
 

i 

 

Rigid plastic modeling of RC beams under Impact loading 

 

 

 

 

By 

Asad Ullah 

MS-2018-00000-277287 

 

Supervisor  

Dr. Azam Khan 

 

NUST INSTITUTE OF CIVIL ENGINEERING 

SCHOOL OF CIVIL AND ENVIRONMENTAL ENGINEERING 

NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY 

H-12, ISLAMABAD 

2021 

  



 

ii 

 

This is to certify that thesis titled 

Rigid plastic modeling of RC beams under Impact loading 

 

 

Submitted by 

Asad Ullah 

 

Fall 2016-MS Structural Engineering 

00000-277287 

 

Has been accepted towards the partial fulfillment 

of 

the requirement for the award of the degree of  

Master of Science in Structural Engineering 

 

 

 

Thesis Supervisor 

 

Dr. Azam Khan   

Assistant Professor 

NUST Institute of Civil Engineering (NICE) 

National University of Sciences and Technology (NUST), 

Islamabad, Pakistan. 

  



 

iii 

 

THESIS ACCEPTANCE CERTIFICATE 

 

It is certified that the final copy of MS thesis written by Mr. Asad Ullah, Registration No. 

00000-277287, of NUST INSTITUTE OF CIVIL ENGINEERING (NICE) has been 

vetted by the undersigned, found complete in all respect as per NUST Statutes/Regulations, 

is free of plagiarism, errors, and mistakes and is accepted as partial fulfillment for the award 

of MS degree in Structural Engineering. 

 

 

 

 

     Signature: 

Name of Supervisor: Dr. Azam Khan  

        Date: 

 

 

      Signature (HOD): 

         Date: 

 

 

     Signature (Dean/Principal): 

        Date: 



 

iv 

DECLARATION 

I certify that this research work titled “Rigid plastic modeling of RC beams under impact loading” 

is my own work. The work has not been presented elsewhere for assessment. The material that has been 

used from other sources has been properly acknowledged/referred.  

 

 

 

    Signature of Student  

        Asad Ullah 

  00000-277287 

 

 

 



 

v 

PLAGIARISM CERTIFICATE (Turnitin Report) 

This thesis has been checked for Plagiarism. Turnitin report endorsed by Supervisor is attached.  

 

 

 

 

 

 

 

Signature of Student  

Asad Ullah 

00000-277287 

 

 

Signature of Supervisor 

 

 



 

vi 

Rigid plastic modeling of RC beams under impact loading  

by 

 

 

Asad Ullah 

 

 

This is to certify that we have examined the above MS thesis and found that it is complete and 

satisfactory in all respects and that any, and all revisions required by the thesis examination 

committee have been made.  

 

 

 

 

Dr. Azam Khan   Dr. Usman Hanif           Dr. Hammad Anis 

(Assistant Professor)          (Assistant Professor)        (Assistant Professor) 

 

 

 

 

Dr. Rao Arsalan Khushnood 

(Assistant Professor) 



 

vii 

ACKNOWLEDGEMENTS 

Since I got admission as a graduate student in the NUST Institute of Civil Engineering, National University 

of Science and Technology, H-12 Islamabad, this period was one of the wealthiest and most exciting years 

of my life. In this journey, I met many people with whom I learned a lot and whom I will never forget. The 

following lines are dedicated to thanking the ones that contributed to my studies and my project in one way 

or another. 

First, I would like to thank my supervisor, Dr. Azam Khan, Assistant Professor, NUST Institute of Civil 

Engineering, for his generosity, kindness, flexibility, cooperation, and guidance. Despite a hectic schedule, 

he went above and beyond the call of duty to provide excellent and prompt guidance for unconditional 

support and encouragement throughout my project work. I must also acknowledge his availability, 

dedication, guidance, and reviewing the drafted report. 

I also owe a debt of gratitude to my project evaluation committee members/examiner Engr. Dr. Rao Arsalan 

Khushnood, Engr. Dr. Hamad Anis and Engr. Dr. Usman Hanif. Their constant support, intellectual, logical, 

and rational, thoughtful comments and suggestions for improving my thesis, and assistance during the 

execution of the computational work improved the quality of work. 

I am grateful to my friends and colleagues who provided continual moral encouragement and never gave 

up on me when it seemed like this project would never be completed.  At this stage, I would also like to 

thank my friends and colleagues, Engr. Moiz Tariq, Engr. Hassan Sardar, Engr. Hassan Irfan, Engr. Sultani 

Mulk Khan, Engr. Junaid Shah Khan for their constant support and help during the coursework and research 

work. 

Most importantly, I am greatly indebted to my parents for the endless encouragement, patience, and support 

they have given me over the past year and my entire life. Thanks for reminding me that knowledge is power; 

experiences are priceless. 

 

Wednesday, August 25, 2021. Asad Ullah 

  



 

viii 

 

TABLE OF CONTENTS 

TITLE PAGE i 

DECLARATION PAGE iv 

PLAGIARISM CERTIFICATE v 

SIGNATURE PAGE  vi 

ACKNOWLEDGEMENTS vii 

TABLE OF CONTENTS viii 

LIST OF FIGURES  xi 

LIST OF TABLES  xiv 

ABSTRACT xv 

1 INTRODUCTION .................................................................................................................................. 1 

1.1 Background ...................................................................................................................................... 1 

1.2 Types of RC beam failure under impact loading ............................................................................. 4 

1.3 Problem Statement ........................................................................................................................... 6 

1.4 Research Significance ...................................................................................................................... 6 

1.5 Research Objectives ......................................................................................................................... 7 

2 REVIEW OF LITERATURE ............................................................................................................... 8 

2.1 Overview .......................................................................................................................................... 8 

2.2 Effect of strain-rating on the properties of materials ....................................................................... 9 

2.2.1 Plain concrete ...................................................................................................................... 9 

2.2.2 Steel reinforcement ........................................................................................................... 14 

2.3 Effect of strain rate on RC beam .................................................................................................... 14 

2.3.1 Analytical and numerical studies ...................................................................................... 14 

2.4 Study of RC beams under Impact Loading .................................................................................... 15 

2.4.1 Experimental testing ......................................................................................................... 15 

2.4.2 Mathematical and analytical based studies ....................................................................... 23 

2.5 Summary ........................................................................................................................................ 24 

3 Methodology ......................................................................................................................................... 28 

3.1 Proposed Dynamic Rigid-Plastic Model Incorporating Strain-rate Effet ...................................... 28 



 

ix 

 

3.1.1 Representation of kinetics and kinematics as the nodal description ................................. 29 

3.1.2 Material Model ................................................................................................................. 31 

3.1.3 The Mathematical Formulation......................................................................................... 35 

3.1.4 Solution steps of formulation ............................................................................................ 37 

3.2 LCP Formulation Incorporating M-V Interaction .......................................................................... 38 

3.2.1 Representation of kinetics and kinematics as the nodal description ................................. 38 

3.2.2 Material Model ................................................................................................................. 41 

3.2.3 The Mathematical Formulation......................................................................................... 43 

3.2.4 Initiation of LCP formulation ........................................................................................... 45 

3.2.5 Plastic Unstressing ............................................................................................................ 47 

3.3 Existence and uniqueness of optimal solutions.............................................................................. 48 

3.4 Peak Impact Force Model .............................................................................................................. 50 

3.4.1 Parameters affecting the impacted force on RC beam from a drop-weight ...................... 50 

3.4.2 Experimental database ...................................................................................................... 51 

3.4.3 Fundamentals of gene programming ................................................................................ 52 

3.4.4 Proposed GEP model for estimating peak impact force ................................................... 54 

3.5 Statistical Parameters for Validation ............................................................................................. 57 

3.5.1 Predicted to experimental ratio (PER) .............................................................................. 57 

3.5.2 Coefficient of Variation (CoV) ......................................................................................... 57 

3.5.3 Coefficient of Determination ............................................................................................ 58 

4 RESULTS & DISCUSSION ................................................................................................................ 60 

4.1 Organization ................................................................................................................................... 60 

4.2 Model Validation ........................................................................................................................... 60 

4.3 Viscoplastic LCP Validation .......................................................................................................... 60 

4.3.1 Experimental Database ..................................................................................................... 60 

4.3.2 Validation of midspan deflection ...................................................................................... 63 

4.4 Bending shear LCP ........................................................................................................................ 70 



 

x 

 

4.4.1 Experimental Database ..................................................................................................... 70 

4.4.2 Validation of midspan deflection ...................................................................................... 72 

4.5 Peak Impact Force.......................................................................................................................... 76 

4.5.1 Experimental Database ..................................................................................................... 76 

4.5.2 Validation with experimental tested data .......................................................................... 77 

4.5.3 Sensitivity of the proposed model ..................................................................................... 79 

4.5.4 Comparison with numerical model ................................................................................... 82 

4.5.5 Comparison with the available model ............................................................................... 84 

4.5.6 Remarks about shear force, and bending moment plots ................................................... 86 

5 CONCLUSION AND RECOMMENDATION ................................................................................. 88 

5.1 Recommendations .......................................................................................................................... 91 

References .................................................................................................................................................. 92 

 

 

 

 

 

 



 

xi 

 

LIST OF FIGURES 

Figure 1. 1: Strain rates corresponding to different loading conditions ....................................................... 3 

Figure 1. 2: Different tendencies for different types of loading ................................................................... 4 

Figure 1. 3: Response of RC beams under impact loading: (a) Loading procedure and local response. (b) 

Global bending failure. (c) Local failure in shear. (d) Global failure in shear. (e) Global shear-flexure failure.

 ...................................................................................................................................................................... 5 

Figure 2. 1: RC beams failure (Mylrea [60]) ............................................................................................. 16 

Figure 2. 2: Parallelogram of hysteretic loop (Kishi et al. [61]). ............................................................... 17 

Figure 2. 3: Hysteratic loop of force vs displacement (Kishi et al. [14]) ................................................... 18 

Figure 2. 4: Instrumental setup of impacted RC beam (Fujikake et al. [59]) ............................................. 19 

Figure 2. 5: Cracking profiles of type-a and -b series beams (Saatci and Vecchio [13]) .......................... 21 

Figure 3. 1: Discritized simply-supported beam under impact loading ..................................................... 28 

Figure 3. 2: Stress-resultants, strain-resultant rates, chord deformation rates, and independent chord forces.

 .................................................................................................................................................................... 29 

Figure 3. 3: Centroidal-velocities in a system of lumped mass ................................................................. 30 

Figure 3. 4: Material model ........................................................................................................................ 31 

Figure 3. 5: Flow path for the proposed viscoplastic LCP model .............................................................. 37 

Figure 3. 6: Discritized simply-supported beam under dropweight impact ............................................... 38 

Figure 3. 7: Independent nodal velocities and member deformation rates ................................................ 39 

Figure 3. 8: Stress-resultants, strain-resultant rates, chord deformation rates, and independent chord forces: 

(a) Planar element allowing plastic-interaction of the bending moment and the shear force. (b) Planar 

element allowing plastic bending moment. (c) centroidal-velocities in a system of lumped mass ............ 40 

Figure 3. 9: Bending-shear interaction ....................................................................................................... 43 

Figure 3. 10: Flow path of bending-shear LCP model ............................................................................... 48 

Figure 3. 11: Flow chart for the GEP ......................................................................................................... 54 



 

xii 

 

Figure 3. 12: Gene expression tree for peak impact force ......................................................................... 56 

Figure 3. 13: Graphical Representation of Coefficient of Determination .................................................. 58 

Figure 4. 1: Frequencies of different experimental parameters. (a) Impact Mass. (b) Beam net length. (c) 

Drop mass velocity. (d) Compressive strength. (e) Beam depth. (f) Beam-width. (g) Shear reinforcement 

ratio. (h) Tensile reinforcement ratio. ......................................................................................................... 63 

Figure 4. 2: Comparison of predicted and experimental results of midspan maximum deflection ............ 63 

Figure 4. 3: : Influence of parameters on the estimative performance of the developed formulation. (a) 

Projectile velocity. (b) Impacted mass. (c) Mass ratios. (d) Beam depth ................................................... 64 

Figure 4. 4: Zhao et al. vs Visoplastic LCP ............................................................................................... 65 

Figure 4. 5: Comparison of viscoplastic LCP and Adhikary et al. ............................................................. 66 

Figure 4. 6: Khan et al. vs viscoplastic LCP model prediction .................................................................. 67 

Figure 4. 7: Comparison of viscoplastic vs Kishi and Mikami model ....................................................... 68 

Figure 4. 8: Tachibana et al. vs viscoplastic LCP ...................................................................................... 69 

Figure 4. 9: Frequencies of different experimental tested beams parameters. (a) Drop mass velocity. (b) 

Impacted Mass. (c) Beam net length. (d) Compressive strength. (e) Beam depth. (f) Beam-width. (g) Shear 

reinforcement ratio. (h) Tensile reinforcement ratio. .................................................................................. 72 

Figure 4. 10: Comparison of predicted and experimental results of midspan maximum deflection .......... 73 

Figure 4. 11: Influence of parameters on the estimative performance of the developed formulation. (a) 

Projectile velocity. (b) Impacted mass. (c) Mass ratios (d) Beam depth .................................................... 74 

Figure 4. 12: Khan et al. vs bending-shear LCP ........................................................................................ 75 

Figure 4. 13: Comparison of bending shear LCP with Adhikary et al. model ........................................... 76 

Figure 4. 14: Comparison of predicted and experimental results of peak impacted force (a) Training data 

(b) Validation data (c) All data ................................................................................................................... 79 

Figure 4. 15: Parametric study ................................................................................................................... 80 

Figure 4. 16: The effect of main parameters on the precision of developed GEP ..................................... 81 



 

xiii 

 

Figure 4. 17: Response of RC beam model in ABAQUS (a) Maximum midspan deflection (b) Peak impact 

force ............................................................................................................................................................ 83 

Figure 4. 18: Comparison of GEP with Pham and Hao model .................................................................. 85 

Figure 4. 19: GEP model vs Zhao et al. model .......................................................................................... 86 

Figure 4. 20: Calculation of the shear force, and bending moment diagram ............................................. 87 

 

  



 

xiv 

 

LIST OF TABLES 

Table 1. 1: Responses of RC beam under different impact loading condition ............................................. 5 

Table 3. 1: Distribution of key influence parameters ................................................................................. 51 

Table 3. 2: Model Construction Parameter ................................................................................................ 56 

Table 4. 1: Statistical analysis of maximum mid-span deflection prediction models of RC beams under 

Impact loading ............................................................................................................................................ 69 

Table 4. 2: Statistical analysis of maximum midspan deflection prediction models of RC beams under 

Impact loading ............................................................................................................................................ 76 

Table 4. 3: Distribution of key influence parameters ................................................................................. 77 

Table 4. 4: Comparison of GEP result with Experimental result and ABAQUS solution ......................... 84 

Table 4. 5: Comparison with available models .......................................................................................... 86 

 



 

xv 

 

ABSTRACT 

A numerical model is produced herein for predicting the dynamic plastic structural responses of RC skeletal 

structures under drop-weight impact loading.  The numerical formulation has the mathematical form of a 

linear complementarity problem (LCP) that incorporates the strain-rate sensitivity.  This formulation offers 

a systematic numerical process that is automatic from the commencement until the dynamic response 

termination. The maximum deflection obtained from the viscoplastic LCP of midspan impacted simply 

supported beam is statistically compared to the experimental dataset of RC beams. So, an extensive 

experimental database of 118 simply supported RC beams under midspan impact is selected.  All cases 

within the database experiencing either flexure or flexure-shear failure, whereas only shear failure cases 

are excluded.   

Similarly, another numerical model is developed here having the same mathematical form of a linear 

complementarity problem (LCP) but the only difference from the previous one is that it incorporates 

bending shear interaction obeying the square yield criterion. The maximum deflection as a result output 

obtained from this interaction-based LCP of midspan impacted simply supported reinforced concrete beam 

is statistically compared to the experimental dataset of tested RC beams carried out by different researchers 

available in the Literature. For this purpose, an extensive experimental database of 46 simply supported 

reinforced concrete (RC) beams under midspan impact has been constructed. All cases within the database 

experienced either flexure-shear or shear failures, whereas those specimen which failed in pure bending are 

excluded. 

For structures and load-bearing members under extreme impact loading, the prediction of peak impact force 

is the most challenging task. Owing to the non-uniqueness in the acceleration field of the rigid-plastic 

model, the peak impact force is also non-unique, therefore, an efficient and accurate empirical model is 

produced to estimate this force for the particular case of a simply supported (RC) beam under drop-weight 

impact. A gene expression programming (GEP) approach is employed to formulate this empirical model 
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reflecting the contribution of various material and geometric factors like compressive strength of concrete, 

shear span to depth ratio, and strength and area of tensile reinforcement.  The effect of other factors 

including the impact velocity and impactor weight is also investigated.  A database containing 126 impact 

force experiments of the simply supported RC beams is analyzed statistically on the basis of variation of 

these factors and is used to develop the proposed models. This model is also compared statistically and 

analyzed with the available proposed models.  Numerical confirmation of the empirical model of peak 

impact force is obtained by reference to finite element (FE) code ABAQUS with plane stress elements.  

Overall, the proposed model offers highly promising results, which can be applied to predict the shear force 

and bending moment diagrams, thus rendering it ideal for practical application. 
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1  INTRODUCTION 

1.1  Background 

Different components of reinforced concrete (RC) structure may subject to various kinds of extreme 

dynamic loading throughout its service life ranging from low to high rates of loading i.e. from earthquake 

to impact and then to blast loading. Due to development of infrastructures throughout the world, there are 

chances that the components of these structures can be subjected to impact loading from several events or 

accidents. Typical examples include the impact loading on different highway structural elements (i.e. bridge 

piers, side guard rails, traffic signal poles, electric distribution poles, girder of overhead passing or bridges) 

from vehicle striking impacts, falling rocks in mountainous regions on different structures, industrial plants 

may suffer potential damage of critical components caused by heavy falling objects happened from pipe 

and the turbine breaks, offshore and marine structures may be on threat from collision of ships or ice with 

them, different types of building may be expected to tornado or debris impact from tsunami, columns in 

multistory buildings or bridges pier may be impacted by moving vehicles, structures for protection 

subjected to projectiles or aircraft impact. During these collisions, the impact causes huge amount of 

abnormal forces on these structures. Therefore, it is very important to predict the response of these structures 

under these extreme loading for better and safe design [1,2]. 

Due to complex nature of loading and inelastic structural response, the analysis of structure under time-

dependent short-term loading is not straightforward. In a perfectly elastic viscous damping system with 

small displacement, the system can be easily solved by solving linear second order differential equation of 

motion. But in cases like elasto-plastic system under these dynamic loading, the mathematics becomes more 

complex and non-linear. Because when these engineering structures such as beam, frame, plate, or shell are 

subjected to impact loading, the first portion of structural response is the elastic one. But when yield limit 

is reached at any point, a more complicated response of both elastic and plastic deformation is distributed 

along the structure. We can’t separate the plastic deformations as they are scattered with the elastic. 

Therefore, the closed-form analytical solution of elasto-plastic structures is immensely difficult or 
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sometimes not even possible. Therefore, powerful numerical solutions such as finite element analysis (FEA) 

are adopted to obtain an approximate solution [3]. 

 In order to solve the complexity, different researchers have used different techniques. Among those, the 

most simple and powerful approach of rigid-plastic analysis has been widely accepted and extensively used. 

This method is bearing outstanding results in the limiting analysis of steel and concrete under static loading 

but has also shown promising results in analyzing the structures under extreme dynamic loading. The reason 

behind its simplicity is that this method neglects the elastic strain of materials. The dynamic response of 

different types of structure such as beam, plates, and shells, etc. [2] are expressed in the form of differential 

equations which can be solved analytically, or numerically, for given initial end boundary conditions. At 

each instant of time, the plasticity occurred only at a fixed point or zone in a structure, while everywhere 

else will only rigid-body motion occurs. This rigid-plastic theory is formulated on an assumption that the 

amount of the energy transferred to structure is quite huge than the amount of strain energy, it can store. 

That’s why this technique is very efficient for better understanding of the mechanism by which plastic 

deformation contributes to residual damage and energy absorption in ductile structure [4]. 

Quadratic programming has shown promising results when incorporated to rigid planar frame (assumed 

that all the connecting elements are rigid) subjected to impulsive or short-term pulse loading [5]The 

kinematic and kinetic laws are represented in nodal or mesh descriptions along with the plasticity relation 

are converted into linear complementarity problem (LCP) with the help of Newmark’s integration scheme 

[6,7]. Later [8] change the incremental form of LCP into rate form, for the accurate representation of non-

holonomic of the plasticity relation. Secondly, he replaced Wolfe’s type solver with Lemke’s Algorithm 

for its robustness in addressing the solution of semi-definite LCP. 

Along with all the above discussion, it is also very important to acknowledge the effect of loading rate on 

different structures. The strain rates incorporated by different loading encounter in practice has been shown 

by [9] as given in Fig. 1.1. As been clear from the wide spectrum, that very low strain rate (~10-8 – 10-7 /s) 

normally occurs during creeping. For static conditions,  the strain rate normally lies in range of 10-6 to 10-4 
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/s. Moreover, during earthquake it could be in the domain of 10-3 – 1 /s, and for impact loading, it can be 

increased up to 50 /s. The strain rate greater than impact scenario will fall in blast loading regime. In 

earthquake regimes, the inertial effect on structure is insignificant, but for high strain loading, the inertial 

effect is dominant than structural response [10]. 

 

Figure 1. 1: Strain rates corresponding to different loading conditions 

The phenomenon of impact loading is very complex not only due to the reason that it’s an extreme high 

dynamic loading but also due to involvement of inertial effect, energy transferring mechanics, and 

distribution of stress-waves along the structure. Due to this, different influencing factors such as 

compressive strength fc
’, mass and initial velocity of drop hammer, and contact region’s stiffness affect the 

behavior of structure. Additionally, the structural response under drop-weight impact loading is divided 

into two stages: the primary response stage (local failure) and the secondary response stage (overall failure), 

and these behaviors are dependent on high rates of loading and stress-waves propagation. The different 

proportional increase of stress-waves and high rates effect occurred in different structural members for 

different types of loading is shown in Fig. 1.2 [11]. 
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Figure 1. 2: Different tendencies for different types of loading 

1.2 Types of RC beam failure under impact loading 

Like all other engineering structural members, RC beams under impact loading also show different failure 

responses. The study of published articles on the dynamic plastic behavior of RC beams under these loads 

reveals that the magnitude of impact loading, beam-flexural capacities, and beam-shear capacities result in 

different failure responses [12–14]. Consider the dynamic behavior of a simply supported RC beam shown 

in Fig. 1.3. The first diagram shows that sudden impact on the midspan of the RC beam generates wave 

packets with the higher frequency component moving out ahead of the main disturbance. These waves 

reflect off the support and generate an irregular wave distribution in the domain between the support and 

the impacted point. It transpires that different failure modes result depending upon the impact loading rate, 

Fig. 1.3(b)-(e) and Table 1.1. Under low rate-long duration impact, the beam exhibits a ductile response 

with vertical flexural cracks forming at the tension zone, Fig. 1.3(b). On the other hand, high rate-short 

duration impact may be governed by transverse shear effects at the impacted point, as shown in Fig. 1.3(c). 

Furthermore, in the case of low-shear strength under the same loading may have significant shear effects at 

the support, Fig. 1.3(d). Finally, a global flexure-shear failure may be initiated if the beam has moderate 

shear and bending strength, Fig. 1.3(e). In this failure shape, the damages start with the surfacing of vertical 

flexural cracks at the tension zone and similar flexural cracks at the top surface of beam due to the hogging 

moments. 
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(a) (b) 

 
 

(c) (d) 

 

(e) 

 

Figure 1. 3: Response of RC beams under impact loading: (a) Loading procedure and local response. (b) 

Global bending failure. (c) Local failure in shear. (d) Global failure in shear. (e) Global shear-flexure 

failure. 

 

Table 1. 1: Responses of RC beam under different impact loading conditions 

Specimen 
Flexural and shear 

resistance 

Impact loading 

condition 
Failure type 

Fig1.b Middle range resistance 
Low rate and extended 

duration 

Vertical flexural cracks from 

tension zone 

Fig1.c Middle range resistance 
High rate and short 

duration 

Local shear plugs at the 

impact point 
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Fig1.d Low shear strength 
Medium rate impact 

loading 

Global brittle shear plugs 

near the support 

Fig1.e Middle range resistance 
Medium rate impact 

loading 
Global bending-shear failure 

 

1.3 Problem Statement 

A simplified method, such as rigid plastic theory which has shown promising performance in analyzing 

structures under extreme dynamic loading doesn’t incorporate the effect of strain-rate. Along with it, to 

better capture the shear behavior, it is necessary to incorporate the bending moment and shear force 

interaction in rigid plastic bending response. Moreover, to simplify the design approach, the peak impact 

force can then be employed to derive bending moment and shear force diagrams. It is therefore essential to 

propose simplified models that incorporate strain-rate effect, bending-shear interaction, and predict the peak 

impact load with reasonable accuracy. 

1.4 Research Significance 

Predicating the response of an RC beam under drop-weight impact loading is a complex phenomenon. The 

following three approaches are generally used for this purpose; 

• Spring Mass System. 

• Analytical approach on the basis of conservation of energy. 

• Analytical approach on the basis of various contact laws. 

The application of these procedures is not straightforward and sometimes not even possible. On other hand, 

a simplified method, such as rigid plastic theory, can prove very useful in capturing this complex response 

of RC structures. The dynamic behavior of RC structures is highly sensitive to strain rate, resulting in a 

considerable increase in the yield stress with an increased rate of straining. This property of viscoplasticity 

should be incorporated in any simplified model for accurately predicting the peak response of these 

structures under drop-weight impact loading. Along with it, RC beams that fail in bending in static loading 

often fail in shear behavior during high impact loading. Therefore, it is necessary that the rigid-plastic 
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bending response may be extended to incorporate bending moment and shear force interactions. Moreover, 

proper design procedure, protection, and strengthening of all these structures against drop-weight impact 

loads are necessary. To achieve these goals, being able to accurately predict the impact loads is essential. 

1.5 Research Objectives 

A systematic study on RC beam has been carried out in this research, which will address the research gaps 

and also improve the understanding of RC beam under drop-weight impact loading. The main objectives 

of this study are as given below: 

1. To propose a simplified mathematical model based on rigid-plasticity incorporating the effect of strain 

rate for predicting the midspan displacement of RC beam under drop-weight impact loading. 

2. To propose a simple mathematical and computational method, founded upon the rigid-plastic theory 

incorporating the bending-shear interaction for calculating the dynamic responses of RC skeletal 

structures under drop-weight loading. 

3. To develop an efficient model to produce the peak impact load on RC beam from a drop-weight. 

4. Validation of the developed models with the available experimental data. 

5. Validating the proposed models with the existing models available in the Literature. 



 

8 

 

2 REVIEW OF LITERATURE  

2.1 Overview 

Impact loading response is an ever-growing field of studies that encompasses various engineering problems, 

as exemplified by vehicle collisions, the impact of rockfalls, and terrorist activities. Although RC structures 

are very pronounced universally, the understanding of the impact response of these structures is still limited.  

A considerable variation exists in response parameters prediction as per various codes of practice [15,16], 

mostly not asking for the dynamic analysis of the impacted RC components.  However, the dynamic 

response of RC structures, such as beams, indicates that there can be instances when the dynamic behavior 

is significantly different from the static loading [13,14,17–23]. Indeed, the ability to predict the response of 

these structures under impact loadings is essential for appraising the safety of these structures to the 

potential damage of structural components [24]. Most of the techniques exploring the nonlinear dynamic 

plastic response under impact loading require expertise and are computationally expensive [25]. However, 

rigid-plastic approximations offer a simplified and computationally efficient procedure for dynamic 

analysis, owing to the exclusion of the elastic response [26].  

The role of elasticity in structural response due to the extreme dynamic loads can be neglected if the plastic 

deformation is substantially large.  In such cases, it is suitable to consider that the stress resultants on a 

section are coupled to deformation by a rigid-perfectly plastic constitutive law [2]. This simple theory in 

impact dynamics has well played an essential role in producing computationally efficient approaches that 

allow considerable physical insight into the underlying mechanics of motion [27]. Although the application 

of the rigid-plastic theory to dynamic problems was suggested by Taylor [28], the first systematic study in 

this context appears to have been made by Lee and Symonds [29]. This study yielded vast literature on the 

investigations of structures submitted to extreme dynamic loading [30–38]. Yet, it is noteworthy that each 

closed-form theoretical solution requires to postulate a kinematically admissible velocity profile for the 

evolution of displaced configuration.   
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Like most structural materials, reinforced concrete exhibits different dynamic responses and failure modes 

from the quasistatic loads [13,14,17–23]. This behavioral change is due to the involvement of high rate of 

loading due to which it changes the material responses. This variation is explained in detail in following 

sections.  

2.2 Effect of strain-rating on the properties of materials 

Since the key mechanical properties of the materials i.e., plain concrete and reinforcement are strongly 

dependent on the strain rate effect. So, in order to accurately predict the responses of these structures, the 

effect of strain rate on these basic materials over a wider range should be considered. 

2.2.1  Plain concrete 

There are three different factors that influenced the behavior of structure under impact load. They are  (a) 

Growth of cracks with time; (b) Viscous properties of material between cracks; (c) Inertial effect on 

structures that change the stresses and strains [O3]. We can incorporate the strain rate effect by various 

methods. According to the theory of Mihashi and Wittmann [39], cracks occur on atomic scale when 

material is under loading and the growth of these cracks increases with the time of application of load. Long 

duration of loading causes more cracks than the short term high loading because the quantitative numbers 

of these cracks are supposed to be fixed over time. Due to this reason, long term loading reduces the strength 

of materials by increasing the number of cracks while short term high loading increases the strength on 

other hand. This increase in the strength can be given by the following equations; 

𝑓𝑑

𝑓𝑠
= (

𝜎̇

𝜎̇𝑜)
𝛼

                (2.1) 

where 𝑓𝑑 is dynamic strength, 𝑓𝑠 is the static strength under the monotonic loading, 𝜎̇ is the stress rate due 

to dynamic load, 𝜎̇𝑜 is the stress rate under static loading, and 𝛼 is the parameter that depends on loading, 

material types, and way of loading. The effect of inertia on materials has been studied by Reinhardt and 

Weerheijm [40]. They studied a cluster of cracks that are perpendicular to the direction of tension loading. 

They observed that crack faces move with certain velocity under the application of loading and they 
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computed the energy balanced for this movement. They found out that the amount of energy applied is too 

much large to be absorbed in fractural process and as a result, most of energy is stored at crack tips. They 

concluded that stress distribution changes at tips and as a result stress intensity factor reduces with 

increasing load rate. Therefore, increase in the strength of materials occur under high loading rate. Bazant 

et al. [41,42] consider the effect of loading rate in two stages i.e. for viscosity he used visco-elastic model 

and the increasing growth of the cracks with time is due to the theory of activation energy. He didn’t 

consider the inertial effect and the expression is given below; 

𝜎(𝜖) = 𝜎𝑜(𝜖) [1 + 𝐶1𝐿𝑁 (
2𝜖̇

𝐶2
)]              (2.2) 

where 𝜎 is the stress due to dynamic loading, 𝜎𝑜 the stress at static loading, 𝜖̇ is the strain rate, 𝐶1 and 𝐶2 

are the constants found from experiments.  Ozbolt et al. [43] performed experiments and compare their 

results with the available theoretical models and find out the Reinhardt and Weerheijm [40] model has 

better accuracy than other models. This has been lately demonstrated that for low to medium range strain 

rate upto 10 s-1,  total resistance offered is due to materials viscosity and growth rate of microcracks, but 

for strain rate higher than 10 s-1, the inertial effect is dominant and is responsible for structural resistance. 

Several numerical studies have been done on the compression properties of concrete under high loading 

rate for over several decades. Some of the key findings are as given; both the compressive capacity and 

stiffness have direct relation with strain-rate, the effect of high strain rate is more on normal strength 

concrete than the higher strength concrete, similarly concrete in dry state is less sensitive to strain rate than 

concrete in wet state, and the slope of descendent portion of stress-strain plot increases with the increasing 

strain-rate. 

In comparison to concrete compressive strength, limited test data is available for the tensile strength of 

concrete. Several techniques like cylinder split test, uniaxial direct tension test, Split Hopkinson Pressure 

Bar (SHPB), etc are adopted to check the strain rate effect on concrete in tension. According to the tests 

performed by Sauris and Shah [44], they concluded that concrete is more sensitive to strain rating in tension 
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than compression. Split-Hopkinson-Bar procedure was adopted by Zielinski and Reinhardt [45], to study 

the properties of concrete and mortar paste at high strain rating. They concluded that there was excessive 

cracks formation over the whole specimen, as a result, increase in strength occur. They also find out that 

increase of strength in concrete is more than mortar because of the reason that crack propagation was 

arrested by tougher aggregates and as result increased the amount of store energy. Furthermore, Malvar and 

Ross [46] have done a detailed study on the behavior of concrete under high loading rate. 

The most comprehensive model to incorporate the strain rate effect on the compressive and tensile strength 

of concrete is that of the CEB code [47]. Dynamic increase factor (DIF) is used to represent the effect of 

strain rate i.e. the ratio of the dynamic strength to the static strength. Increase in the compressive strength 

is evaluated by the following equation; 

𝐷𝐼𝐹𝑐 = {
(

𝜖̇

𝜖𝑠̇
)
1.026𝛼𝑠

         𝜖̇ ≤ 30 𝑠−1

𝛾𝑠 (
𝜖̇

𝜖𝑠̇
)
1/3

         𝜖𝑠̇ > 30 𝑠−1
             (2.3) 

where 𝜖̇ is the strain rate ranges from 30 × 10−6 − 300 𝑠−1, 𝜖𝑠̇ = 30 × 10−6 𝑠−1 (the static strain-rate), 

log 𝛾𝑠 = 6.156𝛼𝑠 − 2, 𝛼𝑠 = 1/(5 + 9𝑓𝑐𝑠/𝑓𝑐𝑜), 𝑓𝑐𝑜 = 10 MPa, 𝑓𝑐𝑠 is the static concrete compressive 

strength. 

The equation for dynamic increase factor for the concrete compressive strength given by Soroushian et al. 

[48] is as follows; 

𝐷𝐼𝐹𝑐 = 1.48 + 0.160 log10 𝜖̇ + 0.0127(log10 𝜖̇)2           (2.4) 

where  𝜖̇ is the strain-rate (s-1) larger than 10-5. Although, they tried to find out the reason for the 

scatteredness of data over wide range spectrum. They concluded that moisture content is the reason for this 

variation. So, from this, they concluded that strength increase is directly related to moisture content. The 

tested result didn’t show any effect of moisture content on the static strength in compression. In addition, 

the strength increase was same for two samples that have same moisture content but different ages. The 

suggested equations for dry and wet state concrete are as given below; 
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For dry concrete, 

𝐷𝐼𝐹𝑐 = 1.48 + 0.206 log10 𝜖̇ + 0.0221(log10 𝜖̇)2           (2.5) 

For wet concrete, 

𝐷𝐼𝐹𝑐 = 2.54 + 0.580 log10 𝜖̇ + 0.0543(log10 𝜖̇)2           (2.6) 

Series of SHPB tests were carried out by Ross et al. [49,50] and Tedesco and Ross [51] in order to check 

the strain-rate effect and moisture content on improved strength of concrete. The equations suggested by 

them are given below; 

𝐷𝐼𝐹𝑐 = 0.00965 log10 𝜖̇ + 1.058 ≥ 1.0      𝑓𝑜𝑟 𝜖̇ ≤ 63.1 𝑠−1          (2.7) 

and 

𝐷𝐼𝐹𝑐 =  0.758 log10 𝜖̇ − 0.289 ≤ 2.5      𝑓𝑜𝑟 𝜖̇ > 63.1 𝑠−1          (2.8) 

Grote et al. [G2] did experimental investigation to find out the strength increase in concrete and mortar at 

high strain rates ranging from 10-3 - 104 and under high confining pressure from 0 – 1.5 GPa. The formula 

is as given; 

𝐷𝐼𝐹𝑐 = 0.0235 log10 𝜖̇ + 1.07      𝑓𝑜𝑟 𝜖̇ ≤ 266 𝑠−1           (2.9) 

and  

𝐷𝐼𝐹𝑐 = 0.882 (log10 𝜖̇)3 − 4.4( log10 𝜖̇)2 + 7.22 (log10 𝜖̇) − 2.64        𝑓𝑜𝑟 𝜖̇ > 266 𝑠−1     (2.10) 

The application of SHPB was carried out by Li and Meng [52] and found that hydrostatic effect is more 

with the increasing dynamic effect having the strain rate greater than 102 s-1 because of the inertial effect 

on the structure. The following DIF equations for compression is given by them; 

𝐷𝐼𝐹𝑐 = 1 + (log10 𝜖̇ + 3) × 0.03438       𝑓𝑜𝑟 𝜖̇ ≤ 100 𝑠−1        (2.11) 

and  
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𝐷𝐼𝐹𝑐 = 8.5303 − 7.1372 log10 𝜖̇ + 1.729(log10 𝜖̇)2      𝑓𝑜𝑟 𝜖̇ > 100 𝑠−1      (2.12) 

The incorporation of strain rate effect in the compressive strength equation given by Drucker-Prager is 

carried out by using the equation of Yamaguchi et al. [53] which is given below; 

𝐷𝐼𝐹𝑐 = 1.021 − 0.05076 log10 𝜖̇ + 0.2583(log10 𝜖̇)2         (2.13) 

The dynamic increase in the compressive strength of concrete find out by Fujikake et al. [54] by performing 

compressive tri-axial loading on concrete is as follows; 

𝐷𝐼𝐹𝑐 = (
𝜖̇

𝜖̇𝑠𝑐
)
0.006[log(

𝜖̇

𝜖𝑠𝑐̇
 )]

1.05
 
            (2.14) 

where  𝜖𝑠̇𝑐 = 12 × 10−5 𝑠−1 and 𝜖̇ < 10 𝑠−1. 

However, the DIF for tension as per CEB [47] is noted down; 

𝐷𝐼𝐹𝑡 = {
(

𝜖̇

𝜖𝑠̇
)
1.016δs

                    𝜖̇ ≤ 30 𝑠−1 

𝛽𝑠 (
𝜖̇

𝜖𝑠̇
)
1/3

                    𝜖̇ > 30 𝑠−1
          (2.15) 

where 𝜖̇ is the strain rate ranges from 3 × 10−6𝑠−1 − 300 𝑠−1, 𝜖𝑠̇ = 3 × 10−6 𝑠−1 (the static strain rate), 

𝑙𝑜𝑔𝛽𝑠 = 7.11𝛿 − 2.33, 𝛿𝑠 = 1/(10 + 6𝑓𝑠𝑐/𝑓𝑐𝑜), 𝑓𝑐𝑜 = 10 MPa, 𝑓𝑐𝑠 is the static concrete compressive 

strength. 

Although, Malvar and Ross [46] find out that there is some difference between the available data and new 

data and hence modified the equation of CEB. The modified equation is as follow; 

𝐷𝐼𝐹𝑡 = {
(

𝜖̇

𝜖𝑠̇
)
𝛿
                    𝜖̇ ≤ 1 𝑠−1 

𝛽 (
𝜖̇

𝜖𝑠̇
)
1/3

               𝜖̇ > 1 𝑠−1
           (2.16) 

where 𝜖̇ is the strain rate from 10−6𝑠−1 − 160 𝑠−1 range, 𝜖𝑠̇ = 10−6 𝑠−1 (the static strain rate), 𝑙𝑜𝑔𝛽 =

6𝛿 − 2, 𝛿 = 1/(1 + 8𝑓𝑠𝑐/𝑓𝑐𝑜), 𝑓𝑐𝑜 = 10 MPa, 𝑓𝑐𝑠 is the static concrete compressive strength. 
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It is clear from the above that there are plenty of equations for both the dynamic increase of concrete 

compressive and tensile strength. These DIFc/t are influenced by different factors such as aggregate size, 

water to cement ratio, cement content, aggregate shape, age and curing of concrete, etc. There is a lot of 

experimental data required to check the validity of equations over a wide spectrum. 

2.2.2 Steel reinforcement 

The strain-rate effect on steel reinforcements has been studied by various researchers. Fu et al. [55] and 

Malvar [46] have conducted a detailed study on the strain-rate effect on the reinforcing bars. Wakabayashi 

et al. [56] concluded that yielding stress of bar is affected by strain rate but strain hardening is not quite 

affected. According to the finding of Soroushian and Choi [57], the yielding stress is very sensitive to strain 

rating than ultimate strength and has no effect on elastic modulus. Therefore, they concluded that only static 

yield stress is changed by the strain rating. They also find out that steels having lower yielding stress is 

more sensitive than higher yielding stress bars. Malvar [58] also find out that the dynamic increase factor 

has inverse relation with the yielding stress of bar. An equation is formulated for DIFs on the basis of 

available experimental data. The following formulation is valid for yield stresses in the regime of 290-710 

MPa and strain rates from 10-4 s-1 to 10 s-1;  

𝐷𝐼𝐹𝑠 = (
𝜖̇

10−4)
𝛼

              (2.17) 

where for yield stress, 𝛼 = 𝛼𝑓𝑦; 𝛼𝑓𝑦 = 0.074 − 0.04𝑓𝑦/414; while for the ultimate stress, 𝛼 = 𝛼𝑓𝑢; 𝛼𝑓𝑢 =

0.019 − 0.009𝑓𝑦/414; 𝜖̇ is the strain rate in the form of s-1 and 𝑓𝑦 is the static yield strength in MPa. 

2.3 Effect of strain rate on RC beam 

2.3.1 Analytical and numerical studies 

Kulkarni and Shah [10] used simple sectional analysis to incorporate rate effect on the response of an RC 

beam. However, this approach of sectional response including the rate-dependent materials property doesn’t 

capture the shape of curves adequately. This variation is due to the enhanced bond properties under high 
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rate loading which causes the extreme localized bars yielding. Thus to avoid this problem, they then used 

the shape of average stress-strain curve along with the characterization of localized yielding. 

Non-linear analytical model was proposed by Fujikake et al. [59] to capture the load-midspan deflection 

relation of an RC beam under drop-weight impact. He produces the load-deflection relation from the 

moment-curvature sectional relation of RC beam by incorporating both the influence of strain rate on 

concrete and steel reinforcement. 

Adhikary et al. [19] carried out numerical simulation on RC beam and check out the influence of different 

factors on DIF and then provide two empirical equations for dynamic increase factors: one having the shear 

reinforcement and the other without shear reinforcement which is given below;  

𝐷𝐼𝐹 = [1.89 − 0.067𝜌𝑔 − 0.42𝜌𝑣 − 0.14 (
𝑎

𝑑
)] 𝑒

[−0.35−0.052𝜌𝑔+0.179𝜌𝑣+0.18(
𝑎
𝑑
)]𝛿

 
(2.18) 

𝐷𝐼𝐹 = [0.004𝜌𝑔 + 0.136(
𝑎

𝑑
) − 0.34] 𝑙𝑜𝑔𝑒 𝛿 + [0.009𝜌𝑔 + 0.41 (

𝑎

𝑑
) + 0.157] 

(2.19) 

where 𝜌𝑔 is the longitudinal bars reinforcement ratio, 𝜌𝑣 is the transverse bars reinforcement ratio, 
𝑎

𝑑
 is the 

shear span to the effective depth ratio, and 𝛿 is the loading rate. 

2.4 Study of RC beams under Impact Loading 

2.4.1 Experimental testing 

Mylrea [60] is one of the pioneers to perform the impact test on RC beams, the characteristic of beam is 

254 x 406.4 mm, of 2.44 m length with varying amount of longitudinal and no shear reinforcement of 

different grades subjected to impact mass of 254 kg and 925 kg. The beams were severely damaged with 

diagonal shear cracks. The failure mode is shown in Fig. 2.1. 
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Figure 2. 1: RC beams failure (Mylrea [60]) 

There was still enough potential strength for collapse when the bars yield. Just like the steel reinforcing bar, 

the structural performance against impact loading of beams having rail-steel and other hard steel was quite 

impressive. 

Kishi et al. [61] tested eight RC beams having length of 2m under midspan drop-weight of 200 kg steel 

impactor. In these tests, the variables are cross-section dimensions, impact velocity, and reinforcement 

ratios. Parallelogram is adopted to approximate the hysteretic loop between the reaction force and mid-span 

deflection, as shown in Fig. 2.2. 
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Figure 2. 2: Parallelogram of hysteretic loop (Kishi et al. [61]). 

To design flexure failure RC beam under dop-weight impact, the author assumed the dynamic increasing 

factor of 2 and the ratio of the stored energy to the input energy equal to 0.7. A simple empirical equation 

was developed for static bending resistance of an RC beam under impact load. The equation is as follows; 

𝑃𝑢𝑠𝑑 = 0.35
𝐸𝑘𝑑

𝛿𝑟𝑑
              (2.20) 

where 𝑃𝑢𝑠𝑑 is the static bending strength, 𝐸𝑘𝑑 is the imparted kinetic energy and 𝛿𝑟𝑑 is the mid-span residual 

displacement. 

Twenty seven simply supported rectangular shear-failure type RC beams (150 x 250 mm) without shear 

reinforcement under midspan impact of 300 kg weight were tested by Kishi et al. [14]. The contact surface 

of the dropping steel weight is spherical having curvature of 1407 mm radius. The test variables include 

longitudinal reinforcement, shear span to effective depth ratio, static shear strength to bending strength 

ratio, and span. It was concluded that for lower static condition of shear to bending ratio (i.e. < 1), shear 

failure occurs under impact loading. While beams having this ratio just greater than or near to 1, mostly fail 

in flexure under low impact but fail in shear mode under high impact loading. The hysteretic loop was 

assumed to be triangular between the force and displacement as shown in Fig. 2.3. The author assumed the 

dynamic increase ratio of 1.5 and energy ratio of 0.7 for the designing of shear type failure beam under 

impact loading. The static shear resistance of beams can be calculated as; 

𝑉𝑢𝑠𝑑 = 0.8
𝐸𝑘𝑑

𝛿𝑟𝑑
              (2.21) 
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Figure 2. 3: Hysteretic loop of force vs displacement (Kishi et al. [14]) 

Bhatti et al. [62] also conducted testing on shear failure RC beam to compare it with the simple elasto-

plastic FE modeling. The beams were rectangular having dimension of 200 x 400 mm and length equal to 

2400 mm. The support condition was simply supported and was impacted at mid-span by dropping 400 kg 

mass from a defined height. The following experimental results were then compared with FE model: a) 

Impacting force, reaction forces, and displacement time histories. b) Hysteretic loop of impact loading 

against mid-span deflection and reaction forces versus mid-span deflection. c) crack propagation on beam’s 

sides. 

Impact test on twelve RC simply supported rectangular shape beams having cross-sectional dimensions of 

150 x 250 mm and length of 1700 mm was carried out by Fujikake et al. [59]. All the beams are under 

reinforced and static shear to bending resistance ranges from 1.5-2.6, so that they fail flexurally. All the 

beams were impacted by dropping a steel mass of 400 kg having hemispherical contact tip having radius of 

90 mm. The variables were drop-height and longitudinal reinforcement. The experimental instrumentations 

setup is shown in the following figure. 
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Figure 2. 4: Instrumental setup of impacted RC beam (Fujikake et al. [59]) 

It was found out that magnitude of longitudinal bars reinforcement affects the failure behavior. For beams 

having lower amount of longitudinal bars reinforcement only fails in flexure mode, while beams having 

greater reinforcement not only in flexure but also fail locally near the impact point. This local failure is 

considerably reduced by increasing the compressive reinforcement. It was also found out that maximum 

impacted force, maximum mid-span deflection, impulse, duration of the impacted load, and time taken to 

reach maximum mid-span deflection is considerably increased with the corresponding increase in the drop-

height. Although, the impacted load duration, maximum deflection, and the time required for this maximum 

deflection are affected by the flexural rigidity. 

Chen and May [63] also contributed to check the performance of RC beams under drop-weight impact 

loading. In order to do so, he tested eighteen RC beams in which fourteen have 2.7 m spans while the 

remaining four are 1.5 m in length. All the beams were tested by dropping a mass of 98.7 kg having striking 

velocity of 7.3 m/s. Support conditions (i.e. simply supported and pin ended), contact surface of striker (i.e. 

hemispherical and flat) and the interface surface between the striker and beam (e.g. plywood) were the 

variables. The time histories of the impact force, acceleration, and strain in longitudinal reinforcements 

were measured during testing, and crack profiles were produced from the video capture during testing. 
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There were three types of failure occur: a) the flexure failure with some cracks in the impacted region, b) 

the local crushing of concrete at impact point and yielding of reinforcement, c) flexure cracks like case (a) 

but some scabbing of concrete at bottom surface also occur. It was concluded from the testing that support 

conditions have less effect on impact forces as compared to the length of beams and the behavior of interface 

and flat head are same. 

To understand the effect of shear behavior on RC beams under impact loading, Saatci and Vecchio [13] 

tested eight specimens by drop-weight with a velocity of 8 m/s. Two masses were used for dropping i.e a 

lighter weight equal to 211 kg and heavier weight equal to 600 kg. The contact surfaces of both masses are 

flat and a square steel plate of 305 x 305 mm cross-section and 50 mm thick was used as an interface. A-

series beams were tested by dropping a lighter weight first and then followed by heavier weight two times, 

while for b-series beams, they were tested two times with heavier and third time with lighter weight. All 

the beams have varying shear reinforcement spacing in order to understand the effect of shear.  

Crack propagation of both a and type-b series beams are given in Fig. 2.5. According to the static test, SS3 

and SS2 fail in flexure modes, whereas, SS1 and SS0 fail in shear behavior. But under impact loading, all 

the beams have severe cracking under impact point forming shear plug along with some other inclined 

cracks adjacent to shear plug and some vertical flexure types cracks at mid-span and around supports. In 

flexure-critical beams, the formation of shear plug is earlier than all other cracks. While for shear-critical 

beams along with shear plug, severe inclined cracks starting from impact point to the supports formed which 

is the indication of lower shear resistance of these beams compared to flexure ones. Several impacts cause 

the shear plug to move further down in flexure-critical beams while it increases the severity of inclined 

cracks in shear-critical beams and thus fails the beams at that point. 
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Figure 2. 5: Cracking profiles of type-a and -b series beams (Saatci and Vecchio [13]) 

Regardless of the static behavior of beams, all the beams were severely damaged under the impact loading. 

Those beams having greater shear capacity absorb greater impact energy than those which have less 

capacity as there was excessive damage in those beams under same or even smaller impact force. This 

means that shear mechanism should need to be used for predicting the impact behavior. As the structure 

response under impact loading is mainly initially controlled by the inertial force, therefore the mass and 

geometries of RC beams such as length of beam greatly affect the behavior of beams. It was found out that 

different parameters that can influence the impact behavior need to be investigated by testing increasing 

number of specimens. 

A series of low impact speed testing was performed by Tachibana et al. [64] having span, cross-section, 

and longitudinal reinforcement as variables. The contact surface of the striker is curved having radius equal 

to 75 mm. Steel weight of masses 150, 300, and 450 kg was used as drop-weight from a specific height at 

the mid-span of beam. All the beams were expected to fail in flexure mode under static loading because the 

ratio of shear resistance to bending resistance was more than one. Moreover, an equation is developed by 

the author to produce the maximum midspan deflection of the beam based on the imparted energy, and 

ultimate static flexural strength. The equation is as follows; 

𝛿𝑚𝑎𝑥 = 0.522
𝐸𝑐𝑜𝑙

𝑃𝑢
             (2.22) 
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where 𝛿𝑚𝑎𝑥 is the maximum midspan deflection (mm), 𝐸𝑐𝑜𝑙 is the imparted kinetic energy (J), 𝑃𝑢 is the 

static ultimate flexural resistance (kN). This equation is valid in the range of 16.7 – 66.7 kN and 150 – 5400 

J. 

Thirty six simply supported RC beams having rectangular cross-section of 150 – 250 mm in width, 200 – 

400 mm in depth, and 2 – 3 m in length have been tested under drop-weight impact loading. Longitudinal 

reinforcement ratio varies from 0.8 – 3.17%, and the shear reinforcement was placed with changing spacing 

of 100, 125, and 150 mm. All the beams were statically flexure-critical, as having ratio of shear to flexure 

resistance greater than 1. Three different masses of 300, 400, and 500 kg were used as drop-weight with 

the dropping velocity in the range of 3.1 – 7.7 m/s. The striking face of all the masses was spherical having 

1407 mm radius. Flexural cracks in lower as well as in upper fibers were occur along with diagonal shear 

cracks formed from the impacted point toward the end support and the severity of these shear cracks 

increased with the increasing impact velocity. The maximum and residual mid-span deflections are related 

to the imparted input energy and on the basis of these following empirical equations were proposed; 

𝛼𝑑𝑒𝑓 =
0.63

𝑃𝑢𝑠𝑐
              (2.23) 

𝛼𝑟𝑠 =
0.42

𝑃𝑢𝑠𝑐
              (2.24) 

By rearranging the above equations, the followings relation can be as follows; 

𝑃𝑢𝑠𝑐 = 0.63 𝐸/𝐷𝑚𝑎𝑥             (2.25) 

𝑃𝑢𝑠𝑐 = 0.42 𝐸/𝛿𝑟𝑠             (2.26) 

where 𝑃𝑢𝑠𝑐 is the static flexural strength (kN), 𝐸 is the imparted  kinetic energy (J), 𝐷𝑚𝑎𝑥 is the maximum 

mid-span displacement and 𝛿𝑟𝑠 is the residual mid-span displacement (mm). These equations predict well 

for 𝐸 < 15 kJ, 𝑃𝑢𝑠𝑐 < 240 kN, and the static shear to flexure resistance ratio 𝛼 > 1.5. 
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2.4.2 Mathematical and analytical based studies 

Bhatti et al. [62] used a simple FE elasto-plastic model to compare the results with the experimental 

findings. He used a bilinear curve for concrete compression and cutoff model for tension in concrete. He 

modeled steel bars as an elasto-plastic material with strain-hardening. The effect of strain rate on concrete 

and bars were neglected. The output results such as impacted force, reaction force, and midspan deflection 

time histories were compared with the experimental results. Moreover, hysteretic loops of impacted force 

with corresponding mid-span displacement and reaction versus displacement, crack patterns and energy 

absorption were predicted with reasonable accuracy. 

Non-linear finite element analysis (NLFEA) procedure was adopted by Saatci and Vecchio [65] for 

modeling RC beams under drop-weight impact loading. The efficiency of the modeling can be confirmed 

from the comparison of time histories data of midspan deflection and strain in longitudinal reinforcement 

along with the cracking profiles obtained from NLFEA and experimental testing. Distributed stress field 

model (DSFM) was very effective in producing the response of shear critical RC beams under impact 

loading including the strain rate dependents material properties. 

Two degrees of freedom mass-spring damping system was adopted by Fujikake et al. [59] to model RC 

beam under dropweight impact loading. The global stiffness of the spring was obtained from the load versus 

midspan deflection relation having rate effect whereas the stiffness of the contact spring was calculated 

through the contact theory of Hertz. The global value of damping was assumed as zero while the contact 

spring damping value was considered half of the critical damping coefficient. In case of global flexure 

failure, the output of model in terms of impacted force, reaction force, and midspan deflection time histories 

were predicted well but in case of both local and global flexure failure large variation was observed. 

Alternatively, Zhao et al. [66] evaluated the mid-span deflection on the basis of the conservation of energy 

procedure as given below; 

𝐸𝑘𝑠𝑡𝑎𝑏 + (𝑀 + 𝑚)𝑔𝑠𝑚𝑎𝑥 = ∫ 𝐹(𝑠)𝑑𝑠
𝑠𝑚𝑎𝑥

0
          (2.27) 
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where 𝐸𝑘𝑠𝑡𝑎𝑏 is the imparted kinetic energy, 𝑀 is the impact mass, 𝑚 is the effective calculated mass of 

beam, 𝑔 is the gravity of acceleration, 𝑠𝑚𝑎𝑥 is the maximum mid-span deflection, and 𝐹 is the strength of 

the beam under drop-weight loading at mid-span. 

Khan et al. [8] used mathematical computation to address the response of beam under impact loading. The 

kinetic, kinematic and material plasticity relations were used to produce a numerical model in the form of 

Linear Complementarity Problem (LCP) capable of examining the rigid plastic behavior of simply 

supported beams under impact loading. This procedure doesn’t employ the strain rate effects as well as not 

incorporating the shear bending interaction for shear critical beams. 

2.5 Summary 

Based on the above literature review, following conclusion points can be summarized: 

(a) The dynamic-behavior of RC structures is highly sensitive to strain-rate, resulting in a considerable 

increase in the yield stress with an increased rate of straining [9,19,46,55,58,67].  This property of 

viscoplasticity should be incorporated in any simplified model for accurately predicting the peak 

response values of these structures under dropweight impact loading.  Therefore, the study of the 

dynamic properties of RC structures has received considerable attention, and many forms of the 

rate-dependent constitutive laws have been proposed [19,68,69].  The most commonly used form 

is that due to Cowper and Symonds [70].  They have proposed an exponential strain rate law, whose 

constants can be determined for many common materials [2].  Adopting the usual assumptions of 

beam theory, Aspden and Campbell [71] integrated this exponential law through the thickness of a 

rectangular beam, thereby establishing an expression relating bending moment to the associated 

curvature rate.  This moment expression is widely accepted due to its very good agreement with 

the experimental data.  A vast experimental literature is available which shows that the strain rate 

effects can significantly change the dynamic response of RC structures under high impact loading.   

(b) Many experimental, analytical, and numerical studies by authors have been conducted toward 

understanding flexure failure modes of RC beams under dropweight impact loading. On the other 
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hand, the effect of transverse shear forces on the response of these beams has not been adequately 

understood [72]. Although several experimental investigations have signified the importance of 

shear in the impact response of RC structures. [14,62,72]. Similarly, Saatci et. al [13] have 

identified shear-plug under the impact point. Truly, it has been tested numerically and shown 

theoretically by Saatci et. al [65] that failure due to shear can be developed in impacted beams. It 

transpires that the rigid-plastic bending response may be extended to incorporate bending moment 

and shear force interactions, where the significance of interaction depends on the magnitude of 

shear force relative to the bending moments [73]. 

(c) A rigid-plastic beam subjected to extreme dynamic load develops bending and shear deformations 

which contribute to the resulting motion. The shear deformation leads to a decrease in the bending 

deformation since part of the imparted kinetic energy is used in shearing. The significance of 

bending-shear interaction in the plastic deformation of the structures depends on the bending 

strength relative to shear strength as well as the magnitude of the applied load. The shear effects 

get larger as the ratio of shear strength to the bending gets smaller and as the ratio of the magnitude 

of the applied load to the bending strength gets larger [74]. In rigid-plastic structures, these shear 

effects are localized at a discontinuity interface which consumes plastic-deformation in the 

dynamic-plastic response. This interface can be termed as a shear hinge which is assumed to have 

an infinitesimal length for a rigid-perfectly plastic idealization because the characteristic length of 

the shear interface is very small in comparison with the length of the beam. Also, the shear interface 

is always stationary; that is, the size of the shear hinge deformation does not increase during the 

following beam response [75,76]. 

(d) Many commercial software packages, such as ABAQUS and LS-DYNA, are founded upon the 

finite element methods, which can be employed to determine the dynamic response of impacted 

RC structures [12,77–81].  However, even for application to simple problems, their use is likely to 

be both computationally expensive and time-consuming [17]. Mathematical programming, on the 

contrary,  has proven to be an effective and efficient computational tool for solving this class of 
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dynamic problems [27]. Moreover, it has the potential to proffer a systematic numerical formulation 

for the analysis of problems based on the method of finite element (FE).  More specifically, a 

mathematical formulation in the state of Linear Complementarity Problem (LCP) can capture the 

rigid-plastic behavior of structures under high intensity dynamic loading based on the fundamental 

principles of mechanics and got the potential to incorporate strain-rate effects and shear bending 

interaction straightforwardly.  Although full of potential, this mathematical programming tool has 

not been exploited to any great extent to encode and solve problems in dynamic plasticity. 

(e) It can be inferred from the above discussion that the simple rigid-plastic theory in the impact 

dynamics of RC structure has a vast potential for offering computationally efficient procedures that 

allows considerable physical insight into the underlying mechanics of motion [27].  Therefore, in 

this work, firstly a simple mathematical and computational method is developed, which is founded 

upon the rigid-plastic theory incorporating the strain-rate sensitivity for calculating the dynamic 

behavior of RC skeletal structures under dropweight impact loading.  The formulation is 

represented as a viscoplastic linear complementarity problem  (LCP). Then the same approach was 

used for the formulation of the LCP model but this time it uses a rectangular yield curve for the 

relation between transverse shear force, and the bending moment. The solution strategy is based 

upon the Lemke’s Algorithm [6,82–86], which can deal in best way with the sign-unrestricted 

variables, and structural semidefinite matrices. An essential feature of this current work is 

incorporating strain-rate sensitivity that is accounted for in the LCP using the bending equation of 

Aspden and Campbell [71]. The material constants of this equation have been determined from the 

experimental data of RC beams collected from the literature. The bending-shear interaction curve 

was incorporated in the LCP again to capture the response of shear critical RC beam. It is known 

that the maximum deflection is considered an important parameter for determining the damage 

degree [59,64,87].   

(f) Due to the limitation of the LCP model for producing the peak impact force of RC beams uniquely 

under impacted loading, a regression-based model of peak impact force using the Gene Expression 
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programming algorithm is proposed. The peak dropweight impact force can be employed to derive 

the shear force and bending moment diagrams, thus providing a capability to examine the dynamic 

response characteristics of impacted RC beams, and simplifying the design approach. 
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3 Methodology 
 

In this chapter, the mathematical formulation is carried out for beams under dropweight impact loading. 

The mathematical work is formulated in the form of Linear Complementarity Problem (LCP). There are 

two LCP formulations one is incorporating strain rate effect while the other one includes the bending-shear 

interaction. Due to the limitation of these LCPs, we are unable to get peak impact force directly, therefore, 

an empirical model was proposed through gene expression programming to predict the peak impact force 

by incorporating the midspan deflection obtained from the above LCPs. 

3.1 Proposed Dynamic Rigid-Plastic Model Incorporating Strain-rate Effet 

This section presents a simple rigid-plastic lumped mass model to analyze reinforced concrete beams and 

frames under impact loads shown in Fig. 3.1. Thus, the fundamental conditions of the kinetics, the 

kinematics, and the material constitution are combined in a consistent way to develop a multi-degrees of 

freedom model [8].  

 

Figure 3. 1: Discritized simply-supported beam under impact loading 
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3.1.1 Representation of kinetics and kinematics as the nodal description 

The RC structure in Fig. 3.1 is explored in the nodal description of kinetics and kinematics. Let this structure 

be subdivided into N finite elements, in which the independent movements of the interconnecting nodes are 

governed by β degrees of freedom. Any kinematically consistent velocity distribution or profile may be 

specified entirely in terms of β independent nodal velocities 𝑞̇𝑗   (𝑗 = 1,2, …… , 𝛽). For an assembly of the 

inextensible planar elements, with α static indeterminacy and S plastic rotational deformations occurring at 

the element extremities, the kinematic indeterminacy number can be established as  𝛽 = 𝑆 − 𝛼. 

When each of the β independent nodal velocities 𝐪̇ is released, a velocity profile is generated, for which the 

independent member deformation rates 𝑥̇ℎ (ℎ = 1, 2, … . . , 2𝑁); indicated in Fig. 3.2, the velocities related 

to center of gravity of mass 𝑢̇𝑘(𝑘 = 1, 2, … . . , 𝛾); indicated in Fig. 3.3, and the load point velocities 

𝛿̇ℓ (ℓ = 1, 2,… . . , 𝑛) can be easily obtained through geometric considerations. Hence, the nodal 

representation of the kinematic equations has the form: 

[
𝐱̇
𝐮̇
𝛅̇
] = [

𝐀
𝐀𝑑

𝐀0

] 𝐪̇                (3.1) 

where the coefficient matrix is constant, provided that the motion falls within small displacements. 

 

Figure 3. 2: Stress-resultants, strain-resultant rates, chord deformation rates, and independent chord 

forces. 
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Figure 3. 3: Centroidal-velocities in a system of lumped mass 

Let the structure be subjected to n discrete time-dependent loads 𝜆ℓ (ℓ = 1, 2, … . . , 𝑛) applied at nodes.  By 

employing the principle of D’ Alembert, during every instant of the accelerated motion of a structure, the 

loads applied, and the inertial forces 𝜇𝑘(𝑘 = 1, 2, … . . , 𝛾) are in state of equilibrium with the independent 

member forces 𝑋ℎ (ℎ = 1, 2, … . . , 2𝑁).  Corresponding to the independent nodal displacements, the nodal 

forces of constraint  𝑄𝑗(𝑗 = 1, 2, … . . , 𝛽) are applied.  For satisfaction of the dynamic equilibrium, it is 

necessary that the constraints 𝑄𝑗 must vanish, giving the nodal kinetics description for the assembly of all 

elements: 

𝐐 =  𝟎 =  [𝐀𝑇 𝐀𝑑
𝑇 𝐀0

𝑇] [
𝐗

−𝛍
−𝛌

]              (3.2) 

where the transposed (T) coefficient matrix remains constant by virtue of small displacements. It may be 

observed that (3.1) and (3.2) satisfy the adjoint relationship of kinetic-kinematic duality. 

The independent relations (3.1) and (3.2) have no cause-effect relationship between the kinetic and 

kinematic variables.  Nevertheless, the relation 

𝝁 = −𝒎 𝒖̈                (3.3) 

implicitly links the inertia forces 𝜇𝑘(𝑘 = 1, 2, … . . , 𝛾), located at the mass centroid, with the corresponding 

centroidal accelerations 𝑢̈𝑘(𝑘 = 1, 2, … . . , 𝛾) of the actual motion of the system.  In this inertial law, the 

diagonal mass matrix 𝑚𝑘(𝑘 = 1, 2, … . . , 𝛾) constitutes the mass or moment of inertia related to the 

corresponding centroidal accelerations. 

 

 

1q  2q  3q  

m1 m2 m3 

1u  2u  3u  
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3.1.2 Material Model 

To analyze the nonlinear flexural response of RC beams, the cause-effect relation between the stress-

resultant 𝑆1
𝑖  (bending moment 𝑀𝑖) and its dual rate of strain-resultant 𝑠̇1

𝑖  (the rotation rate 𝜃̇𝑖) at different 

critical section 𝑖, (𝑖 = 1,2, … , 𝜒), is illustrated in Fig. 3.4.  These quantities are also depicted in the discrete 

structural model of Fig. 3.1.  It is noted that the plastic moment 𝑋∗
+𝑖 ≥ 0 when the stress-resultant 𝑆1

𝑖  is 

positive.  In Fig. 3.4, it is evident that the critical section yielding i is defined by two variables, i.e., the 

plastic potential 𝑦∗
+𝑖 ≥ 0, and other is the plastic multiplier rate 𝑥̇∗

+𝑖 ≥ 0.  A similar argument applies to 

𝑋∗
−𝑖 ≥ 0,   𝑦∗

−𝑖 ≥ 0, 𝑥̇∗
−𝑖 ≥ 0 when 𝑆1

𝑖  has got negative value. 

 

Figure 3. 4: Material model 

 

Now, let the current plastic deformation at the critical section i be 𝑠1
𝑖 = 𝑥∗

+𝑖 as in Fig. 3.4. Ensuring the 

irreversible nature of plasticity, the plastic deformation rate at the ith section is (𝑥̇∗
+𝑖 > 0), and accordingly, 

the yield mode at this section is   ( 𝑦∗
+𝑖 = 0) only if the yield limit is attained, whereas, if the yield limit is 

not attained  (𝑦∗
+𝑖 > 0), then the plastic deformation cannot be active  ( 𝑥̇∗

+𝑖 = 0). The mutual exclusivity 
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each pair of corresponding variables have, ( 𝑥̇∗
+𝑖 >0, 𝑦∗

+𝑖 =0), and (𝑦∗
+𝑖 > 0, 𝑥̇∗

+𝑖 =0), is assured by the 

provision of complementarity condition: 𝑦∗
+𝑖 𝑥̇∗

+𝑖 = 0. Now, the rigid perfectly plastic constitutive relation 

for each critical section i is written in matrix notation: 

[𝟎 𝐍𝑇

𝐍 𝟎
] [

𝐱̇∗

𝐒
] + [

𝐲∗

𝟎
] = [

𝐗∗

𝐬̇
]              (3.4) 

 𝐲∗ ≥ 𝟎                     (3.5) 

𝐲∗
𝑇𝐱̇∗  = 0                      (3.6) 

𝐱̇∗  ≥ 𝟎                 (3.7) 

where N is the matrix defining the exterior unit normal to the yield function; 𝑁 =  [𝐈 −𝐈], and 𝐈 is the 

matrix of identity. 

Relations (3.4) to (3.7), is the representation of the nonholonomic constitutive law of one-dimensional (1D) 

perfect plasticity, that can be adopted for the RC structural elements system.  These relations can be also 

used for the situation where yielding is controlled by several stress resultants.  In such situations, the 

yielding surface can be piecewise linearized into a polytope which represents the hyperplanes of the 

polyhedral yield surface [88]. 

It is of interest to develop a governing mathematical system that couples the constitutive relations, (3.4) to 

(3.7), with the kinetic and the kinematic relations, (3.1) to (3.3). Fig. 3.2 clearly illustrates that the 

independent member forces X, and the independent deformation rates of member 𝐱̇ can be defined by the 

respective resultant of stresses S, and the resultant of all strain rates 𝐬̇. These can be collected for all the 

constituent finite elements: 

𝐱̇ = 𝐓𝐬̇                 (3.8) 

𝐒 =  𝐓𝑇𝐗                (3.9) 
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3.1.2.1 Strain Rate Effect 

Like many structural materials, RC structures are also significantly stronger when loaded at a very high rate 

than when subjected to normal rate service loads. For such cases, the yield stress increases considerably 

with an increased rate of straining to render the participation of strain rate effects in the dynamic plastic 

response [9,19,46,55,58,67]. Therefore, it is intended herein to include the rate-dependent plastic moment 

into the preceding formulation. Notably, a vast amount of literature is available on the strain rate-sensitive 

behavior at the material constitutive level. However, a limited attempt is made to investigate the structural 

behavior under varying loading rates. For this reason, the contemporary literature has advocated the use of 

dynamic increase factor, that is, the ratio of the dynamic strength to corresponding static strength, in the 

numerical formulations, which encompasses not only the material strain-rate effect but also various 

structural influencing parameters. 

Under the impact loads, reinforced concrete structures show much greater capacities to absorb energy. The 

strain-rate effect in these structures is influenced by various material and geometric factors, as pointed out 

by the parametric study [68] on the dynamic increase factor (DIF). Based on this study, two empirical 

equations are proposed for the DIF of the RC beams: one having the shear bar reinforcement, and the other 

without shear bar reinforcement.  Thus 

𝐷𝐼𝐹 = [1.89 − 0.067𝜌𝑔 − 0.42𝜌𝑣 − 0.14 (
𝑎

𝑑
)] 𝑒

[−0.35−0.052𝜌𝑔+0.179𝜌𝑣+0.18(
𝑎

𝑑
)]𝛿

      (3.10) 

𝐷𝐼𝐹 = [0.004𝜌𝑔 + 0.136(
𝑎

𝑑
) − 0.34] 𝑙𝑜𝑔𝑒 𝛿 + [0.009𝜌𝑔 + 0.41 (

𝑎

𝑑
) + 0.157]      (3.11) 

where 𝜌𝑔 is the longitudinal bar reinforcement ratio, 𝜌𝑣 is the transverse bar ratio, 
𝑎

𝑑
 is the ratio of shear 

span to effective depth, and 𝛿 is the loading rate. 

To incorporate the aforementioned DIF equations in the plastic moment capacities, choosing a constitutive 

equation keyed to the experimental test programs is essential. In the body of researches into the strain-rate 

effects, the simple equation suggested by Cowper and Symonds [70]  has been extensively used for various 
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metal alloys, such as steel and aluminum.  From this precedent, it has been decided in the present 

investigation to use this equation to reinforce concrete structures.  The constitutive equation suggested by 

Cowper and Symonds [70] is  

𝜖 ̇ = 𝐷 (
𝜎𝑜

′

𝜎𝑜
− 1)

𝑝

 ,   𝜎𝑜
′ ≥ 𝜎𝑜            (3.12) 

where 𝜎𝑜
′  is the dynamic stresses at yielding, 𝜖 ̇ is the corresponding strain rate, 𝜎𝑜is the static state yield 

stress, and both D and p are material constants.  It is of interest to note that the ratio 
𝜎𝑜

′

𝜎𝑜
 can be considered 

as DIF straightforwardly. Now, equation (3.12) may be written as 

𝑙𝑜𝑔𝑒 𝜖̇ = 𝑝 𝑙𝑜𝑔𝑒( 𝐷𝐼𝐹 − 1) + 𝑙𝑜𝑔𝑒 𝐷           (3.13) 

which has the same form as a line with the parameter p as the slope, while the 𝑙𝑜𝑔𝑒 𝐷 as the intercept.  

Hence, these coefficients can be determined from the experimental data of RC structures. 

The constitutive equation derived in (3.13) has been recast by Aspden and Campbell [71], integrating (3.12) 

through the depth H of a rectangular cross-section. So, the resulting equation is 

𝑀𝑜
′

𝑀𝑜
= {1 + [

𝐻

2𝑧(1+
1

2𝑝
)
𝑝

𝑥̇

𝐷
]

1

𝑃

}            (3.14) 

where 𝑀𝑜
′  is dynamic bending moment, 𝑥̇ is the generalized strain rate and z is the plastic hinge length. Due 

to the inherent difficulty of defining the actual variation of the curvature along the plastic zone, an 

estimation of the plastic hinge length may be had by the following proposed empirical formula [89] 

𝑧 = 𝑑 + 0.05 × 𝑙             (3.15) 

where 𝑑 is the effective depth of beam cross-section and 𝑙 is the net span length of RC beam.   

In order to incorporate strain rate sensitivity in the proposed mathematical formulation for rigid-plastic 

dynamics, equation (3.14) can be expressed as; 
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𝐗∗𝑛+1 = 𝐕𝑛𝐗∗
𝒐              (3.16) 

where 𝐗∗𝑛+1 is the plastic capacity at the corresponding active node in the structural system at time 𝑡 =

𝑡𝑛+1, 𝐗∗
𝒐 is the corresponding plastic capacity for the original state of the structural material and 𝐕𝑛 is the 

viscoplastic function, evaluated at time 𝑡 = 𝑡𝑛. 

3.1.3 The Mathematical Formulation 

The vectorial relations (3.1) to (3.3), together with the triad of complementarity conditions (3.5) to (3.7), 

can be combined into a set of differential equations having second-order derivatives with respect to time.  

Nevertheless, this set is made more complex by the complementarity conditions.  As no mathematical 

system is known to this kind of mathematical problem, adopting a numerical solution appears reasonable.  

Therefore, a time depending scheme is incorporated in order to allow the solution procedure to be advanced 

from a time station 𝑡𝑛 to 𝑡𝑛+1 = 𝑡𝑛 + ∆𝑡, where subscript n is an integer defining consecutive discrete time 

stations and ∆𝑡 is the intervening increments of time.  Then, the centroidal velocities and corresponding 

accelerations can be expressed in the time-integration scheme of Newmark: 

𝐮̈𝑛+1 = 𝑏0(𝐮̇𝑛+1 − 𝐮̇𝑛) − 𝑏1𝐮̈𝑛            (3.17) 

and 

𝐮̇𝑛+1 = 𝐮𝑛 + 𝑏2𝐮̇𝑛 + 𝑏3𝐮̈𝑛 + 𝑏4𝐮̈𝑛+1           (3.18) 

in which integration constants are 

𝑏0 =
1

𝛾̅∆𝑡
 ,              (3.19) 

𝑏1 =
1−𝛾̅

𝛾̅
,              (3.20) 

𝑏2 = ∆𝑡,              (3.21) 

𝑏3 = (0.5 − 𝛼̅)∆𝑡,             (3.22) 

𝑏4 = 𝛼̅∆𝑡2              (3.23) 
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It is found after thorough investigations that suitable results are obtained for rigid-plastic dynamics if  𝛼̅ =

0.25 and 𝛾̅ = 0.5. 

Collecting together (3.1), (3.2), (3.3), and (3.4) to (3.7), (3.8), (3.9), and (3.16), at time 𝑡 = 𝑡𝑛+1, and 

coupling with the Newmark’s scheme (3.17) to (3.23) the governing system becomes: 

[

−𝑏0𝐌𝑞 𝟎 −𝐀T

𝟎 𝟎 𝐍𝑇𝐓𝑇

−𝐀 𝐓𝐍 𝟎

] [

𝐪̇n+1

𝐱̇∗𝑛+1 

𝐗𝑛+1

] + [
𝟎

𝐲∗𝑛+1

𝟎
] = [

−𝐘𝑛+1

𝐗∗n+1

𝟎
]         (3.24) 

 𝐲∗𝑛+1 ≥ 𝟎              (3.25) 

𝐲∗𝑛+1
𝑇 𝐱̇∗𝑛+1  = 0             (3.26) 

𝐱̇∗𝑛+1  ≥ 𝟎              (3.27) 

with variables 𝐪̇n+1, 𝐗𝑛+1 unrestricted 

The right-hand side sub-vector 𝐘𝑛+1 of (24) is given by: 

𝐘𝑛+1 = 𝐀0
𝑇𝛌𝑛 + 𝐌𝑞(𝑏0𝐪̇𝑛 + 𝑏1𝐪̈𝑛)           (3.28) 

and the mass matrix qM  is given by the relation: 

𝐌𝑞 = 𝐀𝑑
𝑇𝐦𝐀𝑑              (3.29) 

The approximating governing system (3.24) to (3.27) has a computational structure of a linear 

complementarity problem (LCP).  It may be noticed that the variables i.e.  *  , yx*
 , are restrained into the 

complementary pairs, whereas the leading sub-matrix related to variables[𝐪̇, 𝐗] is negative semi-definite.  

In this work, the governing system is solved efficiently by Lemke algorithm due to its simplicity and 

robustness. 
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3.1.4 Solution steps of formulation 

Having the response parameters 𝐪𝑛, 𝐪̇𝑛, 𝐪̈𝑛, 𝐗𝑛, 𝐱∗𝑛, 𝐱̇∗𝑛, 𝐱𝑛 of the structural system at time 𝑡 = 𝑡𝑛 be 

known, the right hand side of (3.24) can be calculated with the plastic capacities 𝐗∗𝑛+1 determined using 

(3.16).  Similarly, the right-hand side sub-vector 𝐘𝑛+1 in (3.28) requires generalized accelerations in the 

master directions that can be found by imposing the kinetic equation (3.2)  

(𝐪̈𝑚)𝑛+1 = (𝐀𝑑𝑚
𝑇  𝒎 𝐀𝑑𝑚)−1(𝐀0𝑚

𝑇  𝝀𝑛+1 − 𝐀𝑚
𝑇  𝐗𝑛+1)         (3.30) 

To initiate the solution sequence at time t = t0, the generalized velocities 𝐪̇0 , the generalized acceleration 

𝐪̈0 and the initial plastic capacities 𝐗∗
𝒐 must be established.  When the motion is excited by impact, 𝐪̇0 is 

known, 𝐪̈0 = 𝟎 since 𝝀 = 𝟎 and 𝐗0 = 𝟎 in (3.30), and 𝐗∗
𝒐 is the vector of plastic capacities with viscoplastic 

matrix 𝐕0 = 𝟏 in (3.16).  The iterative strategy is shown in Fig. 3.5. 

 

Figure 3. 5: Flow path for the proposed viscoplastic LCP model 
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3.2 LCP Formulation Incorporating M-V Interaction 

This section presents a simple rigid-plastic lumped mass model to analyze reinforced concrete beams and 

frames under impact loads shown in Fig. 3.6. Thus, the fundamental conditions of the kinetics, the 

kinematics, and the material constitution are combined in a consistent way to develop a multi-degrees of 

freedom model [8]. 

 

Figure 3. 6: Discretized simply-supported beam under dropweight impact 

 

3.2.1 Representation of kinetics and kinematics as the nodal description 

The RC structure in Fig. 3.6 is explored in the nodal description of kinetics and kinematics. Let this structure 

be subdivided into N finite elements, in which the independent movements of the interconnecting nodes are 

governed by β degrees of freedom. Any kinematically consistent velocity distribution or profile may be 

specified entirely in terms of β independent nodal velocities 𝑞̇𝑗   (𝑗 = 1,2, …… , 𝛽). For an assembly of the 

inextensible planar elements, with α static indeterminacy and S plastic rotational deformations occurring at 

the element extremities, the kinematic indeterminacy number can be established as 𝛽 = 𝑆 − 𝛼. 
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Fig. 3.7 exemplifies the type of discrete structural model that is referred to herein for the sake of simplicity. 

The flexural deformability is assumed at all the critical sections marked by dots except the support region. 

In comparison, the shear deformability is assumed only at the support points and the point of impact at the 

midspan. If attention is confined to the impact point of Fig. 3.7, it is clear that both the bending and shear 

deformation can occur simultaneously. This impacted member is dissected from the beam and subjected to 

independent member force in Fig. 3.8(a). This figure clearly shows that the onset of plasticity is governed 

by bending moments and shear forces at each of the critical sections. With regard to the remaining elements 

of Fig. 3.7 that are governed by bending moments only, the independent member forces and the deformation 

rates are shown in Fig. 3.8(b). 

When each of the β independent nodal velocities 𝐪̇ is released, a velocity profile is generated, for which the 

independent member deformation rates 𝑥̇ℎ (ℎ = 1, 2, … . . , 2𝑁); indicated in Fig. 3.7, the velocities related 

to center of gravity of mass 𝑢̇𝑘(𝑘 = 1, 2, … . . , 𝛾); as shown in Fig. 3.8(c), and the load point velocities 

𝛿̇ℓ (ℓ = 1, 2,… . . , 𝑛) can be easily obtained through geometric considerations. Hence, the nodal 

representation of the kinematic equations has the form: 

[
𝐱̇
𝐮̇
𝛅̇
] = [

𝐀
𝐀𝑑

𝐀0

] 𝐪̇              (3.31) 

where the coefficient matrix is constant, provided that the motion falls within small displacements. 

 

Figure 3. 7: Independent nodal velocities and member deformation rates 
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(a) 

 

(b) 

 

(c) 

Figure 3. 8: Stress-resultants, strain-resultant rates, chord deformation rates, and independent chord 

forces: (a) Planar element allowing plastic-interaction of the bending moment and the shear force. (b) 

Planar element allowing plastic bending moment. (c) centroidal-velocities in a system of lumped mass 

Let the structure be subjected to n discrete time-dependent loads 𝜆ℓ (ℓ = 1, 2, … . . , 𝑛), applied at nodes. 

By employing the principle of D’ Alembert, during every instant of the accelerated motion of a structure, 

the loads applied and the corresponding inertial forces 𝜇𝑘(𝑘 = 1, 2, … . . , 𝛾), are in the state of equilibrium 

with the independent member forces 𝑋ℎ (ℎ = 1, 2, … . . , 2𝑁). Corresponding to the independent nodal 

1

2

 

 

1q  2q  3q  

m1 m2 m3 

1u  2u  3u  
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displacements, the nodal forces of constraint  𝑄𝑗(𝑗 = 1, 2, … . . , 𝛽) are applied. For satisfaction of the 

dynamic equilibrium, it is necessary that the constraints 𝑄𝑗 must vanish, giving the nodal kinetics 

description for the assembly of all elements: 

𝐐 =  𝟎 =  [𝐀𝑇 𝐀𝑑
𝑇 𝐀0

𝑇] [
𝐗

−𝛍
−𝛌

]            (3.32) 

where the transposed (T) coefficient matrix remains constant by virtue of small displacements. It may be 

observed that (3.31) and (3.32) satisfy the adjoint relationship of kinetic-kinematic duality. 

The independent relations (3.31) and (3.32) have no cause-effect relationship between the kinetic and 

kinematic variables. Nevertheless, the relation 

𝝁 = −𝒎 𝒖̈              (3.33) 

implicitly links the inertia forces 𝜇𝑘(𝑘 = 1, 2, … . . , 𝛾), located at the mass centroid, with the corresponding 

centroidal accelerations 𝑢̈𝑘(𝑘 = 1, 2, … . . , 𝛾) of the actual motion of the system. In this inertial law, the 

diagonal mass matrix 𝑚𝑘(𝑘 = 1, 2, … . . , 𝛾) constitutes the mass or moment of inertia related to the 

corresponding centroidal accelerations. 

3.2.2 Material Model 

The current investigation employs a rectangular yield criteria representing the relation of the bending 

moment, and the transverse shear force. An insight into this simple yield criterion [75] can be gained by 

separating the plasticity relation at any critical section 𝑖 into the three constituent relation rules: 

The yield criteria rule: 

[
 
 
 
 
𝒚∗

+𝟏

𝒚∗
−𝟏

𝒚∗
+𝟐

𝒚∗
−𝟐]

 
 
 
 

  =   

[
 
 
 
 
𝑿∗

+𝟏

𝑿∗
−𝟏

𝑿∗
+𝟐

𝑿∗
−𝟐]

 
 
 
 

  −   [

+𝟏 𝟎
−𝟏 𝟎
𝟎 +𝟏
𝟎 −𝟏

]   [
𝑴 = 𝑺𝟏

𝑽 = 𝑺𝟐
] ;           

[
 
 
 
 
𝒚∗

+𝟏

𝒚∗
−𝟏

𝒚∗
+𝟐

𝒚∗
−𝟐]

 
 
 
 

≥ 0        (3.34) 

𝒚∗ = 𝑿∗ − 𝑵𝑻𝑺      𝒚∗ ≥ 𝟎 
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The Normal Flow Rule: 

[
𝒔̇𝟏 = 𝜽̇
𝒔̇𝟐 = 𝜸̇

]   =   [
+𝟏 −𝟏 𝟎 𝟎
𝟎 𝟎 +𝟏 −𝟏

]   

[
 
 
 
 
𝒙̇∗

+𝟏

𝒙̇∗
−𝟏

𝒙̇∗
+𝟐

𝒙̇∗
−𝟐]

 
 
 
 

;             

[
 
 
 
 
𝒙̇∗

+𝟏

𝒙̇∗
−𝟏

𝒙̇∗
+𝟐

𝒙̇∗
−𝟐]

 
 
 
 

≥0        (3.35) 

𝒔̇ = 𝑵𝒙̇∗      𝒙̇∗ ≥ 𝟎 

The Association Rule: 

[
 
 
 
 
𝒚∗

+𝟏

𝒚∗
−𝟏

𝒚∗
+𝟐

𝒚∗
−𝟐]

 
 
 
 

[
 
 
 
 
𝒙̇∗

+𝟏

𝒙̇∗
−𝟏

𝒙̇∗
+𝟐

𝒙̇∗
−𝟐]

 
 
 
 

=0             (3.36) 

𝒚∗
𝑻 𝒙̇∗ = 𝟎  

Interaction between the bending moment 𝑆1, and shear force 𝑆2 at any critical section is characterized by 

the yield criterion shown in Fig. 3.9. Evidently, the rectangular shape surface is bounded by 𝑋∗
+1,  𝑋∗

+2, 

being the plastic-moment capacity 𝑀𝑝, and plastic-shear force capacity pV , for the positive bending, and 

the shear, and by 𝑋∗
−1, 𝑋∗

−2, the capacities corresponding for the negative bending, and shear. Also 

illustrated in  figure below are four plastic-potential elements; 𝑦∗
+1,  𝑦∗

+2,  𝑦∗
−1,  𝑦∗

−2, vanishing any one of 

these potential indicate commencement of plastic deformation. The deformation rate of the plastic rotation 

1s , and the shear deformation rate 𝑠̇2 can be superimposed on the 𝑆1 and 𝑆2 axes. For example: if the 

potential 𝑦∗
−2 = 0, then the normal flow criteria rule (3.35), and association criteria rule (3.36), suggest 

𝑠̇2 = (−1)𝑥̇∗
−2, 𝑥̇∗

−2 ≥ 0, as the upcoming increment of plastic-deformation, that have the direction along 

the outward-pointing normal to the corresponding yield surface at the point of intiation. At the vertex of the 

rectang yield locus, where the potentials 𝑦∗
+1 = 0,   𝑦∗

−2 = 0, the next increment of the deformation could 

lie in the cone defined by the normal to the locus on either side 𝑠̇1 = (+1)𝑥̇∗
+1,  𝑥̇∗

+1 ≥ 0, and 𝑠̇2 =

(−1)𝑥̇∗
−2,  𝑥̇∗

−2 ≥ 0. 

Eventually, it is very important to mention that the total transverse shear slide is bounded to some portion 



 

43 

 

of the beam depth [25]. 

It is of interest to develop a governing mathematical system that couples the constitutive relations, (3.34) 

to (3.36), with the kinetic and the kinematic relations, (3.31) to (3.33). Fig. 3.8(b) clearly illustrates that the 

independent member forces X and the independent member deformation rates 𝐱̇ can be defined by the 

respective stress-resultants S and the strain resultant rates 𝐬̇. These can be collected for all the constituent 

finite elements: 

𝐱̇ = 𝐓𝐬̇               (3.37) 

𝐒 =  𝐓𝑇𝐗              (3.38) 

 

Figure 3. 9: Bending-shear interaction 

 

3.2.3 The Mathematical Formulation 

The vectorial relations (3.31) to (3.33), together with the triad of complementarity conditions (3.34) to 

(3.36), can be combined into a set of differential equations having second-order derivaties with respect to 

time. Nevertheless, this set is made more complex by the complementarity conditions.  As no mathematical 

system is known to this kind of mathematical problem, adopting a numerical solution appears reasonable.  
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Therefore, a time depending scheme is incorporated in order to allow the solution procedure to be advanced 

from a time station 𝑡𝑛 to 𝑡𝑛+1 = 𝑡𝑛 + ∆𝑡, where subscript n is an integer defining consective discrete time 

stations and ∆𝑡 is the intervening increments of time.  Then, the centroidal velocities and corresponding 

accelerations can be expressed in the time-integration scheme of Newmark: 

𝐮̈𝑛+1 = 𝑏0(𝐮̇𝑛+1 − 𝐮̇𝑛) − 𝑏1𝐮̈𝑛            (3.39) 

and 

𝐮̇𝑛+1 = 𝐮𝑛 + 𝑏2𝐮̇𝑛 + 𝑏3𝐮̈𝑛 + 𝑏4𝐮̈𝑛+1           (3.40) 

in which integration constants are 

𝑏0 =
1

𝛾̅∆𝑡
 ,              (3.41) 

𝑏1 =
1−𝛾̅

𝛾̅
,              (3.42) 

𝑏2 = ∆𝑡,              (3.43) 

𝑏3 = (0.5 − 𝛼̅)∆𝑡,             (3.44) 

𝑏4 = 𝛼̅∆𝑡2              (3.45) 

It is found after thorough investigations that suitable results are obtained for rigid-plastic dynamics if  𝛼̅ =

0.25 and 𝛾̅ = 0.5. 

Collecting together (3.31), (3.32), (3.33), and (3.34) to (3.36), (3.37), and (3.38), at time 𝑡 = 𝑡𝑛+1, and 

coupling with the Newmark’s scheme (3.39) to (3.45) the governing system becomes: 

[

−𝑏0𝐌𝑞 𝟎 −𝐀T

𝟎 𝟎 𝐍𝑇𝐓𝑇

−𝐀 𝐓𝐍 𝟎

] [

𝐪̇n+1

𝐱̇∗𝑛+1 
𝐗𝑛+1

] + [
𝟎

𝐲∗𝑛+1

𝟎
] = [

−𝐘𝑛+1

𝐗∗n+1

𝟎
]         (3.46) 

 𝐲∗𝑛+1 ≥ 𝟎              (3.47) 
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𝐲∗𝑛+1
𝑇 𝐱̇∗𝑛+1  = 0             (3.48) 

𝐱̇∗𝑛+1  ≥ 𝟎              (3.49) 

with variables 𝐪̇n+1, 𝐗𝑛+1 unrestricted 

The right-hand side sub-vector 𝐘𝑛+1 of (3.46) is given by: 

𝐘𝑛+1 = 𝐀0
𝑇𝛌𝑛 + 𝐌𝑞(𝑏0𝐪̇𝑛 + 𝑏1𝐪̈𝑛)           (3.50) 

and the mass matrix qM  is given by the relation: 

𝐌𝑞 = 𝐀𝑑
𝑇𝐦𝐀𝑑              (3.51) 

The approximating governing system (3.46) to (3.49) has a computational structure of a linear 

complementarity problem (LCP).  It may be noticed that the variables i.e.  *  , yx*
 , are restrained into the 

complementary pairs, whereas the leading sub-matrix related to variables[𝐪̇, 𝐗] is negative semi-definite.  

In this work, the governing system is solved efficiently by Lemke algorithm due to its simplicity and 

robustness. 

3.2.4 Initiation of LCP formulation 

The incremental numerical process shown in (3.46) to (3.49), representing the evolutive sequence of the 

dynamic response, is not self-starting. Therefore, it is necessary to establish a subroutine for calculating the 

relevant accelerations at a certain instant of time. These accelerations are of particular relevance at the 

commencement of the motion and at the deactivation of previously active section. At similar instant, the 

vector of plastic-multiplier rates 𝐱̇, can be separated into Y yielded plastic hinges and R rigid plastic hinges. 

So, these subsets of the multiplier rates 𝐱̇ can be expressed as:  

𝑌 = {(𝐱̇∗𝑦, 𝐲∗𝑦)|𝐱̇∗𝑦 > 𝟎, 𝐲∗𝑦 = 𝟎}           (3.52) 

𝑅 = {(𝐱̇∗𝑟 , 𝐲∗𝑟)|𝐱̇∗𝑟 = 𝟎, 𝐲∗𝑟 ≥ 𝟎}           (3.53) 
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The time-derivative of the discrete law (3.34) to (3.36) is formulated as: 

[

𝟎 𝟎 𝑵𝒚
𝑻

𝟎 𝟎 𝑵𝒓
𝑻

𝑵𝒚 𝑵𝒓 𝟎

]    [
𝒙̈∗𝒚 

𝒙̈∗𝒓 
𝑺

] + [
𝟎

𝒚∗𝒓 

𝟎
] = [

𝑿∗𝒚 

𝑿∗𝒓

𝒔̈

]          (3.54) 

 𝐲∗𝑟 ≥0              (3.55) 

𝐲∗𝑟
𝑇 𝐱̈∗𝑟  = 0              (3.56) 

𝐱̈∗𝑟  ≥ 𝟎              (3.57) 

𝐱̈∗𝑦 unrestricted.             (3.58) 

It is to Tamuzh [90] that the relation (3.54) to (3.58) is due. The comparison of these relations with the 

equations of nonholonomic laws (3.34) to (3.36), it is clear that the former fails completely in representing 

the latter in two important situations. Firstly, (3.58) has no restriction on 𝐱̇∗𝑦 to become non-positive, which 

is certainly opposing (3.35). Secondly, the above relations has no restriction on 𝐱̇∗𝑟, related with the yield 

conditions, which have activated during the finite time interval, to decrease. 

The following three criteria can be employed to identify the interval end: 

a) The time at which the relevant functions are not differentiable any more, or  

b) Upon the unstressing of any yielded nodes in set y, or 

c) Upon the activation of any yielded node in set of r. 

At that determined instant, the sets 𝑌 and 𝑅 must be separated, and then the modified plasticity-relations 

can be used accurately for a contiguous finite time interval. 

It has already been said that the LCP system (3.46) to (3.49) is not self-starting. To initiate this system, 

regardless of the prescribed displacements 𝐪0 and velocities 𝐪̇0, it is not easy to infer the initial accelerations 

𝐪̈0, and the independent member forces 𝐗0. Differentiating with respect to time the kinematic relation 
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(3.31), and together with (3.54) to (3.58), Sahlit [7] re-established the governing system in terms of 

accelerations: 

[
 
 
 
 
−𝐌𝑞 𝟎 𝟎 −𝐀T

𝟎 𝟎 𝟎 𝐍y
T𝐓T

𝟎 𝟎 𝟎 𝐍r
T𝐓T

−𝐀 𝐓𝐍𝑦 𝐓𝐍𝑟 𝟎 ]
 
 
 
 

[ 

𝐪̈
𝐱̈∗y

𝐱̈∗𝑟

𝐗

 ] + [ 

𝟎
𝟎
𝐲∗

𝟎

 ] = [ 

−𝐀0
𝑇𝜆0

𝐗∗y

𝐗∗𝑟

𝟎

 ]         

(3.59) 

 𝐲∗𝑟 ≥ 𝟎              (3.60) 

𝐲∗𝑟
𝑇 𝐱̈∗𝑟  = 0              (3.61) 

𝐱̈∗𝑟  ≥ 𝟎              (3.62) 

with variables 𝐪̈, 𝐱̈∗y, 𝐗 unrestricted 

If the structure is coerced into motion by an initial impulse or by an initial velocity field, the vector of initial 

loading is null 𝛌0 = 𝟎 at the start of motion. Accordingly, the set of 𝑌 active plastic hinges  (𝐱̇∗𝒚 > 𝟎) are 

easily deductible.   

3.2.5 Plastic Unstressing 

The LCP formulation (3.46) to (3.49) only allows the plastic unstressing at the commencement of each time 

interval but not within the increment ∆t. This loss of accuracy over a time step leads to spurious oscillations 

in the stress resultants. Therefore, it is imperative to include a subroutine that calculates the unstressing 

time instant 𝑡𝑛+𝜀 within the interval ∆t [7]. Thus, the evolutive sequence of dynamic response is terminated 

temporarily at the instant when unstressing is detected. Subsequently, the velocity profile and the partition 

active 𝑌 and in-active 𝑅 critical sections are adjusted. Once the relevant structural variables at 𝑡𝑛+𝜀 are 

determined, then, the evolutive process of the LCP system (3.46) to (3.49) is re-initiated with 𝑡𝑛+𝜀 as the 

starting-time. The iterative procedure for the whole dynamic response is shown in Fig. 3.10. 
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Figure 3. 10: Flow path of bending-shear LCP model 

3.3 Existence and uniqueness of optimal solutions 

A fundamental problem in the dynamic analysis of structural systems is determining the acceleration field 

at some instant of time when the velocity field and the applied loads are known at that instant. The governing 

system (3.59)-(3.62)  in terms of accelerations, separated into Y yielded plastic hinges and r rigid plastic 

hinges, is examined here to address the uniqueness of acceleration. 

In both (3.46) and (3.49), the independent member forces X are not guaranteed to be uniquely defined due 

to the null matrice shown with the underbar. Also, a more detailed discussion is necessary in order to 

establish the uniqueness in the acceleration field since the mass or inertia matrix 𝐌q(𝐀𝑑
𝑇𝐦𝐀𝑑) is positive 

semidefinite. It has been defined in Subsection 3.2.1 that m is the mass matrix that alludes to the 

accelerations of the inertia coordinates or the dynamic degrees of freedom u, whereas 𝐌q is the mass matrix 

that refers to the accelerations of the generalized or Lagrange coordinates q. With each nodal mass, the 𝛾 

accelerations 𝐮̈ of the masses may form a subset of the 𝛽 independent nodal acceleration 𝐪̈, and  𝛾 ≤ 𝛽 

correspondingly. The vector of 𝛽 generalized accelerations 𝐪̈ can then be partitioned into a master set 
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𝛾 −vector 𝐪̈𝑚 = 𝐮̈ and a slave set (𝛽 − 𝛾) −vector 𝐪̈𝑠. The accelerations 𝐮̈ need not form a strict subset of 

the accelerations 𝐪̈ being merely linearly dependent on some of them. By partitioning vector 𝐪̈ into a master 

set 𝐪̈𝑚 and a slave set 𝐪̈𝑠, the accelerations 𝐮̈ becomes: 

𝐮̈ = [𝐀dm 𝟎] [
𝐪̈𝑚

𝐪̈𝑠
]             (3.63) 

where 𝐀dmis the positive definite square matrix of order (𝛾 × 𝛾) which need not be equal to the identity 

matrix 𝐈γ. Because of the partition (33) attained in the matrix 𝐀d, the inertia matrix 𝐌q maybe recast as: 

𝐌q = [
𝐀dm

T

𝟎T
]𝐦[𝐀dm 𝟎] =  [𝐀dm

T 𝐦𝐀dm 𝟎
𝟎 𝟎

]          (3.64) 

Clearly, the mass submatrix 𝐀dm
T 𝐦𝐀dm,corresponding to the master acceleration 𝐪̈𝑚, is positive definite 

because 𝐦 and 𝐀dm are each square matrices of full rank 𝛾. So, it can be deduced that the acceleration 

components 𝐪̈𝑚 are uniquely defined. In contrast, the uniqueness of the slave acceleration components 𝐪̈𝑠, 

cannot be guaranteed since all the mass influence coefficients associated with these components are zero. 

If 𝛾 = 𝛽, the slave set is null, and the entire acceleration field must be uniquely defined. The implication 

of a unique acceleration field is that a unique dynamic response occurs in terms of the velocities for the 

discrete model of structure. The uniqueness of the acceleration and velocity fields agrees with Tamuzh’s 

principle [90] and Martin’s theorem[91], respectively. 

Non-uniqueness in the spread of the independent member forces X is only possible in hyperstatic structural 

systems. It may occur in parts of the structure that are not moving and at critical sections in which plastic 

flow occurs when the dimension of the corresponding generalized stress vector exceeds the number of 

activated yield planes. For isostatic structural systems, matrix A in (3.32) is the square matrix of full rank 

𝛽. Because the inertia forces 𝛍 are uniquely defined in terms of (3.33) and (3.63), and for a given loading 

𝛌, the equation (3.32) may be solved uniquely for the independent member forces X. 
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3.4 Peak Impact Force Model 

Due to the limitation of the LCP model for producing the peak impact force of RC beams uniquely under 

dropweight impact loading, a regression-based model of peak impact force adopting the Gene Expression 

Programming (GEP) programming is proposed. The maximum impacted force can be employed to derive 

the shear force and the bending moment diagrams, thus providing a capability to examine the dynamic 

behavior of impacted RC beams, and simplifying the design approach. 

3.4.1 Parameters affecting the impacted force on RC beam from a drop-weight  

To establish an empirical model describing the impacted force on RC beam from a dropweight over it, it is 

necessary to set out the affecting parameters.  It may be inferred from the literature [19,62,92–94] that the 

impacted force on the RC beam greatly depended on various parameters, such as concrete strength in 

compression, longitudinal reinforcement, yield strength of longitudinal reinforcement, vertical shear 

reinforcement, mass, and velocity of the drop-weight, and different geometrical properties of RC beam.  

The influence of these parameters has been shown by extensive experimental studies of Hughes & 

Mahmoud [95], Louw et al. [96], May et al. [97], Zhan et al. [98], Goldston et al. [22].  From this precedent, 

Zhan et al. [98], May et al. [97], and Louw et al. [96] identify that the concrete strength in compression 

shows an increasing positive relation with the impact force from a drop-weight. A similar increasing trend 

has been observed by Adhikary et al. [92] through numerical simulation.  This trend follows intuition since 

as the compressive strength is increased, the beam capacity and the stiffness are increased, thereby resulting 

in an increased peak impact force because stiffer elements attract more force.  In the same context, 

increasing the width or depth of the beam will attract more impact force than increasing the length of the 

beam. 

Longitudinal tensile reinforcement is another important parameter affecting the peak impact force on the 

RC beam.   In this instance,  Goldston et al. [22], Hughes & Mahmoud [95], Adhikary et al [19], and Zhan 

et al. [98] have observed the influence of longitudinal tensile reinforcement on the impact force because as 

the area of tensile reinforcement increases, both the peak ultimate bending moment strength as well as there 

is corresponding increase in the ultimate load-carrying resistance. Zhan et al. [98], and Fujikake et al. [59] 
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also observed that the stiffness of the RC beam increases with the increase in the longitudinal tensile 

reinforcement which tends to rise the peak impact force. The yield strength of the longitudinal 

reinforcement also contributes to the impact force as it increases the brittleness of the RC beam. Similar 

behavior has been produced by Adhikary et al. [92] with the help of numerical study. Adhikary et al. [19], 

and Bhatti et al. [62] have shown the increasing trend of peak impact force with the increasing vertical shear 

reinforcement. This trend is due to the reason that transverse reinforcement provides extra confinement to 

the concrete in core, thereby increasing lateral restraint strength against buckling of the longitudinal bars. 

Input kinetic energy (K.E = 1/2*M*V2) has a vital role in the impact analysis of RC beam under dropweight.  

With increasing input kinetic energy, the increase in the peak impact load has been reported by various 

researchers [62,93,94].  

3.4.2 Experimental database 

In a way to accurately predict the peak impact force on RC beam from a dropweight, a collection of 126 

experimental tests from previous studies is compiled into a database [18,59,62,64,72,98–102].  Within the 

database, all beams are of rectangular cross-sections subjected to impact load at the midspan having either 

flat or spherical contact surface.  For GEP analysis, only a randomly selected portion of 84 experiments is 

used to develop the model.  The remaining 42 samples are employed for the model validation.  

3.4.2.1 Distribution of key influence parameters 

The important influence parameters of RC simply supported beam is examined herein.  The influence 

parameters, such as the impact velocity, impact mass, geometrical size of the beam, concrete strength in 

compression, longitudinal reinforcement, and shear reinforcements, are given in Table 3.1.  It is clear from 

the table that the velocity of the projectile ranges from 1-16 m/sec, and the impact mass M is in the range 

of 33-1700 kg.  Further, the net span of simply supported RC beams ranges from 1000 to 5000 mm, the 

width and height of RC beams lie within the range limit 100-300 mm and 120-500 mm, respectively, and 

the longitudinal tensile and shear reinforcement ratio falls in the range 0.29-3.1% and 0-1.4%, respectively. 

Table 3. 1: Distribution of key influence parameters 
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Parameters Ranges 

Velocity 1-16 (m/s) 

Mass 33-1700 (kg) 

Compressive strength 20-42 (MPa) 

Net span length 1000-5000 (mm) 

Beam width 100-300 (mm) 

Beam height 120-500 (mm) 

Tensile reinforcement ratio 0.29-3.1 (%) 

Shear reinforcement ratio 0-1.4 (%) 

 

3.4.3 Fundamentals of gene programming 

Gene expression programming (GEP) is a progressive genetic algorithm (GA), that outputs mathematical 

models from the supplied data and processes the data in domain-independent mode [103–105]. GEP is 

different from the genetic algorithm Gas, and the genetic programming GP in terms of the representation 

of chromosomes. The chromosomes are strings of constant length in GAs, but these entities in GPs, have 

different shapes and sizes and also they are non-linear. GEP, on the other hand, encapsulates both the linear 

entity of constant length, as well as ramified structure of different sizes and shapes. 

As with other evolutionary algorithms, for executing the evolutionary process, several trials are conducted 

by iteratively altering the chromosomes number, the amount of genes, head size, and linking functions.  

Thus, GEP optimizes solutions by selecting the best candidates among the supplied initial population based 

on their fitness.  Notably, a complicated function can stem from increasing the quantity of genes and 

chromosomes number, but the function can precisely fit the results.  Hence, there exists a tradeoff between 

the attainment of a simplified mathematical model, by controlling the number of genes and chromosomes, 

and the achievement of the desired level of accuracy.    

A basic step in the GEP algorithm is the convergence to the global optimal solution.  It can sometimes 

happen that the algorithm is not able to select an optimal solution among several competing candidate 

solutions.  In this state, the algorithm can lead to an indefinite sequence of steps resulting in either a non-



 

53 

 

terminating program or yielding an illogical expression.  This predicament can be resolved by either varying 

the number of genes and chromosomes or adjusting the linking function. In this context, the contribution 

of an analyst decides if and what solution proposed by GEP should be extended for statistical analysis [106].   

The benefits of GEP have attracted extensive applications in the field of structural engineering over the last 

decade.  Several authors have elegantly employed GEP to develop models for estimating the capacity of 

various structural components.  Recently, GEP has been successfully used for predicting the behavior of 

RC beam from a drop-weight, especially where the code formulations are not available.  

The different steps of GEP optimization are illustrated in Fig. 3.11.  The optimization process starts with 

the selection of control parameters, such as the function set, the ending set, the fitness function, the 

controlling parameters, and the stopping condition.  Before the execution of the evolutionary algorithm, the 

fitness function is identified, and then the problem is coded to produce a random string of the initial 

population, or in Genetic Programming parlance ‘Chromosomes’.  These strings translate into an expression 

tree corresponding to a mathematical formulation.  The outcomes from the mathematical formulation are 

checked with the actual values of the fitness scores of each chromosome.  In appreciating results scenarios, 

the algorithms are put to stop.  In case, if the error level is not according to desire, some of the chromosomes 

are again selected using the roulette-wheel sampling and then proceed to obtain new generations.  When 

we get the error level of our choice, decoding of chromosomes is done for the best solutions to the problem 

[107,108]. 
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Figure 3. 11: Flow chart for the GEP 

 

3.4.4 Proposed GEP model for estimating peak impact force 

This work aims to develop a precise model that is capable of predicting the peak impact force on RC beam.  

This model has been constructed by incorporating mechanical and geometrical properties, reinforcement 

ratio, and detailing of steel reinforcement in the RC beam were included into the model preparation. More 
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specifically, beam width, beam depth, concrete compressive capacity, yielding stress capacity of steel 

reinforcing bars, longitudinal reinforcement area, and transverse reinforcement ratio are identified as 

important influencing factors on the suggested model. Out of 126 experimental datasets, a randomly 

selected portion of 84 data beams is for training purposes, and the remaining 42 data beams as a validation 

set. 

An empirical model is produced through GEP evolutionary algorithm for estimating the peak impacted 

force on the RC beam, given in Eq. (3.65). The expression tree of the proposed model is also given in Fig. 

3.12. In addition, the operational and functional details in the developed model are listed in Table 3.2. It is 

remark that the selection of the parameters influences the model capability of the GEP.  

𝐹𝑝 = 𝑎 + 𝑏 + 𝑐 (𝑘𝑁)             (3.65) 

𝑎 = [(
1

3.07+2𝑉
)

5

2
+ (

𝑉

𝑙𝑛+
𝐴𝑠𝑓𝑦

𝑓𝑐
′ +𝑠−2390.26

)]

−1

          (3.66) 

𝑏 = [{
𝑓𝑐

′

𝑎

𝑑
−2.93

+ (𝐿𝑁(𝑉) × (𝑏 − 𝜌𝑣𝑓𝑦 + 40.27))} − (𝑓𝑐
′ × √𝑉)]        (3.67) 

𝑐 = {((6.83 + 𝑓𝑐
′) × 𝑉) + 𝑏 + 3ℎ −

𝑎

𝑑
−

𝑀

𝑉
− 2𝑠 − 𝑑 − 404.96}        (3.68) 

where 𝑏, ℎ, and 𝑑 are the respective breadth, height, and effective depth of the beam, 𝑉, and 𝑀 are the 

initial velocity and mass of dropweight respectively, 𝑙𝑛 and 
𝑎

𝑑
 represents the respective net span and the 

ratio of shear span to depth of the beam, 𝐴𝑠𝑓𝑦 is the product of area and yield strength of longitudinal 

reinforcement, 𝐿𝑁 is the natural log, 𝑓𝑐
′ is the concrete compressive stresses, 𝜌𝑣𝑓𝑦 is the product of shear 

bars ratio and yield strength of transverse reinforcement, and 𝑠 is the mid-span deflection. 
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Figure 3. 12: Gene expression tree for peak impact force 

Table 3. 2: Model Construction Parameter 

Function set Ln, +, -, /, *, sqrt, x2,3,4,5 

Chromosomes 110 

Size of head 11 

Link function Addition 

Quantity of genes 3 

Rate of Mutation 0.0014 

Rate of inversion 0.1 

One-point recombination rate 0.0027 

Two-point recombination rate 0.0027 

Rate of Gene recombination  0.0027 

Rate of Gene transposition  0.0027 

Constants / gene 10 
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Lower/Upper bound of constants -20/20 

 

3.5 Statistical Parameters for Validation 

In this section, few statistical parameters are picked to find the accuracy of the proposed models. Predicted 

to experimental ratio (PER), coefficient of Variation (CoV), coefficient of determination (R2), and the 

average absolute error (AAE) to compare the response of RC beam under impact loading by proposed 

models with the previously proposed in the literature. Based on these statistical parameters, the accuracy 

and efficiency of the proposed models will be accessed.  

3.5.1 Predicted to experimental ratio (PER) 

The predicted to experimental ratio is generally used to check, how much accurate and efficient the models 

are to predict accurately the response of RC beams subjected to dropweight loading. For a model to estimate 

a good prediction, the net value of the performance factor should be closer to 1. The value of the predicted 

to experimental ratio will be equal to 1, Mathematically the predicted to experimental ratio is shown in Eq. 

(3.69) 

(𝑃𝐸𝑅) =
𝑣𝐸𝑠𝑡

𝑣𝐸𝑥𝑝
                                                                                                                                         (3.69)  

3.5.2 Coefficient of Variation (CoV) 

The dispersion of the statistical points in the data sets around the mean is calculated by the coefficient of 

variation (CoV). It is the ratio between the standard deviation and the mean of the total data set. This factor 

is usually helpful in calculating the extent of variation between the data series, even if the mean of the data 

set is different from each other. The range of the variability of data sample in relation to the mean of the 

population is shown by the coefficient of variation (CoV). Mathematically the coefficient of variation is 

defined as 

𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 (𝐶𝑜𝑉) =  
𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

𝑀𝑒𝑎𝑛
 (3.70) 
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3.5.3 Coefficient of Determination 

Total variation is defined as, the variability among the values of the variable that is dependent i.e. Y and is 

given by:  = ∑(𝑦 − 𝑦̅)2  (3.71) 

The expression shown in Eq (3.71) is composed of two parts: 

• The one expressed by regression line i.e. ∑(𝑦̂ − 𝑦̅)2 

• The one is not to be defined by regression line, i.e. ∑(𝑦 − 𝑦̂)2 

𝑇𝑜𝑡𝑎𝑙 𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 = 𝑈𝑛𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 + 𝐸𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛  

∑(𝑦 − 𝑦̅)2 = ∑(𝑦 − 𝑦̂)2 + ∑(𝑦̂ − 𝑦̅)2 (3.72) 

 

Figure 3. 13: Graphical Representation of Coefficient of Determination 

The ratio of the explained variation to the total variation is termed as coefficient of determination and is 

represented as 𝑅2. Mathematically, the coefficient of determination (R2) is given by: 

𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 =
𝐸𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛

𝑇𝑜𝑡𝑎𝑙 𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛
 

𝑅2 =
∑(𝑦̂−𝑦̅)2

∑(𝑦−𝑦̅)2
 (3.73) 

𝑅2 = 1 −
∑(𝑦−𝑦̅)2

∑(𝑦−𝑦̅)2
 (3.74) 

Average absolute error (AAE) is also used for validation purposes, which represents the total error between 

the predicted and experimental results. The AAE is therefore 
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𝐴𝐴𝐸 (%) =
1

𝑛
× Σ [

|𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑣𝑎𝑙𝑢𝑒−𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒|

𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑣𝑎𝑙𝑢𝑒
]   (3.75) 

Yet another statistical evaluation parameter effective in evaluating the accuracy and consistency of the 

proposed numerical model is the slope of the best fit line (m). For the dataset having the least average 

absolute error, the slope of the trendline is close to the benchmark value of 1, that is the trendline is on a 

45-degree angle. Thus, 

𝑚 = tan−1 (
𝑦2−𝑦1

𝑥2−𝑥1
) (3.76) 

where, x and y represent the abscissa and ordinate values, respective wise. 
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4 RESULTS & DISCUSSION 

4.1 Organization  

In this chapter the proposed models i.e. LCP having strain-rate effect, LCP incorporating M-V interaction, 

and peak impact force model are validated using different statistical tools. The statistical analysis is not 

only applied to the current model but is also applied to the previously proposed models to estimate the 

robustness and efficiency of the current models over the previously proposed models. The variation of 

results is also represented graphically for better understanding. 

4.2  Model Validation 

Model Validation is an important step after the selection of the model. This step actually confirms the 

application of the proposed model on the given set of experimental data. In this research study, the model 

is not only validated with experimental data set but also validate with the previous literature and code 

provisions. 

In most of studies it has been observed that only 𝑅2 is used as statistical tool for the validation of the model. 

Statistical literature reveals that higher 𝑅2 does not always guarantee that the model will fit the data. It is 

also observed that a prediction model that does not fit the data points well, cannot give a good estimated 

result to the underlying engineering questions. Apart from using only one statistical tool for the validation 

purpose, it is necessary to apply different statistical tools available in the literature, to validate your 

proposed model. In this research study, the statistical tool selected is discussed in detail in section 3.5. 

Using those statistical tools, a detailed statistical analysis is performed. The results obtained from the 

statistical analysis will be discussed in detail for all the cases. 

4.3 Viscoplastic LCP Validation 

4.3.1 Experimental Database 

An extensive experimental database of 143 simply supported RC beams has been constructed from the 

literature [18,59,109,62,64,72,78,99–102] by employing a consistent set of inclusion criteria. Within the 

database, all beams are of rectangular cross-sections subjected to impact load at the midspan having either 
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flat or spherical contact surface. Out of this dataset of 143 RC beams, the specimens failing in bending and 

bending-shear are included. Therefore, 25 specimens are removed from the data due to shear failure, and 

the validation of the proposed viscoplastic LCP is carried out with the remaining 118 beams. 

4.3.1.1 Distribution of key influence parameters 

The important influence parameters of RC simply supported beam is examined herein. The influence 

parameters, such as the impacted dropweight velocity, and mass, geometric size of beam, concrete 

compressive capacity, longitudinal reinforcement, and shear reinforcement, are given in Fig. 4.1. It is 

visible from the figure that the velocity of the projectile ranges from 1-16 m/sec, whereas most of the data 

lie in 3-8 m/sec regime. Similarly, the impact mass M is in the range of 100-1800 kg, having a large number 

of tested beams within 300-600 kg. Further, the net span of simply supported RC beams ranges from 1000 

to 5000 mm, the width and height of RC beams lie within the range limit 100-300 mm and 150-500 mm, 

respectively, and the longitudinal tensile and shear reinforcement ratio falls in the range 0.25-3.25% and 0-

1.4%, respectively. 

 
(a)                                                                                (b) 
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       (c)        (d) 
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Figure 4. 1: Frequencies of different experimental parameters. (a) Impact Mass. (b) Beam net length. (c) 

Drop mass velocity. (d) Compressive strength. (e) Beam depth. (f) Beam-width. (g) Shear reinforcement 

ratio. (h) Tensile reinforcement ratio. 

4.3.2 Validation of midspan deflection 

4.3.2.1 Validation with experimental tested data 

A statistical comparison is undertaken between the developed viscoplastic LCP model, and the 

experimental results, as shown in Fig. 4.2. To validate this LCP model with the collected dataset, the 

statistical presentation of midspan deflection is evaluated using the coefficient of determination (R2). This 

is the variance-dependent coefficient whose value near 1 indicates best prediction. In this context, the 

correlation factor of the experimental and predicted results is R2 = 0.98, indicating better prediction. 

Furthermore, the best-fit line for the predicted peak midspan deflection is y =0.97x, which is closely aligned 

with the 45o benchmark, suggesting a solid relation between the experimental and the predicted results. 

 

Figure 4. 2: Comparison of predicted and experimental results of midspan maximum deflection 

Another statistical indicator is the predicted to the experimental deflection ratio (PER), whose value close 

to 1 specify better prediction. The average PER is 0.92, close to a benchmark value of 1, with a coefficient 

of variation (CoV) of 16.5%. Fig. 4.3 presents the sensitivity analysis of different parameters in the 
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proposed viscoplastic LCP formulation for predicting the maximum mid-span deflection. It is clear from 

Fig. 4.3(a) that the influence of the velocity on the model accuracy has a virtual average of 0.92 for 

maximum mid-span deflection within the interval (0.6-1.5). This clearly demonstrates that the proposed 

model has adequate performance for various ranges of velocity. The mid-span deflection predicted by the 

viscoplastic LCP model is compared with the experimental impact mass, as shown in Fig. 4.3(b). The 

accuracy and better reliability of the proposed model are still in the range of (0.6-1.5). Fig. 4.3(c) and (d) 

also confirm the satisfactory performance of the LCP model with experimental mass ratio and depth of the 

beam, respectively. Evidently, the proposed LCP method is predicting deflection with reasonable accuracy 

as PER ranges between 0.6-1.5. It can also be found that the overall deflection of PER is insignificantly 

affected by changing the impact parameters, which means that this formulation can be well used for a wide 

spectrum of these impacted parameters. 

 
(a)                      (b)  

 
        (c)                 (d) 

Figure 4. 3: : Influence of parameters on the estimative performance of the developed formulation. (a) 

Projectile velocity. (b) Impacted mass. (c) Mass ratios. (d) Beam depth 
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4.3.2.2 Validation with the available models 

A comparison of various available models through statistical parameters is shown in Table 4.1. It is really 

important to note down the reliability of developed formulation is best than all other models because of 

higher value of R2, and the resulting slope of the best-fit line (m ) is closest to the slope of the benchmark 

line. 

4.3.2.2.1 Zhao et al. Model 

The comparison of viscoplastic LCP with the Zhao et al. model is shown in Fig. 4.4. This model is valid to 

118 tested beams data. The R2 of the Zhao et al. model is 0.96 with AAE of 26.9%. The mean PER value 

is 1.07 with coefficient of variation of 30.2%. 

 

Figure 4. 4: Zhao et al. vs Visoplastic LCP 
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The comparison of viscoplastic LCP with the Adhikary et al. model is shown in Fig. 4.5. This model is 

valid to 114 tested beams data. Therefore, only that 114 data were used for LCP model as well. The R2 of 
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equal to 16.3%. Similarly, the R2 of the Adhikary et al. model is 0.95 with AAE of 25.5%. The mean PER 

value is 0.85 with coefficient of variation of 34.1%. 

 

Figure 4. 5: Comparison of viscoplastic LCP and Adhikary et al. 
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Figure 4. 6: Khan et al. vs viscoplastic LCP model prediction 
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valid to 76 tested beams data. Therefore, only that 76 data were used for LCP model as well. The R2 of the 

LCP model becomes 0.98 with AAE equal to 9%. The average PER value becomes 0.97 with CoV equal 

to 13.7%. Similarly, the R2 of the Kishi and Mikami model is 0.96 with AAE of 21.6%. The mean PER 

value is 1.02 with coefficient of variation of 32.9%. 

y = 1.27x

R² = 0.94

y = 0.97x

R² = 0.98

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160

P
re

d
ic

at
ed

 d
ef

le
ct

io
n
 (

m
m

)

Experimental deflection (mm)

Khan et al.

Viscoplastic LCP

45o Benchmark



 

68 

 

 

Figure 4. 7: Comparison of viscoplastic vs Kishi and Mikami model 

4.3.2.2.5 Tachibana et al. Model 

The comparison of viscoplastic LCP with the Tachibana et al. model is shown in Fig. 4.8. This model is 

valid to 47 tested beams data. Therefore, only that 47 data were used for LCP model as well. The R2 of the 

LCP model becomes 0.97 with AAE equal to 12.1%. The average PER value becomes 0.95 with CoV equal 

to 17.1%. Similarly, the R2 of the Tachibana et al. model is 0.93 with AAE of 28.7%. The mean PER value 

is 0.87 with coefficient of variation of 40.4%. 
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Figure 4. 8: Tachibana et al. vs viscoplastic LCP 

Table 4. 1: Statistical analysis of maximum mid-span deflection prediction models of RC beams under 

Impact loading 

Author 
No of 

samples 
Mean PER 

Standard 

Deviation 
CoV (%) AAE (%) R2 

Tachibana et al. 

[64] 
47 0.87 0.35 40.4 28.7 0.93 

Kishi and Mikami 

[18] 
76 1.02 0.34 32.9 21.6 0.96 

Khan et al. [8] 118 1.26 0.38 30.5 30.8 0.94 

Adhikary et al. 

[110] 
114 0.85 0.29 34.1 25.5 0.95 

Zhao et al. [66] 118 1.07 0.32 30.2 26.9 0.96 

Viscoplastic LCP 

Model 
118 0.92 0.15 16.5 12.5 0.98 
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4.4 Bending shear LCP 

4.4.1 Experimental Database 

An extensive experimental database of 100 simply supported RC beams has been constructed from the 

literature [13,14,62,72,78,99,100,102] by employing a consistent set of inclusion criteria. Within the 

database, all beams are of rectangular cross-sections subjected to impact load at the midspan having either 

flat or spherical contact surface. Out of this dataset of 100 RC beams, the specimens failing in shear and 

bending-shear are included. Therefore, 54 specimens are removed from the data due to flexural failure, and 

the validation of the proposed LCP is carried out with the remaining 46 beams. 

4.4.1.1 Distribution of key influence parameters  

The important influence parameters of RC simply supported beam is examined herein. The influence 

parameters, such as the impacted drop velocity, and mass, geometric size of beam, concrete compressive 

stresses, longitudinal reinforcement, and shear reinforcement, are given in Fig. 4.9. It is visible from the 

figure that the velocity of the projectile ranges from 1-16 m/sec, whereas most of the data lie in 2-8 m/sec 

regime. Similarly, the impact mass M is in the range of 100-1800 kg, having many tested beams within 

300-600 kg. Further, the net span of simply supported RC beams ranges from 1000 to 5000 mm, 

compressive strength lies within 15-50 Mpa, the width and height of RC beams lie within the range limit 

100-250 mm and 150-500 mm, respectively, and the longitudinal tensile and shear reinforcement ratio falls 

in the range 0.75-2.85% and 0-0.5%, respectively. 
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        (a)        (b)  
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   (e)        (f) 

 
       (g)        (h) 

Figure 4. 9: Frequencies of different experimental tested beams parameters. (a) Drop mass velocity. (b) 

Impacted Mass. (c) Beam net length. (d) Compressive strength. (e) Beam depth. (f) Beam-width. (g) 

Shear reinforcement ratio. (h) Tensile reinforcement ratio. 

4.4.2 Validation of midspan deflection 

4.4.2.1 Validation with experimental tested data 

A statistical comparison is undertaken between the developed bending-shear LCP model, and the 

experimental results, as shown in Fig. 4.10. To validate this LCP model with the collected dataset, the 

statistical presentation of midspan deflection is evaluated using the coefficient of determination (R2). This 

is the variance-dependent coefficient whose value near 1 indicates best prediction. In this context, the 

correlation factor of the experimental and predicted results is R2 = 0.95, indicating better prediction. 

Furthermore, the best-fit line for the predicted peak midspan deflection is y = 1.05x, which is closely aligned 

with the 45o benchmark, suggesting a solid relation between the experimental and the predicted results. 

0

10

20

30

40

50

0 0.1 0.2 0.3 0.4 0.5

F
re

q
u
en

cy
 (

%
)

ρv (%)

0

10

20

30

40

50

0 1 2 3

F
re

q
u
en

cy
 (

%
)

ρs (%)



 

73 

 

 

Figure 4. 10: Comparison of predicted and experimental results of midspan maximum deflection 

Another statistical indicator is the predicted to the experimental deflection ratio (PER), whose value close 

to 1 specify better prediction. The average PER is 1.04, close to a benchmark value of 1, with a coefficient 

of variation (CoV) of 21.2%. Fig. 4.11 presents the sensitivity analysis of different parameters in the 

developed bending shear LCP model for predicting the maximum mid-span deflection. It is visible from 

Fig. 4.11(a), that the influence of the velocity on the model accuracy has a virtual average of 1.04 for 

maximum mid-span deflection within the interval (0.7-1.6). This clearly demonstrates that the proposed 

model has adequate performance for various ranges of velocity. The mid-span deflection predicted by the 

bending shear LCP model is compared with the experimental impact mass, as shown in Fig. 4.11(b). The 

accuracy and reliability of the developed formulation are still in the range of (0.7-1.6). Fig. 4.11(c) and (d) 

also confirm the satisfactory performance of the LCP model with experimental mass ratio and depth of the 

beam, respectively. Evidently, the proposed LCP method is predicting deflection with reasonable accuracy 

as PER ranges between 0.7-1.6. It can also be found that the overall deflection of PER is insignificantly 
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affected by changing the impact parameters, which means that this formulation can be well used for an 

extended spectrum of these impacted parameters. 

 
       (a)                (b)  

 
       (c)               (d)  

Figure 4. 11: Influence of parameters on the estimative performance of the developed formulation. (a) 

Projectile velocity. (b) Impacted mass. (c) Mass ratios (d) Beam depth 

4.4.2.2 Validation with the available models 

A comparison of various available models through statistical parameters is shown in Table 4.2. It is really 

important to note down the reliability of developed formulation is best than all other models because of 

higher value of R2, and the resulting slope of the best-fit line (m ) is closest to the slope of the benchmark 

line. 

4.4.2.2.1 Khan et al. Model 

The comparison of bending-shear LCP with the Khan et al. model is shown in Fig. 4.12. This model is valid 

to 46 tested beams data. The R2 of the Khan et al. model is 0.93 with AAE of 22.7%. The mean PER value 

is 0.93 with coefficient of variation of 29.1%. 
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Figure 4. 12: Khan et al. vs bending-shear LCP 

4.4.2.2.2 Adhikary et al. Model 

The comparison of bending shear LCP with the Adhikary et al. model is shown in Fig. 4.13. This model is 

valid to 35 tested beams data. Therefore, only that 35 data were used for LCP model as well. The R2 of the 

LCP model becomes 0.97 with AAE equal to 17.1%. The average PER value becomes 1.04 with CoV equal 

to 20.9%. Similarly, the R2 of the Adhikary et al. model is 0.92 with AAE of 26.7%. The mean PER value 

is 1.09 with coefficient of variation of 37.1%. 
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Figure 4. 13: Comparison of bending shear LCP with Adhikary et al. model 

Table 4. 2: Statistical analysis of maximum midspan deflection prediction models of RC beams under 

Impact loading 

Author 
No of 

samples 
Mean PER 

Standard 

Deviation 
CoV (%) AAE (%) R2 

Khan et al. [8] 46 0.93 0.27 29.1 22.7 0.93 

Adhikary et al. 

[110] 
35 1.09 0.40 37.1 26.7 0.92 

Bending shear 

LCP Model 
46 1.04 0.22 21.2 17.7 0.95 

 

4.5 Peak Impact Force 

4.5.1 Experimental Database 

In ways to precisely predict the peak impacted force on RC beam from a dropweight, a collection of 126 

experimental tests from previous studies is compiled into a database [18,59,62,64,72,98–102].  Within the 

database, all beams are of rectangular cross-sections subjected to impact load at the midspan having either 
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flat or spherical contact surface.  For GEP analysis, only a randomly selected portion of 84 experiments is 

used to develop the model.  The remaining 42 samples are employed for the model validation.  

4.5.1.1 Distribution of key influence parameters 

The important influence parameters of RC simply supported beam is examined herein.  The influence 

parameters, such as the impact velocity, impact mass, geometrical size of the beams, concrete compressive 

stresses, longitudinal reinforcement, and shear reinforcement, are given in Table 4.3.  It is clear from the 

table that the velocity of the projectile ranges from 1-16 m/sec, and the impact mass M is in the range of 

33-1700 kg.  Further, the net span of simply supported RC beams ranges from 1000 to 5000 mm, the width 

and height of RC beams lie within the range limit 100-300 mm and 120-500 mm, respectively, and the 

longitudinal tensile and shear reinforcement ratio falls in the range 0.29-3.1% and 0-1.4%, respectively. 

Table 4. 3: Distribution of key influence parameters 

Parameters Ranges 

Velocity 1-16 (m/s) 

Mass 33-1700 (kg) 

Compressive strength 20-42 (MPa) 

Net span length 1000-5000 (mm) 

Beam width 100-300 (mm) 

Beam height 120-500 (mm) 

Tensile reinforcement ratio 0.29-3.1 (%) 

Shear reinforcement ratio 0-1.4 (%) 

 

4.5.2 Validation with experimental tested data 

A statistical comparison is undertaken between the developed GEP model, and the experimental results, as 

shown in Fig. 4.14. To validate this GEP model with the collected dataset, the statistical presentation of 

midspan deflection is evaluated using the coefficient of determination (R2). This is the variance-dependent 

coefficient whose value near 1 indicates best prediction. In this context, the correlation factor of the 

experimental and predicted results is R2 = 0.98, indicating better prediction. Furthermore, the best-fit line 
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for the predicted peak midspan deflection is y =0.96x, which is closely aligned with the 45o benchmark, 

suggesting a solid relation between the experimental and the predicted results. 
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(c) 

Figure 4. 14: Comparison of predicted and experimental results of peak impacted force (a) Training data 

(b) Validation data (c) All data 

4.5.3 Sensitivity of the proposed model 

The formulated GEP model has adequate capacity to incorporate the effect of all the controlling parameters 

that are already discussed in Section 3.4.1. From Fig. 4.15(a), and (b) it is worth to be noted that increasing 

the breadth, and depth of the beam increases the stiffness of the member, thereby attracting more impact 

force.  Similarly, Fig. 4(c) shows that increasing the concrete strength in compression increases the modulus 

of elasticity and the stiffness of the RC member, thus attracting more impact force.  On the contrary, the 

peak impacted force reduces as the span of the member increases, as shown in Fig. 4.15(d).  The effect of 

tension force of longitudinal reinforcement follows the pattern akin to that of Fig. 4.15(a)-(c) Fig 4(e) 

because the ultimate bending moment capacity and the load-resisting capacity increases with the increase 

in longitudinal reinforcement.  The influence of input kinetic energy on the impact force is featured in Fig. 

4.15(f).  It can be seen that the higher magnitude of the imparted kinetic energy results in a larger impact 

force.   
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(a) Impacted force vs beam breadth    (b) Impacted force vs beam height 

 

 
(b) Impacted force vs Compressive      (d) Impacted force vs beam span 

Strength 

 

 
 (e) Impacted force vs steel tension force  (f) Impacted force vs input kinetic energy 

 

Figure 4. 15: Parametric study 

Another statistical indicator is the predicted to experimental deflection ratio (PER), whose value close to 1 

specify better prediction. The average PER is 1.01, very close to a benchmark value of 1, with a coefficient 

of variation (CoV) of 19.9%. Fig. 4.16 presents the sensitivity analysis of various key parameters in the 

formulated GEP model for predicting the peak impact force. It is clear from Fig. 4.16(a) that the influence 
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of the velocity on the model accuracy has a virtual average of 1.01 for peak impact force within the interval 

(0.45-1.5). This clearly demonstrates that the proposed model has adequate performance for various ranges 

of velocity. The impacted force predicted by the GEP model is compared with the experimental impact 

mass, as shown in Fig. 4.16(b). The accuracy and precision of the formulated model are still in the range of 

(0.45-1.5). Fig. 4.16(c) – (f) also confirm the satisfactory performance of the GEP model with experimental 

beam width, depth of the beam, 𝑓𝑐
′, and 

𝐴𝑠𝑓𝑦

𝑓𝑐
′  respectively. Evidently, the proposed GEP method is predicting 

deflection with reasonable accuracy as PER ranges between 0.45-1.5. It can also be found that the overall 

impact force of PER is insignificantly affected by changing the impacted parameters, which means that this 

procedure can be best and reliable for a wide spectrum of these impacted parameters. 

 
(a)       (b) 

 
(c)              (d) 

 
(e)            (f) 

Figure 4. 16: The effect of main parameters on the precision of developed GEP 
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4.5.4 Comparison with numerical model 

It is aimed in this section to compare the proposed empirical model with a numerical model developed 

using finite element (FE) code ABAQUS.  Particular attention has been focused on the peak impacted force 

transferred to the beam. 

4.5.4.1 Experimental program Bhatti 

As per the experimental study reported by Bhatti [62], a series of 2,400 mm long beams were tested under 

impact loading of 400 Kg.  The RC beam was of 41.2 MPa compressive strength having a square cross-

section of 400 x 200 mm and 50 mm cover all around.  Further, the longitudinal and transverse bars were 

of 35 and 6 mm diameters respectively, with the yield, and ultimate strength of 395 MPa, and 501 MPa, 

and the spacing of stirrups was 150 mm.  Following Btatti's classification of tested specimens, the beam 

with stirrups spacing of 150 mm is named Type-A.  

4.5.4.2 Response of RC beam predicted by ABAQUS 

A 3-D finite element model, Fig. 4.17, is constructed to simulate the dynamic-response of RC beam.  

C3D8R brick elements are adopted for the beam, T3D2 wire elements are employed to model the steel in 

the beam, and isoparametric elements are used to model the striker weight.  Interfacial elements are adopted 

to permit both the two bodies to be fully in contact along with small sliding without frictional resistance 

effects.  The drop-weight striker has the same mass given as used in the experimental tests and is supposed 

elastic with Young’s modulus property adapted to accommodate the stress-wave effect.  The concrete has 

a prescribed density of 2400 𝑘𝑔 𝑚3⁄  , the Poisson’s ratio of 0.19, and the Young modulus of 25.7 GPa.  In 

the same way, the reinforcement has a mass-density of 7850 𝑘𝑔 𝑚3⁄  , the Poisson’s ratio of 0.3, and the 

Young modulus of 206 GPa.  The quantitative number of elements used in the dynamic analysis is 7371 for 

the beam, and 1771 for the impactor.  The dynamic response is examined using the explicit time integration 

with an automatic time step control. 

As per the experimental study, the support conditions are simulated as simply supported.  It is considered 

that 3D effects are incorporated.  The most excessive deformed location on a beam is near to the point of 
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impact because when a beam undergoes deformation, the striker Pearce through the beam surface.  

Convergence study is carried out to best optimize the size of mesh. 

Mechanical properties of concrete are modeled using Concrete Damage Plasticity.  True strain and true 

stress are employed as the strain and stress measurements, and geometrical nonlinearity is considered.  

Incremental portion elastic-plastic material properties without isotropic strain-hardening and strain-rate 

effect were used for reinforcing bars.  The comparison is shown in Table 4.4. 

 
(a) 

 

 
(b) 

 

Figure 4. 17: Response of RC beam model in ABAQUS (a) Maximum midspan deflection (b) Peak 

impact force 
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Table 4. 4: Comparison of GEP result with Experimental result and ABAQUS solution 

 
Experimental 

Results 

ABAQUS 

Results 

GEP 

Results 
Peak Impact force on 

the beam (kN) 
1110 1229 1240 

 

4.5.5 Comparison with the available model 

A comparison of various available models through statistical parameters is shown in Table 4.5. It is really 

important to note down the reliability of developed formulation is best than all other models because of 

higher value of R2, and the resulting slope of the best-fit line (m ) is closest to the slope of the benchmark 

line. 

4.5.5.1 Pham and Hao model [21] 

The comparison of GEP proposed model with the Pham and Hao model is shown in Fig. 4.18. This model 

is valid to 126 tested beams data. The R2 of the Pham and Hao model is 0.80 with AAE of 109.1%. The 

mean PER value is 1.96 with coefficient of variation of 116.3%. 
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Figure 4. 18: Comparison of GEP with Pham and Hao model 

4.5.5.2 Zhao et al. model [66] 

The comparison of GEP proposed model with the Zhao et al. model is shown in Fig. 4.19. This model is 

valid to 126 tested beams data. The R2 of the Zhao et al. model is 0.93 with AAE of 55.4%. The mean PER 

value is 1.43 with coefficient of variation of 41%. 
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Figure 4. 19: GEP model vs Zhao et al. model 

Table 4. 5: Comparison with available models 

Author 

No of 

samples 

Mean 

PER 

Standard 

Deviation 

CoV (%) AAE (%) R2 

Pham & Hao 126 1.96 2.27 116.3 109.1 0.80 

Zhao et al. 126 1.43 0.58 41.0 55.4 0.93 

GEP Model 126 1.01 0.20 19.9 15.2 0.98 

4.5.6 Remarks about shear force, and bending moment plots 

In the preceding sections, empirical formulations have been derived for determining the peak impacted 

force on the RC beam from a dropweight. This force can then be used for deriving the shear forces and 

bending moment diagrams with the assumption of the linear distribution of inertial force between nodes.  
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A full procedure shown in Fig. 4.20 for generating this response is given by Pham et. al  [12].  According 

to this procedure,  these diagrams can be reasonably predicted provided the maximum impact force and the 

location of the plastic hinges are known.  Having the maximum impact force determined from (3.65) and 

the hinge locations estimated from the model proposed by Pham et. al [12], the shear force, and bending 

moment diagrams can be easily generated. 

 
 

Figure 4. 20: Calculation of the shear force, and bending moment diagram 
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5 CONCLUSION AND RECOMMENDATION  
 

Generally speaking, the rigid-plastic dynamic analysis is adequately expressive of the true response nature 

of the RC structures, provided that the total imparted input energy transmitted to the structure is 

significantly huge than the capacity of maximum stored elastic strain energy. In the context of incorporating 

this powerful theory into a systematic solution procedure, a robust formulation called a linear 

complementarity problem (LCP) can be established and applied with a substantial reward. With this 

intention, the kinetic, and kinematic laws in nodal description, governing the network of finite elements 

(FE) representing the actual structural system, are presented in the form of nodal velocities, while the rate-

dependent materials causality relations are in the nature of nonholonomic piecewise linear plasticity laws. 

The effect of the strain-rate on the dynamic resulting deformation is incorporated via the Cowper-Symonds 

equation, which can be modified to result in rate-dependent plastic capacities. The material coefficients of 

the rate equation have been determined for the RC material. Finally, the approximating formulations of the 

viscoplastic LCP are developed by employing the Newmark integration scheme.  

It is worthwhile to state that the uniqueness of the viscoplastic LCP acceleration fields cannot be guaranteed. 

The acceleration field of a finite element assembly can be partitioned into the master and the slave sets. 

Utilizing Cottle’s theorem [82], it is established that the master acceleration components can be unique, 

whereas the uniqueness of slave acceleration cannot be guaranteed. For modeling in which the slave set is 

empty, the entire acceleration field is unique. Cottle’s theorem also establishes that the independent member 

forces are not necessarily unique unless the structure is isostatic. 

A comparative statistical study is illustrated to explore the underlying mechanics of a rigid-perfectly-plastic 

simply supported end conditions beam subjected to midspan impact. Therefore, an extensive experimental 

database of 118 RC simply supported beams under impact loading has been constructed by using a 

consistent set of criteria. It is seen that using only 10 lumped mass elements; the viscoplastic LCP 

formulation is able to offer an accurate prediction of midspan displacements than the existing formulations 
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developed by previous scholars. Precisely, the average absolute error (AAE) of the proposed LCP 

formulation is 12.5%. Similarly, less coefficient of variation CoV values of 16.5%  indicates less scatteral 

variations of the output results estimated through the obtained formulation. The higher value of the 

coefficient of determination R2, that is, 98% is compared to the previous formulations, which are less, 

makes the obtained formulation more precise, and reliable. The average performance factor for the LCP is 

found to be 0.92, which is close to the reference value.   

Similarly, the rigid-perfectly-plastic dynamic analysis is adequately expressive of the true natural 

behavioral response of the RC structures, especially when brittle shear failures occur. Because of the 

complexity associated with these analyses, the design code of practices provides limited information and 

procedures. In this context of incorporating this simplified rigid-plastic theory into a systematic solution 

procedure, a robust formulation called a linear complementarity problem (LCP) can be established and 

applied with a substantial reward. With this intention, the kinetic, and kinematic laws in nodal description, 

governing the network of finite elements (FE) representing the actual structural system, is presented in the 

form of nodal velocities. In order to make more tractable the resulting LCP, the interaction relationship 

between the bending moment, and shear force is idealized as a rectangular yield criterion. Finally, the 

approximating formulations of this interaction-based LCP are developed by employing the Newmark 

integration scheme. This LCP formulation can efficiently predict the maximum deflections for RC beams' 

flexural and shear responses under impact loading.   

A comparative statistical study is illustrated to explore the underlying mechanics of a rigid-perfectly-plastic 

simply supported beam subjected to midspan dropweight impact. Therefore, an extensive experimental 

database of 46 RC simply supported beams under impact loading has been constructed concerning shear 

and flexure-shear failures only. It is seen that using only 20 lumped mass elements; the LCP formulation 

can offer an accurate prediction of midspan displacements than the formulations developed by previous 

scholars. Precisely, the average absolute error (AAE) of the proposed LCP formulation is 17.7%. Similarly, 

less coefficient of variation CoV values of 21.2% indicates less scatteral variations of the output results 
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estimated through the developed formulations. The greater value of the coefficient of determination R2, i.e., 

95% is compared to the previous formulations, which are less, making the developed formulation more 

precise and reliable. The average value of the performance factor for the LCP is found to be 1.04, which is 

close to the reference value. 

It is needless to say that the peak impacted force is the most important key parameter required to predict 

the dynamic response of impacted beams.  This work actually adopts the previous experimental data to 

formulate peak impacted force predictive models for an impacted reinforced concrete (RC) beam using an 

algorithm known as Gene Expression Programming. The proposed formulation is intended to capture the 

response of RC beams under extreme dynamic loading with the desired range of impacted weight, impacted 

velocity, geometrical cross-section sizes, and provided reinforcement ratio. This GEP-based non-linear 

empirical formulation is developed incorporating the key important parameters that control the peak 

impacted force on RC beam from dropweight, i.e., strength of concrete in compression, steel bar tensile 

strength, longitudinal steel reinforcement ratio, geometrical properties of structural members, and input 

kinetic energy.  The formulation actually produces a more precise prediction of the peak impacted force 

than the available existing models. Especially, the average absolute error (AAE) of the GEP formulation is 

15.2%.  Similarly, fewer CoV values of 19.9% show less scatteral variations of the output results estimated 

through the formulated model.  Further, the greater value of the coefficient of determination, i.e., 98% for 

the impact value, are compared to existing developed formulations, which are less, making the developed 

GEP formulation more precise, and reliable.  Finally, the performance factor i.e., predicted to the 

experimental ratio (PER) is found to be 1.01, which is close to the reference value 1.  

For further verification of the impact force GEP model, FE-based simulation is developed based on one of 

the existing test results.  The GEP model gives good agreement with the numerical results showing less 

than 1% error.   
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In the end, it can be confirmed with these findings and comparison, that the current model presents the best 

prediction of the peak impacted force on the RC beam from dropweight. Therefore, its application to the 

design of RC beams may be employed with greater confidence. 

5.1 Recommendations 

Following are some of the recommendations based on this study; 

• Large displacement should be incorporated instead of small displacement in the mathematical 

formulation. 

• Extend this 1D formulation to 2D that is for plates and shell objects. 

• Strain rate should be also incorporated into bending shear interaction as well. 

• More experimental data is required to further refine the GEP model. 
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