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ABSTRACT 

Neuroblastoma is cancer that develops from immature nerve cells found in several areas of 

the body. It arises from undifferentiated sympathetic-adrenal lineage cells and is mostly 

intermittent. Intracellular calcium ion concentration is highly maintained in cells as it 

controls many cellular processes such as ATP synthesis cell cycle apoptosis and much 

more. Due to the increase of calcium ions, there occurs the disturbance in homeostasis of 

the calcium apoptosis pathway which leads to neuroblastoma cancer. This rise in Calcium 

ion due to overexpression of T-type calcium channels in neuroblastoma is our focus of our 

study.  

Overexpression of T type Calcium Channels is because of duplication of gene responsible 

of encoding T type Calcium Channel i.e., CACNA1G which encode for alpha- pore 

forming domain of Cav3.1. 

The detailed study of T-type calcium channel and its elongation time due to mutation in 

Cav3.1 (CACNA1G) gene which leads to increase in calcium ion concentration and result 

to trigger proliferation in neuroblastoma cells instead of apoptosis. We will focus on 

making calcium channel blockers which mat assist to down-regulate the concentration of 

T-type channels in neuroblastoma hence leading to a decrease in the level of calcium in 

cells which will ultimately induce apoptosis in neuroblastoma cells. 

Therefore, in this study calcium channels blockers were identified which will help in 

closing of calcium channel hence maintain the hemostasis of calcium leading to apoptosis 

instead of cell proliferation. Calcium channel blockers were designed using 

pharmacophore model s and out of which 8 hits were also identified which can be used as 

a repurposed drug.  

Active site residues like Leu352, Thr353, Glu 354, Ile 380, Ser 383, Phe 384, Asn 952, Tyr 

953, Phe 956, Asn 957, Ser 1461, Asn 957, Val 960, Glu 922, Glu 923, Lys 1462, Gln 1816 

were identified and seen in molecular docking as well which was verified using PLIF 

analysis as well. Later on pharmacophore model was built which consists of 9 

pharmacophore features out which 2 were hydrogen bond acceptor and 7 were hydrophobic 
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interactions. This pharmacophore was screened and lastly 8 potential hits were found which 

can help us block the activity of calcium channel.
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Neuroblastoma is most prominent extra cranial solid tumor in children.(1) It is 

characterized by a neoplastic proliferation of neural crest cells in the evolving sympathetic 

nervous system. Neuroblastoma is a diverse cancer with predictions ranging from close 

survival to a high risk of death.(2) Primary tumor can originate somewhere adjacent to the 

sympathetic system but most commonly it arises in adrenal glands. Differentiation patterns 

in neuroblastoma tumor cells may help determine patient diagnosis.(3) Most 

neuroblastomas are made up of embryonic stem cells, some do have fully mature ganglion 

cells, which are present in ganglioneuromas. The cause of these Sympatico-adrenal 

lineages' failure is still unclear.(4) 

1.1 Epidemiology  

The annual occurrence of neuroblastoma in children under the age of 15 is 10.5 per million. 

Neuroblastoma causes approximately 8% to 10% of all pediatric malignancies and 15% of 

all cancer mortality in children.(2) According to the American Cancer Society's 2014 

pediatric and adolescent cancer statistics, neuroblastoma (7 percent) is the third most 

common cancer in children, after behind acute lymphocytic leukemia (26 percent) and 

brain and CNS tumors (21 percent). Neuroblastoma is significantly more common in the 

United Kingdom, accounting for roughly 8% of all childhood cancers. (3)Neuroblastoma 

has a pathogenesis that is unknown. With a ratio of 1.2 to 1, it is significantly more common 

in boys than in females.(5) 

1.2 Location of Neuroblastoma 

Neuroblastoma can develop in people who have other neural crest abnormalities or cancers.  

Appearance of neuroblastoma is related with the site of origin of tumor, the extent of spread 

of disease and paraneoplastic syndromes presence.(6)  Majority of neuroblastomic tumor 

around 65 percent arises in the abdomen. Out of these more than half arises in the adrenal 

glands. The tumor can also originate in neck, chest, and pelvis. There is a concordance with 

age and site of disease, with infants more likely to present with thoracic and cervical 

primary sites. Regional or localized disease is present in almost 50 percent of patients.(7) 

These patients are usually asymptomatic and this condition is diagnosed with other medical 

issues. 35 percent of patients have regional lymph node spread at the time of diagnosis 

accompanied by mass or abdominal distention and pain.(1) 
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 Spread of neuroblastoma occurred through lymphatic and hematogenous routes which 

include bone, bone marrow, and liver.patients who have wide spread of disease have 

symptoms which include fever, pain and irritability. children diagnosed with 

neuroblastoma usually have raccoon eyes i.e. periorbital swelling and ecchymosis.(8) 

1.3 Pathology of Neuroblastoma 

 Neuroblastoma belong to ‘‘small blue round cell’’ neoplasms of childhood. They are also 

called as the peripheral neuroblastic tumors (pNTs). They are derived the sympathogonia 

of the sympathoadrenal Lineage which are the progenitor cells of the sympathetic nervous 

system.(9)   After the migration of these immature sympathogonia cells they form the 

sympathetic ganglia, the chromaffin cells of the adrenal medulla, and the paraganglia, 

which are the typical areas of neuroblastoma cancer.(10) 

The mechanisms causing embryonal cells perseverance that later give rise to pNTs are 

mainly unknown. One of the major cause of this can be defect in genes controlling neural 

crest development in embryonic stages. This lead to unbalanced proliferation and improper 

differentiation of neuroblastoma.(11) These genetic defects causing an unbalanced events 

of normal genetic differentiation program. The typical pNT subtypes of neuroblastoma 

have a larger range of maturation, ranging from tumours with predominantly undeveloped 

neuroblasts to those with a thick stroma of Schwann cells. Cellular heterogeneity is one of 

neuroblastoma's most distinguishing features. The reason was phenotypically diverse cells 

could be ongoing mutagenesis but rare multipotent stem cells with indefinite potential for 

self-renewal drive the onset and growth of tumors could also be another reason.(3). The 

Notch, Sonic hedgehog, and Wnt/b-catenin pathways, which drive self-renewal in neural 

stem cells, have all been linked to embryonic cancer. It is possible that neuroblastoma stem 

cells develop from normal neural crest stem cells, partially retaining and partially 

disrupting these pathways. 

Stages of Neuroblastoma 

The current standards for neuroblastoma diagnosis and staging are based on the 

International Neuroblastoma Staging System (INSS) procedures, which were first 

developed in 1986 and updated in 1988. The following table below show the classification 
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of neuroblastoma according to resectability.(12)  Resectability means removal of tumor 

without removal of any important organ or blood vessels.  

Tumors that an been removed permanently by surgery are classified as stage 1 whereas 

partially removal of regional tumors with or without involvement of lymph nodes are 

classified into stage 2 and 3. Further stage 2 and 3 are classified on basis of amount of 

tumor which can be resected, spread of tumor in local areas and the regional node 

involvement.  Stage 4 is defined as heterogeneous spread of disease where spread of cancer 

cells can be in any organ except liver skin and bone marrow involvement whereas in stage 

4S spreading of cancer cells in bone marrow, bone and skin is involved seen in the majority 

of patients greater than 18 months of age.(13) 

Table 1: Stages of neuroblastoma 

Stage Description  

Stage 1 In this stage tumor is localized tumor with complete gross excision 

with or without microscopic residual disease. nodes attached to and 

removed with the primary tumor may be positive 

Stage 2A  In this stage tumor is Localized tumor with incomplete gross 

resection;  ipsilateral non adherent lymph nodes are not present for 

tumor microscopically 

Stage 2B Localized tumours with or without full gross resection and non - 

adherent lymph nodes on the same side of the body are tumour 

positive; larger opposite lymph nodes must be microscopically 

negative. 

Stage 3  Here tumor is Unresectable unilateral tumor sensitive across the 

midlinea with or without regional lymph node involvement 

 

Stage 4 Any primary tumor with spreading to distant lymph nodes, bone, bone 

marrow, liver, skin, or other organs (except as defined for stage 4S) 

Stage 4S Localized primary tumor (as defined for stage 1, 2A, or 2B) with 

spreading limited to skin, liver, or bone marrow (limited to infants <1 

yr of age) 

 

1.4 Stages and Age relation in Neuroblastoma  

The patient's age is a significant clinical prognostic factor. Patients who have been 

diagnosed with disseminated illness and are older than 1 to 2 years have a poorer 

prognosis than those who are younger. The age of 365 days has been regarded as a 

model for tumor behavior until recently, but other ages have been investigated.(14) 
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Several factors of clinical and biological factors have been to predict clinical behavior 

of neuroblastoma. For best prediction of clinical prognosis combination of  clinical and 

biological factors plays an important role which have been agreed internationally (15) 

Table 2: Children’s Oncology Group divided patients into low-, intermediate-, or 

high-risk categories based upon age at diagnosis, INSS stage, tumor histopathology, 

DNA index (ploidy), and MYCN amplification status, with each group displaying a 

unique risk for recurrence 

   MYCN Amplification 

Risk Group Stage  Age  Status  Ploidy  Shimada 

Low risk 1  1 Any  Any  Any Any  

Low risk 2a/2b  Any  Not 

amplified  

Any  Any 

High risk  2a/2b Any Amplified Any Any 

Intermediate risk 3 <547 d Not 

amplified 

Any Any 

Intermediate risk 3 >= 547 d  Not 

Amplified 

Any  FH 

High Risk 3 Any Amplified  Any Any 

High risk 3 >=547d Not 

Amplified 

Any UH 

High Risk 4 < 365 d Amplified Any Any 

Intermediate 

Risk 

4 < 365 d Not 

Amplified 

Any Any 

High risk 4 365 to < 547 

d 

Amplified Any Any 

High risk 4 365 to < 547 

d 

Any DI=1 Any 

High Risk 4 365 to < 547 

d 

ANY Any UH 

Intermediate 

Risk 

4 365 to < 547 

d 

Not 

Amplified 

DI>4 FH 

High risk 4 >=547 d Any Any Any 

Low risk 4s < 365 d Not 

Amplified 

DI>4 FH 

Intermediate risk 4s < 365 d Not 

Amplified 

Di=1 Any 

Intermediate risk 4s < 365 d Not 

Amplified 

Any UH 

High risk  4s < 365 d Amplified ANY Any 
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1.5 Cause of Neuroblastoma  

There are several causes of neuroblastoma out of which one is genetic cause and other is 

disruption in calcium ion hemostasis leading to disruption in cell cycle and causing 

neuroblastoma.  

1.5.1 Genetic Cause  

Neuroblastoma are divided into two classes.  Almost 45 percent of neuroblastomas are 

near-diploid nuclear DNA content and 55 percent are Near-triploid neuroblastomas 

consists of whole chromosome gains and losses without structural genetic aberrations. In 

clinical studies Clinically localized tumors are mostly, near-triploid tumors are more often 

and show a favorable outcome.(16) The presence of genetic aberrations, such as MYCN 

amplification, 17q gain, and chromosomal losses are present in Near-diploid 

neuroblastomas. (17). One of the most common chromosomal alterations in neuroblastoma 

is the deletion of a portion of chromosome 1p, which is linked to a poor prognosis. In a 

study, multivariate analysis showed that deletion of chromosome 1p was a major 

prognostic factor in a study evaluating cytogenetic variables in 89 neuroblastomas. Patients 

with stage 1, 2, or 4S illness had a better three-year event-free survival rate than those with 

chromosome 1p allelic deletion. (18)  Overexpression and amplification (increased copy 

number) of oncogene MYCN, a close relative of the oncogene c-myc that resides on 

chromosome 2p, is highly associated with deletions of 1p. persistent high levels of the 

MYCN protein occurs because of Gene overexpression.(19)   MYCN Protein is a DNA 

binding transcription factor responsible for malignant alteration in both in vitro and in vivo 

tumor models. . A 50- to 400-fold amplification of MYCN is found in approximately 25 

percent of neuroblastomas and is an indicator of poor prognosis.(20)  

Patients with MYCN amplification have poor prognosis and overall survival rate is also 

low i.e. 72 versus 98 percent compared with patients having no MYCN amplification. The 

absence of MYCN amplification and the absence of other structural abnormalities, such as 

in 11q or 17q, can define low-risk tumors.(21) Deletions of 11q and/or 14q are detected in 

25 to 50 percent of neuroblastomas. Neuroblastomas that are characterized by these 

changes generally lack 1p deletions and MYCN amplification, and they appear to represent 

a distinct tumor subtype. A gain of chromosome 17q material (trisomy 17q) occurs in over 
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one-half of neuroblastoma and appears to be associated with a particularly aggressive 

phenotype.  

In additional to structural chromosomal changes, alterations in total DNA content, which 

presumably result from mitotic dysfunction, are an important indicator of both outcome 

and response to therapy. Neuroblastomas with a higher DNA content (hyperdiploid, with 

a DNA index [DI] >1) are associated with lower tumor stage, better response to initial 

therapy, and an overall better prognosis than diploid tumors (ie, DI = 1), particularly if they 

lack MYCN amplification(15) 

1.5.2 Role of Calcium in neuroblastoma 

Calcium is an important signal messenger element involved in the regulating many 

cellular functions including cell cycle. Maintenance of hemostasis of  of intracellular 

Calcium ionis important  for the cell cycle .Excessive calcium or loss of control in 

calcium signaling can lead to cell death and result in cell proliferation i.e. tumor. .(20) As 

a result, calcium signalling regulation is necessary for cell survival. Calcium can be 

released from intracellular reserves or influxed through a variety of plasma membrane ion 

channels, resulting in an increase in cytoplasmic calcium. Calcium ionfluxes to the 

cytoplasm are provided via voltage-gated and ligand-gated Calcium ionchannels in the 

plasma membrane, along with ryanodine receptors (RynR) and inositol triphosphate 

receptors (InsP3R) at intracellular calcium reserves. The driving force for calcium entry 

is the result of an electrochemical gradient between the extracellular concentration (1.3 × 

10-3-2 × 10-3 mol/L) of calcium and the intracellular concentration (< 10-8 mol/L).(22) 

When calcium is transported in mitochondria it activates apoptosomes which further 
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activates caspases and hence leading to apoptosis in a normal calcium regulation. 

 

Figure 1: Flow of calcium in normal cell 

Whereas in cancerous cell when there is overexpression of voltage gated calcium channels, 

there is influx of more calcium and as a result increase in intracellular calcium ion leads to 

more influx in mitochondria.(23) When there is signal of abundant calcium ion it activates 

the TCA cycle for growth as the formation of ATP is abnormally high and consistent 

calcium ions due to over expression of voltage gated calcium channels lead to the 

abnormality and hence abnormal growth leading to neuroblastoma cancer. (24) 
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Figure 2: Flow of calcium in disease cell 

1.6 Calcium Channel  

Calcium channels serve as a key transducers of cell surface membrane potential changes 

into local intracellular Calcium iontransients that is responsible for introduction of many 

cell events. In many distinct cell types, voltage-gated Calcium ionchannels govern 

intracellular activities such as contraction, secretion, neurotransmission, and gene 

expression by mediating Calcium ioninflow in response to membrane depolarization. 

(25)Their presence is required to link electrical signals on the cell surface to physiological 

processes within cells. They belong to the transmembrane ion channel protein gene 

superfamily, which also contains voltage-gated potassium and sodium channels. and γ. Of 

these, the alpha1 subunit comprises the pores of the calcium channel and the binding sites 

for CCBs.(26) With four major domains, each with six transmembrane units, the subunits 

have a complex structure. Between the fifth and sixth units, calcium channel pores occur, 

and the voltage sensor is located near each domain's fourth transmembrane device.(27) 

Two regulatory aspects of the blockade of calcium channels are essential. First, when cyclic 

adenosine monophosphate (cAMP) activates protein kinase A to phosphorylate the calcium 

channel, the COOH-terminal portion of each of the alpha1 subunits has several 

phosphorylation sites available. Such phosphorylation allows a more open state of the 
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channel to persist. Second, the β subunit binds to the cytoplasmic link of the γ1 subunit 

between domains I and II and thus increases the opening of the calcium channel.  

There are three types of calcium channels but our channel of interest discussed here in 

T type calcium channel.  

1.6.1 T-type Calcium Channel 

 T-type calcium channels are low-voltage activated calcium channels that become 

inactivated during excitability of the cell membrane but reactivate during depolarization. 

The entry of calcium into various cells triggers a variety of physiological reactions. The 

activation of the voltage-gated calcium channel in cardiac muscle cells and smooth muscle 

cells causes a rise in cytosolic level, which causes contraction[28]. T-type calcium channels 

are not only considered to be found within the cardiac and smooth muscle but are also 

present within the central nervous system in many neuronal cells.[29] The separation of T-

type calcium channels (transient opening calcium channels) from the already well-known 

L-type calcium channels was made possible by numerous experimental experiments in the 

1970s (Long-Lasting calcium channels).(28) 

Due to their ability to be activated by more harmful membrane potentials, the new T-type 

channels were substantially different from the L-type calcium channels, had limited single-

channel conductance, and were also not immune to calcium antagonist drugs that were 

present. The cortex, peripheral nervous system, heart, smooth muscle, bone, and endocrine 

system are normally found inside these different calcium channel(20) 

In additional to structural chromosomal changes, alterations in total DNA content, which 

presumably result from mitotic dysfunction, are an important indicator of both outcome 

and response to therapy. Neuroblastomas with a higher DNA content (hyperdiploid, with 

a DNA index [DI] >1) are associated with lower tumor stage, better response to initial 

therapy, and an overall better prognosis than diploid tumors (ie, DI = 1), particularly if they 

lack MYCN amplification(15) 

1.6.2 Role of Calcium in neuroblastoma 

Calcium is a signal transduction element that regulates numerous eukaryotic cellular 

activities, including cell cycle progression. Control of intracellular Calcium ionis critical 

for the cell cycle and plays an important role in the regulation of cell proliferation and 
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growth; however, too much calcium or a lack of control over calcium signaling can lead 

to cell death..(20) As a result, controlling calcium signalling is essential for cell survival. 

Increased cytoplasmic calcium can be caused by either intracellular calcium release or 

influx through a number of plasma membrane ion channels. Calcium ion fluxes to the 

cytoplasm are provided via voltage-gated and ligand-gated Calcium ion channels in the 

plasma membrane, as well as ryanodine receptors (RynR) and inositol triphosphate 

receptors (InsP3R) at intracellular calcium reserves The driving factor for calcium entry 

is caused by a concentration gradients between the extracellular concentration of calcium 

(1.3 10-3-2 10-3 mol/L) and the intracellular concentration (10-8 mol/L). [21] When 

calcium enters mitochondria, it triggers apoptosomes, which then activate caspases, 

resulting in apoptosis in a normal calcium regulation.

 

Figure 1: Flow of calcium in normal cell 

Whereas in cancerous cell when there is overexpression of voltage gated calcium channels, 

there is influx of more calcium and as a result increase in intracellular calcium ion leads to 

more influx in mitochondria.(23) When there is signal of abundant calcium ion it activates 

the TCA cycle for growth as the formation of ATP is abnormally high and consistent 

calcium ions due to over expression of voltage gated calcium channels lead to the 

abnormality and hence abnormal growth leading to neuroblastoma cancer. (24) 
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Figure 2: Flow of calcium in disease cell 

1.7 Calcium Channel  

Calcium channels serve as a key transducers of cell surface membrane potential changes 

into local intracellular Calcium iontransients that is responsible for introduction of many 

cell events. In many distinct cell types, voltage-gated Calcium ionchannels govern 

intracellular activities such as contraction, secretion, neurotransmission, and gene 

expression by mediating Calcium ioninflow in response to membrane depolarization. 

(25)Their presence is required to link electrical signals on the cell surface to physiological 

processes within cells. They belong to the transmembrane ion channel protein gene 

superfamily, which also contains voltage-gated potassium and sodium channels. and γ. Of 

these, the alpha1 subunit comprises the pores of the calcium channel and the binding sites 

for CCBs. With four major domains, each with six transmembrane units, the subunits have 

a complex structure. Between the fifth and sixth units, calcium channel pores occur, and 

the voltage sensor is located near each domain's fourth transmembrane device.(27) 

Two regulatory aspects of the blockade of calcium channels are essential. First, when cyclic 

adenosine monophosphate (cAMP) activates protein kinase A to phosphorylate the calcium 

channel, the COOH-terminal portion of each of the alpha1 subunits has several 

phosphorylation sites available. Such phosphorylation allows a more open state of the 
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channel to persist. Second, the β subunit binds to the cytoplasmic link of the γ1 subunit 

between domains I and II and thus increases the opening of the calcium channel.  

There are three types of calcium channels, but our channel of interest discussed here 

in T type calcium channel.  

1.7.1 Structure of T-type calcium channel 

T type calcium channels, like high-threshold calcium and sodium channels (56, 57), are 

made up of four homologous repetitions (I–IV), each with six transmembrane segments 

(S1–S6), containing a highly conserved pore loop (between S5 and S6) and a separate 

voltage sensor (between S5 and S6) (S4). The extensive intracellular loops, notably the one 

connecting domains II and III, which also contains a site for alternative splicing in alpha1G, 

show greater variation between isoform sequences.(29) This conformational change of the 

channel is responsible for the interaction of several calcium channels with specific cell 

proteins [such as the ryanodine receptor binding to the skeletal muscle L-type channel, or 

syntaxin binding to the neuronal N-type channel, and could thus contribute to the formation 

of specific functions for each channel isoform within the cell] and could thus play a role in 

the formation of specific functions for each channel isoform inside the cell.(30) 

 

Figure 3: Structure of Calcium channel Alpha-1 subunit 
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1.8 Challenges  

The main challenge in our study is tissue specificity of Cav3.1. Cav3.1 is highly expressed 

in brain, in the amygdala, sub thalamic nuclei, cerebellum and thalamus. Moderate 

expression in heart; low expression in placenta, kidney and lung. Also expressed in colon 

and bone marrow and in tumoral cells to a lesser extent. Highly expressed in fetal brain, 

but also in peripheral fetal tissues as heart, kidney and lung, suggesting a developmentally 

regulated expression 

Introduction of our drug without any toxicity introduction in body which is main challenge 

of our study due to expression of calcium channel in tissue.  

1.9 Problem statement  

There are two main organelles responsible for regulation of calcium ions in cells 

Endoplasmic Reticulum and Mitochondria. Endoplasmic Reticulum  serves as a storage for 

Calcium whereas mitochondria use calcium for energy production via TCA cycle. When 

there is excess of calcium because of over expression of calcium channels, instead of 

apoptosis cell will begin to grow because f more ATP production hence leading to 

neuroblastoma i.e. cancer cell proliferation   

1.10 Proposed strategy  

 There is a need for designing calcium blockers which will block the calcium channels and 

so no extra calcium will be present in cell for mitochondria to show irregular TCA cycle. 

1.11 Objectives 

• To identify various predictive models for the modulators of T-type calcium ion 

channels 

• To Develop models for classification and identification of ligand data set using 

Machine learning models 

• To develop an in-silico protocol for the identification of potential modulators of T-

type calcium ion channels for the modulation of neuroblastoma
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2.1 Cell cycle stages and calcium role 

The cell cycle has four stages: G1, S, G2, and M. The S phase is responsible for DNA 

replication, while the M phase is responsible for mitosis. Cells must pass through a 

restriction barrier between the G1 and S phases before they may continue to proliferate; 

otherwise, they leave the cell cycle at G0 and either differentiate or die. Another cell cycle 

checkpoint occurs between phases G2 and M. Calcium ionis one of the most important 

transmitters for cells to cross via these numerous locations.+.(31) 

Steinhardt et al detected transitory increases in cytosolic Calcium ionat late G1, before to 

the start of the S phase, and during G2 before the start of the M phase, which were 

dependent on external Calcium ionconcentration. Cells require external Calcium ionin 

addition to operational calcium channels to activate a slew of critical downstream enzymes 

directly or indirectly such as thymidine kinase, thymidylate synthase, ribonucleotide 

reductase, and DNA polymerase and initiate DNA replication during the transition from 

G1 to S phase. Calcium ionflashes stimulate enzymes required for microtubule 

reorganization and microfilament contraction during the shift from G2 to M phase. (32). 

Pharmacological investigations utilising Calcium ionchannel antagonists clearly illustrate 

the role of Calcium ionchannels on cell development. Cells can commit suicide at the 

conclusion of the cycle by a process known as apoptosis or active cell death, which is a 

genetic program particularly intended to form organs during development and modify cell 

population levels to acceptable values [31]. A deadly Calcium ionsurge and the nuclear 

membrane Calcium iontriggered endonuclease, which ends the cell by breaking chromatin 

into pieces, are the major actors in apoptosis. Underlying mechanisms for Calcium 

ionmediated effects in cell proliferation may involve a wide variety of other intracellular 

signal transduction pathways such as G-proteins, protein kinase C (PKC), calmodulin, m-

calpain, MAP kinase, phospholipase A2 and others. (33). 
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Figure 4: Calcium ionsignaling pathways differ between tumor and normal  cells 

 One method is the breakdown of inositol lipids by the enzyme phospholipase C, whose 

activation is reliant on an initial increase in Calcium ion and results in the formation of 

triacylglycerol (DAG) and InsP3. InsP3 triggers Calcium ion dependent Calcium ion 

release from intracellular storage as a result of activation of G protein-linked or tyrosine-

kinase-linked receptors. (33) This Calcium ion release, described as "calcium puffs" that 

spread into a local or global Calcium ion signal, is critical for transforming the cytoplasm 

into an excitable medium capable of supporting recurrent Calcium ion oscillations (34). 

The resulting amplification of Calcium ion contributes to the signal for mitosis and DNA 

synthesis. 

Sensory proteins, in addition to InsP3, play a function in the calcium signaling system's 

maintenance. Calmodulin is a calcium-binding protein that functions as a Calcium ion 

sensor during the cell cycle. (35) Calmodulin is expressed at high levels during the S phase 

during mitosis, and blocking its action with calmodulin monoclonal antibodies has been 

demonstrated to stop DNA synthesis.(36)  
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2.2 Role of calcium channel in cancerous cell cycle 

During cell cycle, calcium signaling in malignant cells employs a different mechanism. 

Calcium ion signal spikes are ineffective in terminating mutant cells because the cells are 

no longer sensitive to Calcium ion signals; instead, they generate and react to their own 

renegade growth factors.(30)Calcium ion and Ca2+-binding proteins, as well as the signaling 

enzymes that are directly triggered by Calcium ion or by Ca2+-binding proteins, play critical 

roles in most cell signals and program, and must be understood and integrated in any future 

differentiation therapies. T-type Calcium ion channels are expressed in malignant cells, 

thus it's probable that these channels provide a different Calcium ion influx mechanism in 

response to the increased demand for Calcium ion during fast cell growth. 

To avoid functional production of the protein if these channels do engage in proliferation 

under aberrant circumstances, cells must first retain control of the expression of 1G T-type 

Calcium ion channel messenger RNA. If this regulation is lost, it can lead to abnormal cell 

proliferation and tumor development. 

Table 3: Cancerous cells that express T-type Calcium ionchannels 

Cell type  Cell line T-type 

isoform  

Breast Carcinoma MCF-7, MDA-435  

MDA-231, MDA-361 MB-468, MB-474, 

BT-20, CAMA1, SKBR-3  

α1G, α1H 

 

α1G 

Neuroblastoma SK-N-SH, 

NG 108-15,  

SK-N-MC 

 

α1G 

 Breast carcinoma MCF-7, MDA-435 

MDA-231, MDA-361 MB-468, MB-474, 

BT-20, CAMA1, SKBR-3 

N1E-115  

α1G, α1H 

α1G 

 

α1G, α1H 

Retinoblastoma Y-79,  

WERI-Rb1  

α1G, α1H, 

α1I  

 

Glioma Primary 

(biopsy) 

U87-MG α1G 

α1G, α1H 

Prostate carcinoma TSU-PRL, DUPRO LNCaP 

PC-3, DU-145 

α1G 

α1H  

α1G, α1H 

Esophageal carcinoma TE1, TE10, TE12, KYSE150, KYSE180, 

KYSE450 

α1H 
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SKGT4, TE3, TE7, KYSE70  

COLO-680N, SEG1, TE8, TE11, KYSE30, 

KYSE410, KYSE510  

α1G, α1H 

α1G, α1H, 

α1I 

Fibro sarcoma  HT1080  α1G  

Colorectal carcinoma Caco2, DLD-1, Lovo, SW837 α1G 

Pheochromocytoma MPC 9/3L  α1G  

2.3 Regulation and signaling of Calcium  

Cell fate is influenced by the spatial, magnitude, and temporal features of Calcium ion. In 

resting cells, Calcium ion entry from the extracellular space or release from internal 

Calcium ion reserves can result in a 100-fold rise in Calcium ion concentration.(17) To 

maintain a low Calcium ion level and ensure strictly outlined Calcium ion signals, calcium 

entry and outflow processes are strictly controlled.(37). Because Calcium ion is plentiful in 

both the extracellular and intracellular calcium stores, Calcium ion entrance (from the 

extracellular compartment) or release (from the stores) will elevate the cytosolic Calcium 

ion-concentration. Calcium ion is lowered by active transport systems, which transfer 

cytosolic calcium back to storage (Endoplasmic Reticulum (ER) and mitochondria) or into 

the extracellular space .(38) The systems that regulate Calcium ion, including as Na+/Ca2+-

exchangers, calcium pumps, and calcium channels, are changed in cancer. 

In muscle cells, the internal reserves of calcium include the endoplasmic reticulum (ER) or 

a related organelle known as the sarcoplasmic reticulum (SR), where calcium release is 

primarily regulated by the inositol-1,4,5 triphosphate receptor (InsP3R) and the ryanodine 

receptor (RYR). The binding of InsP3 and cyclic ADP ribose (cADPR) to the InsP3R and 

RYR, respectively, releases calcium from the ER. (39). When hormones, growth factors, 

and the neurotransmitter acetylcholine attach to their cell surface receptors, phosphatidyl 

inositol 4,5-bisphosphate, a phospholipid present in the cell membrane, is cleaved, InsP3 

is produced. Furthermore, the nicotinic acid dinucleotide phosphate (NAADP) and 

sphingosine-1 phosphate (S1P) release Calcium ionfrom the ER to the NAADP receptor 

and sphingolipid calcium release-mediating protein. (38). 
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Figure 5: Flow of calcium from in stores organelles and in extracellular 

environment of cell 

Unbalanced cell survival and apoptotic pathways are responsible for neuroblastoma 

development and malignancy. In neuroblastoma, intracellular calcium stimulates 

intermediary proteins in signaling pathways.(40). Calcium regulates three kinases involved 

in cell survival signalling in neuroblastoma (AKT, ERK, and FAK). The intracellular 

calcium and PI3K/AKT pathways interact, establishing a loop, whereas its influence on the 

other two kinases is mostly through calmodulin activation and CaM-dependent protein 

kinase kinases. PI3K/AKT is particularly important since it is a key route in neuroblastoma 

development that has been identified in primary neuroblastoma cells and other cell lines 

(including SH-SY5Y, SK-N-SH, SK-N-BE, SK-N-EP and IMR32) [34,35]. By activating 

survival-associated proteins and blocking the apoptotic pathway, PI3K/AKT increases cell 

survival. .(40)Several studies looked at how downregulating the PI3K/AKT pathway might 

increase apoptosis in neuroblastoma cells, and showed that cells with MYCN amplification 

had more inhibition of the PI3K/AKT pathway, which is thought to be a crucial component 

in neuroblastoma prognosis .(41)  
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Figure 6: Signaling pathways involving calcium ion responsible for certain processes 

Anaplastic Lymphoma Kinase (ALK) is also linked to neuroblastoma cell survival 

signaling. It is a member of the insulin receptor family that includes the trans-membrane 

receptor tyrosine kinase and regulates cell growth and development mostly through the 

central nervous system.(26) ALK protein expression was found in approximately 90% of 

neuroblastoma tumor samples, and it was linked to ALK gene alterations. Neuroblastoma 

is linked to ALK gene mutations in both familial and sporadic cases. AKT, ERK1/2, and 

STAT3 are part of the downstream signaling cascade of ALK signaling.  (16). Calcium 

phosphorylates three kinases (AKT, ERK and FAK) that are involved in the cell survival 

signaling in neuroblastoma(42) 

Because the spontaneous shrinkage of neuroblastoma is done in part by neuronal 

differentiation of the cells, neuroblastoma is linked to a halt in cell differentiation. Inducing 

differentiation as a treatment is believed to be one of the most effective therapeutic 

procedures. In neuroblastoma cell lines, retinoic acid causes differentiation. (43). Patients 

with high-risk neuroblastoma are now treated with retinoic acid, which inhibits cell growth 
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and induces differentiation. (44). An increase in Calcium ion is linked to the induction of 

differentiation in neuroblastoma cell lines. 

Neuroblastoma tumors and neuroblastoma cell lines are made up of multipotent progenitor 

cells that develop into distinct neural crest cell lineages.(45) Neuroplastic N-type cells, 

substrate adherent S-type cells, and intermediate I-type cells are the three primary cellular 

phenotypes seen in neuroblastoma cell lines. N-type cells are precursors to the sympatho-

adrenal cell lineage and are made up of immature nerve cells. S-type cells are progenitor 

cells of the neural crest's Schwann, glial, and melanocytic cells and belong to the non-

neuronal lineage. I-type cells are intermediate between N- and S-type cells in terms of 

morphological traits and biological markers., I-type cells are either stem cells or an 

intermediate stage between N- and S-type cells in the trans-differentiation process. N-type 

cells are more cancerous, whereas S-type cells are non-cancerous.(26) 

2.4. Structural Analysis of Calcium Channel CACNA1G 

The Cav3 channels have only about 20% sequence identity and 45 percent similarity to the 

other two subfamilies. Human Cav3.1, the first Cav channel to be cloned, was discovered 

12 years after rabbit Cav1.1, the first Cav channel to be discovered. Variations in the 

sequence occur throughout the whole sequence, including the selectivity filter (SF). While 

Cav1 and Cav2 members both feature four Glu residues (EEEE) that determine Calcium 

ion selectivity (one on the corresponding locus of each repeat), the equivalent loci in the 

last two repeats are substituted by Asp in Cav3 channels (EEDD). Furthermore, analysis 

of recombinant generated channels suggests that Cav3 core subunits can operate alone, but 

the other families require auxiliary subunits for appropriate membrane localization and 

activity regulation.(46) 

Overall structure of human Cav3.1-Δ8b. The four repeats I–IV are colored by domain. Two 

potential Calcium ions in the selectivity filter (SF) are shown as red spheres. respectively. 

The disulfide bond between Cys104 and Cys889 is unique to T-type VGCCs shown in pink 

color in figure below. 
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Figure 7:  X-ray Crystallographic structure of calcium channel CACNA1G PDB ID: 

1KZP 
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In the current project various pharmacoinformatic including homology molecular docking, 

pharmacophore modeling and machine learning approaches were applied to probe the 2D 

and 3D structural features of Calcium channel blockers. Inclusively, a complete workflow 

of the overall methodology is demonstrated in Figure 8.  
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Figure 8: Overall work flow of Methodology 



 CHAPTER 03: METHODOLOGY  

 
 

3 Data collection  

3.1. Chemical Data Collection  

A structurally varied collection of 524 calcium channel CNAC1G ligands was collected 

from literature and chemical databases (CHEMBL and PubChem), along with their 

biological activity (IC50) values. Duplicates, racemic compounds, and fragments were then 

eliminated. Furthermore, molecules with molecular weights less than 200 were omitted 

from the data since they represent molecular fragments. Following preprocessing, a dataset 

of 330 ligands was obtained, and the inhibitors dataset was split into two activity levels: 

active and inactive. Actives were defined as compounds with an IC50 value less than 

1000nM whilst inactive were compounds with an activity value greater or equal to 

1000nM. 

3.2. Physiochemical parameters calculation 

The descriptors, which are the distinguishing characteristics of molecular structures, 

represent the properties of a molecular structure. Using the MOE program(47) all 2D 

descriptors were computed for the whole dataset to investigate how these descriptors 

affected biological activity. In order to measure the activity of these inhibitors, pIC50 was 

also computed. pIC50 is the negative log of the IC50 value when converted to molar and 

aids in understanding activity values. 

3.3 Biological Data collection  

The X-ray crystallographic structure of Calcium channel CACNA1G (PDB ID: 6KZP) 

(10.2210/pdb6kzp/pdb) was downloaded from Protein Data Bank (PDB) 

(https://www.rcsb.org/) and used as a 

receptor for molecular docking studies. 

3.4 Molecular docking  

Using the GOLD suite v.5.3.0, molecular docking was used to find the most likely binding 

conformations of modulators of specified biological targets. In the molecular docking 

study, the X-ray crystallographic structure of the calcium channel CACNA1G (PDB ID: 

6KZP) was employed. However, the binding site of proteins was chosen using a point 

selection approach in the 20A region, which contains all of the active residues found in the 

literature. Residues like Leu352, Thr353, Glu 354, Ile 380, Ser 383, Phe 384, Asn 952, Tyr 

https://doi.org/10.2210/pdb4hhb/pdb
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953, Phe 956, Asn 957, Ser 1461, Asn 957, Val 960, Glu 922, Glu 923, Lys 1462, Gln 1816 

known to be the important residues for predicting probable binding cavity and interaction. 

The energy of the crystal structure was minimized in MOE (Molecular Operating 

Environment) using the AMBER99 force field. Docking simulations were run using the 

GOLD suite (Genetic Optimization for Ligand Docking) software (version 5.6.1), and 

docking coordinates were optimized around a single solvent-accessible site. A total of 100 

confirmations were generated for each ligand in a sample of 330 compounds. The GOLD 

scoring function was utilised to rank each ligand pose. The following equation is used to 

get the gold score. 

GOLD Fitness = Score (hb_ext) + Score (vdw_ext) + Score (hb_int) + Score (vdw_int) 

Here, hb_ext and vdw_ext represent the protein-ligand H-bond and van der Waals 

interaction. Further, hb_int and vdw _int shows intramolecular hydrogen bonds in the 

ligand. A detail analysis of the docked confirmations was performed to obtain the final 

confirmation. Both the ligand and protein were considered flexible by performing a total 

of 100 genetic algorithm runs per molecule using the gold score fitness function to enhance 

the conformational space. The best pose was selected for each molecule to explore the 

protein ligand interactions inside the binding cavity of CACNA1G. These 330 poses of 

each ligand were then used for virtual screening in ligand scout for further analysis of our 

data.  

 

Figure 9: Overall work flow of Molecular docking 
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3.5 Machine Learning  

3.5.1 Data Collection  

A structurally diverse dataset of 524 ligands of calcium channel CNAC1G, along with their 

biological activity (IC50) values were retrieved from literature and chemical databases 

(CHEMBL and PubChem)(48)/ Subsequently, duplicates, racemic compounds and 

fragments were discarded. Moreover, the compounds having molecular weight less than 

200 were removed from the data as they reflect molecular fragment. After the exploration 

of the preliminary models, it was observed that the inhibitory potency (IC50) values for the 

dataset were discrete and the numerical difference was quite large, that results in a poor 

model effect. Therefore, pIC50 values were calculated by taking negative logarithm of IC50 

to the base 10. The SMILES codes and 

the activity values (pIC50) of CACNA1G inhibitors were collected from CHEMBL 

database. 

3.5.2 Descriptors Computation and feature Selection 

Molecular descriptors are the end result of logical and mathematical process which 

converts chemical information encoded by symbolic representation into a useful output 

(numbers)[222]. In this study, MOE (Molecular Operating Environment) was used to 

compute a total of 206 descriptors for all EGFR modulators to identify the relationship 

between activity and molecular structure. Total of 205 descriptors were computed and three 

refinements criteria were applied for the attribute selection. These include the removal of 

variables with: (i) zero values (ii) Small variance <0.5 (for the removal of variables with 

same values) (iii) high correlation r >0.5(for the removal of variables containing same 

information). the dataset was divided into 80% training and 20% test set data in order to 

evaluate the predicted performance of the models on the basis of diverse subset selection 

method. Additionally, after the preprocessing, the dataset of 330 ligands was collected, the 

inhibitors dataset was divided into two activity levels including active, and inactive. 

Actives were divided having IC50 value less than 1000nM whereas in actives were 

compounds having activity value greater or equal to 1000nM. 
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Figure 10: Overall workflow of Machine learning 

3.5.3 Decision Tree 

The decision tree model for the classification of active and inactive inhibitors of 

CACNA1G was built using the refined set of already calculated 2D descriptors. Herein, 

the classification procedure was optimized, and it was observed that the J48 classifier 

predicted a better model (high accuracy) as compared to other classifiers including Random 

Forest and Random Tree. Therefore, the J48 classifier in the WEKA software package (49) 

was finally used to develop decision tree. A J48 classifier is an improved version of C4.5 

algorithms that creates a binary decision tree to model the classification procedure based 

on the divide-and-conquer rule. 

 

Figure 11: Overall workflow of Decision Tree 
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3.5.4 Artificial Neural Network (ANN) 

In this study, a multi-layer perception (MLP approach was used to further classify the 

active and inactive inhibitors of CACNA1G. WEKA software package(49)] was used to 

construct the one-layer MLP based on the decision tree extracted . The neurons of input 

layer include all the independent variables (2D descriptors extracted from decision tree) 

and the neurons of the output layer include dependent variable (i.e. CACNA1G inhibitors 

activity label). Each neural network was initialized with random parameters and then 

trained by modulating the hidden layer, learning rate and momentum of the data set to 

optimize the model. In order to achieve the most optimized model, validation was 

performed using the test set Moreover, the choice of the number of hidden layers and 

learning rate is a vital decision to be considered when designing M`LP-ANNs. After the 

optimization, when a network achieves better performance in the internal validation data 

set, the parameter values were further selected for the test set validation 

Here, test set  was used to ensure that the built CANCNA1G model displays good 

generalization ability and better performance. It is extremely critical to quantitatively 

evaluate the effectiveness of the decision tree and artificial neural network models. 

Therefore, accuracy (Acc), specificity (TP) and sensitivity (TN) parameters represented in 

eq. 3, 4 and 5 were calculated for the predicted models to evaluate the overall performance 

of the models. Accuracy represents the number of correct predictions to the total number 

of predictions of CACNA1G inhibitors dataset. (Moreover, the specificity and sensitivity 

represent the number of correctly predicted CACNA1G inhibitors from the class of actives 

and inactive, respectively.  

Accuracy(Acc) =  
(TP+TN)

TP+TN+FP+FN 
                                      (3) 

Sensitivity (TP) =
TP

TP+FN
                                                   (4) 

Specificity (TN) =
TN

TN+FP
                                                    (5) 

Matthews correlation coefficient (MMC) was used to further evaluate the model as it takes 

benefit of all the four variables (TP, TN, FP, FN) thus, providing a more balanced, 

representative and comprehensive measure as shown by eq. 6. The MCC value ranges 
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from -1 to 1, where 1 represents the perfect correlation between the actual and predicted 

response of the class. 

MCC =
(TP x TN)−(FPxFN)

√(TP+FP)(TP+FN)(TN+FP)(TN+FN)
                                 (6) 

 

 3.6 Pharmacophore Modelling 

A pharmacophore model is defined as "an ensemble of steric and electronic characteristics 

required to enable optimum supramolecular interactions with a given biological target and 

to initiate (or inhibit) its biological response." Pharmacophore model was made using 

ligand scout v4.  

In ligand scout  (50)ligand template which was the best docked pose with macromolecule 

was loaded and a pharmacophore was created. Based on features like Hydrophobic (Hyd), 

Donor and Acceptor (Don&Acc), Hydrogen bond Donors (Don>0.6), Aromatic rings 

(Aro), and Hydrogen bond Acceptors (Acc>0.8), the model discriminates the actives ligand 

from inactive. Therefore, with the help of a stable active ligand, the pharmacophore model 

was build. After generation of pharmacophore by ligand scout, pharmacophore was copied 

to alignment perspective for better view of results and then from alignment perspective it 

was copy to screening perspective.  

In screening perspective database was first created in which docked 330 ligand poses were 

present and then it was loaded in ligand scout and was screened out. . By evaluating the 

number of actives and in actives in the internal hits, model validation of the respected 

pharmacophore model was made. This step was crucial to predict the reliability of a model. 

Therefore, a confusion matrix algorithm was used to classify the dataset. Those ligands 

which are actives (IC50<1000nM) and predicted active by the pharmacophore model were 

stated as True Positives (TP). Similarly, True Negatives (TN) were those inactive ligands 

(IC50>1000nM) that were predicted as inactive by model. While those ones that are actives 

in nature but do not appear in hits, i.e., predicted as inactives, were False Negatives (FN). 

Likewise, False Positives (FP) were those ligands that were inactive but recognized as 

actives by the model.  
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After classification of ligands, evaluations were made on certain statistical 

parameters such as Specificity (true negative rate), Sensitivity (true positive rate), 

Accuracy (overall prediction rate), and Precision (positively predicted values).  However, 

the decision was clarified on the basis of Matthews Correlation Coefficient (MCC), 

which correlated the actual and predicted value by taking all classified variables (TP, TN, 

FP, and FN). The model was predicted best by its prediction statistics and utilized further 

for the virtual screening of different libraries.   

 

Figure 12: Overall workflow of pharmacophore Modelling 

3.7. Virtual Screening  

Virtual screening (VS) is a drug discovery approach that searches libraries of small 

molecules for structures that are most likely to bind to a therapeutic target, generally a 

protein receptor or enzyme. For this purpose the three databases were organized and The 

first library was prepared by taking data for all online FDA-approved medicine that has 

been used for neuroblastoma. The second library was extracted from Drug Bank Database 

[(51)], an online repository for all FDA approved drugs (10631). In contrast, the third one 

is retrieved from the commercially available natural compounds database, i.e., the ZINC 

Database [89]. These databases were then individually screened against CYP’s model to 

evaluate the metabolic activities of the compounds. The filter is commercially available at 

the Online Chemical database server (ochem.eu), consists of a further 5 CYP’s models 

such as CYP2C19, CYP2C9, CYP1A2, CYP2D6, and CYP3A4 to screen out the 

compound, effectively. The compounds screened from the model were stated as the non-

inhibitors of CYP. The non-inhibitors obtained from the above screening then passed 

through in-house hERG pharmacophore model (add ref), a cardiotoxicity prediction model 
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prepared by Dr. Saba Munawar. The non-hits of the model were declared to be nontoxic 

against the hERG channel. The selected compounds then screened against best-featured 

model to identify the most potent external hits. Finally, the hits from the CACNA1G model 

proposed as effective and safer leads against CACNA1G. 
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4.1 Data Collection  

The PDB ID: 6KZP of our protein was downloaded from PDB bank. (10.2210/pdb6kzp/pdb)  

Cleaning of co-crystallize structure of CACNA1G was done using MOE which include 

https://doi.org/10.2210/pdb4hhb/pdb
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removal of attached ligands along with atoms. Furthermore, active binding side was 

identified as shown in figure below along with binding residues.  

 

Figure 13 :  X-ray crystallographic Structure of CACNA1G along with binding 

residues identified in binding pocket.  

4.2 Molecular docking  

The dataset of CACNA1G (330 compounds) were initially energy minimized by Amber 

10 force field. Then these energies minimized compounds were used in molecular docking 

against CACNA1G to assess their inhibitory properties. For the site-specific docking it is 

crucial to include all the active and binding residues within the binding cavity of protein. 

Hence, around 10Ao region, X=176.1910, Y=166.1621 and Z=183.5993 coordinates for 

1KZP has been selected for binding cavity. the active site was found at the II–III 

fenestration to be a specific drug-binding site. The fenestrations, owing to their relatively 

lower sequence conservation, thus represent specific druggable sites. Moreover, by 

keeping the ligand and side chains of protein flexible, molecular docking approximately 

provided 100 poses per compound as an output for CACNA1G. Later on, top pose was 

selected of each 330 ligand based on correlation between gold fitness score and pIC50 

values. A database of top 330 docked ligand poses was created which was later to be used 
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in pharmacophore modelling. The picture below show all the 330 ligands docked in binding 

cavity of protein and to see common interaction PLIF analysis was done.  

 

Figure 14: Docked 330 ligands in binding cavity area of CACNA1G (1KZP) 

4.3 PLIF Analysis 

For protein-ligand interaction analysis, one confirmation with best score for each ligand 

was selected and analyzed with the help of protein-ligand interaction fingerprint (PLIF). 

MOE software was used for calculation of PLIF for each ligand which explains about 

binding pattern of data in collective way along with type of interactions for single amino 

acid. PLIF explains the occurrence frequency of interaction type in each complex taking 

into account side chain Hydrogen Bond Acceptor (HBA), side chain Hydrogen Bond donor 

(HBD), backbone hydrogen bond donor (HBd), backbone hydrogen bond acceptor (HBa) 

and surface contacts (SAC). All ligands occupy the binding pocket in the 1KPZ. PLIF 

analysis indicates that Leu353 is the most commonly occurring interaction in 57.5% (188 



 CHAPTER 04: RESULTS 

 
 

ligands) of the data and Gln922 interaction has been showed that majority ligands show 

interaction with this residue. Likewise, Gln1816 and Phe 384 interaction are also important, 

and majority found in binding. Both Leu 353 and Gln922 interaction were also reported in 

literature as the important binding interaction of CACNA1G inhibitors. Other important 

interactions include Phe384, Gln1816 and Asn952. Common interactions have been 

depicted in the figure. 
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Figure 15: PLIF analysis showing maximum interaction done with binding site 

residues 

4.4 Machine Learning  

4.4.1 Data Collection and Curation  

Data set of filtered 330 ligands was used along with all the 206 descriptors computed while 

using MOE. The data set was divided into Training set (80 percent) which consists of 264 

ligands whereas test set (20 percent) consisted of 66 ligands. Furthermore, an activity 

threshold was established such that the compounds having IC50 ≤ 1000 nM considered as 

actives while compounds having IC50 > 1000 nM as inactive or least actives. pIC50 values 

of the whole data set was calculated according to the biological criterion to make the 

interpretation easier. Training set contains 154 actives and labelled as “1” while there were 

110 inactive compounds labelled as “0” to be used as binary input in machine learning 

techniques. 

Table 4: Table showing division of data containing actives and inactives 

 Number of Compounds Actives Inactives 

Training data 

set 

264 154 110 

Test  

Data set  

66 40 26 

4.4.2 Decision Tree  

Decision tree classification model was constructed using built in J-48 decision making 

classifier algorithm of WEKA. All the 264 ligands along with 206 descriptors was given 

as the input after removal of descriptors having (i) zero values (ii) Small variance <0.5 (for 

the removal of variables with same values) (iii) high correlation r >0.5(for the removal of 

variables containing same information. Model showed significant statistical parameters 

along with excellent predictive (96.59%) ability as shown in table 4.4. Our model could 

classify 225 compounds correctly only 9 compounds (3.4 %) were not predicted correctly. 

Training set contained 154 active (1) ligands along with 110 inactive (0) ligands and the 

trained decision tree was efficient enough to predict 149 active ligands and 106 inactive 

correctly. The confusion matrix obtained from training set is given in table 6.  



 CHAPTER 04: RESULTS 

 
 

Our tree selected 16 essential descriptors necessary for building our model whose details 

are listed in table below.  

Table 05: Descriptors selected by Decision tree along with the description 

2D Descriptors Description  

SMR_VSA6 Sum of van der Waals surface area where the contribution to 

SMR is in the range (0.485,0.56) 

Vsa_other  

MOE descriptor that consider only heavy atoms of a 

molecule and Approximation to the sum of VDW surface 

areas (Å2) of atoms typed as "other". 

 

PEOP_VSA-6 Sum of van der Waals surface area where partial charge is 

less than –0.30. 

PEOP_VSA-1 Sum of van der Waals surface area where partial charge is in 

the range (–0.10,– 0.05) 

b-double Number of double bonds. Aromatic bonds are not considered 

to be double bonds. 

Chiral-u The number of unconstrained chiral centers. 

Opr_nrot The number of rotatable bonds 

a_Nf Number of fluorine atoms: #{Zi | Zi = 9}. 

PEOE-VSA-2 MOE descriptor of Partial Equalization of 

Orbital Electronegativities (PEOE) where Sum of wander 

waal area  vi where and  partial charge of atom qi is greater 

than 0.3. 

h_pstrain The strain energy (kcal/mol) needed to convert all 

protonation states into the input protonation state 

a_aro Number of aromatic atoms. 

b_max1len Length of the longest single bond chain 

SMR_vsa_4 Sum of van der Waals surface area where the contribution to 

SMR is in the range (0.1,0.15) 

lip _violation The number of violations of Lipinski's Rule of Five 

Radius Smallest entry in the distance matrix 

PEOP-vsa_6 Sum of van der Waals surface area where partial charge is 

greater than 0.30 

PEOP_vsa_PNEG Total negative polar van der Waals surface area 

Chi1V_c Carbon valence connectivity index (order 1) 
 

 

Table 06: Result of decision tree model on Training data 

 TP RATE  FP RATE  PRECISION MCC 

Inactive 0.964 0.032 0.955 0.9330 
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Actives 0.968 0.036 0.966 0.930 

Table 07: Confusion Matrix of Training data 

N=264 Predicted 

Inactive(0) 

Predicted 

Active(1) 

 

Actual  Inactive (0) 106 4 110 

Actual Actives(1) 5 149 154 

Total 111 153 264 

The above table showed very good statistical results of our training data. To validate the 

model of decision tree test set was used which consisted of 40 actives and 26 inactive 

compounds. Our model was able to predict 63 compounds (95.45%) correctly whereas 

only 3 compounds (4.5%) were incorrectly classified. The table below show the results of 

our model being validated through test set . 

Table 08: Result of decision tree model on Test data 

 TP RATE  FP RATE  PRECISION MCC 

Inactive 0.962 0.050 0.926 0.906 

Actives 0.950 0.038 0.955 0.906 

Table 09: Confusion Matrix of Test data 

N=66 Predicted 

Inactive(0) 

Predicted Active(1)  

Actual  Inactive (0) 25 1 26 

Actual Actives(1) 2 38 40 

Total 27 39 66 

When we compare the results of both test and training sets model we can see that our model 

accuracy is high and giving best results about 96 percent of accuracy which shows our 

model is able to classify active and inactive ligands.  
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Figure 16: Decision tree classification model 

4.4.3 SVM  

In order to test our model results we made another classification model where above 

mentioned 16 descriptors selected by Decision tree were used as an input to make our 
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classification model for accuracy. Different models were generated using different 

descriptors via multilayer perception classifier on WEKA. A neural network model with 

96.2% accuracy and a good predictive ability was achieved by using 17 2D descriptors. 

The final neural network contains 17 input nodes, 9 hidden nodes and two output; labelled 

as 1 for active class of compounds and 0 for inactive class. The leaning rate for training 

model set at 0.3 and momentum at 0.2. The model was efficient enough to correctly classify 

96.2 % of the data and only few compounds were misclassified by this predictive model as 

shown in table 4.6. 

Of all compounds 254 were classified correctly however only 10 ligands were not classified 

correctly. As sensitivity measure the true positive rate was observed to be 96.2% which 

means only 3 out of 154 active compounds were not predicted correctly making FP = 3. 

Moreover, the specificity (true negative rate) was 93% which implies that out of total 110 

inactive compounds only 7 were misclassified making FN = 5. Confusion matrix generated 

for training set is tabulated in table 10.  

Table 10: Results of SVM training data set 

 TP RATE  FP RATE  PRECISION MCC 

Inactive 0.936 0.019 0.972 0.922 

Actives 0.981 0.064 0.956 0.922 

Table 11: Confusion Matrix of SVM training data set 

N=264 Predicted 

Inactive(0) 

Predicted 

Active(1) 

 

Actual  Inactive (0) 103 7 110 

Actual Actives(1) 3 151 154 

Total 106 158 264 

 

In order to validate our training model test, set of 66 ligands containing 40 actives and 26 

inactive was used. Our model was able to classify with 100 percent accuracy. All 40 actives 

ligands were classified as actives whereas all inactive ligands were classified as inactive 

showing that our model is able to validate the training data statistics as well as is best model 

for classification. Below tables show the statistics and confusion matrix of test set used in 

Multilayer percepton. 

Table 12: Results of SVM test data set 
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 TP RATE  FP RATE  PRECISION MCC 

Inactive 1 0 1 1 

Actives 1 0 1 1 

Table 13: Confusion Matrix of SVM test data set 

N=264 Predicted 

Inactive(0) 

Predicted 

Active(1) 

Total                                                                                         

Actual  Inactive (0) 26 0 20 

Actual Actives(1) 0 46 46 

Total 26 46 66 

 

4.5 Pharmacophore Modelling  

For pharmacophore Modelling in ligand scout, template was loaded in ligand scout which 

was best top docked pose from 330 molecules having PIC50 value=9.0nm. 

 

Figure 17: Structure of best docked pose of ligand in protein  

 The following picture show our ligand and protein in software in structure based 

modelling.  
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Figure 18: Structure of docked best pose of ligand in our protein 1KZP having 

pIC50 value=9.0nM.  Dark blue color shows helices, Light blue color show strand 

whereas yellow cube shows our docked ligand in the binding cavity along with the 

highlighted pharmacophore  

The below figure shows our template ligand selected along with binding residues and 

pharmacophore being created by ligand scout.  
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Figure 19:  Figure of details of template ligand selected for pharmacophore 

modelling with bonding site residues. Yellow color shows Hydrophobic interaction 

and features with the residues whereas red arrow shows hydrogen bond acceptor 

feature. 

Our pharmacophore model consisted of 9 pharmacophore features out which 2 were 

hydrogen bond acceptor and 7 were hydrophobic interactions.  

Pharmacophore model validation  

To validate our pharmacophore model, the pharmacophore model was then screened 

from the rest of the docked dataset for internal test validation. Before screening the number 

of minimum matching features with pharmacophore was set to 4 for classification of active 

ligands The model was able to classify the ligands as TP = 193, TN = 135, FP = 0 and FN 

=2. The statistics of the classification were then evaluated via a confusion matrix. The 

resultant of the matrix showed an accuracy of 99%, asserting that the pharmacophore 
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model was able to predict and classify the ligands as precisely (actives as actives, inactive 

as inactive). However, the value of precision and specificity or True Negative Rate (TNR), 

i.e., 1.000, declared that the model is specific. Similarly, the model’s sensitivity or True 

Positive Rate (TPR) (0.98) indicated that the model is sensitive for all features associated 

with actives compounds (TP). The specificity of 1.000 declared that given feature predicted 

inactive more precisely as compared to actives (table 4.1). 

Table 14: Statistical Evaluation of the Pharmacophore  

Statistical approach Implementation of results Model Evaluation 

Accuracy  = 195+135/195+135+0+2 0.99 = 99% 

Sensitivity  

 

= 195/195+2 0.9800 

Specificity  

 

= 135/135+0 1.000 

Precision rate 

 

= 195/195+0 1.000 

Another statistical metric was employed to assess the model's predictive accuracy. The 

Matthews Correlation Coefficient (MCC) assesses the degree of agreement between 

anticipated and observed values. It is a correlation coefficient that takes all variables (TP, 

TN, FP, and FN) and offers model classification scores. A number close to or around 1 

shows the best agreement between expected and actual responses. The MCC score for the 

pharmacophore model was 0.987, indicating that the selected template and all true positive 

drugs with related properties can suppress T-type calcium overexpression. 

4.6 Virtual Screening 

The evaluated model was then screened against the two external datasets. For this step, 

datasets from publicly accessible databases were retrieved and preprocessed. The first and 

second datasets consisted of chemical data from the Drug Bank Database (10631), ZINC 

Database (885). To evaluate the metabolic profiles of all chemical entities, the substrate 

from all databases were passed through CYP Model. The selected entries from the CYPs, 

i.e., 201 from Drug Bank Database, 303 from the ZINC database and 9 from EPI/SMA 

Database were identified as non-inhibitors of the CYPs. These compounds were then 
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screened against the in-house hERG pharmacophore model, to avoid cardiotoxicity. At the 

end of the query, 185 (Drug Bank database), 177 (ZINC database) were identified as non-

inhibitors of hERG.  

After ADMET toxicity analysis, the selected compounds were screened against the 

best-featured pharmacophore model. The resultant hits demonstrated that 8 compounds 

from the above listed database entries have potential features. These identified compounds 

could be effective and safer against neuroblastoma and therefore can be utilized further for 

lead optimization protocol.  

Following below show our 6 hits which can be further used for drug repurposing  

 

Vitamin A is a vitamin important for retinal function that is used clinically to correct 

vitamin A deficiency. In previous studies Treatment of both MYCN gene-amplified and 

non-amplified human neuroblastoma cell lines with all-trans-retinoic acid (ATRA) 

caused a marked decrease in MYCN RNA expression and arrest of cell proliferation. 

Vitamin A is used in neuroblastoma treatment and our identified target can also be used 

in treatment of Neuroblastoma.(52)  
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 Beta carotene is a vitamin A precursor found in various nutritional supplements and health 

products and is an approved Drug. In clinical trials Cyclophosphamide this molecule is 

used is a nitrogen mustard used to treat lymphomas, myelomas, leukemia, mycosis 

fungoides, neuroblastoma, ovarian adenocarcinoma, retinoblastoma, and breast carcinoma. 

This identified drug can also be repurposed for treatment of neuroblastoma. (53) 

 

geraniol has also been shown to sensitize tumor cells to commonly used chemotherapies 

including Fluorouracil and Docetaxel and represents a promising cancer chemo preventive 

agent and can help to treat neuroblastoma as well. Amine oxidase [flavin-containing] B is 
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the target which activity is  that it catalyzes the oxidative deamination of biogenic and 

xenobiotic amines and has important functions in the metabolism of neuroactive and 

vasoactive amines in the central nervous system and peripheral nervous system and our 

target is also related to abnormality in ion exchange i.e. calcium ion exchange due to 

calcium channel in nervous system so they might be related to each other and might be 

purposed as a drug or agent in neuroblastoma treatment. (39) 

 

 

 

Diflunisal, a salicylate derivative, is a nonsteroidal anti-inflammatory agent (NSAIA) with 

pharmacologic actions similar to other prototypical NSAIAs. Diflunisal possesses anti-

inflammatory, analgesic and antipyretic activity.  

Prostaglandin G/H synthase 1 is its target which is involve in regulation of cell 

proliferation. Increased cell adhesion, phenotypic alterations, apoptosis resistance, and 

tumor angiogenesis are all linked to PTGS2 upregulation. In cancer cells, PTGS2 is a 

necessary step in the formation of prostaglandin E2 (PGE2), which regulates motility, 

growth, and apoptosis resistance.(54) 
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Alitretinoin is a key regulator of gene expression in neoplasms and throughout growth and 

development. Tretinoin, also known as retinoic acid, is a nutrient generated from maternal 

vitamin A that is required for optimal growth and development. Tretinoin in excess can 

cause teratogenic effects. It's used to treat psoriasis, acne vulgaris, and a variety of other 

skin conditions. It's also been authorized for the treatment of promyelocytic leukemia 

(acute promyelocytic leukemia). 

There are 6 targets of Alitretinoin which help in gene expression and are related to our 

target in a way that due to over expression of CACNA1G gene there is more influx of 

calcium leading to cell proliferation a cancer. By using this drug for treatment of 

neuroblastoma there is a possibility that our gene gets down regulated and hence calcium 

influx is maintained. Moreover, retinoid treatment is used in treatment of neuroblastoma 

so these drugs can be repurposed for the therapy of neuroblastoma.  



 CHAPTER 05: DISSCUSSION  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 5 

DISCUSSION 

 

 

 

 

 

 

 

 



 CHAPTER 05: DISSCUSSION  

 
 

 

Neuroblastoma is a disease which is caused by over expression of T type calcium channels 

which is basically a gene CACNA1G. This gene over expression is because of gene 

duplication in certain DNAs leading to neuroblastoma. Over expression of this gene leads 

to more influx of calcium ion in cell and lead to disruption of hemostasis of calcium 

signaling. In order to overcome this calcium ion blocker are design so that influx of calcium 

can be controlled. The first module performed was molecular docking module was 

performed in which our ligands data set was docked within the binding site of our protein 

PDB ID: 1KZP which showed that these ligands can be potential inhibitors of calcium 

channel but weak co relation between IC50 and docking score showed that our ligand 

interactions are not stable. To validate our stability of interactions PLIF analysis was done 

in which all the mentioned residues in section 3 were involve in binding with ligands. to 

validate our model data of actives and inactive ligands several classification models were 

built based on machine learning. 80% of our data was classified as training data rest 20 

percent was used as a test set for validation of our model. The results of both test and 

training data in decision tree J-48 classifier showed good results around 95 percent of 

accuracy which showed our model was very good. Next Multilayer perceptron model was 

built in weak in which the filtered data set was used and only 17 descriptors were given as 

an input to avoid misclassification and low accuracy. The results of SVM on training and 

test data set also validated our model with 97 percent accuracy hence leading to validation 

of our decision tree model as well.  

Pharmacophore modelling was done in order to identify the essential feature of our ligands 

hat are responsible for the biological activity. Using ligand scout Our pharmacophore was 

generated containing 2 hydrophobic aromatic, 4 hydrophobic aliphatic and 2 Hydrogen 

bond acceptors. This pharmacophore was further used for virtual screening against 

neuroblastomic drugs, FDA-approved drugs from different databases. Considering the 

pharmacokinetic properties, the compounds of these databases were assessed based on 

ADMET property. The compounds from the filters like CYPs and hERG (anti-target 

candidates) were expected to be non-carcinogen and non-toxic, thus reliable as potential 

inhibitors against the targeted protein and are proposed as potential leads for further in 

silico processing.   From the previous studies Vitamin, A and retinoic acid isomers were 
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identified to treat high risk neuroblastomas. As they are known to inhibit the voltage gated 

calcium channels. It means we can use vitamin A precursors and retinoic acid to inhibit the 

voltage gated calcium channel activity. In one more study it was found that RA delayed 

rate of channel activation but increased rate of deactivation. This might be useful in 

neuroblastoma treatment as the overexpression of calcium channel may be suppressed by 

using RA and then it may lead to apoptosis instead of cell proliferation. When we see our 

residues involve in binding as well as shown in our pharmacophore that are GLU923A, 

ASP 1776 they are important binding residues for inhibition of calcium channel as they 

were also identified in previous studies to be important for binding of ligands in calcium 

channel. 
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In the end we conclude that present study was focused on finding the potential inhibitors 

of calcium channel so that over influx of calcium ion can be controlled to avoid 

neuroblastoma. After molecular docking of 330 Ligands using GOLD suite we found out 

that residues Leu 353, Gln 922, Phe 384 and Gln 1816 were important residues identified 

to block the activity of CACNA1G which was found after PLIF analysis. Furthermore, 

template selection for pharmacophore modelling as done in which template   with highest 

pIC50 =9.0Nm was selected. Using Ligand scout software our Pharmacophore model was 

built which identified all the important pharmacophore features responsible for enhancing 

the activity of ligands in blocking the activity of CACNA1 which included total features. 

2 were Hydrogen bond acceptors and 7 were Hydrophobic interactions. Furthermore, our 

pharmacophore model of blocker of CACNA1G was screened against internal library 

which showed 99% accuracy in classifying the actives an in actives ligands data set. This 

model was further screened against Drug bank FDA Approved drugs and ZINC library of 

natural compounds out of which were filtered against CYP450 and resulting 201 non hits 

from Drug bank and 303 non-hits from ZNC were further screened out by our in hERG 

Model. The resultant left ligands were 185 non hits from Drug bank and 177 Non hits from 

Zinc Library which were further virtually screened against our pharmacophore model, and 

we got 8 hits out of which 3 are in experimental stages while rest 5 are been approved and 

deposited in Drug Bank. The hits which are either vitamin A or precursor of Vitamin A 

Like Beta Carotene and Alitretinoin validates the authenticity of our model and strengthens 

it as Vitamin A and its precursors are used in treatment of neuroblastoma. Geraniol and 

Diflunisal can be repurposed as eh drug for treatment of neuroblastoma as Geraniol is used 

in treatment of cancers and used to sensitize tumor cells. In case of Diflunisal which is used 

to treat arthritis and osteoporosis can be used for treatment of neuroblastoma because of its 

target known as Prostaglandin G/H synthase 1. In cancer cells, PTGS2 is a key step in the 

production of prostaglandin E2 (PGE2), which plays important roles in modulating 

motility, proliferation and resistance to apoptosis. So, by targeting it we can induce 

apoptosis in neuroblastoma as well.  

The machine learning module done in study helps us to conclude that our ANN model 

built by selective features of decision tree J-48 outperforms and classify CACNA1G  

inhibitors with accuracy above 90% on training set  and 100 % accuracy on test set. 
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