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Abstract 

Abstract 

Alternative splicing (AS) generates various structurally and functionally different protein 

isoforms. AS plays an important role in cancers by triggering hallmarks of cancer from a 

progression of primary tumour cells (tumorigenesis) to metastasis of secondary tumour 

cells to distant organs. Oesophageal cancer (EC) is one of the deadliest and least studied 

cancers worldwide because of its aggressive nature and low mortality rate. It remains a 

public health concern worldwide (Holmes and Vaughan, 2007). ADAM9 is a membrane-

anchored protein that is involved in various physiological and regulatory functions. 

Proteolytically, ADAM9 is involved in EGFR signalling by processing EGFR ligands HB-

EGF) whereas non-proteolytically interacts with integrins and is involved in cell adhesion 

and cancer invasion. Expression levels of the two alternatively spliced transcripts of 

ADAM9 have an opposing role in breast cancer. This study was designed to provide a clear 

understanding if switching exists between L and S forms and ADAM9 enrichment in 

oesophageal cancer. Transcriptome assembly and reconstruction analysis revealed that 

ADAM9 is significantly upregulated, L transcript has high coverage than S transcript in 

oesophageal cancer. Dexseq statistical analysis revealed the differential transcript usage of 

L and S -form, which shows the increased usage of L-form compared to S-form.                                           

Furthermore, interacting partners for ADAM9 were identified. Moreover, enrichment 

analysis was performed, which revealed focal adhesion as the enriched process in all three 

datasets. This shows that ADAM9 is involved in ECM interactions occurring at specialized 

zones called focal adhesions. These focal adhesions are rich in integrin adhesion receptors 

which play an essential role in bi-directional transmembrane communication by connecting 

cell cytoskeletons to the extracellular membrane matrix in response to these focal adhesion 

signalling, the cell initiates diverse processes, including cell growth or death, cell motility 

and cytoskeleton reorganisation. Thus, this study enhanced the understanding of the 

proteolytic and non-proteolytic roles of ADAM9 and its isoforms in oesophageal cancer; 

however, a specific pathway in which ADAM9 is involved still needs to be discovered. 

Moreover, the stage-specific role of S and L-form is yet to be studied using stage-specific 

data.
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Chapter 1                                                                                                  Introduction 

I. Chapter 1 

II. Introduction 

1.1 Background 

The central dogma of molecular biology illustrates the flow of genetic information within 

the cell. Initially, specific genes on DNA are transcribed to messenger RNA (mRNA) 

transcript, which excluded the intronic region from the gene and joined the exonic regions, 

further translated to a single functional protein. Soon, this one gene-one protein theory was 

challenged in the mid-1970s by some researchers. They evaluated that a single gene might 

produce more than one functional protein via an alternative splicing mechanism of mRNA 

transcript Figure 1-1. 

 
Figure 1-1:Alternative splicing mechanism: after removal of non-coding introns, rearrangement of 

exons into alternatively spliced isoforms that code for different functional proteins 

Since then, the number of known isoforms/alternatively spliced transcripts has increased 

drastically. It is now reported that the majority of multi-exon genes show alternative 

splicing mechanisms, including approximately 95% of genes in humans having multiple 

isoforms/transcripts [1]. 
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1.2 Alternative Splicing 

The tendency of multi-exon genes to produce different alternatively spliced isoforms from 

the same gene using:  different alternative transcription termination sites (aTTS), 

alternative transcription start site (aTSS), polyadenylation sites, and alternative promoter 

usage serves as a primary determining factor for increased proteome complexity in higher 

vertebrates. Around 70% of genes have multiple polyadenylation sites, whereas more than 

50% of the gene has aTSS [2]. According to the Encyclopedia of DNA Elements ENCODE 

project statistics, on average, each gene encodes approximately 6.3 isoforms and 3.9 

different functional protein isoforms [3]. This protein diversity arises from the usage of 

different splicing cites during alternative splicing, almost all events of alternative splicing 

result from the use of four primary events or modules that are [4] shown in Figure 1-2: 

a) Alternative 5ʹ splice-site choice 

b) Alternative 3ʹ splice-site choice 

c) Cassette-exon inclusion or skipping 

d) Intron retention 

 
Figure 1-2: Four basic modules of alternative splicing (a) alternative 5ʹ splice site selection, (b) 

alternative 3ʹ splice-site selection, (c) cassette-exon inclusion or skipping and (d) intron retention. 

(Nilsen & Graveley, 2010). 

These protein isoforms generated from single-parent genes regulate similar functions in the 

body and play a significant role in genetic diversity [5]. The majority of isoforms regulate 

similar functions in closely related metabolic pathways [6]. However, in some aberrant 

conditions, the functions of two isoforms from the same protein can have opposing effects 

on a cellular process. Isoforms may differ in structure, function, localisation, and other 

properties [7]. Considering that most multi-exon genes are responsible for different 
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functional proteins, assessing the isoform expression and gene-level expression is essential. 

Previously many gene expression studies have been carried out using Microarray and 

Ribonucleic acid sequencing (RNA-seq) technologies and received much attention but did 

not evaluate the importance of these technologies at the isoform level [8]. 

1.2.1 Differential Gene Expression and Differential Transcript Expression 

Initially, in many high throughputs sequencing studies, the primary focus was to check 

differential gene expression (DGE). However, in eukaryotes, various transcripts/isoforms 

arise from each gene due to the alternative splicing mechanisms. Since gene expression 

comprises a collective sum of all transcripts (union of exons), differential transcript 

expression (DTE) analysis is preferred over DGE. Therefore, to check the gene and isoform 

expression, a considerable number of methods are developed, which are broadly divided 

into two categories a) Union-exon based approach, also known as DGE b) transcript-based 

approach, also known as DTE. 

 
Figure 1-3: a) Union-exon based approach merges all overlapping exons from transcripts b) In DTE 

reads are assigned based on higher confidence to the gene. 

Union exon-based approach merges all the overlapping exons from the gene into union 

exons; this gives a differential gene expression between two conditions shown in Figure 1-

3(a). Whereas in transcript quantification absolute abundance of each transcript is 

calculated irrespective of the gene, reads are assigned to gene-based on higher confidence 

shown in Figure 1-3(b). However, the union exon-based approach was simple but failed to 

distinguish isoforms from the same gene. Furthermore, as most genes are expressed in more 
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than one transcript, the transcript-based approach gives more biologically meaningful 

information than the union-exon-based approach [9]. 

Unfortunately, transcript-level analysis is complex and expensive. To achieve highly 

significant results, higher sequencing depth (generating more reads that will increase 

statistical power to detect genes with the lowest expression) is required as gene expression 

is split among other isoforms. Moreover, high genomic similarity in isoforms complicates 

the assignment of reads among them. Despite these challenges, several studies have shown 

that isoforms have distinct functions and that shifts in individual isoform expression 

represent an actual level of gene regulation [10]. It is possible to identify differential 

transcript expression (DTE) even when there is little to no significant change in gene 

expression, introducing a new concept of differential transcript usage (DTU), which checks 

the relative abundance of isoforms. Different alternative splicing tools are available to 

differentiate between DGE, DTE and DTU. 

1.2.2 Differential Transcript Expression and Differential Transcript Usage  

Differential transcript expression (DTE) calculates the absolute expression of individual 

transcripts irrespective of the gene of origin. It is possible to identify differential transcript 

expression DTE even when there is little to no significant change in gene expression, 

introducing a new concept of differential transcript usage (DTU) and calculates the 

individual abundance of each isoform relative to the gene, where the dominance completely 

shifts from one isoform to another also known as isoform switching. In contrast, these 

important events like minor isoform expression change and isoform switches are disguised 

at the gene level, as it fails to distinguish isoforms [10]. Figure 1-4 illustrates the DTE and 

DTU among two conditions for genes with two isoforms. DTE states that the expression 

of at least one isoform changes among two conditions. However, the change in the 

proportion of transcripts expression remains the same, so this DTE does not infer DTU 

[11]. On the other hand, in DTU, there is a relative change in the expression of isoforms 

between two conditions while gene expression may or may not change, as the expression 

of one isoform is changed, so it also implies the DTE. 
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Figure 1-4:(a) Differential Transcript Expression (DTE): Isoform expression changes between two 

conditions irrespective of a gene (b) Differential Transcript Usage (DTU): shows the change in 

abundance of isoforms compared to other isoforms of the same gene 

 

1.3 Importance of Isoform Switching 

Differential transcript usage plays a significant role in regulating various biological 

processes, including development, homeostasis, pluripotency, and apoptosis. Furthermore, 

transcript isoforms are mostly tissue specific that might change the function, cellular 

localisation and stability of mRNA or protein. The change in the differential usage of 

isoforms DTU is often referred to as isoform switching Figure 1-5. It can have a significant 

biological impact due to the difference in functional potential of both isoforms. These 

Isoform switches are involved in different diseases and are particularly prominent in cancer 

[12].  

 
Figure 1-5: Relative abundance of isoform1 and isoform2 of the same gene is reversed when compared 

to normal (Complete shift of dominance of isoform1 in disease condition to the other alternatively 

spliced isoform2) 
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1.3.1 Examples of Switched Genes 

One of the prominent examples of isoform switch from literature is the Anaplastic 

lymphoma kinase ALK gene. Due to the differential usage of aTSS, this switch produces 

a truncated protein without the extracellular domain, which causes aberrant cell 

proliferation and drives tumorigenesis in vitro [12]. Another example is the Myeloid Cell 

Leukaemia 1 (Mcl-1) gene responsible for induced myeloid leukaemia cell differentiation 

have two distinct alternatively spliced transcript isoforms. Longer transcript isoform Mcl-

1L inhibits apoptosis to promote cell survival. In contrast, the shorter transcript isoform 

MCL-1S regulates apoptosis [13]. Many other studies have reported genes with identified 

switches that are primarily involved in all eight cancer hallmarks. Thus, targeting both 

specific splicing and general events, including splicing catalysis, splicing regulatory 

proteins are essential for improved therapeutic purposes [14]. In addition, various RNA-

seq studies have been carried out to identify alterations in alternative splicing events 

involved in several diseases [15]. 

1.4 Tools for DTU 

Tools for the identification of DTU are broadly classified into three major groups shown 

in Figure 1-6 

Isoform based/Assembly Based: 

1) Assembly Based methods reconstruct and quantify the absolute expression of 

transcripts. Old tuxedo suite (TopHat [16], Cufflinks, cuffdiff [17]) and new tuxedo 

suite (Hisat2 [18], StringTie, Ballgown [19]) are widely used for DTE. For 

example, Cuffdiff quantifies the DTU by measuring the similarity between two 

probability distributions. 

Event-Based Methods: 

2) The second group primarily focuses on identifying Alternative Splicing events (like 

Alternative 5ʹ splice-site, Alternative 3ʹ splice-site, Cassette-exon inclusion or 
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skipping and Intron retention) and the number of reads showing the 

presence/absence of different splicing events (by rMATS [20], SpliceR [21]). 

rMATS is used as for statistical tool for the differential analysis of alternative 

splicing events. 

Exon Based Methods: 

3) The third group does not quantify transcript expression directly, instead uses 

differential exon usage to infer relative transcript abundance. The genome is 

typically divided into counting bins, and the number reads overlapping each bin is 

counted. These methods use generalised linear models to infer differential 

exon(bins) between different conditions. A widely used method is the DEXseq R 

package, but various alternatives are present like diffSplice [22]. 

 
Figure 1-6: Methods for the identification of DTU: Assembly based. / Identification of DTU methods 

based on assembly. Alternative splicing events and differential exon usage. 

Isoform Usage Two-step Analysis (IUTA) and IsoformSwitchAnalyzeR are the integrated 

pipelines for the differential transcript usage analysis. IUTA is implemented in the R 

package, designed to test each gene in the genome for differential isoform usage between 

two groups. IUTA also estimated isoform usage for each gene in each sample and averaged 

across samples within each group. IUTA tested the differential usage based on Aitchison 

geometry and outperformed the cuffdiff2 to detect significant genes under the same FDR. 

However, these methods failed to control the type 1 error because the p-value justifies 

many samples but not the small number of replicates [23]. Another integrated pipeline 

IsoformSwitchAnalyzeR identifies isoform switches based on calculating differential 

isoform usage following the visualisation of identified isoform switches with predicted 

potential function consequences [24]. 
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1.5 IsoformSwitchAnalyzeR Framework 

Due to the recent advancements in Bioinformatics, it is now possible to reconstruct and 

quantify the whole transcriptome from RNA-seq data using cufflinks, StringTie and 

Kallisto tools. These full-length transcripts make it easy to detect DTU. Therefore, many 

tools have been developed to identify DTU one such framework designed is 

IsoformSwitchAnalyzeR, an R Bioconductor package used to identify and visualise 

isoform switches [12]. However, due to several problems, RNA-seq data is not fully used 

to its potential: 

• Lack of tools for isoform switch identification 

• Theirs no integrated framework to analyse results from different tools.  

• Isoform switch visualisation 

This framework overcomes all these problems by enabling the import of transcript 

quantification files into R. 

Full length quantified transcripts from different tools (cufflink, StringTie, Kallisto) are 

analysed for isoform usage analysis using IsoformSwitchAnalyzeR. Different tools are 

integrated along with isoforms usage, such as open reading frames ORF for annotations, 

PFAM for protein domains, SignalP for peptide signals, IDR, intrinsically unstructured 

regions of proteins based on estimated energy content (IUPred) for intrinsically disordered 

regions and coding potential calculator (CPAT/CPC2) for coding potential. 

IsoformSwitchAnalyzeR identifies the isoforms switches and their annotation to predict 

the potential functional consequences of that switch, such as loss of protein domain or 

removing a signal peptide. IsoformSwitchAnalyzeR performs five high-level tasks that are: 

• Statistical identification of isoform switches using the DEXseq tool 

• Integration and identification of predicted annotations for isoforms involved in 

isoform switching 

• Visualisation of identified isoforms switches for the gene of interest along with its 

predicted consequence 
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• Genome-wide pattern analysis in switch consequence and alternative splicing 

events 

1.6 Alternative Splicing in Cancers 

As mentioned earlier in this section, alternative splicing (AS) generates various structurally 

and functionally different protein isoforms. This pre-mRNA splicing plays a vital role in 

gene regulation as it controls cellular proliferation, differentiation, and cell survival 

processes. In contrast, aberrant alterations in these processes/pathways have been 

implicated in cancers [25]. Thus, AS plays an important role in cancers by triggering 

hallmarks of cancer from the progression of primary tumour cells(tumorigenesis) to 

metastasis of secondary tumour cells to distant organs [26]. Many transcriptome studies 

have illustrated the splicing profiles for both normal and tumour cells showing significant 

variation due to aberrant splicing, influenced indirectly by mutations in splicing factors, 

transcription factors and chromatin modifications. These cancer-related AS events 

ultimately affect protein domains and disrupt protein-protein interaction in cancer-related 

pathways [27]. 

1.6.1 Oesophageal Cancer 

Oesophageal cancer (EC) is one of the deadliest and least studied cancers worldwide 

because of its aggressive nature and low mortality rate. Nevertheless, it remains a public 

health concern worldwide [28]. EC ranks sixth in mortality rate because of high fatality 

rate and eighth in most common cancer incidents globally, despite the advancements in the 

treatment [29]. Among all other malignancies’ cancer, ESC shows unique epidemiological 

features, emphasising that multiple etiologies are responsible [30]. These dramatic changes 

vary across two histological types of EC based on the site of origin, Adenocarcinoma 

cancer (AC), Squamous cell carcinoma (SCC), furthermore over race, gender, and region 

[28]. ESC Incidence rates vary regionally by 16-fold. Countries in Southern and Eastern 

Africa and Eastern Asia show the highest rate, Western and Middle Africa and Central 

America shows the lowest rate in males and females [31]. The major risk factor in these 

regions are not well studied, but some of them are illustrated in Table 1-1: 
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Table II.1: Common risk factors of EC (Layke and Lopez, 2006) 

Risk Factors Squamous Cell Carcinoma (SCC) Adenocarcinoma (AC) 

Age 60-70 years 50-60 years 

Condition Achalasia, Lye Ingestion, Plummer-Vison 

syndrome, history of head-neck SCC, 

radiotherapy, excessive use of tobacco and 

smoking, Alcoholic and diet with high starch 

without fruit and vegetables 

Barrett’s oesophagus, 

gastroesophageal reflux disease 

(GERD), hiatal hernia 

Race Black White 

Gender Male Male 

Squamous cell carcinoma and adenocarcinoma are epithelial tumours of the oesophagus 

responsible for more than 95% of oesophageal carcinoma. In contrast, non-epithelial 

tumours of the oesophagus (lymphomas, sarcomas and metastatic tumours) are rare [30].  

1.6.1.1 Squamous Cell Carcinoma (SCC) 

Squamous Cell Carcinoma (SCC) is one of the most common subtypes of oesophageal 

cancer in the regions outside the united states [32]. Typically found in the upper middle 

(2/3rd) section of the oesophagus associated with smoking and alcohol [33].  

1.6.1.2 Adenocarcinoma (AC) 

AC is the most predominant subtype of oesophageal cancer. Typically found in the 

lower(1/3rd) section of the oesophagus, Gastroesophageal reflux disease (GERD) and 

Barrett’s oesophagus are associated. Untreated GERD leads to the Barrette’s, where the 

squamous epithelium is replaced with columnar epithelium. The chronic backflow to bile 

and gastric acid causes great damage to the oesophagus and has been implicated in 

Barrette’s metaplasia. Recent studies have shown that oesophageal metaplasia is one of the 

contributing factors of adenocarcinoma. The most extended the oesophagus region is 

affected higher the probability of adenocarcinoma [34]. 

Oesophageal cancer is the deadliest because of its aggressive behaviour. It may conquer 

regional, local and distant areas by different metastasis pathways, including lymphatic 
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spread and hematogenous spread of tumour cells [35]. The most common metastatic pattern 

for ES is lymph nodes, liver, lung, brain, bone and adrenal glands [31]. 

1.7 A Disintegrin metalloproteases ADAMs Overview 

Recent studies have shown several well-defined processes and genes implicated in 

tumorigenesis; one such gene family that received comparatively less attention is the 

ADAM family of proteins involved in different tumorigenesis processes, including cancer 

initiation, progression and cancer-specific therapies [36]. A Disintegrin metalloproteases 

ADAMs (also known as MDCs: metalloproteinase/disintegrin/cysteine-rich) are multi-

domain proteins comprising transmembrane and secreted proteins [37] that are primarily 

found in eukaryotes. ADAM proteins are primarily involved in proteolysis and adhesion 

processes enabling them to perform cell adhesion, migration, and ectodomain shedding of 

membrane proteins to trigger cell signalling processes [38]. 

1.7.1 ADAM Superfamily 

ADAMs belongs to the metzincin superfamily of matrix metalloproteinase. Together with 

the ADAMs containing thrombospondins sequences (ADAMTS) and snake venom 

metalloproteinases, they represent the adamlysin subfamily shown in Figure 1-7. 

According to phylogenetic analysis, ADAMs are classified based on their catalytic action 

and site of expression. Thus, 20 gene members are reported for the ADAM family, of which 

half are proteolytically actives and are globally expressed [39]. 
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Figure 1-7: Phylogenetic classification of zinc protease superfamily 

ADAMs protein comprises different combinations of the domains that are involved in the 

regulation variety of roles. For example, ADAMs behave as sheddases to shed the 

ectodomain of a membrane protein to initiate cell signalling processes using their 

metalloprotease domain. However, not all ADAMs have an active metalloprotease domain-

containing HEXGHXXGXXHD motif (HEX motif), indicating their role in other cell 

adhesion and protein interaction processes [40]. These catalytically active ADAMs 

functions are proteolytic cleavage. The release of membrane attached factors is involved 

in different cell adhesion and proliferation processes illustrated in Table 1-2 [41]. In 

contrast, catalytically inactive ADAMs lacks the essential HEX motif on their 

metalloprotease domain for proteolysis and are involved in the cell adhesion process with 

the interaction with integrin proteins. 

Table II.2: Studies elaborating the role of ADAMs in various cancers. 

ADAM 

members 

Common Name Potential Function Localisation 

ADAM8  MS2, CD156 Adhesion, angiogenesis, inflammation Plasma Membrane 

ADAM9  Meltrin-gamma, 

MDC9 

Adhesion, angiogenesis, sheddase, cell 

migration, proliferation 

Plasma Membrane, 

Extracellular region. 
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1.8 Problem Statement 

ADAMs family of transmembrane proteins has been implicated in shedding growth factors, 

cell migration and other processes. Among these ADAMs, several are expressed in 

multiple splice forms and perform different functions. One such member is ADAM9. 

ADAM9 has two experimentally validated transcript isoforms (S and L forms). Their gene 

expression is studied in different cancers; however, there is no study on the isoform 

expression level in oesophageal cancers. Therefore, this study explores the isoform 

switching of ADAM(S) and ADAM(L) in oesophageal cancer and its potential functional 

ER (Endoplasmic 

Reticulum) 

ADAM10  Kuz, MADM, 

SUP-17 

Adhesion, angiogenesis, sheddase, cell 

survival, inflammation, invasion, 

migration 

Plasma membrane, 

Nucleoplasm 

ADAM12  Meltrin-alpha Angiogenesis, migration, 

proliferation, sheddase, 

Plasma Membrane, 

Extracellular region 

ADAM15 Metargidin, 

MDC15 

Cell/cell binding Trans-Golgi 

network, Plasma 

Membrane, 

Extracellular region 

ADAM17  TACE adhesion, angiogenesis, sheddase, cell 

survival, inflammation, invasion, 

migration 

The plasma 

membrane, cytosol 

ADAM19   Angiogenesis, adhesion, 

inflammation, invasion 

 

ADAM28  MDC-L Immune surveillance, proliferation The plasma 

membrane, 

mitochondria 

ADAM33   Angiogenesis, genetically linked to 

asthma 

Plasma membrane 
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consequences. Therefore, the aim is to identify ADAM9 isoform switching in primary 

oesophageal cancer using the IsoformSwitchAnalyzeR pipeline. 

1.9 Aims and Objectives 

The direct aims of this dissertation are to achieve the objectives listed below: 

• Identify ADAM9 isoforms expression in oesophageal cancer via transcript 

reconstruction and quantification 

• Investigate whether ADAM9 isoform switching exists between normal and tumour 

samples of primary oesophageal cancer by estimating the relative abundance of 

isoform usage 

• Predict potential functional consequences of identified isoform switches 

• Identify ADAM9 interacting partners, pathways, and their role in cancer through 

gene set enrichment analysis 
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Chapter 2 

Literature Review 

These ADAMs are multi-domain proteins comprising transmembrane and secreted 

proteins [37] primarily found in eukaryotes. ADAMs are type I transmembrane proteins 

containing seven domains with signal peptide sequence: pro-domain, metalloprotease 

domain, a disintegrin domain, a cysteine-rich domain, EGF-like motif, transmembrane and 

cytoplasmic domain shown in Figure 2-1: 

 

Figure 2-1: Multi-domain of ADAM gene 

Since ADAMs transmembrane proteins, they are synthesised and transported via secretory 

pathways. After removing the signal peptide and properly folding the protein in the 

endoplasmic reticulum (ER), ADAMs are transported to the Golgi apparatus. The mature 

form is transported to cell surface Figure 2-2. Like many other proteases, ADAMs are 

synthesized inactive to attain proteolytic activity; they are processed to their mature form 

in the Golgi network by cleaving off the pro-domain, having an autoinhibitory effect over 

metalloprotease domain by furin convertase. The metalloprotease domain is responsible 

for the proteolytic activity of ADAMs; it can be active and inactive based on the presence 

of the HEXGHXXGXXHD motif [42]. The cysteine domain and disintegrin domain are 

involved in cell adhesion and protein-protein interaction processes. The role of the EGF-

like domain is less clear, and the cytoplasmic domain has shown to be involved in 

signalling pathways due to the presence of an interaction motif [43]. 
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Figure 2-2: Conversion of inactive ADAM into the active mature form in Golgi network by cleaving off 

the pro-domain, having an autoinhibitory effect over metalloprotease domain by furin convertase. 

2.1    Expression Patterns of ADAMs 

In vertebrates, ADAMs are classified based on their catalytic activity and site of 

expression. A large number ADAMs are expressed in testis and hematopoietic cells. 

However, most of the ADAMs are expressed globally [36]. The classification of 20 

ADAMs are shown in Figure 2-3. The expression pattern of each ADAM provides insights 

into their biological roles exclusively [40]. 

 
Figure 2-3: Classification of ADAMs based on their catalytic activity and site of expression. 

Most of the catalytically active ADAMs are expressed globally among these two widely 

studied ADAMs are ADAM10 and ADAM17. Both are involved in development 

processes; the knock-out study of mice describes embryonic lethality [44]. These globally 
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expressed members include the ADAM9 gene, which relatively received less attention in 

multiple tumorigenesis processes. 

Previously most of the studies for ADAMs were carried out to check their role in regions 

with high expression and gene deletions; however, scientists are curious to identify the role 

of these proteins in various diseases based on the transcriptomic data. Therefore, it is 

essential to consider that their activity might be related to the specific domain or the 

combination due to the multi-domain framework. Proteolytically active ADAMs are 

involved in ectodomain shedding, Notch, Tumour necrosis factor-alpha (TNF-α) and 

Epidermal growth factor receptor (EGFR) signalling, and several other proteolytic 

functions through the metalloprotease domain.  

2.1.1 Shedding Membrane Proteins 

One of the most studied proteolytic functions of ADAMs is their activity as sheddases [45]. 

As sheddases, they are involved in enzymatic cleavage of the extracellular portion of 

membrane proteins to shed soluble ectodomain shown in Figures 2-4. Further, these 

proteins activate and deactivate the signalling pathways [46]; these shed proteins can be 

growth factors, ligands, or membrane receptors. 

 

Figure 0-4: ADAMs functions as sheddase by cleaving the membrane proteins to shed ectodomains. 
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2.1.2 Epidermal Growth Factor Receptors (EGFR) Signalling 

EGFR is a transmembrane protein that is a receptor to many EGF ligands. EGFR is 

involved in regulating different processes, including proliferation, differentiation, 

migration, and apoptosis. There are 11 EGFR ligands: epiregulin, amphiregulin, epigen, 

betacellulin, EGF, heparin-binding epidermal growth factor (HB-EGF), neuregulin, 

transforming growth factor-alpha (Kataoka, 2009). However, these ligands are membrane-

tethered, and ADAMs helps cleave these EGFR pro-ligands to convert them into 

biologically active proteins during proliferation. Redundancy among ADAMs exists for 

cleaving the EGF pro-ligands, as the same EGF-ligand are activated by various ADAMs 

(ADAM9, ADAM10, ADAM12, ADAM15, ADAM17, ADAM19) shown in Table 2-1 

[47]. 

Table 0.1: Membrane tethered pro-ligands are activated by various ADAMs. 

Proteases Transmembrane Substrates-Ligands 

ADAM8 Pro TNF-α - TNF-α 

ADAM9 Pro HB-EGF - EGF 

ADAM10 Pro HB-EGF - EGF 

ADAM12 Pro HB-EGF – EGF 

Pro epiregulin- epiregulin 

ADAM15 Pro HB-EGF – EGF 

Pro epiregulin- epiregulin 

Pro amphiregulin- amphiregulin 

ADAM17 Pro TNF-α - TNF-α 

Pro HB-EGF – EGF 

Pro epiregulin- epiregulin 

Pro amphiregulin- amphiregulin 

ADAM19 Pro neuregulin - neuregulin 

Besides their sheddase activity to release ectodomain of previously mentioned signalling 

processes, ADAMs are involved in various other proteolytic activities, including the 

shedding of cell-cell interacting and adhesion proteins (N cadherin, E cadherin, L selectins, 

Vascular endothelial (VE)-cadherin, Neural Cell adhesion molecule (N-CAM) [48]. These 

cleavage processes weaken the cell-cell linkages and have been inferred to play a crucial 

role in cancer metastasis [49]. Moreover, the shedding of E-cadherin and cell-cell 

interaction proteins enables the aberrant proliferation and extravasation of tumour cells, 

significant for cancer metastasis [49]. All the above-mentioned proteolytic processes might 

get deregulated under the aberrant expression of ADAMs that leads to cancer development. 



 

20 

Chapter 2                                                                                               Literature Review 

Based on their ability to activate pro-ligands that instigate the proliferation and metastasis 

processes, it is noted that some ADAMs would be involved in malignancies. To date, 

ADAM17 and ADAM10 are well-studied members of the protease family, whereas 

ADAM9 has received relatively less attention despite being involved in multiple 

tumorigenesis processes. 

2.1.3 Degradation of ECM Membrane 

ECM is a specialised network that regulates various cellular functions. There is a 

continuous degradation or remodelling of ECM by different matrix proteases such as 

ADAMs in wound healing and tumorigenesis [50]. 

2.2    ADAM9 

Initially, ADAM9 was known for myoblast fusion proteins, also known as 

Metalloprotease-Disintegrin-Cysteine domains (MDC9), identified from mouse lung 

complementary DNA (cDNA). Which revealed ADAM9 highly expressed canonical 

transmembrane form [51]. Many studies have identified their proteolytic role in processing 

EGFR ligands as they are known to activate pro-ligands. One cell-based research has 

shown that ADAM9 can shed EGF if both protease and ligands are expressed in the same 

cell other than EGFR ligands: HB-EGF, TNF-α, betacellulin, epiregulin or amphiregulin 

[52]. However, the cleaved form of soluble EGF by ADAM9 differs from the endogenous 

EGF form cleaved by other members due to the difference in cleavage site [53]. 

Furthermore, ADAM9 promotes the ectodomain shedding of other cell-cell interacting 

proteins: VE-cadherin, CD40, VCAM-1 and EphB4 when both protease and ligands are 

expressed in the same cells, leads to the possibility that ADAM9 might affect these 

molecules signalling when overexpressed in vivo [54]. In addition to shedding ectodomain, 

recent studies have shown that ADAM9 can also cleave other membrane proteases like; 

ADAM10 in vitro, resulting in the soluble proteinase and proteolysis transmembrane C 

terminal intramembrane [55]. Due to the domain-specific functionality, the ADAM9 

disintegrin domain is involved in migration and invasion through interactions with 
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integrins. Mainly ADAM9 is involved in regulating cell adhesion to fibroblast cells by 

binding to integrins alpha 6/beta 1 (6ß1), increasing cell migration [56].  

ADAM9 binding to integrins is also crucial to epithelial to mesenchymal transition (EMT), 

a continuous developmental process in our body regenerating new cells shown in Figure 

2-5. However, in cancer, EMT is linked with tumour progression, metastasis, survival and 

stemness. Many extracellular proteases are involved in EMT among the metalloprotease 

family; ADAM9 regulates EMT by EGFR pathway Figure 2-6. Also, by IL6 via JNK-

signalling, this EMT is blocked on the knock-out of ADAM9 in hepatocellular carcinoma 

[57]. Furthermore, ADAM9 alternatively spliced and secreted(short) form is involved in 

tumour invasion in carcinoma cell lines through binding with integrins alpha 6/beta 4 (6ß4) 

and alpha 2/beta 1 (2ß1).   

 
Figure 0-5: Loss of cells apical polarity during epithelial to mesenchymal transition 

 

 
Figure 0-6: Onset of EMT after receiving the external signal activates the transcription factors to code 

mesenchymal genes and inhibit epithelial gens. EGFR is one of the EMT induction pathways that 

ADAM9 mediates. 
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2.2.1 ADAM9 In Cancers 

ADAM9 is involved in regulating various cancer processes. In addition to invasion and 

metastasis, ADAM9 also plays an important role in cancer proliferation and angiogenesis. 

Table 2.2 shows the role of ADMA9 in various cancer along with the clinical outcomes 

and procedure. 

Table 0.2: Role of ADAM9 gene in various cancers 

Cancer Type Role of ADAM9 and Outcome Reference 

Lung Cancer Clinical Outcomes: overexpressed in cancer, 

negatively correlated with overall survival 

[58][59][60][61] 

Procedure:  

1. ADAM9 is involved in lung cancer metastasis 

by tPA mediated cleavage of CDCP1. 

2. ADAM9 KO study - ADAM9 is a regulator of 

VEGFA and ANGPT involved in metastasis 

and angiogenesis. 

[58][59][60][61] 

Prostate 

Cancer 

Clinical Outcomes: Overexpressed in cancer, 

negatively correlation with relapse-free survival 

[62][63] 

Procedure  

1. siRNA mediated KO of ADAM9 in PC3 cell 

line reduced the migration. ADAM9 mediates 

the Beta1 integrin degradation. 

2. KO of Naal0p decreased the invasiveness- 

(Naa10p oncogene in prostate cancer form 

complex with ADAM9 and has a metastatic 

potential) 

[62] 

 

 

[64] 

Liver Cancer Clinical Outcomes: Negatively correlated with 

immunotherapy feedback 

[65] 

[66] 

Procedure:  

1. siRNA-KO of ADAM9- to check ADAM9 

mediated shedding of MICA (MHC class 

protein present in tumour cells) 

• Regorafenib and sorafenib drug inhibit the 

shedding of MICA by downregulating 

ADAM9. 

[66] 

[67] 
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2. KO of ADAM9 inhibits interleukin six 

mediated epithelial to mesenchymal transition 

((EMT) 

 

[65] 

Breast Cancer Clinical Outcomes: Overexpression in cancer, 

positively correlated with progression 

[68] 

Procedure: NSD2 regulates ADAM9 and EGFR 

expression in triple-negative breast cancer (TNBC) – 

mediates invasion process 

[69] 

Pancreatic 

Cancer 

Clinical Outcomes: Overexpression in cancer. 

Positively correlated with progression and negatively 

correlated with overall survival. 

[70] 

[71] 

[72] 

Procedure 

KO of ADAM9 suppresses KRAS and MEK-ERK 

signalling 

Circ-ADAM9 reduces tumours growth in vivo 

[70] 

[73] 

Brain Cancer Clinical Outcomes: Overexpression in cancer, 

negatively correlated with progression-free survival 

and overall survival 

[74] 

[75]  

Procedure: TNBC (Tenascin C) treated glioblastoma 

cells 

[75] 

Oesophageal 

Cancer 

Clinical Outcomes: Overexpression of ADAM9 in 

oesophageal adenocarcinoma 

[76] 

Procedure:  

RT-PCR and western blotting were performed to 

check ADAM expression (9,10,12,17,19) in three 

oesophageal cell lines (OE19, Het1A, OE33). 

[76] 

Table 2-2: Role of ADAM9 gene in different cancers and their clinical outcomes and procedure used to 

achieve the study. 
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2.2.2 ADAM9 Isoforms in Cancers 

Besides the classification into catalytic activity and expression site, alternative splicing 

produces even more transcript variants or isoforms of ADAMs with changed 

functionalities. According to GENCODE, 20,000 protein-coding genes generates 

approximately 144,000 transcripts. The current annotation estimates seven transcript 

isoforms per protein-coding gene; however, the annotation is far from complete. According 

to the University of California Santa Cruz (UCSC) genome Browser and ENSEMBL, 

catalytically active ADAM9 has two validated transcripts, transmembrane and secreted 

forms (ENST00000487273 and ENST00000379917) and five computational mapped 

transcripts, with several of them able to code for alternative forms of the proteins. For 

example, expression levels of the two alternatively spliced transcripts of ADAM9 have an 

opposing role in breast cancer where S-form is involved in cancer invasion. On the other 

hand, L-form suppresses invasion, illustrating the influence of different splice variants in 

cancer development [77].  

Hatoda and his teams in 2012 were the pioneers to identify a soluble form of ADAM9(S-

form) about its role as alpha-secretase in Amyloid precursor protein (APP) and its 

expression in several tissues [78]. Scientists have been curious about the role of 

alternatively spliced forms of ADMA9 in cancers since identifying the S-form. Mazzoca 

and his colleagues [79] explained the role of S-form in carcinoma invasion through tumour-

stromal interaction in a knock-out study. According to this study, the S-form of ADAM9 

secreted by special liver cells (hepatic stellate cells (HSC)) promotes tumour invasion using 

protease and disintegrin activities. This hypothesis was proved through Matrigel invasion 

assay and immunohistochemistry results, showed the binding of S-form with integrins 

(α6β4 and α2β1) on the tumour cells, and through its protease activity degraded the 

extracellular matrix that helped the invasion of tumour cells [79]. 

 While on the contrary, Fry and Toker (2010) explained the opposing role of ADAM9 

transcripts in breast cancer cell lines based on their metalloprotease domain. S-form is 

involved in the invasion of cancer cells requiring its metalloprotease domain. On the 

contrary, L-form inhibits invasion using the disintegrin domain, independent of its 
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proteolytic domain. L-form binds to the integrin protein via its disintegrin domain on the 

cell membrane, eventually altering the integrin-mediated signals and suppressing cell 

invasion and migration. In contrast, the S-form degrades the ECM via the metalloprotease 

domain and other substrates on the cell surface that are not cleaved by L-form due to its 

localization to the membrane. Thus, S-form is involved in cancer metastasis [77]. All these 

studies regarding the role of ADMA9 transcript recapitulate the previous research finding 

for other members ADAM11 and ADAM12, which have secreted and transmembrane 

forms and their role in cancers [80]. Another study demonstrated the role of ADAM9 in 

tumour invasion, where the knock-out of ADAM9 in MDA-MB-231 cells through siRNA 

inhibits the tumour cell invasion in-vitro in breast cancer [81]. This study shows the 

agreement with the Mazocca research group [79], which states that S-form promotes the 

colon carcinoma using both protease and disintegrin activities, whereas contradicts the Fry 

and Toker research group - which showed that S-form is involved in tumour invasion 

requiring metalloprotease domain. In contrast, the L-form suppresses the cell migration 

using the disintegrin domain [81]. Summarizing the literature findings suggests that 

ADAM9 is involved in invading tumour cells either by degrading ECM, activating other 

proteases, or binding with integrins and making ADAM9 the suitable target for clinical 

therapies against metastatic cancers.  
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Chapter 3 

Methodology 

This chapter describes the complete framework and steps used to achieve the study’s aims 

and objectives mentioned in section 1.9. Broadly, the framework for this research is divided 

into three phases: 

• Transcriptome Assembly and Reconstruction 

• Isoform Switching 

• Correlation Analysis 

The generalized workflow for the first phase is illustrated in Figure 3-1: 

 
Figure 3-1: Major steps for Transcriptome Assembly and Reconstruction 

3.1    Data Retrieval from GEO 

The first research step was retrieving RNA-Seq datasets for oesophageal cancer from GEO 

(Gene Expression Omnibus) [82] and Array Express repositories [83]. Next, SRA (the 

Sequence Read Archive) files for RNA-Seq data were downloaded from the EMBL-EBI 

(European Bioinformatics Institute) [84]. FASTQ is the standard file format for sequenced 

data that contains both the sequenced reads and quality score of each base, known as 

PHRED (Public Health Research and Education Development) score and is encoded into 

ASCII (American Standard Code for Information Interchange) codes for human-readable 

form [85]. Specific criteria were considered while selecting RNA-Seq datasets to 

investigate the isoforms switching of the ADAM9 gene. For example, a dataset should be 
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extracted from Homo Sapiens, and it must include control and diseases samples, whereas 

cell lines should be avoided, as shown in Figure 3-2: 

 
Figure 3-8: Criteria for selecting RNA-Seq datasets. 

Based on the criteria mentioned above, three RNA-Seq datasets for oesophageal cancer 

were collected from GEO [82] and ArrayExpress [83] repository. The summary of datasets 

is presented in Table 3-1: 

Table 0.1: Oesophageal cancer datasets and their accession numbers, sequencing platforms, and the 

number of samples from each dataset are shown. 

Cancer Accession no. Platform No. of Samples 

Oesophageal 

Cancer 

E-MTAB-4054 Illumina HiSeq 2000 27 (11 N, 16 T) 

 GSE130078 Illumina HiSeq 2000 46 (23 N, 23 T) 

 GSE111011 Illumina HiSeq 2500 14 (7 N, 7 T) 

   Total= 87 

Table 0.2: Where N= Normal and T= Tumour samples. 

3.2    RNA-Seq Analysis 

RNA-Seq experiment generates large amounts of complex raw data that needs accurate, 

fast and flexible software for comprehensive results. HISTA2 (Hierarchical indexing for 

spliced alignment of transcripts) [18], StringTie [86] and Ballgown [19] are freely available 

tools for RNA-Seq transcriptome analysis. Combinedly these tools make the new tuxedo 
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pipeline for RNA-Seq analysis. Steps involved in this pipeline are illustrated in Figure 3-

3: 

 
Figure 3-9: Detailed workflow for Transcriptome Assembly and Reconstruction using new Tuxedo 

pipeline. 

3.2.1 Data Downloading 

The first step after selecting data was to collectively download RNA-Seq samples from 

EMBL-EBI through FTP links using the Linux command: 
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wget -c -i file.txt 

Where: 

• wget= freely available non-interactive utility to download from the web 

• -c = continue getting a partially downloaded file; This is mostly used for bulk 

download 

• -i = input file parameter 

• file.txt → file containing all the FTP links of samples  

3.3    RNA-Seq Data Quality Control 

The initial step before genomic data analysis was to evaluate the quality of raw FASTQ 

files. As the sequencers generate millions of reads in a single run, before processing those 

sequences to make biological conclusions, different quality control steps were performed 

to check the quality of raw data if it needed pre-processing. In addition, the FASTQC tool 

was used to identify technical biases in raw genomic data. 

3.3.1 FASTQC  

FASTQC is a powerful tool designed to identify the sequencing biases in high throughput 

sequencing data. It accepts the .fastq, .bam or .sam file formats as input to provide an 

overview of data quality. [87] Raw FASTQ files were uploaded to the FASTQC tool, which 

generated the quality check report to identify technical biases. Detail of quality checks is 

presented in Table 3-2. FASTQC output is the hypertext markup language (HTML) report 

that can be viewed on any web interface. The HTML report was generated using the Linux 

command where fastqc represents the tool name, and file.fastq.gz is raw sample files for 

paired-end: 

fastqc file1.fastq.gz/file2.fastq.gz 
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Table 0.3: FASTQC quality check parameters 

Quality Check Parameters Explanation 

Basic Statistics It provides overall statistics of read length, GC content, the total number 

of reads, longest and shortest read length and filtered sequences. 

Per Base Sequence Quality It provides the quality values across all bases at each position in the 

FASTQ file 

Per Sequence Quality Scores It checks the quality of sequence by providing a quality score of each 

sequence, if it has low-quality bases in reads or not 

Per Base Sequence Content This plot displays the proportion of each base in a FASTQ file (for each 

of 4 DNA bases) 

Per Sequence GC Content It calculates the GC content of each sequence 

Per Base N Content This plot illustrates the % of base calls at each position with low 

confidence for which an N was called. 

Sequence Length 

Distribution 

Most of the sequences are of uniform length, but some are of varying 

length, so this plot depicts the distribution of sequence lengths. 

Duplicate Sequences It describes the level of duplication of each sequence. The level of 

duplication represents the coverage of sequence (high duplication 

indicates low coverage vice versa) 

Overrepresented Sequences It represents that either the sequence being reported is biologically 

significant or due to library contamination. 

Adapter Content This feature identifies the adapter content flanking on the end of 

sequences. 

3.4     RNA-Seq Data Pre-processing 

Pre-processing is one of the fundamental steps required in RNA-Seq analysis to remove 

biases from data. For example, raw reads may have adapter contamination along with low-

quality bases and duplication. To resolve the sequencing biases generated in the FASTQC 

quality check report, pre-processing of fastq files was required before further analysis.  
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3.4.1 FASTP 

FASTP (FASTQ Pre-processing) is a fast open-source tool used for pre-processing [88]. It 

can perform quality control (QC) and data filtering features, including adapter trimming 

and quality filtering of fastq files. This tool has the best features from previous pre-

processing tools like Trimmomatic [89], FASTQC, After QC and Cutadapt [90] and some 

new features like UMI (Unique Molecular Identifier) and removal of Poly G tail [88]. 

Linux command used for FASTP is mentioned below. Adapter trimming was done by 

default but to disable, -A flag can be used: 

fastp -i file1.fastq.gz -I file2.fastq.gz -o file1.fastq.gz 

-O file2.fastq.gz 

Where: 

• -i= input file 1 (read on forward strand) 

• -o= output file1 (read on forwards strand) 

• -I= input File2 (read on reverse strand) 

• -O= output file2 (read on reverse strand) 

• file1 & file2= paired-end files (forward and reverse) 

3.5    Alignment to Genome 

After pre-processing, the next step was sequence alignment to the reference genome to 

detect genomic positions using hierarchical indexing for spliced alignment of transcripts 

(Hisat2) [91]. Reference genomes are available in different public databases. The human 

reference genome used in this study was downloaded from the Ensembl Genome Browser 

with Hg38. 

3.5.1 HISAT2 

Hisat2 is a splice aligner that aligns the splice junctions and the read alignments with 

referencing the genome. In terms of speed and efficiency, Hisat2 is much faster than its 

predecessors TopHat and TopHat2 [18]. 
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Indexing is a significant step in alignment. Hisat2 builds both global (whole genome) and 

local (small chunks of a genome) indexing for alignment using the same BWT/FM 

(Burrows-Wheeler Transform/Ferragina Manzini) indexing as Bowtie2 and uses the chunk 

of indexing code of Bowtie[16]. Sequential steps for alignment are performed using Linux 

commands. 

• Hisat2 alignment Linux command that was used is mentioned below: 

hisat2 -p 8 --dta -x grch38_genome -1 file1.fastq.gz -2 

file2.fastq.gz -S file.sam 

where: 

• -p= provides multi-threads for processing, followed by the number of threads 

utilised for parallel processing. 

• -dta= acronym for downstream transcriptome analysis. 

• -x= directs towards the reference genome directory congaing indexing and the 

annotations file. 

• -1/-2= indicator to input fastq files. 

• -S= parameter to generate alignment output file which is of SAM format. 

3.5.1.1 SAM to BAM File Conversion 

The generic alignment output is Sequence Alignment Map (SAM) format, the text-based 

output that stores the read alignment results. For further analysis to make SAM files 

understandable and meaningful for computer programs, it is converted into binary (BAM 

format) using SAM tools. However, along with the conversion, the BAM file needs to be 

sorted because the alignments are generated randomly to their genomic positions to the 

reference genome; therefore, making alignments in genomic order sorting is necessary 

[92]. 

Both; SAM to BAM file conversion and sorting commands were executed jointly as well 

as separately using the following Linux Commands: 
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Joint Command 

      samtools sort -@ -8 -o file.bam file.sam 

Individual commands 

samtools view -S -b file.sam > file.bam 

samtools sort file.bam -o file.sorted.bam 

Where: 

• view= to view sam or bam file 

• -S= this Parameter specifies that input is in sam format 

• -b= this flag indicates that output must be in bam format 

• >= redirect operator to generate bam file 

• sort= sort bam file to make alignments in genomic order 

3.6    Transcriptome Assembly 

One of the fundamental steps for transcriptome analysis after alignment is accurate 

assembly and reconstruction of all expressed isoforms and quantification of their relative 

abundances. 

3.6.1 StringTie 

In this study, StringTie was used for transcriptome assembly and reconstruction. 

Transcriptome data is in millions of short reads that have to be assembled. These short 

reads are used to map DNA transcripts; hence, it is a complex process requiring correct 

assembly and relative abundances. Compared to other assembly software like cufflinks, 

StringTie provides a complete and accurate reconstruction of genes and better estimates 

gene expressions [86]. 

• Assembly command using Linux is mentioned below: 
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stringtie -p 8 -G Homo_sapiens.GRCh38.84.gtf -l label -A 

file_ga.tab -C file_cr.gtf path/file.sorted.bam -o 

file_at.gtf 

Where: 

• -p= provides multi-threads for processing, followed by the number of threads 

utilised for parallel processing. 

• -G= reference genome 

• -I= prefix for the output transcript name by default= "STRG" 

• -A= generates the gene abundance file with the given name 

• -C= generates the file with a given name including fully covered transcript reads 

present in reference; this Parameter was used with the -G flag (reference genome) 

• -o= this Parameter outputs the assembled transcript file 

3.6.1.1 Assembled Transcript Merging 

After the initial assembly, merging assembled transcripts is crucial, as some of the 

transcripts are partially covered in some samples but entirely covered in others. Thus, to 

generate uniform sets of transcripts merging was done. 

A text file containing assembled transcript files (file_at.gtf) from all samples was made 

using the StringTie command: 

stringtie -G GRCH38.gtf --merge merged_list.txt -o 

merged.gtf 

Where: 

• -G= reference genome annotation file in gtf format 

• -merge= this parameter specifies the merge functionality 

• merged_list.txt= file containing the path to the assembled transcript files generated 

in the previous step (file_at.gtf) 

• -o= this parameter directs to the output file 
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• Merged.gtf= output file after merging 

3.6.2 Gene/Transcript comparison to Reference Annotation 

The merged gtf file generated in the previous step was compared with the reference 

annotation gtf file to check how accurately the transcript matched the reference annotation. 

3.6.2.1 GFF Compare Utility 

GFF Compare utility was downloaded, and environment variables were set. The command 

used for comparison is as follows: 

gffcompare –r GRCh38.gtf –G Merged.gtf -o file_output 

Where: 

• -r= used to specify reference genome annotation 

• -r= used to direct for comparison of merged.gtf file with reference genome gtf file 

• -o= this flag is used to name output file, by default file name starts with "gffcmp", 

following the type of data in the file is (e.g., stats file contains precision and 

accuracy results for all the features). 

3.7     Transcriptome Quantification 

The ballgown tables were created using -B parameters in the StringTie command 

previously for assembled transcript quantification. Isoform and gene relative abundances 

were estimated in quantification steps. Command used to create ballgown quantification 

tables is as follows: 

stringtie -p 8 -e -B -G Merged.gtf -o sample_quant.gtf 

file.sorted.bam 

Where: 
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• -p= provides multi-threads for processing, followed by the number of threads (8) 

utilised for parallel processing. 

• -e= limit the processing to output/estimate only assembled transcript that matches 

the reference transcripts -G 

• -G= reference annotation gtf file to guide the assembly. 

• -o= generates the quantification file along with six other files that are mentioned 

below 

This command generates six files with specific names that contain coverage data for all 

transcripts, namely: 

• Exon data (e_data) 

• Exon to Transcript data (e2t) 

• Intron data (i_data) 

• Intron to Transcript data (i2t) 

• Quantification file (sample_quant) 

• Transcript data (t_data) 

Separate directories for each sample are made automatically to distinguish files for each 

sample, as the names of files are the same. 

After the transcript quantification, the second phase of this study was to detect isoform 

switching in the ADAM9 gene; the IsoformSwitchAnalyzeR Bioconductor package was 

used. IsoformSwitchAnalyzeR is an easy and efficient R package for advanced post-

analysis of transcript quantification [24]. The overall workflow of IsoformSwitchAnalyzeR 

is divided into two parts shown in Figure 3-4, whereas sequential series of steps is 

illustrated in Figure 3-5: 
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Figure 3-10: R Bioconductor package IsoformSwitchAnalyzeR is divided into two parts based on isoform 

switch calculation and visualisation. 

 

 

 
Figure 3-11: Steps involved in isoform switch pipeline. 
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3.8      IsoformSwitchAnalyzeR-Part I 

In this section, data files were imported into R for isoform switch identification. 

3.8.1 Importing Data into R - Preparing Files: 

• Four sets of data were required to import to IsoformSwitchAnalyzeR: 

• Isoform quantification files (TPM/FPKM/RPKM) and coverage data generated in 

section 3.7. 

• An experiment- design matrix file was made, specifying which sample belongs to 

which condition. 

• The merged transcriptome gtf file section 3.6.1.1 for annotation to help specify 

which isoform belongs to which gene. 

• Nucleotide sequences of quantified isoforms were extracted using gffread utility as 

explained below in section 3.8.1.1. 

3.8.1.1 GFFread Utility 

GFFread utility was used to generate the FASTA file for all the transcripts; the FASTA file 

was provided as a reference [93]. Linux command to extract FASTA sequences of 

transcripts are mentioned below: 

gffread -w transcripts.fa -g /path to reference FASTA file/ 

transcripts.gtf 

Where: 

• -w= this indicates to write file for extracted DNA sequences, by default file name 

is a transcript. fa. 

• -g= this Parameter specifies the path to the reference FASTA file 

After the preparation, all four data files were imported to IsoformSwitchAnalyzeR. 
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3.8.2 Importing Quantification Files 

The four data files are imported into the IsoformSwitchAnalyzeR as an object. The next 

step includes abundance estimation using isoform counts to incorporate bias correction in 

switch identification. Bias correction is done by inter-library normalisation via EdgeR of 

abundance estimates. By default, the trimmed mean of M-values (TMM) methods is used 

for normalisation, whereas relative log expression (RLE) and upper-quartile are also 

present. EdgeR normalises the library size by finding the scaling factor to minimise log 

fold change between samples [11]. TMM method is widely used for RNA seq experiments, 

which assumes that most genes are not differentially expressed. TMM normalises the total 

RNA from samples rather than considering gene length or library size used by other 

FPKM/RPKM and TPM [94].  

After importing the data, the IsoformSwitchAnlayzeR performs the following functions: 

• It sums up all isoforms belonging to genes and gets gene expression. 

• For each isoform/gene in each condition, it calculates standard error and mean 

expression. 

• For each pairwise comparison of condition, log2FC and isoform fractions (IF) 

values were calculated using mean gene expression and isoforms expression values. 

3.8.3 Filtering 

Not all identified isoforms are biologically relevant; hence pre-filtering was done on the 

following bases:  

• Multi Isoform genes - genes with single isoforms were discarded 

• Gene Expression   - relatively low expressed genes were removed. Therefore, the 

average expression in both conditions should be greater than 1 (geneCutoff >1). 

• Isoform Expression   - Unused or relatively low expressed isoforms were removed 

(isoformCutoff=0.5). 

• Isoforms Fraction (Isoform Usage) - Isoforms that were contributing little towards 

parent gene were removed (IF ≥ 0.05) 
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3.8.4 Identification of Isoform Switches 

After the pre-filtering step, a statistical test was performed to identify ADAM9 isoform 

switching using DEXseq. Isoform switching was identified by two parameters: 

• Statistical Measure: Switch Q-value cutoff - FDR corrected p-value to check 

the significance of the identified switch. 

• Effect Size: dIF cut off - which is a minimum absolute change in differential 

usage (dIF), where dIF is calculated from isoform fractions (IF1 and IF2) in 

both normal and tumour conditions, respectively:  

 

These two parameters work in combination to check the effect size and the statistical 

significance of isoform switches.  

3.8.5 Analysing Open Reading Frames 

After identifying isoform switches, the next step was to annotate isoforms by extracting 

open reading frames from transcript nucleotide sequences using  AnalyzeORF() 

function [21]. This function utilises four different methods for ORF prediction for different 

circumstances: 

• The longest method= identifies the longest ORF based on a canonical start and 

stop codon 

• mostUpstream method = identifies the most upstream ORF based on a canonical 

start and stop codon 

• longestAnnotated= identifies the longest ORF downstream the start site 

• mostUpstreamAnnotated = identifies ORF downstream of the most upstream 

overlapping annotated stat site. 
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3.8.5.1 Extracting Nucleotide and Amino acid Sequences 

The next step after annotating ORF was to extract their amino acid sequences by translating 

nucleotide sequences into amino acids, to perform sequence analysis using different 

internal and external tools like CPC2, Pfam, IUPRED2A and SignalP. 

3.8.6 Running External Sequence Analysis Tool 

Output files from previous steps were used as input for external tools CPC2, Pfam, 

IUPRED and SignalP for sequence analysis. Before running these tools, nucleotide and 

amino acid files were prepared for input by splitting the large files into small chunks to 

extract transcripts for ADAM9. These transcript sequences were extracted using Seqkit 

Tool on Linux, an ultra-fast toolkit for manipulating  FASTA and FASTQ files, including 

splitting, filtering, searching, and shuffling [95]. Linux commands for nucleotide, and 

amino acid sequence extraction are mentioned below: 

grep -A 1 -wFf < (sed -r ‘s/^/ENST: /’ AminoAcid_list.txt) 

isoformSwitchAnalyzeR_isoform_AA.FASTA > output.FASTA 

grep -A 1 -wFf < (sed -r ‘s/^/ENST: /’ Nucleotide_list.txt) 

isoformSwitchAnalyzeR_isoform_nt.FASTA > output.FASTA 

After extracting transcript sequences, external tools for sequence analysis were run on web 

servers. 

3.8.6.1 CPC2 

This tool was used for the assessment of isoforms coding potential. CPC2 can be used as a 

standalone downloadable package and available on a web server [96]. CPC2 uses a 

nucleotide file (_nt. FASTA) generated from the previous step with default parameters. 

3.8.6.2 PFAM 

In addition, PFAM was used to predict the domain for isoforms of interest. PFAM is a 

protein database that gives the functional overview of a protein family and domain [97] 
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• PFAM uses an amino acid file (_AA.FASTA) generated from the previous step 

with default parameters. 

3.8.6.3 IUPRED2A 

All proteins contain different domains, and some are intrinsically disordered regions 

(IDRs), polypeptide regions that lack hydrophobic amino acids to initiate folding. Thus, it 

lacks a fixed or ordered three-dimensional structure [98]. This tool was used to predict 

(IDRs); this tool can be run locally or via a web server [99].  

• IUPred2A uses an amino acid file (_AA.FASTA) generated from the previous step 

with default parameters. 

3.8.6.4 SignalP 

This tool was used to predict signal peptides, small amino acid sequences in newly 

synthesised proteins that help proteins move across the membranes [100]. SignalP uses an 

amino acid file (_AA.FASTA) generated from the previous step with default parameters. 

3.9     IsoformSwitchAnalyzeR-PART II 

In this section, functional consequences for identified switches were predicted along with 

isoform switch visualization. 

3.9.1 Predicting Functional Consequences of Switch 

The list (SwitchListAnalyzed) contains all the objects from previous steps consisting of 

isoforms quantifications, isoforms switches and ORF annotation from external tools. The 

next step was to predict the functional consequence for identified isoforms switches only 

if there is a significant change in the isoform’s contribution towards parent gene 

expression. analyzeSwitchConsequences() function extract isoforms that 

significantly change their isoform usage, calculated by α and dIF parameters in previous 

steps. 
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3.9.2 Visualising Isoform Switches 

After the identification of isoform switches, visualisation was done. Individual isoform 

switch analysis (used in this study ADAM9 gene) and Genome-wide analysis of isoform 

switching are the two types of post-analysis visualisation supported by the 

IsoformSwitchAnalyzeR. extractTopSwicthes()function was used to extracts top 

switches from IsoformSwitchAnalyzeR based on smallest q-value and largest absolute dIF 

value (by default extract top 10 switches). The switchplot() function is used to plot 

the isoform switch and the predicted functional consequences such as protein domains, 

signal peptides, and intrinsically disordered regions. 

3.10 Correlation Analysis - PART III 

The last phase of this research was to perform a correlation analysis for identifying 

interacting partners for the ADAM9 gene. Before correlation analysis, differential 

expression analysis was performed using the Deseq2 tool. 

3.10.1 Differential Expression Analysis using Deseq2 

Deseq2 tool provides different methods to test differentially expressed genes. It uses a 

negative binomial model for differential expression analysis. Deseq2 analyses the RNA-

seq count data in table format to identify differentially expressed genes between different 

conditions [101]. 

In previous steps, transcript quantification was performed using StringTie. For assembled 

transcript quantification, the ballgown tables were created using the -B parameter, which 

generate six files, including quantification file (sample_quant.gtf) for each sample that 

contains FPKM (Fragment per kilobase of transcript per million per read) and TPM 

(Transcript per million) values along with coverages. 

3.10.1.1 StringTie with Deseq2 

As mentioned earlier, Deseq2 takes the input of count tables for differential expression 

analysis. Python (version 2.6.6) script PrepDE.py was used to extract count information 
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from StringTie quantification files (sample_quant.gtf) created using the -B parameter. 

PrepDE.py script extracts the count data for each transcript from coverage values estimated 

by StringTie using the following formula: 

ReadCounts_Per_Transcript =coverage * transcript_length/ read_length 

Input provided to prepDE.py was a text file (sample_list.txt) containing quantification files 

(sample_quant.gtf) for each sample with their respective path. The following Linux 

command generates two CSV files: gene_count_matrix and transcript_count_matrix  

python prepDE.py -i sample_list.txt 

The gene_count_matrix file contains count data for normal and tumour samples, so it 

cannot be given as an input to Deseq2. To overcome this issue, the gene_count_matrix file 

was split into individual CSV files so that each file represents single sample counts. These 

count matrices CSV files were then uploaded into the Galaxy tool to use Deseq2 for further 

analysis. Galaxy is a publicly available web portal used for intensive genomic analysis 

[102]. Galaxy provides users with many tools needed for bioinformatics analysis and cloud 

storage to store results. In addition, it enables data integration from several sources, 

including users' computers, URLs and different online databases [102].Deseq2 outputs two 

files, one with normalised counts and the other with fold change values. For better insights 

into Deseq2, normalised counts were joined with the file containing p-values and fold-

change values (logFC). After joining both files, gene names were mapped to extract their 

Entrez id using the annotateMyIDs tool. 

3.10.2 Identification of Interacting Partners 

After identifying DEGs (differentially expressed genes), the next step was to perform 

correlation analysis to find the interacting partners among identified DEGs for ADAM9.  

3.10.2.1 Correlation Analysis in R 

Correlation is a statistical measure that describes the strength of relationship and 

directionality between two variables, calculated by the correlation coefficient. There are 
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different statistical methods available for correlation analysis, such as Pearson, Spearman 

and Kendall. Pearson correlation shows the linear relationship between two variables, 

whereas Spearman and Kendall Correlation are non-parametric measures based on rank 

values of variables [103]. The most widely used method is the Pearson correlation 

coefficient. 

Sequential steps performed for correlation analysis using R Bioconductor are mentioned 

below: 

• The working directory was set. 

• Count file for normal samples was read using read.csv. 

• Data frame was made for count data.  

• After loading the data frame, the excel sheet accession number of the ADAM9 gene 

was specified. cor() was used to compute correlation coefficient, and 

cor.test() was used to check the association between genes, which returns two 

values correlation coefficient and significance level (cor_R and cor_P, 

respectively). 

• Filter the genes with correlation values ranging from -0.7 to +0.7 for further 

analysis. 

• The same steps were performed for tumour count files. 

3.10.3 Gene Set Enrichment Analysis 

After getting interacting partners, the next step is the gene set enrichment analysis, 

abbreviated as GSEA. GSEA is a statistical method that describes the statistical 

significance of the genes to specific Gene Ontology (GO), KEGG (Kyoto Encyclopedia of 

Genes and Genomes) pathways Reactome, Biocarta and many other pathway analyses. 

GSEA identifies the set of enriched genes in a particular dataset compared to control (In 

this study, it is between +ve and -ve correlated genes). Enrichment analysis is performed 

using the GSEA tool installed on PC. Steps performed are as follows: 

• Correlation files for each dataset were prepared.RNK syntax. 

• These files were then loaded in GSEA. 
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• Annotation file and gene set database parameters are specified. 

• After loading the files and setting the parameters, GSEAPreranked is run. 

• GSEA result analysis folder is saved containing different files and plots. 

GSEA computes enrichment analysis based on Enrichment score (ES) and Nominal P-

value. ES determines which gene set is over-represented in the top and bottom of the ranked 

correlated gene list. Positive enrichment score (ES) shows gene set enriched at the top of 

the list, whereas negative ES shows gene set enriched at the bottom. The nominal P-value 

evaluates the statistical significance of ES, showing the likelihood that this gene set is 

enriched in a pathway.
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Chapter 4 

Results and Discussion 

Oesophageal cancer (ESC) is one of the deadliest and least studied cancer worldwide. 

Nevertheless, its aggressive nature and the low mortality rate remains a public health 

concern worldwide [28]. ADAM9 gene with two alternatively spliced transcripts (L and S 

forms) is involved in many cancers. However, differential usage of its transcripts in 

oesophageal cancer is not studied.  

Therefore, the focus of the study was to understand the role of ADAM9 transcripts in 

oesophageal cancer, as stated earlier in chapter 2.2.2. The importance of differential 

transcript usage DTU due to its significant role in regulating various biological, including 

development, homeostasis, pluripotency, and apoptosis processes. The change in DTU is 

referred to as the isoform switch involved in different diseases and prominently in cancers. 

The functional impacts of these isoform switches lead to the gain or loss of functional 

domains and protein-binding activities (PPI) in cancer-related pathways [104].  

4.1     Alignment to Genome 

A splice aligner performed the alignment step using the Hisat2 tool [18]. Hisat2 maps 

RNA-seq reads using global indexing, which represents whole-genome and local indexing 

(small indexing). This collective usage of both indexings enables the effective alignment 

of reads as it spans multiple exons [91]. 

4.1.1 GSE130078 

RNA-Seq paired tumour and non-tumour samples of 23 SCC patients (South Korea). Total 

46 samples, out of which 23 were normal, and 23 were tumour samples. None of the 

samples had adapter content, with the overall alignment rate was more than 95% for all 

samples. Details are provided in Appendix A. 
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4.1.2 GSE111011 

This dataset contained 14 samples in an equal ratio of RNA-Seq paired tumour and non-

tumour samples. There was no adapter content similar to the previous one, and the 

alignment rate was more than 95%. Summary statistics of alignment scores for both normal 

and tumour samples are shown in Appendix A.  

4.1.3 E-MTAB-4054 

This dataset was different from previous ones as it contained 16 EAC patient samples, and 

11 were normal. The samples were of good quality, with no adapter content and an overall 

alignment rate of 95% for all samples. Alignment scores are shown in Appendix A.  

4.2    Transcriptome Assembly and Reconstruction 

RNA-Seq produces millions of short reads, making assembly of these short reads into 

complete transcripts a complex task; as the mechanistic alternative splicing yields multiple 

isoforms sharing common exons; to identify, assemble and quantify the abundance of these 

isoforms is a challenging task. After the initial estimation, reconstruction of the 

transcriptome was performed by merging all gene structures found in any samples. This 

step is crucial as transcripts in some samples might be only partially covered by reads, 

resulting in only a partial version of the transcript is assembled. Merging creates the 

reconstructed transcripts consistent in all samples with re-estimated abundances, as the 

reads are reallocated for transcripts whose structure is changed due to merging [91]. 

In this study, StringTie was used as it can work on two main approaches: reference-based 

and de-novo assembly for transcriptome assembly and reconstruction using mapped reads. 

A reference-based approach was used in this study based on the following reasons: 

• Reference genome for humans is publicly available. 

• The presence of multicopy genes, multiple isoforms for the same gene and large 

variation in expression levels makes assembly difficult without any reference 

genome.  
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Reference-based approach clusters mapped reads and build splice graphs that represent all 

possible transcripts isoforms for each gene. After identifying transcripts, network flow for 

each transcript was created using a maximum flow algorithm to simultaneously assemble 

and estimate the expression levels of transcripts in ballgown readable format. After the 

initial estimation, transcripts were subjected to the merging step, all gene structures found 

in any samples were merged. Reconstruction of the transcriptome is crucial as transcripts 

in some samples might be only partially covered by reads, resulting in only a partial version 

of the transcript is assembled. Merging creates the reconstructed transcripts that are 

consistent in all samples. Furthermore, re-estimation of transcripts abundances is done as 

the reads are reallocated for transcripts whose structure is changed due to merging [105]. 

The primary output file generated by StringTie was a quantification file in GTF format 

containing all the details of assembled transcripts. Descriptors for GTF file are Seq name, 

source, feature, start, end, score, strand, frame, attribute. 

4.3    Isoform Switch Analysis 

After the initial quantification steps, Dexseq was used for the statistical identification of 

isoform switches by calculating the differential usage of L and S-forms of ADAM9 in both 

normal and tumour condition in all datasets. Table 4-1 shows the data generated by DexSeq 

for ADAM9 isoforms in all datasets based on the criteria described in the previous section 

3.8.4. Where gene value represents the collective expression of all transcripts contributing 

towards gene expression in normal and tumour samples, similarly isoform value represents 

the individual isoform expression (FPKM) in a tumour, and normal samples, gene Fold 

Change (FC) and isoform FC represents the overall change in the expression of both gene 

and isoform between normal to tumour samples. In addition, differential isoform fraction 

(dIF) shows the shift in isoform fraction (IF) values from normal to tumour (negative dIF 

indicates the decreased usage of respective isoform in tumour samples, whereas positive 

dIF shows the increased isoform usage in normal samples). Finally, Q-value represents the 

significance level of identified isoform switch.
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Table 0.1: Output Generated by Dexseq for ADAM9 Isoforms. Differential usage of L and S-forms along with the isoform fractions, isoforms/gene 

expressions and switch Q-values in all datasets: GSE130078, GSE111011 and E-MTAB-4054 

Isoform_Id 

GeneValue_

Normal 

GeneValue_

Tumour 

Gene_

FC 

Isoform_value 

_Normal 

Isoform_value 

_Tumour Isoform_FC IF_overall IF_Normal IF2_Tumour dIF 

IsoformSwitch_

Q_value 

130078 

ENST00000379917(S) 28.17 30.09 0.09 3.027 0.782 -1.93 0.065 0.10 0.02 -0.07 0.00503 

ENST00000487273(L) 28.17 30.09 0.09 16.27 21.61 0.40 0.641 0.53 0.74 0.21 0.0005 

111011 

ENST00000379917(S) 23.75 45.99 0.953 1.865 0.640 -1.526 0.046 0.07 0.01 -0.06 1.43E-16 

ENST00000487273(L) 23.75 45.99 0.953 17.48 39.73 1.183 0.803 0.73 0.86 0.12 7.17E-10 

4054 

ENST00000379917(S) 38.77 61.61 0.667 5.037 1.248 -2.00 0.069 0.13 0.02 -0.10 3.69E-07 

ENST00000487273(L) 38.77 61.61 0.667 28.41 57.31 1.011 0.835 0.71 0.91 0.19 2.98E-06 

Table 0.2: Where dIF=>=0.05, IsoformSwitch_Q_value<=0.05. Where, IF=Isoform Fraction, FC=Fold change, dIF=Differential Isoform Fraction 
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4.3.1 Switch Plot 

Gene and isoform expression plots are formed using FPKM values, whereas isoform usage/switch 

plots are formed based on IFcutoff, using isoform fractions (IF) mentioned above in Table 4-7. 

Furthermore, the dIFcutoff parameter was used to check the trend of isoform usage 

(increase/decreased/unchanged). 

4.3.1.1 GSE130078 

Plots for gene expression, isoform expression and differential usage of ADAM9 isoforms in the 

GSE130078 dataset are shown in Figure 4-1, 4-2, 4-3, respectively. Dexseq identifies 13 isoforms 

initially; However, most of these isoforms were chunks of domains of the gene, and when IFcutoff 

was utilised, these isoforms were no longer shown as significant. Figure 4-1 shows an increase in 

ADAM9 gene expression, the collective expression of all isoforms in tumour samples. In contrast, 

isoform expression and usage plots show the individual isoforms (Figure 4-2,4-3). Their plots 

show L-form is highly expressed in primary oesophageal cancer samples, whereas S-form is 

expressed in normal samples shown in Figures 4-2 and 4-3. 

 
Figure 4-1: Show gene expression. Where: GeneExp_Normal =gene expression in normal, GeneExp_Tumour= 

gene expression in tumour. 
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Figure 4-2: Shows Isoform Expression. Where:  IsoformValue_Normal = isoform expression in normal, 

IsoformValue_Tumour= isoform expression in tumour. 

 

 
 

Figure 4-3: Shows Isoform Usage. Where: IF_Normal= isoform usage/isoform fraction in normal, IF_Tumour= 

isoform usage/isoform fraction in tumour samples. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Isoform Expression

IsoformValue_Normal IsoformValue_Tumour

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Isoform Usage

IF_Normal IF_Tumour



 

53 

Chapter 4                                                                                     Results and Discussion 

4.3.1.2 GSE111011 

Dexseq initially identifies six isoforms in GSE111011; however, these transcripts were not 

significantly expressed and thus were dropped after IFcutoff was utilised. The analysis showed 

that ADAM9 was expressed more in tumours than in normal samples shown in Figure 4-4. Gene 

expression is calculated by adding all the individual isoform expressions; this includes the isoforms 

considered insignificant by the IFcutoff. Figure 4-5 and Figure 4-6 represent isoform expression 

and usage plots of individual isoforms. It can be seen from the plots that the L-form is highly 

expressed and is the main source of overall gene expression in tumours, and the S-form primarily 

decreases in expression and usage. 

 
Figure 4-4: Shows gene expression. Where: GeneExp_Normal =gene expression in normal, GeneExp_Tumour= 

gene expression in tumour 
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Figure 4-5: Shows isoform expression: Where: IsoformValue_Normal = isoform expression in normal, 

IsoformValue_Tumour= isoform expression in tumour 

 
Figure 4-6: Shows Isoform Usage. Where: IF_Normal= isoform usage/isoform fraction in normal, IF_Tumour= 

isoform usage/isoform fraction in tumour samples. 
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4.3.1.3 E-MTAB-4054 

Gene expression in Figure 4-7 shows that ADAM9 is highly expressed in tumour samples 

compared to normal, similar to the previous one GSE111011. Dexseq identifies ten isoforms, but 

on 0.05 IFcutoff, only two (L and S) isoforms are expressed significantly. Isoform expression and 

differential usage plots show L-form is highly expressed in primary oesophageal cancer samples, 

whereas S-form is expressed in normal samples shown in Figures 4-8 and 4-9.  

 
Figure 4-7: Shows Gene Expression. Where: GeneExp_Normal =gene expression in normal, GeneExp_Tumour= 

gene expression in tumour 
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Figure 4-8: Shows Isoform Expression. Where: IsoformValue_Normal = isoform expression in normal, 

IsoformValue_Tumour= isoform expression in tumour 

 
Figure 4-9: Shows Isoform Usage. Where: IF_Normal= isoform usage/isoform fraction in normal, IF_Tumour= 

isoform usage/isoform fraction in tumour samples 
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The overall trend seen in the above plots represents significantly increased gene expression in 

oesophageal tumour samples as compared to normal samples, which can be due to significant 

changes in the isoform usage of L and S-forms across both conditions shown in bottom plot Figure 

4-3, 4-6 and 4-9. Furthermore, isoform expression and usage plots illustrate that L isoform 

contributes to the ADAM9 gene expression in primary tumour samples compared to S-form. 
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Figure 4-10: Isoform structure, showing the trend of ADAM9 isoforms (L and S forms) 
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By comparing the isoform usage plots to the isoform structure (showing the isoform trend) shown 

in Figure 4-10, it is inferred that in primary tumour samples, L-form is used. As discussed earlier 

in section 2.2.2, ADAM9 is involved in different types of cancers. Its isoform switch is well studied 

in breast cancer. The L-form was upregulated during primary cancer stages in breast cancer studies, 

and the S-form mainly indicates metastasis. In this study, secondary data was processed using the 

IsoformSwitchAnalyzeR pipeline. The samples were mainly from the primary tumour site of EC, 

and thus the increased expression of L-form is similar to what is observed in breast cancer primary 

tumour site. As discussed in the section, the L-form is involved in the initial stages of cancer and 

affects cell proliferation and adhesion. ADAM9(L) mediates tumour cell proliferation by hyper 

activating EGFR signalling; further triggering the downstream signalling of Ras/mitogen-activated 

protein kinase MAPK and PI3K/AKT and transduces the signals for activation of cell growth genes 

to promote tumour cell proliferation [106], shown in Figure 4-11. EGFR is a receptor to many 

ligands and regulates different processes, including proliferation and differentiation. The heparin-

binding-EGF((HB-EGF) and transforming growth factor-alpha((TGF-alpha) ligands (Kataoka, 

2009) are cleaved by ADAM9, making them biologically active proteins to initiate proliferation. 

Jeong Min Kim and colleagues have validated this phenomenon who performed the knockout 

study to explain the role of ADAM9 in tumour growth/progression. They found that in the absence 

of ADAM9, EGFR phosphorylation was blocked, which decreased the EGFR activation and 

downstream signalling of Ras/MAPK [107]. 

 
Figure 4-11: ADAM9 activates EGFR signalling by cleaving pro-ligands to soluble forms (HB-EGF and TNF-

alpha), which further activates the Ras/MAPK signalling. 
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Furthermore, the increased expression of L-form in primary tumour samples also might be due to 

the presence of the transmembrane domain highlighted in Figure 4-10, which keeps L-form 

membrane-tethered.  

In contrast, S-form lacks this transmembrane domain and is secreted outside the cell. As mentioned 

earlier in section 2.2.2, the L-form suppresses the cancer cell invasion. It remains membrane-

tethered by binding integrin protein via its disintegrin domain, altering the integrin-mediated 

signals for ECM degradation. The secreted Golgi vesicle help S-form to be secreted outside the 

cell and degrades ECM through the metalloprotease domain, eventually metastasising the tumour 

cells [77]. Another study conducted by Fry and Toker (2010) saw that the switch from L to S 

happens when the primary tumour has progressed to a stage where metastasis is imminent; this 

ties in with the fact that S is secreted form of ADAM9 and its metalloprotease domains are needed 

for the degradation of ECM so that it is easier for cancerous cells to break free and colonise other 

organs [77]. This study recapitulates with the previous research findings, where L-form is involved 

in the primary stage of oesophageal cancer. However, the cancer is localised to oesophageal only 

and is not distantly metastasised to other regions. 

4.4     Identification of Interacting Partners for ADAM9 

For a better understanding of molecular functions and pathways, identifying closely correlated 

gene partners is essential [108]. Through Pearson correlation, interacting partners for ADAM9 

were identified. The total number of correlated genes for dataset GSE130078, GSE111011 and E-

MTAB-4054 were 105, 5021 and 565, respectively, based on correlation value >=+-0.7.  

4.4.1 Gene Enrichment Analysis 

Correlated genes obtained from the previous analysis were subjected to the GSEA to identify 

enriched biological pathways in Oesophageal cancer. GSEA identifies the set of genes that are 

enriched in a particular biological pathway. Unlike Gene Ontology, it does not only consider a 

subset of a gene with a significant change in gene expression. Instead, it considers the change in 

gene expression of all genes in that dataset. Molecular functions and pathways were identified 

through various pathway databases (Kegg, Reactome, Biocarta and MsigDB) integrated into 

GSEA by changing parameters e-g number of minimum genes in the gene set, while other 
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parameters were on default setting. Subsequently, Kegg and Reactome pathways were selected as 

they share common pathways in all datasets. Table 4-2 shows the common pathways seen in all 

three datasets in Kegg and Reactome databases. 

Table 0.2: Common pathways in KEGG and Reactome databases in all three datasets 

Database Pathway 

KEGG Focal Adhesion 

Reactome 

 

Vesicle Mediated Transport 

Membrane Trafficking 

Table 4-2: KEGG: Kyoto Encyclopaedia of Genes and Genomes 

Figures 4-12, 4-13, 4-14 show the enrichment plot for focal adhesion in GSE130078, GSE111011 

and E-MTAB-4054, respectively. The top portion of each plot shows the ES for gene set as the 

analysis walks down the ranked list. For example, in Figures 4-12, 4-13 and 4-14, the score at the 

peak of the plot (the score furthest from 0.0 shown y-axis) is the ES of the gene set, which is 0.26, 

-0.55, and -0.16, respectively. Thus, positive ES indicates that the gene set enriched at the top of 

the ranked gene list is involved in the focal adhesion pathway, whereas negative ES indicates that 

the gene set enriched at the bottom of the ranked gene list is involved.  The middle portion of the 

plot shows where the gene set members appear in the ranked list of genes. Finally, the bottom 

portion of the plot shows the ranking metric as moving down the ranked list, which shows the gene 

correlation with the phenotype (positively or negatively correlated)—the value of the ranking 

metric ranges from positive to negative as moving down the ranked list. Thus, a positive value 

indicates correlation with the positively correlated genes, and a negative value indicates correlation 

with the values of the negatively correlated ranked genes. 
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Figure 4-12: GSE130078 Enrichment plot: Focal Adhesion, showing the profile of the running ES score and 

positions of gene set members on the ranked ordered list. 
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Figure 4-13: GSE111011 Enrichment plot: Focal Adhesion, showing the profile of the running ES score and 

positions of gene set members on the ranked ordered list. 
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Figure 4-14: E-MTAB-4054 Enrichment plot: Focal Adhesion, showing the profile of the running ES score and 

positions of gene set members on the ranked ordered list. 

The flow of information in cells occurs through the ECM interactions, and these interactions occur 

at specialised zones of the cell surface that are focal adhesions. These focal adhesions are rich in 

integrin adhesion receptors which play an essential role in bi-directional transmembrane 

communication by connecting cell cytoskeletons to the extracellular membrane matrix. These 

focal adhesions sense extracellular matrix and different physiological and mechanistic stress 
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signals. In response to these focal adhesion signalling, the cell initiates diverse processes, including 

cell growth or death, cell motility and cytoskeleton reorganisation [109]. These specialised focal 

adhesions are seen altered in cancer [110]. ADAM9 plays a crucial role in tumorigenesis and is 

upregulated in many cancers. ADAM9 is reported to be multifunctional due to its multi-domain 

structure. One of the prominent proteolytic roles is the shedding of membrane-anchored substrates 

e-g growth factors. 

Moreover, non-proteolytically it is involved in cancer progression and migration by interacting 

with cell surface receptor protein-Integrins presumably via its disintegrin domain. These cell 

surface integrin proteins consist of α and β subunits that work as adhesive receptors for ECM and 

transmit signals into the cell. Studies have shown various subtypes of integrins that bind to 

ADAM9: ITGA2, ITGA3, ITGA6, ITGA6:ITGB4, ITGA6:ITGB4, ITGAV [62], which are also 

reported in our GSEA results for focal adhesion shown in Table 4-3. These integrin-mediated cell-

ECM interactions at the cell surface are responsible for cell migration adhesion processes, 

ultimately triggering the signalling and remodelling of ECM components, including forming the 

cytoskeleton and focal adhesions [110]. 

Table 0.3: Ranked genes mapped on GSEA focal adhesion gene sets. 

Dataset Genes 

Mapped 

Gene 

GSE130078 20 ITGB1, ITGB6, ILK, CAV2, PDGFC, ITGA3, ACTB, ITGB4, BAD, 

PXN, DIAPH1, EGFR, VEGFC, LAMC2, BCAR1, VEGFB, MYL7, 

ITGA6, LAMA4, BRAF 

GSE111011 7 DIAPH1, BCL2, ITGA5, PTEN, RAC2, PGF, CAV2 

E-MTAB-4054 27 PARVB, CAPN2, FLNC, ITGA2B, PIK3R2, MYLPF, MAPK3, CRK, 

RAC2, LAMB3, PIK3R5, MAP2K1, LAMC1, LAMA4, RAPGEF1, 

LAMA2, PDGFRB, LAMB1, KDR, HGF, ITGA1, BRAF, ITGA5, 

SHC3, CAV1, FLT1, LAMC3 

Table 0.3: ITGB: Integrin Subunit Beta (1,5,6), ITGA: Integrin Subunit Alpha (A3, A5, A6) 

As Integrin-mediated cell adhesion to ECM is crucial, according to De Franceschi and his 

colleagues (2015), their fate is continually internalised, after which their fate is to either get 

degraded or recycled back to the plasma membrane. This integrin trafficking plays an essential 

role in regulating tumour cell migrations and adhesions [111]. To gain better insight on how 

ADAM9 regulates integrin function, Mygind and his colleagues (2018) performed a knockout 



 

66 

Chapter 4                                                                                     Results and Discussion 

study that illustrated the role of ADAM9 in regulating integrin function and alteration of focal 

adhesion in cancer. Knock out of ADAM9 revealed the increased ITGB1/ β 1integrin levels and 

decreased adhesion and cell migration; this loss was conferred due to disrupted ADAM9-integrin 

interaction, which ultimately decreased the internalisation and degradation of ITGB1 and focal 

adhesion. Thus, ADAM9 is required for optimised ITGB1 endocytosis without accumulating at 

the cell surface and alters the focal adhesion by slowing down its maturation, leading to the 

perturbed cell adhesion and migration of tumour cells [62].
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5 Conclusion 

Recently many studies have proven the strong relationship between cancer and AS and its 

involvement in tumorigenesis and escaping cell death. Thus, AS plays an important role in 

cancers by triggering hallmarks of cancer from a progression of primary tumour 

cells(tumorigenesis) to metastasis of secondary tumour cells to distant organs [26]. 

Knowing the already available technologies to study gene and transcript expression, 

differential transcript usage technique (DTU) was preferred to identify ADAM9 isoform 

switch using the IsoformSwitchAnalyzeR package.  

To identify isoform switching, the first transcriptome assembly was performed using a new 

tuxedo pipeline. Hisat 2 was used to align oesophageal samples (normal and tumour) to 

reference the human genome. Transcriptome assembly and reconstruction were performed 

using StringTie to identify transcripts and their expression levels accurately, and 

quantification files were generated using the Ballgown -e parameter. After the 

quantification, Dexseq was used for the statistical identification of isoform switches by 

calculating the differential usage (dIF) of L and S-forms of ADAM9 in all three datasets: 

for GSE130078 dIF for ENST00000379917(S) is -0.07, ENST00000487273(L) is 0.21, for 

GSE111011 dIF for ENST00000379917(S) is -0.06, ENST00000487273(L) is 0.12 and for 

E-MTAB-4054 dIF for ENST00000379917(S)  is -0.17, ENST00000487273(L) is 0.19. 

Thus, the overall trend in the above plots represents significantly increased gene expression 

in oesophageal tumour samples compared to normal samples, whereas isoform expression 

and usage show that L isoform is majorly contributing to the ADAM9 gene expression in 

primary tumour samples compared to S-form. Afterwards, correlation analysis was 

performed to identify interacting partners for ADAM9. Gene set enrichment analysis was 

performed using GSEA. Focal adhesion was enriched in all three datasets. As non-

proteolytically ADAM9 is involved in cancer progression and migration by interacting 

with cell surface receptor protein-Integrins presumably via its disintegrin domain, these 

integrins are present in these focal adhesion sites. They are involved in bi-directional 

transmembrane communication by connecting cell cytoskeletons to the extracellular 
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membrane matrix. Thus, these integrin-mediated cell-ECM interactions at the cell surface 

are responsible for cell migration adhesion processes, ultimately triggering the signalling 

and remodelling of ECM components, including forming the cytoskeleton and focal 

adhesions [110]. 
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7 Appendix 

7.1 Appendix A – Alignment tables 

7.1.1 GS130078 

Sample (Normal) Alignment score % 

SRR8931987 96% 

SRR8931989 95.74% 

SRR8931991 94.42% 

SRR8931993 95.18% 

SRR8931995 95.27% 

SRR8931997 95.42% 

SRR8931999 95.50% 

SRR8932001 95.03% 

SRR8932003 95.01% 

SRR8932005 95.85% 

SRR8932007 95.00% 

SRR8932009 94.31% 

SRR8932011 95.36% 

SRR10173245 98.16% 

SRR10173247 98.30% 

SRR10173249 97.56% 

SRR10173251 97.77% 

SRR10173253 97.41% 

SRR10173255 95.43% 

SRR10173257 96.40% 

SRR10173259 96.92% 

SRR10173261 95.97% 

SRR10173263 97.09% 
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Sample (Tumour) Alignment score % 

SRR8931988 95.25% 

SRR8931990 95.11% 

SRR8931992 93.81% 

SRR8931994 94.95% 

SRR8931996 95.22% 

SRR8931998 93.00% 

SRR8932000 94.17% 

SRR8932002 93.58% 

SRR8932004 95.53% 

SRR8932006 94.88% 

SRR8932008 93.70% 

SRR8932010 95.77% 

SRR8932012 95.94% 

SRR10173246 96.56% 

SRR10173248 94.24% 

SRR10173250 94.65% 

SRR10173252 94.29% 

SRR10173254 97.84% 

SRR10173256 96.63% 

SRR10173258 97.71% 

SRR10173260 95.09% 

SRR10173262 98.03% 

SRR10173264 95.18% 
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7.1.2 GS111011 

Sample (Normal) Alignment score % 

SRR6762723 94.32% 

SRR6762724 95.99% 

SRR6762725 95.25% 

SRR6762726 93.61% 

SRR6762727 95.71% 

SRR6762728 96.01% 

SRR6762729 94.77% 

 

Sample (Tumour) Alignment score % 

SRR6762730 82.37% 

SRR6762731 93.61% 

SSRR6762732 94.63% 

SRR6762733 95.47% 

SRR6762734 95.74% 

SRR6762735 95.31% 

SRR6762736 94.80% 

 

7.1.3 E-MTAB4054 

Sample (Normal) Alignment score % 

ERR1141723 96.69% 

ERR1141724 96.92% 

ERR1141725 93.37% 

ERR1141726 98.94% 

ERR1141727 94.06% 

ERR1141728 93.81% 
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ERR1141729 93.78% 

ERR1141730 98.63% 

ERR1141731 96.66% 

ERR1141732 96.58% 

ERR1141733 97.02% 

 

Sample (Tumour) Alignment score % 

ERR1141704 98.31% 

ERR1141705 94.03% 

ERR1141706 95.70% 

ERR1141707 97.08% 

ERR1141708 92.70% 

ERR1141709 98.40% 

ERR1141710 98.23% 

ERR1141711 93.60% 

ERR1141712 97.37% 

ERR1141713 95.63% 

ERR1141714 97.86% 

ERR1141715 93.06% 

ERR1141716 96.57% 

ERR1141717 98.32% 

ERR1141718 93.34% 

ERR1141719 95.67% 

 

 


