
Machine Learning Based Trust
Management framework

for Sustainable Vehicular Networks

By
Unaiza Alvi
00000319231

Supervisor
Dr. Asad W. Malik

Department of Computing

A thesis submitted in partial fulfillment of the requirements for the degree
of Masters of Science in Information Technology (MS IT)

In
School of Electrical Engineering and Computer Science,
National University of Sciences and Technology (NUST),

Islamabad, Pakistan.

(December 2021)

THESIS ACCEPTANCE CERTIFICATE

Signature: ________________________________

Name of Advisor: __________________________

Date: ___________________________________

Signature (HOD): __________________________

Date: ___________________________________

Signature (Dean/Principal): __________________

Date: ___________________________________

Online Printing Date & Time: Monday, 20 December 2021 00:07:11

Certified that final copy of MS/MPhil thesis entitled "Machine Learning Based Trust
Management framework for Sustainable Vehicular Networks" written by UNAIZA ALVI,
(Registration No 00000319231), of SEECS has been vetted by the undersigned, found
complete in all respects as per NUST Statutes/Regulations, is free of plagiarism, errors
and mistakes and is accepted as partial fulfillment for award of MS/M Phil degree. It is
further certified that necessary amendments as pointed out by GEC members of the
scholar have also been incorporated in the said thesis.

29-Nov-2021

Dr. Asad Waqar Malik

Publish Date & Time: Wednesday, 01 December 2021 , 09:34:25PDF4NET evaluation version 4.7.0.0

PDF4NET evaluation version 4.7.0.0

i

Approval

Signature: ______________________

Date: __________________________

Signature: ______________________

Date: _________________________

Signature: ______________________

Date: _________________________

Signature: ______________________

Date: _________________________

Online Printing Date & Time: Monday, 20 December 2021 00:08:14

It is certified that the contents and form of the thesis entitled "Machine Learning Based
Trust Management framework for Sustainable Vehicular Networks" submitted by
UNAIZA ALVI have been found satisfactory for the requirement of the degree

Advisor : Dr. Asad Waqar Malik

29-Nov-2021

Committee Member 1:Dr. Anis Ur Rahman

30-Nov-2021

Committee Member 2:Dr Muazzam A Khan
Khattak

30-Nov-2021

Publish Date & Time: Wednesday, 01 December 2021 , 09:34:25PDF4NET evaluation version 4.7.0.0

PDF4NET evaluation version 4.7.0.0

ii

Dedication

Dedicated to my family
for their love, kindness, and support

iii

Certificate of Originality

Student Signature: ______________

Online Printing Date & Time: Monday, 20 December 2021 00:09:14

I hereby declare that this submission titled "Machine Learning Based Trust Management

framework for Sustainable Vehicular Networks" is my own work. To the best of my

knowledge it contains no materials previously published or written by another person, nor

material which to a substantial extent has been accepted for the award of any degree or

diploma at NUST SEECS or at any other educational institute, except where due

acknowledgement has been made in the thesis. Any contribution made to the research by

others, with whom I have worked at NUST SEECS or elsewhere, is explicitly

acknowledged in the thesis. I also declare that the intellectual content of this thesis is the

product of my own work, except for the assistance from others in the project’s design and

conception or in style, presentation and linguistics, which has been acknowledged. I also

verified the originality of contents through plagiarism software.

Student Name:UNAIZA ALVI

Publish Date & Time: Wednesday, 01 December 2021 , 09:34:25PDF4NET evaluation version 4.7.0.0

PDF4NET evaluation version 4.7.0.0

iv

Acknowledgment

First and foremost, I would like to express my gratitude to Allah Almighty for
all of his blessings. Following that, I owe a debt of gratitude to my mentor,
Dr. Asad Waqar Malik, for his invaluable guidance, humility, encourage-
ment, dedication and patience. I am grateful to my advising and evaluating
committee, Dr. Anis ur Rahman and Dr. Muazzam A. Khan Khattak, for
their time, useful suggestions, and constructive criticism. I would also like
to express my gratitude to all of my hostel companions for their unwavering
support throughout my highs and lows, especially during the tough times of
COVID-19 pandemic. Finally, I want to thank my family for their constant
love, generosity, and support.

v

Table of Contents

List of Abbreviations viii

List of Tables x

List of Figures xi

1 Introduction 1
1.1 Background . 1
1.2 Security Threats in Inter Vehicle Communication 2

1.2.1 Types of Attackers . 3
1.2.2 Types of Attacks . 3

1.3 Trust Management in VANETs 4
1.3.1 Elements of Trust . 4
1.3.2 Direct Trust . 4
1.3.3 Indirect Trust . 4
1.3.4 Types of Trust Models in VANETs 4

1.4 From VANETs to VEC . 5
1.5 The notion of Trusted Task Offloading in VEC 6
1.6 Motivation . 6
1.7 Objectives of our Research . 6
1.8 Organization of Thesis . 7

2 Literature Review 8
2.1 Conventional Techniques . 8
2.2 Machine learning based Techniques 10
2.3 Summary . 11

3 Problem Statement and Mobility Simulation 12
3.1 Problem Statement . 12
3.2 Network Model . 13
3.3 Communication Model . 13

vi

3.4 Task Computational Model 14
3.5 Adversary Model/Attack Model 15
3.6 Vehicle Mobility Simulation Tools 16

3.6.1 Converting Manhattan City Map into SUMO Network 17
3.6.2 Vehicle Trips and Route Generation 18
3.6.3 Setting Configuration File and Running the network . 20

3.7 Summary . 20

4 Proposed Intelligent Multi-criteria Trusted Offloading Deci-
sion Framework 21
4.1 Data set Generation . 21
4.2 Machine Learning Model Training, Selection and Deployment . 23
4.3 Multi Criteria Offloading Framework 25

5 Experimental Evaluation, Results and Discussion 31

6 Conclusion and Future Work 39
6.1 Conclusion . 39
6.2 Future Work . 39

vii

List of Abbreviations

Abbreviations

ITS Intelligent Transport System
VANETs Vehicular ad hoc networks
GPS Global Positioning System
MANETs Mobile ad hoc networks
OBUs On Board Units
RSUs Road Side Units
VEC Vehicular Edge Computing
WHO World Health Organization
LA Local Authority
DTC Digital Trustworthiness Card
TS Trust Server
IoT Internet of Things
SVM Support Vector Machines
KNN K Nearest Neighbour
ANN Artificial Neural Network
DDoS Distributed Denial of Service
TraCI Traffic Control Interface
OSM Open Street Map
LSTM Long Short Term Memory
ROC Receiver Operating Curve
AUC Area Under the Curve

viii

Nomenclature

V Set of vehicles
R set of RSUs
T computational task
ST Input size of task
CT CPU cycles required for task processing
DT Task completion deadline
Tlocal Local execution time
fv Vehicle compute power
Q Task queue
Wx Waiting time at local queue
OT Offloading decision
Tdest Task completion time at destination vehicle
Tsrc Task completion time at source vehicle
NBR List of vehicles neighbors
l Size of neighbors list
Toffload Execution time for offloaded task
P Set containing vehicle predictions
α Cumulative count for honest predictions
β Cumulative count for malicious predictions
λ Vehicle final selected label

ix

List of Tables

4.1 Description of data-set features. 22

5.1 Simulation Environment and System Specifications 31

x

List of Figures

1.1 A typical inter vehicle communication scenario in VANETs [1]. 2
1.2 Classification of trust models in VANETs 5

3.1 A snapshot demonstrating the Manhattan city area used from
Open Street Map. 17

3.2 Input command for the conversion of OSM map into SUMO
network. 17

3.3 Output file after the successful conversion of OSM map into
SUMO network file. 18

3.4 Command to generate vehicle routes and network edges in
SUMO simulator. 18

3.5 Vehicles trips output file to generate random trips in the sim-
ulation. 19

3.6 Output file for the generated vehicle routes. 19
3.7 The simulated vehicular network with vehicles on the roads. . 20

4.1 The work flow of Machine Learning Framework. 24
4.2 Architecture diagram demonstrating the working of proposed

framework . 29

5.1 The reported precision with varying percentage of attacking
vehicles for various models. 32

5.2 The reported recall of various machine learning models as the
percentage of attacking vehicle varies. 32

5.3 F1 score of various machine learning models against different
attacking vehicles ratio. 33

5.4 The reported F2 score with varying density of attacker nodes
for various machine learning models. 33

5.5 A graph representing log loss with varying attacker density for
various models. 34

5.6 The reported ROC for various models at 50% attacker density 34
5.7 Task Efficiency achieved at varying attacker density. 35

xi

5.8 Effectiveness at varying attacker density. 36
5.9 Black hole failures at varying attacker density. 36
5.10 Average wait time incurred at varying attacker density. 37

xii

Abstract

Vehicular Edge Computing (VEC) augments resource-constrained devices in
vehicular networks by bringing services and processing power closer to the
end-user at the network edge. However, over time, these devices get overbur-
dened as a result of incoming requests, and network performance degrades.
This can be addressed by utilizing nearby idle nodes and assigning tasks to
nearby vehicles; a process known as computational task offloading. However,
the presence of malicious nodes might put the entire network at risk; tasks
cannot be offloaded if the node is untrustworthy; therefore service trustwor-
thiness is critical. The majority of the work on task offloading has focused
on resource optimization, and the trustworthiness of services has received
less attention. The traditional trust models focus on the aggregation of both
direct and indirect observations. The choice of optimal weights for different
factors in traditional approaches is still a key challenge given the dynamic
nature of VANETs (vehicular ad hoc networks). Thus, we employ the estab-
lishment of trust and identification of malicious vehicles as a classification
problem for task offloading in vehicular networks. We have simulated multi-
ple attacking patterns and generated a novel data set to identify misbehaving
nodes. We trained multiple machine learning models on the generated data
set. LSTM (Long Short Term Memory) reported the highest performance
gain. Moreover, we deployed the trained model on edge nodes and pro-
posed a multi-criteria task offloading framework in vehicular networks. In
the presence of adversary nodes in the network, the proposed task offloading
framework with integrated intelligent layer outperformed baseline techniques
in terms of task efficiency, effectiveness, and black hole failures.

xiii

Chapter 1

Introduction

In recent years, rapid urbanization and population growth in Pakistan has
emerged the concept of Smart cities. Intelligent Transport System (ITS) is
an essential element in Smart Cities to enhance road safety and driving expe-
rience. VANETs (Vehicular ad hoc networks) are the building blocks for ITS,
thus it’s security and privacy issues have to be handled smartly for its com-
mercial deployment. Vehicular networks offer tremendous benefits in terms
of road safety and value-added services; however, its vulnerability to various
risks pose great hurdles for its commercial deployment. One of the threat,
is the injection of forged messages within the network. The vehicles highly
rely on the exchanged messages for making decisions. If that information
is compromised, it can have dire consequences. The presence of adversary
nodes can jeopardize the network by spreading bogus messages, causing road
accidents and traffic congestion. So a trust model is crucial, that can assist
the nodes for evaluating the trustworthiness of the nodes and evicting the
malicious nodes to ensure the reliability of messages and to make informed
decisions.

1.1 Background

The idea of VANETs emerged in the 90’s, with the easy availability of GPS
(Global Positioning System) and low cost wireless devices. Various projects
such as ASV (Advanced Safety Vehicle) and promote chauffeur established a
foundation in the various areas of vehicular networks such as communication,
design, routing protocols and architecture etc. Vehicular networks are exten-
sion of MANETs (mobile ad hoc networks). In a typical vehicular network,
each vehicle equipped with smart sensors and OBUs (On Board Units) is
considered as a node, capable of exchanging communication messages with

1

other nodes or stationary access points present among different junctions of
the roads called RSUs (Road Side Units).

Figure 1.1: A typical inter vehicle communication scenario in VANETs [1].

They offer a plethora of applications ranging from basic entertainment
applications to safety critical application such as accident alert systems. Its
applications can be broadly categorized into three classes : road safety, in-
dustrial and infotainment. It is one of the key component of the ITS with
the goal to improve driver and road safety in general [2]. The World Health
Organization (WHO) report states that road accident fatalities are the eight
leading cause of death, with approximately 1.35 million reported deaths.
Thus VANETs can play a vital role in traffic safety by generating early ac-
cident alerts or warning the driver etc. [1]

1.2 Security Threats in Inter Vehicle Com-

munication

The VANETs pose greater future prospects, however their highly mobile and
ad-hoc nature makes it vulnerable to various security threats. The attackers
can vary according to the kind of malicious activities they perform and the

2

access they have to the network. In this section we will discuss different kind
of attackers and different attacks in context of vehicular network.

1.2.1 Types of Attackers

The attackers in a vehicular network can be divided into following categories:

Insider vs Outsider
The insider attacker is someone who is already in the network i.e a legitimate
node whereas external attacker refers to the node who do not have access to
the network.

Malicious vs. Rational
The malicious attacker’s intention is to deteriorate the entire network without
any personal gains, however a rational attacker harms the network for its own
personal gains.

Active vs. Passive
The active attacker tries to forge the message, however a passive attacker
tries to sense the network messages.

Local vs Extended
The local attacker has a limited reach for attack, whereas an extended at-
tacker cooperates with other entities to expand its reach and capacity to
generate a more powerful attack [3].

1.2.2 Types of Attacks

We discussed about various kind of attackers according to their roles and
attacking capacity above. The most common types of attacks in a vehicular
network are discussed below :

Sybil Attack
In this attack, the attacking node pretends to have multiple identities.

Denial-of-Service (DoS) Attack
In this attack, the intruder overwhelms the entire network with multiple
requests such that the services are no longer available to the legitimate nodes.

Black-hole Attack
The attacker simply discards the received packets when operating in this
mode.

Wormhole Attack
Two or more nodes are involved in such kind of attack, they harm the network
by modifying logical topology of the network by advertising they know the
shortest path, they aim to modify a larger portion of traffic.

3

Replay Attack
It is the kind of attack where a intruder stores a piece of information and then
communicates it to other nodes, when the shared information is no longer
valid.

Passive Eavesdropping Attack
In this attack the goal of the intruder is to monitor the network activities of
various nodes, without forging any kind of information [4].

1.3 Trust Management in VANETs

1.3.1 Elements of Trust

Trust can be divided into two elements based upon the interactions among
the participating nodes.

1.3.2 Direct Trust

It is based upon the direct observation between the trustor i.e the vehicle
that is computing the trust and the target vehicle i.e the vehicle about which
trust is calculated. Direct trust is often given more preference as opposed to
indirect trust.

1.3.3 Indirect Trust

It considers the rating of the vehicles in neighborhood to establish trust for
the target vehicles. The neighbors give opinion for the target vehicle based
on their past experiences [5].

1.3.4 Types of Trust Models in VANETs

The trust models in vehicular networks can be divided into following cate-
gories:

Entity Oriented–
These models are concerned with whether to trust a given node or not, they
are based on the nodes interaction data upon which they make any decision
about its trust-worthiness.

Data Oriented–
These models establish trust based on the evidence collected to verify whether

4

Figure 1.2: Classification of trust models in VANETs

the information that is communicated is correct or not. Each piece of evi-
dence is given a specific weight-age.

Hybrid/Combined–
In this model the trust-worthiness of received information and the trust-
worthiness of the sending node both are evaluated [6].

1.4 From VANETs to VEC

The number of automobiles on the roads are increasing sharply, consequently
the need for communication and computing requirements for the timely pro-
vision of services is rapidly growing. Many compute-intensive systems need
a high level of quality-of-service assurance. Edge computing in vehicular
networks is proposed to alleviate the challenges by extending computing ca-
pability to the network edge. The services are brought closer to the end
user, resulting in a new computing domain know as VEC (Vehicular Edge
Computing). With the introduction of VEC, the user experience is enhanced
since the services are provided directly at the network edge. Its lightweight
and rich resources provide a better experience to the end user. Moreover, it
helps to enhance the overall user experience because of the additional knowl-
edge of applications, such as its location and context, so the needs can be
catered accordingly [7].

5

1.5 The notion of Trusted Task Offloading in

VEC

Although with the advent of VEC, overall user experience was enhanced by
making accessibility to the services easier and readily available, particularly
for the time sensitive applications. However, resource-constrained sites are
frequently swamped by a large number of incoming requests, making it diffi-
cult to maintain lower end-to-end delays for delay-sensitive applications. To
cater these, nearby idle nodes with enough computational resources can be
utilised, to offload the tasks and achieve performance gain. However, one can
not comment on the participating nodes if they will meet the tasks require-
ments, since some participating nodes could be malicious, which necessitates
the implementation of a trust management system within the network to
fully utilise task offloading. One can not judge a node if it’s a malicious
node or honest node, thus this introduces the concept of ”trusted task
offloading” i.e the task is offloaded to the node only if it’s trustworthy [8].

1.6 Motivation

The rapid urbanization and growing population has necessitated the incorpo-
ration of technologies for better lifestyles, one such thing is the concept of the
transformation of cities into Smart Cities. Smart Cities can offer tremendous
applications in terms of entertainment and road safety in general. VANETs
are the key technologies used in smart transportation. VANETs have been
a topic of interest for researchers, since long time and it has seen many
technological changes such as the introduction of edge computing, volunteer
computing, task offloading, to name a few. The main focus of this research
is to introduce the notion of trusted task offloading in a vehicular network.
Since majority of the works focus on general intrusion detection and task
offloading with an added element of trust has been least explored. Task of-
floading is critical in edge networks where resources are overwhelmed, thus
they can utilise the idle resources in their vicinity, however the reliability
of the offered services is critical, since the presence of adversary nodes can
deteriorate the network performance.

1.7 Objectives of our Research

Our research study focuses on simulating a mobility model to represent a task
offloading scenario. The most commonly occurring attacks are also modeled

6

in the network. Once the mobility and attacker model is built, the next
step is the development of a novel data set for intrusion detection in a task
offloading environment in vehicular networks. The main objective behind
the generation of a data-set is due to the fact that, most of the studies fo-
cus on intrusion detection in general in a VANET environment and no data
set is available for intrusion detection in the particular case of task offload-
ing. Some studies that did simulate the different attacking patterns have
not made those data sets publicly available, moreover the data sets lack het-
erogeneity and diversity i.e vehicles may exhibit more than one malicious
pattern. Additionally we trained various machine learning models that can
detect the adversary nodes within the vehicular network. Moreover, we also
utilise these trained models and incorporate them in the simulation, which
are used to filter the malicious nodes. With this, we proposed an offload-
ing framework that uses intelligent layer to select the appropriate node for
the task execution, since the notion of trusted task offloading by employing
machine learning techniques is still in its infancy.

1.8 Organization of Thesis

This research study has been organised into 6 chapters. Chapter 1 introduces
the concept of VANETs, why we need them and their issues in general. In
Chapter 2, we cover an extensive literature on the proposed problem. Chap-
ter 3 discusses, the problem formulation, system entities involved and their
communication methods. Moreover, we explain in detail the simulation of
vehicle mobility in the simulator, the development of the machine learning
framework, which is later on deployed in the simulation. We also demonstrate
the proposed offloading framework with intelligent layer incorporated. Ex-
periments performed to validate our proposed model are discussed in Chapter
5. Finally the conclusion and future work is presented in Chapter 6.

7

Chapter 2

Literature Review

In this section, we will discuss various research studies proposed for trust
management and identification of malicious nodes in a vehicular network. We
have divided the studies into two classes namely conventional and machine
learning based techniques, which are discussed below.

2.1 Conventional Techniques

In this section, we will discuss conventional or statistical techniques for rep-
utation management in vehicular networks. The conventional techniques use
different parameters and assign different weights to these parameters to com-
pute a trust value, based on which the decisions regrading the trust-worthy
or malicious nature of the node are made.

In [7] using multi weighted subject logic in VEC, the authors suggested a
reputation system for vehicles distributed in nature. The LA (Local Author-
ity) is in charge of aggregating vehicle reputations based on three criteria:
familiarity, punctuality, and similarity. The reputation values for vehicles
are updated after each engagement. They also discussed a framework for
resource selection based on the principles of trust, i.e. a reliable resource is
selected for the purpose of offloading.

Similarly, this research study [8] established the notion of trusted task
offloading, which employs a distributed block chain to keep track of the vehi-
cle reputation scores. The participating vehicles in the network are assigned
some tasks that were offloaded from other resource constrained devices that
could not execute the tasks locally. If a vehicle completes the assigned task,
it is rewarded and if it does not complete the task it is penalised based on
a criteria. This reward and penalty mechanism is used to update the trust
values for the participating vehicles.

8

To remove malicious nodes authors in [9] proposed a hybrid scheme for
trust establishment. It’s a centralised reputation management technique that
screens out malicious nodes that operates in one of three adversarial modes:
bogus, secret, or collude. Their scheme converges quicker than previous
centralised methods and outperforms them. Their method converges faster
and with a 10% increase in accuracy. It detects untrustworthy vehicular
messages by relying on global reputation and only taking into account those
messages that are sent by reputable vehicles. It verifies data in order to
keep the vehicle’s reputation up to date. When a vehicle reaches a local
server’s zone, the local server checks its reputation with the central server
and changes it based on the validations obtained for that specific vehicle
during that interaction. The vehicle’s reputation is globally synchronised
after it leaves that location. Based on the number of fraudulent messages
received, the vehicle’s reputation is decreased exponentially.

Accordingly, to identify malicious nodes propagating fraudulent messages,
authors in [10] proposed a reputation management system. The reputation
score is derived by assigning weights to various criteria. Once the trust
scores are calculated, the decision regarding the acceptance or rejection of
the incoming messages is made. Accordingly, the vehicles are awarded or
penalised further. The messages are categorised into three classes namely
high, medium, or low severity. The technique ensures that messages having
high severity level are only accepted from those vehicle which posses a highly
trust able status and vice versa.

In [11], a fog computing-based trust system is presented. If the inter-
action among the nodes exist, the reputation is calculated based on direct
interactions and if no interaction is available for that particular node then
the neighbors (who have interacted with that node) recommendation is con-
sidered. In their study, for the computation of trust score, direct experience
is always given higher weight-age than the indirect experience, implying that
neighbors recommendation will only be considered and given higher weight
age only if direct experience among those nodes does not exist.

This research [12] focuses on the placement of fog nodes in VANETs for
the purpose of assessing trust. The Vehicle Digital Trustworthiness Card
(DTC) is employed, and it contains the historical trust record for vehicles
issued by trusted authorities. The study is based on vehicle trust data from
the past interactions. The Trust Server (TS) compiles the information gath-
ered from various sources. The maintained scores are further classified into
two classes Frequent Visitors and Occasional visitors. The score can be re-
trieved directly if the node belongs to class A or class B and if the queried
vehicle is new in the network, the score has to be accessed from the central
server, which adds up to the total cost in terms of communication delay.

9

2.2 Machine learning based Techniques

Various studies employ machine learning models to identify and evict mali-
cious vehicles in the vehicular network. In this section, we will discuss about
how researchers have used machine learning techniques for the malicious node
identification particularly in the context of vehicular networks.

The authors in [13] used a real IoT (Internet of Things) data set and con-
verted into a VANET format for the purpose of this study. They performed
feature extraction and used features like similarity, number of packets deliv-
ered and familiarity features for the computation of trust score. The trust
score was computed using two methods namely individual scores and mean
parametric scores. After the computation of trust scores, a threshold value
was defined and vehicles were classified as malicious or honest based on that
value. They employed multiple models such as SVM (Support Vector Ma-
chines), KNN (K Nearest Neighbour) etc. The KNN model with trust value
computation using parametric scores reported better results.

J.Kamel et al. [14] presented a framework for misbehavior detection in
vehicular networks based on the messages exchanged between the smart ve-
hicles. They performed different plausibility checks to distinguish between
the adversary nodes and honest nodes. They simulated six VANET attacks
in their work and then employed machine learning techniques to detect these.
Their framework allows other researchers to incorporate attacking patterns
of their own and then evaluate the framework performance.

Li et al. [15] proposed a technique to identify malicious vehicles that
could have multiple attacking patterns. They used SVM to create a bound-
ary between the honest and malicious nodes. They used different behaviors
observed by neighbors and various contextual information to train the models
and identify adversary nodes.

In [16] authors considered trust in two aspects namely identify and be-
havior. In their work they associate task sensitivity for each task, making
highly sensitive tasks being assigned to highly trust-able nodes only and vice
versa. Identity trust is cor-related with social layer. SVM is used for the
classification of nodes as trustworthy and un-trustworthy. The filtering mod-
ule guarantees that only nodes that meet the task sensitivity requirements
are selected.

F.A. Ghaleb et al. [17] proposed framework to identify malicious nodes
using ANN (Artificial Neural Network). The data is gathered by the vehicle’s
sensors which is later broadcasted by the vehicles and fed to the feature
extraction module. The model is then trained on the historical data. The
results indicated that the model can generalize better as opposed to the
baseline model.

10

Similarly in [18] a DDoS (Distributed Denial of Service) attack in ve-
hicular networks was simulated. They executed the simulation with added
attacking behaviors along with normal traffic and generated a data-set for
the training of intelligent models. Multiple models were trained on data-set
generated through simulation and all showed great results in identification of
DDoS attack traffic. However, their study did not focus on the heterogeneity
and attacker diversity in the simulated data-set.

2.3 Summary

We discussed various techniques for trust evaluation and intrusion detec-
tion in vehicular networks. We categorised the recent work into two broader
classes namely conventional and machine learning based techniques. The lit-
erature covers many techniques that identify malicious nodes or compute a
trust value, but all those studies have been more focused in general intrusion
or misbehavior detection in VANETs, however the special case for trust es-
tablishment in an offloading environment in a vehicular network has been less
explored. Most of the techniques that discuss task offloading discuss about
reducing latency or resource allocations, and the notion of the trustworthi-
ness and reliability of those resources is less considered. We will employ
machine learning techniques to treat the problem of trust in task offload-
ing, approaching it as a classification problem, since machine learning based
models are still in infancy and conventional techniques face the challenge of
how different weights should be quantified to various parameters.

11

Chapter 3

Problem Statement and
Mobility Simulation

In this chapter we will illustrate the problem statement and problem for-
mulation in detail. Equations and theories used for the network entities,
their communication modes, computational models, offloading policies and
the simulation of different network attacks will be discussed. Moreover, we
will discuss in detail the tools and technologies used for the simulation of
VANET scenarios. The simulation represents a vehicular mobility model
where different vehicles run on different roads and junctions in a Manhattan
city network. Each vehicle has a unique identity and a trip (i.e the route that
will be travelled by the vehicle during the simulation time). The normal and
adversary both traffics with their different behaving patterns are represented
in the network simulation.

3.1 Problem Statement

Task offloading is used to enhance user experience in vehicular networks by
offloading tasks from overburdened nodes to the idle nodes. However, a trust
management system is required to achieve this, since the absence of such
system would make it difficult to identify the malicious nodes from the honest
nodes within the internal network. The presence of even one adversary node
can jeopardize the entire network. Different statistical techniques are used
to compute a trust factor, however how much weight-age should be given to
different metrics is still a challenging task. Thus, machine learning techniques
could be utilised, and this problem can be approached as a classification task
to classify between a malicious node or honest node.

12

3.2 Network Model

Let V = {v1, v2, ...vn} and R = {r1, r2, ...rm} in a vehicular network, be the
sets that represent vehicles and RSUs, respectively. The RSUs are stationed
at various points along the vehicular network where the vehicles in range can
reach them. A smart vehicle with OBUs and smart sensors generates the
tasks for a variety of applications, including object detection, event notifica-
tion, and so on. The generated task T is defined as a (ST , CT , DT) represent-
ing input size of the task , CPU cycles required for the processing of task
and deadline to complete the task respectively. The participating nodes in
the network can operate in one of two types of behaviour, as described below:

Honest Behaviour – A node’s honest behaviour is described as be-
haviour that follows a definite trend throughout the simulation time, such
as task generation and local and offloaded task execution. However, realistic
circumstances show that a trustworthy vehicle may miss a deadline due to
resource restrictions or drop a network packet due to network limitations.
For realistic scenario modelling, these behaviours are reflected with a small
degree of likelihood.

Malicious Behaviour – Malicious vehicle behavior is characterized as
when a vehicle purposefully disturbs the network by missing task deadlines
or rejecting tasks received from other vehicles. The goal of malicious nodes
is to degrade network performance.

3.3 Communication Model

The overall delay incurred for transmission between connected nodes is re-
ferred to as the communication cost. The offloading transmission among the
nodes for a vehicle v ∈ V with a computational task T can be wired or
wireless and is defined as follows:

B =

{
X v↔r, if v ∈ V, r ∈ R (wireless)

Y r1↔r2 , if (r1, r2) ∈ R (wired)
(3.1)

where X denotes a wireless offloading transfer to an RSU r ∈ R and Y
denotes a wired offloading transmission between two RSUs. The Shannon
Hartley theorem is used to calculate the wireless data offloading rate X,
defined below :

13

X = Wlog2(1 +
P

N0W
) (3.2)

where W denotes the available bandwidth, P is the channel transmission
power, and N0 represents the noise power spectral density. In this study
we consider symmetric data transmission rates between vehicle-to-RSU and
RSU-to-vehicle.

3.4 Task Computational Model

The computational tasks are generated by all the entities v ∈ V , these tasks
can be computed by the vehicle itself using local resources or may be of-
floaded to edge nodes based on a certain offloading policy.

Local Execution – The total time spent in completing the computational
task by utilising the vehicle’s own local resources is defined as Tlocal i.e. the
local execution of the task T, for a vehicle v ∈ V is defined as :

Tlocal =
1

fv
(CT +

∑
x∈Q

Wx) (3.3)

fv denotes the compute power (i.e. CPU cycles per second) of a vehicle v
∈ V , CT represents the total number of CPU cycles required by the task for
execution, and Wx denotes the total waiting time at local queue for the tasks.
Due to the heterogeneous nature of generated tasks and computational ca-
pacities of the vehicles, the time it takes to complete a task i.e Tlocal varies
among different vehicles.

Task Offloading Policy – The local computational power of a vehicle v ∈ V
may become overburdened with time, hence task offloading can be used to
compensate for computational resource scarcity on end devices. When a ve-
hicle is unable to meet the task deadline locally, it decides to offload a task
T . The offloading decision denoted by (OT) for a computational task T is
made on the following criteria.

OT =

{
1, if Tdest < Tsrc , dest ∈ NBR

0, if Tsrc ≤ Tdest , dest ∈ NBR
(3.4)

where 1 denotes the offloading of task and 0 indicates the task will be exe-
cuted locally, source vehicle (src) is defined as the vehicle that needs to offload
and destination vehicle (dest) is defined as the vehicle to whom task will be

14

offloaded and is one of the neighbor of the source vehicle. Each vehicle main-
tains a list of neighboring vehicles defined as NBR = {dest1, dest2, ...destl}
where l is the number of vehicles in the neighborhood of source vehicle, the
list is updated with time.

Offloaded Execution – The total execution time for an offloaded task
Toffload is defined as :

Toffload =
ST

Bmn

+
1

fv
(CT +

∑
x∈Q

Wx) (3.5)

The first term is the transmission delay for offloading a task from node m to
node n, and the second term is the cumulative delay at node n.

3.5 Adversary Model/Attack Model

Throughout the simulation, an honest vehicle maintains a steady pattern,
whereas a malicious vehicle’s pattern evolves over time, making it more diffi-
cult to distinguish between both. We investigated malicious patterns that a
vehicle could represent as a destination vehicle in a task offloading environ-
ment, i.e. the vehicle that receives the offloaded tasks. Any misbehaviour
on the transmitting side (task generator) during task offloading falls outside
the scope of this paper and is not reflected in the simulation. Following is a
list of malicious vehicle modes:

Intelligent Cheater (Mode 0) – A malicious vehicle uses this mode
to hide its malicious activities, build credibility among other vehicles, and
deceive the intelligent layer. When a malicious vehicle enters this mode, it
acts like a trustworthy vehicle, completing offloaded tasks and meeting the
tasks deadlines intentionally to establish trust.

Black hole attack (Mode 1) – A malicious vehicle in this mode mir-
rors the black hole attacking pattern, which means it immediately discards
the tasks it receives from other vehicles. It processes its own locally gener-
ated tasks and discards those received from other vehicles, therefore tasks
received from other vehicles have no impact on its computational resources.
As a result of its relatively high availability of computational resources, the
malicious vehicle tends to attract other vehicles.

Delayed Response (Mode 2) – In this mode, a malicious vehicle in-
tentionally delays responses to offloaded tasks received from other vehicles,

15

causing deadlines to be missed and the entire network to deteriorate, espe-
cially for time-sensitive applications such as accident alerts. The problem
is that malicious vehicles advertise their idle resources because they seldom
process the assigned offloaded tasks, attracting multiple nodes to offload their
tasks in order to receive timely service.

A malicious vehicle enters the simulation in default mode 0 and adapts an
arbitrary pattern in which it selects at random from a list of vehicle modes
(0,1,2), each with a different probability distribution in the simulation, to
determine whether to switch to mode 1 or mode 2, or to remain in default
mode 0. Before determining which mode to utilise, a vehicle runs through
each mode for 30 seconds. After one cycle, a vehicle returns to its default
mode 0 for a 60-second cycle. Multiple malicious behaviours, each repre-
sented by an unique vehicle, may exist in a same time frame. A single
vehicle, on the other hand, may only have one malicious pattern operational
at any given moment and cannot have multiple malicious patterns activated
at the same time.

We elaborated in detail the network entities involved in the simulation,
how are network is build and how the entities communicate and share infor-
mation. We discussed about a computational task, what are its execution
requirements, how is it executed, when it is executed locally and when it will
be offloaded to the edge nodes. Additionally, the communication cost among
the participating nodes is also discussed. Moreover, attacking model used in
the simulation is also explained in detail with various modes in which the
malicious vehicles operate, now we will discuss about the simulation tools
used in this work.

3.6 Vehicle Mobility Simulation Tools

We have used SUMO simulator [19] for simulating a VANET environment.
It is an open source tool that can be used to simulate vehicles and pedestrians
along with a network of roads, junctions and edges, reflecting a real life
traffic system. TraCI (Traffic Control Interface) is connected to the SUMO
simulator by using a python [20] script by which we can access and modify
the network and its entities.

16

3.6.1 Converting Manhattan City Map into SUMONet-
work

To simulate a real life network for this study, we used an Open Street Map
(OSM) [21] of Manhattan city, representing different street views of the city.
We downloaded the OSM map for Manhattan city through the website as
shown in figure 3.1.

Figure 3.1: A snapshot demonstrating the Manhattan city area used from
Open Street Map.

However, to use the Manhattan city map in the simulation, it must be
converted to the format supported by SUMO. Thus, the OSM file containing
the Manhattan map was converted into a SUMO supported network by using
command prompt with the command as described in figure 3.2 that uses a
netconverter that comes along with SUMO tools to convert an OSM file into
a network file.

Figure 3.2: Input command for the conversion of OSM map into SUMO
network.

The successful execution of the command generates an output file in an
XML format representing the Manhattan city network that contains descrip-

17

tions of different roads, lanes, the speed limit at each road, which kind of
network entities are allowed on which roads etc. as shown in figure 3.3

Figure 3.3: Output file after the successful conversion of OSM map into
SUMO network file.

3.6.2 Vehicle Trips and Route Generation

Once a road network of Manhattan city is created the next step is to load
the vehicles in the network.

Figure 3.4: Command to generate vehicle routes and network edges in
SUMO simulator.

Each vehicle has a unique identity and a trip (route travelled by the ve-
hicle during the simulation). The command to generate vehicles and their
respective routes is demonstrated in figure 3.4. The command uses ran-
domTrips python script pre-loaded with SUMO packages to generate random
trips for the vehicles, by random trips we mean, every time the simulation is

18

executed, it will ensure that each vehicle has a new random path. The ran-
dom trips file is shown in figure 3.5. In this command we have stated that
the simulation will end after 1000 sec, with the default simulation starting
time of 0 sec.

Figure 3.5: Vehicles trips output file to generate random trips in the
simulation.

The successful execution of the command generates an output route file
that defines the vehicle routes, which routes will be taken by different vehi-
cles, at what time they will enter the simulation and at what time they will
leave the simulation as shown in figure 3.6

Figure 3.6: Output file for the generated vehicle routes.

19

3.6.3 Setting Configuration File and Running the net-
work

The successful generation of road network and vehicle routes leads us to
the final step of setting up the entire network with a network configuration
file. A configuration file is used to setup the entire network by linking the
routes and the network files. We have also used an additional re-router file,
the purpose of which is to make the vehicle’s trips longer in the simulation.
Once all things are finalized, the configuration file is loaded in the SUMO
simulator and is executed, the output of which is shown in figure 3.7

Figure 3.7: The simulated vehicular network with vehicles on the roads.

3.7 Summary

In this chapter, we elaborated in detail the network entities involved in the
simulation. The vehicle mobility model is simulated as explained above,
once the mobility model is created a python script and TraCI server are used
to simulate different network behaviors for different network entities, such
as malicious and honest vehicles, different attacking patterns for malicious
vehicles, task generation modules, task computation modules, task offloading
among the vehicles etc. all such behaviors are simulated using a python
script and later on machine learning models are also integrated within the
simulation as explained in later chapters

20

Chapter 4

Proposed Intelligent
Multi-criteria Trusted
Offloading Decision Framework

In this chapter, we will demonstrate the development of our framework. The
vehicle behaviors are simulated in the network with malicious vehicles having
multiple malicious patterns as explained in chapter 3. We run the simulation
multiple times for the generation of data set which is then used to train
multiple machine learning models and finally we will discuss our offloading
framework with added intelligent layer.

4.1 Data set Generation

We have used SUMO [19] simulator and a python [20] script to simulate a
task offloading scenario in VANETs. The tasks are generated by each vehicle
present in the simulation. A computational task T is defined as a three-
tuple (ST , CT , DT) consisting input size of the task , CPU cycles required for
execution of the task and deadline to complete the task respectively. The
offloading decision is made when the vehicle can not meet the task deadline
locally. As a result, it decides to offload the task to the vehicle with the least
wait time among its neighbours. If no vehicle with a wait time smaller than
the source vehicle is found, the task is added to the local queue. We have
added different percentages of malicious vehicles with different probability
distribution of malicious vehicle modes. The tasks are offloaded based on
the criteria mentioned in section 3.4. We have maintained the interaction
data for each offloaded task. The data-set features are described below in
table 4.1.

21

Table 4.1: Description of data-set features.

Features Description
Task Size The number of CPU cycles required for

the execution of task.
dest veh WaitTime Total wait time at the local queue of the

destination vehicle.
Task Receiving Time Time (seconds) at which the result

of offloaded computational task is re-
ceived from the destination vehicle at
the source vehicle.

task deadline: The task deadline for a computational
task.

task completion time: Total time (seconds) in which the com-
putational task was executed.

Task deadline achieved A boolean representing if the deadline
for an offloaded computational task was
received or not.

Time Deviated Deadline Total time (seconds) deviated from the
task deadline.

dest veh Tsk Rcv Total number of offloaded tasks re-
ceived by the destination vehicle at a
particular time frame.

dest veh Tsk Rcv Exec Total number of offloaded tasks exe-
cuted by the destination vehicle at a
particular time frame.

dest veh local computation Total number of tasks locally executed
by the destination vehicle at a particu-
lar time frame.

dest veh Tsk Generated Total number of computational tasks
generated by the destination vehicle at
a particular time frame.

dest veh Tsk offloaded Total number of computational tasks
offloaded by the destination vehicle at
a particular time frame.

22

Features Description
Dest veh behavior A label representing the true behavior

of destination vehicle at a particular
time frame, with value of 1 represent-
ing a malicious behavior and value of 0
representing honest behavior.

Training Data-set — In each simulation run, we used varied param-
eters such as initial seed values, proportion of malicious vehicles, and distri-
bution of malicious vehicle modes (0,1,2) to conduct several simulations for
1000 seconds each. Each simulation’s data is kept in its own csv file (comma
separated values). After that, we merged all of the csv files into one file.

Testing Data-set — To ensure unbiased findings, we constructed new data
sets with different seed values than those used in the training set, rather than
splitting the previously generated data set into train and test splits. Since,
changing the seed values entirely affects the distribution of data. We con-
structed five test sets with malicious vehicle percentages of 10, 20, 30, 40,
and 50 %, based on different distributions of malicious vehicle modes.

Pre-Processing of Data — The ”Task Receiving T ime” data-set fea-
ture describes the time range in which the vehicle receives the result for an
offloaded task, based on which we calculate if the task deadline was accom-
plished or not. The tasks that are offloaded in the last few seconds of the sim-
ulation are still in processing, and the value of -1 for ”Task Receiving T ime”
shows that the task is still in processing, i.e. unprocessed, because the sim-
ulation terminates after an assigned period. We excluded the records of
unprocessed tasks to simplify our case because no conclusion could be drawn
from them.

4.2 Machine Learning Model Training, Selec-

tion and Deployment

Training Phase — Different machine learning models such as Logistic Re-
gression, Decision trees, Random Forests , Deep Neural Network and LSTM
(Long Short Term Memory), were trained on the training data-set generated
through the simulation with the following structure.

Input Features — Task Size, dest veh WaitTime, Task Offloading Time,

23

Figure 4.1: The work flow of Machine Learning Framework.

Task Receiving Time, task deadline, task completion time, Task deadline achieved,
Time Deviated Deadline, dest veh Tsk Rcv, dest veh Tsk Rcv Exec, dest veh local
computation, dest veh Tsk Generated, dest veh Tsk offloaded.

Target Variable — Dest veh behavior

Testing and Selection Phase — The trained models were evaluated on
previously unseen testing data set generated through simulation. We mea-
sured each model’s performance using a variety of metrics, including recall,
precision, F1-score, and F2-score. Because our application is recall critical,
the impact of having more false negatives is significantly higher than false
positives, i.e., if a malicious vehicle remains undetected, the network suffers
more penalties than if an honest vehicle is classified as malicious. We chose
LSTM for edge node deployment since it had the highest recall, F2-score,
and least False Negatives.

Deployment — The trained machine learning model is deployed on edge
nodes (RSUs) to make predictions on the vehicle’s behavior and classify it

24

as malicious or honest, in real time. The trained machine learning model is
fed on the vehicle real time interaction data collected through data collection
module to classify the given vehicle as malicious or honest.
The proposed machine learning framework is demonstrated in figure 4.1. The
procedure starts with simulating the mobility model and attacking model in
the simulator with defined attacking patterns. Once those behaviors are
simulated, the simulation is executed, with each simulation run generating a
data set, this process is repeated several times. After the generation of two
different data-sets i.e training and testing , the next step is to train the mod-
els. In testing phase, we perform feature extraction for the data, followed by
data pre-processing. The next step is to select the machine learning model,
one of the given model is selected. Once the model is trained, the next phase
is model testing. The model is tested and evaluated on various metrics, if
the results reported are not good, the hyper parameters are fine tuned until
satisfactory performance is achieved. After achieving the performance goal,
the model is sent to be deployed and integrated in real time system. This
process is repeated for all the five models, and the model with the best results
is finally deployed in real time system, in our case it is LSTM. The trained
model is incorporated in real time system, the data collection module collects
the vehicle interaction data, the data is fed to the real time system where it
is pre-processed and finally the system gives the prediction on whether the
fed vehicle is malicious or honest. As a final step the predictions given by
the model are then saved in the central predictions data base.

4.3 Multi Criteria Offloading Framework

In this section, we will explain in detail our offloading framework i.e the cri-
teria for the selection of nodes, while making offloading decisions. We will
explain each module of framework in detail.

Cold Start
By feeding the model with real-time vehicle interaction data obtained during
simulation, the trained machine learning model is deployed on edge nodes
(RSUs) to make intelligent decisions in real time. When making offloading
decisions, the vehicles are initially chosen based on the least waiting time.
The main goal for integrating the intelligent layer for offloading decisions af-
ter the cold stat duration is that, at first, the vehicles may be able to complete
the generated tasks locally, necessitating less offloading, but as the compu-
tational resources become overburdened, offloading becomes necessary, as a
result, the vehicles must offload; however, because our architecture is built

25

on offloading interaction data, we may not need to use the intelligent layer
at first because the data is not available. The intelligent layer is initiated
after the cold start period has passed. When a vehicle wants to offload a
computational task after the cold start period, it queries its nearest edge
node to provide trusted candidates list in its vicinity to offload the tasks.

Offloading Framework
The proposed offloading framework is illustrated in Algorithm 4.1, where a
vehicle accesses its nearest edge node when it decides to offload a task. It
requests a list of trusted neighbours for task offloading from the selected edge
node, where a machine learning model is installed. As soon as the interaction
data for those nodes is available, the selected edge node scans through the
predictions provided by the intelligent layer for each adjacent vehicle through
the central predictions database. If there are several trusted candidates, a
list of them is returned, from which the one with the shortest wait time is
chosen. Hence ensuring that the most reliable and competent vehicle is se-
lected for task offloading.

Algorithm 4.1 Multi Criteria Trusted Offloading Framework
Input:

E: nearest edge node to the source vehicle
T : computational task

Output:
status message

1: while true do
2: if offTime > cold start then ▷ Cold start phase is passed
3: trusCand← E.getTrustedCandidates(S, S nbr)
4: if len(trusCand) > 1 then ▷ multiple candidates
5: dest← leastWaitT imeSelection(trusCand)
6: else if len(trusCand) > 0 then
7: dest ← trusCand
8: end if
9: else if offTime < cold start then

10: dest ← V ehicleSelectionWaitT ime()
11: end if
12: OffloadTask (T, dest)
13: end while

Selection of Trusted Vehicle
The RSU takes into account previous vehicle events and searches for intelli-

26

gent model predictions for each vehicle interaction. Because the algorithms
are designed to make predictions for every event, a single vehicle may have
multiple predictions. The following selection conditions are used by the edge
node to make any decision.
Let P = {p1, p2, ...pn} be the collection of predictions generated by the intel-
ligent model for each unique interaction for the selected vehicle v ∈ V , with
n predictions made by the intelligent model in various time frames. Let α
denote the cumulative count for honest predictions and β denote the count of
malicious predictions, for the vehicle v, and let λ denote the label selected at
the end , with label 1 and label 0 representing malicious and honest vehicles
respectively.

λ =


0, if α > β

1, if β > α

0, if β = α

(4.1)

A vehicle is labelled as malicious if the number of malicious predictions for
that selected vehicle is higher than the number of honest predictions, and
vice versa. In the event of a tie, the vehicle would be regarded as honest
if the cumulative count of honest and malicious predictions were equal as
demonstrated in equation 4.1.

Rather than taking into account the previously predicted label by the
model, our technique ensures that the proper vehicle is selected for each
time frame based on its prior interaction data. Because malicious vehicles
might occasionally act as honest vehicles, misleading the intelligent layer, we
evaluate all of the interactions the vehicle has had and apply machine learning
prediction to each of those encounters. Edge node checks the predictions
given by the deployed model for each nearby vehicle of the source vehicle
(vehicle that chooses to offload tasks). A list of trusted candidate vehicles is
maintained by adding the trusted neighbors predicted by the model.

In Algorithm 4.2, the process of trusted node selection is shown. If avail-
able, the predicted label of each neighbour of the source vehicle is checked.
If there are multiple predictions for a vehicle, the majority voting module is
used to choose the final label. With the passage of time, the list of trust-
worthy and malicious neighbours is updated. This means that if a vehicle
was previously predicted to be malicious, but the majority now believes it
is honest for a specific period of time, the vehicle’s classification will be up-
dated accordingly. This guarantees that the most recent viewpoint is taken
into account.

27

Vehicle selection from Candidates List
The edge node keeps track of trusted neighbours and then chooses the vehicle
with the shortest wait time, i.e. the one with the maximum computational
power among them.

Algorithm 4.2 Trusted candidates selection at edge node
Input:

S: source vehicle id
S nbr: a list of source vehicle’s neighbors

Output:
trustedCandidates: a list of trusted neighbors

1: while true do ▷ check predictions for every neighbor
2: if v in S nbr then ▷ iterate through the complete list
3: predictions ← getPredictions(v)
4: if len(predictions) > 1 then ▷ multiple predictions
5: label ← getMajorityV oting(v, predictions)
6: else if len(predictions) > 0 then
7: label ← predictions
8: end if
9: if label == 0 then ▷ v is honest

10: trustedCandidates.append(v) ▷ add v in list
11: if v in S blacklist then
12: S blacklist.remove (v) ▷ update reputation
13: end if
14: else if label == 1 then ▷ v is malicious
15: S blacklist.append(v) ▷ update reputation
16: end if
17: end if
18: end while
19: return trustedCandidates

Data Gathering and Predictions Module
The behavioural data collection module is activated once the offloading con-
tact among the connected vehicles begins. The tasks are offloaded from the
source vehicle to the destination vehicle, and the vehicle behavioural data
module captures the interaction data once the status of the offloaded task
is known. The acquired data is run through the entire machine learning
framework pipeline, which extracts features and pre-processes the data. Af-
ter passing through these phases, the vehicle interaction data is supplied to

28

Figure 4.2: Architecture diagram demonstrating the working of proposed
framework

the intelligence layer, which classifies the vehicle as malicious or honest. The
central predictions database, which is synchronised with all the edge nodes,
stores the predicted label for that specific vehicle, which can be accessed by
all other edge nodes present in the network. The proposed framework archi-

29

tecture is illustrated in figure 4.2.

Synchronized Reputation Management
When the cold start timer expires, every vehicle that needs to offload (source
vehicle) requests its nearest edge node for a list of trustworthy neighbours.
When the request reaches the edge node, it checks if predictions are available
in the local data base for each neighbour of the source vehicle, if not, it scans
the centralised intelligent layer predictions data base and assigns the label
for each neighbour based on majority voting decision criteria as explained in
equation 4.1.
Every edge node in the network has the same intelligent layer, which means
that every edge node has the same machine learning model. We pass the
interaction data to the nearest edge node for each offloaded interaction, al-
lowing the machine learning model to generate a prediction on that specific
vehicle. Once the vehicle’s label for that time period is determined, it is kept
in a centralised database that is synced with all of the edge nodes.
Thus, it is especially important when the source vehicle has not interacted
with one of its neighbours, but the distributed reputations available for vehi-
cles can assist the vehicle in making an intelligent decision. As a result, the
edge node checks its historical interaction data; the source vehicle may not
have interacted with that particular neighbour, but other vehicles may have,
and thus it can assist us in making smart offloading decisions. In this stage,
the edge node keeps a list of trusted neighbours for any vehicle that asks a
trusted neighbour to offload a task.

30

Chapter 5

Experimental Evaluation,
Results and Discussion

This chapter discusses about the experiments performed in detail, demon-
strating each experiment and their reported results. The simulation setup
and parameters used are defined in table 5.1. We will cover the trained ma-
chine learning model results, followed by their deployment in the simulation
and finally the network results after incorporation of the intelligent layer.

Table 5.1: Simulation Environment and System Specifications

Parameter Value
Simulation Time 1000 seconds
Simulation Area 3X3 Km
Simulation runs 5 times
cold start duration 300 seconds
Total vehicles 300
Vehicle speed 1.20 m/s2

Vehicle Compute Ca-
pacity

100-200 MIPS

Compute request size 200-400 MIPS
Task generation random
CPU 1.3 GHz Intel Core i7
RAM 16GB
OS Microsoft Windows 10
Simulator SUMO

The trained machine learning models are tested on 5 different test data-
sets containing 10, 20, 30, 40, and 50% malicious vehicles respectively. In

31

Figure 5.1: The reported precision with varying percentage of attacking
vehicles for various models.

figure 5.1 the reported precision for different model at different ratios of at-
tacking vehicles is demonstrated, Neural Network reported highest precision
at highest attacker density i.e 50% malicious vehicles and Decision Trees re-
ported lowest precision at lowest attacker density i.e 10% malicious vehicles.

Figure 5.2: The reported recall of various machine learning models as the
percentage of attacking vehicle varies.

32

Similarly, figure 5.2 shows reported recall at varying ratio of attackers in
the network.

Figure 5.3: F1 score of various machine learning models against different
attacking vehicles ratio.

Figure 5.4: The reported F2 score with varying density of attacker nodes
for various machine learning models.

33

Figure 5.5: A graph representing log loss with varying attacker density for
various models.

Figure 5.6: The reported ROC for various models at 50% attacker density

LSTM reported highest recall at a attacker density of 50% malicious

34

nodes, whereas Logistic Regression reported lowest recall at an attacker den-
sity of 10%. The figures 5.3 and 5.4 represent the F1-score and F2-score
respectively, Neural Network reported highest F1-score on average for vary-
ing percentages of malicious vehicles and LSTM reported highest F2-score
on average.

Log loss for various machine learning models at a varying ratio of attacker
nodes is illustrated in 5.5. Neural Network reported lowest log loss on average
taken for all the percentages of malicious vehicles in contrast to log loss and
Decision Trees reported highest log loss on average. ROC (Receiver Operat-
ing Curve) for various models is presented in 5.6 with 50% malicious nodes in
the network. The Neural Network and LSTM show comparable AUC (Area
under the curve). The training and testing of various models lead us to the
final step of model deployment within the simulation. We choose LSTM for
the final deployment, since it yielded least false negatives, highest recall and
F2-score. The particular case of identifying malicious vehicles in the network
makes our application recall critical, thus employing LSTM in the real time
system for the identification of adversary nodes makes it the appropriate
choice.
We now demonstrate various network results after the incorporation of intel-
ligent layer in task offloading framework in our simulated network.

10 15 20 25 30 35 40 45 50

50

60

70

80

Attacker Density(%)

E
ffi
ci
en
cy

(%
)

wait Time only
Proposed

Figure 5.7: Task Efficiency achieved at varying attacker density.

In figure 5.7 task efficiency i.e number of offloaded tasks successfully ex-
ecuted is demonstrated at varying ratios of malicious vehicles ranging from
10% to 50%. The results demonstrate a significant difference between the
baseline approach i.e the offloading decisions that are based on vehicle’s wait
time only , the one with the least wait time is selected. However, in our
proposed approach, once the cold start duration is passed, it is ensured that

35

an honest vehicle is selected based on the intelligent layer predictions, in case
of multiple trusted candidate vehicles, the one with the least wait time is se-
lected, thus ensuring that the most trustworthy and most competent vehicle
is selected for task offloading.

10 15 20 25 30 35 40 45 50

60

80

100

Attacker Density(%)

E
ff
ec
ti
ve
n
es
s
(%

)

wait Time only
Proposed

Figure 5.8: Effectiveness at varying attacker density.

Our technique outperformed, the traditional approach even in the worst
case scenario i.e at 50% malicious vehicles, where the baseline approach
achieved task efficiency rate of 49% only whereas our proposed technique
achieved task efficiency rate of 79% i.e 79% of the tasks were executed, even
with about half of the malicious resources being filtered, since our technique
ensures that no task is offloaded to the malicious vehicle based on the pre-
dictions of intelligent layer.

10 15 20 25 30 35 40 45 50

1000

2000

3000

Attacker Density(%)

B
la
ck

h
ol
e
fa
il
u
re
s

wait Time only
Proposed

Figure 5.9: Black hole failures at varying attacker density.

Similarly, in figure 5.8, we compare the effectiveness of our approach as
compared to the wait time only technique. We demonstrate the effectiveness

36

of our technique at varying percentages of malicious vehicles ranging from
10% to 50%. As shown, at lowest ratio of 10% for malicious vehicles our
proposed technique achieved a high effectiveness of 97% whereas the wait
time only approach achieved an effectiveness of 76%. The effectiveness of
proposed technique dropped to only 93% in worst case scenario of 50% mali-
cious vehicles whereas the baseline technique could only achieve effectiveness
of 56% which is very low as compared to the proposed technique.

10 15 20 25 30 35 40 45 50

6

8

10

12

14

Attacker Density(%)

A
ve
ra
ge

w
a
it
ti
m
e

wait Time only
Proposed

Figure 5.10: Average wait time incurred at varying attacker density.

In figure 5.9 the black hole failures i.e the number of tasks that were
simply discarded by the malicious vehicles is compared for the proposed and
baseline approach (wait time only) at varying ratios of malicious vehicles
ranging from 10% to 50%. The results demonstrate a drastic difference be-
tween the baseline and proposed approach. Our technique outperformed the
baseline approach and significant difference can be seen at worst case scenario
of 50% malicious vehicles.

In figure 5.10 average wait time at varying attacking vehicles is presented.
The proposed technique incurred higher wait time as compared to baseline
approach. This is because in our proposed technique, we filter the malicious
vehicles i.e we ensure that for every task that has to be offloaded only trust-
worthy vehicle is selected. It means, when 10% malicious nodes are present
in the network, it filters out the malicious vehicles i.e tasks are not offloaded
to those vehicles. It means the network load is same, however the resources
have been filtered out. Let’s say we have 100 vehicles and 10% of them
are malicious it means, the workload of 100 vehicles will be executed by the
remaining 90 vehicles after filtering out the 10% malicious, so on up to having
50% malicious nodes in the network would mean now the workload would

37

be carried out by 50 vehicles only, after filtering the malicious nodes. Thus,
as the number of malicious vehicles increase in the network, the resources
would be filtered out, however the network load remains the same, which
adds up to the total wait time, thus more wait time as compared to the
baseline approach.

38

Chapter 6

Conclusion and Future Work

6.1 Conclusion

To fully utilise task offloading in a vehicular network an element of trust
among the vehicles is essential, the absence of one can jeopardize the en-
tire network. We simulated different attacking behaviors in VANET task
offloading environment and generated train and test data-sets. The ma-
chine learning techniques were employed to classify the vehicles as honest or
malicious. We demonstrated the benefits of having an intelligent layer incor-
porated in offloading framework which showed significant results in terms of
overall network efficiency and task completion rate as opposed to offloading
decisions based on wait time only.

6.2 Future Work

We intend to extend this work by adding more malicious patterns particularly
in terms of a task generating vehicle (source vehicle). Moreover, we plan to
employ game theory and reinforcement learning techniques, i.e the model can
learn in an online fashion learning from the environment with time and then
making the intelligent decisions.

39

Bibliography

[1] U. Alvi, M. A. K. Khattak, B. Shabir, A. W. Malik, and S. R. Muham-
mad, “A comprehensive study on iot based accident detection systems
for smart vehicles,” IEEE Access, vol. 8, pp. 122480–122497, 2020.

[2] M. M. Hamdi, L. Audah, S. A. Rashid, A. H. Mohammed, S. Alani,
and A. S. Mustafa, “A review of applications, characteristics and chal-
lenges in vehicular ad hoc networks (vanets),” in 2020 International
Congress on Human-Computer Interaction, Optimization and Robotic
Applications (HORA), pp. 1–7, IEEE, 2020.

[3] A. S. Mustafa, M. M. Hamdi, H. F. Mahdi, and M. S. Abood, “Vanet:
Towards security issues review,” in 2020 IEEE 5th International Sympo-
sium on Telecommunication Technologies (ISTT), pp. 151–156, IEEE,
2020.

[4] F. Sakiz and S. Sen, “A survey of attacks and detection mechanisms on
intelligent transportation systems: Vanets and iov,” Ad Hoc Networks,
vol. 61, pp. 33–50, 2017.

[5] S. A. Siddiqui, A. Mahmood, Q. Z. Sheng, H. Suzuki, and W. Ni, “A
survey of trust management in the internet of vehicles,” Electronics,
vol. 10, no. 18, p. 2223, 2021.

[6] H. Sateesh and P. Zavarsky, “State-of-the-art vanet trust models: Chal-
lenges and recommendations,” in 2020 11th IEEE Annual Information
Technology, Electronics and Mobile Communication Conference (IEM-
CON), pp. 0757–0764, IEEE, 2020.

[7] X. Huang, R. Yu, J. Kang, and Y. Zhang, “Distributed reputation
management for secure and efficient vehicular edge computing and net-
works,” IEEE Access, vol. 5, pp. 25408–25420, 2017.

40

[8] S. Iqbal, A. W. Malik, A. U. Rahman, and R. M. Noor, “Blockchain-
based reputation management for task offloading in micro-level vehicular
fog network,” IEEE Access, vol. 8, pp. 52968–52980, 2020.

[9] S. Su, Z. Tian, S. Liang, S. Li, S. Du, and N. Guizani, “A reputation
management scheme for efficient malicious vehicle identification over 5g
networks,” IEEE Wireless Communications, vol. 27, no. 3, pp. 46–52,
2020.

[10] F. G. Mármol and G. M. Pérez, “Trip, a trust and reputation
infrastructure-based proposal for vehicular ad hoc networks,” Journal
of network and computer applications, vol. 35, no. 3, pp. 934–941, 2012.

[11] M. Al-Khafajiy, T. Baker, M. Asim, Z. Guo, R. Ranjan, A. Longo,
D. Puthal, and M. Taylor, “Comitment: a fog computing trust man-
agement approach,” Journal of Parallel and Distributed Computing,
vol. 137, pp. 1–16, 2020.

[12] R. J. Atwah, P. Flocchini, and A. Nayak, “Towards smart trust man-
agement of vanets,” in 2020 IEEE Canadian Conference on Electrical
and Computer Engineering (CCECE), pp. 1–5, IEEE, 2020.

[13] S. A. Siddiqui, A. Mahmood, W. E. Zhang, and Q. Z. Sheng, “Machine
learning based trust model for misbehaviour detection in internet-of-
vehicles,” in International Conference on Neural Information Process-
ing, pp. 512–520, Springer, 2019.

[14] J. Kamel, M. R. Ansari, J. Petit, A. Kaiser, I. B. Jemaa, and P. Urien,
“Simulation framework for misbehavior detection in vehicular net-
works,” IEEE transactions on vehicular technology, vol. 69, no. 6,
pp. 6631–6643, 2020.

[15] W. Li, A. Joshi, and T. Finin, “Svm-case: An svm-based context aware
security framework for vehicular ad-hoc networks,” in 2015 IEEE 82nd
Vehicular Technology Conference (VTC2015-Fall), pp. 1–5, IEEE, 2015.

[16] D. Wu, G. Shen, Z. Huang, Y. Cao, and T. Du, “A trust-aware task
offloading framework in mobile edge computing,” IEEE Access, vol. 7,
pp. 150105–150119, 2019.

[17] F. A. Ghaleb, A. Zainal, M. A. Rassam, and F. Mohammed, “An effec-
tive misbehavior detection model using artificial neural network for ve-
hicular ad hoc network applications,” in 2017 IEEE Conference on Ap-
plication, Information and Network Security (AINS), pp. 13–18, IEEE,
2017.

41

[18] F. A. Alhaidari and A. M. Alrehan, “A simulation work for generating a
novel dataset to detect distributed denial of service attacks on vehicular
ad hoc network systems,” International Journal of Distributed Sensor
Networks, vol. 17, no. 3, p. 15501477211000287, 2021.

[19] P. A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y.-P. Flötteröd,
R. Hilbrich, L. Lücken, J. Rummel, P. Wagner, and E. Wießner, “Micro-
scopic traffic simulation using sumo,” in 2018 21st International Con-
ference on Intelligent Transportation Systems (ITSC), pp. 2575–2582,
IEEE, 2018.

[20] “ Python Programming Language.” Available
:https://www.python.org/ . Accessed on: December 15,2020 [On-
line].

[21] “ Open Street Map.” Available : https://www.openstreetmap.org/map=16/40.7915/-
73.9532. Accessed on: December 15,2020 [Online].

42

