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Abstract

In this thesis we discuss the points of intersection of the symmetric and antisym-

metric Lamb mode dispersion curves of an isotropic plate. The Rayleigh-Lamb

frequency relation for dispersion curves is derived for a plate with thickness 2h

and their intersections are determined. The points of intersection are graphically

represented.

The plateau region possessed by the Lamb modes in k-c plane is graphically

shown for an isotropic plate where k is the wave number and c is the wave

speed. Lastly, the reflection of SV-waves is mathematically examined and the

mode conversion through this reflection is discussed analytically. An expression

is derived which gives the bound in which mode conversion can take place and

outside which it is forbidden.
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Chapter 1

Introduction

A waveguide allows a wave to propagate through a mechanical structure (like a

plate or a rod). Radio waves, electromagnetic waves, acoustic waves etc are its

examples. The guided wave, propagating along the stress free boundary of an

elastic half space is called Rayleigh wave. A single layered half space can be a

waveguide for Love waves while Lamb wave is the guided wave that propagates

in a plate.

Guided waves help widely in non-destructive testing (NDT) which is a strategy

used to describe the material properties like its thickness, interior structure and

out of sight imperfections without giving any harm to it. In this technique, waves

are sent into the material being tested and they propagate through it by vibrating

the particles that make up the material. The reflected waves give information

about the deformities present in the sample.

In 1885 Lord Rayleigh [1] predicted the presence of waves along the surface

of solids. These were named after him as Rayleigh waves. Moreover, when these

waves propagate through a layer then these are named as Rayleigh-Lamb or Lamb

waves. Lamb [2] in 1917 presented frequency relation for a wave propagating in

a plate known as Rayleigh-Lamb dispersion relation. A comprehensive theory

for such waves was presented by Mindlin [3] in 1950. A test confirmation of the

utilization of Lamb waves in NDT was given by Worlton [4] in 1961.

Lamb waves are guided waves that propagate in the solid plates having sym-

metric and antisymmetric modes. As the Lamb waves depend upon frequency of

a wave, so the number of modes increases with the increasing frequency which
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gives rise to infinite number of symmetric and antisymmetric modes. Generally

Lamb modes can be used for material characterization and to identify the defects

present in it. It is also used for pipeline and composites inspection. Propagation

of Lamb waves depend on the properties of material like its thickness, density

etc.

Graphically, symmetric and antisymmetric Lamb mode dispersion curves ap-

pear to intersect each other at some points. Freedman [5] explained the occur-

rence of intersection of lamb modes and its variation with Poisson ratio on it’s

full allowed range using Mindlin’s method of bounds [3]. In 2016, A. G. Every

[6] classified these intersections into three types, Type F, Type I, Type II and

examined these intersections for some materials.

Plane waves can be allowed to coincide at the interface in a medium made

up of two half spaces with different material properties. Suppose a plane wave

is incident upon a plane surface that is an interface between two materials. The

incident wave originates in one medium but for the stresses and displacements

of a propagating wave to be continuous at interface the additional reflected and

refracted waves are required. J. D. Achenbach [9] determined the reflection of var-

ious plane harmonic waves like P-wave, S-wave, SV-wave and SH-wave in joined

half space.

Plan of dissertation

This thesis concerns with the study of Lamb modes dispersion curves and their

intersections. In the present chapter the introduction is given.

Chapter 2 comprises of some basic definitions of terms used in the thesis.

Chapter 3 takes into account the investigation of Lamb modes in an isotropic plate

in detail, Rayleigh-Lamb dispersion relation for symmetric and antisymmetric

modes is presented by using the Helmholtz decomposition of the displacement

vector and is also graphically represented.

Chapter 4 describes, in some detail, work of Every [6] dealing with the points

of intersection of symmetric and antisymmetric Lamb modes for an isotropic

plate. The graphical representation is given in this chapter to show intersection

points. Also the study of the plateau region shown by Lamb mode dispersion

curves is graphically represented.
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Chapter 5 deals with the study of reflection of SV-waves and the solution set is

calculated for reflected SV-waves. It also deals with the study of mode conversion

due to reflection of an SV-wave from the surface of a half space. An analytical

expression is derived to get a range in which mode conversion can take place.
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Chapter 2

Preliminaries

Wave

A wave can be portrayed as a disturbance that goes through a medium from one

point to another. Waves are surrounding us like the sound waves, light waves

and the most obvious example is the ripples created on water surface by a stone

thrown into it.

Each type of wave exhibits a particular characteristic that is used to recognize

it. The two main types of wave are given below:

2.1 Body waves

The waves that can travel through an infinite medium are termed as body waves.

They are further categorized into two types:

• Longitudinal waves - They are also named as P-waves or primary waves.

Displacement of particles is parallel to the direction of propagation of wave in

this case. Sound waves moving through the air is an example of this type of wave.

• Transverse waves - They are also named as S-waves or secondary wave. In

this case, the displacement of particles is perpendicular to the direction of propa-

gation of wave. Movement of a wave through a solid object like a stretched rope

is an example of this type of wave.
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2.2 Surface waves

Unlike the body waves these waves can only move along the surface and occur at

interfaces with circular motion of particles. Waves in the ocean and ripples on

the surface of water are its examples. In an earthquake, these waves can cause

the most damage. These waves are also categorized into two types:

• Love waves - Love waves are named after Augustus Edward Hugh Love who

discovered them in a thin layer over a half space and found that the particles in

these waves do not move in a rotating mode rather, similar to S-waves, these waves

move forward and backward perpendicular to the direction of wave propagation.

• Rayleigh waves - Rayleigh waves were named after Lord Rayleigh, these

waves are a blend of transverse and longitudinal waves. The particle movement

in these waves seems similar to the surface waves but observing deliberately, one

will see that the motion of particles is not the same. In surface waves, every

molecule makes a round movement perpendicular to the direction of propagation

of wave like water waves. While in Rayleigh waves, the particles make an elliptical

movement against the direction of propagation of wave.

Rayleigh waves when propagate through the layer of a solid plate then are termed

as Lamb waves. Lamb waves with infinite set of symmetric and antisymmetric

modes can be produced in a plate with free edges.

Isotropic Material

A material, the properties of which do not depend on the direction is said to

be an isotropic material. Glass and metals like steel, ceramics are examples of

isotropic materials.

Hooke’s Law for an isotropic material given by [9] is:

Tij = λSkkδij + 2µSij.

where Tij and Sij are components of stress tensor and strain tensor respectively

and λ, µ are Lame constants.
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Auxetic material

If we consider an isotropic elastic material, then the elastic response of the ma-

terial is described fully by four inter-related properties: Poisson’s ratio, Young’s

modulus, shear modulus and bulk modulus. The range of Poisson’s ratio for

isotropic materials is between -1 and +0.5.

From the relationship between shear modulus, bulk modulus and Poisson’s ratio

it turns out that the positive limit for Poisson’s ratio (corresponding to rubber)

provides a material that is easy to deform (through shearing) but is relatively

incompressible. On the other hand, the negative limit for Poisson’s ratio of -1

produces a material that is difficult to shear (i.e. it maintains shape) but is rela-

tively compressible (changes volume easily).

Auxetic materials are the one that exhibit negative Poisson’s ratio. They are

used in many sports items like pads, gloves, helmets, footwear soles etc.

Incident, reflected and refracted waves

An incident wave originates from a source of wave production in a medium.

Reflection means that the wave is turned back into the half-space from which it

came, while a change in the direction of waves as they pass from one medium to

another is called refraction of waves.

Mode conversion

In mode conversion one type of wave can be changed into another type. Mode

conversion occurs when a wave is reflected from a surface or it encounters an

interface between materials of different acoustic impedances and the incidence is

not normal to the interface. For example, when a primary wave hits an inter-

face with an angle then some of the energy can cause particle movement in the

transverse direction to start a secondary wave.
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Chapter 3

Lamb modes in a plate

Lamb waves were named after the mathematician Horace Lamb in 1917, who

discovered them in solid plates that allows two infinite sets of Lamb wave modes

to propagate with velocities depending upon the relationship between wavelength

and thickness of the plate. These are the guided waves that can be used to inspect

the material properties.

This chapter includes the study of Rayleigh-Lamb frequency relation for an

isotropic plate using Helmholtz decomposition of displacement vector into scalar

and vector potential. The graphical representation of Lamb modes for some

materials is also included.

3.1 Introduction

In this chapter, we follow the theory presented by Achenbach [9]. In Helmholtz

decomposition, a vector function v ∈ C2 can be decomposed into a sum of two

vectors given by [9]

v = v1 + v2,

such that

v1 = ∇φ,

v2 = ∇×ψ,

⇒ v = ∇φ+∇×ψ. (3.1.1)
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where φ is called the scalar potential and ψ is called the vector potential.

The equation of motion for displacement v is given below:

µ∇2v + (λ+ µ)∇(∇.v) = ρv̈. (3.1.2)

Using Eq (3.1.1) in (3.1.2), we have

µ∇2(∇φ+∇×ψ) + (λ+ µ)∇(∇. (∇φ,+∇×ψ)) = ρ(∇φ̈+∇× ψ̈),

µ∇2∇φ+ µ∇2∇×ψ + (λ+ µ)(∇.∇2φ+∇.∇×ψ) = ρ(∇φ̈+∇× ψ̈),

as we know that ∇2∇φ = ∇∇2φ and ∇.∇ × ψ = 0. Using these relations in

equation above, we get

µ∇2∇φ+ µ∇2∇×ψ + λ∇∇2φ+ µ∇∇2φ = ρ(∇φ̈+∇× ψ̈),

µ∇2∇φ+ µ∇2∇×ψ + λ∇∇2φ+ µ∇∇2φ− ρ∇φ̈− ρ∇× ψ̈ = 0,

∇((λ+ 2µ)∇2φ− ρφ̈) +∇× (µ∇2ψ − ρψ̈) = 0.

where φ and ψ are some potential functions.

If we choose φ such that

(λ+ 2µ)∇2φ− ρφ̈ = 0,

⇒ ∇2φ− 1

c2
L

φ̈ = 0.

and ψ such that

∇× (µ∇2ψ − ρψ̈) = 0,

⇒ ∇2ψ − 1

c2
T

ψ̈ = 0,

then Eq (3.1.1) will be the solution of Eq (3.1.2).

Here, cL and cT are speeds of longitudinal and transverse waves respectively with

cL
2 = λ+2µ

ρ
and cT

2 = µ
ρ
.

3.2 Dispersion relation for Lamb modes

Consider a wave propagating through a plate with thickness 2h. In a plane strain

independent of x3-axis, the vector is of the form [9]

v(x1, x2, t) = v1(x1, x2, t)i+ v2(x1, x2, t)j and v3 = 0.
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∇×ψ = i(
∂ψ3

∂x2

− ∂ψ2

∂x3

)− j(
∂ψ3

∂x1

− ∂ψ1

∂x3

) + k(
∂ψ2

∂x2

− ∂ψ1

∂x2

),

Since the considered motion is in the x1x2-plane so ψ1 and ψ2 are independent of

x3-axis which made them zero, so we are left with

∇×ψ = i(
∂ψ3

∂x2

)− j(
∂ψ3

∂x1

).

The Helmholtz displacement components given by Achenbach [9] are of the form

v1 =
∂φ

∂x1

+
∂ψ3

∂x2

, (3.2.1)

v2 =
∂φ

∂x2

− ∂ψ3

∂x1

. (3.2.2)

Using a common form of Hooke’s law for isotropic materials to calculate stress,

we have

τ11 = 2µ
∂v1

∂x1

+ λ(
∂v1

∂x1

+
∂v2

∂x2

), (3.2.3)

τ12 = µ(
∂v2

∂x1

+
∂v1

∂x2

), (3.2.4)

τ22 = 2µ
∂v2

∂x2

+ λ(
∂v1

∂x1

+
∂v2

∂x2

). (3.2.5)

Now by using Eq (3.2.1) and (3.2.2) in Eq (3.2.3) − (3.2.5), the stress strain

relation becomes

τ11 = 2µ(
∂2φ

∂x2
1

+
∂2ψ3

∂x1∂x2

) + λ(
∂2φ

∂x2
1

+
∂2φ

∂x2
2

), (3.2.6)

τ12 = µ(
∂2ψ3

∂x2
2

− ∂2ψ3

∂x2
1

+ 2
∂2φ

∂x1∂x2

), (3.2.7)

τ22 = 2µ(
∂2φ

∂x2
2

− ∂2ψ3

∂x1∂x2

) + λ(
∂2φ

∂x2
1

+
∂2φ

∂x2
2

). (3.2.8)

with φ and ψ3 satisfying the following equations

∇2φ =
1

c2
L

φ̈. (3.2.9)

∇2ψ3 =
1

c2
T

ψ̈3. (3.2.10)

Let the solution of wave condition is given by the following form

φ(x1, x2) = Φ(x2) exp[ι̇k(x1 − ct)]. (3.2.11)

ψ(x1, x2) = Ψ(x2) exp[ι̇k(x1 − ct)]. (3.2.12)
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Where c and k represents the speed and the wave number of a wave respectively.

From Eq (3.2.9) and (3.2.11), we have

−k2Φ + Φ′′ = −(
k2c2

c2
L

)Φ,

Φ′′ + p2Φ = 0. (3.2.13)

where Φ′′ = d2Φ
dx22

and p2 = ( c
2

c2L
− 1)k2.

Similarly from Eq (3.2.10) and (3.2.12)

−k2Ψ + Ψ′′ = −(
k2c2

c2
T

)Ψ,

Ψ′′ + q2Ψ = 0. (3.2.14)

where Ψ′′ = d2Ψ
dx22

and q2 = ( c
2

c2T
− 1)k2.

The solution of Eq (3.2.13) and (3.2.14) is given by

Φ(x2) = A1 sin(px2) + A2 cos(px2),

Ψ(x2) = B1 sin(qx2) +B2 cos(qx2).

Using above relations in Eq (3.2.1), (3.2.2),(3.2.6)− (3.2.8), (3.2.11) and (3.2.12)

and ignoring the exponential term in the continuation since it shows up in every

one of the expressions and does not takes part in calculating frequency relation,

we have

φ = A1 sin(px2) + A2 cos(px2),

ψ3 = B1 sin(qx2) +B2 cos(qx2),

v1 = ι̇k[A1 sin(px2) + A2 cos(px2)] + q[B1 cos(qx2)−B2 sin(qx2)],

v2 = p[A1 cos(px2)− A2 sin(px2)]− ι̇k[B1 sin(qx2) +B2 cos(qx2)],

τ12 = µ[2ι̇kp(A1 cos(px2)− A2 sin(px2)) + (k2 − q2)(B1 sin(qx2) +B2 cos(qx2))],

τ11 = 2µ[−k2(A1 sin(px2) + A2 cos(px2))− ι̇kq(B1 cos(qx2) +B2 sin(qx2))]

−λ[(k2 + p2)(A1 sin(px2) + A2 cos(px2))],

τ22 = −2µ[p2(A1 sin(px2) + A2 cos(px2)) + ι̇kq(B1 cos(qx2)−B2 sin(qx2))]

−λ[(k2 + p2)(A1 sin(px2) + A2 cos(px2))].

To calculate the frequency relation we split the wave passing through the plate

into symmetric and antisymmetric modes. If the expression for v1 have cosines
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(sines) then x2 = 0 and the motion of wave in x1-direction will be symmetric

(antisymmetric), while if the expression for v2 have sines (cosines) then the motion

of wave in x2-direction will be symmetric (antisymmetric).

For a symmetric mode problem we consider the following equations:

Φ = A2 cos(px2),

Ψ = B1 sin(qx2),

v1 = ι̇kA2 cos(px2) + qB1 cos(qx2),

v2 = −ι̇kB1 sin(qx2)− pA2 sin(qx2),

τ12 = −2ι̇kpµA2 sin(px2) + µ(k2 − q2)B1 sin(qx2),

τ22 = −λ(k2 + p2)A2 cos(px2)− 2µ[p2A2 cos(px2) + ι̇kq(B1 cos(qx2))].

Similarly for antisymmetric mode problem we consider the following equations:

Φ = A1 sin(px2),

Ψ = B2 cos(qx2),

v1 = ι̇kA1 sin(px2)− qB2 sin(qx2),

v2 = −ι̇kB2 cos(qx2) + pA1 cos(px2),

τ12 = 2ι̇kpµA1 cos(px2) + µ(k2 − q2)B2 cos(qx2),

τ22 = −λ(k2 + p2)A1 sin(px2)− 2µ[p2A1 sin(px2)− ι̇kq(B2 sin(qx2))].

On the free boundary of the plate having thickness 2h, we will use the following

boundary conditions to get frequency relation:

at x2 = ±h, τ21 = τ22 = 0

For the symmetric modes, we have

τ21 = [−2ι̇kp sin(px2)A2 + (k2 − q2) sin(qx2)B1], (3.2.15)

τ22 = [(−k2λ− p2λ− 2µp2) cos(px2)A2 − 2ι̇kµqB1 cos(qx2)]. (3.2.16)

As there are four boundary conditions for x2 = ±h, which will remain two because

we will get the same equations for τ21, similar remarks hold for τ22.

Equation (3.2.15) from the boundary condition τ21 = 0 and x2 = ±h for all x2, t

becomes

−2ι̇kp sin(ph)A2 + (k2 − q2) sin(qh)B1 = 0. (3.2.17)
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Equation (3.2.16) from the boundary condition τ22 = 0 and x2 = ±h for all x2, t

becomes

(−k2λ− p2λ− 2µp2) cos(ph)A2 − 2ι̇kµq cos(qh)B1 = 0. (3.2.18)

As the equations (3.2.17) and (3.2.18) are homogeneous so their determinant must

be zero, given by

−4k2µpq sin(ph) cos(qh) + (k2 − q2)(λk2 + (λ+ 2µ)p2) sin(qh) cos(ph) = 0,

In a more simplified form, we have

−4k2µpq

(k2 − q2)(λk2 + (λ+ 2µ)p2)
+

tan(qh)

tan(ph)
= 0,

tan(qh)

tan(ph)
=

4k2µpq

(k2 − q2)(λk2 + (λ+ 2µ)p2)
.

Further simplification leads to

tan(qh)

tan(ph)
= − 4k2pq

(k2 − q2)2
. (3.2.19)

Equation (3.2.19) is the Rayleigh-Lamb frequency relation for symmetric modes.

Now to find out the dispersion relation for antisymmetric modes we will use the

boundary conditions and get the following set of equations

2ι̇kp cos(ph)A1 + (k2 − q2) cos(qh)B2 = 0, (3.2.20)

(−k2λ− p2λ− 2µp2) sin(ph)A1 + 2ι̇kµq sin(qh)B2 = 0, (3.2.21)

Due to homogeneity, the determinant of equations above must be zero, so it yields

−4k2µpq tan(qh) + (k2 − q2)(λk2 + (λ+ 2µ)p2) tan(ph) = 0,

In more simplified form we have

−4k2µpq

(k2 − q2)(λk2 + (λ+ 2µ)p2)
+

tan(ph)

tan(qh)
= 0,

tan(ph)

tan(qh)
=

4k2µpq

(k2 − q2)(λk2 + (λ+ 2µ)p2)
,

Further simplification finally yields

tan(ph)

tan(qh)
= − 4k2pq

(k2 − q2)2
. (3.2.22)
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Equation (3.2.22) is the Rayleigh-Lamb frequency relation for antisymmetric

modes.

The spectrum of the symmetric Lamb modes has the following distinctive fea-

tures:

• There exists no mode with phase speed less than cR.

• There is only one mode whose speed asymptotically approaches cR.

• A horizontal line above c=cT (including the line c=cL) cannot be an asymptote

to any of the modes.

• Phase speed of all modes, except the lowest mode, approaches cT as the fre-

quency becomes very large.

Ahmad [10] analyzed the dispersion relation to understand the above features of

the spectrum.

The figure (3.1) shows the graphical representation of the given features:

Figure 3.1: First five symmetric Lamb modes for aluminum plate.

He also found a simple formula for Lamb modes in a plate [11], this approx-

imation holds for almost every mode when the phase velocity is in between cT

and cL. Also, Ahmad [12] found an approximate expression for the longitudinal

modes in a cylinder.
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The figures (3.2) and (3.3) will show the symmetric and antisymmetric modes

for an aluminum plate with e = cL
cT

= 2.0288, where cL and cT are speeds of

longitudinal and transverse waves respectively.
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Figure 3.2: Symmetric Lamb modes for an aluminum plate with e = 2.0288.
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Figure 3.3: Antisymmetric Lamb modes for an aluminum plate with e = 2.0288.
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The figures (3.4) and (3.5) will show the symmetric and antisymmetric modes

for an auxetic material:
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Figure 3.4: Symmetric Lamb modes for an auxetic material with e = 1.3.
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Figure 3.5: Antisymmetric Lamb modes for an auxetic material with e = 1.3.
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The figures (3.6) and (3.7) will show the symmetric and antisymmetric modes

for steel:
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Figure 3.6: Symmetric Lamb modes for steel with e = 1.83.
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Figure 3.7: Antisymmetric Lamb modes for steel with e = 1.83.
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Chapter 4

Intersections of the Lamb mode

dispersion curves

The symmetric and antisymmetric Lamb modes when separately presented graph-

ically, a family of curves is obtained, none of which crosses the other. On the

other hand, when both the modes are plotted together then there exist some

points in the graph where symmetric and antisymmetric curves appear to cross

each other. These intersections between Lamb mode dispersion curves contribute

widely in the study of the elastodynamics of free isotropic elastic plates.

The given chapter includes the different types of intersections of Lamb mode

dispersion curves of stress free isotropic plate given by Every [6]. This work done

is related to a search for supersonic surface acoustic waves on coated solids. These

SSAWs possess a certain property which in some cases can be traced to intersec-

tions between the dispersion curves of the coat before it is applied on the material

[7] [8]. The intersection of Lamb modes for different materials using k-c coordi-

nates are graphically represented using MATLAB code. Also the appearance of

plateau region in the graph when normalized speed is plotted against normalized

wave number is graphically represented.
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4.1 Introduction

The Rayleigh-Lamb frequency relation for symmetric and antisymmetric Lamb

modes can also take the form

tan(π
2

√
Ω2 − κ2)

tan(π
2

√
Ω2

e2
− κ2)

+ F±1(Ω, κ) = 0, (4.1.1)

where

F+1(Ω, κ) =
4κ2

√
(Ω2 − κ2)(Ω2

e2
− κ2)

(Ω2 − 2κ2)2
,

and

F−1(Ω, κ) =
(Ω2 − 2κ2)2

4κ2

√
(Ω2 − κ2)(Ω2

e2
− κ2)

.

The exponent of F (Ω, κ) is +1 for the symmetric modes and –1 for the antisym-

metric modes.

The dimensionless frequency and dimensionless wave number in (4.1.1) is given

by

Ω =
2ωh

πcT
;κ =

2kh

π
(4.1.2)

where ω is the angular frequency, h is the half thickness of the plate and k is the

wave number.

Also

e =
cL
cT

=

√
2(1− σ)

(1− 2σ)
, (4.1.3)

where cL and cT are the longitudinal and shear wave velocities, respectively. As

the range for Poisson’s ratio σ is −1 < σ < 0.5, so from the equation (4.1.3) e

must be between
√

4
3

and infinity.

The Lamb mode dispersion curves for the full allowed range of Poisson’s ratio are

examined in the next section.

4.2 TYPE F Intersections

Following [6], the type F intersections of Lamb mode dispersion curve requires

F±(Ω, κ) = 1, (4.2.1)
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⇒
4κ2

√
(Ω2 − κ2)(Ω2

e2
− κ2)

(Ω2 − 2κ2)2
= 1,

⇒ 4κ2

√
(Ω2 − κ2)(

Ω2

e2
− κ2) = (Ω2 − 2κ2)2,

⇒ 4κ4

√
(
Ω2

κ2
− 1)(

Ω2

κ2e2
− 1) = κ4(

Ω2

κ2
− 2)2,

where for ν = Ω
κ

= 1
cT

ω
κ
, we get

(ν2 − 2)2 = 4

√
(ν2 − 1)(

ν2

e2
− 1). (4.2.2)

Equation (4.2.2) is the well known relation used to find out the Rayleigh wave

velocity VR = νcT of a material and shows that the Rayleigh equation can be cast

in the form of a cubic equation in ν2 having three solution. From [10], it follows

that one of the solutions for allowed e is always real, positive, and less than unity,

and corresponds to the Rayleigh velocity.

No Type F intersections exist for e > 1.76364 because it is obvious from Eq (4.2.2)

that the additional solution for ν will be complex yielding no real intersection.

For
√

4
3
< e < 1.76364, these additional solutions are real and leads to real

intersection. From Eq (4.2.1) we get the following condition to get the location

of type F intersection points

tan(π
2

√
ν2 − 1κ)

tan(π
2

√
ν2

e2
− 1κ)

+ 1 = 0,

⇒ tan(
π

2

√
ν2 − 1κ) + tan(

π

2

√
ν2

e2
− 1κ) = 0,

⇒
sin(π

2

√
ν2 − 1κ)

cos(π
2

√
ν2 − 1κ)

+
sin(π

2

√
ν2

e2
− 1κ)

cos(π
2

√
ν2

e2
− 1κ)

= 0,

⇒ sin(
π

2

√
ν2 − 1κ) cos(

π

2

√
ν2

e2
− 1κ) + sin(

π

2

√
ν2

e2
− 1κ) cos(

π

2

√
ν2 − 1κ) = 0.

Using the formula sin(α + β) = sinα cos β + cosα sin β above, we get

sin(
π

2
κ(
√
ν2 − 1 +

√
ν2

e2
− 1)) = 0,
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⇒ (
π

2
κ(
√
ν2 − 1 +

√
ν2

e2
− 1)) = zπ,

⇒ κ =
2z

√
ν2 − 1 +

√
ν2

e2
− 1

; Ω = νκ, (4.2.3)

where z is a positive integer. Equation (4.2.3) thus gives the location of intersec-

tion points for type F intersections.

4.3 TYPE I and TYPE II Intersections

The two conditions under which the symmetric and antisymmetric dispersion

curves intersect will be referred as Type I and Type II intersections. If the

tangent functions in Eq (4.1.1) are simultaneously infinite then these intersections

are referred as Type I while if the tangent functions are simultaneously zero

then will be referred as Type II intersections. The solutions of Eq (4.1.1) at

these intersection points exist only in the limiting sense of L’Hospital’s rule. The

condition below holds simultaneously for Type I and Type II intersection

√
Ω2 − κ2 = n,√
Ω2

e2
− κ2 = m, (4.3.1)

where n and m are positive odd integers for Type I intersection while n and m

are positive even integers for Type II intersection.

We will use Eq (4.3.1) to get the intersection point for both types. So we have

Ω2 − κ2 = n2,

⇒ κ2 = Ω2 − n2,

⇒ κ =
√

Ω2 − n2. (4.3.2)

Similarly
Ω2

e2
− κ2 = m2,

⇒ Ω2 − e2κ2 = e2m2. (4.3.3)

By putting Eq (4.3.2) in (4.3.3), we get

Ω2 − e2(Ω2 − n2) = e2m2,
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⇒ Ω2(1− e2) = e2m2 − e2n2,

⇒ Ω2 =
e2n2 − e2m2

e2 − 1
,

⇒ Ω = e

√
n2 −m2

e2 − 1
. (4.3.4)

Substituting Eq (4.3.4) in (4.3.2), we get

κ =

√
e2n2 − e2m2

e2 − 1
− n2,

⇒ κ =

√
e2n2 − e2m2 − e2n2 + n2

e2 − 1
,

⇒ κ =

√
n2 − e2m2

e2 − 1
. (4.3.5)

So for either type, the intersection point is located at

κnm =

√
n2 − e2m2

e2 − 1
, (4.3.6)

Ωnm = e

√
n2 −m2

e2 − 1
, (4.3.7)

where n > em and n > m for the real solution of κnm and Ωnm.

At the crossing points the phase velocity of modes is given by:

V p
nm = cT

Ωnm

κnm
,

= cT
e
√

n2−m2

e2−1√
n2−e2m2

e2−1

,

⇒ V p
nm = cT e

√
n2 −m2

n2 − e2m2
. (4.3.8)

Moreover, we will use Eq (4.3.6) and (4.3.7) to find the value of F(Ω, κ) at the

intersection of modes

F (Ω, κ) =
4(n

2−e2m2

e2−1
)
√

( e
2n2−e2m2

e2−1
− n2−e2m2

e2−1
)( e

2n2−e2m2

e2(e2−1)
− n2−e2m2

e2−1
)

( e
2n2−e2m2

e2−1
− 2(n

2−e2m2

e2−1
))2

,

=
4(n2 − e2m2)

√
(e2n2 − e2m2 − n2 + e2m2)(n2 −m2 − n2 + e2m2)

(e2n2 − e2m2 − 2(n2 − e2m2))2
,

=
4(n2 − e2m2)

√
n2m2(e2 − 1)2

(e2m2 + n2(e2 − 2))2
,

⇒ F (Ω, κ) =
4nm(e2 − 1)(n2 − e2m2)

(n2(e2 − 2) + e2m2)2
.
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Graphically the symmetric and antisymmetric Lamb modes when separately pre-

sented gives a family of curves, none of which crosses the other. But for some

special values of e there exist some points where they may cross each other.

For aluminum with e = 2.0288, no Type F intersections exist. The value of e

for aluminum is greater than 1.76364, so there exist no real intersections between

dispersion curves. Type I and Type II intersections are labeled according to n,m

values calculated from Eq (4.3.6) and (4.3.7) with n,m odd integers for Type I

and even integers for Type II intersection. In figure (4.1), we observed the near

intersection between symmetric and antisymmetric modes at points Ω = 4 and

Ω = 8. While at Ω = 2 and Ω = 6 intersection and near intersection for symmet-

ric modes are observed.

The figure (4.1) shows the intersection between symmetric and antisymmetric

Lamb modes for aluminum plate presented by [6]:

Figure 4.1: Intersection between symmetric and antisymmetric Lamb modes for

an aluminum plate of e = 2.0288 ≥ 1.76364 in k − Ω plane with no Type F

intersections. Type I and Type II intersections are labeled according to the

values of n,m with n and m being positive odd integers for Type I intersection

and positive even integers for Type II intersection. Here (3, 1), (5, 1), (7, 1), (7,

3) are Type I intersection points while (6, 2) and (8, 2) are Type II intersection

points.
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For beryllium plate with e = 1.45, type F intersections exist and are labeled

according with the value of z calculated from Eq (4.2.3). The line F1 having

slope 1.4500045 and the line F2 with slope 2.262 has uniformly spaced sequences

of Type F, labeled according to the values of z. Type I and Type II intersections

are labeled according to n,m values calculated from Eq (4.3.6) and (4.3.7) with

n,m odd integer for Type I and n,m even integer for Type II intersection. There

exist some points in fig (4.2) where near intersections between symmetric modes

exist and are labeled as a1, a2 and a3.

The figure (4.2) shows the intersection between symmetric and antisymmetric

Lamb modes for beryllium plate given by [6]:

Figure 4.2: Intersection between symmetric and antisymmetric Lamb modes for

beryllium plate of e = 1.45 in k−Ω plane. The intersection points on line F1 are

labeled as 1, 2 and F2 as 1, 2, 3, 4, 5, 6 according to the value of z calculated from

Eq (4.2.3); a1, a2 and a3 are near intersection points. Type I and Type II are

labeled according to the value of n,m with n and m being positive odd integers

for Type I intersection and positive even integers for Type II intersection. Here

(3, 1), (5, 3) and (5, 1) are Type I intersection points while (4, 2) and (6, 4) are

Type II intersection points.
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For an auxetic material with e = 1.3, type F intersections exist and are labeled

according with the value of z calculated from Eq (4.2.3). The line F1 having

slope 1.4500045 and the line F2 with slope 2.262 has uniformly spaced sequences

of Type F, labeled according to the values of z. Type I and Type II intersections

are labeled according to n,m values calculated from Eq (4.3.6) and (4.3.7) with

n,m odd integer for Type I and n,m even integer for Type II intersection.

The figure (4.3) shows the intersection between symmetric and antisymmetric

Lamb modes for an auxetic material is given by [6]:

Figure 4.3: Intersection between symmetric and antisymmetric Lamb modes for

an auxetic material which have negative value of σ with e = 1.3 in k − Ω plane.

The intersection points on line F1 are labeled as 1, 2 and F2 as 1, 2, 3, 4, 5, 6, 7

according to the value of z calculated from Eq (4.2.3). Type I and Type II are

labeled according to the value of n,m with n and m being positive odd integers

for Type I intersection and positive even integers for Type II intersection. Here

(3, 1), (5, 3) and (7, 5) are Type I intersection points while (4, 2), (6,4) and (8,

6) are Type II intersection points.

27



4.4 Evaluation of intersection points in k-c plane

By using normalized frequency and normalized wave number respectively MAT-

LAB environment is used to find the intersection points of symmetric and anti-

symmetric lamb modes.

The figure (4.4) depicts the intersections between symmetric and antisym-

metric Lamb modes for aluminum plate with no type F intersections. Type I

and Type II intersections are labeled according to n,m values calculated from

Eq (4.3.6) and (4.3.7) with n,m odd integer for Type I and even for Type II

intersections.

wave number kh

s
p
e
e
d
 c

/c
T

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

3, 1

7, 3

6, 2

5, 1

11, 5

Figure 4.4: Intersection between symmetric and antisymmetric Lamb modes for

an aluminum plate with e = 2.0288 in k − c plane with no Type F intersections.

Type I and Type II are labeled according to the value of n,m with n and m

being positive odd integers for Type I intersection and positive even integers for

Type II intersection. Here (3, 1), (5, 1), (7, 3) and (11, 5) are Type I intersection

points while (6, 2) is Type II intersection point.
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The figure (4.5) shows the intersection between symmetric and antisymmetric

Lamb modes for beryllium plate. Type F intersections exist and are labeled

according with the value of z calculated from equation (4.2.3). Type I and Type

II intersections are labeled according to n,m values calculated from Eq (4.3.6)

and (4.3.7) with n,m odd integer for Type I and even for Type II intersections.
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Figure 4.5: Intersection between symmetric and antisymmetric Lamb modes for

beryllium plate with e = 1.45 in k − c with Type F intersections labeled as 1, 2,

3 according to the value of z calculated from Eq (4.2.3). Type I and Type II are

labeled according to the value of n,m with n and m being positive odd integers

for Type I intersection and positive even integers for Type II intersection. Here

(3, 1) and (5, 3) are Type I intersection points while (4, 2) and (6, 4) are Type

II intersection points.
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The figure (4.6) shows the intersection between symmetric and antisymmetric

Lamb modes for an auxetic material having negative Poisson’s ratio with e = 1.3.

Type F intersections exist and are labeled according with the value of z calculated

from Eq (4.2.3). Type I and Type II intersections are labeled according to n,m

values calculated from Eq (4.3.6) and (4.3.7) with n,m odd integer for Type I

and even integer for Type II intersection.
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Figure 4.6: Intersection between symmetric and antisymmetric Lamb modes for

an auxetic material with e = 1.3 in k−c with Type F intersections labeled as 1, 2,

3, 4 according to the value of z calculated from Eq (4.2.3). Type I and Type II are

labeled according to the value of n,m with n and m being positive odd integers

for Type I intersection and positive even integers for Type II intersection. Here

(7, 5) is Type I intersection point while (6, 4) and (8, 6) are Type II intersection

points.

30



4.5 Plateau region for Lamb modes

The Rayleigh-Lamb frequency relation for Lamb modes demonstrates that the

slope of a mode vanishes at some points giving rise to plateau region.

By using equation (4.1.1), MATLAB environment is used to find the plateau

region for different materials.

Figure (4.7) is the graphical representation of an aluminum plate with plateau

region:
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Figure 4.7: Plateau region for aluminum plate.
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The figure (4.8) is the graphical representation of beryllium plate with plateau

region:
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Figure 4.8: Plateau region for beryllium plate.
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The figure (4.9) is the graphical representation of an auxetic material with

plateau region:
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Figure 4.9: Plateau region for an auxetic material.
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The figure (4.10) is the graphical representation of steel with plateau region:
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Figure 4.10: Plateau region for steel.
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Chapter 5

Mode conversion due to reflection

A plane usually divides the three-dimensional Euclidean space into two sections,

among which either of one section is termed as half space. When a wave reflects

in a half space, one form of wave energy can be transformed into another form and

this phenomena is referred as mode conversion. An SV wave can be converted

to a P wave after reflection from the boundary of a half space with a properly

chosen angle of incidence.

In this chapter, mode conversion of an incident SV-wave is studied in a half

space. An incident SV-wave reflects as an SV-wave and a P-wave. Also an

analytical expression in e is derived to find the bound in which mode conversion

can take place and outside which it is forbidden.

5.1 Introduction

Consider a half space with x1 ≥ 0, x2-axis normal to it and x2=0 is the boundary

of half space while x2 ≤ 0 is occupied by an elastic material and x2 > 0 is vacuum.

Consider a wave traveling in the half space with a wave vector n. We choose x1-

axis so that n is in the x1-x2 plane. The wave is described by the plane harmonic

displacement vector:

u = Apeι̇k(n.x−ct), (5.1.1)

where p is the polarization vector, k is wave number, c is the speed of wave and

A is the amplitude of wave respectively. There are two types of plane harmonic

wave:
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1) Longitudinal wave for n=p.

2) Transverse wave for n ⊥ p.

2a) When p = (0, 0, 1) is called SH-wave.

2b) When p ⊥ n but in the x1-x2 plane is called SV-wave.

Boundary Conditions

On the free boundary the displacement due to wave motion produces stress, τij,

since stress is caused by an elastic material on the positive side of a surface el-

ement acting on the material, so on the other side τij = 0. Therefore, stress is

zero while displacement is non-zero on the free boundary.

5.2 Reflection of SV-waves

Following [9], to examine the reflection of SV waves, considered an SV wave

propagating in a half space characterized by the respective speeds cT and cL of

an S wave and a P wave. The incident SV wave reflects partly as a P wave and

partly as an SV wave.

Let θo be the angle of incidence of an SV-wave and θ1 , θ2 be the angles of

reflection of the P and SV-wave. Also let Ao be the amplitude of an incident SV

wave and A1 , A2 be the amplitudes of the reflected P and SV waves respectively.

The figure (5.1) shows the reflection of SV-wave in a half space:

Figure 5.1: Reflection of SV wave.

36



The displacement vector of the incident SV-wave in the plane x2 = 0 is of the

form

u(0) = A0pe
ι̇k0(n0.x−cT t),

where n0 = (sin θ0, cos θ0, 0).

While for reflected P-wave and SV-wave displacement vector is given by

u(1) = A1pe
ι̇k1(n1.x−cLt),

u(2) = A2pe
ι̇k2(n2.x−cT t),

where n1 = (sin θ1,− cos θ1, 0) and n2 = (sin θ2,− cos θ2, 0).

We will consider only the case when the reflecting surface is free of tractions at

x2 = 0. The stress on such a surface is given by

τ21 = 0,

τ
(0)
21 + τ

(1)
21 + τ

(2)
21 = 0,

ι̇k0µ(sin2 θ0 − cos2 θ0)A0 expι̇k0(sin θ0.x1−cT t))

−2ι̇k1µ sin θ1 cos θ1A1 expι̇k1(sin θ1.x1−cLt)

−ι̇k2µ(sin2 θ2 − cos2 θ2)A2 expι̇k2(sin θ2.x1−cT t) = 0. (5.2.1)

Similarly

τ22 = 0,

τ
(0)
22 + τ

(1)
22 + τ

(2)
22 = 0,

2ι̇k0µ sin θ0 cos θ0A0 expι̇k0(sin θ0.x1−cT t)

+ι̇k1(λ+ 2µ cos2 θ1)A1 expι̇k1(sin θ1.x1−cLt)

−2ι̇k2µ sin θ2 cos θ2A2 expι̇k2(sin θ2.x1−cT t) = 0. (5.2.2)

The exponentials must vanish in (5.2.1) and (5.2.2), which gives

k0cT = k1cL = k2cT ,

k0 sin θ0 = k1 sin θ1 = k2 sin θ2,
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which yields

k0 = k2, (5.2.3)

⇒ k0

k1

=
cL
cT

= e, (5.2.4)

and

θ2 = θ0, (5.2.5)

sin θ1 =
k0

k1

sin θ0 = e sin θ0. (5.2.6)

By using (5.2.3)-(5.2.6) in (5.2.1) and (5.2.2), the following set of equations for
A1

A0
and A2

A0
are obtained

(λ+ 2µ cos2 θ1)(
A1

A0

)− eµ sin 2θ0(
A2

A0

) = −eµ sin 2θ0.

−µ sin 2θ1(
A1

A0

)− eµ cos 2θ0(
A2

A0

) = eµ cos 2θ0.

The solutions to this set of equations are

A1

A0

= − e sin 4θ0

sin 2θ0 sin 2θ1 + e2 cos2 2θ0

. (5.2.7)

A2

A0

=
sin 2θ0 sin 2θ1 − e2 cos2 2θ0

sin 2θ0 sin 2θ1 + e2 cos2 2θ0

. (5.2.8)

In the expression for A1

A0
, the reflected P-wave vanishes for θ0 = 0 , θ0 = π

4
,

θ0 = π
2
. For these specific values incident SV-wave reflects as an SV-wave while

if the numerator of (5.2.8) vanishes then incident SV-wave reflects as a P-wave.

5.3 Mode conversion through reflection

To find out the bound for mode conversion consider Eq (5.2.6), (5.2.7) and (5.2.8).

From Eq (5.2.6) it follows that θ1 must be a real-valued angle and it is possible

only if θo is smaller than or equal to the critical angle θcT given by

θo ≤ θcT ,

where critical angle θcT is given by

θcT = sin−1(
1

e
).
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Let the cross-sectional area of incident SV-waves is denoted by ∆So and the cross-

sectional area of reflected P-wave and SV-wave is denoted by ∆S1 and ∆S2.

The average energy transmission across ∆So must be equal to the sum of average

energy transmissions across ∆S1 and ∆S2 because the surface area ∆S is free of

tractions and no energy is dissipated. Using the energy transmission relation for

longitudinal and transverse waves given by [9],

pL =
1

2
(λ+ 2µ)

ω2A2

cL
,

pT =
1

2
µ
ω2A2

cT
,

where pL and pT are energy transmission of longitudinal and transverse waves, so

average energy transmission relation is given by

1

2
µ
ω2

cT
(Ao)

2∆So =
1

2
(λ+ 2µ)

ω2

cL
(A1)2∆S1 +

1

2
µ
ω2

cT
(A2)2∆S2.

By using

∆So = ∆S2 = ∆S cos θo , ∆S1 = ∆S cos θ1

Further simplification leads to the following equation

(
A1

Ao
)2 cos θ1

cos θo
e+ (

A2

Ao
)2 = 1. (5.3.1)

Suppose for θo = α, the right hand side of Eq (5.2.8) vanishes. This will imply

that an SV-wave with an angle of incident α is reflected as a P-wave giving rise

to mode conversion phenomena.

Let

f(θo) = sin 2θo sin 2θ1 − e2 cos2 2θo. (5.3.2)

For θo=0 in (5.3.2), we have

f(0) = −e2 < 0,

and for θo = θcT in (5.3.2), leads to

f(θcT ) = 2− e2 < 0.

So it follows that either f(θo) does not vanish at all in [0, θcT ] or it has at least

two zeros in the interval. Thus if mode conversion occurs, it does more than once

as we increase the angle of incidence from zero to θcT .
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5.4 An inequality for e

As we are familiar with the following expression below

e2 =
λ+ 2µ

µ
,

⇒ e =

√
λ+ 2µ

µ
,

⇒ e =

√
λ

µ
+ 2,

which shows that

e >
√

2,

it gives a lower bound for mode conversion.

Now we will proceed to get the upper bound for mode conversion.

Suppose the right hand side of Eq (5.2.8) vanishes for θo = α, then we have

sin 2α sin 2α1 − e2 cos2 2α = 0,

sin 2α sin 2α1 = e2 cos2 2α, (5.4.1)

where α1 is defined through the relation sinα1 = e sinα. Substituting Eq (5.4.1)

in (5.2.7) gives
A1

Ao
= − e sin 4α

2e2 cos2 2α
,

A1

Ao
= −e(2 sin 2α cos 2α)

2e2 cos2 2α
,

so we get

A1

Ao
= −tan 2α

e
.

Putting the above expression in (5.3.1), we get

(
tan 2α

e
)2 cosα1

cosαo
e+ (

A2

Ao
)2 = 1,

where A2

Ao
=0 due to mode conversion, so we are left with

(
tan 2α

e
)2 cosα1

cosα
e = 1,
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(tan 2α)2 cosα1

cosα
= e. (5.4.2)

Now we will proceed to get an expression for tan2α and cosα1

cosα
in e.

Since, angle of incidence must be less than or equal to the critical angle, therefore

α ≤ sin−1 1

e
,

⇒ sinα ≤ 1

e
. (5.4.3)

We know that

sin2 α + cos2 α = 1,

cos2 α = 1− sin2 α,

cosα =
√

1− sin2 α.

Using (5.4.3), we get

cosα ≥
√
e2 − 1

e
. (5.4.4)

From (5.4.3) and (5.4.4), we have

tanα ≤ 1√
e2 − 1

. (5.4.5)

It is well known that

tan 2α =
2 tanα

1− tan2 α
. (5.4.6)

By using (5.4.5) in Eq (5.4.6) yields

tan 2α ≤ 2
√
e2 − 1

e2 − 2
. (5.4.7)

Similarly to get an expression in e for cosα1

cosα
, we will differentiate Eq (5.3.2) and

get

f ′(α) = 2 cos 2α sin 2α1 + 2 sin 2α cos 2α1
dθ1

dθo
+ 4e2 cos 2α sin 2α. (5.4.8)

Taking derivative of Eq (5.2.6), we get

dθ1

dθo
= e

cos θo
cos θ1

.

By putting value of dθ1
dθo

in (5.4.8) gives

f ′(α) = 2 cos 2α sin 2α1 + 2e sin 2α cos 2α1
cosα

cosα1

+ 4e2 cos 2α sin 2α. (5.4.9)
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Since

e >
√

2,

and

sinα ≤ 1

e
, (5.4.10)

which implies that

α <
π

4
.

The observation that f(θo) vanishes more than once leads to the conclusion that

the right hand side of Eq (5.4.9) must be negative for the largest zero of Eq

(5.3.2). This is possible only if the middle term of Eq (5.4.9) is negative.

Hence

α1 >
π

4
, (5.4.11)

⇒ sinα1 >
1√
2
.

From (5.2.6) and the above result, we get

⇒ sinα >
1√
2e
.

Also we have

sinα ≤ 1

e
,

which implies
1√
2e

< sinα ≤ 1

e
. (5.4.12)

As from (5.4.1), we have

sin 2α sin 2α1 = e2 cos2 2α,

sin 2α sin 2α1 = e2(2 cos2 α− 1)2.

By using (5.4.4) in above equation, we find

sin 2α sin 2α1 ≤
(e2 − 2)2

e2
, (5.4.13)

now by using the formula sin 2θ = 2 sin θ cos θ in above inequality, which gives

cosα cosα1 ≥
(e2 − 2)2

4e2 sinα sinα1

,

42



cosα cosα1 <
(e2 − 2)2

2e
, (5.4.14)

where we have used (5.4.11) and (5.4.12) to obtain the last inequality.

Invert (5.4.14) and multiply with cos2 α1, we get

cosα1

cosα
>

2e cos2 α1

(e2 − 2)2
,

where using (5.4.11) in above inequality gives

cosα1

cosα
>

e

(e2 − 2)2
. (5.4.15)

Finally by using simplified inequalities for tan 2α and cosα1

cosα
in (5.4.2), we get

(tan 2α)2 cosα1

cosα
< (

2
√
e2 − 1

e2 − 2
)2 e

(e2 − 2)2
,

e <
4e(
√
e2 − 1)2

(e2 − 2)4
,

1 <
4(e2 − 1)

(e2 − 2)4
. (5.4.16)

which implies e ≤ 1.95, giving an upper bound for e.

Hence
√

2 < e ≤ 1.95,

is a necessary condition for a material for the existence of mode conversion.
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Chapter 6

Conclusion

The very well-known Rayleigh-Lamb frequency relation for an isotropic plate is

studied and the intersection between symmetric and antisymmetric Lamb modes

is discussed. A MATLAB code is generated to sketch the Lamb mode dispersion

curves related with each expression and there intersections are also graphically

represented.

The intersection points for symmetric and anti symmetric Lamb modes are

determined in k-c plane and they agree very well with the intersection points

studied in k-Ω plane.

We have likewise analyzed that there is a region where slope of the intersected

Lamb mode curves turns out to be about zero giving rise to the plateau region.

The plateau region for different materials is graphically represented.

The reflection of SV-waves in a half space is mathematically studied. An

analytical expression in e is derived for mode conversion to take place by using

the solution set calculated for reflected SV-waves and it gives the following bound

for mode conversion,
√

2 < e ≤ 1.95.

44



Bibliography

[1] J. Rayleigh, The Theory of Sound, Dover, New York, (1945).

[2] H. Lamb, “On waves in an elastic plate,” Proceedings of the Royal Society

of London Series, 93, 114 – 128, (1917).

[3] R. Mindlin, “Mathematical theory of vibrations of elastic plates,” Proceed-

ings of the 11th Annual Symposium on Frequency Control, U.S. Army Signal

Engineering Laboratories, Fort Monmouth, New Jersey, 1 – 40, (1957).

[4] D. Worlton, “Experimental Confirmation of Lamb Waves at Megacycle Fre-

quencies,” Journal of Applied Physics, 32, 967 – 971, (1961).

[5] A. Freedman, “The variation, with the Poisson ratio, of Lamb modes in a free

plate,” Journal of Sound and Vibration, 137, 209 – 230, (1990).

[6] A. G. Every, “Intersections of the Lamb mode dispersion curves of free

isotropic plates,” Acoustical society of America, 139, (2016).

[7] E. Glushkov, N. Glushkova, and C. Zhang, “Surface and pseudo-surface acous-

tic waves piezoelectrically excited in diamond-based structures,” Journal of

Applied Physics, 112, 064911 (2012).

[8] M. Benetti, D. Cannata, F. Di. Pietrantonio, V. I. Fedosov, and E. Verona,

“Gigahertz-range electro-acoustic devices based on pseudo-surface-acoustic

waves in AIN/diamond/Si structures,” Journal of Applied Physics, 87,

033504 (2005).

[9] J. D. Achenbach, “Waves Propagation in Elastic Solids,” North Holland, New

York, (1980).

45



[10] F. Ahmad, “Shape of dispersion curves in the Rayleigh-Lamb spectrum,”

Arch. Mech., 56, 157 – 165, (2004).

[11] F. Ahmad, “A simple formula for the Lamb modes in a plate,” J. Acoust.

Soc. Am., 111, 1974 – 75, (2002).

[12] F. Ahmad, “A simple formula for the longitudinal modes in a cylinder,” J.

Acoust. Soc. Am., 115, 475 – 477, (2004).

46


