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Abstract 

In the present age of technology, the buzzwords are low-power, energy-

efficient and compact systems. This directly leads to the data processing and 

hardware techniques employed in the core of these devices. One of the most 

power-hungry and space-consuming schemes are that of image or video 

processing, due to its high quality requirements. In current design 

methodologies, a point has been reached in which physiological and physical 

impacts restrict the capacity to simply encode information faster. These limits 

have led to search for strategies to diminish the amount of obtained data without 

losing information and increase vitality and time effectiveness. 

Compressive sensing (CS) is an emerging technology which is based on an 

efficient signal compression and reconstruction technique. It can be used to 

efficiently reduce the data acquisition and processing. It utilizes the sparsity of a 

signal in a different transform domain for sampling and stable reconstruction. It 

is another opportunity to conventional data processing and is robust in nature. 

Unlike the conventional methods, CS provides an information capturing 

paradigm with both sampling and compression. It allows signals to be sampled 

below the Nyquist rate, and still allowing optimal reconstruction of the signal. 

The required measurements for reconstruction are far less than those of 

conventional methods, and the process is non-adaptive, making the sampling 

process faster and universal. 

In this thesis, CS method is applied to magnetic resonance imaging (MRI), which 

is popularly used imaging technique in clinical applications and image 
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compression. Over the years, MRI has enhanced significantly in both imaging 

quality and working speed. This has further advanced the field of diagnostic 

medication. In any case, imaging speed, which is fundamental to numerous MRI 

applications, still remains a major question. Moreover, the fast growing 3D MRI 

images and real-time MRI scanning has become more complex leading to a 

further increase in data acquisition times. On the other hand, to improve the 

speed, it becomes necessary that the processing algorithms are also 

computationally sped up. There have been various attempts where Graphic 

processing unit (GPUs), Field programmable gate array (FPGAs), clusters and 

central processing unit (CPUs) are used for this purpose, which have time 

durations ranging from minutes to hours. Again, though, there are solutions for 

reduction in computation time, the desire for the least computational time needs 

to be ascertained.  

Considering the requirements discussed above, the work in this thesis is 

presented in two parts. In the first part, a scheme for 3D MRI reconstruction is 

proposed by taking the benefit from collaborative sparsity, which at the same 

time enforces nonlocal 3D sparsity and local 2D sparsity in a hybrid transform 

domain. An efficient and improved augmented Lagrangian technique is used for 

the solution of CS optimization problem which enhances the MRI performance 

when compared with the conventional sampling. Experimental results for all 

slices are combined to form a 3D view. This work reveals the efficacy of already 

proposed 2D recovery algorithm by reconstructing image in 3D.  

As, 3D MRI experiences long scan time, and CS can significantly reduce the 

encoding time for 2D magnetic resonance images, therefore, for faster 3D MRI 
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reconstruction the algorithm is parallelized. So, in the second part this problem is 

tackled by using the benefits of multicore architecture and GPU. The sequential 

Compressed Sensing reconstruction algorithm is made parallel using different 

parallelizing techniques and compared on the basis of Peak signal to noise ratio 

(PSNR), correlation coefficients, Relative error (RE), Root mean square error 

(RMSE), histogram and topography measure. The effect of GPU based 

implementation is not significant because the application of complex 

collaborative sparsity on small blocks of images forms the algorithm repetitive in 

structure.  This bottleneck lies because of a lot of time in data transfer from host 

to GPU and GPU to host. An optimization is introduced for sequential 

implementation by using combination of lower level and higher level languages. 

In this work, multicore architecture is proven to be most efficient and 

accelerated for 3D CS reconstruction because of repetitive structure of algorithm. 

When compared to sequential CS recovery via Collaborative sparsity this design 

is energy-efficient, fast and has lower complexity. 
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1.1 Background 

Information processing is a dominant part in any field that uses present 

technologies. We are in the century of digital revolution that is known for the 

development of new computational and analytical tools that are being developed 

for the extraction of information from data. These tools are being neglected 

continuously because of large problem sizes dealt by today’s applications. Thus, 

the challenge is to devise new and computationally efficient set of data 

processing tools that can adequately adapt to this gigantic set of information. 

Kotelnikov, Nyquist, Shannon, and Whittaker laid the conceptual foundation of this 

revolution by working on sampling of continuous time band-limited signals. The 

bottom line of their research was that  “A signal can be reconstructed from its 

samples, if the sampling frequency is twice the highest frequency contained in the 

signal. ’’ As a result of their theories, a big area of signal processing has been 

transferred from analog to the digital domain. Digitization has enabled the creation of 

systems that are more robust and cheaper. Unfortunately, in some emerging 

applications, the resulting Nyquist rate is so high that it results in too many samples. 

Alternatively, it may be too costly. Thus, despite extraordinary advances the 

acquisition and processing of signals continues to pose a tremendous challenge.  

However, the computational complexity of the reconstruction of sparse signals is 

1  

Introduction 
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quite high. Meanwhile, the computation of CS based imaging technique becomes 

larger and larger along with the increasing demand on high resolution images. 

Recently, the graphics processing unit (GPU) and multi-core CPUs have shown great 

potential for accelerating computations in many application areas, which offer an 

alternative for fast reconstruction of sparse signals. This thesis realized the fast 

reconstruction of CS based MR images, taking advantage of the efficient parallel 

computing capabilities of GPU and CPUs. 

1.2 Compressed Sensing 

Claude Shannon[1] formulated his theorem concerning data acquisition 

and sampling. Shannon- Nyquist  sampling theorem [2] is a fundamental theorem 

in signal processing. According to this theorem, if we have correctly sampled 

measurements, a band limited signal can be recovered perfectly. But the 

recovery of the original signal is hopeless when the measurements are not 

enough to reconstruct the signal. As shown by the following figures: 

 

 

 

 

 

Figure 1.1 Unsuccessful Reconstruction 
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Since, this theory forces you to go the traditional way and to satisfy the 

Shannon-Nyquist theorem. Otherwise, we would not be able to reconstruct the 

original signal from samples of signal.  Unfortunately this leads to very high 

amounts of data. The inefficiency of this technique is obvious. First one collects a 

massive amount of samples to discard nearly all of them in the compression step 

afterwards. So, one of the most intuitive thoughts would be to combine these 

both sampling and compression. Here, the new sensing paradigm, called 

Compressive Sensing comes into play. By simply combining two principles, the 

amount of samples needed for reconstruction can be reduced drastically. The 

process of CS with comparison of previous compression technique is illustrated 

in Figure 1.3 and 1.4. 

Figure 1.2 Successful Reconstruction 

Figure 1.3 : Block Diagram of Previous Compression methods 
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Traditional paradigm is often extremely wasteful; huge data is acquired 

because of the Nyquist theorem, making compression a necessity prior to storage 

or transmission, and then discarded by a compression. In contrast, compressed 

sensing performs data collection and compression and reduces enormously the 

volume of data. Compressed sensing can recover accurate sparse signal from the 

linear measurements. An abstract concept of compressed sensing is shown in 

Figure 1.3 and theoretical detail is given below: 

 

 

Figure 1.3 Illustration of Compressed Sensing Paradigm 

 

Typically, image is reconstructed from the measurements that follow the Nyquist 

rate. By exploiting the sparsity of the image, CS can reconstruct the signal or 

image from the significantly reduced number of samples. Suppose the image or 

Figure 1.2 :Block Diagram of Compressed Sensing 
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signal is xRNx1 and exhibits sparsity in some transform domain Ψ. The signal x 

is K-sparse if  

             ‖ ‖    *       +         (1.1) 

More specifically, measurement vector yRNx1 is obtained as result of inner 

product of signal x and random projections ARMxN. Mathematically; we 

represent these linear measurements as 

                                          (1.2) 

This process of obtaining linear measurements from signal x is called encoding. 

While the process of recovering sparse signal x from the linear measurements y 

is termed as decoding. The recovery of the signal from linear measurements is 

the ill posed problem given by Equation 1.2 but the sparsity makes recovery 

possible.  

         ‖ 
  ‖                                        (1.3) 

Where p characterizes the sparsity of the signal x and normally set to 1 for l1 

minimization and set to 0 for l0 minimization. Recovery algorithm in [3] tries to 

solve this nonlinear optimization problem for 2D natural images. However, the 

algorithm considered here targets the 3D MRI. 

1.3 Parallel Programming 

Traditionally, software architectures are based on serial computations. A 

problem is broken into a discrete series of instructions. Instructions are executed 

sequentially one after another on a single processor. Only one instruction can be 

executed at any moment in time. With the evolution of simulation algorithms and 

extensively increasing data spaces and the limitations imposed at transistor level 
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on CPU processing speeds, parallel computing has emerged as a prevalent 

method to provide good performance metrics, especially for graphical processing 

applications.  

1.4 Magnetic Resonance Imaging 

Magnetic resonance imaging is a medical imaging technique that provides a 

way to quantify the water molecule diffusion in biological tissues. It is one of the 

most popular imaging modalities due to its excellent depiction of soft tissues, 

and inherent absence of emitted ionizing radiation. The traditional approach of 

MRI data acquisition is to sample at Nyquist rate followed by use of coding 

methods for compression. Recent trends have advanced to 3D-MRI and generally 

require faster acquisition techniques to achieve clinical practicality. 

1.5 Research Objectives 

The objectives expected to be achieved in this research endeavor are: 

 Exploration of compression techniques. 

 Implementation of sequential 3D compressed sensing algorithm. 

 Parallelization of compressed sensing algorithm on different cores of 

processors. 

 Implementation of compressed sensing algorithm on graphical processing 

unit (GPU). 

 An optimized implementation of CS algorithm using mex files. 

 Comparison of parallel, GPU based implementation and sequentially 

implemented CS algorithm. 
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1.6 Methodology 

In this thesis, an algorithm for CS recovery via collaborative sparsity for 3D 

MRI compression is implemented. A conceptual methodology flow chart is shown 

in Figure 1.4. After comprehensive literature review, a 3D algorithm is 

implemented for CS. Then time for sequential algorithm is computed and 

algorithm is analyzed on the basis of various assessment parameters. Later, his 

sequential algorithm is parallelized using different processors and GPUs. Finally, 

in the end the performance of proposed 3D sequential algorithm is compared 

with the parallelized and GPU based algorithms. 

 

Figure 1.4: Methodology Flow Chart 

 

Literature Review 
3D Sequential CS 

Algorithm 

Assessment 
Criteria's 

Evaluation 

Parallelization on 
different Cores of 

Processor 

Acceleration of 
Algorithm using 

GPU 

Optimization of 
Algorithm using 

mex files 

Comparison between Sequential, 
Parallel and GPU based Algorithm 

Implementation 
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1.7 Contributions 

The primary essence of this work is to provide a low-complexity, low-cost, 

energy efficient encoding-decoding system for MRI, while overcoming the 

processing speed issues. In MRI processing, compressed sensing is used for data 

acquisition and then recovery of images. For CS-based imaging, the aim is to 

reduce the transform data in both domains and then decoding. 

Specifically the contributions are summarized as follows: 

 Local 2D and non-local 3D Sparsity: The Major challenge in 

compressed sensing theory is to find a domain in which signal 

exhibits maximum degree of sparsity. In this Algorithm signal 

sparsity is exploited in adaptive hybrid space transform domain. 

This method is discussed in Chapter 3. 

 Efficient Augmented Lagrangian based technique: This transform 

domain result in severely undetermined inverse problem. 

Furthermore, when Augmented Lagrangian based technique used it 

ensures an enhanced reconstruction of image data in the form of 3D 

matrix. The idea behind the use of CS is to drastically reduce the 

transform coefficients. The simulation platform is built and 

performance of the system is shown in terms of signal-to-noise 

ratio. 

 3D Visualization: Above 3D matrix is visualized using orthogonal 

plane 2D texture mapping technique. It is a volume render for 3D 

data in openGL. 
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 Parallelization of Sequential Algorithm: Above sequential algorithm 

is computationally complex and time taking so it is parallelized on 

different cores of processors and GPU. These features aim at 

providing reduced complexity and increase the speed, which is one 

of the major issues in MRI reconstruction. This issue is dealt with in 

this chapter and results are compared with the existing sequential 

algorithm. 

 The outcome of the research from this thesis has generated one 

journal manuscript. 

1.8 Organization of the Thesis 

This thesis comprises of seven chapters. The brief outline of each chapter is 

discussed as follows: 

Chapter 1 --- Introduction 

In this chapter, the background and the area of research are classified. The 

objectives, scope and methodology used in the research are documented. A 

systematic outline of the report is given at the end of the chapter. 

Chapter 2 --- Literature Review 

A comprehensive summary of the literature study is given in this chapter. 

Identification of challenges from the literature survey is also presented as the 

driver for the research. 
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Chapter 3 --- 3D Compressed Sensing Algorithm 

In this chapter, sequential algorithm for compressed sensing with 

application to 3D MRI is discussed. The discussion encompasses parametric 

comparisons. Results are evaluated on the basis of these parameters for 

assessment.  

Chapter 4 --- GPU based implementation of 3D Compressed Sensing 

algorithm  

 This algorithm is implemented on GPU but no speed up is gained. Results 

are shown at the end of chapter to check the efficiency of GPU based 

implementation. 

Chapter 5 --- Optimization of Compressed Sensing Algorithm  

 This chapter is about optimization of compressed sensing algorithm. 

Optimization is introduced by using MATLAB’s mex files. 

Chapter 6 --- Parallel 3D Compressed Sensing Algorithm 

In this chapter, the algorithm is parallelized on different cores of 

processors to make it computationally cost effective. This chapter also discusses 

3D compressed sensing algorithm parallelization on different nodes of cluster so 

that minimum time and computational complexity is faced. Based on the 

computational and time complexity sequential and parallel algorithms are 

compared. After the analysis, one optimal algorithm, which is most accelerated, is 

recommended. 
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Chapter 7 --- Conclusions and Future Work 

Conclusions from the current research presented in dissertation are 

derived and recommendations for future line of action are laid down in this 

chapter. 
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2.1 Background  

A comprehensive summary of the efforts deployed round the globe for the 

implementation of fast and efficient compressed sensing algorithm is discussed. 

A review of existing literature was performed to support the methodology 

undertaken in this thesis. Next, a discussion of literature study associated with high 

performance computing is performed. Lastly, Identification of the missing links 

from the literature survey is also presented that gives the direction for the future 

avenues of the research. 

2.2 Compressed Sensing Related efforts  

The initial work for the understanding of reconstruction of an object from 

incomplete frequency samples can be attributed to Emmanuel Candès, Terence 

Tao and David Donoho. They introduced the compressed sensing by conducting a 

thorough research about the discovery of the signal using data less than Shannon 

Nyquist’s criteria [4-6]. In compressed sensing, one adds the constraint of 

sparsity, allowing only solution which has a small number of nonzero 

coefficients. However, if there is a unique sparse solution to the 

underdetermined system, then the compressed sensing framework allows the 

recovery of that solution. So here the challenge is to seek a domain in which 

2  

Literature Review 
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signal has high degree of sparsity. A sparse signal is encoded in the form of some 

linear measurements and decoded from the incoherent measurement by solving 

the underdetermined linear equations. Direct solution of this linear system is 

non-deterministic polynomial-time(NP) hard problem because of exponential 

complexity of computations[7].Many solutions were proposed for the 

approximation of this NP-hard problem. Most common method applied for 

compressed sensing is using l0 and l1 equivalence [8].  Donoho proved that in CS 

theory reconstruction is possible by minimizing the number of non-zero 

elements (l0 norm) assuming MRI is compressible in some transform domain. But 

the issue is that it is discontinuous and an NP-hard (Non-deterministic 

Polynomial-time hard) problem. Candès et al., showed that l1 norm is the optimal 

convex approximation of l0 norm. This equivalence result allows one to solve the 

l1 norm problem, which is easier than the l0 norm problem and has been proved 

that for many problems it is probable that the l1 norm is equivalent to the l0 norm 

in a technical sense. Researchers also introduced some greedy methods that 

could handle CS problem [9-13]. But l1 and l0 based methods provide better 

stability and require comparatively less measurements than greedy algorithms 

for computation of signal support. 

Over the recent years, various CS recovery methods have been proposed. 

These methods can be categorized in three ways. In first category, algorithms are 

based on a range of sparsity bases using a subset of the largest transform 

coefficients for exact signal reconstruction. For example, fourier, Wavelet, 

Curvelet, Walsh and Discrete Cosine etc. All conventional MRI based processing 

rely on the Fourier transform for data acquisition, including 3D and dynamic MRI 
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[14-16]. In many instances, it is noticed that the Fourier encoding is not well 

suited for compressed sensing recovery, the incoherent conditions is only weakly 

satisfied with respect to sparse transforms [17]. This shows that the use of 

matrices other than the Fourier transform could possibly lead to better results. 

For example, wavelet transform in a coarse scale has its energy concentrated 

rather than spread out in the Fourier domain, which suggests the incoherence 

condition is barely satisfied [18]. Majumdar and Ward [19] used the wavelet 

domain for reconstruction of T1- or T2- weighted images. He used the images 

having the same cross section for high correlation and exploited the spatial 

correlation through wavelet transform. But to reconstruct the perfect signal one 

has to compute all the coefficients. As a result the algorithm requires more 

computations. Zhen [20] proposed a novel 3D Walsh transform and made an 

effort to experimentally compare 2D wavelet transform with 3D Walsh 

transform. 3D Walsh transform was preferred because it reconstructed image 

with better quality and it was computationally efficient too. In [21] optimal 

orthogonal wavelet approximation was used for adaptive compressed sensing 

based recovery.  This algorithm was based on greedy approach for fast 

computation but the quality of the reconstructed image was affected. 

Xiaobo et al.,[22] compared the traditional wavelet with Contourlet transform 

domain for compressed sensing recovery. He showed that wavelet does not 

sparsely represent MRI curves but Contourlet can overcome this shortage and 

reduce pseudo-Gibbs phenomenon. He concluded that medical images like MR 

images are not sparse in one domain only. We can combine more domains to 

sparsely represent the different structure in images. For example wavelet 
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transforms can provide suitable representation of point like feature in an image 

and line like features can be more sparsely represented by curvelet transform. In 

[23] combined wavelet and the curvelet based scheme was developed for two 

different frames. An algorithm for fast reconstruction using split Bregman 

technique was proposed. But the algorithm was dependent on the values of 

regularization parameter. So choice of better regularization parameters can lead 

us to better results. Some researchers proposed data adaptive sparsity transform 

based reconstruction algorithms also. M Hong et al., [24] experimentally 

explained the singular value decomposition (SVD) based transform as data 

adaptive sparsity basis and evaluated it for reconstruction of multiple MR images 

types. It was found useful for speed sensitive and computationally heavy 

application, such as cardiac MR images.  

In second category, algorithms are based on geometric similarities and 

exploit the sparsity in spatial domain. Total variation based sparsifying 

transforms are well known for their property of preserving edges and 

boundaries [25].  But most of the time total variation based algorithms recover 

over-smooth image. To deal with this undesirable artifact many improved 

versions of total variation are designed [26-28] .  Gaussian mixture models based 

algorithms hold an important role in compressed sensing.  Guoshen and Sapiro 

proposed a novel statistical compressed sensing algorithm. Their algorithm 

could efficiently deal with a collection of images unlike the conventional 

compressed sensing algorithms which deal with one image only at a time. 

Moreover, this model revealed the broad range of possible algorithms which can 

be generated for improved compressed sensing reconstruction [29]. In [30] a 
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GMM-based compressed sensing algorithm reconstructed the images by 

estimating the Gaussian components but the computations grow with the image 

dimensionality. Moreover, it lacked the performance guarantees. Jianbo et al., 

addressed these drawbacks in [31] and developed a method to estimate the 

unknown GMM, unlike the traditional GMM based algorithms, for recovery of 

images using linear measurements with incomplete information. Many adaptive 

dictionary based algorithms are developed. These methods exploit the structural 

similarity using machine learning techniques. This approach produced optimal 

effective dictionaries at the cost of complexity. The sparse dictionary learning 

from corrupted data was first introduced by Ron et al., in [32]. He presented an 

efficient trainable dictionary which outperformed for denoising of corrupted 

data of CT scan. The proposed dictionary had the potential to be used for 

compressed sensing as well. In [33] a dictionary learning based compressed 

sensing technique was developed. This algorithm recovered image with 

enhanced PSNR values in some cases and it still had the improvement capability 

using the mini batch modification [34]. Yue Huang et al., presented a method for 

MRI recovery using the Bayesian approach that uses nonparametric dictionary to 

learn a sparse basis and total variation penalty term for smoothness. In [35] Ni et 

al., designed a two stage algorithm to get the sparser representation of signal and 

enhanced accuracy of reconstruction with the approximate single value 

decomposition for the dictionary updating.  But still it had ‘block’ effect as a 

drawback, which is very visible at low sampling rate. The research of Yaghoobi in 

[36] approximated an audio signal using a novel compressible dictionary based 

model. But dictionary and recovery related many investigations were left to be 
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revealed. First category faced features dependent sparsity as a drawback. 

Neither of basis transform could present whole image features sparsely. The 

second category algorithms are computationally complex and thus limiting the 

reconstruction quality.   

In third category, algorithms are designed by combining sparsifying 

transforms for assistance of one another. Recently, these types of algorithms are 

gaining interest. In [37] Qu, Xiaobo, et al. compared the performance of algorithm 

using combined transforms and single transform. His research showed that 

algorithm with combined transforms outperformed because plentiful features 

were sparsely represented for signal reconstruction guidance.  The research in 

[38] proposed an algorithm that exploits local sparsity by total variation and two 

non-local sparsities by wavelet transform and patch correlation. This combined 

sparsity measure significantly reduced the sampling rate required for image 

compressive sensing. [39] is one of the state of the art algorithms, it uses the 

combined benefits of wavelet and total variation for sparsity of MRI.  There are 

many solutions for convex optimization problem generated as a result of 

compressed sensing encoding phase. In [40] almost an optimal CS recovery is 

achieved through linear programming. Daubechies et al. in [41] applied iterative 

thresholding based iterative technique for solution of linear inverse problems. 

MRI has been accepted as a versatile and powerful medical diagnostic tool 

over the past few years. However, MRI suffers from lengthy image processing 

time. For instance, encoding and decoding may take several hours for MR images 

acquisition. Compressed sensing approach has claimed to reconstruct a good 

quality image from very few measurements. Thus, fast reconstruction is the key 
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for adoption of compressed sensing approaches to MRI. But imaging speed 

remains a major challenge for volumetric MRI data collection and encoding 

through CS [42, 43] . Three dimensional image processing is a new and emerging 

field so has enormous applications. However tremendous data of 3D images 

slower down the data processing speed. So, 3D-MRI processing demands the 

development of new methodologies for fast clinical imaging practice. 

Compressed sensing brought new algorithmic and computational challenges. 

What makes the problem of fast reconstruction so challenging is that a 

compressed sensing reconstruction solves a large-scale non-linear optimization. 

This requires the use of iterative schemes. Every iteration involves operations 

which are computationally intensive. In addition, the number of iterations 

required is a polynomial function of the size of the problems with larger sizes 

taking many more iterations to converge. Though compressed sensing 

algorithms are very advantageous but with computationally intensive and 

complex reconstruction [44]. Therefore, it is critical to develop some methods for 

fast processing. Recently, several algorithms have been proposed which show 

trade-off between complexity and accuracy through light weight operations [45], 

[46] and [47]. In recent years, many reduced sampling methods are emerging 

based on multiple receiver channels [48], spatial and temporal correlations [49] 

and data redundancy [50]. Most of these algorithms are not clinically viable. 

Various studies revealed that the performance of the medical image processing 

algorithms can be enhanced by implementing them on graphical processing units 

(GPUs) [51, 52], multicore central processing units (CPUs) [53, 54] and field-

programmable gate array (FPGA)[55, 56] which showed a remarkable advance 
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towards clinical feasibility. Qiyue accelerated already proposed time consuming 

compressed sensing algorithm. This approach improved the quality of the image 

and reduces the computation time by parallelizing it on multicore processors. It 

is hardly possible to accelerate an algorithm by the factor larger than the number 

of cores. He addressed this limitation through a preprocessing mechanism which 

avoid the smooth patches and sort the wavelet coefficients for to reduce the total 

computation time in [57]. In [58] a parallel compressed sensing algorithm is 

compared with sequential compressed sensing algorithm to demonstrate the 

significant speed up on parallel architecture using multi core CPUs and GPU. CPU 

cores speed up computations by the factor of 2.2 and GPU speed up of 35. The 

parallel algorithm implemented in [59] discusses the pros and cons of three 

parallel architectures. This implementation was also an effective approach for 

speed up of compressed sensing reconstruction. Daehyun et al. also showed in 

[42] that optimized use of parallel architecture can even efficiently reduce the 

computational overhead for reconstruction of single 3D MRI volume. In [60] CS-

based 3D MRI reconstruction using multicore CPU and GPU architectures is 

proposed that can achieve fast data acquisition. A novel implementation of CS on 

high performance architectures (FPGA and Multicore CPU) is presented in [61]. 

Many core CPUs can offer performances comparable to GPU [62]. However [63] 

showed that GPU for the applications that require irregular memory accesses 

may not be suitable. Conversely, FPGA may not be suitable for applications which 

have large and complex computational kernels that require double-precision 

floating point calculations due to limitations in silicon area. As a result, 

developers have to decide which architecture is suitable for their application 
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such that they can achieve the most performance enhancement. Again, though 

there are solutions for reduction in computation time, the desire for the least 

computational time needs to be ascertained. 

2.3 Missing Links in Literature 

As has been noted above, compressed sensing is an emerging and broad 

field of research. Compressed sensing has recently gained a very significant and 

authentic effect in MRI and other related fields. If we consider the current 

scenario then a point has nearly been reached in which physical and 

physiological effects limit the ability to just encode data faster. The traditional 

approach of MRI data acquisition is to sample at Nyquist rate followed by use of 

coding methods for compression. These limits have led to look for methods to 

reduce the amount of acquired data without degrading image quality and 

increase the energy efficiency. This research builds on the foundation of 

designing an algorithm that can encode 3D-MRI data faster to achieve clinical 

practicality. 
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3.1 Background 

According to CS theory, main reason behind the successful recovery is the 

sparsity. So, sparsity of a signal play key role for lossless and successful signal 

reconstruction. The sparsity and recovery quality are directly related with each 

other. Therefore, seeking a highly sparse domain is most important question for 

CS recovery. Since, image’s sparsity is feature dependent. So, there is no 

universal domain in which whole image is sparse. Most compressed sensing 

algorithms explore a set of fixed transform domains (i.e. wavelet) and that is 

why they are signal-independent, resulting in poor rate-distortion performance 

compared to the conventional coding techniques. Compressed sensing algorithm 

used in this thesis uses combined sparsity in a hybrid domain. In Section 3.2 a 

brief description on compressive sensing theory is provided. In Section 3.3 we 

discuss magnetic resonance imaging with respect to single 2-D slice and 3D MRI. 

 

 

3  

Compressed Sensing for 3D MRI 

Recovery    
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3.2 Compressed Sensing 

3.2.1 Overview 

Let a signal s ∈ RN be our signal of interest which is real valued and sparse 

in some domain Ψ. We consider a dictionary (measurement matrix) Φ ∈ RMxN 

(M<<N) with the vectors φi ∈ RN as columns. We collect m linear measurements 

which can be viewed as inner product of signal of interest s and column vectors 

φi of measurement matrix Φ. The measurements y ∈ RM of signal of interest s are 

given by the following equation. 

                         (3.1)
  

Our basic goal is the recovery of the K-sparse signal s ∈ RN from its 

measurement vector y ∈ RM. If M < N then we cannot solve the linear system for s 

by inverting the measurement matrix Φ. Equation 3.1 is an ill posed problem.  But 

this system might still determine x uniquely under the additional condition that x 

is K-sparse. 

 

3.2.2 Sparsity 

The sparsity of the signal is the number of at most non-zero components in 

the coefficient vector Ψs of some transform domain.  

‖ ‖     *         +               (3.2) 

If a signal is transformed in some other domain and the number of non-

zero elements in Equation 3.2 is K for the signal, it is called K-sparse. Thus, if 

‖ ‖  << m, s is a sparse signal.  
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Thus, CS recovery problem of s can be formulated as: 

                                                    ‖  ‖                                   (3.3) 

where   denotes the measurement matrix and p represents the sparsity of 

vector   . The value of p is normally set to 0 or 1. If the value of p is set to 1, it is 

called l1 norm and denoted by ‖ ‖  . It adds all the absolute entries in coefficient 

vector   .  While l0 norm is when value of p is set to 0 and it is denoted by ‖ ‖  . 

It counts the nonzero values of the elements in coefficient vector   .  

3.3 CS recovery via Collaborative sparsity for a single 2D slice  

A collaborative sparsity based CS algorithm for 2D natural images based 

uses two image priors, smoothness in local region and repetitiveness in nonlocal 

region. This algorithm designs a sparsity which is consistent with image priors.  

This thesis follows the same pattern for 3D MRI images. The advantage of using 

this 2D algorithm over other algorithms is that it uses combination of two 

sparsities. To obtain the concept of collaborative sparsity for images we adopt 

and briefly review theory from [64]. 

3.3.1 Collaborative Sparsity Measure 

In this section an overview of CS algorithm for a single slice using 

collaborative sparsity is provided. By merging local 2D sparsity in space domain 

and nonlocal 3D sparsity in transform domain a new collaborative sparsity 

measure for high fidelity image CS recovery is established. This collaborative 

sparsity can be expressed as  

                                      ( )  ‖      ‖    ‖      ‖         (3.4) 
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with   as regularization parameter and p and q represents the sparsities with 

values from [0,1].      denotes to local smoothness prior and      

corresponds to nonlocal self-similarity prior. By using the horizontal and vertical 

finite difference operator based filter and putting the value of p to 1, local 2D 

sparsity      in Equation 3.4 is given by 

    ‖      ‖  ‖   ‖   ‖    ‖   ‖    ‖            ( 3. 5) 

while nonlocal 3D sparsity     in Equation 3.4 is achieved by the following four 

steps:  

Figure 3.1 Illustration of nonlocal 3D sparsity 

The following mathematical formulation of the nonlocal 3D sparsity       is 

generated from all above illustrated steps in Figure 3.1.  

               ‖      ‖   ‖  ‖   ∑ ‖   (   )‖ 
 
     (3.6) 

where    (   ) represents the transform coefficients in nonlocal 3D transform 

domain and    is the column vector with the transform coefficients in 

lexicographic order. After dividing transform coefficients from vector    into n 

groups, groups are inverted for the estimation of each block. Estimated block are 

returned to their positions and by averaging these entire estimated blocks final 

image estimate is achieved. Final image estimate is given by  

              ̂                       (3.7) 

Image is 
divided into n 

blocks of size Bs 
. 

A set is defined 
which contains 

the similar 
blocks within 
the searching 
window for 
each block. 

A 3D array is 
formed by 

stacking similar 
blocks in each 

set and it is 
denoted by  𝑥 . 

Next, a 3D 
transform is 

conducted on 
the 3D array to 

obtain the 
coefficients and 
0 is used as the 

value for q. 
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With the help of the above expressions, we can further rewrite Equation 3.4 as 

                 ( )  ‖      ‖    ‖      ‖     ‖   ‖     ‖  ‖         (3.8) 

3.4 Recovery via Collaborative Sparsity Measure 

The optimization problem for CS recovery can be described by 

                             ‖   ‖     ‖  ‖                                              (3.9) 

Note that the solution of Equation 3.4 is quite difficult to solve directly due to the 

combinatorial computational complexity of this algorithm. Therefore, for 

computationally feasible algorithm auxiliary variables w and x are introduced 

and corresponding Augmented Lagrangian function led to our final step which is 

written as 

   (     )   ‖ ‖     
 (    )    

 

 
‖      ‖ 

 
  ‖ 𝑥‖     

 (   )   

 

 
‖     ‖ 

 
    (    )  

 

 
‖      ‖

 

                  (3.10) 

where  ,   ,    are regularization parameters and  ,   ,   are Lagrangian 

multipliers. The augmented Lagrangian method seeks a saddles point by 

iteratively solving the Equations 3.11 and 3.12. 

                                 𝑥    (     )                      (3.11) 

             {

            (          )
           (         )
            (       )

        (3.12) 

Equation 3.11 is still hard to solve. Therefore, for efficient solution this is further 

divided into three sub problems. For brevity, derivations for the solution of sub 

problems are excluded. Details of derivations of these sub problems and 

augmented Lagrangian method is presented in [64]. 
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3.4.1 ‘w’ sub problem for CS reconstruction 

After simplifications w sub problem has the following closed form  

             ̃     {|   
 

 
|  

 

 
  }      (   

 

 
)                       (3.13) 

3.4.2 ‘s’ sub problem for CS reconstruction 

The solution of s sub problem is obtained as  

                     ̃                          (3.14) 

where d is the gradient direction,   is the optimal step. 

3.4.3  ‘x’ sub problem for CS reconstruction 

Thus, the efficient solution for x sub problem is derived as 

      ̃        ̃𝑥        (hard (   √  ))                           (3.15) 

Where    ̃𝑥   hard (   √  ) =       (    (  )  √   )  

3.5 CS recovery via Collaborative sparsity for 3D MRI 

Recent trends have advanced to 3D-MRI. For that reason, realization of 3D-

MR images is necessary in compressed sensing. We propose a method for slice by 

slice 3D reconstruction. For the reconstruction of complete 3D MRI algorithm 

outlined in Algorithm 1 is used.  General block diagram of proposed slice by slice 

algorithm is shown below. 

 

 

 

 

 

 

n MRI slices 

2D Measurements 

2D Reconstruction 

2D Measurements 

2D Reconstruction 

2D Measurements 

2D Reconstruction 

2D Measurements 

2D Reconstruction 

3D Reconstruction Matrix from the linear combination of 2D Reconstruction Matrix 

Texture Mapping for volume rendering 3D data 

Figure 3.2: General system setup of Proposed 3D algorithm 
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The inputs are observed measurements bn for all n slices, the measurement 

matrix A, regularization parameters and output is an approximation of 3D MR 

image signal. One of the main reasons of using collaborative sparsity based 

algorithm for each slice is that, it utilizes the image priors in local and nonlocal 

regions both. For high quality recovery results critical role is played by image 

priors. So, for more advantageous and effective solution a sparsity measure 

based on image priors is highly efficient.  

  Algorithm 1: Compressed Sensing Recovery for 3D MRI 

Outer loop n times 

sno = ATbn ,  νno =no=  no= 0, wno = xno = 0  {Initialization for each slice} 

               Mid loop x times 

                       Inner loop y times 

                                  Solve w sub problem by using the derived expression in Eq. 3.13   

                                   Solve s sub problem by using the derived expression in Eq. 3.14 

                                   Solve x sub problem by using the derived expression in Eq. 3.15 

                       end 

                                        Update Lagrangian multipliers by using the derived expressions in Eq. 3.12 

               end 

end 

3D matrix is formed from restored n slices  ̂   

3D MRI is formed by mapping the pixel values 
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3D reconstruction is achieved by obtaining random projections of the 

corresponding slice and reconstructing each image slice independently. These 

slices are dealt as bunch of frames. Image recovery is posed as a constraint 

convex optimization problem that could be transformed into unconstrained 

convex optimization problem with the collaborative sparsity based recursive 

algorithm. All independent frames are combined and 3D mapping of pixels is 

done by emerging the entire data ensemble from all the frames. As shown by 

block diagram of CS algorithm for 3D MRI. Next section deals with the simulation 

aspects of CS based image processing. 

 

 

      

 

 

 

 

 

 

 

 

 

 

 

 

n 

n 

n 

Random projections applied on input signal 

(Compressed in the form of linear measurements) 

Augmented Lagrangian function based recovery algorithm 

2D Matrix for all slices are stacked to form 3D matrix  

Recovered 2D Slice  
 

(If loop condition is not satisfied) 

(If loop condition is satisfied) 

By mapping the pixel values in matrix 3D MRI is obtained 

Figure 3.3 : Control Flow for 3D Recovery Algorithm 
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3.6 Result for 3D MRI 

For the purpose simulations, dataset of 3D-MRI image used is of size 

256x256x19. Dataset have been taken from [65].  For a fair comparison of our 

method with the collaborative sparsity based algorithm we compare the 

individual slices of 3D MRI reconstructed from our method and original 2D 

images. Different views of reconstructed 3D MRI are shown in Fig. 3.6. Though, 

the performance of slice wise PSNR of recovered 3D MRI is same as 2D image 

recovered from the collaborative sparsity based 2D algorithm. Experiments 

conducted using MRI data of knee demonstrate the performance of proposed 3D 

algorithm. The operating system for numerical experiments is 64bit Windows 7 

with MATLAB version 2013B. The average processing time was computed over 

285 repeated iterations. 

 

 

Figure 3.4 : Recovered 3D MRI in Grayscale 
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3.7 Performance Analysis of 3D MRI 

In this section, 3D-MRI processing using the 2D compressed sensing Recovery via 

Collaborative Sparsity Algorithm is evaluated on the basis of different 

assessment. The aim is to show the enhanced performance of 3D-MRI using 2D 

compressed sensing Recovery via Collaborative Sparsity Algorithm. A few slices 

are picked from reconstructed 3D MRI for evaluation. Different evaluation 

criteria are: 

 Root Mean Square Error (RMSE) 

 Histogram 

 Peak Signal to Noise Ratio (PSNR) 

 Topography Measure 

 Relative Error (RE) 

 Correlation Coefficients 

Figure 3.5 (a) : Recovered 3D MRI with opacity Figure 3.5 (b): Recovered 3D MRI with colors 
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The original and reconstructed slices chosen from 3D MRI for evaluation are 

shown below. 

 

 

 

   

 

  

 

 

 

 

 

 

Figure 3.6 (a): Origional Slice Number 1 Figure 3.6 (b): Reconstructed Slice Number 1 

Figure 3.7 (a): Origional Slice Number 6 Figure 3.7 (b): Reconstructed Slice Number 6 
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Figure 3.8 (a): Origional Slice Number 12 Figure 3.8 (b): Reconstructed Slice Number 12 

Figure 3.9 (a): Origional Slice Number 18 Figure 3.9 (b): Reconstructed Slice Number 18 
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3.7.1 Root Mean Square Error 

The following table shows the root mean square error of 4 random slices in 

reconstructed 3D MRI for knee data. From Table 3-1 it is very clear that 

reconstructed 3D MRI have very less RMSE. 

 

Table 3-1: Root Mean Square Error Values of Reconstructed Images 

No. Slice Number Root Mean Square Error (RMSE) 

1 1 7.9% 

2 6 9.9% 

3 12 11% 

4 18 8% 

 

 

3.7.2 Peak Signal to Noise Ratio 

Table 3-2 contains the peak signal to noise ratio of 4 random slices in 

reconstructed 3D MRI from knee data. The PSNR of the reconstructed 3D MRI is 

relatively high. 

Table 3-2: Peak Signal to Noise Ratio of Reconstructed Images 

No. Slice Number Peak Signal to Noise Ratio(PSNR) 

1 1 30.1 

2 6 30 

3 12 28.1 

4 18 27 
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3.7.3 Topography Measure 

Using topography measure, it is shown in Table 3-3 that reconstructed 3D 

MRI very resembles with original MRI in shape and features. Difference in 

topography measure of reconstructed and original MRI is very less.  

 

Table 3-3: Topography Measure of Reconstructed Images 

No. Slice Number Topography Measure 

1 1 6% 

2 6 7.5% 

3 12 7.9% 

4 18 7% 

 

3.7.4 Relative Error 

In Table 3-4, we observe that relative error in reconstructed and original 

MRI is negligible. 

 

Table 3-4: Relative Error of Reconstructed Images 

No. Slice Number Relative Error (RE) 

1 1 6.6% 

2 6 7.6% 

3 12 7.9% 

4 18 7% 
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3.7.5 Correlation Coefficients 

Correlation coefficients in Table 3-5 show that there is close relation in 

reconstructed and original 3D MRI. 

 

Table 3-5: Correlation Coefficients of Reconstructed Images 

No. Slice Number Correlation Coefficients 

1 1 7.9% 

2 6 9.9% 

3 12 11% 

4 18 8% 

 

3.7.6 Histogram 

In histograms for original and reconstructed MRI show the similarity of images. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10 (a): Histogram of Original Slice 1 Figure 3.10 (b): Histogram of Recovered Slice 1 

Figure 3.11 (a): Histogram of Original Slice 6 Figure 3.11 (b): Histogram of Reconstructed Slice 6 



49 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

Figure 3.12 (b): Histogram of Reconstructed Slice 12 Figure 3.12 (a): Histogram of Original Slice 12 

Figure 3.13 (b): Histogram of Reconstructed Slice 18 Figure 3.13 (a): Histogram of Original Slice 18 
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4.1 Background 

High performance computing includes computers, networks, algorithms 

and environments to make the systems ranging from multicore PCs to fastest 

supercomputers usable. Other than reduction of data acquisition time for 3D-

MRI, we also consider that our proposed methods should be physically 

implementable with low complexity and minimum hardware. In conventional 

methods, processing required for data acquisition is enormous due to its 

repetitive nature even for a single slice and leads to a slower system. The multi 

core based algorithm implementation is demonstrated in Chapter 5. Recently, 

our focus is on combining computing architectures along with GPUs to achieve 

maximum performance. In this chapter we will analyze GPU based 

implementation of this algorithm and the analysis procedures including speedup 

and efficiency (if any).  

4  

3D Compressed Sensing Algorithm on 

GPU    
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4.2 Algorithm overview w.r.t Computational complexity 

In this section, the core framework of compression algorithm and execution 

flow is discussed. Moreover, the execution flow of algorithm is described. The 

generic framework of CS compression algorithm can be divided into two main 

blocks. 

 Compressive Sampling (Encoder) 

 Reconstruction (Decoder) 

Attraction of CS based algorithms is due to the computationally inexpensive 

encoder at the cost of complex decoder. The main component in CS system that is 

computationally intensive is the decoding. Encoder conducts same random 

projections on all input signals and decoder has to recover signal in sparse 

domain which is exhaustive optimization problem. Flow chart of the most 

important steps in algorithm for recovery of 3D MRI is shown in the Figure 4.1. 

 

Figure 4.1 Flow chart of Collaborative Sparsity based recovery algorithm 
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The algorithm consists of three for loops, outer, mid and inner loop. Based on 

these loop structures we divide reconstruction algorithm into three stages. 

Initially, computing starts with stage1 at outer loop, this loop makes sure that all 

the slices of MRI are dealt for recovery purpose. The next step is stage2, mid loop 

iterates for solution of optimization problem by utilizing augmented Lagrangian 

function. Due to no differentiability, stage2 at stage3 is further divided into sub 

problems in inner loop. This loop solves these sub problems iteratively for 

efficient solution. The execution time for complete algorithm is shown in Figure 2.  

 

     Figure 4.2 Execution Time Division of Algorithm 

It is clear from the chart that main component which is computationally 

intensive is the stage3 at calculation of sub problem x. Sub problem x is 

computationally complex because CPU consumes a lot of time in similar patch 

search, 3D matrix operations and 3D transforms. The main complexity comes 

from the number of 3D matrix operations required to obtain a single 2D slice of a 
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3D image. And, when 3D processing has to be undertaken, the processing 

increases N-fold. This also makes the MRI system bulkier. Sub problem x 

accounts for 99% of whole algorithm execution time. Thus, optimization requires 

reducing the acquisition time by providing parallel techniques on stage3. One 

possible way of reducing the time required for processing is by implementing 

stage3 of algorithm on GPU. 

 

4.3 General Purpose Graphics Processing Units (GPGPUs) 

Last few years demonstrate that GPUs are hardware architectures which are 

used for maximum performance in graphics applications. Now a day, GPUs are 

interpreted as massively parallel many core processors and fully programmable. 

GPU is used to process the computationally intensive in a massive-parallel 

manner; hence the speed of processing is increased. While the CPU works on 

sequential algorithms. The performance advantage provided by the use of 

graphics processing units makes this technology particularly fascinating for 

scientific applications.  

 

The basis for using GPUs in parallel 

computing is: 

 Distinguished throughput computation 

 Maximum bandwidth memory  

 Availability to all 

         Figure 4.3 : General GPU Architecture 
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GPU systems use a combination of CPU and GPU to produce a co-processing 

model. Computationally intensive parts which need to be processed in a 

massively parallel manner are accelerated by the GPU in order to benefit from 

their high computing. The advantage of using GPU is in terms of hundreds of 

cores for massively parallel computations but does have high communication 

time for CPU to GPU and GPU to CPU and memory allocation.  The computational 

time for GPU computation is utilized in four steps as shown in Figure 4.4. In the 

first step, memory is allocated on GPU for data used by computation on GPU. In 

the next step, data is transferred from host memory to GPU memory. Then 

computation is performed on GPU and data produced is transferred back to host 

memory. In the last step GPU memory is freed. 

 

 

 

 

4.4 GPU-based CS recovery for MRI  

For GPU based CS recovery, open source CS recovery via collaborative 

sparsity code is chosen as solver. Jian Zhang’s algorithm was originally 

implemented in MATLAB. This implementation is modified to work with GPU 

computing in MATLAB. For loops involved in stage3 are vectorized to use 

optimized libraries for matrix operations.  

We use MATLAB®  Parallel Computing Toolbox [66] to perform automatic 

optimization for GPU computing. From the beginning all the arithmetic 

Figure 4.4 : Steps for GPU computation 
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operations are performed on CPU because initially the operations are 

computationally simple. When control is moved to stage3, data is transferred on 

GPU through temporary memory allocation using MATLAB command gpuArray. 

MATLAB automatically transfers control on GPU, if an array lies in GPU memory, 

for all subsequent complex operations. After loop solution is transferred to CPU 

using MATLAB command gather. All temporary memory allocation on GPU is 

freed. 

4.5 GPU-based Simulation for 3D MRI 

In this section, GPU-based compressed sensing implementation for 3D MRI is 

compared with the sequential compressed sensing algorithm with application to 

3D MRI illustrated in Chapter 3. The GPU used in our setup is TESLA T10 448 

CUDA cores running at 1.2 GHz and has 1280 MB of off-chip global memory. The 

aim is to show the comparison of computational time and hence, the suitability of 

architecture for this collaborative sparsity based CS algorithm. 

 

 

 

 

 

 

 

 

 
(a) Reconstructed Slice from Sequential implementation (b) Reconstructed Slice from GPU based implementation 

Figure 4.5: Reconstructed Images for a 256x256 single 2D slice of a first 3D dataset. 
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A single slice reconstructed from sequential implementation and slice 

reconstructed from GPU based implementation is shown above. The PSNR values 

for some slices are tabulated in Table 4.1.  As depicted in the table, for this GPU 

based implementation obtained PSNR is same as that of sequential 

implementation. 

  

Table 4-1: Comparison of PSNRS for GPU based and sequential implementation 

 

Furthermore, for better analysis and comparison of GPU based CS 

implementation with sequential CS implementation computational time for 

reconstruction of whole 3D MRI is calculated. It shows that the computational 

time required for GPU based implementation is 4x slower when compared with 

sequential implementation because of repetitive calls to function used for 

solution of sub problem u.  

Slice 

Number 

 

 

 

GPU based CS Implementation  

(1x) 

Sequential CS Implementation 

(4x)  

PSNR(db) PSNR(db) 

1  30.1 30.1 

6  30 30 

12  28.1 28.1 

18  27 27 
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While most work about GPU based CS implementation has emphasized the 

use of GPU but some algorithms are not appropriate for GPU based 

implementation due to irregular memory access [63]. In fact, very often 

communication from host to GPU and GPU to host can increase the 

communication overhead. This communication overhead limits the use of GPU in 

algorithms that have repetitive structure. By performing these simulations, we 

prove that GPU based CS implementation is computationally exhaustive as 

compared to sequential algorithm because of loops in algorithm. These repetitive 

calls to GPU result in computation overhead because of communication and 

memory allocation again and again. From all the above illustrations we can 

conclude that, the sequential CS implementation is superior to that of GPU based 

CS implementation for this algorithm.  
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5.1 Background 

In the previous chapter, a 3D compressed sensing algorithm was derived by 

using already proposed collaborative sparsity based recovery algorithm. But this 

recovery algorithm typically requires a significant computational effort for 3D 

MRI reconstruction. For fast recovery, it is necessary that an optimization should 

be defined for computationally complex areas of algorithm. This is widely known 

that low level languages are fast with respect to computation time. From an 

implementation point of view, it is time consuming to transfer whole MATLAB 

implementation which is a high level language into a low level C language. 

Therefore, using a combination of low level and high level language is highly 

desirable.  This is possible by using mex files in MATLAB. The peculiar nature of 

mex files implies that some part of whole implementation can be rewritten in a 

low level C language and called in MATLAB. In this chapter, we deal with this 

challenge. We separate some complex part of existing implementation. These 

parts are rewritten in C language and converted into mex file. An optimized 

Implementation with its suitability and bounds is defined. However, this method 

lacks for quantifying and analyzing its performance. 

5  

An optimized 3D Compressed Sensing 

Algorithm 
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5.2 Problem Formulation 

In the previous chapter, quadratic penalty function and Lagrangian function 

were used for MRI data acquisition. This combination of quadratic penalty 

function and Lagrangian function is called augmented Lagrangian function. 

Currently, aim is to formulate an optimized CS recovery algorithm so that a fast 

MRI reconstruction can be performed. This also includes CS reconstruction 

without degrading the image quality. The collaborative sparsity based CS 

algorithm is same as outlined in section 3.5.  

5.3 Mex files in MATLAB 

In order to use mex files, we first present a brief concept of mex files. Mex is a 

short description of MATLAB executable.  It is used for interfacing between 

MATLAB and codes written in low level languages (FORTRAN, C etc.) These 

codes use MATLAB data structures as input and produce data structures as 

output. Any MATLAB supported C compiler is installed and mex is configured to 

use that compiler. When these mex files compiled, are called within MATLAB 

environment just like MATLAB M-files.  

5.4 Optimization by introducing mex files 

Mex are used for interfacing of C codes into MATLAB codes. These executable are 

used for optimization of MATLAB codes. Complex MATLAB M-files are rewritten 

into C language so that we can obtain an optimized implementation. We use same 

sequential implementation and try to provide reduction in computation time. 
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5.4.1 Selection of complex functions 

Since, sub problem x utilizes maximum of whole algorithm execution time. Thus, 

to reduce the acquisition time for sub problem x optimization is introduced in 

stage3. Nonlocal sparsity is explained in details in section 3.3.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sub problem x uses nonlocal sparsity for solution. The solution of sub problem x 

is calculated by using Equation 3.15 and mathematical expression is as follow 

Figure 5.1 : Flow chart for solution of sub problem u 
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 ̃        ̃𝑥        (hard (   √  ))   

Some steps followed through the implementation for sub problem x are depicted 

in Figure 5.1. As observed the computational intense part is sub problem u, 

which is a repetitive process through double loops. It is composed of three major 

components, two for core calculations, namely DWT2DCT for 3D transform and 

IDWT2DCT for inverse transform, and one for data formulation, namely 

PatchSearch.  

 

5.4.2 M file to mex file conversion 

These are very important processing steps in recovery algorithm. Hence, 

optimizing these components can benefit in terms of computational time. Above 

mentioned complex functions are rewritten into C language. Gate functions 

define inputs and outputs for these mex files. By adopting this implementation, 

we attempt to reduce the computational complexity and also speed up the 3D-

MRI process.  

5.5 Simulation Results 

This section compares mex based implementation with the sequential 

compressed sensing algorithm illustrated in Chapter 3. In this chapter, our aim is 

to show the suitability of this optimized implementation for CS algorithm with 

application to 3D MRI. This implementation using combination of low level and 

high level language is competent to deal loop complexity. In start, this 

implementation works perfectly fine. Later, sorting algorithm used in C language 

could not compete with optimized sorting algorithm used in MATLAB. This 
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sorting algorithm is not able to sort arrays of each size efficiently. This mex based 

implementation obtained PSNR same as that of sequential implementation. This 

algorithm took 419ks for recovery of all slices using collaborative sparsity based 

compressed sensing algorithm. This computational time is 2.8x slower when 

compared with sequential implementation because of restriction of sorting 

algorithm in C language. Our simulation and synthesis results demonstrate that 

this implementation may be improved to process loops efficiently but complex 

sorting algorithm used lacks in performance.  

 

 

 

 

 

 

 

 

 

 

 

 

 



63 

 

6.1 Background 

Compressed Sensing recovery algorithms typically require a significant 

computational effort for the problem sizes occurring in most practical 

applications. While the computational complexity is a major issue for 

applications where 3D images are processed (e.g., in MRI), it becomes extremely 

challenging when high SNR is required. Hence, to meet the stringent 

reconstruction, parallelizing algorithms is of paramount importance.  

6.2 Types of High Performance Computing Architectures 

The widely used high performance computer architecture types are: 

1. Shared Memory Architectures. (SMAs) 

2. Distributed Memory Architectures. (DMAs) 

3. Hybrid Distributed-Shared Memory Architectures. (HDSMAs) 

 

6.2.1 Shared Memory Architectures 

 Common ability of shared memory architectures (SMA) is that all the 

memory is accessible by all processors. At the same time more than one 

processor can share the memory resources while operating independently.  

6  

3D Compressed Sensing Algorithm on 

Multi-cores    
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On the basis of memory access time it is further divided into following types: 

 Uniform Memory Access (UMA) 

 Non Uniform Memory Access (NUMA) 

 
In uniform memory access, all processors share the main physical memory. 

Updates in shared memory locations by any of the processors are visible to 

every processor. When two or more symmetric multiprocessors are physically 

linked, it is non-uniform memory access. In this case, updates in shared 

memory locations by any of the processors are not visible to every processor. 

The advantage of SMAs is that the sharing of data is very fast and programming 

approach is very user friendly. The disadvantage of shared memory 

architectures is that if we add more CPUs then the synchronization 

constructs make programmer’s job tough.  

 

6.2.2 Distributed Memory Architectures (DMA) 

 In Distributed Memory Architectures (DMA) is about the local 

memory of every processor which is not shared by any other processor. Inter 

processor memory is used to connect through a communication network in 

Figure 6.1 : Shared Memory Architecture 
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DMA. It is programmer’s task to explicitly define how and when data is 

communicated. 

 

       Figure 6.2: Distributed Memory Architecture  

The major advantage of using DMAs is memory scalability with number of 

processors. The main problem is that it is programmer’s responsibility to 

define all the data communication between processors.  

 

6.2.3 Hybrid Distributed-Shared Memory Architectures (HDSM) 

Hybrid distributed-shared memory architectures secure the services of 

both SMA and DMA. In HDSMA, processors on that machine can address that 

machine’s memory as global. The distributed memory component is the 

network of multiple SMPs. Therefore, a communication through network is 

required to transfer data from one SMP to another SMP machine on the 

network.  

 

Figure 6.3 : Hybrid Distributed Shared Memory Architecture 
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6.3 Parallel Programming Method in MATLAB 

MATLAB® Parallel Computing Toolbox [66] solves computationally 

complex and huge data problems by parallelizing them on multicore processors. 

High-level constructs – parallel for-loops and well-developed MPI integrated 

libraries are available that can be used in parallelizing MATLAB applications. In 

this section we will look at how this parallelizing method executed in MATLAB 

influence the speedup and efficiency of our compression code. 

 

6.3.1 Parallel for loop 

 A parallel for-loop [67] is an easy way to divide independent loop 

iterations of intensive computation among different workers. The algorithm 

using “parfor” loop is parallelized by running it on client that divide up the task 

among worker and gather the results. Parallel implementation using “parfor” is 

similar to OpenMP. The figure below illustrates the working of “parfor” loop for 

possible number of cores/workers. 
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Figure 6.4 : Working of parallel for loop 
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The “parfor” loop automatically detects workers and exchange code and data 

between client and workers. It divides the task by allocating iterations among 

multiple workers. The only requirement for distributing execution using “parfor” 

is that iterations must be independent of each other, and no communication can 

occur between workers during the execution of the loop. Compressed sensing 

algorithm using 2D multiple slices is computationally intense because it iterate 

the independent 2D algorithm for a 3D reconstruction. So, to parallelize this 

algorithm it is desirable to distribute independent loop among workers for 

computation. This CS algorithm is an independent implementation of 2D multiple 

slices to form complete 3D MRI.  

6.4 Parallelizing Compressed Sensing Algorithm 

Compressed sensing is accepted as a powerful technique in computer 

vision and image compression for compression of images having huge 

information and extraneous data but it has not been adopted as much due to its 

high computational cost and storage complexity.  

After considering the performance blockages of the 3D compressed sensing 

algorithm on a single-core processor, a multi-core and multi-node based 3D CS 

implementation was done and results were analyzed. The performance of 3D CS 

improved significantly because of the introduction of parallel computing 

technique.  
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6.5 Speed-Up Results 

The easiest code to parallelize in MATLAB using all cores of a CPU is through the 

‘par-for’ loops. Within the par-for loop each iteration is independent of all others, 

and the MATLAB built in scheduler, portions-out each iteration to a worker for 

computation. The results are then collected and returned appropriately by the 

scheduler. A comparison and analysis of the potential speedups achieved 

between one core and multi core implementation using above mentioned 

techniques is given below. Table 1 shows the algorithm execution time for the 

outer main loop through sequential and parallel versions of 3D compressed 

sensing: 

 

 

Table 6-1 : Serial and parallel execution times for 3D MRI data on a multicore machine 

 

 
Sequential 

Implementation 

Number of MATLAB workers 

2 4 6 8 

CPU Runtime(ks) 152 39 27 24 20 

CPU Speedup (x) 1 3.8 5.6 6.3 7.6 
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The reduced computational runtime and speedup achieved by distributing the 

voting calculation on 2, 4, 6 and 8 processors of a single CPU is presented below: 

 

 

   Figure 6.5 : Parallel Runtime of 3D MRI data recovery algorithm on an 8-core Machine 

 

Figure 6.5 shows parallel runtime of 3D MRI reconstruction on an 8-core 

machine. It is clear that the runtime is reduced by increasing the number of 

processors. 

 

 

                          Figure 6.6 : Parallel Speed up of 3D MRI reconstruction on 8-core Machine 
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Our parallel implementation of compressed sensing algorithm reduces the 

runtime of the program to 7.6 times the sequential one on an 8-core machine. 

However, the speedup of parallel implementation of compressed sensing 

algorithm as presented in Figure 6.6 is 760% higher than that of sequential 

implementation of compressed sensing algorithm, a factor of 7.6. Thus, our 

program enables data distribution on 8 cores with no performance loss. 

6.6 Comparison with other optimizations 

In this section, we show some of results obtained for 3D MRI 

reconstruction to demonstrate the efficiency and effectiveness of this parallel 

algorithm. We compare all the results obtained as a result of optimizations 

applied to sequential algorithm. These results are obtained after 285 iterations 

and for same dataset.  

 

Table 6-2 : Execution times and Speedup for all implementations 

 

Type of Implementation Runtime (ks) Speedup(x) 

CPU - Sequential 152 1 

CPU – 8 cores 20 7.6 

GPU  608 No Speedup 

Optimized through mex  429 No Speedup 
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Table 6-2 shows a comparison of execution times and speed ups for all proposed 

implementations. The speedup obtained on parallel 8-core is 7.6. This is a 

considerable improvement for reconstruction of 3D MRI using compressed 

sensing algorithm. Whereas, other proposed implementations did not give 

considerable   results. 

 

 

   Figure 6.7 : Execution times and Speedup for all implementations 

 

Our goal is to find computationally feasible algorithm that can successfully 

recover a signal x from measurement matrix y for smallest possible number of 

measurements. Finally, from this graph, we point out that different optimizations 

introduced in sequential algorithm might give limited results but multicore 

architecture based results have shown that multicore architectures are most 

suitable for algorithms with this type of repetitive structure. 
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7.1 Conclusions 

This dissertation mainly focuses on providing a compressive sensing based 

solution using parallel processing. Furthermore, this work, though is based on 

CS, provides solution to two different applications. The first one is 3D-MRI 

processing and the second one is the parallel processing. In addition, low-

complexity parallel algorithm is implemented, to provide a flexibility of use in 

practical scenarios. 

Specifically, in the first part, a 3D MRI reconstruction algorithm is 

implemented based on CS principles. Firstly, a 2D collaborative sparsity based 

algorithm is used for reconstruction of each slice.  Then all these slices are 

combined to make a single 3D MRI view. The algorithm is further compared slice 

by slice with the results of existing algorithm for 2D images. The proposed 

algorithm reconstructs a single 3D MRI without degrading the image quality. The 

results are validated based on the signal-to-noise ratio, root mean square error, 

histogram, topography measure, relative error and correlation coefficients  

The Next, the already proposed algorithm is optimized to enhance the 

performance and increase efficiency for 3D-MRI. This was necessary due to the 

7  

Conclusion and Future 

Recommendations 
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high complexity and huge data processing requirements in 3D-MRI. Initially, 

speed was not one of the objectives for developing this system, but it was 

considered if the system had to be used for real-time applications. The most 

computation intensive stage indicated was the 3D reconstruction through the 

transform area. Since the system is implemented in MATLAB, speed benefits 

were achieved by implementing the computationally intensive parts through 

par-for loop, GPU and combination of low level and high level programming 

methods.  

The results show an almost 50% speedup for parallel algorithm when all 8 cores 

of the machine are utilized instead of one which MATLAB uses by default to run 

sequential programs. This parallel algorithm is less complex and high 

performance compared to existing solutions available for MRI. From simulations, 

it is observed that the SNR results remain the same, while providing high 

throughput. We further showed that parallel approach can take the benefit of 

multicore architecture and sometime provides diminished computational 

barriers compared to GPU based implementation and attains appreciable speed-

up. To endorse our technique, efficacy of this algorithm is investigated using 3D 

MRI data and the superiority of parallel implementation over sequential 

implementation was confirmed with the acceleration factor. 

7.2 Future Work 

This discussion concludes with some recommendations of possible future 

work, which are extensions of the problems considered in this thesis: 

 Optimize Efficiency: As the experimental results show, the proposed 
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algorithm can reconstruct the 3D MRI by applying 2D technique to all the 

data set and visualizing it in 3D view. As a whole 3D technique can be 

applied to increase the efficiency of 3D algorithm.  

 Other Hardware Architectures based Implementation: Hardware 

architectures based fewer complexes and energy efficient system can be 

proposed, there is still room for hardware optimization. Once the target 

hardware (e.g., FPGA, ASIC) is chosen and efficient pipelining, place and 

route will provide a better performance. 

 
 Optimize Speedup: Several other configurations such as GPU+par-for, 

Multi-GPU can be programmed and analyzed for speed and performance. 

Moreover, different nodes of cluster can be used for parallel 

implementation for optimized speed up.  

 Optimize GPU based implementation:  GPU based implementation of 

CS for 3D MRI is optimized through the combination of low level, high 

level language and CUDA. Still there is room for optimization by 

implementing the complete algorithm on GPU using low level language 

and CUDA. 

 

 

 

 

 



 

 

- 75 - 

 

 

 

1. Shannon, C.E., A mathematical theory of communication. ACM SIGMOBILE 
Mobile Computing and Communications Review, 1948. 5(1): p. 3-55. 

2. Shannon, C.E., Communication in the presence of noise. Proceedings of the 
IRE, 1949. 37(1): p. 10-21. 

3. Zhang, J., et al. Structural group sparse representation for image 
compressive sensing recovery. in Data Compression Conference (DCC), 2013. 
2013. IEEE. 

4. Candès, E.J. and M.B. Wakin, An introduction to compressive sampling. 
Signal Processing Magazine, IEEE, 2008. 25(2): p. 21-30. 

5. Candès, E.J., J. Romberg, and T. Tao, Robust uncertainty principles: Exact 
signal reconstruction from highly incomplete frequency information. 
Information Theory, IEEE Transactions on, 2006. 52(2): p. 489-509. 

6. Donoho, D.L., Compressed sensing. Information Theory, IEEE Transactions 
on, 2006. 52(4): p. 1289-1306. 

7. Natarajan, B.K., Sparse approximate solutions to linear systems. SIAM 
journal on computing, 1995. 24(2): p. 227-234. 

8. Donoho, D.L., Neighborly polytopes and sparse solutions of 
underdetermined linear equations. 2005. 

9. Chen, S. and D. Donoho. Basis pursuit. in Signals, Systems and Computers, 
1994. 1994 Conference Record of the Twenty-Eighth Asilomar Conference 
on. 1994. IEEE. 

10. Chen, S.S., D.L. Donoho, and M.A. Saunders, Atomic decomposition by basis 
pursuit. SIAM journal on scientific computing, 1998. 20(1): p. 33-61. 

11. Mallat, S.G. and Z. Zhang, Matching pursuits with time-frequency 
dictionaries. Signal Processing, IEEE Transactions on, 1993. 41(12): p. 
3397-3415. 

12. Needell, D. and J.A. Tropp, CoSaMP: Iterative signal recovery from 
incomplete and inaccurate samples. Applied and Computational Harmonic 
Analysis, 2009. 26(3): p. 301-321. 

13. Tropp, J.A. and A.C. Gilbert, Signal recovery from random measurements via 
orthogonal matching pursuit. Information Theory, IEEE Transactions on, 
2007. 53(12): p. 4655-4666. 

14. Ji, J. and T. Lang. Dynamic MRI with compressed sensing imaging using 
temporal correlations. in Biomedical Imaging: From Nano to Macro, 2008. 
ISBI 2008. 5th IEEE International Symposium on. 2008. IEEE. 

15. Jung, H., et al., k‐t FOCUSS: A general compressed sensing framework for 
high resolution dynamic MRI. Magnetic Resonance in Medicine, 2009. 
61(1): p. 103-116. 

8 Bibliography 



 

 

- 76 - 

16. Montefusco, L.B., et al., A fast compressed sensing approach to 3D MR 
image reconstruction. Medical Imaging, IEEE Transactions on, 2011. 30(5): 
p. 1064-1075. 

17. Haldar, J.P., D. Hernando, and Z.-P. Liang, Compressed-sensing MRI with 
random encoding. Medical Imaging, IEEE Transactions on, 2011. 30(4): p. 
893-903. 

18. Candes, E. and J. Romberg, Sparsity and incoherence in compressive 
sampling. Inverse problems, 2007. 23(3): p. 969. 

19. Majumdar, A. and R.K. Ward, Joint reconstruction of multiecho MR images 
using correlated sparsity. Magnetic resonance imaging, 2011. 29(7): p. 
899-906. 

20. Feng, Z., et al., Improved l1-SPIRiT using 3D walsh transform-based sparsity 
basis. Magnetic resonance imaging, 2014. 

21. Deutsch, S., A. Averbush, and S. Dekel. Adaptive compressed image sensing 
based on wavelet modeling and direct sampling. in SAMPTA'09. 2009. 

22. Qu, X., et al., Iterative thresholding compressed sensing MRI based on 
contourlet transform. Inverse Problems in Science and Engineering, 2010. 
18(6): p. 737-758. 

23. Plonka, G. and J. Ma, Curvelet-wavelet regularized split Bregman iteration 
for compressed sensing. International Journal of Wavelets, Multiresolution 
and Information Processing, 2011. 9(01): p. 79-110. 

24. Hong, M., et al., Compressed sensing MRI with singular value 
decomposition-based sparsity basis. Physics in medicine and biology, 2011. 
56(19): p. 6311. 

25. Trinh, C.V., et al. Total variation reconstruction for compressive sensing 
using nonlocal Lagrangian multiplier. in Signal Processing Conference 
(EUSIPCO), 2013 Proceedings of the 22nd European. 2014. IEEE. 

26. Huang, J. and F. Yang. Compressed magnetic resonance imaging based on 
wavelet sparsity and nonlocal total variation. in Biomedical Imaging (ISBI), 
2012 9th IEEE International Symposium on. 2012. IEEE. 

27. Xu, J., et al., Improved total variation minimization method for compressive 
sensing by intra-prediction. Signal Processing, 2012. 92(11): p. 2614-2623. 

28. Zhang, J., et al. Improved total variation based image compressive sensing 
recovery by nonlocal regularization. in Circuits and Systems (ISCAS), 2013 
IEEE International Symposium on. 2013. IEEE. 

29. Yu, G. and G. Sapiro, Statistical compressed sensing of Gaussian mixture 
models. Signal Processing, IEEE Transactions on, 2011. 59(12): p. 5842-
5858. 

30. Yu, G., G. Sapiro, and S. Mallat, Solving inverse problems with piecewise 
linear estimators: From Gaussian mixture models to structured sparsity. 
Image Processing, IEEE Transactions on, 2012. 21(5): p. 2481-2499. 

31. Yang, J., et al. Compressive Sensing of Signals from a GMM with Sparse 
Precision Matrices. in Advances in Neural Information Processing Systems. 
2014. 



 

 

- 77 - 

32. Rubinstein, R., M. Zibulevsky, and M. Elad, Double sparsity: Learning 
sparse dictionaries for sparse signal approximation. Signal Processing, 
IEEE Transactions on, 2010. 58(3): p. 1553-1564. 

33. Aghagolzadeh, M. and H. Radha. Compressive dictionary learning for image 
recovery. in Image Processing (ICIP), 2012 19th IEEE International 
Conference on. 2012. IEEE. 

34. Mairal, J., et al. Online dictionary learning for sparse coding. in Proceedings 
of the 26th Annual International Conference on Machine Learning. 2009. 
ACM. 

35. Ni, Z.W., et al., Image compressed sensing based on data-driven adaptive 
redundant dictionaries. Progress In Electromagnetics Research M, 2012. 
22: p. 73-89. 

36. Yaghoobi, M. and M.E. Davies. Compressible dictionary learning for fast 
sparse approximations. in Statistical Signal Processing, 2009. SSP'09. 
IEEE/SP 15th Workshop on. 2009. IEEE. 

37. Qu, X., et al., Combined sparsifying transforms for compressed sensing MRI. 
Electronics letters, 2010. 46(2): p. 121-123. 

38. Shu, X., J. Yang, and N. Ahuja. Non-local compressive sampling recovery. in 
Computational Photography (ICCP), 2014 IEEE International Conference on. 
2014. IEEE. 

39. Lustig, M., D. Donoho, and J.M. Pauly, Sparse MRI: The application of 
compressed sensing for rapid MR imaging. Magnetic resonance in medicine, 
2007. 58(6): p. 1182-1195. 

40. Plan, Y. and R. Vershynin, One‐Bit Compressed Sensing by Linear 

Programming. Communications on Pure and Applied Mathematics, 2013. 
66(8): p. 1275-1297. 

41. Daubechies, I., M. Defrise, and C. De Mol, An iterative thresholding 
algorithm for linear inverse problems with a sparsity constraint. 
Communications on pure and applied mathematics, 2004. 57(11): p. 
1413-1457. 

42. Kim, D., et al. High-performance 3D compressive sensing MRI reconstruction. 
in Proceedings of the IEEE Engineering in Medicine and Biology Society. 
2010. 

43. Trzasko, J., C. Haider, and A. Manduca. Practical nonconvex compressive 
sensing reconstruction of highly-accelerated 3D parallel MR angiograms. in 
Biomedical Imaging: From Nano to Macro, 2009. ISBI'09. IEEE 
International Symposium on. 2009. IEEE. 

44. Kulkarni, A.M., H. Homayoun, and T. Mohsenin. A parallel and 
reconfigurable architecture for efficient OMP compressive sensing 
reconstruction. in Proceedings of the 24th edition of the great lakes 
symposium on VLSI. 2014. ACM. 

45. Combettes, P.L. and V.R. Wajs, Signal recovery by proximal forward-
backward splitting. Multiscale Modeling & Simulation, 2005. 4(4): p. 1168-
1200. 



 

 

- 78 - 

46. Hale, E.T., W. Yin, and Y. Zhang, A fixed-point continuation method for l1-
regularized minimization with applications to compressed sensing. CAAM 
TR07-07, Rice University, 2007. 

47. Wright, S.J., R.D. Nowak, and M.A. Figueiredo, Sparse reconstruction by 
separable approximation. Signal Processing, IEEE Transactions on, 2009. 
57(7): p. 2479-2493. 

48. Pruessmann, K.P., et al., SENSE: sensitivity encoding for fast MRI. Magnetic 
resonance in medicine, 1999. 42(5): p. 952-962. 

49. Doyle, M., et al., Block Regional Interpolation Scheme for k‐Space (BRISK): 
A Rapid Cardiac Imaging Technique. Magnetic resonance in medicine, 
1995. 33(2): p. 163-170. 

50. Tsao, J., P. Boesiger, and K.P. Pruessmann, k‐t BLAST and k‐t SENSE: 

Dynamic MRI with high frame rate exploiting spatiotemporal correlations. 
Magnetic Resonance in Medicine, 2003. 50(5): p. 1031-1042. 

51. Khamene, A., et al., A novel projection based approach for medical image 
registration, in Biomedical Image Registration. 2006, Springer. p. 247-256. 

52. Lefohn, A.E., J.E. Cates, and R.T. Whitaker, Interactive, GPU-based level sets 
for 3D segmentation, in Medical Image Computing and Computer-Assisted 
Intervention-MICCAI 2003. 2003, Springer. p. 564-572. 

53. Agulleiro, J. and J.-J. Fernandez, Fast tomographic reconstruction on 
multicore computers. Bioinformatics, 2011. 27(4): p. 582-583. 

54. Lenkiewicz, P., et al. A new 3D image segmentation method for parallel 
architectures. in Multimedia and Expo, 2009. ICME 2009. IEEE 
International Conference on. 2009. IEEE. 

55. Jiang, J., W. Luk, and D. Rueckert. FPGA-based computation of free-form 
deformations in medical image registration. in Field-Programmable 
Technology (FPT), 2003. Proceedings. 2003 IEEE International Conference 
on. 2003. IEEE. 

56. Dillinger, P., et al., FPGA-based real-time image segmentation for medical 
systems and data processing. Nuclear Science, IEEE Transactions on, 2006. 
53(4): p. 2097-2101. 

57. Li, Q., et al., Accelerating patch-based directional wavelets with multicore 
parallel computing in compressed sensing MRI. Magnetic Resonance 
Imaging, 2015. 

58. Tian, J., et al. High Performance Parallel Implementation of Compressive 
Sensing SAR Imaging. in Proceedings of the Progress In Electromagnetics 
Research Symposium (PIERS), Kuala Lumpur, Malaysia, March. 2012. 

59. Borghi, A., et al., A simple compressive sensing algorithm for parallel many-
core architectures. CAM Report, 2008: p. 08-64. 

60. Kim, D., et al., High-performance 3D compressive sensing MRI 
reconstruction using many-core architectures. Journal of Biomedical 
Imaging, 2011. 2011: p. 2. 

61. Kulkarni, A. and T. Mohsenin, High performance architectures for omp 
compressive sensing reconstruction algorithm. Sort, 2014: p. 1.58. 



 

 

- 79 - 

62. Borghi, A., et al., A simple compressive sensing algorithm for parallel many-
core architectures. Journal of Signal Processing Systems, 2013. 71(1): p. 1-
20. 

63. Che, S., et al. Accelerating compute-intensive applications with GPUs and 
FPGAs. in Application Specific Processors, 2008. SASP 2008. Symposium on. 
2008. IEEE. 

64. Zhang, J., et al., Image compressive sensing recovery via collaborative 
sparsity. Emerging and Selected Topics in Circuits and Systems, IEEE 
Journal on, 2012. 2(3): p. 380-391. 

65. http://www.pauldebevec.com/Knee/. 
66. MathWorks, MATLAB Parallel Computing Toolbox. 
67. Sharma, G. and J. Martin, MATLAB®: a language for parallel computing. 

International Journal of Parallel Programming, 2009. 37(1): p. 3-36. 
 
 

http://www.pauldebevec.com/Knee/

