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BOUNDARY LAYER FLOW OF SISKO FLUID WITH 

CONVECTIVE BOUNDARY CONDITIONS 

 

ABSTRACT 

The study of boundary layer flows of non-Newtonian fluids has attracted much attention in 

the past because of its relevance in various industrial and engineering processes. Due to 

complexity of such fluids, several non-Newtonian fluid models have been proposed. With the 

growing importance of non-Newtonian fluids in modern technology and industries, the 

investigations of such fluids are desirable. A number of industrially important fluids 

including molten plastics, pulps, polymers, polymeric melts, foods and fossil fuels, which 

may saturate in underground beds, display non-Newtonian behaviors. These include shear 

thinning, shear thickening, viscoelasticity, yield stress etc. Sisko fluid model is one of the 

non-Newtonian fluid models that can be utilized to predict the shear-thinning as well as 

shear-thickening fluids. In spite of its wide occurrence in industry, only limited studies have 

been reported on the flow of Sisko fluids.  

In this work a mathematical model is developed to investigate the flow of Sisko fluid in the 

presence of convective boundary conditions. The governing nonlinear partial differential 

equations are reduced to a system of nonlinear ordinary differential equations via similarity 

transformations. An analytical approach namely homotopy analysis method (HAM) is used to 

compute analytic solutions. Unlike perturbation methods, the HAM is independent of 

small/large physical parameters, and thus is valid no matter whether a non-linear problem 

contains small/large physical parameters or not.  
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More importantly, different from all perturbation and traditional non-perturbation methods, 

the HAM provides us a simple way to ensure the convergence of solution series, and 

therefore, the HAM is valid even for strongly nonlinear problems. 
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CHAPTER 1 

INTRODUCTION 

1.1 Basic Definitions and Involved Concepts 

1.1.1 Newtonian and non-Newtonian Fluids 

Many fluids we encounter in industrial applications deviate from the classical Newton’s law 

of viscosity which states that the shear stress is directly and linearly proportional to the rate of 

deformation. The fluids which obey this law are termed as Newtonian fluids. Examples 

include water, milk, sulphuric acid, carosine, air and thin motor oil etc. The fluids which 

exhibit a nonlinear relationship between the shear stress and the deformation rate are non-

Newtonian fluids. Examples include multigrade oils gypsum pastes, polymers, printer inks, 

blood, fruit juices etc. 

1.1.2 Classification of Non-Newtonian Fluids 

Non-Newtonian fluids are categorized as below: 

i. Time-independent Fluids 

 Bingham Plastic 

The fluids which behave like a rigid body at low stresses but flows as a viscous fluid at high 

stress are called bingham plastic. For example; toothpaste, mayonnaise. 

 Pseudo-plastic (Shear-thinning) 

The fluids in which viscosity decreases as the shear rate increases are known as shear-

thinning fluids. Ketchup, blood, whipped cream, paints and many polymers are the examples 

of pseudo-plastic fluids.  
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 Dilatant (Shear-thickening) 

The fluids in which viscosity increases as the shear rate increases are known as shear 

thickening fluids. Examples include beach sand, starch in water etc.   

ii. Time-dependent Fluids 

 Thixotropic 

The fluids in which viscosity decreases with time for which stress is applied are known as 

thixotropic fluids. Their examples include drilling mud, certain gels and thixotropic jelly 

paints. 

 Rheopectic 

The fluids in which viscosity increases with time for which stress is applied are known as 

rheopectic fluids. For example; gypsum paints and printer inks. 

iii. Viscoelastic Fluids 

The fluids which return back to their original shape when the stress is released are known as 

viscoelastic fluids. 
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(a) 

 

(b) 

 

 

1.2 Constitutive Equations for Sisko Fluid 

The constitutive equations for Sisko fluid are expressed as:  

 
  

  
      ,  

where   is the velocity vector,   the density of the fluid and   is the Cauchy stress tensor for 

Sisko fluid given by: 

  =                 [   |√
 

 
    

 |

   

]    , 
 

where   is the pressure,   is the extra stress tensor  ,   and   are the material fluid 

parameters and               is the first Rivlin-Ericksen tensor [1]. 

For a two-dimensional flow, we assume the velocity and the stress fields of the following 

forms. 

                                            ,  

 

(1.1) 

(1.2) 

(1.3) 

Figure 1.1: Non-Newtonian Fluids 
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After using equations (1.2) and (1.3) in (1.1) we obtain:       
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 The problem corresponds to the case of power-law fluid when    . The Eqs. (1.4) and 

(1.5) reduce to the Newtonian fluid case by choosing    . To non-dimensionalize 

equations (1.4) and (1.5), we introduce the following dimensionless variables:  
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where   and   are the characteristic length and the stretching velocity respectively. 

In view of Eq. (1.6), Eqs (1.4) and (1.5) take the following forms: 
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(1.6) 

(1.7) 
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(1.9) 

(1.5) 
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 where the dimensionless parameters    and    are defined as 
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Using the standard boundary layer assumptions                                  , 

        , and the dimensionless coefficients                        , Eqs (1.8) and 

(1.9) reduce to: 
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1.3 Basic Idea of Homotopy Analysis Method (HAM) 

Most of the problems in science and engineering are characterized by non-linear differential 

equations which are very difficult to solve analytically. Perturbation approach is an easy 

technique for solving non-linear problems analytically, but this method requires small or 

large parameter in the differential system. Such small/large parameter does not usually exist 

in physical problems. In contrast to non-perturbation methods such as artificial small 

parameter method [33], the δ-expansion method [34], the Adomian’s decomposition method 

[35], and the homotopy perturbation method (HPM), HAM provides a simple procedure for 

adjusting and controlling the convergence region of the solutions. 

In 1992 Liao [23] proposed such kind of analytic technique namely Homotopy analysis 

method (HAM). It is independent of small/large physical parameter and provides us with a 

convenient way to adjust the convergence region of nonlinear problems. In 2003 Liao 

discussed the basic ideas of HAM and its application in his book named “Beyond 

Perturbation” [26]. Thereafter the HAM attracts the attention of many researchers and has 

been applied to many nonlinear problems such as boundary layer flows, heat transfer, MHD 

(1.10) 

(1.11) 

(1.12) 

(1.13) 
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flows of non-Newtonian fluids and many others. Now a days HAM is successfully applied to 

many nonlinear flow problems [23-32].  

For better understanding of the basic idea, let us consider the following differential equations:      

         ,  

where   is a non-linear operator,   denotes independent variable and      is an unknown 

function. Liao [26] constructed the so-called zero-order deformation equation in the 

following form.  

                                    ,  

where          is the embedding parameter,     is a non-zero auxiliary parameter, 

        is an auxiliary function,   is an auxiliary linear operator,       is an initial guess 

of      and        is a unknown function. When     Eq (1.15) gives the initial guess, 

final solution is retrieved by substituting    . 

              ,                ,  

Expanding        in Taylor series    , we have:  

             ∑         
      

in which 

     
 

  

        

   
|
   

,  

 

If the auxiliary linear operator, the initial guess, the auxiliary parameter  , and the auxiliary 

function are chosen properly, the series (1.17) converges at    . In this case we have: 

(1.14) 

(1.15) 

(1.16) 

(1.17) 

(1.18) 
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             ∑      

 

   

  
 

Differentiating Eq. (1.15) m times with respect to   and then setting     we obtain the so-

called mth-order deformation equation as below: 

                            ⃗        

 

where 

    ⃗       
 

      

             

     
|
   

  
 

and 

   {
         

         
. 

1.4 Literature Review 

 The steady and unsteady flows over a stretching surface have wide range of applications 

such as production of plastic sheets, paper production, wire drawing, spinning of filaments 

and glass-fiber etc.  

  

 

(1.19) 

(1.20) 

(1.21) 

Figure 1.2: Stretching Sheet Applications 
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There is a significant difference in the solution of stretching flows and the laminar boundary 

layer flows induced by a stationary surface the so called Blasius flow [1].  
Sakiadis [2] considered the momentum transport occurring in the boundary layer adjacent to 

a continuous surface moving steadily through a motionless fluid environment.  

In contrast to Sakiadis [2], Crane [3] computed an exact similarity solution for the boundary 

layer flow of a Newtonian fluid towards an elastic sheet which is stretched with the velocity 

proportional to the distance from the origin.  

Chen and Char [4] investigated the heat transfer occurring in the laminar boundary layer over 

a linearly stretching, continuous surface with suction or blowing. They considered two cases: 

(i) the sheet with prescribed wall temperature (ii) the sheet with prescribed heat flux. The 

solutions were obtained in the form of hyper geometric functions.  

Cortell [5] presented numerical analysis for flow and heat transfer in a viscous fluid bounded 

by a nonlinearly stretching sheet. In this study, governing partial differential equations were 

first converted into ordinary differential equations by a similarity transformation. The arising 

equations were solved for the numerical solutions by standard shooting procedure. Later on, 

several studies concerning flow and heat transfer characteristics have been reported.  

First of all, Schowalter [6] obtained the similar solutions for the boundary layer flow of 

power-law fluids. He obtained the two- and three-dimensional boundary-layer equations for 

pseudo-plastic non-Newtonian fluids. He determined the types of potential flows necessary 

for similar solutions of the boundary-layer equations.  

Lee and Ames [7] studied the similarity solution for the non-Newtonian power law fluid. He 

obtained the numerical solution for forced convection of power law fluids about a right 

angled wedge.  
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Rajagopal and Gupta [8] studied the flow of an incompressible second-order fluid past a 

stretching sheet. They solved the boundary layer equations numerically using the Runge-

Kutta method  

Vajravelu and Rollins [9] studied the heat transfer characteristics in a viscoelastic fluid over a 

stretching sheet with frictional heating and internal heat generation or absorption. They 

considered two cases; (i) the sheet with prescribed surface temperature (ii) the sheet with 

prescribed wall heat flux.  

Andersson and Bech [10] conducted a study on the magneto-hydrodynamic flow of an 

electrically conducting power-law fluid past a stretching sheet. The flow was subjected to a 

uniform transverse magnetic field. He found that the influence of magnetic field is to reduce 

boundary layer thickness. 

Liao [12] analyzed the laminar boundary-layer flow and heat transfer of power-law non-

Newtonian fluids over a stretching sheet by HAM.  

All of the above mentioned studies are related to the boundary layer flows of Newtonian or 

non-Newtonian fluids over a stretching sheet. Amongst non-Newtonian fluid Sisko fluid 

model [13] is the one which can easily predict the shear thinning and thickening behavior of 

the fluid. It is a combination of power law and Newtonian fluid. Not much attention has been 

given till date to the flows of Sisko fluid.  

Khan and Hayat [14] obtained an analytic solution for unidirectional flow of an electrically 

conducting Sisko fluid through a porous space. They solved the problem analytically using 

homotopy analysis method (HAM).  

Hayat and Abelman [15] investigated the time-dependent flow of an incompressible Sisko 

fluid over a porous wall. The flow was caused by sudden motion of the wall in its own plane. 

The formulated nonlinear problem was solved by a symmetry approach. 
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Masood and Azeem [16] investigated the steady two-dimensional stagnation point flow of 

Sisko fluid over a stretching sheet. They transformed the governing boundary layer equation 

into non-linear ordinary differential equation and then obtained analytic solutions by HAM. 

Convective boundary conditions are more general and practically useful especially metal 

drying process, thermal energy storage and many other engineering processes. 

The pioneering work on heat transfer characteristics through convective boundary condition 

was presented by Aziz [17]. He studied the flow over a convectively heated stationary plate. 

Yao etal [18] studied the heat transfer in a viscous fluid flow over a stretching/ shrinking 

sheet with a convective boundary condition. They obtained the solutions in the form of 

incomplete Gamma function. It is found the convective boundary conditions results in 

temperature slip at the wall and this temperature slip is largely influenced by the variation of 

embedded parameters. 

Ishak [19] investigated the steady laminar boundary layer flow over a permeable flat plate in 

a uniform free stream. The bottom surface of the plate was heated by convection from a hot 

fluid. The arising differential system were computed numerically by shooting method. 

 Makinde and Aziz [20] investigated the boundary layer flow induced of a nanofluid by a 

convectively heated stretching sheet. 

Makinde and Aziz [21] also investigated the heat and mass transfer from a vertical plate 

embedded in a porous medium considering the effects of  a first-order chemical reaction and 

transverse magnetic field. The governing equations are solved numerically using a highly 

accurate and thoroughly tested finite difference algorithm.  

Hayat and Shehzad [22] studied the flow and heat transfer in a second grade fluid over a 

stretching sheet subjected to convective boundary conditions. They utilized homotopy 

analysis method for obtaining convergent series solutions. 
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To the best of our knowledge the boundary layer flow of Sisko fluid over a stretching surface 

with convective boundary condition is not yet discussed. The main objective of this thesis is 

to develop the solution for this problem. The problem discussed in this thesis is nonlinear and 

is difficult to obtain its exact solution.  

For this purpose a very powerful analytic technique namely Homotopy analysis method 

(HAM) is used to solve the nonlinear problem proposed by Liao [23, 24, 25]. HAM provides 

a appropriate way to control and adjust the convergence region and the rate of approximation 

and also, the HAM is independent of small or large parameter and is valid even if a nonlinear 

problem contains a small or large physical parameter or not.  
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CHAPTER 2 

ON STAGNATION POINT FLOW OF SISKO FLUID 

OVER A STRETCHING SHEET  

This chapter contains the review on the recent work of The steady two-dimensional 

stagnation point flow of Sisko fluid over a stretching sheet is reviewed in this chapter. 

Similarity transformations are used to convert the boundary layer equations into similar 

forms. The solutions are obtained by using the homotopy analysis method (HAM). The HAM 

solutions are validated by the exact analytic solutions in a special case. 

2.1   Problem Formulation 

We consider the steady two-dimensional stagnation point flow of an incompressible Sisko 

fluid flowing towards a flat surface coinciding with the plane y = 0 and the flow being 

restricted to the region y > 0. The sheet is stretched in its own plane with the velocity 

     . The boundary layer equations governing the steady two-dimensional stagnation 

point flow of Sisko fluid are as under: 
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where   and   are the velocity components along the   and   directions respectively,   and   

are the material fluid parameters,   is the fluid density   is the power law index         is 

the free stream velocity.  

(2.1) 

(2.2) 
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When     the Eq (2.2) corresponds to the case of power law fluid and it reduces to the case 

of Newtonian fluid by substituting      . In the present problem we have            

when        and •          when       . Eq (2.2) can be expanded in these two 

cases as below. 
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The boundary conditions for present problem are: 

                                    

                                       . 

 

Introducing the following similarity transformations: 
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Eq (2.1) is identically satisfied and Eq (2.2) is reduced to the following form: 
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The boundary conditions are: 

                            ⁄ ,  

where sgn(·) stands for sign function,   is the material fluid parameter of the Sisko fluid,     

and     are the local Reynolds numbers. These parameters are defined as: 

    
   

 
       

       

 
     

   

 
   

   
, 

 

The quantity of physical interest is the skin friction coefficient    which is defined as: 

      (
 

 
   )⁄ ,  

(2.3) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.4) 
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where     (   |
  

  
|
   

)
  

  
|
   

 is wall shear stress. Using variables from Eq (2.6), Eq 

(2.10) reduces to: 

                 
 

 
     

 

           —         (
 

 
  ) , 

 

2.2    Analytic Solution 

2.2.1   The exact analytic solution 

They only consider the case when   is a non-negative integer. For some special cases of the 

problem they first present the exact solution. When       and     Eq (2.7) with 

boundary condition (2.8), the exact solution is of the form:  

      √   [     (
  

√   
)],  

It should be noted here that if     the Eq. (2.12) reduces to the case of Newtonian fluid. 

When       Eq. (2.7) with boundary condition (2.8), has the exact solution. 

       ,      

2.2.2      Analytic solution for integer power-index when       

We solve Eqs. (2.7) subject to the boundary conditions (2.8) with the help of HAM. The 

initial guess and linear operator selected as below. 

                  [     ( |
 

 
  |  )]    (

 

 
  ),  

              
        

    
        

   ,  

The operator   satisfies  

                     ,  

where              are arbitrary constants. 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 
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2.2.2.1  Zero-order deformation problem 

Now the problem related to zero order deformation is:  

      [ ̂           ]      [ ̂     ],  

where  

 [ ̂     ]   
   ̂     
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where           is an embedding parameter and     is an auxiliary parameter. At     

and     we have, respectively: 

 ̂             ̂          .  

When the parameter   varies from zero to unity the solution  ̂      through the initial guess 

      approaches     . Now we expand the function  ̂      by using Taylor’s series about 

    and then substituting    , we get:  

           ∑       
        where          
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.  

2.2.2.2    mth-order deformation problem  

Differentiating the zeroth-order deformation problem (2.16) and (2.17) m−times with respect 

to   and then dividing by    and finally setting      , we obtain the following mth-order 

deformation problem. 

                         ,  

Boundary conditions are: 

 ̂            ̂                             

  ̂                     . 

 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

(2.16) 



27 
 

           
 

             , 

  
 

             . 

 

where       

              
   

 ∑   
     

  
 

   
   +       

  

       ,  

where, 

for     

           ,  

for     

        ∑         
  

   

   

     
     

 

for     

      
 

 
 ∑         

  

   

   

     (
 

 
  )  ∑       

    
   

   

   

  
 

for     

       
 

 
 ∑         

  

   

   

   ∑       
    

   

   

   

∑    
    

   

 

   

  
 

 

 

 

 

 

(2.22) 

(2.23) 

(2.24) 
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2.3     Results and discussion 

To demonstrate the behavior of the analytic solution of Eqs. (2.7) and (2.8) by the HAM, the 

velocity profiles are plotted for several values of the power index  , and the material 

parameter  . The HAM solution is compared with the exact analytic solution in a special case 

and found in good agreement (table 2.1). Convergence of the series solution for        is 

checked for some selected values of parameters in table 2.2 

 

 

A 

 

 
   

 
    

Exact solution HAM solution 

0.0 -1 -1 

0.5 −1.2247448713 −1.2247448711 

1.0 −1.4142135623 −1.4142135624 

1.5 −1.5811388300 −1.5811377715 

2.0 −1.7320508075 −1.7320508578 

2.5 −1.8708286933 −1.8708450311 

3.0 -2 −2.0000169533 
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Table 2.2:  Convergence of the series solution for        when     and   ⁄      

 

Table 2.1:   Comparison of HAM and the exact solutions when          and     
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Figure 2.1:   The velocity profile       for various values of the power index   when      .  

 

Figure 2.2:   The velocity profile       for various values of the material parameter    when 

  ⁄     . 
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Figure 2.3:   The velocity profile       for various values of the material parameter    when 

         ⁄     . 
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CHAPTER 3 

BOUNDARY LAYER FLOW OF SISKO FLUID WITH 

CONVECTIVE BOUNDARY CONDITION 

In this chapter we investigate the heat transfer characteristics in the boundary layer flow of 

Sisko fluid. By using the similarity approach, the modeled non-linear partial differential 

equation is transformed in a system of nonlinear ordinary differential equations and then the 

series solutions are developed. More physically acceptable connective surface boundary 

conditions and Newtonian heating boundary condition are imposed for the analysis of the 

thermal boundary layer. The solutions are physically interpreted by plotting graphs. 

3.1   Mathematical Modeling 

We consider the steady, two dimensional and incompressible flow of Sisko fluid driven by a 

linearly stretching surface coincident with    . The fluid occupies the region    . Let 

     be the velocity of the stretching sheet where     is constant and we have  

    ⁄   .  

 

Figure 3.1: A sketch of the physical model 
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Boundary layer equations governing the two-dimensional flow and heat transfer of Sisko 

fluid can be expressed as: 

    
  

  
 

  

  
     

 ( 
  

  
  

  

  
)   

   

     
 

  
( 

  

  
)
 

 
 

 
  

  , 
 

 
  

  
  

  

  
  

   

   ,  

where   and   are the velocity components along the   and   directions respectively,   is the 

temperature field,   and   are the material fluid parameters,   is the density of the fluid and   

is the thermal diffusivity.  

From the above Eq (3.2), if     the equation corresponds to the case of power law fluid 

and if      , Eq (3.2) reduces to the case of Newtonian fluid. The boundary conditions are:  

               
  

  
  (    )    (for CH), 

  
  

  
       (for NH)  

                                           

 

In the current problem, the flow is solely created by the motion of stretching sheet. No 

pressure gradient contributes to the flow. We now introduce the following similarity 

transformations. 

           ,               (
  

   
) (

  ⁄

     )

 

   
 

   

       , 

   (
    

  ⁄
)

 

   
 

   

                (
  ⁄

     )

 

   
 

  

       ,        
    

     
, 

 

 

 

 

 

(3.1) 

(3.2) 

(3.3) 

(3.5) 

(3.4) 
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Eqs (3.2) to (3.4) in view of (3.5) become: 

                     (
  

   
)                ,  

    (
  

 
) (

  

   
)      ,  

The boundary conditions are: 

                            ,  

                    ( for CH ),                     ( for NH ) 

       .  

 

where   and Pr is the Biot number and Prandlt number respectively. These defined as under: 

  
  

 
(
    

  ⁄
)

  

   
 

   

          
 

 
. 

The quantity of physical interest is the skin friction coefficient    which is defined as: 

      (
 

 
   )⁄ ,  

where     (   |
  

  
|
   

)
  

  
|
   

 is wall shear stress. Using variables from Eq (3.5), Eq 

(3.10) reduces to: 

                 
 

 
     

 

           —          , 
 

The local Nusselt number     may be found in terms of the dimensionless temperature at the 

wall surface,      , that is 

   

 

             , 
 

with     
   

 (     )
  with     as the surface heat flux. 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

  (3.10) 

  (3.11) 
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3.2    Analytic Solution 

We use HAM in order to solve the set of equations (3.6) and (3.7) with the conditions (3.8). 

Firstly we choose the initial guess and auxiliary linear operator i.e. 

                           
    

   
       , 

                                         
    

   
      , 

 

   
   

   
 

  

  
               

   

   
  .  

The operator    and    satisfy,  

                           , 

                  , 

where                    are the arbitrary constants. 

3.2.1 Zero-order deformation problem  

Now the problem related to zero-order deformation is 

        [ ̂           ]      [ ̂     ]. 

       [ ̂           ]      [ ̂     ], 

 

 ̂            ̂          

   ̂        [   ̂     ],    (for CH)  

   ̂        [   ̂     ],    (for NH)  

  ̂           ̂                . 

 

where nonlinear differential operator    and    are: 

  [ ̂     ]   
   ̂     

   
  [ 

   ̂     

   
]

   
   ̂     

   
 

 (
  

   
)  ̂     

   ̂     

    
  ̂     

  

  ̂     

  
     ̂     

  
, 

 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.17) 

      , 

(3.16) 
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     [ ̂     ]  
   ̂     

   
 (

  

 
) (

  

   
)  ̂     

  ̂     

  
, 

 

where           is a homotopy parameter and     is an auxiliary parameter. At     

and     we have, respectively: 

 ̂             ̂          , 

 ̂                    ̂          . 

 

When the parameter   varies from zero to unity the solution  ̂      through the initial guess 

      approaches      respectively. Now we expand the function  ̂      by using Taylor’s 

series about     and then substituting    , we get:  

           ∑       
       where         

 

  

   ̂     

   |
   

, 

           ∑       
      where         

 

  

   ̂     

   |
   

. 

 

3.2.2 mth-order deformation problem  

Differentiating the zeroth-order deformation problem (3.14) and (3.16) m−times with respect 

to   and then dividing by    and finally setting      , we obtain the following mth-order 

deformation problem. 

                       
    ,                                                        

                       
    ,  

Boundary conditions are: 

                      
 

         
               ,   (for CH) 

  
               ,   (for NH)  

  
 

                     , 

 

where       

   
          

   
 ∑   

     
  

 
   
   +    ,  

(3.18) 

(3.19) 

(3.20) 

(3.21) 

      , 

 

(3.22) 

(3.24) 

(3.23) 
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(

  

   
)∑   

       
   
   ,  

   {
         
         

 

The linear non-homogeneous problems (3.21) − (3.23) can be solved by using any symbolic 

computational software like MATHEMATICA in the order m = 1, 2, 3…. 

3.3   Results and Discussions 

This section shows the effects of various parameters on both the velocity and temperature 

profiles. The velocity and temperature distributions are given for several values of the 

embedded parameters, namely, the power index n, the material parameter A, magnetic field 

M, biot number  , and the Prandtl number Pr. The analytic solution contains the convergence 

control parameter  , which can ensure the convergence of the solutions. Figure 3.2 gives the 

convergence region for        at a given order of approximation. 

 

Figure 3.2:   The h curves of         for A = 3/4  at 20th order of approximation. 

 

(3.25) 
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Here the valid region for   curves are -0.9 <   < -0.2, -0.7 <  < -0.2, -0.4 <   < -0.2,                    

-0.3 <   < -0.25 for n=1, 2, 3 and 4 respectively. Figure 3.3 shows the convergence region 

and rate of approximation of        for the obtained analytic solution for different values of A 

for n=2. 

Here the valid region for   curves is -0.8 <   < -0.1, -0.58 <   < -0.1, -0.45 <   < -0.1,                  

-0.4 <   < -0.1 and -0.38 <   < -0.1 for   = 0.5, 1, 1.5, 2, 2.5 respectively.  

Figure 3.4 shows the convergence region and rate of approximation of       for the obtained 

analytic solution for different values of power index    for convective heating. 

 

                 Figure  3.3:   The   curves of         for     at 20th order of approximation.   
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Figure 3.4:  The   curves of        at 20th order approximation in case of Convective heating 

boundary condition.   

Here the valid region for   curves is -1.25 <   < -0.2, -0.9 <   < -0.1, -0.6 <   < -0.1 and               

-0.48 <   < -0.1 for n = 1, 2, 3 and 4 respectively. 

Figure 3.5 shows the convergence region and rate of approximation of       for the obtained 

analytic solution for different values of power index    for Newtonian heating.  
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      Figure 3.5:  The   curves of        at the 15th order approximation in case of Newtonian 

heating boundary condition. 

Here the valid region for   curves is -1.2 <   < -0.5, -1.1 <   < -0.3, -0.7 <   < -0.2 and               

-0.5 <   < -0.1 for n = 1, 2, 3 and 4 respectively. 

Figure 3.6 shows the convergence region and rate of approximation of       for the obtained 

analytic solution for different values of  .  
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Figure  3.6:   The   curves of        for       at 20th order approximation. 

Here the valid region for   curves is -0.85 <   < -0.2, -1.0 <   < -0.15, -0.83 <   < -0.15 and        

-0.79 <   < -0.18 for                 and   respectively. 

The effects of the material parameter of the Sisko fluid   on velocity profile    are shown in 

Figure 3.7. This figure shows that the fluid velocity    increases when there is an increase in 

 . Similarly the effects of the magnetic field   are shown in Figure 3.8. This figure shows 

that the fluid velocity    decreases when there is an increase in  .   

 



41 
 

 

 

          Figure  3.8:  The velocity profiles       for various values of  . 

 

 

 

 

            Figure  3.7:  The velocity profiles       for various values of  . 
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Figure 3.9 shows the variation of Prandtl number    on  for convective heating. The 

temperature profile   decreases when    increases. Similarly figure 3.10 shows the variation 

of Prandtl number    on   for Newtonian heating. The temperature profile   decreases when 

   increases.  

 
Figure 3.9:  The temperature function      for various values of    in case of convective 

heating boundary condition. 
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Figure 3.10:  The temperature function      for various values of    in case of Newtonian 

heating boundary condition. 

Figure 3.11 shows the effect of   on   for convective heating, The temperature profile 

increases by increasing the values of  . Figure 3.12 shows the effect of   on   for Newtonian 

heating, The temperature profile increases by increasing the values of  .  

 

Figure 3.11:   The temperature function      for various values of   in case of convective 

heating boundary condition. 
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Figure 3.12:   The temperature function      for various values of   in case of Newtonian 

heating boundary condition. 

Figure 3.13 shows the effect of Biot number   on    for convective heating. We can see that 

when       then there is no heat transfer and there is no temperature change. The 

temperature profile   increases when   increases. Similarly figure 3.14 shows the effect of 

Biot number   on    for Newtonian heating. We can see that when       then there is no 

heat transfer and there is no temperature change. The temperature profile   increases when   

increases.   
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Figure 3.13:   The temperature function      for various values of   in case of convective 

heating boundary condition. 

 

  

 

Figure 3.14:   The temperature function      for various values of   in case of Newtonian 

heating boundary condition. 
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Figure 3.15 shows the effect of   on   for convective heating. The temperature profile   

increases when   increases. Similarly figure 3.16 shows the effect of   on   for Newtonian 

heating. The temperature profile   increases when   increases. 

 

Figure 3.15:   The temperature function      for various values of   in case of convective 

heating boundary condition. 
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Figure 3.16:   The temperature function      for various values of   in case of Newtonian 

heating boundary condition. 

Figure 3.17 shows the variation of local Nusselt number with the change in Biot number  . It 

is clearly observed from the plots that the heat transfer rate increases with the increase in the 

Prandtl number   . Figure 3.18 shows the variation of local Nusselt number with the change 

in fluid material parameter  . It is clearly observed from the plots that the heat transfer rate 

decreases with the increase in the magnetic field  .  
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Figure 3.17:  The variation of the local Nusselt number with   for different values of    

 

 

 
Figure 3.18:  The variation of the local Nusselt number with   for different values of   
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Figure 3.19 shows the variation of local skin friction coefficient with the change in fluid 

material parameter . 

 

 
Figure 3.19:  The variation of the local skin friction coefficient with   for different values of   

 

Convergence of the series solution for        and       when     is shown in Table 3.1.                          
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      Table 3.1:  Convergence of the series solution of        and       when    . 



50 
 

References 

1. H. Blasius. The Boundary Layer in Fluids with Little Friction, NASA, technical 

memorandum, 1256, Washington 1950, translation of grenzschichten in flussigkeiten 

mit kleiner reibung. Technical Report 56 1908. 

2. B.C. Sakiadis, Boundary-layer Behaviour on Continuous Solid Surfaces, AIChE J. 7 

(1961) 26–28. 

3. L. J. Crane, Flow Past a Stretching Sheet, Z. Angew. Math. Phys. 21 (1970) 645–647. 

4. C. K. Chen and M. I. Char, Heat transfer on a continuous stretching surface with 

suction or blowing, J. Math. Anal. Appl. 135 (1988) 568-580. 

5. R. Cortel, Viscous Flow and Heat Transfer over a Nonlinearly Stretching Sheet Appl. 

Math. Comput. 184 (2007) 864–873. 

6. W. R. Schowalter, The Application of Boundary Layer Theory to Power Law 

Pseudoplastic Fluids: Similar Solutions, AIChE J. 6 (1960) 24-28. 

7. K. R. Rajagopal, T. Y. Na, and A. S. Gupta Flow of a Viscoelastic Fluid over a 

Stretching Sheet,  Rheol Acta 23 (1984) 213-215. 

8. S. Y. Lee and W. F. Ames, Similar Solutions for Non-Newtonian Fluids, AIChE J. 12 

(1966) 700–708. 

9. K. Vajravelu and D. Rollins, Heat Transfer in a Viscoelastic Fluid over a Stretching 

Sheet, J. Math. Anal. Appl. 158 (1991) 241-255. 

10. H. I. Andersson, K. H. Bech and B. S. Dandapat, Magnetohydrodynamic Flow of a 

Power-law Fluid over a Stretching Sheet, Int. J. Non-Linear Mech. 27 (1992) 929–

936. 

11. K. Vajravelu, T. Roper, Flow and Heat Transfer in a Second Grade over a Stretching 

Sheet, Int. J. Non-Linear Mech. 34 (1999) 1031-1036. 



51 
 

12. H. Xu , S. J. Liao, Laminar Flow and Heat Transfer in the Boundary-Layer of Non-

Newtonian Fluids over a Stretching Flat Sheet, Comp. Math. Appl. 57 (2009) 1425-

1431. 

13. A. W. Sisko, The Flow of Lubricating Greases, Ind. Eng. Chem. Res 50 (1958) 1789–

1792. 

14. M. Khan, Z. Abbas, T. Hayat, Analytic Solution for Flow of Sisko Fluid through a 

Porous Medium, Transp. Porous Med. 71 (2008) 23–37. 

15. T. Hayat, R. J. Moitsheki and S. Abelman, Stokes’ First Problem for Sisko Fluid over 

a Porous Wall, App. Math. Comput. 217 (2010) 622-628. 

16. M. Khan, A. Shahzad, On Stagnation Point Flow of Sisko Fluid over a Stretching 

Sheet, Meccan. 48 (2013) 2391-2400. 

17. A. Aziz, A Similarity Solution for Laminar Thermal Boundary Layer over a Flat Plate 

with a Convective Surface Boundary Condition, Commun. Nonlinear Sci. Numer. 

Simul. 14 (2009) 1064-1068. 

18. S. Yao, T. Fang and Y. Zhong, Heat Transfer of a Generalized Stretching/Shrinking 

Wall Problem with Convective Boundary Conditions, Commun. Nonlinear Sci. 

Numer. Simul. 16 (2011) 752-760. 

19. A. Ishak, Similarity Solutions for Flow and Heat Transfer over a Permeable Surface 

with Convective Boundary Condition, Comp. Math. Appl. 217 (2010) 837-842. 

20. O. D. Makinde, A. Aziz, Boundary Layer Flow of a Nanofluid Past a Stretching Sheet 

with a Convective Boundary Condition, Int. J. Ther. Sci. 50 (2011) 1326-1332. 

21. O. D. Makinde, A. Aziz, MHD Mixed Convection from a Vertical Plate Embedded in 

a Porous Medium with a Convective Boundary Condition, Int. J. Ther. Sci. 49 (2010) 

1813-1820. 

http://www.researchgate.net/journal/0096-3003_Applied_Mathematics_and_Computation
http://www.researchgate.net/journal/1007-5704_Communications_in_Nonlinear_Science_and_Numerical_Simulation


52 
 

22. T. Hayat, S. A. Shehzad, M. Qasim, and S. Obaidat Flow of a Second Grade Fluid 

with Convective Boundary Conditions, Therm. Sci. 15 (2011) 253-261. 

23. S. J. Liao, Homotopy Analysis Method: A New Analytic Method for Nonlinear 

Problems. Appl. Math. Mech. 19, No. 10, Oct. (1998)  

24. S.J. Liao Notes on the Homotopy Analysis Method: Some Definitions and Theorems 

Comm. in Non-linear Sci. & Numerical Simulation 14 (2009) 983–997. 

25. Liao, S.J  Beyond Perturbation – Introduction to the Homotopy Analysis Method 

Chapman & Hall/ CRC Press, Boca Raton (2003). 

26. S.J. Liao On the Homotopy Analysis Method for Nonlinear Problems Appl. Math. 

Comput. 147 (2004) 499-513. 

27. S.J. Liao, A Uniformly Valid Analytic Solution of 2D Viscous Flow Past a Semi-

Infinite Flat Plate, J. Fluid Mech. 385 (1999) 101-128. 

28. S.J. Liao and A. Campo, Analytic Solutions of the Temperature Distribution Blasius 

Viscous Flow Problems, J. Fluid Mech. 453 (2002) 411-425.  

29. M. Ayub, A. Rasheed and T. Hayat, Exact Flow of a Third Grade Fluid Past a Porous 

Plate using Homotopy Analysis Method, Int. J.Engg. Sci. 41 (2003) 2091-2103. 

30. T. Hayat, M. Khan and M. Ayub, On the Explicit Analytic Solutions of an Oldroyd 6-

Constant Fluid, Int. J.Engg. Sci. 42 (2004) 123-135. 

31. T. Hayat, M. Khan and M. Ayub, Couette and Poiseuille Flows of an Oldroyd 6-

Constant Fluid with Magnetic Field, J. Math. Anal. & Appl. 298 (2004) 225-244. 

32. A.M. Lyapunov, General Problem on Stability of Motion, Taylor & Francis, London, 

1992 (English translation). 

33. A.V. Karmishin, A.I. Zhukov, V.G. Kolosov, Methods of Dynamics Calculation and 

Testing for Thin-Walled Structures, Mashinostroyenie, Moscow 1990. 

http://www.sciencedirect.com/science/journal/10075704
http://www.sciencedirect.com/science/journal/10075704/14/4


53 
 

34. G. Adomian, Solving Frontier Problems of Physics: The Decomposition Method, 

Kluwer Academic, Dordrecht 1994. 

 


	BOUNDARY LAYER FLOW OF SISKO FLUID WITH CONVECTIVE BOUNDARY CONDITIONS
	BOUNDARY LAYER FLOW OF SISKO FLUID WITH CONVECTIVE BOUNDARY CONDITIONS
	BOUNDARY LAYER FLOW OF SISKO FLUID WITH CONVECTIVE BOUNDARY CONDITIONS
	ABSTRACT
	CHAPTER 1
	INTRODUCTION
	1.1 Basic Definitions and Involved Concepts
	1.1.2 Classification of Non-Newtonian Fluids
	ii. Time-dependent Fluids
	iii. Viscoelastic Fluids

	1.2 Constitutive Equations for Sisko Fluid
	1.4 Literature Review
	CHAPTER 2
	ON STAGNATION POINT FLOW OF SISKO FLUID OVER A STRETCHING SHEET
	2.1   Problem Formulation
	2.2.1   The exact analytic solution

	2.2.2      Analytic solution for integer power-index when 𝒅/𝒄≠𝟏
	2.2.2.1  Zero-order deformation problem
	2.2.2.2    mth-order deformation problem

	CHAPTER 3
	BOUNDARY LAYER FLOW OF SISKO FLUID WITH CONVECTIVE BOUNDARY CONDITION
	3.1   Mathematical Modeling
	3.2    Analytic Solution
	3.2.1 Zero-order deformation problem
	3.2.2 mth-order deformation problem

	3.3   Results and Discussions
	References


