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“Learning is the process whereby knowledge is created through the transformation

of experience.”

David Kolb



Abstract

Since late 1990s, the development in the field of sequencing techniques has fasten

the pace of gradually evolving field of genomics. In 1995, for the first time, a living

organism genome was sequenced. It realized the fact that by examining the overall

potential of a genome of an organism, the results can extend the possiblilities to the

identification of gene or a mixture of genes. Along with advacement in computing

technologies, this idea results in the developement of advanced next generation

computational sequencing techniques and made possible the genome/proteome

sequences of commercially significant organisms and pathogens in an optmized

time frame and minimal cost. In this thesis, we present the realization of the

implementation of Pan-genome and Comparative Genome analysis Pipeline tool

using high performance parallel computing techniques. The aim of developing this

high performance and scalable pipeline is to reduce the time cost of calculating

the pan-genomes from the given dataset of protein sequences of bacterial strains.

The pipeline is able to compute pan-genome analysis from unpublished datasets

as well. Pan-genome and Comparative Genome analysis Pipeline (PanCGP) use

divide and conquer approach to parallelize the whole analysis process. Data de-

composition technique is used to break down the problem into smaller chunks and

process them separately over the available processing resources. Since, each data

chunk is being processed separately, this technique drives out the communication

overhead during parallel processing of the pipeline and makes it embarrassingly

parallel. PanCGP is able to scale on shared memory architectures and distributed

memory architectures as well as hybrid architectures seamlessly. Scalability of

pipeline depends on the size of input dataset as well as the number of available

computing resources. MPJ Express has been used to exploit the pipeline on shared

as well as distributed memory architectures in a seamless manner. Modular nature

of PanCGP makes it highly customizable and ease of extending it to add more

functional modules to the pipeline. Dataset of 38 strains of helicobacter pylori has
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been given as input to PanCGP and CMG-biotools pan-genome analysis pipeline.

The resultant time cost of PanCGP is much less (∼ one sixth) compared to that of

CMG-biotools benchmarks. Incorporating the same tools and versions of tools in

PanCGP pipeline, best result accuracy has been achieved. The accuracy of results

may vary depending on the versions of tools being incorporated. The software

package can be downloaded from https://github.com/TechnologyCell/PanCGP

and https://sourceforge.net/projects/pancgp/.

https://github.com/TechnologyCell/PanCGP
https://sourceforge.net/projects/pancgp/
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Chapter 1

Introduction

In public gene databases like GenBank [1] and GOLD (Genomes OnLine Database)

[2], there is a gradual increase in the discovery of sequenced genomes. According

to National Centre for Biotechnology Information, in 2000, there were only 42

genomic sequences present in the list of NCBI. Since then, list has grown to 16108

genomes in April 20161. This encouraged the development of tools and techniques

for gene comparison of different species. Such comparisons include the identifica-

tion of gene set common in all isolates of a group of interest (core genome) as well

as dispensable/strain-specific genes. A known approach for identifying homolo-

gous sequences is reciprocal BLAST and various software packages are available

for this task. By combining these tools in an optimized manner with the growing

number of sequenced genes, past studies enlightens the fact that bacteria are ac-

tually the mixture/mosaics of different kind of genes including those common to

all isolates as well as unique/strain-specific and partially shared among different

strains of a specie [3].

1.1 Pan-genome analysis

Pan-genome is a new way of visualizing genetic information of the living organisms

on Earth. This concept first used by Tettelin et al. [4] when they described

Streptococcus agalactiae as the core-gene set among the six sequenced strains. In

microbiology, Pan-genome [5] is full complement of genes in a specie. It is a union

1http://www.ncbi.nlm.nih.gov/genome/browse/

2



Chapter 1. Introduction 3

Figure 1.1: Pan-genome of three genomic strains A, B and C. Core
genes are genes present in all three genes. Shared/Dispensable genes are those
which are common to more than one strain. Unique genes are specific to every

strain and not present in any other strain.

of all gene-sets of all strains of a specie as shown in figure 1.1. Pan-genome is

classified into three main categories:

1. Core genes

2. Shared/dispensable genomes

3. Unique/Strain-specific genes

Core genes are common among all strains of a specie. They can be described as

an intersection of gene-sets of all strains in a specie. Shared/Dispensable genomes

shared by two or more strains of a specie. Unique/Strain-specific genes present in

a single strain of a specie.

1.2 Computational Pan-genome analysis using

High Performance Computing

Computational Pan-genome analysis is a complex computation problem that can

be optimized using high performance computing techniques. This problem can be

divided into four major sequential steps: Pre-processing, gene/protein compari-

son, clustering and report generation. Pre-processing includes fasta decomposition

and hashing the sequences for their unique identification throughout the pipeline.
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Gene/protein comparison step comprises of gene/protein database creation, a pre-

step required for gene/protein comparison, followed by gene/protein comparison

using reciprocal BLAST [6, 7], applying the fifty-fifty rule on BLAST [6, 7] output

using TIGRCUT, a script which takes blast results in XML format and parses

on those blast hits that satisfy to the 50-50 criteria. Protein/gene clustering is

a process in which homologous sequences are grouped into related families based

on similar properties. Results from gene/protein comparison is clustered based on

similar properties. Report generation includes processes to extract core genes/pro-

teins, unique/strain-specific genes/proteins, new gene/protein families and total

number of genes/proteins found. Based on these computational results, a report

is generated.

1.3 Reason/Justification for the Selection of the

Topic

Advancements in gene/protein sequencing give rise to comparative genomics and

related technologies. The increasing rate in the amount of gene/protein sequenc-

ing prompts the need of advance computational techniques for pan-genome extrac-

tion in an optimized timeframe. High Performance Computing generally refers to

parallel/stream computing that gives a paradigm shift, the way advance and opti-

mized algorithms were being made. Unlike conventional systems, it follows divide

and conquer approach to improve work efficiency and efficacy. By applying HPC

techniques in the field of comparative genomics, the problem is divided upto the

fgranular level and is solved it in parallel fashion. The final results are aggregated

which greatly fine tunes the performance as compared to other conventional pan-

genomic analysis techniques as well as the other software packages available for

that purpose.

1.4 Objectives

Comparative genomics enlightens the influence of genomics. It highlights the di-

versity of information that can be found even within a single species. PanCGP
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(Pan-genome and Comparative Genome analysis Pipeline) tool is designed for mi-

crobiologist having minimum knowledge of computational analysis to gain maxi-

mum benefit in lesser time. The objective is to facilitate the users to perform com-

putational pan-genomic analysis in a fraction of time with just a list of sequenced

genomes/proteins as compared to other software packages already available for

this purpose. It is designed to automatically scale depending on the available

resources ranging from a personal computer to a hybrid cluster as well as the

size of input. It also addresses the issue of large amount of data processing for

comparative analysis of multiple genes/proteins.

1.5 Relevance to National Needs and Advantages

PanCGP (Pan-genome and Comparative Genome analysis Pipeline) tool expects

to fasten the research procedures in the field of genomics by optimizing different

time consuming steps pertaining to sequence analyses. This will ultimately shorten

the duration of research, leading to less expenditure in terms of human resources,

time and cost.

1.6 Areas of Application

Areas of applications of PanCGP (Pan-genome and Comparative Genome analysis

Pipeline) tool are as follows:

• Discovery of new genes and gene family expansion

• Aid in group selection of comparative genomics

• Drug design

• Vaccine development

1.7 Composition of Thesis

The whole research work is structured as follows: Chapter one encompases the

purpose and objectives of the research with its relevance to national needs and
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applications in different research fields. Chapter two covers a detailed literature

survey in which existing pan-genome analysis tools and databases has been dis-

cussed. Steps involved in the pan-genome analysis has been elaborated. Impor-

tance of high performance computing and java language with its advantages and

reasons to adopt it as a language for programming high performance computing

languages and libraries used for the purpose.

In chapter three, there is a detailed discussion on methodology purposed for robust

pan-genome analysis and introduction to PanCGP pipeline tool.

Chapter four describes the results obtained through PanCGP pipeline and its com-

parison with other tools. Chapter five describes the final conclusion and discuss

some future work.



Chapter 2

Literature Review

Next generation genome sequencing technologies have resulted in a huge amount

of sequenced genome data in sequenced genome databases. Fast rate of data

aquisition for sequenced genome has flourished the field of genomics. Reduced

cost of genome data acquisition methods has given rise to rapid genome data

growth. In pan-genome analysis of bacterial species, the result majorly comprised

of core and auxiliary genes [8]. It is an important origin of gene variation in

the bacterial genome and enable the extension of the sub-population groups of

bacteria to adapt to the specific sector in adjacent gene transfer. Low cost and high

throughput genome sequence information platform has created dramatic increase

in the species of bacteria and the opportunity to study their pan-genomes.

2.1 Existing tools

In the past decade, the significant progress in the development of DNA sequencing

technology and its applications has led to a remarkable growth of genomic data.

Especially in the case of prokaryotic genomes in which each of them extends to only

a few mega-bases. In the coming decades, it is expected that more data will be col-

lected as compared to the amount of data available now. Therefore, improvements

in the existing databases and construction of new ones along with the develop-

ment of fast and scalable tools, are especially require. This will engender the

other related fields of genomics including pan-genomics and metagenomics, allow-

ing them to build, share and quarry the incoming genomic data deluge. Since 2010,

a dozens of software tools and packages have been developed, which are capable

7
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Table 2.1: Software tools and packages already available for pan-genome anal-
ysis

Software Single Multi- Platform GUI References
Node Node Supported

CAMber Yes - Linux - M. Wozniak et al., 2011 [9]
Panseq Yes - Linux - C. Laing et al., 2010 [10]

Windows
PGAT - - Web Yes Brittnacher MJ et al., 2011 [11]

PanCGHWeb - - Web Yes J.R. Bayjanov et al., 2010 [12]
PGAP Yes - Linux - Zhao et al., 2012 [13]
ITEP Yes - Linux - M.N. Benedict et al., 2014 [14]

Harvest Yes - Linux - T.J. Treangen et al., 2014 [15]
GET Yes - Linux - Contreras-Moreira &

HOMOLOGUES Vinuesa, 2013 [16]
PanCake Yes - Linux - C. Ernst et al., 2013 [17]

Windows
PanGP Yes - Linux Yes Y. Zhao et al., 2014 [18]

Windows
PANNOTATOR Yes - Web Yes A.R. Santos et al., 2013 [19]

of gene/protein sequence alignment and comparison, orthologous gene clustering,

single nucleotide polymorphisms (SNPs) identification, construction of phylogenies

and pan-genome analysis regarding multiple gene and protein sequences. Although

they may share similar characteristics, each has its own limitations as well as fea-

tures, making the room for future enhancement. Some tools and packages are

listed in Table 2.1 and briefly introduced.

2.1.1 CAMber

CAMber [9] is a computational tool for comparative analysis of multiple isolates

of bacterial strains to identify multigene families/clusters after refinement. To

produce a refined and comprehensive annotation results, every gene in a multi-

gene family ensures one-to-one correspondence with other gene, allowing to have

integrated annotation results in the bacterial strains.

2.1.2 Panseq

Panseq [10] takes a multiple genomic sequences and user-defined parameters to

calculate the core and auxiliary genes. It identifies regions unique to a gene or

specfic gene group, classification of SNPs among dispensable genomic regions. It

makes files on both the presence as well as absence of gene specific or shared regions
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and their usage in phylogeny programs, SNPs identification in core regions. The

final report generated gives the graphical overview of the results obtained.

2.1.3 PGAT

A web-based tool originally designed as a platform to produce fast analysis of

sequenced genomes of bacteria by next generation technologies. The PGAT [11]

analysis tool comprises of three parts including a web interface as front end al-

lowing user interaction to submit genome queries or user defined gene sets and

pan-genome identification, a gene database and multi-genome annotation pipeline

for bacterial genomes.

2.1.4 PanCGHWeb

PanCGHWeb [12] is a web-based tool designed for pan-genome analysis of mi-

croarrays using PanCGH algorithm. It facilitates genotype analysis as well as

pan-genome microarray analysis as a cheap alternative to DNA sequencing. Com-

parative to standard CGH techniques, PanCGH assists in determining more ac-

curate genomic content. The analysis results can be used to analyse complex

hybridization data in a simplified way as well as an obvious way to realise the

diversity among the related genomic strains.

2.1.5 PGAP

A highly efficient pipeline for analysis of pan-genome. PGAP [13] is able to

perform five different types of analysis including functional gene analysis, profile

analysis of pan-genome, evolutional analysis of species, gene cluster analysis based

on functional enrichment and functional gene analysis based on genetic variation.

The tool is Linux based and performance has been analysed using eleven strains

of Streptococcus pyogenes.
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2.1.6 ITEP

ITEP [14] is a flexible and powerful toolkit used for computational analysis related

to curation and generation of protein families. Its modular design makes it highly

customizable to future extension and optimization with the evolution of technology

and software upgrades. By harnessing the power of comparative genomics and

their integration with draft metabolic networks. It builds confident links between

phenotype and genotype as well as high quality gene annotations to pave the way

to evolution in metabolic network contexts.

2.1.7 Harvest

Harvest [15] is an interative platform for dynamically visualizing core-genome

alignments. It is a collection for core genes alignment as well as provide visualiza-

tion platform for studying behaviours including recombination detection among

thousands of microbial genomes as well as phylogenetic trees. It also includes a

robust multi-aligner for aligning core-genome, parsnp and Gingr which together

enables it to generate analysis results, formerly not possible with whole-genome

aligners. Along with alignment and visualization, Harvest can also be used for

generic file format conversions among standard bioinformatics file formats.

2.1.8 GET HOMOLOGUES

GET HOMOLOGUES [16] is an open source software package for analysis of

microbial pan-genomes. It is based on orthology-calling approaches which makes

it highly customizable and a comprehensive approach to pan-genome analysis of

microbes, available for non-bioinformaticians. It uses multiple clustering algo-

rithms including COGtriangles, OrthoMCL and bidirectional best-hit for cluster-

ing homologous gene families. HMMER3 package is used to scan protein domain

decomposition for adjusting the clustering stringency.

2.1.9 PanCake

PanCake [17] is a data structure for pan-genome and other related genome sets.

Unlike many other pan-genome analysis tools, including PGAT [11] or EDGAR,
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PanCake [17] is not dependent on gene annotations. Rather it combines similar

sequences based on their common features, which are derived from pairwise se-

quence alignments of genome set under consideration. The PanCake [17] data

structure has comparatively less space complexity even less than the size of input

data set. Nevertheless, comparison of identified core and singleton regions shows

good agreements.

2.1.10 PanGP

PanGP [18] is a robust tool for computational analysis of bacterial pan-genome

profile. For user interaction, a user-friendly graphical user interface has been pro-

vided to graphically demonstrate the pan-genome profile analysis. It is comprised

of two basic kind of algorithms. The purpose is to optimize the time-cost of

analysing the pan-genome profile against set of populations of multiple bacterial

strains, of different sizes ranging from population of dozens to hundreds of genome

strains in minimum time frame.

2.1.11 PANNOTATOR

PANNOTATOR [19] is a web based pan-genome analysis pipeline, a well-suited

software package for automated high quality annotations and pan-genome analysis

of closely related genome set. The aim of this pipeline is to reduce the manual work

by automating the analysis report generation and correction of various ordering

genomic strains. As result of an annotation transfer, it has scored an accuracy of

98% and 76% for gene name and function, respectively. In comparison with a gold

standard annotation against the same species, it has achieved similarity level with

significance of 70%. These results has surpassed the RAST and BASys software

by 41, 21% and 66, 17% for gene naming and function annotation, respectively.

PANNOTATOR [19] facilitates a reliable and robust pan-genome annotation,

allowing the user to focus on the research on genotyping between strains.
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2.2 Available gene/protein Databases

All published and sequenced genomes are available on internet. It is a core require-

ment of every bio-related journal that all published and sequenced DNA, RNA or

protein sequences must be added in a publicly available database. The three main

and large databases including the NCBI database1, the European Molecular Bi-

ology Laboratory (EMBL) database2, and the DNA Database of Japan (DDBJ)

database3 are the major resources for accessing genes. These databases collect all

publicly available DNA, RNA and protein sequence data and make it available for

free. The available gene/protein databases are as follows:

• GenBank [20]

• UniProt [21]

• Swiss-Prot [22]

• TrEMBL [22]

• Pfam [23]

• Ensembl [24]

In this subsection, publicly available gene/protein databases used in literature will

be discussed.

2.2.1 GenBank

GenBank [20] is the NIH genetic sequence database. It is a collection of all pub-

licly available annotated gene sequences. It is part of the International Nucleotide

Sequence Database Collaboration, which comprises the DNA DataBank of Japan

(DDBJ), the European Molecular Biology Laboratory (EMBL), and GenBank at

NCBI. All these organizations synchronize their data daily.

1http://www.ncbi.nlm.nih.gov/
2http://www.ebi.ac.uk/embl/
3http://www.ddbj.nig.ac.jp/
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2.2.2 UniProt

The Universal Protein Resource (UniProt) [21] is a comprehensive resource

for protein sequence and annotation data. The UniProt databases consists of

the UniProt Knowledgebase (UniProtKB), the UniProt Archive (UniParc) and

the UniProt Reference Clusters (UniRef). It is a collaboration between the the

SIB Swiss Institute of Bioinformatics, the Protein Information Resource (PIR)

and European Bioinformatics Institute (EMBL-EBI) which are involved through

different tasks such as database curation, software development and support.

2.2.3 Swiss-Prot

SWISS-PROT [22] is a protein sequence database. Its purpose is to provide

a high level of annotation protein sequences with multiple meta information in-

cluding function description of proteins, protein domains structure etc. It ensures

minimal redundency level and higher integration level with other various gene or

protein databases. Latest developments in the database are related to structure

including its format and content optimization, improvements in documentation

and content references to other databases.

2.2.4 TrEMBL

In 1996, TrEMBL (Translation of EMBL nucleotide sequence database) [22] was

announced. This database consists of computer-annotated entries derived from

the translation of all coding sequences (CDSs) in the EMBL database, except for

coding sequences already included in SWISS-PROT [22].

2.2.5 Pfam

The Pfam [23] is a large protein database. It is a collection of protein families in

which each family is represented using hidden Markov models (HMMs) and multi-

ple sequence alignments. Each protein is consists of one or more functional regions,

usually known as domains. Different combinations among multiple domains give

rise to a new protein having different functional domains. These characteristics
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also provides valuable insights of protein. This database also generates clans which

is a high level clustering of related protein families.

2.2.6 Ensembl

The Ensembl [24] database provides a framework consists of the sequences of large

genomes as well as a comprehensive source of automatic and stable annotations of

genome sequences of human specie. It is a authentic source of gene prediction and

integrated with other bio-data sources. It is an open source software development

project. The scope of this project is to develop a scalable as well as portable system

able to handle large genome data deluge, its sequence analysis and interactive

visualization.

2.3 Computational steps involved in pan-genome

analysis

Computational pan-genomic analysis involves complex computations. The whole

process is sub-divided into small sub-processes assembled in a pipeline to obtain

the required results as shown in figure 2.1.

1. Pre-processing

2. Gene/protein comparison

3. Clustering

4. Report generation

The proceeding sections will explain in detail, the computational steps involved in

pan-genomic analysis.

2.3.1 Pre-processing

Pre-processing includes steps that involves obtaining input sequenced genomic

data from different public databases or user defined query, its validation and con-

version from native format into fasta formatted files (if required). The accuracy of
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Figure 2.1: Step involved in Computational Pan-genome analysis.

finally generated report and efficacy of proceeding steps depends upon the prepro-

cessing step, therefore pre-processing step has a vital role in the overall efficiency

of computational pan-genome analysis. Along with data validation of input se-

quenced genomes, pre-processing step is the stepping stone for the consolidation

of already compared sequenced genomes result data, to be used by latter queries

for gene/protein comparison and clustering purposes.

2.3.2 Gene/protein comparison

After pre-processing, gene/protein comparison is the next step as well as a pre-

requisite of clustering. The primary objective of gene/protein comparison is as-

sessment of similarity between the sequenced genomes in the given user-defined

query data or with the database as well. It performs sequence alignment between

homologous regions. It joins together these aligned sequence regions into larger

alignments. This step ensures the gene-gene/protein-protein sequence comparison
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results with confidence of 50% or more sequence similarity among the compared

genomic sequences.

2.3.3 Clustering

Clustering is a step of combining homologous sequences on the basis of self-

similarity records (Berry and Linoff, 2004). The complexity involved in individual

gene analysis can be largely reduced by grouping genes with similar characteristics

into same clusters. It gives a birds-eye-view of the complete genomic data that

is essential in domain analysis of proteins and comparative genomics studies [25].

Once appropriate clusters are achieved, usually it is possible to locate distinct

patterns within each cluster, making it possible to search information regarding

domain similarities and gene interaction. Several types of clustering algorithms

and methods have been developed to improve the clustering efficiency of genomic

data (Eisen et al., 1998; Tamayo et al., 1999; Dhaeseleer et al., 1999; Friedman et

al., 2000; Holmes and Bruno, 2000; Jact et al., 2001; He et al., 2003; Kasturi et al.,

2005). Taking the result of gene/protein comparison step and grouping the finally

sequenced genomes/proteins into clusters based on their relative characteristics.

Clustering is an important step as it rapidly decrease computation involved in the

final pan-genome and core/unique gene extraction step.

2.3.4 Report generation

Finally, gene/protein clusters are used to extract the core genomes/proteins, uni-

que/strain-specific genomes/proteins, dispensable genes/proteins and pan-genomes.

The final report is comprised of multiple formats including numeric tables and

multiple visual graphs to ease the understanding and comparison of computa-

tional results including number aggregate as well as the computationally resulting

sequences against laboratory output.

2.4 Reference Implementation

The CMG-biotools [26] package is our reference implementation to PanCGP pipeline.

The tool has been designed for bioinformaticians in a very basic knowledge of UNIX
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and limited introduction to computational analysis. It enables the user to perform

multiple computational analysis with a list of genomes or proteins. The operations

include structure analysis of DNA, proteome sequence comparison, phylogenetic

analysis. The package also supports FASTA format sequences from unpublished

sources. This software package facilitates the user with a stand-alone command

line interface for microbial analysis. The first step is to get the genome data set

for an organism or set of organisms. The next step is to find the coded regions

in DNA sequences. Some genome datasets are curated manually along with high-

quality annotations but others may not be annotated at all. So, for annotating

others, CMG-biotools [26] uses a gene finding algorithm without any further eval-

uation of resultant information. The package uses the program Prodigal [27] for

the purpose of gene finding which is included in the gene finding pipeline known as

prodigalrunner. This pipeline takes FASTA/multi-FASTA file as input or genome

DNA sequences. The output consists of four files:

1. A GenBank file with extension as .gbk.

2. A FASTA format frame file with extension as .orf.fna.

3. A FASTA format protein sequence file encloses gene translation with exten-

sion .orf.fsa.

4. And a general feature formatted file with extension as .gff.

A BLAST matrix is used to visually represent the pairwise comparison of proteome

using BLAST (Basic Local Alignment Tool) [6, 7]. All given sequences are com-

pared reciprocally to each other. A BLAST hit of 50% is considered significant,

i.e. at least 50% of alignment results in an identical match. Sequences having

similarity with 50% cutoff are considered as one protein family. For building pro-

tein families, single linkage clustering is used. For pan-genome analysis, BLAST

results are used to categorize the overall characteristics of input gene dataset. The

core-genes are the common set of gene found in all the genomes under consider-

ation. The pan-genome is the complete set of protein families identified in the

investigated gene set. The shared genes are common to more than one gene fam-

ilies but are uncommon to given genomes in the set. During analysis, the first

genome is equal to both core-genome and pan-genome. With the addition of more

genomes, the size of core-gene gradually decreases or remain constant based on

the percentage of match found with the incoming genome. If a new gene sequence
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matches, it becomes a part of core-genome family, if it doesnt, if becomes a new

protein family. The size of pan-genome keeps on increasing with the addition of

new genes. For pan-genome analysis, pancoreplot pipeline is used which is included

in the CMG-biotools [26] software package. It generates a plot of the underlying

pan-genome analysis results calculated against given gene/protein sequence data

set.

2.5 High Performance Computing

High Performance Computing is generally known as the practice of combining the

computational power of existing computing resources in such a way that delivers

much higher performance than a single desktop computer or workstation in order

to solve complex, computationally expensive problems in science, engineering and

business. The term applied to the systems capable of operating at 1012 or more

floating point operations per second.

2.5.1 Amdahl’s law

One reason for less than perfect speedup is due to the code or part of code can be

inherently sequential which restricts the efficiency of code. Let’s take an example

that 10% of the whole code is sequential. This enlightens the fact that no matter

the number of available computing resources, the sequential part of code will take

its time to complete and limit of execution speedup of whole code by a factor of

10.This phenomenon is called as Amdahl’s Law [28]. This is formulated as follows.

Tp = T1(Fs + Fp/P ) (2.1)

Where Fs denotes the sequential fraction and Fp denotes the parallel fraction (or

more strictly: the parallelizable fraction) of the code, respectively. Tp represents

the total parallel execution time on p number of processors.

In case of hybrid programming, i.e, the mixture of shared-memory and distributed

memory programming, the Amdahl’s law states that p nodes with c cores each,

and F describes the fraction of the code that uses c-way thread parallelism. It is

assumed that the whole code is fully parallel over the p nodes. The ideal speed up
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would be pc, and the ideal parallel running time T1/(p*c), but the actual speed-up

time will be:

Tp,c = T1(Fs/p + Fp/pc) = T1/pc(Fsc + Fp) = T1/pc(1 + Fs(c− 1)) (2.2)

In Amdahl’s law, 1/Fs limit the sequential portion speedup whereas in hybrid

programming it is restricted to p/Fs by the task parallel portion.

2.5.2 Scalability

In case of parallel code execution, either the number of computing cores are

matched with the problem size or an increasingly complex problems are ported to

growing number of computational resources. Both cases hardly satisfy the concept

of speedup. Rather, the concept of scalability is used.

Scalability is of two types. One is strong scalability and the other is weak scalabil-

ity. Strong scalability is same as speedup as well as discussed above, that a code is

strongly scalable if it shows perfect or nearly perfect speedup after scaling to more

and more computational resources.Normally, claiming scalability upto ‘n’ number

of processors shows that the code will be noticeably shows perfect speedup upto

‘n’ number of processors. In terms of efficiency, it is not necessary for a problem

to fit on a single processors: often a smaller number such as 64 processors is used

as the baseline from which scalability is judged.

More interestingly, weak scalability is an ambiguous term. It states that, if the

problem size and number of computing resources increases such that the number

of operations per resource remains the same, the speedup in operations per second

against each processor also remains the same. This measure is rather hard to

report. The results may vary depending upon the relation between the number

of operations per processor and the amount of data. Suppose that the relation is

linear, the amount of data per computing resource/processor will be same and the

parallel execution time will be constant as the number of processors increases. .
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Figure 2.2: The four classes of Flynn’s taxonomy [29]. (1) SISD,
(2) SIMD, (3) MISD, (4) MIMD

2.5.3 Parallel Computer Architectures

Super Computers fall in a category of parallel computers, i.e, an intelligent hard-

ware that allows the parallel execution of multiple instructions or instruction se-

quences. Various forms of simultaneous execution of multiple instructions to take

place is characterized by Flynn [29]. Flynns taxonomy characterizes architectures

by whether the data-flow and control-flow are shared or independent.

Single Instruction Single Data (SISD): this is the conventional CPU architecture:

only one instruction at a time can be executed which can operate only on a single

data item.

Single Instruction Multiple Data (SIMD): in this type of computer architecture,

there can be multiple processors and each processor is operating on its own data.

In SIMD, all processors are executing the same instruction on same data.

Multiple Instruction Single Data (MISD): No existing architecture follow this rule;

it states that in multi-processor environment, each processor is executing instruc-

tion on a single data item. Redundent computations for safety-critical applications

are an example of MISD.

Multiple Instruction Multiple Data (MIMD): According to this architecture, mul-

tiple processors execute instructions on multiple data items, every execution is

independent of other. Most current parallel computers follow this architecture.
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2.6 HPC in Bioinformatics

Latest research in the field of biochemistry and biotechnology as well as the break-

throughs in high performance computing and computational modelling has made

developments in healthcare sector, drug discovery, genome identification and dis-

covery and systems biology. Combining these development breakthroughs together

has made a healthier life towards better living possible by inventing new thera-

peutic strategies. As a result of these effort, new fields have been emerged such as

Computational Biology and Bioinformatics. Bioinformatics stretch to a number

of research fields including life-saving biological discoveries has been made pos-

sible using complex scientific application, benefiting significantly from increasing

computational resources. Normally, hpc techniques are being used for computing

biological data, impossible to be computed intime by using traditional computing

techniques.

2.7 Java for High Performance Computing

After its first release in 1996, Java became highly popular for developing business

and scientific applications. According to various computer scientists, Java could

be a good alternative for developing scalable and robust high performance com-

puting application. As compared to C programming language and FORTRAN,

java programming language became popular as it comes with multiple advantages

including high-level object oriented programming concepts, automated memory

management and heap garbage collection, efficient compilation and runtime check-

ing, improved debugging and platform independence which means it has support

for porting it to any hardware or operating system, provided that an installation

of Java Virtual Machine (JVM) exists on that system to host java-based applica-

tions. This significant contribution of Java Virtual Machine enabled programmers

to focus on the application related domain conversion issues and domain of interest

rather than issues related to the heterogeneous nature of underlying architecture.
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2.8 MPJ Express

MPJ Express [30] is a high performance computing library based on java that

enables high performance computing in an application. Application is programmed

in java using JavaMPI. It supports nested parallelism by using Java OpemMP by

parallelising computation within an MPJ Express process. It seamlessly divide

the computation on distributed as well as shared memory architectures. The

main focus of MPJ Express [30] is to minimize the communication overhead in

the parallel software applications and provide a flexible mechanism to enable high

performance computing in applications with performance cost as minimum as of

its C counterparts.



Chapter 3

Proposed Methodology and

Implementation

3.1 Pan-genomic and Comparative Genome ana-

lysis Pipeline

Next generation sequencing techniques are playing a vital role in pan-genome data

extraction and identification of different isolates according to their relative prop-

erties. The proposed pipeline is divided into six steps: input FASTA decompo-

sition, sequence hashing, database creation, sequence comparison, clustering and

report generation. This chapter discuss the detailed methodology proposed for

Pan-genomic and Comparative Genome Analysis pipeline tool. Figure 3.1 demon-

strate the overall pipeline for pan-genomic analysis.

3.2 Test data sample

We utilize 38 strains of H. Pylori shown in Table 3.1. H. pylori microaerophilic

organisms significantly lives in the stomach. An Australian researchers Barry Mar-

shall and Robin Warren found in 1982 that it was available in an individual’s with

incessant gastritis and gastric ulcers, which were not already connected with mi-

crobial cause. It is likewise connected to the advancement of duodenal ulcers and

stomach tumor. It has an extensive difference regarding strains with a completely

23
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Figure 3.1: Flow chart diagram of PanCGP pipeline

sequenced set of genomes [8, 31]. The strain ”26695” genome comprises of about

1.7 million base sets, making upto total of 1,576 genes. The two strain sequences

indicate substantial genetic contrast, with up to 6% of the genetic diversity. H.

pylori has 5 largeouter membrane protein families [32] among which putative ad-

hesins is the largest of all. The remaining four includes flagellum-associated pro-

teins, iron transporters and other proteins with obscure domains. A characteristic

of H. Pylori similar to other commonly found gram-genative micro-organisms, its

outer membrane is composed of phospholipids and lipopolysaccharide (LPS) as

well as cholesterol glucosides that may found in couple of other bacteria.
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Table 3.1: Sample dataset consisting of 38 bacterial strains of Helicobacter
pylori

Serial No. Strains

1 Helicobacter pylori 2017

2 Helicobacter pylori 2018

3 Helicobacter pylori 26695

4 Helicobacter pylori 35A

5 Helicobacter pylori 51

6 Helicobacter pylori 52

7 Helicobacter pylori 83

8 Helicobacter pylori 908

9 Helicobacter pylori B38

10 Helicobacter pylori B8p

11 Helicobacter pylori Cuz20

12 Helicobacter pylori ELS37p

13 Helicobacter pylori F16

14 Helicobacter pylori F30p

15 Helicobacter pylori F32p

16 Helicobacter pylori F57

17 Helicobacter pylori G27p

18 Helicobacter pylori Gambia94 24p

19 Helicobacter pylori HPAG1p

20 Helicobacter pylori HUP-B14p

21 Helicobacter pylori India7

22 Helicobacter pylori J99

23 Helicobacter pylori Lithuania75p

24 Helicobacter pylori P12p

25 Helicobacter pylori PeCan18

26 Helicobacter pylori PeCan4p

27 Helicobacter pylori Puno120p

28 Helicobacter pylori Puno135

29 Helicobacter pylori SAfrica7p

30 Helicobacter pylori Sat464p

31 Helicobacter pylori Shi112

32 Helicobacter pylori Shi169

33 Helicobacter pylori Shi417

34 Helicobacter pylori Shi470

35 Helicobacter pylori SJM180

36 Helicobacter pylori SNT49p

37 Helicobacter pylori v225dp

38 Helicobacter pylori XZ274p
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Figure 3.2: Core and pan-genome graph using pancoreplot pipeline in
CMG-biotools [26]. Pan-genome keeps on increasing with increasing number
of genomic strains. Core genes keeps on decreasing with increasing number of

genomic strains as common genes keeps on decreasing.

We utilize GenBank database for the sample gathering purpose and using the same

data for benchmarking the both old and newly proposed pan-genomic analysis

pipeline. It is in the form of multi-fasta files containing the protein sequences

along with their unique identifier to provide as an input to the suggested pipeline

tool.

3.2.1 Benchmarks

We take 38 strains of Helicobacter Pylori as our benchmarking datasets shown in

the Figure 3.2. And run CMG-biotools [26] pan-genome analysis to extract core

genome/proteins, unique genomes/proteins and shared proteins among different

protein sequences. Parsing the FASTA files, hashing the input data to be able

to process the unregistered dataset as well, protein-protein BLASTing for more

than 50% confidence match among the sequenced proteins, clustering the data and

parsing the results in the form of final report graphical as well as non-graphical.
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3.3 PanCGP tool design

PanCGP is being developed as parallel high performance computing as well as scal-

able pan-genomic analysis tool. It is designed to speed-up the processing time took

by other conventional pan-genomic analysis tools in processing the pan-genomes

on a set of given data. It intelligently divide the problem into smaller chunks and

run the operations in parallel on all those chunks to get results in optimal time. It

also applies task parallelism by running those tasks parallel that are independent

of one another so that maximum output is achieved in a comparatively less time.

It is adaptive to the number of available resources (computing nodes), i.e. it can

scale depending on the availability of resources ranging from a personal computer

to high performance supercomputing clusters running multiple node at a time to

accomplish complex computing tasks. The architecture of pipeline is highly mod-

ular with a very low degree of inter-modular coupling which ease the process of

alteration in pipeline. The architecture diagram of pancgp is shown in figure 3.3.

In case of updating the pipeline from future perspective or integration of extra

modules is highly convenient. This results in a very low integration effort in case

of update or any changes afterwards that needs to integrate modules in the pancgp

pipeline.

The whole pipeline is comprised of following modules:

1. Input FASTA decomposition

2. Sequence hashing

3. Database creation

4. Sequence comparison

5. Clustering

6. Report generation

3.3.1 Input FASTA decomposition

The 38 strains of Helicobacter pylori is given as input to the pipeline. To increase

the efficiency and reduce the cost of input, high performance computing played
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Figure 3.3: PanCGP parallel system design model

Figure 3.4: Categories of parallelism: (1) Data parallelism. (2) Task
parallelism. All parallel algorithms falls within these two extremes

a vital role. As described in Figure 3.4, Parallelism falls in two categories: data

parallelism and task parallelism. Every parallel algorithm lies in between these two

extremes. To reduce the time cost of our pipeline, by using the data parallelism

technique results in increasing throughput of the system and lessen the I/O time.

By dividing the large input into small chunks and reading those chunks in a parallel

fashion at same time greatly reduce the time cost and increase the overall efficiency

as well as efficacy of the proposed pan-genomic pipeline tool.

The given dataset which is composed of multiple strains of H. pylori. All the 38

strains of Helicobacter pylori are fed as input to the pipeline simultaneously. The

input decomposer decides the size and number of chunks that should be made of

given input that suits the optimal task completion. For 38 strains, maximum of
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38 parallel inputs can be made, i.e, maximum number of chunks are equal to the

total number of input strains to be given as input to the pipeline and smallest

chunk size is equal to one strain that can be given to the pipeline for analysis.

While running the pipeline the maximum scalability factor or maximum number

of resources are mentioned on which the pipeline is desired to run. The complete

syntax for running the pipeline is:

pancgp -tp <value> -datapath <path>

Program Name: pancgp

Table 3.2: PanCGP argument list

Agruments Description

tp Total number of threads to run.
datapath Path to the folder/container containing the input data source.

pancgp is the name of program or command to run the program. An executable

script that takes care of number of resources to engage as well as the path to

the source input containing biological sequences to be analyzed. The result is

generated in a subfolder of the source input container by giving it a specific name

generated by the program from the input data source. The program takes multiple

arguments as shown in table 3.2. tp is total processors to be taken into account

on which program is allowed to execute in parallel fashion. Scaling the jobs on

multicore and multinode architecture is seamlessly handled by the pancgp itself.

For example, user enter a value 8, which describes that maximum 8 jobs can be

run in parallel. If available resources are more than 8, the job will be divided to

8 processing resources as follows:

Total available nodes = 6;

Total processing cores per node = 2;

Scalability factor entered by user = 8;

Resources occupied by pancgp = (Scalability factor entered by user / Total pro-

cessing cores per node)

= 8/2 = 4.

So, the total nodes occupied by the pancgp program will be 4 nodes. The input

data will be divided according to the scalability factor given by the user and the

other two nodes will remain idle.
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If user is unable to provide the scalability factor, the program itself decide the

scalability factor depending on the available resources or computing power as well

as the amount or size of input data source. Taking the example given above, if

total number of biological strains are equal to or greater than 12, the system will

automatically scale on all the available nodes and divide the input into multiple

chunks accordingly. In this case, the resources occupied by pancgp has the value

equal to or greater than the product of total available nodes and total processing

cores per node.

3.3.2 Sequence Hashing

Once the input is divided into chunks of smaller sizes, it is read and parsed.

Sequence hashing is a step where each sequence of every strain given in input data

source is hashed for its unique identification throughout the pipeline. The input

supported by pancgp is FASTA or multi-fasta protein sequence file format. Fasta

format has information about each sequence that includes:

1. Header, starts with ‘>’ sign and contain information including the sequence

name and other information that helpful in uniquely identifying that partic-

ular sequence.

2. Sequence itself that comprises of a consecutive sequence of alphabets each

representing a single amino acid.

After dividing input into chunks, input is filtered for empty FASTA entries. Some-

times, FASTA or multi-FASTA formatted files have entries which includes header

line but there is no corresponding sequence to that header. Such entries are re-

moved before hashing the sequence as empty FASTA entries can take place in

hashing leaving very low complex regions and generating anomalies in sequence

comparison results (which is next step after sequence hashing in which sequences

are compared and matched based on their similarities and dissimilarities). After

removing these zero-length FASTA entries, each sequence related to a strain is

stored in a file named with a unique serial number assigned to that strain for

its unique identification along with its total number of sequences and a common

header but common to all of its sequences. It helps in conveniently iterating

through different strains and their related sequences as given in input as well as

differentiating sequences of a specific strain from the sequences of other strains.
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Sequences of each strains are then hashed. The resulting hashed string is assigned

to the respective sequence as header which uniquely represent its respective se-

quence throughout the process until the final report generation. All the sequences

are sorted based on their unique hashed string header.

Since the process is applied to each strain file and completely independent from

any other strain file being hashed. So, all strains sequence are hashed using high

performance computing approach in a parallel manner. The number of strain files

being processed at a time is dependent on the number of available resources and

total number of active parallel computing threads.

3.3.3 Database Creation

Once FASTA sequences are hashed, BLAST databases are created. Multiple re-

sources including National Centre for Biotechnology Information (NCBI) as well

as Computational Biology Research Group (CBRG) etc, provide databases related

to many sequenced genome/protein group to be used for comparison purposes with

given sequences as test dataset.

Along with already available BLAST databases, a custom BLAST database can

also be created based on our custom genome/protein data against which compar-

ison can be made. For that purpose, index BLAST database files are generated

using all strain files containing related hashed sequences named with a serial num-

ber assigned to that strain for its unique identification throughout the pipeline

and named with the same unique serial number.

The program used to construct the index for BLAST database is formatdb. It

takes multiple arguments for database creation as shown in table 3.3. The syntax

is as follows:

formatdb -i <strain filename> -p <sequence type> -t <target filename>

Program Name: formatdb

PanCGP intelligently scales and optimizes the whole process depending on the

available computing resources and the number of input strain files to increase

the efficiency and efficacy of the whole process. As mentioned above, a dataset
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Table 3.3: formatdb argument list

Agruments Description

i Input filename containing genome/protein sequences.
p Type of sequence. ‘T’ indicates protein sequence.
t Target filename containing BLAST index against given input

file sequences.

of 38 strains of Helicobacter pylori taken as test data and the total number of

available computing resources are twelve (total available computing nodes times

the computing cores per available computing node) Then:

Number of iterations = Ceil(total number of inputs / total number of computing

threads)

= 38/12 = 4 iterations.

So, each thread will make four iterations, treating four strain inputs respectively, to

compute the indices for BLAST database that will be used in sequence matching.

Finally, the BLAST database index created is splitted in chunks stored in multi-

ple files, each related to a specific strain. This facilitates less time consumption

with efficient use of available resources. At the completion of database forma-

tion step, three files naming “targetname.fsa.pin′′, “targetname.fsa.phq′′ and

“targetname.fsa.phr′′ are created against each strain file containing the BLAST

indices used by BLAST [6, 7] in the next step for sequence matches.

3.3.4 Sequence Comparison

After creating BLAST databases, next step is sequence comparison in which all se-

quences are compared based on their similarity ratio. A BLASTP comparison tool

from NCBI is used to compare the sequences of proteins. A reciprocal BLAST is a

computational technique used to identify the homology within the genome/protein

sequence strains. In this method, two sequences are blast with each other such

that first sequence, is used as a query sequence with the BLAST database of the

second sequence. Then second sequence is blasted as a query sequence with the

BLAST database of first sequence. In both cases, results may differ depending on

the similarity of first genome/protein sequence toward the second genome/protein

sequence and vice versa. The complete syntax of BLAST [6, 7] is:
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blastall -F <filter query sequence type> -i <input sequence> -p <blast type> -e

<expectation value> -m <blast output format> -d <database filename> | TIGR-

CUT | gzip > <output filename>

Program Name: blastall

Table 3.4: BLAST [6, 7] argument list

Agruments Description

F Filter query sequence. Can be either true or false.
i Input query sequence.
p Type of blast program to run.

(In our case blastp is used for protein sequences.)
m Type of blast output format.
t Blast database index filename.

The program takes multiple argements as shown in Table 3.4. The output of blast

[6, 7] is in xml format which is fed to TIGRCUT as input. TIGRCUT ensures

the 50-50 rule in which there is a 50% cutoff identity and 50% ALR on blast

output, i.e, only those results are filtered out in which comparison results meet

the similarity percentage of at least 50%. Less than that are discarded. The final

results are compressed and written to a separate file.

PanCGP runs multiple blast programs at a time depending on the number of

computing threads as well as the availability of resources. Since, the database

created is distributed blast database where every strain of the specie is separately

indexed and leaving our problem in hand as embarrassingly parallel problem which

is an ideal scenario in parallel programming paradigm. So, while blasting this

distribution results in independent multiple blast process to run at the same time

allowing the pipeline to be high parallel and scalable which results in the high

throughput and enhanced usability from a single node to cluster architecture.

3.3.5 Clustering

After BLAST process exits and sequence data is filtered out based on similarity

percentage, clustering is applied to group the similar sequences into families. Clus-

tering is a process of grouping similar objects in the form of a cluster. Protein

clustering refers to the clustering of homologous proteins into clusters. Proteins
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grouped in a cluster or family have comparatively more similar traits as compared

to other protein sequences.

The clustering process is done by taking a single sequence and start comparing it

with every other sequence of all strains. A transitive closure of given protein se-

quences is formed where the single sequence taken as query act as a representative

sequence of the cluster being made. A threshold is set and those sequences having

similarity level within threshold are grouped in a cluster or family. The similar-

ity is measured based on the sequence alignment results from BLAST [6, 7] or

sequence comparison step. If a sequence falls of the threshold then that sequence

become the representative of a new family or cluster. Same process is repeated

with the rest of sequences until the last sequence is reached.

As discussed above, the comparison result between two may be different when

compared with one another and vice versa. This makes the clustering step more

compute intensive since all reciprocal results have to be analyzed to group any

two sequences in a cluster. It takes multiple arguments to get the path of blast

result files and unique serial number related to every strain to identify the strain

as listed in table 3.5. The syntax is:

Grouping -dirpath <path to blast result files> -rank <unique serial number related

to every strain> <filename of temp file maintaining info. against each strain>

Program Name: Grouping

Table 3.5: Grouping argument list

Agruments Description

dirpath Path to directory containing blast result stored in compressed
files.

rank Unique serial number assigned to each strain for identification.
(A temporary file maintaining information regarding each
strain of query data).

To optimize the performance of clustering in pancgp, it reads data from a dis-

tributed source as input and also write results following same distributed pattern.

PanCGP scales the process and apply data parallelism to process the huge amount

of data in an efficient manner within a short time span. It divides the data into

smaller chunks and feed as input to multiple clustering processes running in par-

allel. The degree of parallelism is decided depending upon the number of available
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resources as well as the size of the given data set. All this decision making is done

intelligently by pancgp itself. The results generated are also stored in distributed

manner. The resulting data is in the form of object files where every file contains

the clustering results against a specific strain and named with the unique serial

number of that particular strain.

3.3.6 Report Generation

The output of clustering is in the form of distributed object files which needs to

be parsed to get the results and present in the form of valuable information. This

step is done when all threads that are executing in parallel, each on a small chunk

of data, submit their results. Those results are interpreted in the form of pan-

genome, core genome/proteins, dispensable genes/proteins, unique/strain-specific

genes/proteins, new gene/protein families and total number of genes per strain of

the specie. This information is extracted and stored in the form of a text file in

a tab-separated tabular format in which each strain of a specie along with its all

necessary information as well as the information derived using pancgp is stored. It

also extracts the corresponding protein sequences against pan-genome, core protein

and dispensable protein sequences in separate text files. The tabular text format

can be used to render the final results in the form of visual graphs representing

the trends in gene/protein sequence analysis.
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Results and Discussion

This chapter describes the results of PanCGP pipeline and its comparison with

the other tools. The evaluation of PanCGP pipeline tool is based on multiple

performance and usability metrics including time cost, complexity, scalability and

GUI.

Time cost reflects the time taken by the algorithm implemented in the pipeline

tool to process a specific task. Complexity of algorithm defines how fast or slow

an algorithm can perform, denoted as a numerical function T(n), i.e, time T taken

by the algorithm to process an input of particular size ‘n’. T is independent of the

implementation details. An algorithm may take different amount of time depend-

ing on multiple factors including: I/O speed, processing power, compiler version,

instruction set and network latency etc. Algorithmic complexity is measured in

terms of asymptotes in which we assign a constant time to each elementary step

being performed by the algorithm in any particular manner. Scalability factor of a

parallel algorithm on parallel or distributed architecture is its ability to scale to a

number of available resources effectively. Scalability analysis is used to determine

the best algorithm-architecture combination of the problem against a given input.

4.1 Comparison Results

This section discusses the benchmark results of PanCGP using high performance

parallel computing technique. The PanCGP pipeline has been benchmarked using

a high performance computing facility available at Research Centre for Modelling

36
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and Simulation (RCMS) National University of Sciences and Technology (NUST)

Pakistan. PanCGP is benchmarked against the sample dataset of 38 bacterial

strains of H. pylori. The evaluation process is based on performance parameters

including speedup, scalability and efficiency. Figure 4.1 shows the benchmark

results generated on different number of processors ranging from 1 to n where n is

the total number of available bacterial strains for pan-genome analysis.

Figure 4.1: Benchmark results of PanCGP pipeline against sample
dataset of 38 helicobacter pylori bacterial strains.

4.2 Benchmarks

The graph shown in Figure 4.1 demonstrate the speed as well as the high scalability

level of PanCGP pipeline tool. As the number of cores increases, the data is divided

in a suitable manner to gain maximum benefit from the underlying processing

hardware. On the other hand, CMG-biotools [26] is a stand-alone implementation

with a minimum scalability factor. It supports only shared memory architecture

to divide its contents across multiple computing devices. Figure 4.2 shows the

benchmark results from pancoreplot, a CMG-biotools [26] pan-genome analysis

pipeline where the speed up is negligible as compared to PanCGP. The benchmarks

has been calculated on a local computer equipped with 3.2 GHz core i7, having

four processing cores and 8 logical cores after incorporating hyper-threading.

Drawing a comparison between the two pipeline results shows a considerable

speedup and higher scalability of PanCGP pipeline as compared to CMG-biotools



Chapter 4. Results and Discussion 38

Figure 4.2: Benchmark results of Pancoreplot, a CMG-biotools [26]
pan-genome analysis pipeline against sample dataset of 38 helicobac-

ter pylori bacterial strains.

Figure 4.3: PanCGP vs. CMG-biotools [26] pancoreplot pipeline
time-cost benchmark comparison

[26] pan-genome analysis pipeline. Figure 4.3 shows the comparison graph of both

the pipelines.

4.3 PanCGP vs. CMG-biotools

CMG-biotools [26] is our reference benchmark tool for pan-genome analysis. It is

designed for bioinformaticians with a very little or no knowledge about UNIX. It

comes as a standalone package to run on a single computing machine. It takes
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a list of sequences of bacterial strains published as well as unpublished and run

pan-genome analysis to generate statistical results in a graphical as well as tabu-

lar format. A separate utility is used to extract the sequences act as core-genome

and pan-genome. The limitation of CMG-biotools [26] is its level of ease of use

and its ability to scale according to the size of input to the number of available

resources for results computation in an optimal time frame which makes it in-

convenient to use during research projects as it takes a large amount of time to

compute results against a particular size input. Due to its scalability limitation,

it does not support modern high performance parallel computing clusters based

on hybrid architectures, i.e. both shared memory computing architecture as well

as distributed memory computing architectures.

PanCGP is a high performance parallel pan-genome analysis pipeline. It is a

java based software package which incorporate multiple tools to process protein

sequences for pan-genome analysis. It supports both published as well as unpub-

lished sequences of bacterial strains and generate the final pan-genome analysis

statistical report in simple tabular format that can be easily parsed to generate

multiple graphical outputs. It also generates files containing sequences that makes

up pan-gnome and core-genome in separate folders respectively.

Unlike previous pan-genome pipeline, PanCGP is based on modern high perfor-

mance parallel computing architectures and supports both shared memory archi-

tecture and distributed memory architectures as well as hybrid architectures incor-

porating both shared memory and distributed memory architectures. It seamlessly

configure itself according to environment on which it need to execute. In case of

local computing machine, it automatically scales on the available processor and

divide the tasks intelligently according to the underlying architecture as well as on

clusters comprised on multi-node and multi-core systems, it efficiently make use of

nested parallelism to scale according to the size of the input data for efficient par-

allel processing. Robustness and support of modern computing architecture makes

it highly convenient to use in research project where timely result generation is

the key to innovation.
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Figure 4.4: PanCGP real benchmarks vs. ideal benchmarks.

4.4 Ideal vs. real time benchmarks

Ideal time is theoretical measure of time taken by the application to complete

a specific task whereas the real time is the experimental measure of time taken

by the application to perform that specific task. Ideal time of pipeline shows a

straight line declined as the number of processors increases, ideally cutting down

the processing time by the number of processors being used in parallel for pipeline

execution.

Real time took by the PanCGP application during execution may express a devia-

tion from the ideal behaviour while changing the number of processors being used

in parallel depending upon the factors affecting the speed of execution of PanCGP

pipeline. Figure 4.4 represents the comparison between the trends followed by

theoretically ideal execution of pipeline under varying number of processors being

used in parallel for execution of pipeline and the experimental execution time in

which PanCGP complete its execution under different number of processors being

used in parallel for execution of pipeline.

4.5 Factors affecting the PanCGP speed

Experimental results of PanCGP pipeline differ from ideal results due to the fac-

tors involved that increase the overhead depending on the applied parallelism for
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purpose of execution. Factors involved in the deviation of experimental results

from ideal results are:

• I/O speed

• Computation overhead

• Process communication overhead

4.5.1 I/O speed

I/O speed can be a major overhead affecting the speed of PanCGP pipeline. It

depends on the device on which I/O operation are being taken place. Memory

I/O speed is much higher than an external or secondary storage disk. The gap

between memory speed and average disk I/O speed of access stands at 105, i.e.

4 nanoseconds versus 4 milliseconds. For scientific applications, which are tend to

be write oriented, this gap can be worse, acting as a bottleneck towards the speed

of application execution.

4.5.2 Computation overhead

Running a process on an idle processor vs. running it on a busy processing core

widely affect the performance of application. This is called computation overhead

where the process finds comparatively less computation time due to other running

process eating the processing power of processor leaving a no room for application

processes to run at its maximum speed. Computation overhead is a critical per-

formance issue for scientific application which includes large amount of number

crunching or to run computationally complex simulations in real time.

4.5.3 Process communication overhead

For parallel executing applications, inter-processes communication can be a signif-

icant fraction on the overall execution of the application and results in suboptimal

performance in the execution. In PanCGP, process communication can be of three

types including:
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• Message passing

• Shared memory

4.5.3.1 Message passing

This method is most commonly used in distributed application following dis-

tributed memory architecture. In PanCGP, processes running on different ma-

chines use this method for synchronization by sending message to other process to

interact.

4.5.3.2 Shared memory

This method is followed by parallel applications running on shared memory archi-

tecture. Processes that run on same computing machine follows this architecture

for communication.
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Conclusion & Future Work

In this thesis, an optimized methodology for pan-genome analysis is proposed

based on high performance computing . It implements divide and conquer ap-

proach using data decomposition technique to divide the input dataset into smaller

sized chunks and run the whole pipeline on each chunk. Parallel processing tech-

niques are used to maximize the performance and minimize the time cost of the

pipeline. To ensure the nested parallelism on hybrid cluster architecture where

each node is comprised of multi-core processors, MPJ Express [30] has been incor-

porated which underlying uses JavaMPI and java openmp(JOMP) to exploit the

processing overhead on each core.

PanCGP pipeline performance has been evaluated on multiple parameters like

time cost, scalability, efficiency and accuracy. The results has also been compared

with the results of previously used CMG-biotools [26] pan-genome analysis pipeline

which was taken as base case implementation. It is observed that minimizing the

size of input data shorten the processing time of pipeline. And because each data

chunk is processed independently so this results in no communication overhead

required for processing the results. Since, the pipeline is divided into multiple steps

and each step has its I/O integrated with other steps and results calculated in a

step are fed as input to the other, so there is synchronization mechanism involved

for all the thread to complete one particular step and then begin with the next

step to ensure that results computation of previous step is accomplished. The

PanCGP pipeline is implemented on cluster machine to compare the analytical

and experimental results. Analytical comparisons and the experimental results

demonstrate that performance of PanCGP pipeline is much better than the one

43
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provided in CMG bitools [26] and it has much better scalability factor as compared

to the CMG-biotools [26].

The modular nature of PanCGP pipeline makes it easier to customize it by re-

placing the tools and software being used in the pipeline for the analysis purpose.

As well as extending the pipeline by adding new tools makes it more flexible to-

wards customization, future enhancements and optimizations. On the other hand,

flexibility comes at some cost. Modular nature of PanCGP results in the cost of

synchronization barriers on all modules I/O to ensure that results computation

of last module has been accomplished before feeding them to the next module as

input.

5.1 Conclusion

In this thesis, we presented an enhanced and optimized PanCGP pipeline tool

based on high performance computing. Parallel programming techniques are in-

corporated to enhance the processing power and scalability of pipeline. For testing

and evaluation purposes, we compared the benchmarks of PanCGP with previously

used CMG-biotools [26]. A sample dataset of 38 strains of H. Pylori was fed as

input to compute the results. From analytical and experimental benchmark re-

sults, it has been observed that our proposed PanCGP pipeline is more scalable

and computationally more efficient than the previous. For sequence comparison,

BLASTALL is used with TIGRCUT utility to satisfy the 50/50 sequence match-

ing rule. The results has been compared with the previously used CMG-biotools

pan-genome analysis pipeline and best result accuracy has been achieved.

5.2 Future work

In last decade, a number of software and tools has been developed for genetic

analysis, having its own functionalities, features and restrictions, finally making

a room for future enhancements. For future work, we recommend the porting of

pipeline to heterogeneous architectures for further optimization and efficiency.

Heterogeneous architectures include:
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Figure 5.1: NVidia Gpu Maxwell GM206 Chip Architecture [33]

• GPU architecture

• Embedded architecture

5.2.1 GPU architecture

Porting the PanCGP pipeline to latest GPU architectures will greater optimize

the overall performance of pipline. GPUs has revolutionized the world of high

performance computing by enhancing the computation power of Super Computers

and minimizing the energy consumption required to perform that computations.

After comparing the architecture of modern CPUs and GPUs, it has been observed

that modern GPUs possess high computation power with comparatively less energy

consumption. They are comprised of thousands of computation cores able to

process a large amount of data as compared to modern CPUs available in the

market. Below are the figures 5.1 and 5.2 showing the architecture of GM206 gpu

chip and intel Xeon 7500 series processor chip respectively.
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Figure 5.2: Intel IT silicon design xeon processor 7500 series chip

5.2.2 Embedded architecture

Another perspective of future optimization is porting the pipeline to embedded ar-

chitectures including FPGAs and embedded Supercomputing architectures which

will greatly enhance the overall performance and efficiency of pipeline and mini-

mize the time cost up to minimum. FPGAs has multiple advantages. They operate

on hardware implemented algorithms making it much faster than any other soft-

ware based implementation. Hardware implementation makes the FPGAs more

deterministic and their latency are order of magnitude of nanoseconds with far

less power consumption as compare to both the cpus and gpus.
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Installation & user guide

6.1 Installation

Download and install Ubuntu, Ubuntu 12.04 or latter but Ubuntu 12.04 desktop

version is recommended because all tools are tested at this version. You may also

use latter version but you should take care of compatibilities of all relevant tools.

1. Open terminal using ALT+CTRL+T and run following commands one by

one

• sudo apt-get update

• sudo apt-get install gcc build-essential

• sudo apt-get install default-jre

• sudo apt-get install default-jdk

• sudo apt-get install -y autotools-dev g++ build-essential openmpi1.5-

bin openmpi1.5-doc libopenmpi1.5-dev

• sudo apt-get autoremove

• sudo apt-get install perl

• sudo apt-get install bioperl

(At any step, if system prompts for any input, please press Enter and use

default option.)

47
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2. Download mpjexpress library from here. (Current latest is 0.44)

3. Once downloaded, extract it to a directory (suppose that you have down-

loaded the it and extracted in your home directory then the path will be

/home/<username>/mpj/mpj-v 044)

4. Now we need to set environment variables for mpj express. These variables

can be added in .bashrc file. The variables need to be added in start of file

otherwise may cause problem.

• Open .bashrc: vi .bashrc

• For java path: export JAVA HOME=/usr/java/latest

• For mpj express path: export MPJ HOME=/home/<username>/mpj

/mpj-v 044

• Add to path variable: export PATH=$MPJ HOME/bin:$JAVA HOME

/bin:$PATH

• Add library paths: export LD LIRARY PATH=$MPJ HOME/lib:

$LD LIBRARY PATH

5. Download the PanCGP package from here:

• Extract it to your home directory, the path may be: /home/<username>

/PanCGP

• Now, we need to add path to environment variables

• For PanCGP path, open .bashrc: vi .bashrc

• For adding path: export PANCGP=/home/<username>/PanCGP

/depends/

• Add blast path: export PANCGPBLAST=/home/<username>

/PanCGP/depends/blast/bin

• Add to path variable: export PATH=$PANCGP:$PANCGPBLAST:

$PATH

• Set permissions of files in path to allow execution (with extension or

without extension): sudo chmod +x *

sudo chmod +x *.*

Now, PanCGP has been installed and ready to use for analysis purposes.
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6.2 User guide

PanCGP can be run in two modes: Single-node and multi-node cluster modes.

6.2.1 Single node

Assuming that user has successfully carried out the installation. To execute the

PanCGP pipeline:

1. As explained in installation, after extracting the PanCGP pipeline the path

may be: /home/<username>/PanCGP

2. Execute: cd /home/<username>/PanCGP

3. Execute: mpjrun.sh -np <total no. of threads to run> -jar PanCGP.jar

<Path to input folder containing FASTA files>

6.2.2 Multi-node

This section list down the steps to run the PanCGP pipeline to run in a multi-node

or cluster architecture.

1. Step 1 and 2 from above section are same.

2. To run PanCGP on multiple nodes, a machine file is required, a text file

listing all the IP or aliases of machines or nodes (which are fully qualified

name of nodes in reality) on which pipeline is intended to execute.

Suppose that there are three machines: machine1, machine2, machine3. In

machine file, these will be listed as:

machine1

machine2

machine3
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3. Execute: mpjboot <name of machine file>

This will start daemon processes on machines or nodes listed in the file.

These daemon processes will host the parallel processes launched by execut-

ing PanCGP command.

4. Execute: mpjrun.sh -np <total no. of threads to run> -dev niodev -jar

PanCGP.jar <path to input folder containing FASTA files>

5. Once the pipeline has completed execution, execute: mpjhalt <name of ma-

chine file>

This command will stop the daemon processes running on machines or nodes

listed in the file. There daemons are not necessary to stop after every ex-

ecution. Once an execution is complete, they are ready to host another

execution of pipeline.
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