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Categorizing the Small RNA Transcriptome in the Intra 

Thoracic Airways of Former Smokers. 
 

Abstract 
 

Smoking is the leading cause of preventable disease and death worldwide. Independent studies 

on extra thoracic airways elucidated transcriptomic changes associated with diseases on tobacco 

exposure. Smoking-cessation is the best remedy to reduce the risk of developing diseases. 

Despite the fact, some former smokers are still at a high risk of developing diseases. The query 

why some former smokers develop disease decades after they have quit smoking is yet to be 

answered. We have employed Deep RNA sequencing (Illumina HiSeq 2000 platform) to 

investigate small RNA transcriptome of bronchial epithelial samples of 79 current and 138 

former smokers. Former smokers were categorized according to tobacco abstinence and 

cumulative tobacco exposure. Linear regression models were used in conjunction with SVA to 

determine differentially expressed miRNAs between current and former smokers and their 

difference in kinetics according to time since quit in former smokers. Similar statistical analysis 

of mRNA microarray data of matched samples helped in extraction of putative targets of 

smoking related miRNAs. Linear models identified 66 differentially expressed miRNAs and 

their corresponding 184 targets between current and former smokers at FDR<0.05. Biological 

interpretation of miRNAs and their putative targets has provided an insight of smoking induced 

disruption of regulatory mechanisms and their behavior with smoking cessation. We conclude 

that former smokers with prolonged abstinence and low cumulative tobacco have non-persistent 

transcriptomic changes. The findings of this study will pave the path to postulate pervasiveness 

of disease within former smokers. 
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1. Introduction 
 

Cigarette smoke is a major cause of preventable diseases and deaths in developed and 

underdeveloped countries. Cigarette smoke causes damage to small and large airway epithelial 

cells by triggering reversible and irreversible molecular and genetic changes. Around 1.3 billion 

people consume 5.5 trillion cigarettes worldwide.  According to World Health Organization 

(WHO) six million people die worldwide per year due to smoking; this number is expected to be 

doubled by 2025[1]. In United states 480,000 deaths per year are due to direct smoke and 41,000 

deaths from secondhand smoke exposure [2, 3]. In Pakistan 60,000 people die due to tobacco 

related diseases per year (WHO 2014).  Percentage of male and female smokers in Pakistan is 

40% and 8% respectively. In 50% Pakistani families, there is one smoker in each family [4].  

1.1 Hazardous effects and abnegation impacts of smoking 
 
Normal airway epithelium cells undergo various genotypic and molecular alterations induced by 

exposure of cigarette smoke i.e. promoter Deoxyribonucleic acid (DNA) hyper methylation, 

cellular atypia, loss of heterozygosity [5, 6, 7, 8, 9]. Smoking causes cancer, cardiovascular, 

respiratory, reproductive disorder (primarily in woman) and hormonal disorders commonly in 

regular smokers [4]. About 90% of lung cancer deaths and 80% of chronic obstructive 

pulmonary disease (COPD) deaths are caused by smoking. COPD caused by smoking includes 

emphysema and chronic bronchitis and is third leading cause of death in the world by the year 

2020[2, 3]. Cigarette smoke is a mixture of greater than 7000 chemicals, out of which 70 are 

carcinogenic. Smoking increases frequency of multiple diseases and early age death [10, 11, 12]. 

The life expectancy increases in those people who quit smoking [13]. The reason why former 

smokers remain at high risk even decades after smoking cessation remains unclear. But the ratio 

of incidence of smoking related diseases and premature death in former smokers depends on 
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many factors. Pack years smoked, duration of tobacco abstinence, gender, age, racial effects have 

shown significance in differential expression of genes in previous studies [14, 15]. Tobacco 

mortality in last 50 years is more affected by population of adult former smokers than current 

smokers who started smoking in adolescence [16]. Chance of lung cancer development in 

smokers reduced to half after smoking cessation of 10 years. Complete smoking refrainment can 

reduce 33% of lung cancer deaths in United States [3]. 

1.2 Cross sectional studies 

 
Cross sectional study is the one in which data is collected with variation in variable of interest at 

one point of time. These studies span a short period of time and only provide outcomes which are 

dependent on selected time frame [17].  

 

Figure 1. Work flow of differential gene analysis. Gene expression studies can be longitudinal and cross sectional 

depending upon the question in hand. The red marked crosssectional study is focus of this research. 

 

This research project is also a cross sectional study in which data set is collected from patients at 

one time point. This patient data is in the form of transcriptome of each sample whose expression 
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analysis is done by using expression profiles generated by high through put transcriptomic 

technologies (Figure 1). 

1.3 Transcriptome 
 

Transcriptome is the total Ribonucleic acid (RNA) content of cell resulted by the transcription of 

individual genes. These RNA are divided into categorize on the basis of function they perform 

i.e. messenger RNA (mRNA), rRNA, tRNA, microRNA (miRNA), snRNA, snoRNA and 

scRNA. The major classification is between coding and noncoding RNA. The coding RNA is 

mRNA [18]. DNA serving as template is transcribed to mRNA by complementary base pairing. 

This mRNA has three letter codes called codon, each specified for an amino acid, based on this 

information mRNA is translated to protein [19]. One of the RNA belonging to noncoding class is 

miRNA. MiRNAs are small approximately 22 nucleotides long single-stranded RNA molecules 

encoded by genes that are transcribed from DNA but not translated into protein (noncoding 

RNA). They regulate the gene expression by binding to messenger RNA. There are more than 

300 genes coding for miRNA in humans, only 1-4% of their functions are known. MiRNA 

regulates development, cell regulation and differentiation and apoptosis [20]. 

Better understanding of miRNA helps to understand their modulation of mRNA in cellular 

functions. In this study biology of miRNA and their targets will be studied to associate the 

smoking specific physiological changes in former smokers. 

1.4 High through put transcriptome profiling 

The study of transcriptome is expression profiling which is an approach to examine expression of 

miRNA with in a cell. Transcriptome profiling is a robust tool with concept of parallelization to 

analyze many transcripts. These expression profiles provide hypothesis testing about different 

gene expression. They also discover phenotypic specific transcripts and evaluate expression 
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patterns by comparison of all phenotypically disturbed genes. Many high through put techniques 

comes under the umbrella of expression profiling such as Representational Difference Analysis 

(RDA), Massively Parallel Signature Sequencing (MPSS), Serial Analysis of Gene Expression 

(SAGE), Microarrays Gene Chip/glass slides and RNA Sequencing (RNA-Seq). All of them 

relate genotype to phenotype for better understanding of underlying biological processes [21].  

Microarrays and RNA–Seq, both are high through multiplex technologies. Multiplexing or 

parallelization elucidate concept of multiple sampling. It allows analysis of many samples at one 

time point to eliminate confounding of transcriptome expression due to technical variations [22]. 

Advance computational tools, statistical analysis and functional annotation of gene and miRNA 

expression profiles generated by them can help to reveal underlying biological answers of study 

of interest. 

1.4.1 Microarrays 

The blue print of all genetic information of living beings is DNA. DNA consists of four 

nucleotides and is double stranded in eukaryotes. These two strands are antiparallel and 

connected through hydrogen bonding and can easily be replicated. The transcription process 

synthesis mRNA that is complementary to DNA sequence. The single stranded structures can be 

annealed if conditions are reversed, which is the key concept of hybridization. Complementarity 

and hybridization are the mechanisms used to measure gene expression of a particular cell. The 

preliminary techniques for gene expression based on hybridization assays were northern and 

southern blot. Northern blot quantitatively measures the amount of transcripts of a gene. The 

procedure is to extract RNA samples from cells in different conditions, separated on basis of size 

on agarose gel and quantitatively bind to specified regions of nylon membrane. A radioactively 

labeled DNA probe of gene of interest is hybridized with mRNA on membrane. The amount of 
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radioactivity and location of hybridization tells the relative expression between two samples. 

Northern blot has a drawback as it analyses one gene at one time [23]. 

The advent of microarrays has resolved these problems. Microarrays are the solid surface chips 

spotted with probes made up of known DNA sequences or oligonucleotides. Each spot 

correspond to single gene. The test samples provide RNA which is reverse transcribed to 

complementary deoxyribonucleic acid (cDNA). These cDNAs which are fluorescently labeled 

can complementary bind to probes on the chip. This hybridization gives fluorescent signals. The 

scanning of microarray chips quantifies the intensity of fluorescent signal. The expression profile 

generated after normalization and further statistical analysis lead to identification of diseased 

conditions and its progression, identify novel genotype, prediction of new drugs and functional 

annotation of genes etc. [24, 25]. 

1.4.2 Deep RNA Sequencing 

Hybridization techniques including microarrays have few short falls i.e. need of prior genome 

knowledge, limited detection of background and signal saturation, complicated normalization for 

comparison of expression in different experiments. Similarly Tag based approaches and previous 

sequencing technologies have faced difficulties while deciphering transcriptomic structure [26]. 

RNA-Seq is high through put sequencing technology which provides digital, discrete, dynamic 

and parallel expression profiling of genomes. RNA-Seq is a next generation sequencing 

approach which produces short reads to map with transcriptomes or genomes. Depending upon 

the problem under study reads are aligned with references which can be genes, exons or mRNAs. 

The data is normalized and ready for differential expression. Pathway analysis of differentially 

expressed genes is the last step of RNA-Seq procedure. RNA-Seq has several advantages over 

microarrays [27] which are highlighted in Table 1. 
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Next generation Sequencing Microarrays 

High specificity and sensitivity Average or relatively low specificity and sensitivity 

Low technical variations Confounding of results due to technical variations 

Sequencing by synthesis Prior information of sequenced genome is required 

Power bias Do not require higher amount of genes for higher 

statistical powers 

Difficult to map paralogues genes Possible in microarrays 

Relation of differential expression with gene lengths No such relationship 

Probe's sequence and cross hybridization with each 

other effects differential expression 

Affymetrix probes solved the problem 

Broad dynamic range Gene expression limited to signals 

Identification of novel transcripts , allele specific 

expression ,splicing, isoforms and new promoters 

Do not allow such predictions 

High cost platforms Low cost platforms 

Data analysis is difficult, much more advancement 

required 

Data analysis techniques are well established 

Discrete quantification of each gene Continuous distribution of intensities of genes 

 

Table 1. Difference between next generation sequencing (RNA-Seq) and microarrays. 

1.5 Translational Bioinformatics 

Expression data generated through highthroughput technologies like microarrays and RNA-Seq 

need to be processed by computational approches of bioinformatics. The field of bioinformatics 

was introduced by Paulien Hogeweg (1970) to add computional and mathematical analysis of 

biological data of any kind[28]. However bioinformatics faced decreased trend in handling of 
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health informatics. Ten years back  field of Translational bioinformatics emerged for dataminig, 

analyses and interpretation of biomedical research[29]. It is amulgum of molecular 

bioinformatics, biostatistics, clinical and health informatics to decipher many medical problem 

[30]. 

This study is dealing with expression profiles of microarrays and RNA–Seq and requires 

computational and statistical analysis for finding signature of miRNA and genes. Two techniques 

used in translational bioinformatics are highligted at this point. The remaining will be described 

in Chapter 3 of thesis ‘Methods’. 

1.5.1 Background of differential expression analysis 

The main goal of differential expression is to identify those genes which behave different in 

certain physiological or experimental conditions. Measurement of expression of each gene is 

difficult because genes are expressed through an intricate and synchronized system and are not 

independent of each other. Sample's gene expression comparisons are possible with concordance 

of transcriptional network information to understand the cumulative effect of specific genes. One 

criterion to select out genes is to use fold change for expression differences between them. Fold 

change differential expression is biased due to presence of biological and technical variation and 

affects the significance of expression analysis. This disadvantage introduced statistical measures 

for the evaluation of differential expression. Mostly used measures are permutation, parametric 

and nonparametric tests depending upon the type of distribution of gene expression under 

different conditions. Non parametric tests are usually not used for a small sample size of 

microarray data. This fact reduces power of non-parametric tests, although are efficient because 

of flexible rules for data distributions. Parametric test such as t test are high power test used 

under the assumptions of normal distribution. Student t test is used for identifying gene 
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differential expression between one or two groups. Variation in differential expression of genes 

among multiple groups is tested through Analysis of Variance (ANOVA). Linear models are 

another parametric test which covers the limitations of other test. Each gene got a separate linear 

model to compensate the lack of a priori information about coregulated genes[31]. The current 

study focuses on use of linear modeling and performing multiple hypothesis testing for 

differential expression of miRNA and genes in bronchial epithelium of smokers. 

1.5.2 Linear Regression Analysis 

Linear regression is the statistical relationship between dependent and independent variable/s in a 

linear fashion. It is represented by a linear equation 

Y = β° + β1X + ε … … … … … … eq 1 

In eq 1, Y is the dependent or random or response variable. 

X is the independent variable or predictor or non-random variable. 

β° is the Y intercept status of the dependent variable when the independent variable is absent is 

given by the intercept parameter. 

β1is the slope explaining the direction of relationship between response and predictor. 

ε is the error term which determines the variation in the dataset which are not estimated by β°, β1 

and Y.  

Linear Regression Models (LRM) are used to study the linear relationship by fitting a line 

through a categorical dataset. LRM are bivariate (between dependent and one independent 

variable) and can be multivariate (between dependent and many independent variables). LRMs 

work under the following assumptions. 1) The dependent variables are normally distributed. 2) 

Error terms are independent from each other. 3) Relationship between dependent and 

independent variable/s is linear. To access the quality of fitting of regression line two terms are 
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important [32]. Linear regression models deals with finding a straight line which best fits data 

points. This best fitting line is regression line. The vertical distances between the observed and 

estimated values on regression line are called residuals. There are three methods commonly used 

for finding best fitting line or fit the regression model to dataset i.e. least square fit, maximum 

likelihood fit and bayesian fit. Least square method finds regression line by minimizing sum of 

the square of residuals. It calculates two parameters i.e. β° and β1which are fitting the dataset at 

best by minimizing the variation. Multiple regression models come across with adjustment of 

many parameters (independent variables) which are significant in terms of variation of data set. 

This adjustment leads to overfitting of the model which increases random error associated with 

each adjusted parameter. To avoid overfitting Bayesian fitting of regression model is 

recommended. Bayesian fit is based on Bayes theorem i.e. a total probability theorem which 

calculates posteriori probability of parameters based upon their prior probability distribution. The 

advantage of Bayesian fit is that it only picks up rational parameters (which are other than those 

with low probability) [33]. To access the quality of fitting of regression line two terms are 

important. First one is regression coefficient or coefficient of determination (R2). It explains the 

part of total variation of dependent variable in terms of explanatory or independent variable. It is 

also called coefficient of correlation between two covariates (dependent and independent 

variables).Value of R2 ranges from "0" poor fit to "1" a good linear regression fit [34]. Second 

term is the F statistic of ANOVA. The significant value of F statistics indicates that dependent 

variable /response has a significant relation with independent variable /predictor under study 

[32].  
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1.5.3 Fixed effect regression models 

Regression models can be fixed effect or random effect. The regression model is "Random 

effect" when independent variables are random in nature and "Fixed effect" when independent or 

explanatory variables are non-random. Unobserved independent variables are fixed when 

correlations are allowed between dependent and independent variables. Fixed effect models 

explain cause and effect relationship between independent and dependent variables through an 

unbiased estimate in terms of size and direction of effect. In gene expression analysis, 

differential expression is biased due to many latent and observable variations of expression data. 

In order to adjust recognizable independent variables, more than one fixed effect variables are 

added to the model. This makes fixed effect model an extension of multiple regression models 

adjusting within sample variations. Beside this, fixed effect model do not cover between sample 

variations; this is where random effect models become the model of choice. Mostly fixed effect 

models are used when independent variables are invariant with respect to time and are source of 

hidden variation. They are a good choice for qualitative and categorical dependent variable, as in 

the case of gene expression studies. In order to better understand fixed effects consider the 

following equation 

Y = β° + β1Xij + φi + εij…………….eq2 

In the equation (eq 2) Y is the dependent and X is the independent variable .Where βiXij is 

termed as fixed effect where Xij is measured term (i is different individual, j is within person 

different measurements and β1is a fixed parameter. ε is the error term which is a random variable 

with probability distribution, but here some special assumption are made for its normal 

distribution i.e. mean 0 and a constant varianceσ2. The term φ has all the characteristics of a 
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sampling unit/individual. In fixed effects models, φ is assumed to be a set of fixed parameters 

whose estimation is either direct or remained out of estimation. 

There are two key assumptions for fixed effect regression models to work. 1) It is applicable 

when for each sample there are values of the response variable under study on at least two 

events/occasions. The values must be comparable to each other. 2) The values of response 

variables must be different for each sampling unit at two different points [35]. 

1.5.4 Surrogate Variable Analysis  

Transcriptional expression profiling illustrates the variation caused by technical and biological 

effects. There are some uncharacterized sources of variation which are causing confounding and 

affecting the significance of differential expression of genes of interest. The variables of interest 

are the primary variables which are adjusted in expression study models. The un-modeled 

variables are the secondary variables, causing hidden variation but are not adjusted in selected 

models. The track of these secondary variables is necessary as they can be correlated with the 

primary variable and there intractability is losing multiple significant genes [36, 37].The solution 

of this problem is given by Storey et al. through Surrogate variable analysis (SVA). SVA 

identify the secondary variable across all genes which were causing long range dependence in 

the heterogeneity of expression data. SVA estimates the latent source of variation in the form of 

surrogate variables and then remove them in further expression analysis. The workflow of SVA 

is in four steps. 1) A residual matrix is obtained by removing primary variables. Identify 

signatures which are significant in terms of variation. 2) Identify genes sets which are associated 

with expression heterogeneity signatures in residual matrix. 3) Build surrogate variable based on 

full signature in the whole expression data. 4) Identify all significant surrogate variables. These 
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surrogate variables are adjusted in the regression models of expression analysis and p value of F-

test of the model is used to extract out the significant differently expressed genes [38].  

SVA requires a specific data format in matrix form with genes, probes, transcripts and even 

protein in rows and samples in the columns. It creates two model matrices i.e. Null model and 

full model. Null model contains all the known variables or covariates which are to be adjusted. 

Full model contains variable of interest (biological or technical prediction) along with all 

variable present in null model. SVA calculates the surrogate variables with adjusting variables of 

null and full model. These surrogate variables were included in null and full model and F test p 

values are calculated for surrogate variables adjustment [39]. 

The dataset used in this study is showing heterogeneity and SVA is used to dig out this latent 

variation.  

1.6. Literature review 

 
Spira et al. [40] had given a field of injury hypothesis. It states that inhaled cigarette smoke and 

other toxins/chemicals provoke molecular changes in whole respiratory tract. Epithelial cells 

from nasal cavity to alveoli of lungs can provide a source to measure this change. Respiratory 

diseases like asthma, COPD and lung cancer are the outcome of this field damage in smokers 

[41]. Another concept i.e. “Field cancerization” is linked with field of injury hypothesis. It 

explains abnormal growth of epithelial cells in form of tumors or later on as cancers as a result of 

exposure to inhaled carcinogens or toxins. Both of these concepts explain the importance of 

airway epithelial cells to quantify physiological and molecular changes in whole airway track 

[42]. Early detection of respiratory diseases (lung cancer) or smoking related responses involves 

isolation of mRNA or miRNA from the samples of patients or healthy smokers. High through put 

technologies has enabled scientists and researchers to get differential expression of genes for a 
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particular phenotype or diseases. Microarrays and RNA-Seq are used in understanding of “Field 

injury” and “Field cancerization” concepts. 

1.6.1. Airway Gene Expression Profiling  

 

Large airway epithelial cells provide understanding of class and intensity of damage to epithelial 

cells in current and former smokers. These cells have differential expression (with or without 

lung cancer) due to allelic loss [5, 9], p53 mutations [8], genomic instability [43], changes in 

methylation of promoter regions of genes i.e. RARβ, H-cadherin, APC, RASFF1, p16INK4a [7, 

44] and enhanced telomerase activity [45, 46]. Many of these changes are irreversible in smokers 

for years after cessation [5, 43].The first study [47] used microarrays to identify differential 

expression of antioxidant genes between current and never smokers through bronchial samples. 

They identified 44 antioxidant genes differentially expressed out of the whole genome. Smokers 

have up-regulation of 16 genes involved in glutathione metabolism, redox balance and pentose 

sugar pathway. Variation in induction of these antioxidant genes in smokers was revealed in 

another study [40]. The study was conducted on bronchial samples from current and never 

smoker. They identified irreversible expression of oncogenes and tumor suppressor genes in 

former smokers and reversible expression of genes with metabolizing and antioxidant functions. 

They also explained reversible expression of antioxidant and metabolic genes in former smokers 

after two years of smoking cessation. Smoking cessation study [48] on never, current and former 

smoker has confirmed the results of previous study [40] about reversibility of gene expression 

because of smoking. Linear statistical models were used to identify differentially expressed 

genes and discriminated quickly reversible gene from slowly or irreversible genes. Genes 

involved in oxidation of steroids, fatty acids and xenobiotic have reversible expression only after 

few months of smoking cessation. Decade after smoking cessation, there is irreversible 
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expression of genes which are involved in development of carcinomas. Genes with slowly 

reversible expression includes a group of metallothioneins at 16q13. 

Extraction of epithelial samples of intra thoracic airways is only possible by invasive procedure 

of bronchoscopy. Complete information about molecular basis of smoking related diseases is still 

unrevealed because of painful and intrusive bronchoscopy procedure. If epithelial cells from 

extra thoracic airways imitate disease progressions they can be used as surrogate of bronchial 

samples [41]. This concept was tested in a study [49] and it was deduced that changes in gene 

expression in bronchial, nasal, and buccal epithelial cells act as biomarker for response of 

cigarette smoke. Principal component analysis was used to cluster similar genes in nasal and 

bronchial samples of current and never smokers. Gene enrichment analysis validated these set of 

genes with previous cohorts of bronchial and nasal samples. They finally suggested that 

epithelial cells of oral, nasal and bronchial cavity in smokers are exposed to same (high) 

concentration of toxic compounds of cigarette smoke therefore location of bronchoscopy has no 

effects on gene expression. 

 Smoking cessation studies were also conducted on small airway epithelium to broaden the 

understanding of smoking and disease related molecular changes. Small airway epithelium cells 

are more ciliated and the first line of defense against smoking. The acute disease symptoms are 

due to changes in cell cycle, repair, apoptosis and oxidative stress [50, 51]. Chronic smokers 15-

20% develop COPD [52]. A study [53] conducted to understand effects on small airway using 

fiber optic bronchoscopy samples of the smokers and nonsmokers. The genes responsible for 

immunity, apoptosis, xenobiotic, oxidative stress and pathogenesis of COPD were effected. In 

another study [54] conducted on smokers and no smokers there is down-regulation of genes of 
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Notch pathway as a result of smoking. This altered expression as compared to no smokers led to 

development of COPD.  

There is similarity in gene expression in different cells of airway tract. A study conducted on 

smokers and non-smokers identified that gene expression in lung cancer can act as diagnostic 

marker. This biomarker further pointed out that expression of genes in ciliated epithelial cells is 

same as in glandular, squamous and neuroendocrine cells involved in lung cancer [55].  

1.6.2 Airway miRNAs Expression Profiling 

 

Discovery of miRNA has paved the path of differential gene expression analysis. The core of 

expression analysis is discovery of miRNA not the technology involved in analysis. The Lee et 

al. [56] in his paper revealed the seminal work in area of miRNA expression profiling. Lin-4 

gene is known to control the timing of C. elegans larval development. It is coding a miRNA 

which negatively regulated LIN-14 gene present is larval stages of C.elegans. This finding 

redirected the path of ongoing expression analysis of human genes. 

MiRNAs are modulators of smoking induced transcriptomic expression in animals and humans. 

Several studies are conducted on miRNA expression profiling with regard to smoking but 

seminal work was done on rats by Izzotti et al. They analyzed the miRNA expression through 

microarrays in lungs of rats after four weeks of cigarette smoke exposure [57]. There was down- 

regulation of a group total miRNA which is involved in tumor suppression, cell proliferation and 

oncogenes. Another study added age factor in investigation of miRNA expression in lungs of 

CD-1 mice [58]. 

These animal studies complemented the global miRNA down-regulation in human due to 

cigarette smoke. In a study bronchial sample of current and never smokers are used to profile 

mRNA and miRNA simultaneously. The results deduced up-regulation of mRNA and down- 
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regulation of miRNA differential expression in smokers. MiR-218 in particular was down- 

regulated leaving overexpression of its target mRNA including a transcription factor v-maf 

musculoaponeurotic fibrosarcoma oncogene homolog G, avian (MAFG). This study concludes 

miR-218 as important in regulation of airway epithelium transcription. A number of genes are 

up-regulated and differentially expressed in smokers and nonsmokers and anti-correlated with 

mir-218 expression [59]. A recent study conducted with a hypothesis i.e. smoking induces 

miRNA expression changes in the small airway epithelium leading to certain diseases like COPD 

and lung cancer and persists after quitting of smoking. There were 34 miRNA differentially 

expressed between current (before and after smoking cessation of 3 months) and never smokers 

at p<0.01 and fold change>1.5. These miRNA were associated with differentiation of airway 

epithelium, lung development, cancer and inflammation. Smoking cessation of 3 month left 12 

persistently altered miRNA out of 34 miRNA. These persistently altered miRNA were related to 

Wnt/β-catenin signaling pathway and involved in inflammation, differentiation and leading to 

development of smoking related diseases [60]. 

The miRNA expression is regulator of mRNA level in cell which in terms explains the 

proteomics of cell. Any change in this regulatory process lead to abnormal phenotype or diseased 

condition. Global miRNA expression profiling is gaining importance to understand response of 

body to extracellular stress, cancer pathways specially. Down-regulation of miRNA expression 

due to smoking, changes mRNA expression profile which lead to various respiratory track 

cancer. 

MiRNA down-regulation in human airway epithelium lead to early stage lung cancer. The proof 

of this statement was come by a study on rats that were treated recurrently with a tobacco 

carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). These rats developed lung 
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cancer after two years and made the study of cancer stages easy. After two weeks of treatment, 

expression of miR-34b, miR-126, miR-199a and miR-199b was down-regulated. Many miRNA 

differentially expressed in this study were also down-regulated in human cancers. One is miR-

34b which is negatively correlated with many genes like c-myc. BCL2, E2F3 CDK4/6 which are 

involved in apoptosis and cell proliferation. Another miRNA was miR-126 which is down-

regulated in cancer and regulating CYP2A3 gene involved in cancer formation by NNK [61]. 

Several studies were conducted on human samples to understand mechanism and gene 

expression of smoking related diseases. A study in this respect was conducted to evaluate 

dysregulation of miRNA expression in various stages of bronchial squamous carcinoma. 

Samples extracted from normal epithelial cells to hyperplasia, metaplasia, dysplasia, carcinoma 

in situ and squamous cell carcinoma were taken from smokers and nonsmokers. Comparison of 

never smokers to smokers and normal epithelium to hyperplasia yielded down-regulation of 6 

miRNA. But comparison of never smokers to smokers and normal epithelium to metaplasia or 

dysplasia yielded 19 differentially expressed miRNA including miR-218 which is strongly 

affected by smoking [62]. 

1.6.3 miRNAs Expression Profiling through Sequencing 

 

The first study on global miRNA expression profiling was on Down syndrome.  Down syndrome 

is trisomy of human chromosome 21 and results in immunological and hemopoietic 

abnormalities (childhood leukemia) and cognitive impairment [63]. This study was conducted to 

identify miRNAs on chromosome 21 and their differential expression in Down syndrome 

fetuses. As a result 181 novel miRNAs out of 395 known were identified, in which two are 

present on chromosome 21 whose differential expression along with others is involved in 

abnormal phenotype [64]. 
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In the track of understanding tumorigenesis related to smoking status, a study was conducted to 

identify the dysregulation of miRNA in current, never and former smokers. RNA samples of 

normal and tumor cells isolated from current, never and former smokers with lung 

adenocarcinoma. These samples were sequenced on Illumina HiSeq 2000. There were 94 

miRNA differentially expressed between current and never smokers at False Discovery Rate 

(FDR)<0.25. There was a highly activated miRNA in current and former smokers i.e. miRNA-

320b, but it is unchanged in never smokers. On contrast miRNA-21 and miRNA-182 were up-

regulated in tumor cells as compared to normal but not effected by smoking [65]. Recently a 

study was conducted on effects of smoking on miRNA differential expression of patients of lung 

adenocarcinomas. The miRNA sequencing data was obtained from current, former and never 

smokers. A unique pattern of miRNA expression in smokers and nonsmokers was identified, 

thus emphasizing on importance of down-regulation miRNA in cigarette response, which is 

distinct modulator of expression profiling [66]. 

Respiratory diseases like lung cancer, asthma and COPD are direct consequences of smoking. 

Lung cancer is the leading cause of deaths due to smoking. Gene expression studies using 

microarrays identified biomarkers for identification of lung cancer or other diseases. Cross 

sectional studies on smoking status are mostly performed on bronchial samples. The miRNA are 

holding the regulatory networks of various biological processes. Cigarette smoke induced down- 

regulation of miRNA and up-regulation of mRNA expression lead to diseases. Sequencing 

revolutionized the high through put expression technologies. Several studies reviewed above, 

concluded the importance of miRNA sequencing data in expression profiling of smoking status. 

There is still need of understanding the reversibility of miRNA genes expression to normal after 
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smoking cessation. Former smokers expression profiling can fill the gap remaining in 

understanding the regulatory impacts of smoking cessation. 

1.7 Problem Statement 

Smoking-cessation is the best remedy to reduce the risk of developing diseases. Despite of 

smoking cessation for many years, some former smokers are still at a high risk of developing 

diseases.  Former smokers behave different in response to many factors specifically time since 

they quit and number of pack years they have smoked.  

 

Figure 2.  Hypothesis of the study. Is there a significant difference between miRNA exprssion of former smokers based 

upon the years since quit and pack years they smoked. 

 

The query why some former smokers develop disease decades after they have quit smoking is 

yet to be answered. Differences in “Time since quit smoking” can provide insight into different 

responses to smoking cessation. Therefore in this cross-sectional study, by categorizing former 

smokers and analyzing their differentially expressed small RNA, we may in future be able to 

postulate pervasiveness of disease within former smokers. 

1.8 Aims   

 The main objective of this study is to identify those miRNAs which are associated with duration 

of tobacco abstinence within former smokers. 
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Aim 1. Using bronchial epithelium miRNA expression profiling of cross sectional data of current 

and former smokers (n=202), identify differentially expressed miRNAs between current and 

former smokers.  

 Categorize the expression of miRNA within former smokers based on time since they 

quit and their cumulative tobacco exposure. 

Aim 2. Identify kinetics of miRNA expression within former smokers based on difference in 

time since they quit smoking.  

Aim 3. Identify putative targets of differentially expressed miRNAs within current and former 

smokers. 

 Build a network of differentially expressed miRNA with their putative target messenger 

RNA 
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2. Methods 

2.1 Patient enrollment 

Allegro Diagnostics enrolled patients with lung cancer suspension from 14 different sites across 

three different countries. Currently individuals recruited in this study are more than 1600 in 

count. Only those individual who were smokers and also undergoing bronchoscopy for lung 

cancer diagnosis were enrolled in this study (n=±800). Individuals who were never smokers, age 

<18 or >70 and patients with previous history of lung cancer were excluded from this study. 

Total of n=256 samples were included in this research whose demographics detail i.e. age, 

gender, cancer status, smoking status ,pack years ,time since quit are provided. 

2.1.2 Sample Collection 

 

Fiber optic bronchoscopy was used to extract bronchial airway samples of cytological normal 

epithelial cells via brushing main stem bronchus of current and former smokers with suspicion of 

lung cancer and is preserved in RNAlater (Qiagen) [49]. Total RNA was isolated from samples 

(n=256) through miRNeasy Mini kits according to recommended protocol of company [49]. 

RNA integrity (RIN) was confirmed using Nano drop spectrophotometer on Agilent 2100 Bio 

analyzer [67]. Total RNA was passed through size selection separating two types of RNA i.e. 

mRNA and miRNA using gel electrophoresis. 

2.1.2.1 High throughput Sequencing  

 

At Lab of Computational biomedicine , Boston University Medical Campus (BMUC) small 

RNA sequences less than 40 nucleotides long were filtered from total RNA (isolated from 

samples n=256). These small RNA were sequenced using Illumina High–Seq 2000 in two 

different batches following two different sequencing protocols. Three flow cells were allocated 
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for protocol 1 and two flow cells for protocol 2. Eight samples were loaded in each lane across 

all 5 flow cells.  

The library preparation on miRNA per sample (200ng of total RNA) was done by TruSeq small 

RNA Sample Prep Kit of Illumina. These RNA molecules were ligated with adapters (targeting 

small RNA) in 3’ to 5’ direction and then reverse transcribed to single stranded cDNA. The 

cDNAs were amplified through Polymerase Chain Reaction (PCR). Each cDNA was attached 

with 6 base pairs long index sequence tags (8 different types) in order to keep track of lane of 

flow cells for each sample during sequencing. The amplified cDNA libraries with unique index 

tags were purified through gel electrophoresis, loaded onto flow cells and these flow cells were 

further loaded to sequencer.  

Illumina High Seq 2000 was used for multiplexed sequencing with standard 36 cycle sequencing 

read and 7 cycle index read [69]. Each sample have on average 11.6 million reads out of which 

7.4 million aligned to human genome and 5.35 million aligned reads to known miRNA genomic 

sequences. Small RNA sequencing generates FASTQ files which were processed through a 

computational workflow to do quality control, alignment and quantification of miRNA 

expression for each sample. This workflow has generated files for further statistical analysis. 

2.1.2.2 Microarray data 

 

High molecular weight RNA (200ng) with sequence length greater than 40 nucleotides was 

processed and hybridized to Affymetrix Human Gene 1.0 ST Arrays [68]. Samples (n=202) 

matched with miRNA sequencing samples were run in different time intervals in 5 different 

batches [69]. The miRNA sequencing data and mRNA microarray data was provided to 

Translational Bioinformatics Lab, Research Centre of Modeling and Simulation (RCMS), 
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National University of Science and Technology (NUST) Pakistan for further computational and 

statistical analysis. 

2.1.3 Demographics 

 

Total of 256 current and former smokers with or without lung cancer were included in this study 

and only 217 samples were provided with demographic details. Significance of gender, Cancer 

status and protocol followed during sequencing were calculated through Fisher’s exact test and 

for Age, Pack years, Time since Quit, RNA quality Student’s t test was applied.  

2.1.4 Normalization of miRNA expression data 

 

The miRNA sequenced data were “read filtered” by removing miRNAs with average read count 

<20 and leaving filtered miRNA with average read count >20. Samples with read filtered 

miRNAs expression was Reads Per Million (RPM) normalized (eq 3) and log2 transformed in R 

statistical environment (R 3.1.2). 

RPM = Read count per sample + 1/ Reads aligned *10e6 …..eq 3 

2.1.5 Normalization of mRNA expression data 

 

The expression data of mRNA microarray samples was probe summarized and normalized in R 

statistical environment (R 2.13.1). Human Gene ST v1.0 Entrez Gene annotation database and 

Entrez Gene Chip Definition File (CDF) v14.0.0 [70] were used to annotate probe sets of 

expression data. Robust Multi-array Average (RMA) algorithm [71] was used to normalize and 

log2 transform the miRNA expression data using affy package(R 2.13.1) [69]. 

2.1.6 Quality Control  

 

In order to work with good quality miRNA sequencing samples, the demographics of 217 

samples were filtered. A total of 202 samples were left after for further analysis after removing 
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poor quality n=2 and not available demographics (n=13 including missing time since quit) 

samples.  

Principal component analysis [72] along with read distribution graphs was used to detect outliers 

in miRNA sequencing samples. Batch effects, distribution of samples according to different 

demographic factors and outliers in terms of samples expression were accessed through Principal 

Component Analysis (PCA) (see Results).  

Samples read distribution was evaluated against average miRNA length i.e. approximately 22 

base pairs (bps). Samples having read distribution between 20-24 bp were considered good 

quality samples. There were 202 total miRNA and 186 mRNA samples left after quality check. 

2.1.7 Categorization of Former smokers 

 

The current and former smokers were categorized on the basis of time since quit and pack years 

they smoked. Previous literature proved pack years and years since quit as important attributes in 

categorization of smokers. Former smokers with pack years>15 and tobacco abstinence>5 years 

can behave as never smokers [73, 74]. I have used knowledge of these previous studied attributes 

for smoking cessation to categorize former smokers. Former smokers in this study were divided 

into four categories based on years since they quit smoking i.e. Heavy formers, moderate former 

and light former smokers. An additional category of former smokers was made i.e. rare former 

smokers on the basis of year since they quit smoking and pack years they smoked (see Results).  
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Figure 3.  First Linear model. (A) miRNA expression modeled as function of smoking status (as categorical variable) 

adjusting 3 surrogate variable.(B) Gene expressiion miroRNA expression modeled as function of smoking status (as 

categorical variable ) adjusting 3 surrogate variable. 

2.2 Differential analysis of miRNA and mRNA expression profiles 

Gene and miRNA expressions are related to smoking status and depend on several factors like 

gender, age, cancer status of individuals. In this study, I have linearly modeled gene and 

microRNA expression as a function of smoking status. Two linear models are used in whole 

statistical analysis. Smoking status is a categorical variable describing current smokers and 4 

different categories of former smokers. Surrogate variable analysis by SVA package version 
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3.14.0 [75] was used to capture the unknown variation of expression data. Three surrogate 

variables of highest variation were adjusted in first linear model of gene or microRNA 

expression as a function of smoking status (Figure 3). The miRNA and genes which were 

differentially expressed between current, heavy formers, moderate formers, light formers and 

rare former smokers were extracted by applying ANOVA on the first model. FDR<0.05 and fold 

change>=1.5 were used to filter out significant genes and microRNAs. A residual matrix was 

obtained in the end with adjusted variation of the data. The first linear model was bayesian fitted 

using ebayes() function of limma package (R 3.1.2). 

 

 
 

Figure 4. Second Linear model. Differential analysis of microRNA anf mRNA expression profiles: (A) micorRNA  

expression: ANOVA applied  for extraction of miRNA differentially expressed among current and former 

smokers.Second linear model based on time since they quit smoking applied to show kinetics  of miRNA differentially 

expressed between current and rare former smokers (B) mRNA expression: Same procedure applied. 

2.3 Kinetics  

The second aim of this study was to find out change in expression of miRNA among different 

categories of former smokers according to time since they quit smoking. To fulfill this 

requirement a categorical variable on basis of tobacco abstinence (TQ) was made containing 
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three bins for former smokers categorized according to time since quit. miRNA expression was 

then linearly modeled as a function of TQ (Figure 4). This is the second linear model which was 

applied on differentially expressed miRNA between current and rare former smokers at (p<0.05).  

The second linear model was bayesian fitted as the first model. Persistent miRNAs at p>0.05 

were used to explain the irreversibility of miRNAs with different kinetics of former smokers. 

Non persistent microRNAs at p<0.05 were used to show the reversible effects between three bins 

of former smokers. The same procedure is followed for kinetics of mRNA among former 

smokers. 

2.3.1 Gene Enrichment Analysis 

 

To find a connection of current study with previously published studies and validate differences 

of gene expression kinetics within former smokers Gene Set Enrichment Analysis (GSEA) v 

2.2.0 Broad Institute was used [76]. GSEA analyze the gene expression data present in the form 

of gene sets; the genes sharing a common functionality, relate them with cancer pathways 

common in both data sets under study. GSEA works on gene sets input through user or already 

present in its local database and define enrichment  with the rank list provided for genes ( having 

t statistics for ranking) at FDR<0.05. 

There are three steps of GSEA analysis. First step is to calculate enrichment score. Enrichment 

score characterizes the amount of representation of genes in the gene set in top and bottom of the 

rank list. An initial sum statistic is calculated before inspection of the rank list. When a gene is 

encountered this sum is increased and decreased when found a gene not present in the gene set. 

The amount of increment depends upon the correlation of gene with phenotype. Enrichment 

score is weighted statistic like Kolmogorov–Smirnov statistic. Second step is to estimate 

significance of Enrichment score through P value by using an experimental phenotype based 
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permutation test. In this test phenotype labels are permuted and enrichment score of the gene set 

is calculated for the permuted data. A null distribution of enrichment score is obtained which is 

used to compute observed enrichment score. Last step is to adjust the multiple testing 

hypotheses. Enrichment score for each gene set is normalized to get Normalized Enrichment 

Score (NES) and false positive proportion is adjusted through false discovery rate of each NES 

[76].Differentially expressed mRNA between current and rare former smokers (FDR<0.05) were 

validated using an independent study conducted on normal bronchial epithelial samples of 

current, former and never smokers which is available at Gene Expression Omnibus (GEO) id: 

GSE7895 [48]. In this study differentially expressed genes between current and never smokers 

were identified using linear models. Later on, these genes were categorized as quickly reversible, 

slowly reversible and irreversible within former smokers on basis of time since they quit 

smoking.  

Gene set submitted to GSEA was comprised of up and down-regulated genes differentially 

expressed between current and rare former smokers (FDR<0.05). The rank list provided to 

GSEA was of the above explained study [48]. This rank list contains information about genes 

differentially expressed between current and never smokers and their corresponding t statistics 

(defining expression differences of genes within former smokers). 

2.3.2 DAVID 

 

The differentially expressed genes between current and rare former smokers were enriched with 

smoking cessation associated genes by using Database for Annotation, Visualization, and 

Integrated Discovery (DAVID) (FDR<0.05) [77]. DAVID consists of many data processing tools 

which graphically and descriptively analyses data. DAVID offers functional clustering, 



Chapter 2  Methods 

31 
 

functional annotation, and conserved biological pathways of genes sets of fly, rat, mouse and 

human genomes. 

2.4 Networking  

 
The differentially expressed miRNAs between current and rare former smokers were used to 

build networks with their putative targets (Figure 5). The targets of miRNAs were mRNA 

differentially expressed between current and rare former smokers. These mRNA were 

crosschecked with experimental and software validated genes by a software miRecords [78]. 

2.4.1 miRecords 

 

The miRecords is a miRNA target prediction tool based on target interactions between nine 

animal species. It consists of two major modules i.e. validated targets and predicted targets.  

The Validated target prediction got records of 2705 interactions between 644 microRNA and 

1901 genes (till to date). Low through put experimentation provided 2028 interaction records out 

of total interactions. The Predicted targets are the outcome of 11 miRNA target prediction 

programs i.e miTarget, PITA, DIANA-microT, miRanda, PicTar, TargetScan/TargetScan, 

RNA22, MicroInspector, MirTarget2, NBmiRTar, and RNAhybrid. I have found predicted and 

validated targets of differentially expressed miRNAs and overlapped them with mRNA 

differentially expressed among current and former smokers. There resultant targets were reduced 

in number. These targets and miRNA became the input for software named as “miRNA and 

genes integrated analysis” (Magia) [79] to find interactions between them. 

2.4.2 Magia 

 

Magia is an integrated source of target prediction, analysis and regulatory networks. Magia 

software is divided into two user friendly divisions. Each one is described briefly in the 

following sections. 
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2.4.2.1 Query Section 

 

The Query part of Magia allows target prediction of Human miRNAs. The miRNA ids can be 

given with Ensemble, Entrez gene and transcripts, RefSeq transcripts formats. The software 

predict targets by using three algorithms Pita (based on sequence similarity), miRanda (based on 

conserved sequence similarity) and Target Scan (based on energy minimized sequence 

 

Figure 5. Steps involved in formation and analysis of network generated by differentially expressed miRNA and mRNA 
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similarity. Boolean operators filtering are used for selection of algorithms. There is also an 

option of different scores for miRanda and Pita. I have not used this Query section of Magia as 

targets are already predicted. 

2.4.2.2 Analysis Section 

 

The analysis of miRNA with its corresponding genes is a three step procedure in Magia. First 

step is to select specie, Id type (Ensemble, Entrez gene and transcripts, RefSeq transcripts) and 

method for interaction between miRNA and genes (i.e. Spearman correlation, Person 

Correlation, Mutual information, Genmir and Meta-analysis).  

Second step is choice of predictor algorithms (Pita, miRanda, and TargetScan) with their 

respective scores and optional Boolean operators.  

Third step is uploading of miRNA and gene expression profiles with matched samples. There is 

also an optional selection of gene and miRNA ids. 

I have selected Analysis option for finding miRNA and mRNA paired interactions. The options 

used were Homo sapiens, Entrez gene, Pearson correlation with miRanda and TargetScan 

predictors with union operator. The interaction file with Pearson correlation calculated for 

miRNA-mRNA pairs was imported to Cytoscape [80] to visualize and analyze the network. 

2.4.3 Cytoscape 

 

Cytoscape is a visualizing and analyzing tool for expression profiles and other molecular data. 

Cytoscape functionally annotate the networks with different genomes and protein databases. The 

basic functionality of Cytoscape is to visualize the networks and provide different layouts for 

analysis.  

I have used Cytoscape to visualize the interaction file of differentially expressed miRNA-mRNA 

pairs. The network is imported as .tsv file generated by Magia. The source nodes were miRNA, 
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target nodes were mRNA and attributes were Pearson correlation between miRNA–mRNA pairs. 

Organic layout was used for visualization of network. Network analyzer tool was used to analyze 

network as a directed network. 
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3. Results 

3.1 Study Design 

The study design of this research project is a pipeline depicting step wise data preprocessing and 

computational analysis (Figure 6). It starts with processing of miRNA expression data obtained 

through deep RNA sequencing of RNA samples of individuals (n=256) who were current and 

former smokers. Similarly mRNA expression data obtained from microarray chips of n=202 

individuals who were current and former smokers was also processed (see Methods). A 

computational analysis of mRNA and miRNA data was carried out for differential expression 

afterwards (Figure 6). 

 

Figure 6.  The pictorial representation of study design . It eloborates mRNA expression data and miRNA expression data, 

data preprocessing  and computational analysis of expression data. Data preprocessing includes demographic annotation, 

read filtering, normalization, quality check, and categorization of former smokers. Computational analysis comprised of 

Linear regression models, Supervised hierarchial clustering, functional annotation, enrichment analysis and networking. 
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3.2 Demographics balancing 

In order to check which demographic variables were balanced between current and former 

smokers, Student t test and Fisher exact test were applied.  

 

Current smokers(79) 

 

Former smokers(138) 

 

Total Samples(217) 

 
P- Value 

Age 

95% 

Confidence 

Interval 

 (54.5, 59.4)  (60.3, 63.9)  (58.7, 61.7) 0.001373(c,f) * 

Gender 
Male=52 

Female=27 

Male=93 

Female=44 

Male=145 

Female=71 

1(c,f) 

0.8874(c,f) 

Cancer 

Status 

Cancer =52 

No cancer=27 

Cancer =84 

No cancer=54 

Cancer =136 

No cancer=81 

0.7355(c,f) 

0.6841(c,f) 

Pack years 

95% 

Confidence 

 Interval 

 (37.8, 49.7)  (35.9, 47.2)  (38.2, 47.0) 0.6649(c,f) 

Time since 

Quit 

95% 

Confidence  

Interval 

Nill (35.5, 45.5) Nill NA 

RIN Bronch  (6.2, 6.9)  (5.8, 6.3)  (6.0, 6.4) 0.03463(c,f) * 

Protocol 
Protocol 1=41 

Protocol 2=38 

Protocol 1=66 

Protocol 2=72 

Protocol 1=107 

Protocol 2=110 

0.8069(c,f) 

0.8074(c,f) 

 

Table 2. Demographics of 217 current and former smokers values indicating gender, cancer status and protocol well 

balanced with smoking status. Student t test was applied on current smokers and former smokers to check the 

significance for age, pack years, time since quit and RIN. Fisher exact test was applied to check the significance of gender, 

cancer status and protocols. 
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The average age of current smokers and former smokers were 56.5 and 62.0 with 95% of 

confidence (54.5, 59.4) and (60.3, 63.9) respectively.  Age was not balanced with smoking status 

(p=0.001373). The average RNA Integrity Number (RIN) for current smokers and former 

smokers is 6.54 and 6.09 with 95% of confidence interval (6.2, 6.9) and (5.8, 6.3) respectively. 

RIN is also not balanced with smoking status (p=0.03463). Gender, cancer status and pack years 

were well balanced with smoking status (Table 2). 

3.3 Quality control of miRNA expression data 

 
Sequencing of miRNAs obtained from each bronchial epithelial sample of current and former 

smokers generated miRNA read count data for each sample. The data (FASTQ files) when 

passed through a computational workflow for analysis generated a summary of miRNA read 

count data (Figure 8). This miRNA read count data was “read filtered” to extract miRNA 

expression data for each sample with miRNAs having average read count greater than 20 (see 

Methods).  The miRNAs whose average read count was greater than 20 were 445 in number 

(Figure 7). The miRNA expression data with 202 samples and 445 miRNA was then RPM 

normalized (see Methods).  

 

Figure 7.  Read filtering of miRNA read count data. miRNAs with average read count<20 were filtered from the 

expression data. This boxplot is showing two colored bars with miRNA count on x-axis and number of reads per millions 

on y-axis. Red bar is 445 miRNA with average read count>20. Green bar representing 1786 miRNA with average read 

count >20 which were filtered from the data. 
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In order to identify any variable that might be confounding the data, a Principal Component 

Analysis was carried out for this normalized data (Figure 9). The first principal component (Pc1) 

i.e., a scalar gene expression vector that captures the maximum variability of the data, was 

plotted against the second principal component (Pc2) which is orthogonal to Pc1. Two separate 

clusters were seen in PCA plot. These clusters were depicting the two different protocols 

followed during sequencing (Figure 9). There were no outliers present when reads of samples 

were compared with read distribution of sequencing data (see Methods). The batch effects due to 

protocols were adjusted later through SVA. 

3.4 Categorization of Former smokers  
 

Former smokers were categorized according to time since they quit smoking and number of pack 

smoked per year. Initially individuals have been classified as current smokers (n=79) and former 

smokers (n=106). The former smokers were further divided into four categories i.e. heavy 

formers (years since quit<=5, n=53), moderate formers (5<years since quit<=15, n=26), light 

formers (years since quit>15, n=27). The last category was rare former smokers (n=17, without 

including light former smokers) with years since quit>15 and pack years<=15 (Table 3). 

ANOVA was applied on these four categories (heavy, moderate, light and rare former smokers) 

and current smokers to check the significance of different demographics with distribution of 

samples. Age was unbalanced after categorization of former smokers. RIN was balanced with 

smoking status (Table 3). The average pack years smoked by current, heavy, moderate, light and 

rare former smokers were 43.8, 51.8, 48.2, 35.3 and 32.7 respectively. Pack years were 

unbalanced with smoking status after categorization of former smokers (p=0.00461). Gender, 

cancer status, RIN and protocol were balanced with smoking status after categorization 

procedure (Table 4). 
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Figure 8.  Annotation data of miRNA sequencing.  Deep RNA sequencing of 256 bronchial epithelial samples generated 

miRNA read count data. The above graphs explaining the summary of miRNA read count data, x-axis is number of reads 

per million and y-axis is reads per sample. A) Total reads per sample B) Adapter reads C) Aligned reads D) Size selected 

reads D) miRNA reads E) Average miRNA read count per sample. 
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Figure 9 . PCA plot of normalized expression data. Red and green colors of samples depicting two different clusters due to 

tow different protocols. The first principal component (Pc1) was plotted against the second principal component (Pc2) 

and both are perpendicular to each other. 

 

 

 
 

Table 3. Categorization of former smokers according to number of packs smoked per year and time since quit smoking 

 



Chapter 3  Results 

42 
 

   

Current 

smokers(79) 

 

 

 

 

Heavy 

former 

smokers(53) 

 

 

 

Moderate 

former 

smokers(26) 

 

 

 

Light  

former 

smokers (27) 

 

 

 

Rare 

former 

smokers(17) 

 

 

 

Total 

Samples(202) 

 

 

 

 

P-Value 

 

Age 

95%  

Confidence 

Interval 

  

(54.5, 59.4) 

  

(56.9, 61.7) 

  

(57.2, 67.4) 

  

(60.8, 67.4) 

  

(62.1, 72.8) 

 

(58.6, 61.7) 

  

 

0.00175 * 

(c,h,m,l,r) 

 

Gender 

 

Male=52 

Female=27 

  

 

Male=39 

Female=14 

 

Male=18 

Female=8 

 

Male=19 

Female=8 

 

Male=11 

Female=6 

 

Male=139 

Female=62 

  

 

0.9955(c,h,m,l,r) 

0.9681(c,h,m,l,r) 

 

Cancer Status 

 

Cancer =52 

No cancer=27 

  

 

Cancer=34 

Nocancer=1

9 

 

Cancer=17 

Nocancer=9 

 

Cancer=17 

Nocancer=10 

 

Cancer=9 

Nocancer=8 

 

Cancer=129 

Nocancer=73 

 

0.9947(c,h,m,l,r) 

0.9729(c,h,m,l,r) 

 

Pack Years 

95%  

Confidence 

Interval 

  

(43.4, 44.0) 

  

(41.7, 61.7) 

  

(34.5, 61.8) 

  

(22.3, 48.3) 

  

(15.3, 50.0) 

 

(39.4, 48.6) 

 

0.00461* 

(c,h,m,l,r) 

 

Time since 

Quit 

95%  

Confidence 

Interval 

 

 

Nill 

  

(11.0, 20.3) 

  

(54.7, 73.8) 

  

(31.6, 41.4) 

  

(41.3, 56.0) 

 

Nill 

 

NA 

 

RIN Bronch 

95%  

Confidence 

Interval 

  

(6.2, 6.9) 

  

  

(6.0, 6.8) 

  

(5.7, 6.7) 

  

(5.0, 6.2) 

  

(5.0, 6.9) 

  

(6.1, 6.5) 

 

0.108(c,h,m,l,r) 

 

Protocol 

 

Protocol 1=41 

Protocol 2=38 

 

Protocol 

1=39 

Protocol 

2=34 

 

Protocol 

1=13 

Protocol 

2=13 

 

Protocol 

1=15 

Protocol 

2=12 

 

Protocol 

1=12 

Protocol 

2=5 

 

Protocol 

1=101 

Protocol 

2=101 

 

0.729(c,h,m,l,r) 

0.6606(c,h,m,l,r) 

 

Table 4. Demographics after categorization of samples. ANOVA was applied on 5 categories (current smokers, heavy, 

moderate, light and rare former smokers) to check the significance for age, pack years, time since quit, RIN. Fisher exact 

test was applied to check the significance of gender, cancer status and protocols. 

 

3.5 Modeling of differential miRNA expression  

 
To capture the heterogeneity of miRNA expression data Surrogate Variable Analysis was carried 

out on RMA normalized and log2 transformed miRNA expression data (see Methods). To 
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associate miRNA expression with smoking status first three surrogate variables were adjusted in 

the first linear model of miRNA expression data which was taken as function of smoking status. 

To confirm that SVA has captured batch effects that have been adjusted in first linear model, 

principal component analysis was carried out (Figure 10). PCA of normalized miRNA 

expression data when graphed has shown a random distribution of samples rather than two 

identifiable clusters due to batch effects. 

 

Figure 10. SVA adjusted normalized miRNA expression data. Samples in Green (Protocol 1) and Red (protocol 2) colors 

were mixed randomly after SVA adjustment. The first principal component (Pc1) was plotted against the second 

principal component (Pc2). 

 

ANOVA was used to extract differentially expressed miRNA between current, heavy former, 

moderate former, light former and rare former smokers at FDR<0.05 and fold change>=1.5. 

There were 91 miRNA differentially expressed with smoking status (Figure 11A). Out of these 
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91 miRNA, only 66 miRNAs were selected which were differentially expressed between current 

and rare former smokers (p<0.05). 

 

Figure 11.  Systematic diagram of analysis of SVA adjusted liner model after applying ANOVA. The kinetics of 

microRNA and mRNA was explored through second linear model based on a time the former smokers quitted smoking 

(A) miRNA expression analysis (B) mRNA expression analysis 

 

3.5.1 Kinetics of miRNA within former smokers 

 

In order to identify kinetics of miRNA expression within four categories of former smokers 

second linear model (based on tobacco abstinence, TQ) was applied on these 66miRNAs (see 

Methods). This model extracted miRNAs which changes there expression over time when 

smoking was quitted within three bins of former smokers. The three bins were heavy formers 
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(TQ<5), moderate formers (5<TQ<15) and light formers (TQ>15). There were 56 miRNA 

persistently altered at FDR>0.05 and 10 miRNA non-persistently altered at FDR<0.05. Non- 

persistent miRNAs were explaining the reversibility of miRNA expression in rare formers as 

compared to current smokers. The reversibility was gradual in three categories of formers 

(heavy, moderate, light) as shown in heat map (Figure 12) and boxplot (Figure 13).  

 

Figure 12. Heat map of non-persistent miRNA (10). Supervised hierarchical clustering used to cluster samples in the data 

shown in columns. The rows are non-persistent miRNA at FDR<0.05 between current and rare smokers and p<0.05 with 

time since quit model. The color scheme used to illustrate heat map is blue, white and red. Blue color depicts low 

expression and red color highest expression. 
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Figure 13. Boxplot of non-persistent miRNA. These miRNAs are showing significant change in three bins of time since 

quit (TQ<5, 5<TQ<15, TQ>=15) of former smokers. 

 

The reversible expression of these 10miRNA was validated by previously published 28 miRNAs 

differentially expressed between current and never smokers [47] (Figure 15). There are two 

overlap in this study i.e. miR-150 and miR-128 with miRNAs already published in an 

independent group of bronchial epithelial samples. The 56 persistent miRNA showed non-

significant change with respect to time former smokers quit smoking (Figure 14). Irreversibility 

of miRNA expression in three categories of former smokers i.e. heavy, moderate, light is 

illustrated in the heat map (Figure 16). 

 

Figure 14. Boxplot of persistent miRNAs. The miRNAs are showing insignificance or irreversibility in three bins of time 

since quit of former smokers. 
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Figure 15. Kinetics. Boxplots of six miRNA (6 of 66) differentially expressed between current and rare former smokers at 

FDR<0.05, p<0.05 elucidating different kinetics in subcategories of former smokers according to time since they quit 

smoking. 



Chapter 3  Results 

48 
 

 

Figure 16. Heat map of persistent miRNA (56). Supervised hierarchical clustering used to cluster samples in the data 

shown in columns. The rows are persistent miRNA at FDR<0.05 between current and rare smokers and p<0.05 with time 

since quit model. The color gradient of heat map is blue, white, and red. Blue color depicts low expression and red color 

highest expression. 

 

3.6 Modeling of differential mRNA expression 

 
Linear models i.e. first and second with surrogate variable analysis were also applied on mRNA 

microarray data of matched samples of miRNA sequencing data (Figure 7B). This modeling of 

gene expression data has validated the methods adapted to find out the differences in kinetics of 

miRNA expression within former smokers. The RMA normalized and log2 transformed mRNA 

expression data was linearly modeled as function of smoking status adjusting three surrogate 
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variables (see Methods). Out of total 19638 genes, 186 genes were differentially expressed 

between current, heavy former, moderate former, light former and rare former smokers 

(FDR<0.05 and fold change>=1.5) using ANOVA. These 186 genes were reduced to 184 genes 

differentially expressed between current and rare former smokers at p<0.05(Figure 11B). 

3.6.1 Kinetics of mRNA within former smokers 

 

Different kinetics of mRNA expression within former smokers due to tobacco abstinence was 

explored by second linear model based on time since former smokers quitted smoking. This 

model was applied on 184 mRNA differentially expressed between current and former smokers 

(p<0.05). Out of 184 mRNA, there were 113 mRNA persistently altered (FDR>0.05) and 71 

mRNA non-persistently altered between current and rare former smokers (FDR<0.05) (Figure 

17). Non persistent mRNAs were explaining the reversibility of mRNA expression in rare 

formers as compared to current smokers. Persistent mRNA got insignificant difference in three 

categories of former smokers (heavy, moderate, light formers). 

 

Figure 17. Boxplots mRNA. (A) Non-persistent mRNA (71) boxplot showing a gradual change in three bins of former 

smokers (TQ<5, 5<TQ<15, TQ>=15).  (B) Persistent mRNA (113) boxplot showing insignificant change kinetics of mRNA 

within three bins of former smokers (TQ<5, 5<TQ<15, TQ>=15). 

 

Differentially expressed genes between current and rare former smokers (p<0.05) which were 

non-persistent (FDR<0.05) in expression were validated by using GSEA with an independent 

cohort of bronchial epithelial samples of current and former smokers (see Methods). This 
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bronchial study has categorized expression of genes as reversible and irreversible among former 

smokers. The 186 genes up and down-regulated between current and rare former smokers were 

enriched among genes ranked by differences in t-statistics among current and former smokers 

[48]. Genes that were up-regulated in former smokers in our study were strongly enriched among 

genes up-regulated in former smokers in an independent cohort (Figure 18A). Similarly down-

regulated genes in former smokers of our study were strongly enriched among genes down-

regulated in former smokers the same cohort (Figure 18B). These results suggest that the rare 

former smokers (years since quit>=15 and pack years smokes<15) can behave similar to those 

former smokers which have up-regulation of genes whose expression reverts towards normal on 

smoking cessation. In other words, former smokers having long duration of tobacco abstinence 

and less amount of tobacco consumed can behave similar to never smokers. 

 
 

Figure 18. GSEA.  These graphs are showing strong enrichment of current study with an independent cohort of bronchial 

airway gene expression. The x axis is rank list of genes between current and never smokers. The y axis is the enrichment 

score (ES) calculated by GSEA. A)  Peak shows up-regulated genes were enriched with high scores among genes with 

positively correlated genes in rank list. B)  Peak shows down-regulated genes were enriched with low scores among genes 

with negatively correlated genes in rank list. The color of horizontal bar of rank list provides a connection of expression 

of genes in our study with an independent cohort. Red color of bar indicates up-regulation of genes in former smokers. 

Blue color indicates down-regulation of genes in former smokers. 
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The 184 mRNA differentially expressed between current and rare former smokers were enriched 

for important functional categories using DAVID. The functional enrichment at FDR<0.05 

resulted 64 Gene Ontology (GO) molecular functional clusters and 16 Kyoto Encyclopedia of 

Genes and Genomes (KEGG) pathways associated with differentially expressed genes in these 

clusters. Unique five pathways were Cytochrome P450, Aldo/Keto reductase, steroid hormone 

biosynthesis, oxidoreductase pathways.  

3.7 Network of differentially expressed miRNA and mRNA 

 
To determine the putative targets of differentially expressed 66 miRNA between current and rare 

former smokers were submitted to miRecords (Figure 19). The software predicted target genes 

and reduced the miRNA from 66 to 25miRNA. The validated and predicted targets of these 

miRNAs were overlapped with differentially expressed mRNA of microarray data among current 

and rare former smokers. This overlap left 46 mRNA for further analysis. The 46 mRNAs along 

with 25 miRNAs were submitted to Magia to find Pearson correlation between miRNA-mRNA 

pairs. Magia calculated correlations and formed an interaction file which was imported to 

Cytoscape for visualizing the network. 
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Figure 19. Pipeline for identification of putative miRNA-mRNA pairs.  

 

The network formed was analyzed on the basis of Pearson correlation of miRNA-mRNA pairs 

(Figure 20A). The direction of correlation explained the regulation of mRNA targets with their 

corresponding source miRNA. There are five overlaps out of 66 miRNA i.e. miR-218, miR-150, 

miR 130a, miR 365, miR-125b with an independent study on bronchial epithelial samples of 

current and never smokers by Schembri et al. [52] (Figure 20B). It was a whole genome study on 

miRNA and mRNA expression of current and never smokers which concluded about inverse 

correlation of miRNA expression to their target mRNAs expression. 
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Figure 20. Networking. A) Network of miRNA and mRNA pairs differentially expressed between current and rare former 

smokers (FDR<0.05). B) A reduced network showing overlapped microRNA with a study conducted previously on 

microRNA signatures of smokers and never smokers bronchial epithelial samples (Schembri et al. PNAS 2009). The 

yellow colored are overlapped miRNA, pink are validated miRNA and turquoise colored are predicted miRNA. 
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Three of them miR-30c, miR-181a, miR-181b were sharing one miRNA family i.e. miR-30a and 

miR-181d respectively. There were three miRNA have three overlaps i.e. miR-218, miR-181a, 

miR-181b  with a separate smoking cessation study on bronchial epithelial samples of healthy 

current and never smokers by Wang et al. [60]. miRNAs and their targets were selected which 

have highest expression in rare former smokers (Figure 21, Figure 22, Figure 23) for their 

functional annotation (see Discussion). 
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miRNA Schembri et al. 

PNAS 2009. 

Bronchial study 

on current, 

former and never 

smokers 

 Wang et al. PLoS 

2015. 

Bronchial study on 

current and never 

smokers 

Overlap with 

Schembri et al. 

PNAS 2009 

Overlap with Wang et 

al. 

PLoS 2015 

Targets from 

miRecords 

hsa-mir-125b hsa-mir-125b       AQP9 

KCNA1 

TXNRD1 

hsa-mir-130a hsa-mir-130a       EPHA7 

KCNA1 

SULF1 

hsa-mir-30c hsa-mir-30a   One family   ME1 

ABHD2 

ABCC9 

TSPAN8 

PLAG1 

SLC7A11 

TIMP3 

hsa-mir-150 hsa-mir-150       DPYSL3 

RAP1GAP 

hsa-mir-181a hsa-mir-181d hsa-mir-181a One family   PLAG1 

KCNA1 

TIMP3 

DUOX2 

SLC7A11 

SAMHD1 

hsa-mir-181b hsa-mir-181d hsa-mir-181b One family   CANCNG4 

PLAG1 

KCNA1 

TIMP3 

DUOX2 

SLC7A11 

SAMHD1 

hsa-mir-365 hsa-mir-365       KCNA1 

TIMP3 

hsa-mir-218 hsa-mir-218 hsa-mir-218     RAP1GAP 

FHOD3 

KCNA1 

FLRT3 

hsa-mir-193b   hsa-mir-193b     FLRT3 

PLAG1 

ABHD2 

KCNA1 

CACNG4 

 

 

Table 5. Overlapped miRNAs with previously published datasets. MicroRNA differentially expressed between current 

and rare former smokers overlapped with Schembri et al. PNAS 2009 a bronchial study on current, former and never 

smokers study and with Wang et al. PLoS 2015 also a bronchial study on current and never smokers 
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Figure 21. Mir-218 and its targets.  a) RAP1GAP, b) FHOD3, c) FLRT3, d) KCNA1 at FDR<0.05: Boxplot with green 

boxes shows expression of miRNA and with blue boxes represents expression of mRNA. The x-axis represents samples 

categorized according to smoking status (current, former and rare smokers). Y-axis is the expression of particular 

miRNA or mRNA.  The expression of samples in each subcategory of smoking status is represented by a separate box in 

boxplot. The whiskers above and below of a box represents standard error of expression in samples. Median of miRNA or 

mRNA expression is represented by black line in each box. 
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Figure 22. Mir-193b and its targets. a) FLRT3, b) PLAG1, c) ABHD2, d) CACNG4, e) KCNA1 at FDR<0.05. 
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Figure 23. Let-7c and its targets a) DPYSL3, b) CCND2, c) CACNG4, d) KCNA1 at FDR<0.05 
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 4. Discussion  
 

Tobacco smoke causes a field of injury in epithelial cells of whole air way track and affects the 

miRNA and gene expression [40]. There is up-regulation of gene and down-regulation of their 

respective miRNA in smokers [59]. Cigarette smoke reduces the transcription of miRNA by 

inhibiting the transcriptional machinery. Conversion of pre-miRNA to mature miRNA decreases 

at any stage either pre-miRNA to pre-miRNA or pre-miRNA to mature miRNA. If the 

components of RNA-Induced Silencing Complex (RISC) are down-regulated due to smoking the 

mature miRNA become less [81]. This smoking induced modulation of miRNA expression can 

lead to many diseases specially lung cancer. The remedy is smoking cessation but it does not 

reduce the absolute risk of diseases. Former smokers can still be at high risk after a decade of 

smoking cessation [82]. Based on the findings of previous studies, I hypothesized for this study 

that long duration of tobacco abstinence and less cumulative tobacco can affect the behavior of 

former smokers. I have categorized the former smokers based upon two criteria i.e. packs per 

year smoked and time since they quit smoking and extracted differentially expressed miRNA 

between current and rare former smokers using SVA and linear regression model. Another 

regression model was applied on three classes of former smokers categorized by their cumulative 

smoke exposure and tobacco abstinence resulting in ten non-persistent or reversible miRNAs 

between current and former smokers. The kinetics of these miRNA according to time since quit 

suggests that former smokers with least exposure and prolonged abstinence of smoking are less 

effected by its precarious effects. The method analysis of miRNA expression data was validated 

through mRNA expression data of matched samples resulting in extraction of differentially 

expressed genes with same strategy. Functional annotation of differentially expressed genes 

between current and former smokers revealed enrichment of genes among pathways related to 



Chapter 4  Discussion 

61 
 

oxidoreductase activity, cytochrome P450, steroid hormone synthesis, and electron transport 

chain. Previous data showed that all these pathways are reverted towards normal on smoking 

cessation and genes controlling them are down-regulated in never smokers [48]. There were 

miRNA differentially expressed between current and rare former smokers which have shown 

highest expression. Four of them including miR-218, miR-193b, miR-30c and let -7c with their 

target genes are discussed here. One miRNA with highest expression is miR-218. Its expression 

decreases on tobacco exposure and in return induces its target genes expression. Its target genes 

can be part of apoptosis, p53, Ras, cell-cell adhesion, ion transport, cell signaling pathways [59]. 

Our data validated miR-218 down-regulation in current smokers and up-regulation in former 

smokers. The target genes of miR-218 in our data are RAP1GAP, FHOD3, FLRT3, and KCNA1. 

RAP1GAP is GTPase activator of RAP-1A protein and involved in Ras signaling pathway [83]. 

It is a tumor suppressor gene which is down-regulated in former smokers in this study.  It 

suggests that induced expression of RAP1GAP can lead to development of cancers due to loss of 

its tumor suppression activity. But in head and neck cancer there is down-regulation of miR-101 

which in turn up-regulate EZH2 gene and repress RAP1GAP [84]. RAP1GAP involvement in 

smoking induced diseases and its association with miR-218 is still to be worked out. FLRT3 is 

Fibronectin leucine-rich transmembrane protein 3 which is involved in cell adhesion or receptor 

signaling [85]. It has less expression in smokers and high expression in non-smokers [86]. Our 

study suggests that it is a positively correlated gene with miR-218 which was validated by a 

software miRNA map [87]. FHOD3 is Formin Homology 2 Domain Containing 3 which plays a 

role in regulation of the actin cytoskeleton [88]. It is down-regulated on exposure to tobacco 

smoke [89] same as it is down-regulated in current smokers in current study. KCNA1 is 

Potassium Channel, Voltage Gated Shaker Related Subfamily A, Member 1. It is down-regulated 
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in current smokers and upregulated in former smokers in our study. Reduced expression of 

KCNA1 skips oncogene-induced senescence processes which lead to growth of tumors [90]. Its 

expression in smokers or role in smoking induced diseases is yet to be known.  

Second miRNA is miR-193b which is up-regulated in current smokers in our data. Its expression 

is also increased in smokers having cystic fibrosis. This up modulation regulates the tumor 

suppressor activity of cystic fibrosis transmembrane conductance regulator (CFTR) gene which 

encodes a chloride channel (suppressed by cigarette smoke) [91]. Mir-193b is also up-regulated 

in lung cancer [92]. The target genes of miR-193b in our study are FLRT3, PLAG1, ABHD2, 

CACNG4 and KCNA1. FLRT3 is a proto oncogene and have role in cell adhesion [85]. It is 

under expressed in smokers, validated by our data [93]. PLAG1 is Pleiomorphic adenoma gene 1 

which is a transcription factor of genes involved in cell proliferation [94]. It is involved in 

lipoblastomas and pleomorphic adenomas of the salivary gland. It is down-regulated in current 

smokers in our data and linked with smoking related cancers of respiratory track [95]. ABHD2 is 

Abhydrolase Domain-Containing Protein and it has a role in structural stability of lungs. Down- 

regulation of ABHD2 is linked with disruption of phospholipid metabolism in alveoli leading to 

cell death and emphysema disorder of lungs [96]. It has an increased expression in current 

smokers of our data and decreased expression in former smokers. ABHD2 can be used as an 

indicator of lung cancer [97] because of its high expression in lungs of smokers. CACNG4 is 

Calcium Channel, Voltage-Dependent, Gamma Subunit 4; involved in calcium transport in 

muscles and brain cells in exited state [98]. It is highly expressed in small air way epithelium of 

smokers which is the main location of smoking induced lung diseases. It is up-regulated in 

current smokers in our data validating above results [99]. 
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Third miRNA is miR-30c which is down-regulated on smoke exposure validated by its lower 

expression in current smokers of our data. Its down-regulation is related with increased cell 

proliferation in lung cells thus aggravating cigarette smoke induced damage of lungs [100]. It has 

lower expression in lung cancer [101]. The target genes of miR-30c by our data are SLC7A11, 

ME1, TSPAN8, PLAG1, ABHD2, TIMP3 and ABCC9. SLC7A11 is Solute carrier family 7 

(anionic amino acid transporter light chain, xc- system), member 11 involved in cancer 

development by transport of darinaparsin (a metabolite) to cancer cells [102]. ME1 is Malic 

Enzyme 1 involved in production of NADPH, glutamine metabolism and lipogenesis. P53 down- 

regulate ME1 which in turn regulate cell proliferation and metabolism which lead to cancer 

[103]. Both SLC7A11 and ME1 are affected by smoking and have reversible expression on 

smoking cessation [48]. TIMP3 is TIMP metallopeptidase inhibitor 3 which is involved in lung 

adenocarcinoma due to its down-regulation [104]. In a study, there was differential expression of 

TIMP3 when normal and tumor tissues of smokers and nonsmokers were compared [105]. 

TSPAN8 is Tetraspanin 8 involved in cancers due to involvement in cell growth and metabolism 

[106]. This fact is validated by its up-regulation in current smokers in our data. It is not directly 

affected by smoking [107] but part of tobacco related disorders i.e. obesity and type 2 diabetes 

because of gene-disease association [108]. ABCC9 is ATP-Binding Cassette, Sub-Family C 

which is an ABC transporter involved in biogenesis and carcinogenesis of lung cells. Its 

dysregulation lead to smoking related lung cancer [109].  

Last miRNA is let-7c which is down-regulated in current smokers and has an inverse expression 

in former smokers in our data. It is highly reduced within current smokers having COPD [110]. 

Its reduced expression negatively regulates Ras gene leading to lung cancer [111]. Target genes 

of let-7c are DPYSL3, CCND2, CACNG4 and KCNA1. DPYSL3 is Dihydropyrimidinase-Like 
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3 having role in neuronal growth, cell migration and guidance of axons. It is a locus of smoking 

related lung cancer affected by dosage of smoke [40]. CCND2 is cyclin-D2 [112] which is up-

regulated in current smokers of our data. It expression is related with let-7c i.e. in case of let -7c 

under expression or deletion, CCND2 is up-regulated leading to abnormal cell growth and 

division[113].  SULF 1 is Sulfatase 1 which is up-regulated in former smokers of our data. It’s 

down-regulation due to smoking lead to effected sulfatation state of cell adhesion and growth 

factors [48]. SULF1 is down-regulated in head and neck squamous carcinomas [114]. A study 

has shown that SULF1 expression do not revert towards normal after smoking cessation [115]. 

The kinetics analysis suggests that differences in the duration of tobacco abstinence and 

cumulative tobacco exposure in former smokers respond differently at miRNA and gene 

expression (transcriptomic) level. In addition, Network analysis shows how the regulation 

process of miRNA and genes associated with former smokers of different cumulative exposure 

and tobacco abstinence duration occurs. 

4.1 Conclusions 

 
Differential analysis of expression data generated by high throughput transcriptomic 

technologies has geared up the investigation of underlying disease mechanisms. Smoking 

cessation associated miRNA and mRNA expression has revealed the physiological responses of 

former smokers related to tobacco exposure. Following are the concluding statements about this 

study. 

 We are the first to work on miRNA sequencing expression data to explore smoking 

cessation genomic expression regardless of relevance to a particular disease. 

 Former smokers under the assumptions of tobacco abstinence and low cumulative 

tobacco exposure can behave close to never smokers. 
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 There is differential kinetics of miRNA and mRNA expression within former smokers 

according to time since quit. 

 Former smokers with long period of smoking cessation and less tobacco consumption 

have low expression of genes involved in biological pathways related to apoptosis and 

oxidoreductase activity. 

 Surrogate variable analysis used in this study has not only captured the latent variation of 

expression data but also adjusted effects of sequencing protocols. 

 Network formed between miRNA and their putative targets has provided insight of 

regulatory mechanisms which are disrupted on smoking and reverted to normal on 

smoking cessation. 

With the help of miRNA sequencing data this study has somehow revealed the behaviors of 

former smokers. 

4.2 Limitations of the study 
 

Cross sectional study with a large samples size has contributed to the power of this research. 

Presence of mRNA data of matched samples of miRNA sequencing data is strength of this study. 

Besides these advantages, there are few limitations. Absence of never smokers in this study has 

created obstacles in making concrete conclusions about kinetics of differentially expressed 

miRNAs among current and rare former smokers. Furthermore, a vigorous categorization 

mechanism for former smokers is required to get answers about reversibility of miRNAs. 

4.3 Future directions 

Many future studies can be designed to improve results of current study; some of them are 

discussed here. Unsupervised clustering can be used to categorize former smokers according to 

time since they quit smoking and number of pack years they smoked. This method will allow 
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identification of subgroups among former smokers that respond differently to tobacco exposure. 

Wet lab experiments like Quantitative real time PCR can be conducted to validate differentially 

expressed miRNA along with their target genes. 
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