOD) analysis. Finally, the mutations of LRP2 gene in six families with DBS
are identified and validated by magnetic resonance imaging (MRI).

17.3.4 In Vivo Genomics Analysis

Molecular imaging is a new development in the past decade that aims to track, mon-
itor, and measure, in living animals, the molecular behaviors and dynamic biological
processes such as metabolic activity, cell proliferation, apoptosis, receptor occupancy,
reporter gene expression, and antigen modulation. In vivo gene expression profiling
is currently a major task in molecular imaging. Unlike most early works focusing on
improving the imaging techniques, such as experimental design and probe selection
[116, 117], there are recent works that integrate the molecular imaging techniques
with bioinformatics from the viewpoints of systems biology.

Chuquet et al. [118] analyzed the correlation between the gene expression and
brain metabolic status during cerebral ischemia. The brain metabolic status in a model
of focal cerebral ischemia in baboons is obtained by positron emission tomography
(PET) scanning. The gene microarray experiments identify four groups of genes
and the patterns are observed in each of the distinct groups. These patterns of gene
expression may be used to define molecular checkpoints for the development of an
ischemic infarct and a molecular definition of the penumbra.

Wu et al. [119] analyze the effects of a triple-fusion reporter gene on embryonic
stem (ES) cell transcriptional profiles by molecular imaging and genomics methods.
A self-inactivating lentiviral vector carrying a triple-fusion (TF) construct consisting
of fluorescence, bioluminescence, and positron emission tomography (PET) reporter
genes is transfected into murine ES cells. The stably transfected populations are
isolated by fluorescence-activated cell sorting (FACS) analysis. Then, microarray
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experiment is applied to study the gene expression in nontransfected control ES cells
and stably transfected ES cells. The comparison study of gene expression reveals
certain increases in transcriptional variability. Further analysis using GO annotations
and gene regulatory networks shows that ES–TF cells downregulated cell cycling, cell
death, and protein and nucleic acid metabolism genes while upregulating homeostatic
and anti-apoptosis genes. Even though the expression of TF reporter gene affects
the transcription of ES cells, HCS experiments show that the reporter gene has no
significant effects on ES cell viability, proliferation, and differentiation capability.
Therefore, TF reporter gene may be used for tracking ES–TF cells in living subjects.

Haberkorn et al. [120] report a study to assess the effects after transfer of anti-
angiogenic genes in rat hepatoma, by using fluorodeoxyglucose positron emission
tomography (FDG-PET) and gene microarray. Grigsby et al. [121] present an inte-
grative study attempting to find gene expression patterns in human cervical tumors.
Molecular FDG-PET imaging is performed in patients to detect the extent of lymph
nodes metastases. The tumor tissue samples are extracted and hybridized to gene
microarrays. Supervised clustering of gene expression data identifies 12 statistically
significant differential expressed genes out of about 12,000 between the two patient
groups with different extents of regional lymph node involvement. This study iden-
tified candidate biomarkers of extent of lymph node metastases that correlated with
poor survival outcome.

17.3.5 In Vivo Proteomics Analysis

Protein–protein interactions are involved in processes such as enzymatic activity,
signal transduction, immunological recognition, and DNA replication and repair.
They, therefore, are of critical importance to maintain most cellular functions.
A number of qualitative or quantitative biophysical methods were developed to
detect in vitro protein–protein interactions [42–44]. In order to monitor dynamic
real-time protein–protein interactions in living cells, some novel methods based
on bioimaging techniques are developed. Fluorescence resonance energy transfer
(FRET) microscopy [122, 123] and FRET anisotropy [124, 125] are used to study the
movement of proteins and their interactions with cellular components, as well as other
more complex cellular processes such as small-molecule-messenger dynamics, and
enzyme activation. Bioluminescence resonance energy transfer (BRET) is also used
to monitor homodimerization of proteins [126–128]. But all these methods only work
in cell culture instead of living subjects due to several drawbacks. Recently, three
general methods were developed for imaging protein–protein interactions in living
subjects using reporter genes: a modified mammalian two-hybrid system, a BRET
system, and split reporter protein complementation and reconstitution strategies
[129–131].

The discovery of targets for tissue-specific delivery of therapeutic and imaging
agents in vivo is difficult due to the complexity of molecular environment and the
inaccessibility of most cells within a tissue. Oh et al. [132] describe a systems bi-
ology approach to identify a small subset of proteins induced at the tissue–blood
interface that are inherently accessible to antibodies injected intravenously. They
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use proteomics and bioinformatics techniques such as protein 2D gels and tandem
mass spectrometry (MS/MS) to identify endothelial cell surface proteins exhibiting
restricted tissue distribution and apparent tissue modulation. The expression pro-
filing by molecular imaging with antibodies further establishes two of these pro-
teins, aminopeptidase-P and annexin A1, as selective in vivo targets for antibod-
ies in lungs and solid tumours, respectively. The discovery of targets is validated
by that radio-immunotherapy to annexin A1 destroys tumors and increases animal
survival.

17.3.6 In Vivo Genetic Analysis

Zubieta et al. [133] studied the association between the metabolism and genetic
polymorphism. In their study, the �-opioid neurotransmitter responses to a pain
stressor are evaluated by PET. The effect of the val158metCOMT (cathechol-O-
methyltransferase, one of the enzymes that metabolizes catecholamines) genotypes
on �-opioid system activation and �-opioid receptor binding potential maps is tested
by one-way analysis of variance (ANOVA). They observed significant influence of
the genetic polymorphism in COMT affecting the metabolism responses to pain in
human brain.

17.3.7 In Vivo RNAi Experiments

RNAi has become a widely used experimental tool to study gene function and appears
promising for therapies based on the targeted inhibition of disease-relevant genes. The
main challenge to in vivo RNAi application is the efficient delivery and monitoring
of the RNAi-inducing molecules, such as small interfering RNAs (siRNAs) to the
target tissue. The emerging molecular imaging provides a powerful noninvasive tool
for tracking the delivery, monitoring the effect, and quantifying the results of the in
vivo RNAi experiments [134, 135].

Bartlett et al. [136] use noninvasive bioluminescent imaging, with a mathematical
model of siRNA delivery and function, to monitor the effects of target-specific and
treatment-specific parameters on siRNA-mediated gene silencing in cells. In this
study, the mathematical model is used to predict the dosing schedule required to
maintain persistent silencing of target proteins with different half-lives in rapidly
dividing or nondividing cells. The approach of biomedical imaging combined with
mathematical modeling provides insights into siRNA delivery and function, which
may be useful in clinical research applications of siRNA.

Medarova et al. [137] describe a new noninvasive imaging method for detection
of siRNA delivery and silencing. They developed dual-purpose probes for in vivo
transfer of siRNA and the simultaneous imaging of its accumulation in tumors by high-
resolution MRI and near-infrared in vivo optical imaging (NIRF). These probes, which
consisted of magnetic nanoparticles labeled with a near-infrared dye and covalently
linked to siRNA molecules specific for model or therapeutic targets, were modified
with a membrane translocation peptide for intracellular delivery. The authors show
the feasibility of in vivo tracking of tumor uptake of these probes by MRI and optical
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imaging in two separate tumor models. These works represent the first step toward
therapeutic development and application of RNAi.

17.4 SUMMARY

The rapid advance of molecular biology and bioinformatics in the past decade reveals
that the biological systems are more complex than expected. By integrating different
scales of relevant biological data together in a systematic model, systems biology
becomes an essential method in deciphering these complex systems. The bioinfor-
matics results of high-throughput experiments need to be validated by in vitro or in
vivo experiments, where biomedical imaging techniques prove to be powerful vali-
dation tools. On the other hand, the discovery in biomedical imaging experiments in
turn can provide clue or hypothesis for the subsequent biological studies.

In this chapter, we reviewed key aspects of computational modeling issues in
biomedical imaging and the recent development of integrating biomedical imaging
with bioinformatics in the study of systems biology. There are certainly much more
computational issues of biomedical imaging need to address and explore. Applica-
tions of biomedical imaging techniques in systems biology is still in its infancy, and
comprehensive integration and fusing of biomedical imaging techniques with bioin-
formatics and “-omics” remains a challenge. We hope that this chapter has provided
the readers a good overview of key techniques and representative examples in devel-
oping biomedical imaging and modeling for systems biology.
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microscopy, 392
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Lysozyme c sequences, 263

dataset, character states, 264
phylogenetic tree, 263



408 INDEX

Machine learning approaches, 7, 9, 10, 173
challenge, 173
genetic algorithms, 7
inductive logic programming (ILP), 10
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Prediction strategy, 195
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integer programming model, 251–252
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transition probabilities, 247
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Protein(s), 360

named entity recognition, 360
expression regulation, 358
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Protein kinase (PKA), 63, 127
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Protein-protein interaction (PPI) network, 8, 10,
165, 171, 182, 183, 285, 360, 361, 392

data, 371
extraction, 361
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reconstruction, 182, 183
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PubMed query, 343, 344, 348, 361, 362

result, 348
Putative binding modules, 319
Putative target genes, 319
Pyruvate metabolic pathway, 227–230

Quadrature method, 269
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Quantile gamma discretization technique, 264,
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Rand index, 375
Rate heterogeneity, 257

rates distribution, 266–271
alternative rate distributions, 269–271
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Rationality, 34
Recursive algorithm, 239–241
REDUCE model, 294
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DNA binding motifs, 294
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discussion, 93–94
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RAM system, 111
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signal integration, 93
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Regression model, 199
Regulatory module discovery, 369

biological significance measures, 376–377
data integration, 371–374
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validation approaches, 369, 374–378

internal validation methods, 374–377
Regulatory networks, 166

components, 285
Renisk’s similarity approach, 377
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inducing molecules, 393
small interfering RNAs (siRNAs), 393

in vivo application, 393
screening, 390
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parameter biology, 35–37
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gene expression levels, 193
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Signal isoforms, 91, 93
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Singleton attractor, 238
SIRENE, see Local pattern recognition approach
Site-specific rate estimation, 271–272, 274
Small nucleotide polymorphisms (SNPs), 313
Software package, Matlab, 54
Solenoid model, 333
Spring coefficient, 154
SQUAD, input formats, 11
SSA convention, 94–98, 103, 107

activities, graph of, 98
simulation engine, 107

Statistical-algorithmic method for bicluster
analysis (SAMBA) algorithm, 373

Statistical mechanics techniques, 85
Steroid hormones, receptors, 310
Stochastic simulation, 84, 95
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Stochastic transition system, 84, 107
G-decomposable states, 107

Stokes’s law, 151
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Supervised network inference methods, 207

AUC score for, 207
Support vector inductive logic programming
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175, 192, 357
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Symport/antiport rules, 116, 117
Synthetic protein networks, technology of, 94
Systems biology, 11, 12, 21, 22, 32, 343, 381,

382
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mass spectrometry, 383–384
molecular networks/pathways, 384–385

biomedical imaging, 389–394
association studies with clinical imaging

traits, 390–391
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389–390
connection with bioinformatics, 389
gene function annotation by using HCS, 390
in vivo genetic analysis, 393
in vivo genomics analysis, 391–392
in vivo proteomics analysis, 392–393
in vivo RNAi experiments, 393

computational imaging and modeling, 381
computational techniques, classes, 381
emerging field, 381
high-content screening, 385

bioimage informatics, 385–389
models as dynamical systems, 23–26

continuous models, 24–25
discrete models, 25

parameter problem, 26–29
beyond fitting, 29
counter fitting, 28–29
measurement and calculation, 27–28
parameterphobia, 27
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parameter biology, 35–37
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Text mining process, 343, 345, 354
Ali Baba’s approach, 354–361

Thom’s theorem, 41
Three-dimensional multiscale brain tumor model,
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Transcription factor (TF), 284

activities, 289
binding sites, 284, 315

in silico screening methods, 315–317
DNA interactions, 287

binding data, 371
clustering-based approaches, 291
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proteins, 284
Transcription process 286

regulation, physical basis, 286–287
start site, 309

Transforming growth factor alpha (TGF�), 5
chemotaxis distribution, 5

Transition probability matrix, 249
Tree reconstruction, 261, 272

rate variation models, 272–274

Tree topology, distance methods, 273
Turing machine, 25

Ultraviolet light (UV), 131
induced cell cycle, 131

Viral essential genes, 334
viral adaptation, 334–335

Virtual forces, 155, 156
Virtual work, 155

Waddington’s epigenetic landscape, 32, 40
WAG matrix, 263
3D watershed segmentation method, 387
Weakly homogeneous refinement, 109–111
Weight matrix, 201
Wnt signaling pathway, 6, 349, 350
Word sense disambiguation (WSD), 344, 356–357
Wrapper methods, 383
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Yeast localization experiment, 193
Yeast proteome database (YPD), 372
Yeast two-hybrid data, 183
Young’s modulus, 153
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