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Abstract

We study continuous mode model of photon state. We also study the models

of photo detectors. We develop the continuous mode model for real world

photon detectors which consider the effects of variation in efficiency of detec-

tor depending upon its spectral function. We study the nature of entangle-

ment in different Bell states and develop continuous mode form of Bell states.

We verify the behavior of Bell states by finding the coincidence between detec-

tors acting as Bell state analyzers. Entanglement is the phenomenon which

plays key role in teleportation. Once we varify that nature of entanglement

remains preserved in our continuous mode model of Bell state, we teleport an

unknown continuous mode state using our continuous mode model of photon

states and photo detectors. We calculate the three-fold coincidence among

four detectors while two detectors act as Bell state analyzers and other two

are used for detection of teleported state. We find that three-fold coincidence

probability curves are in accordance with expected values.
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Chapter 1

Introduction

Quantum information and computation involves the study of processes used

for manipulating the information while making use of systems that obey laws

of quantum physics. This branch of science extends back to the start of 20th

century when scientists were unable to understand and explain various phe-

nomena on the basis of existing rules and principles of physics. For example,

it was observed that light behaves like both waves and particle. It was known

from ancient times that light has wave behaviour but discovery of the fact

that light also has particle like properties jolted the understanding of physical

world. This is where quantum mechanics took birth and concept of photon

was introduced. It was learned that when light was used to find the position

of a particle at micro level, its velocity changed during the measurement pro-

cess. At micro level such a change can not be ignored when energy of photon

is greater compared to mass of particle. This change in velocity during mea-

surement of position led to the fact that both position and momentum of a

micro particle can not be measured together perfectly. This result is a direct

consequence of wave-particle duality of light. In macroscopic world, objects

posses greater mass and hence momentum of an object does not changes

due to position measurement and we can measure momentum and position

simultaneously.

Once the formalism for quantum mechanics was established, major focus

of quantum mechanics remaind on the study of properties of matter at micro-

scopic level. On the other end, information theories remaind focused on data
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processing rather than information extraction. So extraction of information

from micro particles in context of quantum mechanics constitutes the subject

matter of quantum information science. We can divide it furthur into quan-

tum computation and quantum information theory. Quantum computation

deals with different algorithms for problem solving and quantum information

theories are related to obtaining and processing information [1].

In our thesis we make use of quantum mechanical system to transfer

information stored in a quantum state from one point to another. Entangled

state is used as tool of communication between two points. Once the state

is transfered, information is extracted by performing quantum measurement.

Result of measurement tells us about the state transfered. This type of

communication is called quantum teleportation.

In section 1.1 we describe the difference between classical and quantum

information arising due to different nature of classical and quantum me-

chanical systems. In section 1.2 we explain the qubits which are used to

represent quantum information. In section 1.3 we explain the measurement

process using measurement operators. We also explain the properties of these

measurement operators in this section. In section 1.4 we describe the quan-

tum entanglement which lies at the heart of most quantum communication

processes. In section 1.5 we explain the process of quantum teleportation

between two distant points.

1.1 Classical Information vs Quantum Infor-

mation

Claude Shannon, in 1940 [2], pointed that major problem in communica-

tion is producing message at destination exactly or approximately similar to

one sent from source. Methods and tools used in a particular communica-

tion process may vary greatly depending upon nature of communication pro-

cess. While studying communication we often come across term signalling.

Signalling in this case refers to the physical disturbance or perturbation in

transmission media used for transmitting information between two points via
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communication channel. Shannon developed the models for communication

and laid the basis for information theory.

After Shannon’s work, it was realised that information theory is not lim-

ited only to transmission of information but it can also play important role

in understanding of some other phenomena like transformation and storage

of information. It is not only possible to transmit information from one place

to another but it is also possible to transmit information from one moment

to other in time by storing it in some storage device [2].

Now a days, classical information is not the only subject of interest but

quantum and biological information is also being studied extensively. These

types of information are hidden in some real physical systems and can be

associated with a particular property of system. Classical information is

processed (stored, transmitted, transformed) by physical phenomena which

obey the laws of classical physics. Similarly quantum information is processed

with the help of quantum systems which follow rules of quantum mechanics.

Classical and quantum systems differ from each other and similarly classi-

cal and quantum information are different from each other in many aspects.

Classical information is stored in a system which has definite and defined

state. We can clone the particular state of system. We are able to mea-

sure the state without disturbing or changing the state. On the other hand

quantum information is stored as some property of quantum system. For ex-

ample, quantum information can be stored in polarization of photon or spin

of an atomic and sub-atomic particle. These system have unique properties

like superposition of states and entanglement. These properties can not be

understood or explained with the help of classical physics and thus have no

classical analogy. The quantum state associated with quantum information

can not be cloned and we can not measure the state to obtain information

without altering it.

Study of quantum information theory covers: (i) classical information

transmission through quantum channels; (ii) quantum information trans-

mission through quantum channels; (iii) quantum entanglement effect on

transmission of information; (iv) informational properties during process of

quantum measurement.
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Quantum communication is accomplished with the help of a source, quan-

tum channel and a recipient. Source provides the quantum system in required

quantum state containing information in it. Quantum channel or path trans-

mits the information from one point to another. Recipient is one that receives

the signal and get information out of it by decoding signal. Quantum channel

transfers the information from one spatial point to another point as well from

one moment to another moment of time. Information transmitted by quan-

tum communication processes is not always correct and may have altered

due to some errors. However various methods have also been established to

remove these errors.

1.2 Qubits

Qubit is used to represent the quantum information just like bit is used to

represent classical information [3]. Classical bit can be regarded as a physical

object having one stable and distinct state of two possible states for system.

We conventionally represent a bit with the help of binary code of 0 and 1. A

bit also represents the classical information amount so we need many bits to

encode information created by classical system. States produced by classical

information sources are always distinguishable and stable among many pos-

sible output states. Qubit is quantum counter part of a bit. It is a quantum

system with two possible quantum states. Examples of such systems include

up and down spins of an electron, an atom with excited or unexcited state

and a photon with possible horizontal and vertical polarizations. Qubit is

traditionally represented by state vectors |0〉 and |1〉. |0〉 and |1〉 are orthog-

onal states and play similar role as 0 and 1 plays in classical systems, but

their role in two cases is not exactly same. A classical bit will exist only in 0

or 1 but a qubit can exist in state |0〉, |1〉 or in superposition of both states.

If |A〉 represent the state of qubit then superposition of two state will be

written as

|A〉 = α |0〉+ β |1〉 , (1.2.1)

α and β are complex numbers having sum of modulus square of each equal

to 1. Thus depending upon the value of α and β a qubit can have a number
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of possible states. These many possible states associated with qubit provide

basis to believe that qubit can store greater information as compared to clas-

sical bits. Information stored in qubit can be obtained by doing measurement

on qubit [4]. Measurement of qubit is explained in next section.

1.3 Measurement on Qubit

Measuring a qubit will reveal the information encoded in qubit. For a given

space of quantum state |ψ〉 have orthonormal base V n = |xi〉, we have set

of measurement operators as Mm for n number of possible measurements

with m = 1, 2, ...n. Such a set of operators will only qualify as quantum

measurement operators if they fulfill two conditions which are given as

• Product of all operators M †M must be positive.

• These operators must obey completeness relation
∑
M †M = 1.

Using these measurement operators we can get the probability for measure-

ment of m as

pm = 〈ψ|M †
mMm|ψ〉. (1.3.1)

Other thing we can measure using these measurement operators is post mea-

surement state. We can find state after measurement |ψ〉′ as

|ψ〉′ = 1
√
pm
M |ψ〉

=
1√

〈ψ|M †
mMm|ψ〉

M |ψ〉 .
(1.3.2)

There are many possibilities for a quantum measurement, however we will

take the measurement in basis of state. Thus we will write the projector

operator M †
m = |xm〉 〈xm| for pure state |xm〉. Writing the state |ψ〉 as

|ψ〉 =
∑
xi |xi〉 and with M †

mMm = |xi〉 〈xi| we can easily see that probability

for |ψ〉 to be in state |xm〉 is |xm|2. Similarly state after measurement will be

|ψ〉′ = xm
|xm|

|xm〉 . (1.3.3)



15

Let a qubit is in superposition of states |0〉 and |1〉 having state |Q〉 as

|Q〉 = α |0〉+ β |1〉 , (1.3.4)

where α and β are complex probability amplitude satisfying the relation

|α|2 + |β|2 = 1,

|α|2 is the probability of finding the qubit in |0〉 state where as |β|2 gives the

probability of finding qubit in state |1〉. So according to relation |ψ〉′= xm
|xm| |xm〉

possible states of qubit after measurement are{
α
|α| |0〉
β
|β| |1〉

(1.3.5)

As the qubit is in superposition of |0〉 and |1〉, measurement will result in

collapse of the state |ψ〉 either in |0〉 and |1〉. Operators for measurement

of qubit state |Q〉 will be M0 = |0〉 〈0| and M1 = |1〉 〈1|. Applying M0 will

result in collapse of state |Q〉 into |0〉 with probability p0 = |α|2. Application

of M1 will give |1〉 with probability p1 = |β|2. This measurement reduces

the quantum state into classical situation with bits 0 or 1. However there

is little difference between the two cases. In classical bits we are sure about

the information encoded in 0 or 1 bit but in quantum measurement we are

not certain if information is encoded in |0〉 or |1〉 due to probabilities associ-

ated with measurement result. In order to explain this property we consider

different possible cases given below

• If α = 0 and β = 1 then p0 = 0 and p1 = 1.

• If α = 1√
2

and β = 1√
2

then p0 = p1 = 1
2
.

• If If α = 1√
3

and β = 2√
3

then p0 = 1
3

and p1 = 2
3
.

• If α = 1 and β = 0 then p0 = 1 and p1 = 0.

In case 1 we are sure that qubit will collapse in bit 1 giving information.

In case 2 we have equal probability for 0 and 1 bits. In case 3 chances for

qubit to collapse in bit 1 are twice then bit 0. Case 4 is opposite of case
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1 and we have 100% certainty that qubit will collapse in bit 1. These four

results have been obtained by using operators M0 and M1. Here we get an

additional insight about measurement of qubit. If we concentrate on case 3

we see that when we use operator M0 we have 1
3

chances of obtaining 0 bit

and 2
3

are the chances that measurement will fail. Similarly chances of failure

for measurement while using M1 are 1
3

and those of success are 2
3
. Failure of

measurement means that if we use operator Mm for input state |Q〉, there is

probability |xm|2 for state to collapse in |xm〉 and chances that this collapse

will not occur are 1 − |xm|2. When output is not |xm〉 then no information

is obtained from measurement and measurement is said to be failed. As a

result of failed measurement on qubit, information is lost irreversibly and

qubit is annihilated [5–7].

1.4 Entanglement

In quantum mechanics, a system comprising of subsystems, sometimes ex-

hibits a very interesting phenomenon called entanglement. It is perhaps most

prominent difference between classical and quantum physics. In classical

physics we can corelate two particles by preparing the system in a particular

state and then we can communicate this state to a distant observer to prepare

the same state. These corelation can fully be understood and explained using

classical probability distribution. However in quantum mechanics situation

is completely different and corelations can not be explained simply by using

laws of classical physics [8, 9].

In 1935 Einstein, Podolsky and Rosen [10] suggested a thought experi-

ment describing incompleteness of laws of quantum mechanics. This thought

experiment is normally known as EPR paradox. EPR paradox was widely

discussed and it was finally understood with the help of non local property

of quantum mechanics. It was proposed that two particles can interact with

each other even if they are very far apart from each other and they can

not behave independently. Such interacting particles are called as entangled

particles and this phenomenon of long distance interaction is called entan-

glement.



17

Later on experiments also confirmed this non local and long distance

interaction between particles [11]. Thus the focus on entanglement shifted

from being a fundamental quantum mechanics problem to its utilization in

different applications. During 1980s and 1990s, different quantum informa-

tion processes including quantum teleportation, quantum cryptography and

quantum algorithms for quantum computations were proposed and quantum

entanglement lied at the heart of all these processes. Since then quantum

entanglement is considered to be a very important resource in quantum com-

munication and information processes.

Suppose we have two qubits A and B. If both qubits are in state |0〉 then

state of system can be written as |0〉A |0〉B. Similarly if qubits are in state |1〉
the state of system will be |1〉A |1〉B. If we express system in superposition

of two states then

|ψ〉 =
|0〉A |0〉B + |1〉A |1〉B√

2
. (1.4.1)

This state |ψ〉 is an example of entangled state [12].

Classical and quantum correlations are different in nature. Classical cor-

relations are usually consequences of conservation laws. Such an example

is decay of a particle at rest. When a particle decays, two newly formed

particles fly apart in opposite directions as required by law of conservation

of momentum. If we measure the momentum of one particle, we will know

the momentum of other as according to conservation of momentum both

particles has equal momentum but opposite directions. Momentum of both

the particles is independent from each other and measurement of one has no

effect on other. Measuring the momentum of one and finding the momentum

of other is direct consequence of law of conservation of momentum. This

is an example of classical correlation between two particles. Now we see at

the quantum correlation between two particles. Let us we have an entangled

state |ψ〉 given as

|ψ〉 =
1√
2

(|↑1↓2〉+ |↓1↑2〉), (1.4.2)

here |↑〉 and |↓〉 represent an electron with spin up and down respectively.

Similar to that of classical correlation, when we perform measurement on

particle 1 and find that particle 1 is in spin up state we will immediately know
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that particle 2 is in spin down state and vice versa. Difference between two

cases lies in the superposition of quantum states which makes the outcome of

measurement completely random. This means that before measurement we

do not know if the measurement will result in |↑1〉 or |↓1〉. As soon as particle

1 collapses in |↑1〉 or |↓1〉 it appears that immediate transfer of information

between two particles has been taken place and particle 2 simultaneously

collapses in corresponding |↓2〉 or |↑2〉. This transfer of information occurs

even when particles are very far apart.

Apparently this phenomenon violates theory of special relativity which

limits the speed of information transfer and states that no information can

travel faster than speed of light. However it is safe to say that no useful

information is travelled between two points. This can be assumed because

when entangled state is prepared, both particles (entangled) interact with

each other at some point during creating entanglement. After entanglement

when two particles move apart quantum state of system (containing two

subsystems) spreads over large spatial region and thus no information is

traveled between two subsystems during measurement. Entangled state of

system is a complete description and contains all necessary information about

subsystems present within. Entanglement is purely quantum mechanical

phenomenon and has no counter part in classical mechanics.

Entanglement plays important role in quantum communication processes

like quantum teleportation. Quantum teleportation is discussed in detail in

next section.[13,14]

1.5 Quantum Teleportation

Term teleportation has been borrowed from parapsychology where it means

transporting things or persons from one place to another with the help of

mental powers. This term became popular in science fiction where transport

between two points was instantaneous. However this dream is still to be

fulfilled. Special theory of relativity does not allow the transportation of an

object faster than speed of light. Basic idea behind quantum teleportation

is that we do not need to transport material objects between two points but
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there may already exist such objects and we just have to arrange them in

proper way and we transmit state of a system. To achieve this we follow a

set of instructions which are present in quantum mechanical wave function of

system with maximum information regarding an object. This is like measur-

ing the wave function of system at one place and then sending information

about measurement to some other places by using classical means of commu-

nication and there this information can be used to reconstruct original wave

function. We imagine that Alice (sender) wants to teleport a state to Bob

(receiver). It is not necessary for Alice to know the state to be teleported.

Problem on Bob’s end is that he can not reconstruct the state unless Bob’s

system is related to Alice’s system. This relation between two systems is

created by entanglement. Entanglement plays key role in quantum telepor-

tation. Due to to entanglement between two systems (Alice’s and Bob’s),

measurement on one system affects the other system. So the state teleported

to Bob from Alice directly depends upon this measurement process.

Bennett et al. (1993) proposed a scheme for teleportation of polarization

state of photon [15]. We take the polarization state of photon to be

|φ1〉 = α |H1〉+ β |V1〉 , (1.5.1)

where H1 and V1 are horizontal and vertical polarization of photon labelled

as 1. α and β are complex numbers and satisfy the relation |α|2 + |β|2 = 1.

Teleportation is done with the help of entangled photons in polarization

degree of freedom. State of such an entangled system is∣∣Ψ−〉 =
1√
2

(|H2V3〉 − |V2H3〉). (1.5.2)

Photon 1 is sent to Alice and photon 2 is sent to Bob. Our task here is to

transfer state of photon 1 to photon 3 present at Bob’s end. To complete

this task, Alice has to do measurement on photon 1 along with photon 2.

This measurement destroys the state of both Photon 1 and 2. In next step

Alice communicates her output of measurement to Bob through classical

channel. Once Bob knows the result of measurement carried out by Alice,

he is in a position to determine which operation he has to perform on his
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Figure 1.1: The scheme of quantum teleportation. A source labelled as S
produces a pair of entangled photons. One photon is sent to Bob and other to
Alice. Alice also has a photon in path 1 whose polarization state Alice wants
to teleport. Alice performs Bell state measurement (BSM) using a 50 : 50
beam splitter and four detectors labelled as Ha, Va, Hb, Vb. Polarization
beam splitter (PBS) placed before detectors differentiate between horizontal
and vertical polarization and directs them to respective detectors.

photon in order to get the state of photon 1. Measurement process followed

by Alice is Bell state measurement (BSM). During measurement we combine

photon 1 and photon 2 on 50 : 50 beam splitter. Mathematically we write

the combined state of three photons after beam splitter application and little

rearrangement

|Ψ123〉 = |φ1〉 ⊗
∣∣Ψ−23〉 =

1

2
[(α |V3〉 − β |H3〉)Φ+

12 + (α |V3〉+ β |H3〉)Φ−12
(−α |H3〉+ β |V3〉)Ψ+

12 + (−α |H3〉 − β |V3〉)Ψ−12].
(1.5.3)

Photon 1 and Photon 2, after passing through beam splitter, are in mix-

ture of all Bell states. Equation (1.5.3) giving complete state of system
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collapses to only one part depending upon measurement result. State of

photon 3 present at Bob’s end is given in round brackets. Careful inspection

of equation (1.5.3) reveals that fourth term is identical to state of photon

1. Other three terms can be made identical to state of photon 1 by using

different operations and changing the signs of α and β. During measurement

Alice has to distinguish among four Bell states. Using linear optical setup,

Alice can only distinguish between |Ψ+〉 and |Ψ−〉 where as |Φ+〉 and |Φ−〉
can not be distinguished. Due to indistinguishability of |Φ+〉 and |Φ−〉 Bob

can not know which operations he has to perform. Thus Teleportation will

only work for 50% of times. However we can also give away the results when

Alice detects |Ψ+〉 and thus we will say teleportation is successful only in

25% of cases when detectors clicks for |Ψ−〉 [16–19].

Teleportation has emerged as an alternative way of communication and

is of great interest for scientists as it may lead to faster communication

compared to usual classical communication means.

1.6 Thesis Outline

Our aim is to develop a model for quantum teleportation that incorporates

practical limitations imposed by inefficiencies of apparatus and environmen-

tal interference during teleportation. In this thesis, we develop continuous

mode spectral representation of state obtained from parametric down con-

version process. We develop a continuous mode model of detector which

responds to spectral distribution on input state and also incorporate effects

of limited efficiencies. This continuous mode model is a base model to incor-

porate quantum memories in quantum communication setups.

In chapter 2 we have given an overview of Dirac notation of states and

density operators. We describe the sources used to produce entangled photon

pairs. We explain the process of BSM. Further we explain detector models

including practical imperfections. Then we describe how a single mode state

is converted to a continuous mode state.

In chapter 3 we convert the single mode state obtained from parametric

down conversion into continuous mode state. We develop detector model
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whose efficiency is different for different modes of incident state. In the end we

apply continuous mode model for verification of entanglement in continuous

mode photon state and find the three fold coincidence probability to check

the success of quantum telportation.

In chapter 4 we conclude our thesis.



Chapter 2

PRELIMINARIES

In quantum communication, major focus lies on the development of different

techniques and models which allow better and more practical ways for doing

different quantum communication processes such as quantum teleportation,

quantum key distribution and quantum dense coding. Various models have

been proposed over the time for carrying out these processes. Some of these

models use quantum mechanical properties of photons to achieve the goals

while others use electrons,protons and atoms to get quantum mechanical

environment.

We use a linear optical setup for quantum communication in which we

take entangled photons as our resource. We consider limited efficiency for

detectors used during measurement and extraction of information stored in

photons. Model for single mode photons has already been developed and we

give an over view of previously developed models. We also incorporate the

previously developed continuous mode model state of photon in our contin-

uous mode model of detectors and photons.

In this chapter we give the background knowledge of setup we use for

continuous mode teleportation. For this purpose we explain the preliminar-

ies of quantum mechanics. In section 2.1 we explain Dirac representation

of quantum mechanics. In section 2.2 we describe density matrix and its

properties. In section 2.3 we give details of photon sources used to create

entanglement. In section 2.4 we explain maximally entangled Bell’s states

and process of BSM. In section 2.5 we give the details of already developed

23
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photon detector models with practical limitations. In section 2.6 we explain

how can we convert the single mode photon number state into continuous

mode continuous state.

2.1 Dirac Representation of Quantum Me-

chanics

A quantum mechanical system is represented by state vectors. These state

vectors are Hilbert space elements and represent physical state in which sys-

tem exists. These state vectors can be written in different bases. This is

similar to a situation where a vector is written in components in different

coordinate systems. A vector does not depend upon the coordinate system

which is used to represent vector in its components. Similarly a quantum

state does not depend upon bases used to represent it. Dirac introduced the

notation of kets, bras and bra-ket. These terms are explained as follows [20]:

Kets

If a system has state vector ψ then we represent it as |ψ〉 in Dirac notation

and call it ket-vector or just ket for simplicity. These kets are elements of

Hilbert space which we also call ket-space.

Bras

It is a well known fact of linear algebra that we can associate a dual space

with any vector space. So if we have a ket state vector |ψ〉, dual space element

associated with it is represented as 〈ψ|. This is called bra vector or just bra

for convenience. Thus for any ket vector |ψ〉 there will be unique bra vector

〈ψ|.

Properties of Kets and Bras

If we have a ket vector |ψ〉 and corresponding bra vector 〈ψ| then ket and

bra vector are related as

|ψ〉† = 〈ψ| 〈ψ|† = |ψ〉 (2.1.1)
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For bras and kets we have one to one correspondence.

a |ψ〉+ b |φ〉 ↔ a∗ 〈ψ|+ b∗ 〈φ| (2.1.2)

with a and b being complex numbers. Multiplication of a ket vector with

complex number results in another ket vector. Same is true for bra vector.

Bra-ket

Inner product is represented by 〈|〉 symbol in Dirac notation. Inner product

is also called as scalar product. Inner product (ψ, φ) is represented as 〈ψ|φ〉.

(ψ, φ) = 〈ψ|φ〉 (2.1.3)

Operators

An operator is defined as to be a mathematical rule which when operates on

a ket |ψ〉 changes it to another ket |ψ′〉 of same space. Similarly when an

operator operates on bra 〈φ|, it changes it to another bra 〈φ′| of same space.

Â |ψ〉 = |ψ′〉 〈φ| Â = 〈φ′| (2.1.4)

Projection Operator

An operator is said to be projection operator if it is hermitian and is equal

to own square.

Â† = Â P̂ 2 = P̂ (2.1.5)

2.2 Density Matrix

A density operator helps us to distinguish between mixed and pure states of a

quantum mechanical system system. Pure states have maximum information

stored within and can be written as superposition of basis vectors in an

orthonormal basis. Mixed states need a statistical approach and explain

ensemble of states (pure). For example a quantum system can exist in any

pure state |ψ1〉, |ψ2〉 and |ψ3〉 having probabilities of p1, p2 and p3. Density
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operator also describes the composite system existing in entangled state.

Density operator of pure state |ψ〉 is defined as

ρ = |ψ〉 〈ψ| . (2.2.1)

Density operator for mixture of pure states is defined as

ρ =
∑
k

pk |ψk〉 〈ψk| , (2.2.2)

where pk represent the probability of each pure state. Density matrix provides

us a way to represent the system with mixed states. Example of such system

may be the one which contains two subsystems interacting with each other

[21].

2.2.1 Properties of Density Operators

• Trace of density operator is unity.

Tr(ρ) = 1. (2.2.3)

• Density operator must be non negative ρ ≥ 0.

• Density operator must be Hermitian ρ† = ρ.

2.3 Photon Sources

Quantum communication can be achieved by using atoms and electrons but

practically photons are the information carrier in most of the long distance

communication processes. Now a days, quantum communication is consid-

ered to be most advanced technology for processing quantum information.

For example, many quantum communication processes like teleportation and

cryptography have been successfully achieved in laboratories. There are dif-

ferent techniques to generate entangled photons for quantum communication.

These processes use entangled photons as resource. One Such technique is

Parametric Down Conversion (PDC).
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2.3.1 Parametric Down Conversion

It is a process in which a photon incident on a nonlinear crystal of non-

linearity χ(2)(χ(2) represents second order nonlinearity) is down converted

into two photons having lower individual frequencies and momenta as com-

pared to incident photon but sum of frequencies and momenta of daughter

photons is equal to frequency and momentum of original incident photon.

It is a non linear process. In quantum communication processes like quan-

tum teleportation, entangled photons are used. Now a days PDC is used as

standard tool for creating photons in entangled states.

Two photons produced after down conversion are traditionally labelled

as signal and idler photons. Process is governed by the conditions given by

ωp = ωs + ωi,

kp = ks + ki,
(2.3.1)

where ωp is frequency of parent photon and ωs and ωi are frequencies of signal

and idler photon respectively. Similarly kp, ks and ki represent wave-vectors

for parent, signal and idler photon respectfully. kp = ks +ki is called “phase

matching condition”.

Parametric down conversion of photons is a probabilistic process. This

means that every photon passing through crystal will not decay in two pho-

tons. Usually efficiency of down conversion is very small and is of the order

of 10−6 [22]. Schematic representation of PDC is shown in Fig (2.1)

A photon can be down converted either by spontaneous PDC or stimu-

lated PDC. In stimulated PDC [23] we send a beam of higher frequency to

interact with non linear crystal of non linearity χ(2). This beam is known as

pump beam. We send another beam of lower frequency that interacts with

the pump beam inside crystal. This second beam is called as signal beam.

Signal beam is amplified and pump beam is depleted. During this process

another beam called ”idler” beam is generated because of energy conserva-

tion. Frequency of idler beam is the difference of frequency of pump and

signal beam.
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Spontaneous PDC involves single incident beam of photons called signal

beam. Photon in signal beam interacts with non linear crystal and sponta-

neously decays into two daughter photons which are conventionally termed

as signal and idler photons.

In addition to frequencies and wave vectors, polarization is another prop-

erty which can be associated with down converted photons. Based on polar-

ization of down converted photons there are two types of PDC which are

• Parametric down conversion type-I

• Parametric down conversion type-II

Parametric Down Conversion Type-I

Signal and idler photons produced as a result of PDC type-I have identical

polarization. For example, If signal photon has horizontal polarization de-

noted as H then idler photon will also have horizontal polarization. Similarly

if signal photon has vertical polarization V then idler will also be in vertical

polarization state. State of photons produced in PDC type-I can be written

as ∣∣φ+
〉

=
1√
2

(|HsHi〉+ |VsVi〉).∣∣φ−〉 =
1√
2

(|HsHi〉 − |VsVi〉).
(2.3.2)

In type I PDC, polarization of signal and idler photon is perpendicular to

the polarization of pump photon. For example if pump photon has ordinary

polarization then signal and idler photons will have extra ordinary polariza-

tion [24]. Extra-ordinary polarization is parallel to optical axis of crystal

used to down convert the pump photon and ordinary polarized photons have

polarization orthogonal to optical axis direction.

Parametric Down Conversion Type-II

In PDC type-II, signal and idler photons have polarization orthogonal to

each other. If signal photon has horizontal polarization then idler photon
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Figure 2.1: shows parametric down conversion process. Photons coming out
of crystal form cones. In parametric down conversion type I both photons
belonging to single pair appear on same cone with same polarization of both
photons. In type II parametric down conversion photons produced as a
result of down conversion appears in different cones with one photon having
horizontal polarization and other with vertical polarization.

will possess vertical polarization and vise versa. Entangled states prepared

by PDC type-II can be represented as follows∣∣ψ+
〉

=
1√
2

(|HsVi〉+ |VsHi〉).∣∣ψ−〉 =
1√
2

(|HsVi〉 − |VsHi〉).
(2.3.3)

Down converted photons (signal and idler) emerge from crystal into two

cones. One cone contains photons with horizontal polarization and other

with vertical polarization. Condition of momentum conservations makes the

photons of each pair to lie on opposite side of pump beam. Entangled pairs

of photons exist at the points where both cones intersect each other [24].

2.4 Bell States and Bell State Measurement

Bell state measurement (BSM) is a key process in quantum communication.

It helps to observe and understand the interference of entangled photons.

2.4.1 Bell States

These states are named after the scientist John S. Bell. Bell states are

maximally entangled states. Let us have two photons which are entangled

to each other in polarization degree of freedom. This means as soon as we

know the polarization of photon 1, we can tell about polarization of photon
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2 provided with the information of entangled state. For a two qubit system,

there are four Bell states (Maximally entangled states)∣∣ψ+
12

〉
=

1√
2

(|H1V2〉+ |V1H2〉).∣∣ψ−12〉 =
1√
2

(|H1V2〉 − |V1H2〉).∣∣φ+
12

〉
=

1√
2

(|H1H2〉+ |V1V2〉).∣∣φ−12〉 =
1√
2

(|H1H2〉+ |V1V2〉).

(2.4.1)

These states have been used as basic tool in different quantum communica-

tion processes. One such example is quantum teleportation.

2.4.2 Bell State Measurement

Different quantum communication processes use entangled states as source.

Information stored in these entangled states is obtained by performing BSM.

Bell state measurement is an optical process that helps to distinguish between

Bell states. However, all the four Bell states can not be distinguished using

BSM based upon linear optical setup. We can distinguish between |ψ+〉
and |ψ−〉 but |φ+〉 and |φ−〉 can not be differentiated using linear optical

processes. Fig (2.2) shows the experimental setup for BSM.
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Figure 2.2: shows the model for performing Bell state measurement. Photons
present in path a and b are incident on a 50 : 50 beam splitter where these
photon interact each other and are reflected or transmitted by beam split-
ter. These photons then fall upon polarising beam splitters which transmit
or reflect photons depending upon their polarization. Finally photons are
detected at detectors which are labelled as Ha, Va, Hb, Vb.

A 50 : 50 beam splitter is one for which we have equal reflectance r and

transmittance t. |r| and |t| for 50 : 50 beam splitter is 1√
2
. Let I, R and

T be the amplitudes of incident, reflected and transmitted beams (classical

treatment) then beam splitter action follows

R = rI. T = tI. (2.4.2)

We assume beam splitter to be lossless so incident beam intensity must be

equal to sum of intensities of reflected and transmitted beams:

|I|2 = |T |2 + |R|2, (2.4.3)

which is possible if

|r|2 + |t|2 = 1. (2.4.4)

While treating quantum mechanically, we replace complex amplitudes of

beams (incident, reflected and transmitted) by respective annihilation op-

erators âk (where k = i, r, t). Similar to that of classical treatment we can
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write in quantum treatment

âr = râi. ât = tâi. (2.4.5)

These operators of every field must obey the following commutation relations

[âk, â
†
l ] = δkl.

[âk, âl] = 0.

[â†k, â
†
l ] = 0.

(2.4.6)

Since operators in equation (2.4.5) do not satisfy these commutation relations

so these are not providing complete quantum description of beam splitter

action. This problem can be solved by considering that in classical treatment

of beam splitter we may take incident beam only on one input port, but in

quantum mechanics, we cannot leave any input port empty. Even if we do

not take incident photons on both inputs we will have to take vacuum on

one input port.

Now beam splitter action on quantum operator can be written as

âr
ÛB−−→ 1√

2
(âi + ιâ0), ât

ÛB−−→ 1√
2

(ιâi + â0), (2.4.7)

where â0 represents operator for vacuum [25].

For the measurement process 50 : 50 beam splitter is used. Two photons

in entangled state enter the 50 : 50 beam splitter through spatial modes a

and b and leave in output channels leading to polarization beam splitter. If

|ψ−〉 is incident on beam splitter then two photons will appear in different

outputs and if any one of the |ψ+〉 , |φ±〉 is incident then both photons will

appear in same output. Polarization beam splitter shown in figure separates

horizontal and vertical polarization. If a state is incident and detector Ha

and Vb or Hb and Va give clicks then it will be indication that |ψ−〉 was

incident state. For |ψ+〉 we will get coincidence between Ha and Va or Hb

and Vb. For |φ±〉 we will get two clicks at same detectors which means we

will get HaHa, VaVa, HbHb, VbVb clicks [26].

Possibility of different outcomes for two photon after being incident at

50 : 50 beam splitter is shown in Fig (2.3).
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Figure 2.3: shows four possible outcomes for photons incident on 50 : 50
beam splitter. In case (i) both photons are reflected from beam splitter. In
case (ii) both photons coming in path a and b are transmitted. In case (iii)
photon in path a is transmitted and photon in path b is reflected. In case
(iv) photon on path a is reflected and photon in path b is transmitted.

In case of |ψ−〉 state, photons after beam splitter action appear on differ-

ent sides of beam splitter which can easily be shown as∣∣ψ−〉 =
1√
2

(|HaVb〉 − |VaHb〉)
ÛB−−→ ι√

2
(|HcVd〉+ |VcHd〉), (2.4.8)

where beam splitter operation is defined as

|Ha〉
ÛB−−→ 1√

2
(|Hc〉+ ι |Hd〉).

|Hb〉
ÛB−−→ 1√

2
(|Hc〉 − ι |Hd〉).

|Va〉
ÛB−−→ 1√

2
(|Vc〉+ ι |Vd〉).

|Vb〉
ÛB−−→ 1√

2
(|Hc〉 − ι |Vd〉).

(2.4.9)

Similarly for |ψ+〉 and |φ±〉 we get∣∣ψ+
〉

=
1√
2

(|HaVb〉+ |VaHb〉)
ÛB−−→ 1√

2
(|HcVc〉+ |VdHd〉). (2.4.10)
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And∣∣φ+
〉

=
1√
2

(|HaHb〉 − |VaVb〉)
ÛB−−→ 1

2
√

2
(|HcHc〉+ |HdHd〉+ |VcVc〉+ |VdVd〉),∣∣φ−〉 =

1√
2

(|HaHb〉 − |VaVb〉)
ÛB−−→ 1

2
√

2
(|HcHc〉+ |HdHd〉 − |VcVc〉 − |VdVd〉),

(2.4.11)

which show that photons appear on the same side of beam splitter.

2.5 Detector Model

For all phenomena related to Quantum optics we need photon detectors to

perform experiments. Photon detectors are devices that give information

about presence of photon by generating signals. Usually theoretical models of

photon detectors are concerned with photon numbers but practically photo-

detector models also take into account other degree of freedoms like spectral,

polarization and spatial degrees of freedom. Now restricting ourselves to

photon number degree of freedom, we discuss ideal model for such detectors.

2.5.1 Photon Number Resolving Detectors

The ideal photo detector can respond to the photon number of incident state,

and can distinguish between different number states. Mathematically, we can

define such detectors by a projection operator

Π̂n = |n〉 〈n| , (2.5.1)

where n is the number of photons in incident state. Since
∑∞

j=0 Π̂j = 1 so

this set of operators follow POVM theorem. After performing measurement

at input state, output state is written as

ρ̂out = Π̂nρ̂inΠ̂n. (2.5.2)

In output state, here, normalization factor has been ignored for the sake of

simplicity. The probability for detection of n photons, when input state is ρ,

is

p = Tr[Π̂nρ] = 〈n|ρ|n〉. (2.5.3)

From the condtion
∑∞

n=0 Π̂n = 1, it is ensured that probabilty sum is also 1.
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2.5.2 Non-Photon Number Resolving Detectors

In real world, however, we do not have ideal detectors and imperfections

are always present. Detectors available at present can not give information

about number of photons in incident state. These are called as “non-photon

number resolving detectors”. They only give information about the presence

or absence of photons. Signal generated is usually an electric pulse. In the

early days, Geiger counters served as photon detectors. Every time counter

detected a photon, it gave sound of click. This terminology is still in use and

detector outcomes are usually labelled as clicks and no-clicks. Non-photon

number resolving detectors give two outputs depending upon if a photon is

present or not i.e a click if one or more photons are incident and a no-click

if no photons are incident on detector.

Model for non-photon number resolving detectors is established by con-

sidering detector to be an ideal photon number resolving detector and then

taking trace over all possible outcomes which will then give desired output.

Projection operators for these detectors are written as

Π̂(click) =
∞∑
n=1

|n〉 〈n| . (2.5.4)

Π̂(no-click) = |0〉 〈0| . (2.5.5)

We can see from above two equations that the condition Π̂(click)+Π̂0(no-click) =

Î is also satisfied. Output state in this case is written as

ρ̂out =
∞∑
n=1

Π̂nρ̂inΠ̂n. (2.5.6)

This is the output state representing the presence of photons hence giving a

click. Output showing no click can be written as

ρ̂out = Π̂0ρ̂inΠ̂0. (2.5.7)

Probability for registering a click is

p = Tr[Π̂nρ] =
∞∑
n=1

〈n|ρ|n〉. (2.5.8)
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Detector models discussed so far are ideal and detector imperfections like

non unit efficiency have not been included in these models. In next section

we discuss detector model with finite efficiency.

2.5.3 Non-Unit Efficiency Detector

We now describe a model that explains only those detectors which exhibit

photon loss during detection process. Such detectors are called as “finite

efficiency” or “lossy” detectors. How a photon in a detector is lost depends

upon the working mechanism of detector but we can say that each photon

that enters the detector has probability η of giving click. We can explain this

with the help of an example: Consider we have 3 baskets a, b and c. In basket

“a” we have n = x + y balls (x and y representing detected and lost balls

respectively) . Baskets “b” and “c” are labelled as “detected” and “lost”.

Let the probability for x balls to go in basket b (representing detected) is η

then probability for finding x balls in “b” and y balls in “c” is

p(x, y) =

(
n+m

n

)
ηn(1− η)m. (2.5.9)

POVM for such detectors can be written as

Π̂n =
∞∑
m=0

(
n+m

n

)
ηn(1− η)m |n+m〉 〈n+m| . (2.5.10)

This is similar to a situation where we have placed a beam splitter with

efficiency or transmission coefficient η before an ideal detector as shown in

Fig (2.4).Reflected photons are considered to be lost where as transmitted

photons are detected with the help of ideal photon number detector.
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Figure 2.4: Model for faulty detector: A beam splitter with transmission
coefficient η is placed before an ideal detector. At one input we have vacuum
as input state and other input photons are incident. Photons transmitted by
beam splitter are detected while those which are reflected are lost. This is
similar to a situation where a detector can not detect all photons due to its
efficiency limitations and some of he photons are lost during measurement.

In next section we discuss continuous mode quantum states.

2.6 Continuous mode quantum states

So far we have assumed in our discussion that all photons are identical and

indistinguishable. Although these photons follow some distribution in fre-

quency space but due to their indistinguishability, we can represent a photon

state in dirac notation simply by |1〉. In this representation exact frequency

distribution of photons is ignored. If we suppose that photons are not com-

pletely indistinguishable then this representation is not enough and we will

need some representation that gives information about individual distribu-

tion of photons. So we can write single photon frequency representation

as

|1〉 →
∫
f(ω) |1〉ω dω =

∫
f(ω)â†ω |0〉 dω, (2.6.1)

here f(ω) is normalized distribution function. It gives information about

distribution of photon in frequency space. |1〉ω is single photon state with
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single frequency ω and â†ω is creation operator for single frequency photon.

Integration is over entire frequency space. Spectral distribution function f(ω)

can be Lorentzian or Gaussian depending upon the nature of photon source

[27].

Bell states in continuous mode frequency representation can be written

as∣∣ψ+
12

〉
=

1√
2

[

∫
f(ω1, ω2)

∣∣∣H(ω1)
1 V

(ω2)
2

〉
dω1dω2 +

∫
g(ω1, ω2)

∣∣∣V (ω1)
1 H

(ω2)
2

〉
dω1dω2],∣∣ψ−12〉 =

1√
2

[

∫
f(ω1, ω2)

∣∣∣H(ω1)
1 V

(ω2)
2

〉
dω1dω2 −

∫
g(ω1, ω2)

∣∣∣V (ω1)
1 H

(ω2)
2

〉
dω1dω2],∣∣φ+

12

〉
=

1√
2

[

∫
f(ω1, ω2)

∣∣∣H(ω1)
1 H

(ω2)
2

〉
dω1dω2 +

∫
g(ω1, ω2)

∣∣∣V (ω1)
1 V

(ω2)
2

〉
dω1dω2],∣∣φ−12〉 =

1√
2

[

∫
f(ω1, ω2)

∣∣∣H(ω1)
1 H

(ω2)
2

〉
dω1dω2 +

∫
g(ω1, ω2)

∣∣∣V (ω1)
1 V

(ω2)
2

〉
dω1dω2],

(2.6.2)

f(ω1, ω2) and g(ω1, ω2) are joint spectral amplitudes of two photons repre-

sented by label 1 and 2.

In this chapter we have revised all the basic concepts and preliminary

knowledge of processor required for developing continuous mode model of

long distance quantum communication. In next chapter we develop our the-

ory for modeling of resources in long distance communication in context of

continuous mode treatment.



Chapter 3

Continuous mode Analysis of
Quantum Communication Tools

Sources used in quantum communication generally produce continuous mode

fields. Parametric down conversion, for example, is such a process that pro-

duce continuous mode fields. This means that photons produced during PDC

may not be identical and may have different frequency modes. Presence of

different modes in signal makes it important to study and develop the con-

tinuous mode models of detectors in order to enables us to understand the

behaviour of entangled photon states which are closer to practical sources

used in different quantum communication processes like quantum teleporta-

tion.

In this chapter we give continuous mode treatment of different tools used

in quantum teleportation. In section 3.1 we develop |ψ+〉 state obtained from

PDC. In section 3.2 we convert the |ψ+〉 in continuous mode frequency rep-

resentation with entanglement in polarization degree of freedom. In section

3.3 we develop continuous mode projection operator for a detector which has

variable efficiency depending upon the mode of input photon state during

measurement process. In section 3.4 we have verified the entanglement na-

ture in continuous mode photon state. In section 3.5 we give the result of

two fold coincidence for entanglement verification. In section 3.6 we calcu-

late three fold coincidence for quantum teleportation. In section 3.7 we give

results for three fold coincidence probability.

39
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3.1 Practical Photon Sources

Bell states |ψ±〉 and |φ±〉 are four photon entangled states exhibiting entan-

glement between members of single pair. Sources used to produce entangle-

ment through parametric down conversion, however, do not produce single

pair on demand but there is probability that many photons pairs are cre-

ated. We have used parametric down conversion type II for obtaining |ψ+〉
state. Parametric down conversion is described with the help of Lie algebra

SU(1, 1). Analysis for |ψ−〉 has already been done and here we develop |ψ+〉
using SU(1, 1) algebra. PDC involves a non linear crystal with second or-

der non linearity (χ2) which is pumped by a coherent field and each pump

photon spontaneously decays into two photons (a pair is generated). If the

two photons produced during down conversion are identical then we call it

“degenerate down conversion” and if photons are non identical then it is

called “nondegenerate PDC”. SU(1,1) algebra is described by set of opera-

tors K̂x, K̂y, K̂z and these operators follow following commutation relations

[K̂x, K̂y] = −ιK̂z. [K̂y, K̂z] = ιK̂x. [K̂z, K̂x] = −ιK̂y. (3.1.1)

For degenerate PDC, where identical photons are produced these generators

have the form

N̂x

(j)
=

1

4
(ĉ†j ĉ

†
j + ĉj ĉj).

N̂y
(j)

=
1

4ι
(ĉ†j ĉ

†
j − ĉj ĉj).

N̂z
(j)

=
1

4
(ĉ†j ĉj + ĉj ĉ

†
j).

(3.1.2)

For non degenerate PDC, where non identical photons are produced these

generators take the form

N̂x
(ij)

=
1

2
(ĉ†i ĉ

†
j + ĉiĉj).

N̂y
(ij)

=
1

2ι
(ĉ†i ĉ

†
j − ĉiĉj).

N̂z
(ij)

=
1

2
(ĉ†i ĉi + ĉj ĉ

†
j).

(3.1.3)
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Pair creation rate in PDC depends upon the non linearity (χ2) of crystal,

strength of pump field and interaction time. State obtained as a result of

down conversion does not simply represent a photon pair but it is a super-

position of vacuum and photon pairs from single pair to higher number of

pairs. Quantum state obtained from PDC can be written as∣∣ψ+
〉

= exp [ιχ(â†Hb̂
†
V + âHb̂V)]⊗ exp [ιχ(â†Vb̂

†
H + âVb̂H)] |vac〉 . (3.1.4)

This state is not in normal ordered form. In quantum optics usually we work

with normal ordered states. Advantage of normal ordered form is that we can

easily see if a term will give zero when applied to vacuum state[28], so we will

write this state obtained by PDC in normal ordered state. We accomplish

normal ordering by introducing operators K+, K−, K0. These operators are

defined as (for first term in Eq 3.1.4)

K+ = â†Hb̂
†
V.

K− = âHb̂V.

K0 =
1

2
(â†HâH + b̂†Vb̂V + 1).

(3.1.5)

Normal ordering formula is

exp [α+K+ + α0K0 + α−K−] = exp [A+K+] exp [lnA0K0] exp [A−K−].

(3.1.6)

By looking at equation (3.1.4), we can see that

α± = ιχ. α0 = 0. (3.1.7)

And further

A± =
(α±
θ

) sinh θ

cosh θ − (α0

2θ
) sinh θ

,

A0 = (cosh θ − (
α0

2θ
) sinh θ)−2,

(3.1.8)

where θ is given as

θ = ((α0/2)2 − α+α−)
1
2 . (3.1.9)

Since α0 = 0 in our case, so

θ = χ. (3.1.10)
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Thus we will have

A+ = ι tanhχ.

A− = ι tanhχ.

A0 = (coshχ)−2.

(3.1.11)

Now we can write

exp [ιχ(â†Hb̂
†
V + âHb̂V)] = exp [ι tanhχâ†Hb̂

†
V] exp [ln[(coshχ)−2]

1

2
(â†HâH + b̂†Vb̂V + 1)]

exp [ι tanhχâHb̂V]. (3.1.12)

To make equation simple let us assume

ι tanhχ = φ(χ).

−ln[coshχ−2] = ρ(χ).
(3.1.13)

Thus first term in equation (3.1.4) can be written as

exp [ιχ(â†Hb̂
†
V + âHb̂V)] = exp [φ(χ)â†Hb̂

†
V] exp [ρ(χ)

1

2
(â†HâH + b̂†Vb̂V + 1)]

exp [φ(χ)âHb̂V] |vac〉 . (3.1.14)

For second term in equation (3.1.4) we can write generators as

K+ = â†Vb̂
†
H.

K− = âVb̂H.

K0 =
1

2
(â†VâV + b̂†Hb̂H + 1).

(3.1.15)

By following similar steps as done before, we get

exp [ιχ(â†Vb̂
†
H + âVb̂H)] = exp [φ(χ)â†Vb̂

†
H] exp [ρ(χ)

1

2
(â†VâV + b̂†Hb̂H + 1)]

exp [φ(χ)âVb̂H] |vac〉 , (3.1.16)

So normal ordered state produced by parametric down conversion can be

written as

|ψ+〉 = exp [φ(χ)(â†Hb̂
†
V + â†Vb̂

†
H)] exp [ρ(χ)]

exp [
1

2
ρ(χ)(â†HâH + b̂†Vb̂V + â†VâV + b̂†Hb̂H)] exp [φ(χ)(âHb̂V + âVb̂H)] |vac〉 .

(3.1.17)
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As last two terms do not have any effect on vacuum so we are left with

|ψ+〉 = exp [ρ(χ)] exp [φ(χ)(â†Hb̂
†
V + â†Vb̂

†
H)] |vac〉 . (3.1.18)

This is the state we obtain from PDC which also include vacuum along with

photon number states.

3.2 Continuous mode Analysis of Entangled

State

State obtained after normal ordering in previous section represents photons

in single mode. As described previously we can convert a single mode photon

state in continuous mode state in frequency representation according to Eq

2.6.1. Accordingly we can write |ψ+〉 given in Eq 3.1.18 in continuous mode

frequency representation as

∣∣ψ+
〉

= exp [ρ(χ)] exp [φ(χ)(

∫ ∫
(f(ω, ω′)â†H(ω)b̂†V(ω′) + g(ω, ω′)â†V(ω)b̂†H)dωdω′)]

|vac〉 , (3.2.1)

here f(ω, ω′) and g(ω, ω′) are joint spectral functions and integral is from

−∞ to ∞. We can also write it as

∣∣ψ+
〉

= exp [ρ(χ)]
∞∑
n=0

(φ(χ))n

n!

n∏
i=1

∫ ∫
(f(ωi, ω

′
i)â
†
H(ωi)b̂

†
V(ω′i) + g(ωi, ω

′
i)â
†
V(ωi)b̂

†
H)

dω′idωi |vac〉 . (3.2.2)

After applying creation operator and writing state in horizontal and vertical

polarization we get

∣∣ψ+
〉

= exp [ρ(χ)]
∞∑
n=0

(φ(χ))n
n∏
i=1

∫ ∫
f(ωi, ω

′
i) |Ha(ωi)〉 |Vb(ω′i)〉dω′idωi+∫ ∫

g(ωi, ω
′
i) |Va(ωi)〉 |Hb(ω′i)〉dω′idωi. (3.2.3)

This is the continuous mode entangled state obtained from PDC.
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3.3 Continuous mode Detector Model

For Continuous mode input state having multiphoton effect, Projection op-

erator for non-photon number discriminating detector is

Π̂click =
∞∑
n=1

n∏
i=1

∫ ∞
−∞

ε(ωi) |n(ωi)〉 〈n(ωi)| dωi, (3.3.1)

here ε(ωi) represents the efficiency of detector. In terms of Horizontal and

Vertical polarization we write it as

Π̂click =
∞∑
n=1

n∏
i=1

∫ ∞
−∞

εH(ωi) |H(ωi)〉 〈H(ωi)| dωi⊗

∞∑
m=1

m∏
j=1

∫ ∞
−∞

εV (ω′j)
∣∣V (ω′j)

〉 〈
V (ω′j)

∣∣ dω′j, (3.3.2)

3.4 Verification of Continuous mode State

We have converted |ψ+〉 state into continuous mode frequency representa-

tion in Eq. (3.4.1). To check if this continuous mode conversion correctly

represents the |ψ+〉 state in continuous mode, we perform Bell state measure-

ment. Entangled photons from PDC source are incident on beam splitter.

We introduce time difference between the arrival times of two photons at

beam splitter. This can be achieved by placing the beam splitter closer to

one input. This will make possible for photons to arrive at beam splitter at

different times. This time delay adds phase to input state. Input state can

be written as

∣∣ψ+
〉

= exp [ρ(χ)]
∞∑
n=0

(φ(χ))n
n∏
i=1

∫ ∫
f(ωi, ω

′
i) |Ha(ωi)〉 |Vb(ω′i)〉 exp [ιωit]dω

′
idωi+∫ ∫

g(ωi, ω
′
i) |Va(ωi)〉 |Hb(ω′i)〉 exp [ιωit]dω

′
idωi. (3.4.1)

When photons from two inputs arrive at beam splitter, there are four possible

outcomes. If we label photons in accordance with their spatial modes a and

b while output spatial modes are labelled as c nd d, then after reaching at
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beam splitter both photons will either appear in output c with photon a being

reflected and photon b being transmitted. Similarly if photon a is transmitted

and photon b is reflected then both photons will end up in output d. If both

photons are transmitted then each out put will have one photon. Similarly

for situation in which both photons are reflected each output receives one

photon. In order to verify |ψ+〉 state, we place two detectors on either side of

50 : 50 beam splitter and check coincidence between two detectors(as shown

in fig).

Figure 3.1: shows the setup used for verifying if the input state is |ψ+〉 or
not. If there is no time difference between photon arrival at beam splitter,
both photons appear on same side of beam splitter which means we do not
get any coincidence between two detectors Dc and Dd. This confirms that
input state is |ψ+〉.

At zero time difference between photons arrival at beam splitter, we do

not get coincidence between detectors. With increasing time difference be-

tween photons, probability of coincidence increases thus we well have a dip

at zero time delay.
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Figure 3.2: shows the expected behaviour of |ψ+〉 state. At zero time differ-
ence coincidence is between detector placed on either side of beam splitter is
zero. As the time difference increases coincidence of detector increases and
then become constant thus we get a dip at zero time difference.

After beam splitter action continuous mode |ψ+〉 state obtained from

PDC is

|ψ〉 =
1

2
(exp [ρ(χ)]

∞∑
n=0

(φ(χ))n
n∏
i=1

(

∫ ∞
−∞

∫ ∞
−∞

exp [ιωit](f(ωi, ω
′
i)(|Hb(ωi)Vb(ω′i)〉−

ι |Hb(ω)Va(ω
′
i)〉+ ι |Ha(ωi)Vb(ω′i)〉+ |Ha(ωi)Va(ω

′
i)〉) + g(ωi, ω

′
i)

(|Vb(ωi)Hb(ω′i)〉 − ι |Vb(ωi)Ha(ω
′)〉+ ι |Va(ωi)Ha(ω

′
i)〉+

|Va(ωi)Ha(ω
′
i)〉))dωidω′i)).

(3.4.2)

Probability of coincidence is given by

Pcoinc = 〈ψ|Π̂|ψ〉, (3.4.3)

where Π̂ is continuous mode detector, for which projection operator is written

as

Π̂ =
∞∑
m=1

m∏
j=1

∫ ∞
−∞

εH(Ωj) |Ha(Ωj)〉 〈Ha(Ωj)| dΩj⊗

∞∑
m′=1

m′∏
k=1

∫ ∞
−∞

εV(Ω′k) |Va(Ω′k)〉 〈Va(Ω′k)| dΩ′k

(3.4.4)

After applying projection operator and using the relation 〈m(ωi)|n(ωj)〉 =
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δmnδ(ωi − ωj) we are left with

Pcoinc =
1

4
exp [4ρ(χ)]

∞∑
m=1

(φ(χ))m
m∏
j=1

(

∫ ∞
−∞

∫ ∞
−∞

(εH(Ωj)εV(Ω′j)|f(Ωj,Ω
′
j)|2

+εH(Ωj)εV(Ω′j)f(Ωj,Ω
′
j)g
∗(Ω′j,Ωj) exp [−ιΩjt] exp [ιΩ′jt]+

εH(Ωj)εV(Ω′j)g(Ωj,Ω
′
j)f
∗(Ω′j,Ωj) exp [ιΩjt] exp [−ιΩ′jt]+

εH(Ωj)εV(Ω′j)|g(Ωj,Ω
′
j)|2)dΩjdΩ′j).

(3.4.5)

Now we find the coincidence between detectors Ha and Vb. Projection oper-

ator for this process is

Π̂ =
∞∑
m=1

m∏
j=1

∫ ∞
−∞

εH(Ωj) |Ha(Ωj)〉 〈Ha(Ωj)| dΩj⊗

∞∑
m′=1

m′∏
k=1

∫ ∞
−∞

εV(Ω′k) |Vb(Ω′k)〉 〈Vb(Ω′k)| dΩ′k.

(3.4.6)

Coincidence probability in this case will be

Pcoinc =
1

4
exp [4ρ(χ)]

∞∑
m=1

(φ(χ))m
m∏
j=1

(

∫ ∞
−∞

∫ ∞
−∞

(εH(Ωj)εV(Ω′j)|f(Ωj,Ω
′
j)|2

+εH(Ωj)εV(Ω′j)f(Ωj,Ω
′
j)g
∗(Ω′j,Ωj) exp [−ιΩjt] exp [ιΩ′jt]+

εH(Ωj)εV(Ω′j)g(Ωj,Ω
′
j)f
∗(Ω′j,Ωj) exp [ιΩjt] exp [−ιΩ′jt]+

εH(Ωj)εV(Ω′j)|g(Ωj,Ω
′
j)|2)dΩjdΩ′j).

(3.4.7)

This behaviour given in Eq. (3.4.5) and Eq. (3.4.7) is similar to that of

|ψ+〉 Bell state hence we can say that during conversion from single mode to

continuous mode nature of entanglement remained preserved.
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3.5 Results

Figure 3.3: shows the variation in
probability of coincidence of detec-
tors Ha and Va with time when
Bell state |ψ+〉 is incident.

Figure 3.4: shows the variation in
probability of coincidence of detec-
torsHa and Vb with time when Bell
state |ψ+〉 is incident.

We have used detectors with 70% efficiency having Gaussian distribution

over frequency domain. In Fig (3.3) at zero time difference we have maxi-

mum probability for coincidence between detectors Ha and Va. As the time

difference increases probability of coincidence decreases and then become

constant. In Fig (3.4) at zero time difference we have minimum probability

for coincidence between detectors Ha and Vb. As the time difference increases

probability of coincidence increases and then become constant. This behavior

is similar to what we get for single mode entangled |ψ+〉 state.

3.6 Teleportation and Three Fold Coincidence

Quantum teleportation is a process which involves transfer of a quantum

state from one point to some other distant point in the absence of some

communication channel connecting initial and final point. Let Alice and Bob

created a pair of entangled photons in laboratory. Bob gets one photon from

pair and take it with him to some distant point leaving one photon with

Alice. None of the Alice or Bob know the state of photon they posses. Now

Alice has to send an unknown state |φ〉 to Bob. Alice will send this state |φ〉
to Bob by making it to interact with the photon which Alice has obtained
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from entangled pair. Alice will perform Bell state measurement on her two

qubits (photons) and will communicate with Bob through Classical channel

to tell the result of her measurement. After knowing the result of Alice’s

measurement, Bob can recover the state |φ〉 after performing appropriate

operation.

In order to check if we have successfully teleported the required state

we find three fold coincidence. This three fold coincidence involves three

detectors Da, Dc and D+. Schematic diagram is shown in figure. Combined

state of system including state to be teleported and state obtained from PDC

source is

|Ψ〉 = exp [ρ(χ)]
∞∑
n=0

(φ(χ))n
n∏
i=1

(

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

(f(ωi, ω
′
i)S(ω′′)α |Hc(ω

′′)Ha(ωi)Vb(ω′i)〉

+g(ωi, ω
′
i)S(ω′′)α |Hc(ω

′′)Va(ωi)Hb(ω′i)〉+ f(ωi, ω
′
i)S(ω′′)β |Vc(ω′′)Ha(ωi)Vb(ω′i)〉

+g(ωi, ω
′
i)S(ω′′)β |Vc(ω′′)Va(ωi)Hb(ω′i)〉) exp [ιω′′t]dωdω′idω

′′,

(3.6.1)

exp [ιω′′t] is the phase due to time difference introduced between photons

of channel a and channel c in order to observe the variation in coincidence

probability with change in time difference. After the interaction of photons

in channel a and channel c

Figure 3.5: explains the measurement process for finding three fold coinci-
dence. Click of D+ indicate successful teleportation. Click of D− indicate
the cases in which teleportation is not completed successfully.
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at 50 : 50 beam splitter state becomes

|Ψ〉 = exp [2ρ(χ)]
∞∑
n=0

(φ(χ))n
n∏
i=1

(

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

exp [ιω′′t](f(ωi, ω
′
i)

S(ω′′)α(
|Ha(ω

′′)〉+ ι |Hc(ω
′′)〉√

2

|Ha(ωi)〉 − ι |Hc(ωi)〉√
2

|Vb(ω′i))〉))

+g(ωi, ω
′
i)S(ω′′)α(

|Ha(ω
′′)〉+ ι |Hc(ω

′′)〉√
2

|Va(ωi)〉 − ι |Vc(ωi)〉√
2

|Hb(ω′i)〉)

+(f(ωi, ω
′
i)S(ω′′)β(

|Va(ω′′)〉+ ι |Vc(ω′′)〉√
2

|Ha(ωi)〉 − ι |Hc(ωi)〉√
2

|Vb(ω′i)〉)))

+g(ωi, ω
′
i)S(ω′′)β(

|Va(ω′′)〉+ ι |Vc(ω′′)〉√
2

|Va(ωi)〉 − ι |Vc(ωi)〉√
2

|Hb(ω′i)〉))

dωidω
′
idω

′′).

(3.6.2)

Mathematically Coincidence is found as

Pcoin = 〈Ψ|Π̂|Ψ〉. (3.6.3)

Projection operator for finding coincidence between Da, Dc and D+ is

Π̂ =
∞∑
n=1

n∏
i=1

∫ ∞
−∞

ε(Ωi) |na(Ωi)〉 〈na(Ωi)| dΩi

⊗
∞∑
m=1

m∏
j=1

∫ ∞
−∞

ε(Ω′j) |mc(Ω
′
i)〉 〈mc(Ω

′
i)| dΩ′i

⊗
∞∑
l=1

l∏
k=1

∫ ∞
−∞

ε(Ω′′l ) |+(Ω′′l )〉 〈+(Ω′′l )| dΩ′′l ,

(3.6.4)

where |na(Ωi)〉 〈na(Ωi)| and |nc(Ω
′
i)〉 〈nc(Ω

′
i)| are defined in such a way that

they detect photons in channel a and c with out distinction of horizontal

and vertical polarization which means their measurement result does not

depend upon photon polarization. Detector D+ clicks if the teleported state

is correct and identical to initial state.

Detectors Da and Dc act as Bell state analyzers. When the state of

incident photons is projected to |ψ+〉 Bell state, teleported state will be

identical to initial original state and hence D+ will give a click. As |ψ+〉 state
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does not give click at Da and Dc at zero time delay between arrival of photon

in channel a and channel c so result will be a dip in probability curve at zero

time delay. As the time delay increases from zero, probability for coincidence

between Da and Dc increases and hence probability for coincidence of Da,

Dc and D+ increases.

We can write |Hb(ω′i)〉 and |Vb(ω′i)〉 in terms of {|+〉 , |−〉} basis as follows

|Hb(ω′i)〉 =
|+(ω′i)〉+ |−(ω′i)〉√

2
,

|Vb(ω′i)〉 =
|+(ω′i)〉 − |−(ω′i)〉√

2
.

(3.6.5)

Putting values of Hb and Vb and taking projection of state after beam splitter

using operator in equation (3.6.4)

|Ψ〉′ =
exp [2ρ(χ)]

∑∞
n=1(φ(χ))n

∏n
i=1(
∫∞
−∞

∫∞
−∞

∫∞
−∞ exp [ιω′′t]

2
√

2

(−ε(ωi)ε(ω′i)ε(Ω′′)f(ωi, ω
′
i)S(ω′′)α |Ha(ω

′′)Hc(ωi) + (ω′i)〉+

ε(ωi)ε(ω
′
i)ε(Ω

′′)f(ωi, ω
′
i)S(ω′′)α |Hc(ω

′′)Ha(ωi) + (ω′i)〉

− ε(ωi)ε(ω′i)ε(Ω′′)g(ωi, ω
′
i)S(ω′′)α |Ha(ω

′′)Vc(ωi) + (ω′i)〉+

ε(ωi)ε(ω
′
i)ε(Ω

′′)g(ωi, ω
′
i)S(ω′′)α |Hc(ω

′′)Va(ωi) + (ω′i)〉

− ε(ωi)ε(ω′i)ε(Ω′′)f(ωi, ω
′
i)S(ω′′)β |Va(ω′′)Hc(ωi) + (ω′i)〉+

ε(ωi)ε(ω
′
i)ε(Ω

′′)f(ωi, ω
′
i)S(ω′′)β |Vc(ω′′)Ha(ωi) + (ω′i)〉

− ε(ωi)ε(ω′i)ε(Ω′′)g(ωi, ω
′
i)S(ω′′)β |Va(ω′′)Vc(ωi) + (ω′i)〉+

ε(ωi)ε(ω
′
i)ε(Ω

′′)g(ωi, ω
′
i)S(ω′′)β |Vc(ω′′)Va(ωi) + (ω′i)〉 dωidω′idω′′). (3.6.6)

This is the state in which only those terms have survived that will give us

clicks on detectors Da, Dc and D+ giving confirmation of success of telepor-

tation. During measurement detectors Da and Dc detected the photons with

out considering the polarization degree of freedom which means photons with

horizontal and vertical polarization were treated equally.
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Now probability of coincidence 〈Ψ|Π̂|Ψ〉 is

Pcoin =
exp [2ρ(χ)]exp [2ρ(χ)]

∑∞
n=1(φ(χ))n(φ(χ))n

∏n
i=1(
∫∞
−∞

∫∞
−∞

∫∞
−∞

8
(ε(ωi)ε(ω

′
i)ε(Ω

′′)|α|2|f(ωi, ω
′
i)|2|S(ω′′)|2−

ε(ωi)ε(ω
′
i)ε(Ω

′′)|α|2f(ωi, ω
′
i)f
∗(ω′′, ω′i)S(ω′′)S∗(ωi) exp [ιω′′t] exp [−ιωit]

+ ε(ωi)ε(ω
′
i)ε(Ω

′′)|α|2|f(ωi, ω
′
i)|2|S(ω′′)|2−

ε(ωi)ε(ω
′
i)ε(Ω

′′)|α|2f(ωi, ω
′
i)f
∗(ω′′, ω′i)S(ω′′)S∗(ωi) exp [ιω′′t] exp [−ιωit]

+ ε(ωi)ε(ω
′
i)ε(Ω

′′)|α|2|g(ωi, ω
′
i)|2|S(ω′′)|2−

ε(ωi)ε(ω
′
i)ε(Ω

′′)α∗βf(ωi, ω
′
i)g
∗(ω′′, ω′i)S(ω′′)S∗(ωi) exp [ιω′′t] exp [−ιωit]

+ ε(ω′i)ε(Ω
′′) + |α|2|g(ωi, ω

′
i)|2|S(ω′′)|2−

ε(ωi)ε(ω
′
i)ε(Ω

′′)α∗βf(ωi, ω
′
i)g
∗(ω′′, ω′i)S(ω′′)S∗(ωi) exp [ιω′′t] exp [−ιωit]

+ ε(ωi)ε(ω
′
i)ε(Ω

′′)|β|2|f(ωi, ω
′
i)|2|S(ω′′)|2−

ε(ωi)ε(ω
′
i)ε(Ω

′′)β∗αg(ωi, ω
′
i)f
∗(ω′′, ω′i)S(ω′′)S∗(ωi) exp [ιω′′t] exp [−ιωit]

+ ε(ωi)ε(ω
′
i)ε(Ω

′′)|β|2|f(ωi, ω
′
i)|2|S(ω′′)|2−

ε(ωi)ε(ω
′
i)ε(Ω

′′)β∗αg(ωi, ω
′
i)f
∗(ω′′, ω′i)S(ω′′)S∗(ωi) exp [ιω′′t] exp [−ιωit]

+ ε(ωi)ε(ω
′
i)ε(Ω

′′)|β|2|g(ωi, ω
′
i)|2|S(ω′′)|2−

ε(ωi)ε(ω
′
i)ε(Ω

′′)|β|2g(ωi, ω
′
i)g
∗(ω′′, ω′i)S(ω′′)S∗(ωi) exp [ιω′′t] exp [−ιωit]

+ ε(ωi)ε(ω
′
i)ε(Ω

′′)|β|2|g(ωi, ω
′
i)|2|S(ω′′)|2−

ε(ωi)ε(ω
′
i)ε(Ω

′′)|β|2g(ωi, ω
′
i)g
∗(ω′′, ω′i)S(ω′′)S∗(ωi) exp [ιω′′t] exp [−ιωit]

dωidω
′
idω

′′). (3.6.7)

Incident state will be projected on |ψ+〉 in only 25% of cases. In 75% of cases

incident state will be projected on one of the |ψ−〉, |φ+〉, |φ−〉 states. When

the incident state is projected on |φ+〉 or |φ−〉, neither D+ nor D− clicks.

Thus D− will click only in 25% percent cases. At zero time delay Da, Dc and

D− will click if projected state is |ψ−〉. When photon in channel “a” and “c”

have time delay then we have four possible outcomes for Da and Dc while

D− click as shown in fig. (2.3). We can see that probability for coincidence

of D−, Da and Dc is 25%. Hence we expect a straight line for coincidence

probability of D−, Da and Dc.
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Coincidence among Da,Dc and D− is

Pcoin =
exp [2ρ(χ)]exp [2ρ(χ)]

∑∞
n=1(φ(χ))n(φ(χ))n

∏n
i=1(
∫∞
−∞

∫∞
−∞

∫∞
−∞

8
(ε(ωi)ε(ω

′
i)ε(Ω

′′)|α|2|f(ωi, ω
′
i)|2|S(ω′′)|2−

ε(ωi)ε(ω
′
i)ε(Ω

′′)α|2f(ωi, ω
′
i)f
∗(ω′′, ω′i)S(ω′′)S∗(ωi) exp [ιω′′t] exp [−ιωit]

+ ε(ωi)ε(ω
′
i)ε(Ω

′′)|α|2|f(ωi, ω
′
i)|2|S(ω′′)|2−

ε(ωi)ε(ω
′
i)ε(Ω

′′)|α|2f(ωi, ω
′
i)f
∗(ω′′, ω′i)S(ω′′)S∗(ωi) exp [ιω′′t] exp [−ιωit]

+ ε(ωi)ε(ω
′
i)ε(Ω

′′)|α|2|g(ωi, ω
′
i)|2|S(ω′′)|2+

ε(ωi)ε(ω
′
i)ε(Ω

′′)α∗βf(ωi, ω
′
i)g
∗(ω′′, ω′i)S(ω′′)S∗(ωi) exp [ιω′′t] exp [−ιωit]

+ ε(ωi)ε(ω
′
i)ε(Ω

′′)|α|2|g(ωi, ω
′
i)|2|S(ω′′)|2+

ε(ωi)ε(ω
′
i)ε(Ω

′′)α∗βf(ωi, ω
′
i)g
∗(ω′′, ω′i)S(ω′′)S∗(ωi) exp [ιω′′t] exp [−ιωit]

+ ε(ωi)ε(ω
′
i)ε(Ω

′′)|β|2|f(ωi, ω
′
i)|2|S(ω′′)|2+

ε(ωi)ε(ω
′
i)ε(Ω

′′)β∗αg(ωi, ω
′
i)f
∗(ω′′, ω′i)S(ω′′)S∗(ωi) exp [ιω′′t] exp [−ιωit]

+ ε(ωi)ε(ω
′
i)ε(Ω

′′)|β|2|f(ωi, ω
′
i)|2|S(ω′′)|2+

ε(ωi)ε(ω
′
i)ε(Ω

′′)β∗αg(ωi, ω
′
i)f
∗(ω′′, ω′i)S(ω′′)S∗(ωi) exp [ιω′′t] exp [−ιωit]

+ ε(ωi)ε(ω
′
i)ε(Ω

′′)|β|2|g(ωi, ω
′
i)|2|S(ω′′)|2−

ε(ωi)ε(ω
′
i)ε(Ω

′′)|β|2g(ωi, ω
′
i)g
∗(ω′′, ω′i)S(ω′′)S∗(ωi) exp [ιω′′t] exp [−ιωit]

ε(ωi)ε(ω
′
i)ε(Ω

′′)|β|2|g(ωi, ω
′
i)|2|S(ω′′)|2−

ε(ωi)ε(ω
′
i)ε(Ω

′′)|β|2g(ωi, ω
′
i)g
∗(ω′′, ω′i)S(ω′′)S∗(ωi) exp [ιω′′t] exp [−ιωit]

dωidω
′
idω

′′). (3.6.8)

This is the coincidence probability of Da, Dc and D−.
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3.7 Results

Figure 3.6: shows the variation in
probability of coincidence of detec-
tors Da, Dc and D+ with time.

Figure 3.7: shows the variation in
probability of coincidence of detec-
tors Da, Dc and D− with time.

Fig (3.6) shows the variation in probability of coincidence of detectors Da,

Dc and D+. As the time delay between two photons increases, coincidence

probability also increases and then become constant. In Fig (3.7) we see a

straight line for coincidence of detectors Da, Dc and D−. In this case coinci-

dence probability does not change with time. These results are in agreement

with experimental results [29]. Thus we have successfully developed contin-

uous mode quantum teleportation setup with practical sources.



Chapter 4

Conclusion

Quantum communication processes involve processes like entanglement which

do not have any classical counter part. Entanglement is co-relation that may

exist between two quantum objects in such a way that quantum state of

one objects affects the state of other object. Photons, atoms and electrons

are the examples which can be classified as quantum objects. Parametric

down conversion is a process which can provide us with entangled pair of

photons. Parametric down conversion causes an incident photon to split in

to two photons of lower frequencies. In practical set up incident field may

have photons with different frequencies. Thus parametric down conversion

leads to entangled photons having frequencies over a range of frequency spec-

trum. The presence of different modes of frequency makes it necessary to

study continuous mode effects in photon sources in order to give complete

description of real world quantum communication processes.

In this thesis we have reviewed the continuous mode treatment for photon

sources that produce the entangled pair of photons. We developed the |ψ+〉.
We have extended the continuous mode analysis of Bell’s state and verified

the behaviour of our developed |ψ+〉 state using linear optical setup. We

incorporated already developed continuous mode representation of detector

models and developed model for imperfect detectors. In our model we have

incorporated the effects of limited efficiency. Our model of continuous mode

photon state obtained from PDC and detectors successfully showed that the

behaviour of continuous mode Bell’s state is consistant with single mode
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Bell’s state. We performed continuous mode teleportation and calculated

three fold coincidence in order to check success of teleportation.

This continuous mode treatment leads us to frame work of quantum mem-

ories which is our next goal.
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Asher Peres, and William K. Wootters. Teleporting an unknown quan-

tum state via dual classical and Einstein-Podolsky-Rosen channels.

Phys. Rev. Lett., 70:1895–1899, Mar 1993.

[16] Harry Paul. Introduction to Quantum Optics: From Light Quanta to

Quantum Teleportation. Cambridge University Press, 1 edition, June

2004.

[17] Anirban Pathak. Elements of Quantum Computation and Quantum

Communication. CRC Press, 2013.

[18] Anton Zeilinger. Dance of the Photons: From Einstein to Quantum

Teleportation. Farrar, Straus and Giroux, 2010.

[19] Furusawa Akira and Loock Peter van. Quantum Teleportation and En-

tanglement: A Hybrid Approach to Optical Quantum Information Pro-

cessing. Willey publishers, 2011.

[20] Nouredine Zettili. Quantum Mechanics Concepts and Applications. Wil-

ley publishers, second edition, 2009.



59

[21] Peter Lambropoulos and David Petrosyan. Fundamentals of Quantum

Optics and Quantum Information. Springer-Verlag Berlin Heidelberg,

2007.

[22] GordonW. F. Drake, editor. Handbook of Atomic, Molecular, and Opti-

cal Physics. Springer; 2nd edition, 2005.

[23] Zhe-Yu Jeff Ou. Multi-Photon Quantum Interference. Springer US,

2007.

[24] Gernot Alber, Thomas Beth, Michal Horodecki, Pawel Horodecki,

Ryszard Horodecki, Martin Rtteler, Harald Weinfurter, Reinhard

Werner, and Anton Zeilinger. Quantum Information. Springer Tracts

in Modern Physics. Springer-Verlag Berlin Heidelberg, 1 edition, 2001.

[25] Christopher Gerry and Peter Knight. Introductory Quantum Optics.

The University of Cambridge, 2004.

[26] S. P. Walborn, W. A. T. Nogueira, S. Pdua, and C. H. Monken. Optical

bell-state analysis in the coincidence basis. EPL (Europhysics Letters),

62(2):161, 2003.

[27] Peter P. Rohde and Timothy C. Ralph. Frequency and temporal effects

in linear optical quantum computing. Phys. Rev. A, 71:032320, Mar

2005.

[28] Howard M. Wiseman and Gerard J. Milburn. Quantum Measurement

and Control. Cambridge University Press, 2014.

[29] Dik Bouwmeester, Jian-Wei Pan, Klaus Mattle, Manfred Eibl, Harald

Weinfurter, and Anton Zeilinger. Experimental quantum teleportation.

Nature, 390:575–579, 1997.


