Complete Genome Sequence Analysis of Hepatitis B

Virus Isolated from Pakistani Patients with Chronic

HBV Infection

BY

Umer Javed (2008-NUST-BS-V&I-05)

Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan. 2012.

Complete Genome Sequence Analysis of Hepatitis B Virus Isolated from Pakistani Patients with Chronic HBV Infection

By

Umer Javed

2008-NUST-BS-V&I-05

A thesis submitted in partial fulfillment of the requirement for the degree

of Bachelors of Applied Biosciences

With

Majors in Biotechnology

Atta-ur-Rahman School of Applied Biosciences National University of Sciences & Technology Islamabad, Pakistan 2012

National University of Sciences and Technology

Certified that the contents and form of thesis entitled "Complete Genome Sequence Analysis of Hepatitis B Virus Isolated from Pakistani Patients with Chronic HBV Infection" submitted by Umer javed, have been found satisfactory for the requirement

of the degree.

andf Supervisor:

Dr. Najam-us-Sahar Zaidi

Assistant Professor (ASAB), NUST.

111/. Principal:

Dr. Muhammad Ashraf

Principal (ASAB), NUST.

Dated: 27/6/12

I Dedicate this Thesis to My Grand Parents And My Family

ACKNOWLEDGEMENTS

First and foremost I thank ALLAH (SWT) for making it all possible. Secondly I would offer my sincerest gratitude to our Principle Dr Muhammad Ashraf and my supervisor, Dr. Najam us Sahar Sadaf Zaidi, who supported me throughout my thesis with her patience and knowledge whilst allowing me the room to work in my own way. One simply could not wish for a better or friendlier supervisor.

I would like to acknowledge Dr. Hajra Sadia for their kind guidance and support during thee entire period of my work. My sincere thanks to Kashif Mehmood, Abbas Raza, Fakhira Begum, Abida Siddiqa, Muhammad Suleman Riaz and Dr. Mustafeez Mujtaba for helping me a lot during my research work. I would like to acknowledge my fellow lab mates; Rubina, Habiba, Humaira, Zaira and Ammad faheem for all the fun we had during the last one year, my class fellows and my hostel friends for their help and sincerity. Last but not the least; I would like to thank my family for all their love, for supporting me both financially and spiritually throughout my university days, and being with me on every step of my career and life.

Lord Umer Javed

TABLE OF CONTENTS

Fitle		Page No.	
Acknowledgements		v	
Table of Contents		vi	
List of Acronym		viii	
List of Tables		ix	
List of Figures		х	
Abstract	xi		
Chapter 1: INTRODUCTION		1	
Chapter 2: LITERATURE REVIEW		4	
2.1 Epidemiology		5	
2.2 HBV structure		5	
2.3 Genome organization		7	
2.4 Genotypes		9	
2.5 Relation of mutations to genotype		10	
2.6 Transmission of HBV		10	
2.7 Factors affecting the course of HBV infection		11	
2.8 Mutant HBV viral gene products		12	
Chapter 3: MATERIALS AND METHODS		16	
3.1 Sample Collection		16	
3.1.1 Study Population		16	
3.2 Viral DNA Extraction and Amplification		16	
3.2.1 Viral DNA Extraction		16	
3.2.2 Primer designing for complete Genome of Hepatitis B v	rirus	17	
3.2.3 Full length Genome Amplification polymerase chain reaction	ı (PCI	R)17	
3.3 Gel Elution of PCR Product		19	

3.4 Cloning		19	
3.4.1 Cloning in to TA vector		19	
3.4.2 Preparation of Competent Cells		20	
3.4.3Transformation of Ligated Product		20	
3.4.4 Clone Confirmation		21	
3.4.5 Replica Platting		21	
3.4.6 Colony PCR	21		
3.4.7 Mini Prep of Positive Clones		22	
3.4.8 Restriction Digestion of Plasmid DNA		22	
3.5.9 Sequencing		22	
Chapter 4: RESULTS		23	
4. 1 PCR amplification of Complete HBV		23	
4.2 Gel elusion of Complete HBV Genome on	24		
4.3 Cloning, Transformation & Selection of full length HBV posit	ive clon	les25	
4.4 Sequence Analysis	26		
4.5 Nucleotide Changes in Core Region (1861-2800)			28
4.6 Nucleotide Changes in Surface Region (2800- 3160)		29	
Chapter 5: DISCUSSION		37	
CONCLUSION		40	
FUTURE PROSPECTS		41	
Chapter 6: REFERENCES		42	

LIST OF ABBREVIATIONS

HBV	Hepatitis B Virus
HCC	Hepatocellular carcinoma
DNA	Deoxyribonucleic acid
C gene	Core gene
S gene	Surface gene
CDC	Centre of disease control
Prec/c	Precore and core
HBcAg	Hepatitis B core antigen
HBeAg	Hepatitis B e antigen
NCBI	National Center for
	Biotechnology Information
Nt	Nucleotide
ER	Endoplasmic Reticulum
Pg	RNA Pregenomic RNA
mRNA	Messenger RNA
S	Surface
Pol (P)	Polymerase
С	Core
En1	Enhancer element 1
En2	Enhancer element 2
3D	Three dimensional
Р	Proline
ORF	Open reading frame

Table no	Table title	Page no
Table 2.1	HBV variants and their potential impact for pathogenesis of HBV infection	14
Table 3.1	Primers used for PCR amplification of HBV genome	17
Table 3.2	Patient history data of samples used for the amplification and cloning of HBV genome.	19
Table 4.1	Possible Mutations in Initial Sequence Result (sample L2)	27

List of Tables

List of Figur	res
---------------	-----

Figure No.	Title	Page No.
Figure 2.1	Diagrammatic representation of a Dane particle or complete HBV virion.	6
Figure 2.2	Genome of hepatitis B virus (HBV) as present in virion	8
Figure 3.1	3.1 Polymerase chain reaction (PCR) program for amplification of Hepatitis B virus Complete Genome (HBV).	
Figure 4.1	Representative gel of amplified complete genome of HBV on 0.8% agarose gel.	23
Figure 4.2	Digital image of 0.8% agarose gel of bulk PCR product (HBV genome).	24
Figure 4.3.1	Figure 4.3.1 Digital image of colony PCR product of white colony picked from replica agar plates	
Figure 4.3.2	Digital picture of 0.8% agarose gel showing TA Clones and their restriction digestion	26
Figure 4.5	Alignment of sample sequence and reference sequence using CLC workbench.	36

ABSTRACT

Hepatitis B Virus (HBV)has been etiologically linked to several liver related ailments of both chronic and acute nature, including fatal fulminant hepatitis, cirrhosis and hepatocellular carcinoma, which is a highly prevalent human cancer and is responsible for significant morbidity and mortality internationally. A large number of genomic discrepancies have been reported in HBV over the past two decades and these induce a specific change in virus biology. The variants involved in host immune system evasion radically modify the virus-host interactions when present and are a serious challenge to healthcare personnel. To investigate this, a cross sectional study was conducted in HBV infected patients identified randomly in different tertiary care hospitals of Islamabad and Rawalpindi, which will lead to the characterization of sequence variations in HBV genome after amplification and cloning. The purpose of this study was to demonstrate full length genome mutations in chronic HBV infected patients in the Pakistani population and to individually map the mutations in the viral gene products of the HBV to extensively describe their molecular characteristics in viral life cycle and course of infection. New treatment alternatives have to be employed to treat accumulated viral mutations as seen in the case of Hepatitis B virus mutants in Pakistan. There is a dire need that pathologists, pharmaceutical and the healthcare industry augment their awareness of HBV mutants and how these mutants may modify existing diagnostic and treatment options in the perspective of Pakistan.

Chapter 1

INTRODUCTION

Hepatitis B Virus (HBV)has been etiologically linked to several liver related ailments of both chronic and acute nature, including fatal fulminant hepatitis, cirrhosis and hepatocellular carcinoma, which is a highly prevalent human cancer and is responsible for significant morbidity and mortality internationally(Lee, 1997). HBVis a small enveloped DNA virus and is prototypic member of the *Hepadnaviridae* that replicates via reverse transcription.

Estimated 400 million people get chronically infected with HBV every year (Tong *et al.*, 2010). HBV infection has been reported to cause approximately 1.5 million fatalities annually, most of which are in Asian and African region(Fan *et al.*, 2011). Chronic HBV infection is a key public health issue in Pakistan and has known association with a wide range of clinical states ranging from an asymptomatic carrier state with no observable alteration in liver function to critical liver damage conditions including liver cirrhosis and hepatocellular carcinoma (Ali *et al.*, 2011).

Although the estimated increase in liver cancer is mainly attributed to hepatitis C, hepatitis B is a also marked as potential major contributor to burden of liver cancer in near future (Liang and Ghany, 2002). HBV is classified into genotypes A-F, each having different clinical and etiological importance (Mizokami *et al.*, 1999) and recent data backed up by studies in animals demonstrates that genotype of virus may influence the spectrum of liver disease,

1

including nature and incidence of hepatocellular carcinoma, (Li *et al.*, 1993; Ahmed *et al.*, 2009; Khawaja and Khawaja, 2009). HBV genotypes display a distinct geographical distribution which in turn correlates with extent of liver disease (Kidd-Ljunggren *et al.*, 2002). No explanation is currently available for these differences.

HBV reverse transcriptase (RT) bears resemblance with human immunodeficiency virus (HIV) RT lacking 3'–5'proofreading capacity and consequently being an error-prone enzyme (Gunther *et al.*, 1999; Cane *et al.*, 1999) this corresponds to a large number of nucleotide substitutions during replication process. Locating specific mutations with higher prevalence in viral genome is of significant importance, the reason being that such information provides valuable insight regarding their influence on pathological and clinical aspects of the virus (Kim *et al.*, 2007).

Recent studies show that nucleic acid substitutions in post-HCC isolates impart them with both structural and functional changes as well as influence their interaction with host cells (e.g., enhanced replication efficiency, escape from host immune responses, highly cytopathic or increased transactivating effect, etc). This could reveal important clues regarding variables implicated in progression of HBV chronic infection to malignancy (Lin *et al.*, 2001).

Each of the six sub genotypes and genotypes of hepatitis B virus (HBV) is associated with a specific combination of geographic distribution, ethnicity, and anthropological history. Following Phylogenetic analysis of HBV whole genome six genotypes were designated ranging from A-G with a minimum of 8% intergenotypic diversity among them (Stuyver *et al.*, 2000; Norder *et al.*, 1994 ; Okamoto *et al.*, 1988). A unique pattern is shown by each of the seven genotypes in terms of geographical distribution. Higher prevalence has been reported for genotype A in North America, Africa and North-western Europe (Norder *et al.*, 1993). Genotypes B and C are typically more frequent in Asia (Okamoto *et al.*, 1988), while genotype D has a worldwide distribution although it is majorly in Mediterranean region. Genotype E is present in Africans and genotype F has been reported to dominate in native South American populations. (Norder *et al.*, 1993; Arauz-Ruiz *et al.*, 1997). Currently, the newly isolated genotype G seems to be restricted to HBV carriers in USA, Georgia and France (Stuyver *et al.*, 2000).

This study would help in better understanding of HBV genotypes prevailing in Pakistan, mutations persisting in them and the evolutionary lineage of Pakistani prevalent HBV. Such knowledge would be of high value for research experts and health care professionals.

The aims of this study are:

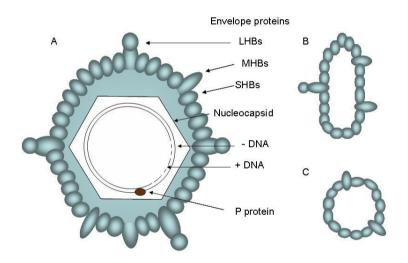
- To amplify full length HBV genome from Pakistani HBV infected patients.
- To clone full length HBV genome in Pakistani population
- Analysis of complete genome sequence of HBV isolated in Pakistan and comparing it with published sequences by molecular evolutionary analysis.

3

Chapter 2 LITERATURE REVIEW

Liver inflammation or hepatitis can be caused by different infectious or non infectious agents, but there are at least five types of viruses which primarily causes hepatitis as their clinical symptom. These viruses are, thus, named hepatitis A virus (HAV), hepatitis B virus (HBV), hepatitis C virus (HCV), hepatitis D (or delta) virus (HDV) and hepatitis E virus (HEV).

The human hepatitis B virus (HBV) is a small enveloped DNA virus implicated in both chronic and acute hepatitis. Despite the fact that an efficient vaccine is already available, an estimated 360 million individuals are chronically infected all over the world and mortality rate has reached more than 1 million per year due to HBV-associated liver pathologies (Block et al., 2007). Although HBV replication is not considered directly cytopathic, HBV infection causes a wide range of liver disease from acute to chronic viral hepatitis, which may lead to liver cirrhosis and afterwards to hepatocellular carcinoma (HCC) development. Even though large amount of epidemiological data implicates chronic HBV infection as the main risk factor for liver cancer development, (Chemin and Zoulim, 2009; Lok, 2004; Pollicino et al., 2011) the molecular mechanisms underlying HBV persistence and pathogenesis are still unclear. The genomic organization of HBV and its replication strategies are unique and allow it to remain in an infected hepatocyte. A remarkable trait of HBV infection is the formation in hepatocyte nuclei of a stable HBV-DNA minichromosome, the so-called covalently closed circular DNA (cccDNA), serving as template to generate all RNAs necessary for protein production and viral replication. Although the reversion of viral activity and the failure of viral clearance after withholding of antiviral therapy is mostly due to the perseverance of cccDNA in chronically infected individuals, the virological and immunological mechanisms that prevent virus abolition leading to the development of chronic infection are still poorly understood. The development of novel experimental infection models and quantitative serological and intrahepatic biomarkers would provide new insight into the strategies adopted by HBV for both persistence and pathogenesis.

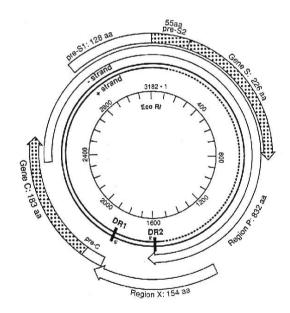

2.1 Epidemiology

An estimated 400 million individuals have been reported infected with HBV throughout the world (Tong *et al.*, 2010). The numbers of fatalities reported are approximately 1.5 million individuals per year as a consequence of infection, make it highest no form Asia and Arica (Fan *et al.*, 2011). Chronic infection by HBV is a key public health issue in Pakistan and is linked to different clinical illnesses, from less dangerous state with a normal liver activity to more deadly liver diseases (Ali *et al.*, 2011).

2.2 HBV Structure

HBV being the member of *Hepadnaviridae* family are the smallest DNAcontaining, enveloped animal viruses known so far. Characteristic of HBV is its high specificity of tissue and species, and a unique genomic organization and replication mechanism. Even thougha lot of research has been done, vital steps of the viral life cycle, such as viral entry and organization of the cccDNA minichromosome, are still poorly understood (Glebe and Urban, 2007). Only recently, new infection models and molecular techniques have opened new promises to investigate specific steps of the lifecycle and virus-host interactions influencing viral activity in infected hepatocytes (Levrero*et al.*, 2009).

HBV demonstrate three major structural phenotypes, the dane particles which are double-shelled and have a size ranging from 42- to 47-nm (Dane *et al.*, 1970), second phenotype is sphere form with size of approximate 22 nm, while third is filamental form with diameter of 22nm and variable length (Dane *et al.*, 1970; Robinson and Lutwick, 1976). Furthermore, HBV virions with tadpole shape have been reported as well, characterized by a head sized 42 nm and a tail 120nm in length and 22 nm in diameter (Dane *et al.*, 1970).


Figure 2.1: A. Diagrammatic representation of a Dane particle or complete HBV virion. The envelope is made up of LHBs, MHBs and SHBs. **B**. Filamentous sub-viral particle, which is composed of SHBs and MHBs. **C**. Spherical sub-viral particle, is composed mainly of SHBs and MHBs. (Gerber and Thung, 1985; Ganem and Varmus, 1987; Seeger and Mason, 2000).

Infectious Dane particles are 42nm in size; their double-shelled consists of an outer envelope and an inner nucleocapsid of icosahedral morphology (figure 1.2A). The envelope consists of three proteins which make up the surface, namely cocarboxyterminal large (LHBs), middle (MHBs) and small (SHBs) surface proteins (figure 2.1A). Nucleocapsid consists of a core protein (HBcAg) which covers viral DNA (Seeger *et al.*, 1991; Gerber and Thung, 1985; Seeger and Mason, 2000; Ganem and Varmus, 1987). At least two proteins are associated withviral DNA: a protein kinase and an endogenous DNA polymerase (PK) (Gerber and Thung, 1985; Robinson and Greenman, 1974;Ganem and Varmus, 1987). Diameter of spherical particles is typically 22 nm while filamentous particles have variable length but identical diameter. The two aforementioned particles are noninfectious in nature and relatively deficient in LHBs as well (figure 2.1 B & C)

2.3 Genome Organization

HBV genome consists of partially double stranded DNA virus with a size of approximately 3.2 kb. A protein is covalently attached to 5' end of minus strand which has unit length, whereas plus strand has variable length but is less than unit length, and its 5' end has an RNA oligonucleotide attached to it. Therefore cohesive ends only maintain circularity of DNA strand rather than imparting a closed configuration (Gao and Hu, 2007). HBV genome consists of four overlapping open reading frames (ORFs); coding seven different proteins by multiple in-frame start codons (Figure 2.1). Parts are present on HBV genome which regulate the determination of site for polyadenylation as well as control encapsidation of specific transcript into nucleocapsid. Genomic arrangement of hepatitis B virus family differentiates it from other viruses with non-conserved DNA replication pattern (Knaus and Nassal, 1993).

There are four ORFs which are displayed by HBV genome (Block *et al.*, 2007): as shown in the figure 2.2, the preS/S encoding the three viral surface proteins; the precore (PreC)/core encoding the core protein and the non structural PreC protein, also known as secreted e-antigen (HBeAg); the pol ORF encoding the viral polymerase, which possesses DNA polymerase, RNase H and reverse transcriptase activities, and also acts as the terminal protein for priming; and the X ORF, encoding the small regulatory X protein, which is crucial in vivo for viral replication (Zoulim *et al.*, 1994; Lucifora*et al.*, 2011). All four ORFs use a single mutualpolyadenylation signal motif; hence, the HBV-RNA transcripts are polyadenylated and capped (Nassal, 2008).

Figure 2.2: Genome of hepatitis B virus (HBV) as present in virion, the 3.2-kb genome of HBV exists in a partially double-stranded state. Negative sense has the Long/negative sense strand has constant length and contains a nick at unique site. The short/positive sense has a variable 3' end but a unique 5' end that is which differs among individual

virions. All viral proteins are coded by negative strand, which is in from of four overlapping open reading frames (ORFs). These four ORF encode surface proteins, precore/Core protein, polymerase having reverse transcriptase activity and most important X protein which is involved in development of hepatocellular carcinoma (Feitelson and Larkin, 2001).

2.4 Genotypes

Each of the six sub genotypes and genotypes of hepatitis B virus (HBV) is associated with a specific combination of geographic distribution, ethnicity, and anthropological history. Following Phylogenetic analysis of HBV whole genome six genotypes were designated ranging from A-G with a minimum of 8% intergenotypic diversity among them(Stuyver *et al.*, 2000; Norder *et al.*, 1994;Okamoto *et al.*, 1988). A unique pattern is shown by each of the seven genotypes in terms of geographical distribution. Higher prevalence has been reported for genotype A in North America, Africa and North-western Europe (Norder *et al.*, 1993). Genotypes B and C are typically more frequent in Asia (Okamoto *et al.*, 1988), while genotype D has a global distribution although it is mainly in Mediterranean region. Genotype E is present in Africans and genotype F has been reported to dominate in native South American populations.(Norder *et al.*, 1993; Arauz-Ruiz *et al.*, 1997). Currently, the newly isolatedgenotype G seems to be restricted to HBV carriers in USA, Georgia and France (Stuyver *et al.*, 2000).

Studies from Pakistani origin report variable HBV genotypes and their occurrence. A study by Idress, et al, reported a prevalence of genotype C, while Alam, *et al*, found genotype D in 85%, Baig, *et al*, reported genotype D in 64% of patients (Baig*et al.*, 2008; Idrees*et al.*, 2004;Alam*et al.*, 2007) and Abbas, et al,

reported genotype D as the prime genotype; this study however, mostly included hemodialysis patients with HBV infection (Abbas *et al.*, 2006).

2.5 Relation of Mutations to Genotypes

Like HBV genotypes, HBV mutant species also show particular distribution pattern. For example the PreC mutants are found more recurrent in areas such as the Mediterranean basin and Asia, where genotypes B, C and D are predominant and are uncommon in North America and Europe, where genotype A predominates (Hunt *et al.*, 2000; Lindh *et al.*, 1997). The differences between HBV genotypes in the selection of BCP and/or PC mutations and disease progression have been verified in studies from Europe (Sanchez-Tapias*et al.*, 2002). Studies from Asian origin supply strong evidence that HBV genotype B is related with insidious progressive liver disease compared with genotype C, but the basis for such dissimilarity in pathogenicity could not be proved. Additional studies are required to outline the relation of different HBV genotypes and course and outcomes of HBV infection (Sakugawa*et al.*, 2002).

2.6 Transmission of HBV

Hepatitis B virus is transmitted parentally via apparent or unapparent, percutaneous or per mucosal contact with septic blood or other human body liquids. Major aspects for infection comprise unscreened blood transfer, sexual contact, re-using or sharing of syringes amidst injection drug users, tattooing, working or stayingin a health-care setting, visiting/residing in a correctional facility, long-term household or intimate non-sexual contact with an HBsAgpositive individual and renal dialysis (Lavanchy, 2004; Wasley*et al.*, 2006). In areas where the prevalence is low, hepatitis B is acquired through unsafe activities—such as insecure sexual contact or syringe sharing with HBsAg-positive individuals—and by contact with contaminated apparatus used for therapeutic procedures. In high-frequency regions, majority of infections occur during early childhood. About 90% of HBeAg-seropositive mothers with high viral load transmit hepatitis B virus to their off spring, compared with 10–20% of HBeAg-seronegative carrier mothers (Okada *et al.*, 1976). The prevalence of HBeAg is greater in Asian than in African HBsAg carrier mothers (40 vs. 15%), so perinatal transmission is greater in Asians, but mainly horizontal in Africans (Botha *et al.*, 1984; Lin *et al.*, 2003).

2.7 Factors Affecting the Course of HBV Infections

The progression of HBV infections can be related to a variety of factors, mainly categorized as viral factors, host-related factors and external factors. A number of host-associated causes are interrelated with an augmented hazard of progressing chronic HBV infectivity (Hyams, 1995; Polish *et al.*, 1992), such as host defense response, time of disease and host genetic factors (Lindh *et al.*, 1999). External factors include alcohol, smoking, and dietary carcinogens. Study demonstrates that HBV chronic hepatitis patients with heavy alcohol history have as much as 6 folds higher risk of progression to cirrhosis (Ikeda *et al.*, 1998). Similarly other study have shown that the progression of HBV infection to cancer can be highly effected due to smoking and consumption of dietary carcinogen, like aflatoxins, which contaminate food stored in moist and humid environment (Yang *et al.*, 2002; Ming *et al.*, 2002). Thirdly, viral factors play a huge role in progression of HBV infections. HBV sequence mutations have also been gradually acknowledged as a feature that changes the progress and result of HBVliver

infection (Wang *et al.*, 2005). Variations in the genes and genome of HBV can manipulate the host response, as well as it can create stronger mutants with greater surviving abilities. Mutations in HBV regulatory regions and promoter sequences can cause over production of viral proteins. The role of Major HistocompatibilityComplex II (MHC II) polymorphism in the aftermath of HBV pathogenicity has also been inspected in different studies (Chakravarty, 2005; Thursz, 1997), yet the accurate antigen presentation with the support of MHC II to the helper T cells is imperative for HBV removal (Thursz, 1997).

2.8 Mutant HBV Viral Gene Products

HBV uses reverse transcriptase (RT) like human immunodeficiency virus (HIV) RT, which is an error-prone enzyme lacking 3'–5' proofreading capacity (Cane *et al.*, 1999; Gunther *et al.*, 1999), and hencecauses a huge amount of nucleotide replacements during virus life cycle. Finding of commonness of various specific mutations in the viral genome proves to be of a lot ofsignificance, because they present information regarding their effect on the virological and clinical aspects of the virus (Kim*et al.*, 2007).

Although HBV have a high replication efficiency(with a daily production of 10^{11} circulating virusparticles as compared to 10^{9} particles per day of humanimmunodeficiency virus; HIV), the rate of mutant generation of HBV is interestingly lower than $2x10^{4}$ base substitutions/site/year(Girones and Miller, 1989). This proves that HBV is one to two orders of magnitude lower thanother viruses that lack polymerase-associated proof-readingfunctions. The decrease in production rate and number of viable mutants is also due to theorganization of theHBV genome having multiple overlapping open readingframes. However, the driving force behind the choice and take-over of amutant strain appear to be due tocellular and humoral host immune response and anti viral therapy. In vitro studies suggested that defectivemutants could play a significant role by interfering at replicative and transcriptional levels of HBV(Gunther *et al.*, 1997). The occurrence of mutations along HBV genomeis random, and the selection of one over the others authorize a biologicalgain to the prevalent mutation during the replicationcycle of the virus or the mutant gets a selective advantage over wild-type virus in host-virus interactions (Oldstone, 1991). Yet these interactions are not considered in most of the molecular epidemiology of HBV mutational studies. The importance of the presence or absence of a givenmutation is analysed by simple means of associative statistics with the clinicopathological or diseasepatterns of the infected hosts.

The replication of HBV population causes many changes in its genome. Thus considering the replication rate of any HBV population, within a time frame of weeks and months in a single patient, its evolution can be compared to the evolution of human populations during centuries or millennia. Thus it would be much more important to study the dynamic changesof diverse viral mutations within the overall viral population relation with the series of events taking place in the same host or changes of the host-virus interactions. Therefore there is a need to modify the methodologies so that these biological or pathogenetic traits of viral mutations can be better understood.

Studies have shown that structural and functional changes of the genome in post-HCC isolates and their interactions with host cells (e.g., increased replication efficiency, evading immune responses of host, exceedingly cytopathic or increased transactivating effect, etc.), however, could expose significant clues related to progression from HBV chronic infection to malignancy (Lin *et al.*, 2001).

Table 2.1: HBV variants and their potential impact for pathogenesis of HBV infection(Baumert and Blum, 2000; Baumert *et al.*, 2005; Zoulim, 2004; Pawlotsky, 2005).

HBV region	Mutation	Molecular phenotype	Clinical relevance
Pre-S/S	Pre-S1/ pre-S2/	Misassembly	Fibrosing cholestatic
	S-promotor		hepatitis
	S	Alteration of B- and	Vaccine escape
	S splicing	T-cell epitopes	Immune escape
			Diagnostic escape
Pre-C	Pre-C-stop	Loss of HBeAg	Severe hepatitis
			HBeAg-deficiency
Core	Core	Alteration of T-cell	Viral persistence
		epitopes	Severe hepatitis
RT/Pol	Pol	Replication deficiency	Viral latency
			Viral persistence
	Pol	Resistance to antivirals	Therapy escape
Regulatory	Core promotor	Enhanced replication	Severe hepatitis
Elements		and core expression	Modulation of
			drug resistance
		Decreased HBeAg	HBeAg
		synthesis	seronegativity
	Enhancer I	Decreased replication	Chronic hepatitis

Data collected shows that(Table 2.1) HBV mutants can affect clinical outcomes by modifying the natural course of infection and giving rise to antiviral resistance (Baumert and Blum, 2000; Baumert *et al.*, 2005; Zoulim, 2004; Pawlotsky, 2005). In the perspective of various genotypes, natural occurring mutations have been explored in the structural and non-structural genes as well as regulatory features of the virus. Mutations produced in BCP, are interlinked with anti-HBe, HBsAg and

positive serological shape, most importantly includes G1764A and A1762T.BCP and PreC mutations are observed at one place and are correlated to HBeAgnegative ailments after liver transplantation, introduction of HCC and FHF (Hunt *et al.*, 2000; Takahashi *et al.*, 1995). The PreC stop codon mutations result inloss of hepatitis B e antigen (Liang *et al.*, 1991), explained groups of mutations in the core promoter result in improved viral infection (Baumert*et al.*, 2005), and alterations in the reverse transcriptase/polymerase genes give resistance to antivirals (Zoulim, 2004;Schildgen*et al.*, 2006). In addition, several modifications in the surface region of HBV genome have been documented which may change the immune modulation of the viral surface proteins (HBsAg) and morphology of viral envelope proteins (Baumert *et al.*, 2005;Kannand Gerlich, 2005).

By complete HBV genomic analysis, it is possible to discover whether there are major nucleic acid sequence variations between Pakistani HBV infected isolates from chronically infected patients (without treatment), chronically infected patients (with treatment) and from HBV induced HCC patients, and by further cell lines studies, functional differences between proteins and the host-virus interactions for such HBV isolates might also be exposed.

Chapter 3

MATERIAL AND METHODS

3.1 SAMPLE COLLECTION

3.1.1 Study Population

HBV positive patients Sample were collected from different hospitals including polyclinic hospital, Military hospital, and Holy family hospital. For extraction of serum, samples were centrifuged at 8000 rpm for 3 min. The sera was then stored at -80°C to prevent degradation of nucleicacids and protein. The study was authorized by the Institutional review board of National University of Sciences and Technology.

3.2. VIRAL DNA EXTRACTION AND AMPLIFICATION

3.2.1 Viral DNA extraction

The Nuleospin® blood kit (Macherey-Nagel Germany) was used for nucleicacid purification (Whole blood DNA extraction) according to the manufacturer's instructions. A 200µl aliquot of serum was used for theextraction. The DNA was eluted from the Nuleospin column and the extracted DNA was stored at -20°C.

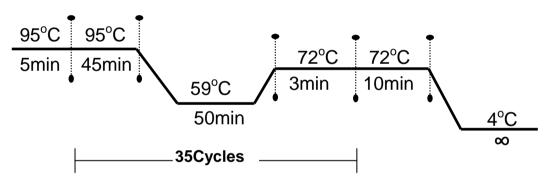
3.2.2 Primer Designing for Complete Genome of Hepatitis B Virus

Universal primers reported by(Zhang*et al.*, 2007) were used for the amplification of Hepatitis B virus genome amplification. Sequences of the primers are given in the table3.1.

Name	Sequence	Length	Annealing Temp	Reference
WAL	ACTGTTCAAGCCTCCAAGCTGT	24	66	Zhanget al.,
	GC			2007
WAF	AGCAAAAAGTTGCATGGTGCT	24	62	Zhanget al.,
	GGT			2007

Table 3.1: Primers used for PCR amplification of HBV genome

3.2.3 Full Length Genome Amplification by Polymerase Chain Reaction


Polymerase Chain Reaction (PCR) was carried out to amplify HBV genome using the Sample Serum DNA isolated in section 3.2.1. The reaction mixture contained 200ng (5 μ L) Sample DNA template along with 10 μ M genome specific forward and reverse primer (1 μ L each), 2mM dNTPS (3 μ L), 2mM MgCl₂ (2 μ L), 0.5 units of Dream Taq polymerase (Fermentas, USA) (0.5 μ L) along with 1X Dream Taq Polymerase Buffer (2 μ L) and nuclease free water (6.5 μ L) making a total reaction volume of 20 μ l. PCR mixture was then placed in Thermal Cycler

(Swift[™] MaxPro Thermal Cycler, Esco, Singapore), under the following PCR conditions as shown in figure 3.1;

- 1. Initial denaturation (95 °C) 5 min
- 2. Denaturation (95 °C) 45 min
- 3. Annealing (67 °C) 50 min
- 4. Extension (72 °C) 23 min
- 5. Final extension (72 °C) 15 min
- 6. Held at 4 °C

Steps 2, 3 and 4 were repeated for 35 times between initial denaturation and final extension.

PCR Program for HBV Genome

Figure 3.1: Polymerase chain reaction (PCR) program for amplification of Hepatitis B virus Complete Genome (HBV).

The PCR product was visualized afterwards on 0.8% agarose gel, added with ethidium bromide on Wealtec Dolphin Doc (S/N470883) gel documentation system. Patient's history data for positive samples are shown in Table 3.2.

Table 3.2: Patient history data of samples used for the amplification and cloning of HBV genome.

Patient Data for HBV Genome				
Patient	Patients	Patient	Patient	Genotype
no	name	Age/year	Gender	
1	Pc 02	10	М	D
2	CTL 1	22	М	D
3	CTL 2	25	F	D
4	Pims 2	32	М	D
5	Khi 10	38	М	D
6	MH8	35	F	D

3.3 Gel Elusion of PCR Product

Silica bead DNA gel extraction kit, (Fermentas, USA) was used to elute the PCR product in order to continue with the cloning. Standard procedure was followed to extract the product from the gel.

3.4 CLONING

3.4.1 Cloning in to TA vector

Using Invitrogen's Dual Promoter TA cloning kit, eluted product of HBV genome was cloned into TA vector (pCR®II-TOPO®) after amplification. Refer to figure 3.2 for map of the aforementioned plasmid. A 50ng mixture of linearized pCR®II and 150ng of eluted HBV genome product were co-incubated with 4 units

of T4 DNA ligase at 14°C overnight along with appropriate buffer and nuclease free water.

3.4.2 Preparation of Competent Cells

For competent cells preparation, anisolated colony was picked and inoculated in 10 ml LB media. It was then incubated overnight at 37°C in Refrigerated Shaking incubator TSS-40-250 (Technico Scientific Supply, Pakistan). Subculturing was performed in 50 ml LB media using 2 ml of inoculum from previous culture and incubated for two hours at 37°C in Refrigerated Shaking incubator TSS-40-250 (Technico Scientific Supply, Pakistan). This culture was then centrifuged at 4000 rpm in centrifuge 5810R (Eppendorf, Germany) at 4oC. Supernatant was then discarded and pellet was resuspended in 20 ml of chilled 50mMcalcium chloride (CaCl₂). It was then incubated for 10 minutes on ice and then again centrifuged at 4000 rpm in centrifuge 5810R (Eppendorf, Germany) at 40°C. Afterwards pellet was resuspended in 2 ml 50 mM CaCl₂.Competent cells were henceforth kept on ice prior to use.

3.4.3Transformation of Ligated Product

Transformation was performed via heat shock method. 150 μ l of competent cells (DH5 alpha strain of *E coli*) were co-incubated with 10 ul of ligated product on ice, for duration of 40 minutes. For heat shock temperature was elevated to 42°C for 90 seconds, subsequently the product was transferred to ice and incubated for 5 minutes. After adding Luria Bertani (LB) media this product was incubated at 37 °C for 2 hours. Pelleting of cells was performed at 14000 rpm for 2 minutes using table top centrifuge (Sigma Germany). After discarding supernatant ~ 200 μ l media was left behind in which the pellet was resuspended. After that it was spread

on agar plate supplemented with 100 μ g/ml ampicillin, 20mg/ ml Isopropyl β -D-1thiogalactopyranoside (IPTG), and 20 mg/ml of 5-bromo-4-chloro-3-indolyl- beta-D-galactopyranoside (Xgal) to obtain blue and white colonies for selection. The plates were then incubated overnight at 37°C.

3.4.4 Clone Confirmation

Blue/white selection was used for identification of transformants, following colony PCR and restriction digestion, DNA sequencing were performed.

3.4.5 Replica Platting:

For replica plating single white colonies were selected and streaked on agar plate containing 100µg/ml ampicillin. These plates were then incubated overnight at 37°C. Colonies with positive results were then picked from the plate and grown in 5 ml LB media containing 100µg/ml ampicillin. After was then incubated for 16 hours in Refrigerated Shaking incubator TSS-40-250 (Technico Scientific Supply, Pakistan) at 37 °C and 125 rpm.

3.4.6 Colony PCR:

Single colonies were picked from replica plates and mixed in 15 μ l of nuclease free water. It was then incubated at 95°C for 15 minutes followed by 10 minutes at 25°C. It was then centrifuged in Sigma 1-14 Microfuge (MBI, Canada) at maximum speed and supernatant was used as template for PCR with all conditions aforementioned in amplification section. Each sample was loaded on 0.8% agarose gel to check presence of genome in the vector. The gel was visualized on Wealtec Dolphin Doc (S/N470883) gel documentation system.

3.4.7 Mini Prep of Positive Clones

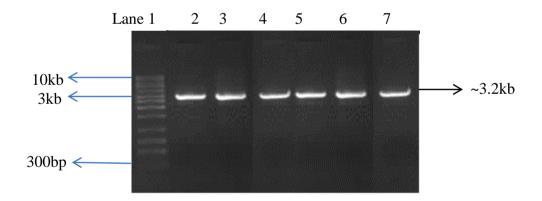
21

Gene jet plasmid mini prep kit (Fermatas, USA) was used for the extraction of plasmid. Standard manufacturer protocol was followed for this method.

3.4.8 Restriction Digestion of Plasmid DNA

The extracted plasmid wasconfirmed by subjecting the isolated plasmid to digestion with *EcoR*1 enzyme (Fermentas, USA) as the vector contains restriction sites on both sides of the cloned gene. Isolated plasmid was subjected to digestion with *EcoR*1enzyme to confirm presence of genome. The isolated plasmid (5µL) was treated with 10 units of enzyme (1µL), 10 X Digest reaction buffer (1µL) and nuclease free water (3µL). The reaction mixture was incubated at 37°C for 3 hours and confirmation was made by resolving the digested product on .8% agarose gel, and visualized on gel documentation system (Wealtec Dolphin Doc, Sparks, USA) under UV light.

3.4.9 Sequencing


The plasmid isolated in section 3.4.7 was sequenced using M13 Universal forward and reverse primers at Macrogen (Korea).

Chapter 4

RESULTS

4.1 PCR Amplification of Complete HBV Genome

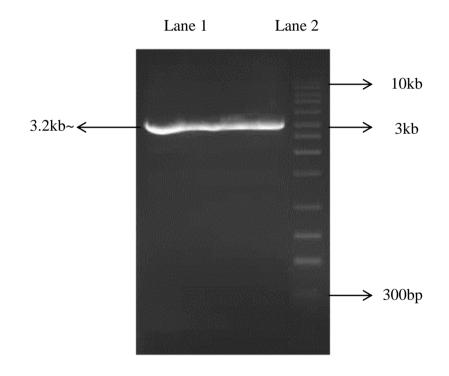

PCR amplification of Hepatitis B complete genome was carried out using DNA template extracted from patient's serum as mentioned in section 3.2.1 (Viral DNA extraction). Complete genome specific primers were used for amplicon amplification. Figure 4.1 represents the amplified amplicon HBV genome of approximately 3.2kb.

Figure 4.1: Representative gel of amplified complete genome of HBV on 0.8% agarose gel. Lane 1: 1Kb, DNA ladder (300-10,000 bp) (Axygen Scientific, Inc). Lanes, 2-7 show the amplified HBV genome from different chronic patients.

4.2 Gel Elusion of Complete HBV Genome

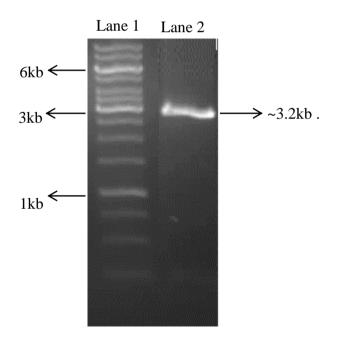
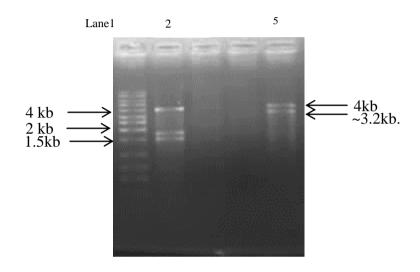

The amplified fragment was eluted from gel to obtain purified PCR product for further processing. As shown in Figure 4.2 Lane 1 represents the band size of approximately 3.2kb of full length genome of HBV, whereas lane 2 contains 1kb DNA ladder (Axygen Scientific, Inc).

Figure 4.2: Digital image of 0.8% agarose gel of bulk PCR product (HBV genome).Lane1: Bulk PCR product of HBV genome from Pc 02 sample. Lane 2 1kb DNA ladder (Axygen Scientific, Inc).


4.3 Cloning, Transformation & Selection of Full Length HBV Positive Clones

Purified PCR product was then cloned in pCR®II and transformed into E.coli DH5 α strain. Transformed colonies were selected on the basis of blue white selection. White colonies were picked and cultured In LB media and colony PCR was performed (results shown in the Figure 4.3.1) representing the band size of 3.2kb approximately.

Figure 4.3.1: Digital image of colony PCR product of white colony picked from replica agar plates. Lane 2 shows colony PCR product of inserted HBV genome against DNA size marker of 1Kb DNA ladder (Fermentas. USA) shown in lane 1.

Positive colonies with insert were cultured, plasmid was isolated and digested (figure 4.3.2) for the confirmation of cloning of full length genome of HBV. After digestion of the insert with *EcoR*1 a designating band of approximately 3.2kb was observed on agarose gel.

Figure 4.3.2: (**A**) Digital picture of 0.8% agarose gel showing TA Clones and their restriction digestion. Lane M: 1 kb ladder (Axygen Scientific, Inc). Lanes 5 show the digestion of plasmid with *EcoR*1, where as lane 2 represents double digestion with hindIII and XhoI.

4.4 Sequence Analysis

Cloning of HBV genome was further confirmed by sequencing of the plasmid product. Sequencing was carried out by Macrogen Korea. The sequence obtained after sequencing was then aligned with other complete genome sequences reported from Pakistan and neighboring countries. Sequencing results were aligned using freely available CLC workbench (<u>http://www.clcbio.com</u>). Table 4.1 represents the possible mutations in L2 sample.

S #	Nucleotide Change	L2 seq position	Consensus Seq position
01	C to T	55	1912
02	A to C	121	1978
03	T to C	250	2107
04	T to G	264	2121
05	G to A	281	2138
06	C to T	282	2139
07	T to C	286	2143
08	N to T	309	2167
09	C to T	313	2170
10	T to C	388	2245
11	A to T	650	2557
12	G to A	731	2588
13	G to T	746	2603
14	T to C	768	2625
15	C to T	887	2744
16	G to A	993	2850
17	Deletion Of A	1093	2950
18	A to C	1108	2965
19	T to C	1151	3008
20	Deletion Of C	1163	3020
21	Deletion Of G	1190	3047
22	C to G	1199	3056
23	C to G	1226	3083
24	C to T	1235	3092
25	T to C	1236	3093
26	C to T	1237	3094
27	C to T	1238	3095

Table 4.1 Possible Mutations in Initial Sequence Result (sample L2)

Chapter 4

28	T to G	1239	3096
29	Deletion of C	1242	3099
30	Deletion of T	1243	3100
31	C to T	1244	3101
32	T to C	1245	3102
33	A to T	1250	3107
34	Deletion of G	1253	3110
35	A to G	1256	3114
36	A to G	1260	3118
37	Deletion of C	1266	3124
38	C to A	1273	3131
39	C to T	1276	3134
40	A to C	1277	3135
41	Deletion of G	1280	3138
42	C to G	1282	3140
43	C to T	1284	3142
44	Insertions (21)	1192-1212	3157 to 3177
45	Insertions(19)	1217-1235	3181 to 3200

4.5 Nucleotide change in Core Regions (1861-2800)

There were many nucleotide changes observed at various positions 1912, 1978, 2107, 2121, 2138, 2139, 2143, 2167, 2170, 2245, 2557, 2588, 2603, 2625, 2744,2850, in which nucleotide changed form C to T, A to C, T to G, G to A, where as no deletions were observed in this region. This is a partial sequence of core region so at present the role of these changes can not defined properly.

4.6 Nucleotide Change in Surface Regions(2800- 3160)

There were nucleotide changes observed at the start of the Surface gene at position 3095, 3096, 3099, 3100, 3101, 3102, 3107, 3110, 3114, 3118, 3124, 3131, 3138, 3140, 3135 and 3134. This region contains deletion at position 3020, 3047, 3099 and 3100. Insertion of 21 and 19 nucleotides was observed from 3157-3177 and 3181-3200. Full genome sequence of HBV would help in providing a better insight in the nucleotide changes in these regions.

	1,860	D	1,880	0	1,900	
Hepatitis B virus DNA, complete genome, isolate: Pkst7912	CATGTCCTAC	TGTTCAAGCC	TCCAAGCTGT	GCCTTGGGTG	GCTTTGGGGC	1900
Hepatitis B virus DNA, complete genome, isolate: Pkst8216	CATGTCCTAC	TGTTCAAGCC	TCCAAGCTGT	GCCTTGGGTG	GCTTTGGGGC	1900
Hepatitis B virus DNA, complete genome, isolate: Pkst8134	CATGTCCTAC	TGTTCAAGCC	TCCAAGCTGT	GCCTTGGGTG	GCTTTGGGGC	1900
Hepatitis B virus strain 3798-91, complete genome	CATGTCCTAC	TGTTCAAGCC	TCCAAGCTGT	GCCTTGGGTG	GCTTTGGGGC	1900
Hepatitis B virus isolate T1503, complete genome	CATGTCCTAC	TGTTCAAGCC	TCCAAGCTGT	GCCTTGGGTG	GCTTTGGGGC	1900
Hepatitis B virus isolate T1562, complete genome	CATGTCCTAC	TGTTCAAGCC	TCCAAGCTGT	GCCTTGGGTG	GCTTTGGGGC	1900
L2 genome Consensus Sorrigional Conservation		TGTTCAAGCC TGTTCAAGCC	TCCAAGCTGT TCCAAGCTGT	GCCTTGGGTG GCCTTGGGTG	GCTTTGGGGC GCTTTGGGGC	43
0%		1,920		1,940		
Hepatitis B virus DNA, complete genome, isolate: Pkst7912	ATGGACATTG		AGAATTTGGA	GCTACTGTGG	AGTTACTCTC	1950
Hepatitis B virus DNA, complete genome, isolate: Pkst8216	ATGGACATTG	ATCCTTATAA	AGAATTTGGA	GCTACTGAGG	AGTTACTCTC	1950
Hepatitis B virus DNA, complete genome, isolate: Pkst8134	ATGGACATTG	ACCCTTATAA	AGAATTTGGA	GCTACTGTGG	AGTTACTCTC	1950
Hepatitis B virus strain 3798-91, complete genome	ATGGACATTG	ACCCTTATAA	AGAATTTGGA	GCTACCGTGG	AGTTACTCTC	1950
Hepatitis B virus isolate T1503, complete genome	ATGGACATTG	ACCCTTATAA	AGAATTTGGA	GCAACTGTGG	AGTTACTCTC	1950
Hepatitis B virus isolate T1562, complete genome	ATGGACATCG	ACCCTTATAA	AGAATTTGGA	GCTACTGTGG	AGTTACTCTC	1950
L2 genome Consensus conservation	ATGGACATTG		AGAATTTGGA AGAATTTGGA	GCTACTGTGG	AGTTACTCTC AGTTACTCTC	93
Handilla Burlan DNA annalata annana fachata Dhai7040	1,96 		1,98 		2,000	0000
Hepatitis B virus DNA, complete genome, isolate: Pkst7912	GITTTGCCT	TUTGAUTTUT	TICCITCAGE	ACGAGATCTT	CTAGATACCG	2000
Hepatitis B virus DNA, complete genome, isolate: Pkst8216	GTTTTTGCCT	TCTGACTTCT	TTCCTTCAGT	ACGAGATCTT	CTAGATACCG	2000
Hepatitis B virus DNA, complete genome, isolate: Pkst8134	GTTTTTGCCT	TCTGACTTCT	TTCCTTCAGT	ACGAGATCTT	CTAGATACCG	2000
Hepatitis B virus strain 3798-91, complete genome	GTTTTTGCCT	TCTGACTTCT	TTCCTTCAGT	ACGAGATCTT	CTAGATACCG	2000
Hepatitis B virus isolate T1503, complete genome	ATTTTTGCCT	TCCGATTTCT	TTCCGTCTGT	CCGAGATCTT	CTAGATACCG	2000
Hepatitis B virus isolate T1562, complete genome	GTTTTTGCCT	TCTGACTTCT	TTCCTTCAGT	ACGAGATCTT	CTAGATACCG	2000
L2 genome Consensus conservation conservation	GTTTTTGCCT	TCTGACTTCT TCTGACTTCT	TTCCTTCCGT TTCCTTCAGT	ACGAGATCTT ACGAGATCTT	CTAGATACCG CTAGATACCG	143

 Hepatitis B virus DNA, complete genome, isolate: Pkst7912
 CCTCAGCTCT
 ATATCGGGAA
 GCCTTAGAGT
 CTCCTGAGCA
 TTGTTCACCT
 2050

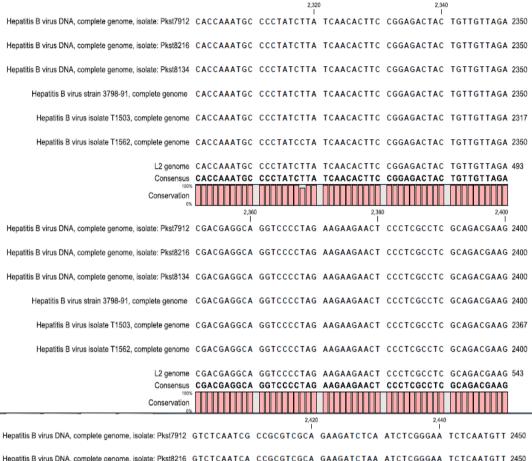
 Hepatitis B virus DNA, complete genome, isolate: Pkst814
 CCTCAGCTCT
 ATATCGGGAA
 GCCTTAGAAT
 CTCCTGAGCA
 TTGTTCACCT
 2050

 Hepatitis B virus DNA, complete genome, isolate: Pkst8134
 CCTCAGCTCT
 GTATCGGGAT
 GCCTTAGAAT
 CTCCTGAGCA
 TTGTTCACCT
 2050

 Hepatitis B virus strain 3798-91, complete genome
 CCTCAGCTCT
 GTATCGGGAT
 GCCTTAGAGT
 CTCCTGAGCA
 TTGTTCACCT
 2050

 Hepatitis B virus isolate T1503, complete genome
 CCTCAGCTCT
 ATATCGGGAA
 GCCTTAGAGT
 CTCCTGAGCA
 TTGTTCACCT
 2050

 Hepatitis B virus isolate T1562, complete genome
 CCTCAGCTCT
 ATATCGGGAA
 GCCTTAGAGT
 CTCCTGAGCA
 TTGTTCACCT
 2050


 L2 genome
 CCTCAGCTCT
 ATATCGGGAA
 GCCTTAGAGT
 CTCCTGAGCA
 TTGTTCACCT
 193

 100%
 Conservation
 0
 2,060
 2,060
 2,060
 2,060
 2,060
 2,060
 2,060
 2,060
 2,060
 2,060
 2,060
 2,060
 2,060
 2,060
 2,060
 2,060

2,044

Hepatitis B virus DNA, complete genome, isolate: Pkst8134 CACCATACTG CACTCAGGCA AGCAATTCTT TGCTGGGGGG AACTAATGAC 2100 Hepatitis B virus DNA, complete genome, isolate: Pkst8134 CACCATACTG CACTCAGGCA AGCAATTCTT TGCTGGGGGG AACTAATGAC 2100 Hepatitis B virus strain 3798-91, complete genome CACCATACTG CACTCAGGCA AGCAATTCTT TGCTGGGGGG AACTAATGAC 2100 Hepatitis B virus isolate T1503, complete genome CACCATACTG CACTCAGGCA AGCAATTCTT TGCTGGGGGG AACTAATGAC 2100 Hepatitis B virus isolate T1503, complete genome CACCATACTG CACTCAGGCA AGCAATTCTT TGCTGGGGGG AACTAATGAC 2100 Hepatitis B virus isolate T1562, complete genome CACCATACTG CACTCAGGCA AGCAATTCTT TGCTGGGGGG AACTAATGAC 2100 L2 genome CACCATACTG CACTCAGGCA AGCAATTCTT TGCTGGGGGG AACTAATGAC 243 Conservation of

2.120 2.140 Hepatitis B virus DNA, complete genome, isolate: Pkst7912 TCTAGCCACC TGGGTGGGTG GTAATTTGGA AGATCCAATA TCCAGGGACC 2150 Hepatitis B virus DNA, complete genome, isolate: Pkst8216 TCTAGCCACC TGGGTGGGTG GTAATTTGGA AGATCCAACA TCCAGGGACC 2150 Hepatitis B virus DNA, complete genome, isolate: Pkst8134 TCTAGCTACC TGGGTGGGTG TTAATTTGGA AGATCCAGCA TCTAGGGACC 2150 Hepatitis B virus strain 3798-91, complete genome TCTAGCTACC TGGGTGGGCG TTAATTTGGA AGATCCAGCA TCTAGGGACC 2150 Hepatitis B virus isolate T1503, complete genome TTTAGCTACC TGGGTGGGTA TTAATTTGGA AGATCCAGCA TCTAG---- 2145 Hepatitis B virus isolate T1562, complete genome TCTAGCTACC TGGGTGGGTG TTAATTTGGA AGATCCAGCG TCTAGAGACC 2150 L2 genome TCTAGCCACC TGGGTGGGTG GTAATTTGGA AGATCCAATA TCCAGGGACC 293 Consensus TCTAGCTACC TGGGTGGGTG TTAATTTGGA AGATCCAGCA TCTAGGGACC Conservation 2,160 2,180 2,200 Hepatitis B virus DNA, complete genome, isolate: Pkst7912 TAGTAGTCAG TTATGTTAAC ACTAATATGG GCCTAAAGTT CAGACAACTA 2200 Hepatitis B virus DNA, complete genome, isolate: Pkst8216 TAGTAGTCAG TTATGTTAAC ACTAATATGG GCCTAAAGTT CAGGCAACTA 2200 Hepatitis B virus DNA, complete genome, isolate: Pkst8134 TAGTAGTCAG TTATGTCAAC ACTAACATGG GCCTAAAGTT CAGACAACTC 2200 Hepatitis B virus strain 3798-91, complete genome TAGTAGTCAG TTATGTCAAC ACTAATATGG GCCTAAAGTT CAGACAACTC 2200 Hepatitis B virus isolate T1562, complete genome TAGTAGTCAG TTATGTCAAC ACTAATATGG GCCTAAAGTT CAGGCAACTC 2200 L2 genome TAGTAGTCAG TTATGTTAAT ACTAATATGG GCCTAAAGTT CAGGCAACTA 343 Consensus TAGTAGTCAG TTATGTNAAC ACTAATATGG GCCTAAAGTT CAGGCAACTA Conservation 2,220 2,240 Hepatitis B virus DNA, complete genome, isolate: Pkst7912 TTGTGGTTTC ACATTTCTTG TCTCACTTTT GGAAGAGAAA CGGTTATAGA 2250 Hepatitis B virus DNA, complete genome, isolate: Pkst8216 TTGTGGTTTC ACATTTCTTG TCTCACTTTT GGAAGAGAAA CGGTCATAGA 2250 Hepatitis B virus DNA, complete genome, isolate: Pkst8134 TTGTGGTTTC ACATTTCTTG TCTCACTTTT GGAAGAGAAA CAGTTATAGA 2250 Hepatitis B virus strain 3798-91, complete genome TTGTGGTTTC ACATTTCTTG TCTCACTTTT GGAAGAGAAA CAGTTATAGA 2250 Hepatitis B virus isolate T1503. complete genome TTGTGGTTTC ACATTTCTTG TCTCACTTTT GGAAGAGAAA CGGTTTTGGA 2217 Hepatitis B virus isolate T1562, complete genome TTGTGGTTTC ACATTTCTTG TCTCACTTTT GGAAGAGAAA CAGTTATAGA 2250 L2 genome TTGTGGTTTC ACATTTCTTG TCTCACTTTT GGAAGAGAAA CGGTCATAGA 393 Consensus TTGTGGTTTC ACATTTCTTG TCTCACTTTT GGAAGAGAAA CGGTTATAGA Conservation 2,260 2,300 2,280 Hepatitis B virus DNA, complete genome, isolate: Pkst7912 GTATTTGGTG TCTTTCGGAG TGTGGATTCG CACTCCTCCA GCTTATAGAC 2300 Hepatitis B virus DNA, complete genome, isolate: Pkst8216_GTATTTGGTG_TCTTTCGGAG_TGTGGATTCG_CACTCCTCCA_GCTTATAGAC_2300 Hepatitis B virus DNA, complete genome, isolate: Pkst8134 GTATTTGGTG TCTTTCGGAG TGTGGATTCG CACTCCTCCA GCTTATAGAC 2300 Hepatitis B virus strain 3798-91, complete genome ATATTTGGTG TCTTTCGGAG TGTGGATTCG CACTCCTCCA GCTTATAGAC 2300 Hepatitis B virus isolate T1503, complete genome GTATTTGGTG TCTTTCGGAG TGTGGATTCG CACTCCGCCA GCTTATAGAC 2267 Hepatitis B virus isolate T1562, complete genome GTATTTGGTG TCTTTCGGAG TGTGGATTCG CACTCCTCCA GCTTATAGAC 2300 L2 genome GTATTTGGTG TCTTTCGGAG TGTGGATTCG CACTCCTCCA GCTTATAGAC 443 Consensus GTATTTGGTG TCTTTCGGAG TGTGGATTCG CACTCCTCCA GCTTATAGAC Conservation

Hepatitis B virus DNA, complete genome, isolate: Pkst8216 GTCTCAATCA CCGCGTCGCA GAAGATCTAA ATCTCGGGAA TCTCAATGTT 2450 Hepatitis B virus strain 3798-91, complete genome GTCTCAATCG CCGCGTCGCA GAAGATCTCA ATCTCGGGAA TCTCAATGTT 2450 Hepatitis B virus isolate T1503, complete genome GTCTCAATCG CCGCGTCGCA GAAGATCTCA ATCTCGGGAC TCTCAATGTT 2450 Hepatitis B virus isolate T1562, complete genome GTCTCAATCG CCGCGTCGCA GAAGATCTCA ATCTCGGGAC TCTCAATGTT 2450 L2 genome GTCTCAATCG CCGCGTCGCA GAAGATCTCA ATCTCGGGAC TCTCAATGTT 2450 L2 genome GTCTCAATCG CCGCGTCGCA GAAGATCTCA ATCTCGGGAC TCTCAATGTT 2450 L2 genome GTCTCAATCG CCGCGTCGCA GAAGATCTCA ATCTCGGGAA TCTCAATGTT 593 Conservation 0% 2,460 2

Hepatitis B virus isolate T1503, complete genome AGTATTCCCT GGACTCATAA GGTGGGAAAC TTTACGGGGC TTTATTCTTC 2467 Hepatitis B virus isolate T1562, complete genome AGTATTCCCT GGACTCATAA GGTGGGAAAC TTTACGGGGC TTTATTCTTC 2500 L2 genome AGTATTCCTT GGACTCATAA GGTGGGAAAC TTTACGGGGC TTTATTCTTC 643 Conservation Conservation

32

		2,520	1	2,540		
Hepatitis B virus DNA, complete genome, isolate: Pkst7912	TACTGTCCCG	1		1		2550
Hepatitis B virus DNA, complete genome, isolate: Pkst8216	TACTGTACCT	GTCTTTAATC	CTCATTGGAA	AACACCCTCT	тттсстаата	2550
Hepatitis B virus DNA, complete genome, isolate: Pkst8134	TACTGTACCT	GTCTTTAATC	CTCATTGGAA	AACACCCACT	тттсстаата	2550
Hepatitis B virus strain 3798-91, complete genome	TACTGTACCT	GTCTTTAATC	CTCATTGGAA	AACACCCTCT	тттсстаата	2550
Hepatitis B virus isolate T1503, complete genome	TACTGTACCT	GTCTTTAACC	CTCATTGGAA	AACACCATCT	ТТТСССААТА	2517
Hepatitis B virus isolate T1562, complete genome	TACTGTACCT	GTCTTTAACC	CTCATTGGAA	AACACCATCT	ТТТСССААТА	2550
L2 genome Consensus	TACTGTTCCT	GTCTTTAACC GTCTTTAACC	CTCATTGGAA CTCATTGGAA	AACACCCTCT AACACCCTCT		693
Conservation «			2,580			
Hepatitis B virus DNA, complete genome, isolate: Pkst7912	1		1		2,600 TGTAGGCCCA	2600
Hepatitis B virus DNA, complete genome, isolate: Pkst8216	TACATTTACA	CCAAGACATT	ATCAAAAAAT	GTGAACAATT	TGTAGGCCCA	2600
Hepatitis B virus DNA, complete genome, isolate: Pkst8134	TACATTTACA	TCAAGACATT	ATCAAAAAAT	GTGAACAGTT	TGTAGGCCCA	2600
Hepatitis B virus strain 3798-91, complete genome	TACATTTACA	CCAAGACATT	ATCAAAAAAT	GTGAACAGTT	TGTAGGCCCA	2600
Hepatitis B virus isolate T1503, complete genome	TACATTTACA	CCAAGACATC	ATCAACAAAT	GTGAACAGTT	TGTAGGCCCT	2567
Hepatitis B virus isolate T1562, complete genome	TACATTTACA	CCAAGACATC	ATCAACAAAT	GTGGACAGTT	TGTAGGCCCT	2600
L2 genome Consensus 1907 Conservation cy		CCAAGACATT CCAAGACATT			TGTAGGCCCA TGTAGGCCCA	743
Hepatitis B virus DNA, complete genome, isolate: Pkst7912	CTCACAGTCA	ATGAGAAAAG		TTGATTATGO	CTGCTAGGT	T 265
Hepatitis B virus DNA, complete genome, isolate: Pkst8216	CTCACAATCA	ATGAGAAAAG	AAGACTGCAA	TTGATTATGO	CTGCTAGGT	T 265
Hepatitis B virus DNA, complete genome, isolate: Pkst8134	CTCACAGTTA	ATGAAAAAAG	AAGATTGCAA	TTGATTATGO	CTGCTAGGT	T 265
Hepatitis B virus strain 3798-91, complete genome	CTCACAGTTA	ATGAGAAAAG	AAGATTGCAA	TTGATTATGO	CTGCTAGGT	T 265
Hepatitis B virus isolate T1503, complete genome	CTTACTGTCA	ATGAGAAAAG	AAGATTGCAA	TTGATTATGO	CTGCTAGGT	T 261
Hepatitis B virus isolate T1562, complete genome	CTTACTGTCA	ATGAGAAAAG	AAGATTGCAA	TTGATTATGO	CTGCTAGGT	T 265
L2 genome Consensus ¹⁰⁰ Conservation °		ATGAGAAAAG			CTGCTAGGT	т
Hepatitis B virus DNA, complete genome, isolate: Pkst7912	TTATCCAAT		ATTTGCCATT			ї Т 270
Hepatitis B virus DNA, complete genome, isolate: Pkst8216	TTATCCAAAT	GTTACCAAAT	ATTTGCCATT	GGATAAGGGT	АТТАААССТ	T 270
Hepatitis B virus DNA, complete genome, isolate: Pkst8134	CTATCCCAAT	GTTACCAAAT	ATTTGCCATI	GGATAAGGGT	АТТАААССТ	т 270
Hepatitis B virus strain 3798-91, complete genome	ТТАТССАААТ	GTTACCAAAT	ATTTGCCATT	GGATAAGGGT	АТТАААССТ	T 270
Hepatitis B virus isolate T1503, complete genome	ттассстаас	ттассааат	ATTTACCTTI	AGATAAGGGT	АТТАААССТ	т 266
Hepatitis B virus isolate T1562, complete genome	ттассстаас	ттассааат	АТТТАССТТІ	AGATAAGGGT	АТТАААССТ	T 270
L2 genome Consensus rovo Conservition		GTTACCAAAT GTTACCAAAT		GGATAAGGGT GGATAAGGGT		
01	<					

vi					
Hepatitis B virus DNA, complete genome, isolate: Pkst7912	ATTATCCAGA	2,720 I ACATCTAGTT	AATCATTACT	2,740 I TCCAAACCAG	
Hepatitis B virus DNA, complete genome, isolate: Pkst8216					
Hepatitis B virus DNA, complete genome, isolate: Pkst8134					
Hepatitis B virus strain 3798-91, complete genome					
Hepatitis B virus isolate T1503, complete genome					
Hepatitis B virus isolate T1562, complete genome					
	ATTATCCAGA		AATCATTACT		ACATTATTTA
Consensus		ACATCTAGTT	AATCATTACT	TCCAAACCAG	
Conservation	2,760		2.790		2,800
Hepatitis B virus DNA, complete genome, isolate: Pkst7912			TATATTATAT	AAGAGAGAAA	CAACACATAG
Hepatitis B virus DNA, complete genome, isolate: Pkst8216	CACACTCTAT	GGAAGGCGGG	ТАТАТТАТАТ	AAGAGAGAAA	CAACACATAG
Hepatitis B virus DNA, complete genome, isolate: Pkst8134	CACACTCTAT	GGCAGGCGGG	ΤΑΤΑΤΤΑΤΑΤ	AAGAGAGAAA	CAACACATAG
Hepatitis B virus strain 3798-91, complete genome	CACACTCTAT	GGAAGGCGGG	ΤΑΤΑΤΤΑΤΑΤ	AAGAGAGAAA	CAACACATAG
Hepatitis B virus isolate T1503, complete genome	CACACTCTAT	GGAAGGCGGG	ΤΑΤΤΤΤΑΤΑΤ	AAGAGAGAAA	CAACACATAG
Hepatitis B virus isolate T1562, complete genome					CAACACATAG
L2 genome			ΤΑΤΑΤΤΑΤΑΤ		CAACACATAG
Consensus	CACACTCTAT	GGAAGGCGGG	TATATTATAT	AAGAGAGAAA	CAACACATAG
Conservation		2,82	<u> П </u>	2.84	
Hepatitis B virus DNA, complete genome, isolate: Pkst7912	CGCCTCATT	1		1	
Hepatitis B virus DNA, complete genome, isolate: Pkst8216	CGCCTCATT	TGTGGGTCAC	CATATTCTTG	GGAACAAGAG	CTACAGCATG
Hepatitis B virus DNA, complete genome, isolate: Pkst8134	CGCCTCATTT	TGTGGGTCAC	CATATTCTTG	GGAACAAGAG	CTACAGCATG
Hepatitis B virus strain 3798-91, complete genome	CGCCTCATTT	TGTGGGTCAC	CATATTCTTG	GGAACAAGAG	CTACAGCATG
Hepatitis B virus isolate T1503, complete genome	CGCCTCATT	TGTGGGTCAC	CATATTCTTG	GGAACAAAAG	CTACAGCATG
Hepatitis B virus isolate T1562, complete genome	CGCCTCATT	TGTGGGTCAC	CATATTCTTG	GGAACAAAAG	CTACAGCATG
L2 genome		TGTGGGTCAC			CTACAGCATA
Consensus tai Conservation	×	TGTGGGTCAC	CATATTCTTG	GGAACAAGAG	CTACAGCATG
	2,86	60	2,88		2,900
Hepatitis B virus DNA, complete genome, isolate: Pkst7912	%2,86		1		2,900 CCGACCACCA
Hepatitis B virus DNA, complete genome, isolate: Pkst7912 Hepatitis B virus DNA, complete genome, isolate: Pkst8216	2,86 1 2 2 3 3 3 3 3 4 3 3 4 3 3 3 3 3 3 3 3 3		1		1
	<pre>% 2,86 2 GGGCAGAATC 3 GGGCAGAATC</pre>	TTTCCACCAG TTTCCACCAG	CAATCCTCTG	GGATTCTTTC GGATTCTTTC	CCGACCACCA
Hepatitis B virus DNA, complete genome, isolate: Pkst8216	2,86 2 GGGCAGAATC 3 GGGCAGAATC 4 GGGCAGAATC	TTTCCACCAG TTTCCACCAG TTTCCACCAG	CAATCCTCTG CAATCCTCTG CAATCCTCTG	GGATTCTTTC GGATTCTTTC GGATTCTTTC	CCGACCACCA
Hepatitis B virus DNA, complete genome, isolate: Pkst8216 Hepatitis B virus DNA, complete genome, isolate: Pkst8134	2.86 2 GGGCAGAATC 3 GGGCAGAATC 4 GGGCAGAATC GGGCAGAATC	TTTCCACCAG TTTCCACCAG TTTCCACCAG TTTCCACCAG	CAATCCTCTG CAATCCTCTG CAATCCTCTG CAATCCTCTG	GGATTCTTTC GGATTCTTTC GGATTCTTTC GGATTCTTTC	CCGACCACCA CCGACCACCA CCGACCACCA CCGACCACCA
Hepatitis B virus DNA, complete genome, isolate: Pkst8216 Hepatitis B virus DNA, complete genome, isolate: Pkst8134 Hepatitis B virus strain 3798-91, complete genome	2.86 2 GGGCAGAATC 3 GGGCAGAATC 4 GGGCAGAATC 6 GGGCAGAATC 2 GGGCAGAATC	TTTCCACCAG TTTCCACCAG TTTCCACCAG TTTCCACCAG TTTCCACCAG	CAATCCTCTG CAATCCTCTG CAATCCTCTG CAATCCTCTG CAATCCTCTG	GGATTCTTTC GGATTCTTTC GGATTCTTTC GGATTCTTTC	CCGACCACCA CCGACCACCA CCGACCACCA CCGACCACCA
Hepatitis B virus DNA, complete genome, isolate: Pkst8216 Hepatitis B virus DNA, complete genome, isolate: Pkst8134 Hepatitis B virus strain 3798-91, complete genome Hepatitis B virus isolate T1503, complete genome Hepatitis B virus isolate T1562, complete genome	2.86 2 GGGCAGAATC 3 GGGCAGAATC 4 GGGCAGAATC 6 GGGCAGAATC 9 GGGCAGAATC 9 GGGCAGAATC	TTTCCACCAG TTTCCACCAG TTTCCACCAG TTTCCACCAG TTTCCACCAG TTTCCACCAG	CAATCCTCTG CAATCCTCTG CAATCCTCTG CAATCCTCTG CAATCCTCTG CAATCCTCTG	GGATTCTTTC GGATTCTTTC GGATTCTTTC GGATTCTTTC GGATTCTTTC GGATTCTTTC	CCGACCACCA CCGACCACCA CCGACCACCA CCGACCACCA

34

		2,920)	2,940)	
Hepatitis B virus DNA, complete genome, isolate: Pkst7912	GTTGGATCCA	GCCTTCAGAG	CAAACACCGC	AAATCCAGAT	TGGGACTTCA 2950	
Hepatitis B virus DNA, complete genome, isolate: Pkst8216	GTTGGATCCA	GCCTTCAGAG	CAAACACCGC	AAATCCAGAT	TGGGGACTTC 2950	
Hepatitis B virus DNA, complete genome, isolate: Pkst8134	GTTGGATCCA	GCCTTCAGAG	CAAACACCGC	AAATCCAGAT	TGGGACTTCA 2950	
Hepatitis B virus strain 3798-91, complete genome	GTTGGATCCA	GCCTTCAGAG	CCAACACCGC	AAATCCAGAT	TGGGACTTCA 2950	
Hepatitis B virus isolate T1503, complete genome	GTTGGATCCA	GCCTTCAGAG	CAAACACCAG	AAATCCAGAT	TGGGACTTCA 2917	
Hepatitis B virus isolate T1562, complete genome	GTTGGATCCA	GCCTTCAGAG	CAAACACCAG	AAATCCAGAT	TGGGACTTCA 2950	
L2 genome Consensus	GTTGGATCCA GTTGGATCCA		CAAACACCGC CAAACACCGC	AAATCCAGAT AAATCCAGAT	TGGGACTTC- 1092 T GGGACTTCA	
Conservation Conservation						
03	2,960)	2,980)	3,000	
Hepatitis B virus DNA, complete genome, isolate: Pkst7912	ΑΤΟΟΟΑΑΟΑΑ	GGACACCTGG	CCAGACGCCA	ACAAGGTAGG	AGCTGGAGCA 3000	
Hepatitis B virus DNA, complete genome, isolate: Pkst8216	AACCCAACAA	GGACACCTGG	CCAGACGCCA	ACAAGGTAGG	AGCTGGAGC- 2999	
Hepatitis B virus DNA, complete genome, isolate: Pkst8134	АТСССААСАА	GGACACCTGG	CCAGACGCCA	ACAAGGTAGG	AGCTGGAGCA 3000	
Hepatitis B virus strain 3798-91, complete genome	АТСССААСАА	GGACACCTGG	CCAGACGCCA	ACAAGGTAGG	AGCTGGAGCA 3000	
Hepatitis B virus isolate T1503, complete genome	АТСССААСАА	GGACACCTGG	CCAGACGCCA	ACAAGGTAGG	AGCTGGAGCA 2967	
Hepatitis B virus isolate T1562, complete genome	АТСССААСАА	GGACACCTGG	CCAGACGCCA	ACAAGGTAGG	AGCTGGAGCA 3000	
2 genome	ΔΤΟΟΟΔΑΟΔΑ	001000400	41191494010		AGCTGGAGCA 1142	
	ATCCCAACAA ATCCCAACAA		CCAGACGCCA		AGCTGGAGCA 1142 AGCTGGAGCA	
L2 genome Consensus 1907 Conservation			CCAGACGCCA CCAGACGCCA		AGCTGGAGCA 1142 AGCTGGAGCA	
Consensus		GGACACCTGG				
Conservation or Postitis B virus DNA, complete genome, isolate: Pkst7912		GGACACCTGG	CCAGACGCCA	ACAAGGTAGG	AGCTGGAGCA	•
Consensus 1007 Conservation 69		GGACACCTGG	CCAGACGCCA	ACAAGGTAGG	AGCTGGAGCA	9
Consensus 1007 Conservation 99 Hepatitis B virus DNA, complete genome, isolate: Pkst7912 Hepatitis B virus DNA, complete genome, isolate: Pkst8134		GGACACCTGG	CCAGACGCCA	ACAAGGTAGG GA GGCCTTTT GA GGCCTTTT	AGCTGGAGCA 3.040 GG GGTGGAGCCC 3050 CC 3001 GG GGTGGAGCCC 3050)
Conservation 99 Hepatitis B virus DNA, complete genome, isolate: Pkst7912 Hepatitis B virus DNA, complete genome, isolate: Pkst8134 Hepatitis B virus DNA, complete genome, isolate: Pkst8134		GGACACCTGG	CCAGACGCCA	ACAAGGTAGG GA GGCCTTTT GA GGCCTTTT GA GGCCTTTT	AGCTGGAGCA 3.040 GG GGTGGAGCCC 3050 CC 3001 GG GGTGGAGCCC 3050 GG GGTGGAGCCC 3050)
Conservation or Hepatitis B virus DNA, complete genome, isolate: Pkst7912 Hepatitis B virus DNA, complete genome, isolate: Pkst8216 Hepatitis B virus DNA, complete genome, isolate: Pkst8134 Hepatitis B virus strain 3798-91, complete genome Hepatitis B virus isolate T1503, complete genome	TTCGGGCTGG TTCGGGCTGG TTCGGGCTGG	GGACACCTGG GATTCACCC G GATTCACCC G GTTTCACCC G GTTTCACCC G GGTTCACCC	CCAGACGCCA CACCGCACGC CACCGCACGC CACCGCACGC CACCGCACGC	GA GGCCTTTT GA GGCCTTTT GA GGCCTTTT GA GGCCTTTT	AGCTGGAGCA 3,040 GG GGTGGAGCCC 3050 CC 3001 GG GGTGGAGCCC 3050 GG GGTGGAGCCC 3050 GG GGTGGAGCCC 3050)
Consensus 1007 Conservation 9 Hepatitis B virus DNA, complete genome, isolate: Pkst7912 Hepatitis B virus DNA, complete genome, isolate: Pkst8134 Hepatitis B virus strain 3798-91, complete genome Hepatitis B virus isolate T1503, complete genome Hepatitis B virus isolate T1562, complete genome	ATCCCAACAA	GGACACCTGG GATTCACCC GATTCACCC GATTCACCC GATTCACCC GATTCACCC GATTCACCC GATTCACCC GATTCACCC GATTCACCC GATTCACCC GATTCACCC	CCAGACGCCA	ACAAGGTAGG GA GGCCTTTT GA GGCCTTTT GA GGCCTTTT GA GGCCTTTT GA GGCCTTTT	AGCTGGAGCA 3.040 GG GGTGGAGCCC 3050 CC 3001 GG GGTGGAGCCC 3050 GG GGTGGAGCCC 3050 GG GGTGGAGCCC 3050 GG GGTGGAGCCC 3050 GG GGTGGAGCCC 3050)))
Conservation or Hepatitis B virus DNA, complete genome, isolate: Pkst7912 Hepatitis B virus DNA, complete genome, isolate: Pkst8216 Hepatitis B virus DNA, complete genome, isolate: Pkst8134 Hepatitis B virus strain 3798-91, complete genome Hepatitis B virus isolate T1503, complete genome	ATCCCAACAA	GGACACCTGG	CCAGACGCCA	GA GGCCTTTT GA GGCCTTTT GA GGCCTTTT GA GGCCTTTT GA GGCCTTTT GA GGCCTTTT GA GGCCTTTT	AGCTGGAGCA 3.440 GG GGTGGAGCCC 3050 CC 3001 GG GGTGGAGCCC 3050 GG GGTGGAGCCC 3050 GG GGTGGAGCCC 3050 GG GGTGGAGCCC 3050 GG GGTGGAGCCC 3050 GG GGTGGAGCCC 3050 GG GGTGGAGCCC 3050)))
Consensus 1007 Conservation 99 Hepatitis B virus DNA, complete genome, isolate: Pkst8216 Hepatitis B virus DNA, complete genome, isolate: Pkst8134 Hepatitis B virus strain 3798-91, complete genome Hepatitis B virus isolate T1503, complete genome Hepatitis B virus isolate T1562, complete genome L2 genome Consensus	ATCCCAACAA	GGACACCTGG	CCAGACGCCA	ACAAGGTAGG GA GGCCTTTT GA GGCCTTTT GA GGCCTTTT GA GGCCTTTT GA GGCCTTTT GA GGCCTTTT GA GGCCTTTT	AGCTGGAGCA 3.040 GG GGTGGAGCCC 3050 CC 3001 GG GGTGGAGCCC 3050 GG GGTGGAGCCC 3050 GG GGTGGAGCCC 3050 GG GGTGGAGCCC 3050 GG GGTGGAGCCC 1190 GG GGTGGAGCCC 1190)))
Conservation Mepatitis B virus DNA, complete genome, isolate: Pkst7912 Hepatitis B virus DNA, complete genome, isolate: Pkst8216 Hepatitis B virus DNA, complete genome, isolate: Pkst8134 Hepatitis B virus strain 3798-91, complete genome Hepatitis B virus isolate T1503, complete genome Hepatitis B virus isolate T1562, complete genome L2 genome Conservation	ATCCCAACAA TTCGGGCTGG TTCGGGCTGG TTCGGGCTAG TTCGGGCTAG TTCGGGCTAG TTCGGGCTAG TTCGGGCTAG TTCGGGCTAG	GGACACCTGG	CCAGACGCCA	ACAAGGTAGG GA GGCCTTTT GA GGCCTTTT GA GGCCTTTT GA GGCCTTTT GA GGCCTTTT GA GGCCTTTT GA GGCCTTTT GA GGCCTTTT	AGCTGGAGCA 3,040 GG GGTGGAGCCC 3050 CC 3001 GG GGTGGAGCCC 3050 GG GGTGGAGCCC 3050 GG GGTGGAGCCC 3050 GG GGTGGAGCCC 3050 GG GGTGGAGCCC 3050 GG GGTGGAGCCC 1190 GG GGTGGAGCCC 1190 GG GGTGGAGCCC 1190 GG GGTGGAGCCC 1190 GG GGTGGAGCCC 1190 GG GGTGGAGCCC 1190)))
Conservation 1097 Conservation 997 Hepatitis B virus DNA, complete genome, isolate: Pkst7912 Hepatitis B virus DNA, complete genome, isolate: Pkst8134 Hepatitis B virus strain 3798-91, complete genome Hepatitis B virus isolate T1503, complete genome Hepatitis B virus isolate T1562, complete genome L2 genome Conservation	ATCCCAACAA	GGACACCTGG	CCAGACGCCA	ACAAGGTAGG GA GGCCTTTT GA GGCCTTTT	AGCTGGAGCA 3,040 GG GGTGGAGCCC 3050 CC 3001 GG GGTGGAGCCC 3050 GG GGTGGAGCCC 3050 GG GGTGGAGCCC 3050 GG GGTGGAGCCC 3050 GG GGTGGAGCCC 3050 GG GGTGGAGCCC 1190 GG GGTGGAGCCC 1190 GG GGTGGAGCCC 3,050 GG GGTGGAGCCC 3050 GG GGTGGA)))
Conservation Conservation Pepatitis B virus DNA, complete genome, isolate: Pkst7912 Hepatitis B virus DNA, complete genome, isolate: Pkst8134 Hepatitis B virus DNA, complete genome, isolate: Pkst8134 Hepatitis B virus strain 3798-91, complete genome Hepatitis B virus isolate T1503, complete genome Leg genome Conservation Conservation	ATCCCAACAA	GGACACCTGG	CCAGACGCCA CACCGCACGC	GA GGCCTTTT GA GGCCTTTT	AGCTGGAGCA 3.040 GG GGTGGAGCCC 3050 CC 3001 GG GGTGGAGCCC 3050 GG GGTGGAGCCC 3050 GG GGTGGAGCCC 3050 GG GGTGGAGCCC 3017 GG GGTGGAGCCC 3050 GG GCTGCCC 3050 GG GCTGCCC 3050 GG GCTGCCC 3050 GG CCCCC 3050 GG CCCCC 3050 GG CCCCC 3050 GG CCCCC 3050 GG CCCCC 3050 GG CCCCC 3050 GG CCCCCC 3050 GG CCCCCC 3050 GG CCCCCC 3050 GG CCCCCCCC 3050 GG CCCCCC 3050 GG CCCCCCCC 3050 GG CCCCCCCCCCC 3050 GG CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	9 • •
Conservation Mepatitis B virus DNA, complete genome, isolate: Pkst7912 Hepatitis B virus DNA, complete genome, isolate: Pkst8134 Hepatitis B virus DNA, complete genome, isolate: Pkst8134 Hepatitis B virus strain 3798-91, complete genome Hepatitis B virus isolate T1503, complete genome Hepatitis B virus isolate T1562, complete genome L2 genome Conservation Hepatitis B virus DNA, complete genome, isolate: Pkst7912 Hepatitis B virus DNA, complete genome, isolate: Pkst8216	ATCCCAACAA	GGACACCTGG	CCAGACGCCA	ACAAGGTAGG	AGCTGGAGCA 3.440 GG GGTGGAGCCC 3050) , , , , , , , , , , , , , , , , , , ,
Conservation Conservation Provide the patitis B virus DNA, complete genome, isolate: Pkst7912 Hepatitis B virus DNA, complete genome, isolate: Pkst8134 Hepatitis B virus DNA, complete genome, isolate: Pkst8134 Hepatitis B virus strain 3798-91, complete genome Hepatitis B virus isolate T1503, complete genome Hepatitis B virus isolate T1562, complete genome L2 genome Conservation Hepatitis B virus DNA, complete genome, isolate: Pkst8216 Hepatitis B virus DNA, complete genome, isolate: Pkst8216	ATCCCAACAA	GGACACCTGG GATTCACCC GATTCACCC GTTTCACCC GGTTCACCC	CCAGACGCCA	ACAAGGTAGG	AGCTGGAGCA 3.040 GG GGTGGAGCCC 3050 GG GCTGGAGCCC 3050 GG GCTGGAGCCC 3050 GG CCTCCTGCCT 3100 CG CCTCCTGCCT 3100 CG CCTCCTGCCT 3100	
Conservation Mepatitis B virus DNA, complete genome, isolate: Pkst7912 Hepatitis B virus DNA, complete genome, isolate: Pkst8216 Hepatitis B virus DNA, complete genome, isolate: Pkst8134 Hepatitis B virus strain 3798-91, complete genome Hepatitis B virus isolate T1503, complete genome Hepatitis B virus isolate T1562, complete genome L2 genome Conservation Hepatitis B virus DNA, complete genome, isolate: Pkst8216 Hepatitis B virus Strain 3798-91, complete genome Hepatitis B virus isolate T1503, complete genome	ATCCCAACAA	GGACACCTGG	CCAGACGCCA	ACAAGGTAGG	AGCTGGAGCA 3,040 GG GGTGGAGCCC 3050 	
Conservation Mepatitis B virus DNA, complete genome, isolate: Pkst7912 Hepatitis B virus DNA, complete genome, isolate: Pkst8216 Hepatitis B virus DNA, complete genome, isolate: Pkst8134 Hepatitis B virus strain 3798-91, complete genome Hepatitis B virus isolate T1503, complete genome Hepatitis B virus isolate T1562, complete genome L2 genome Conservation Hepatitis B virus DNA, complete genome, isolate: Pkst8216 Hepatitis B virus Strain 3798-91, complete genome Hepatitis B virus isolate T1503, complete genome	ATCCCAACAA	GGACACCTGG	CCAGACGCCA	ACAAGGTAGG AGAAGGTAGG AGGCCTTTT GA GGCCTTTT GA GGCAAATC CC AGCAAATC CC AGCAAATC CC AGCAAATC CC AGCAAATC CC AGCAAATC CC AGCAAATC CC AGCAAATC CC AGCAAATC CC AGCAAATC	AGCTGGAGCA 3.040 GG GGTGGAGCCC 3050 GG GCTGGAGCCC 3050 GG CGTCGCGAGCCC 3050 CG CCTCCTGCCT 3100 CG CCTCCTGCCT 3100 CC CCTCCTGCCT 300 CC CCTCCTGCCC 300 CC CCTCCTGCCC 300 CC CCTCCTGCCC 300 CC CCTCCTGCCC CC CCCCCCCCCCCCCC CC CCCCCCCCCCCC	

	<u></u>	3.120		3,140	
Hepatitis B virus DNA, complete genome, isolate: Pkst7912	CTACCAATCG	T.		1	
riepaulo o viras privi, complete generite, isolate. Filoto riz	CIACCAATEG	CCAOTCAGGA	AUGEAUCEITA		Techcerrie on
Hepatitis B virus DNA, complete genome, isolate: Pkst8216	CTACCAATCG	CCAGTCAGGA	AGGCAGCCTA	сссстстотс	TCCACCTTTG 310
Hepatitis B virus DNA, complete genome, isolate: Pkst8134	CCACCAATCG	CCAGTCAGGA	AGGCAGCCTA	CCCCACTGTC	TCCACCTTTG 31
Hepatitis B virus strain 3798-91, complete genome	CCACCAATCG	CCAGTCAGGA	AGGCAGCCTA	CCCCGTTGTC	TCCACCTTTG 31
Hepatitis B virus isolate T1503, complete genome	CTACCAATCG	CCAGTCAGGA	AGGCAGCCTA	CCCCACTGTC	TCCACCTCTG 31
Hepatitis B virus isolate T1562, complete genome	CTACCAATCG	CCAGTCAGGA	AGGCAGCCTA	CCCCACTGTC	TCCACCTCTG 31
L2 genome	TCACCATTC -	CCGGTCGGGA	AGG - AGCCTA	ACCTCCT - TG	TTCACCTTTG 128
Consensus	CTACCAATCG	CCAGTCAGGA	AGGCAGCCTA	CCCCACTGTC	TCCACCTTTG
1009 Conservation					
0%	3,160		3,18		3,200
Hepatitis B virus DNA, complete genome, isolate: Pkst7912	AGAGAC		ACT	c	316
Hepatitis B virus DNA, complete genome, isolate: Pkst8216	AGAAAC		ACT	c	
riepatito o viras prav, complete genome, isolate. Protez ro				•	01
Hepatitis B virus DNA, complete genome, isolate: Pkst8134	AGAAAC		ACT	c	
Hepatitis B virus strain 3798-91, complete genome	CGAAAC		ACT	c	
Hepatitis B virus isolate T1503, complete genome	AGAGAC		ACT	C	312
Hepatitis B virus isolate T1562, complete genome	AGAGAC		ACT	c	316
L2 genome	AGAAACTTAC	CTCAGGGCTT	GGGGGGGAACT	CCAACCTTTC	CCAAATTTGG 13
Consensus	AGAAAC		ACT	c	
100% Conservation					
0%					

Figure 4.5: Alignment of sample sequence and reference sequence using CLC workbench.

Chapter 5

DISCUSSION

Since the discovery of HBV in 1960's, enormous progress has been made in elucidating its molecular characteristics, etiology and phylogenetic evolution. Despite advancements in development of an effective vaccine, annually more then 360 million people continue to be chronically infected with this virus and are at danger of developing Hepatocellular carcinoma (Fan et al., 2011). In spite of the high HBV endemicity in Asia there is scarcity in the availability of data from this continent especially in Pakistan. Sequence data on complete HBV genomes isolated from HBV chronic patients are particularly rare (Mumtaz K et al., 2011). Till date, genetic plasticity in whole genome variants has not been characterized in the HBV infected group of Pakistan population. The drastic changes in HBV pool in Pakistan due to HBV vaccine are quite conflicting and debatable issues. There is little data regarding random population statistics for HBV complete genome and its gene products. It is also note worthy that for a developing country like Pakistan, reverse transcriptase inhibitor Lamivudine has been used extensively to treat patients continuously for the duration of several years. This has lead to increased frequency of progeny viruses with genetic alterations in Surface and Polymerase ORF (Khokhar et al., 2005).

Sequence analysis of various genes from HBV genome, have lead to some very important and interesting findings related to viral pathogenesis and persistence. The most important selective force during the ordinary course of HBV infection appears to be the immune response (Tong et al., 2005). The growing knowledge of the function of the precore region product in stimulating serum HBeAg led to search for changes in the precore region sequence of HBV DNA in the circulation of carriers after they had seroconverted to anti-HBe (Kreutz, 2002). The maturity of anti-HBe antibody in hepatitis B patients usually correlates with decline of HBV viremia. As an end result, escape mutants of anti-HBe are selected. Many factors have been linked to highly replicative hepatitis B virus. Among these, viral factors are very important in immunomodulation. Precore/core region is linked to important areas of viral pathogenesis (Brunetto*et al.*, 1999; Kock*et al.*, 2004; McMillan et al., 1996). There are reports supporting the fact that these resistant mutants can spread to and harmfully affect the vaccinated individuals (Sayan and Akhan, 2011; Villetet al., 2008). The global distribution of HBV genotypes and sub genotypes has been established, and it is becoming apparent that mutations associated with specific genotypes also have distinct global distribution pattern and may affect the clinical outcome of infection within a specific populations (Kao et al., 2000; Kramvis and Kew, 2005).

This study was therefore designed with the particular aims to identify the status of variants in HBV genomes especially vaccine escape mutants so that the information can be exploited by the personnel involved in pharmaceutical companies (development of drugs/inhibitors for reverse transcriptase of HBV), healthcare (diagnostic errors of HBV and occult infections) as well as the authorities (design future policies) for the proper management of Hepatitis B virus

38

infections in Pakistan. Through full-length HBV genomic analysis, it is possible to explore whether there are substantial nucleic acid sequence variations between HBV isolates from acute, chronic patients and hepatocellular carcinoma patients (HCC). And by further cell transfection studies, functional differences between these HBV isolates might also be exposed (Takahashi *et al.*, 1999).

CONCLUSION

The present study was planned to successfully characterize full length genomes from Pakistani isolates of chronic HBV infected population. As a consequence mutations in different viral genes including Surface gene (involved in pathogenicity and immunogenicity) can be explored. Similarly viral replication activity can be monitored by mapping mutations in polymerase and precore/core gene. Exclusively large no of complete genome sequences of HBV can help in predicting the actual role of X gene in development of hepatocellular carcinoma.

FUTURE PROSPECTS

A more comprehensive analysis of complete HBV genome on a large population set is necessary to better describe the course of infection in HBV patients. In addition more sequences need to be obtained in order to depict a true picture of HBV circulating strains in Pakistani population. The study could be enhanced to include mutants that are linked exclusively to fulminant, cirrhotic/non-cirrhotic hepatitis and hepatocellular carcinoma patients of Pakistan. Determination of the genotypes and subtypes of the HBV can provide molecular epidemiological data from Pakistani population, which further leads towards, devising new strategies to combat immune escape variants of HBV. This could further lead to better antiviral treatment options and new diagnostic assays can be designed to under stand the stage of the disease.

REFERENCES

- Abbas, Z., Muzaffar, R., Siddiqui, A., Naqvi, S. A. and Rizvi, S. A. (2006).Genetic variability in the precore and core promoter regions of hepatitis B virus strains in Karachi.*BMC Gastroenterology*.6:20.
- Ahmed, C. S., Wang, Z. H., Bin, Z., Chen, J. J., Kamal, M. and Hou, J. L. (2009).
 Hepatitis B virus genotypes, subgenotypes, precore, and basal core promoter mutations in the two largest provinces of Pakistan. *Journal of Gastroenterology and Hepatology*. 24(4):569-573.
- Alam, M. M., Zaidi, S. Z., Malik, S. A., Naeem, A., Shaukat, S. and Sharif S. (2007). Serology based disease status of Pakistani population infected with hepatitis B virus. *BMC Infectious Diseases*.7:64.
- Ali, M., Idrees, M., Ali, L., Hussain, A., Ur Rehman, I., Saleem, S., Afzal, S., and Butt, S. (2011). Hepatitis B virus in Pakistan: a systematic review of prevalence, risk factors, awareness status and genotypes. *Virology Journal*. 8: 102.
- Arauz-Ruiz, P., Norder, H., Visona, K. A. and Magnius, L. O. (1997).Molecular epidemiology of hepatitis B virus in Central America reflected in the genetic variability of the small S gene. *Journal of Infectious Diseases*.176:851:856.
- Baig, S., Siddiqui, A. A., Chakravarty, R., Moatter, T., Unnissa, T. and ul Nazr, H.
 (2008).Phylogenetic analysis of hepatitis B virus in Pakistan.*Journal of College of Physicians and Surgeons Pakistan*.18(11):688-94.

- Baumert, T. F, Barth, H. and Blum, H. E. (2005).Genetic variants of hepatitis B virus and their clinical relevance.*Minerva Gastroenterology Dietol*.51:95-108.
- Baumert, T. F. and Blum, H. E. (2005). Hepatitis B virus mutations: molecular biology and clinical relevance. *Viral Hepatitis Reviews*.6:177-192.
- Baumert, T. F., Yang, C., Schurmann, P., Kock, J., Ziegler, C., Grullich, C., Nassal, M., Liang, T. J, Blum, H. E. and von Weizsacker, F. (2005). Hepatitis
 B virus mutations associated with fulminant hepatitis induce apoptosis in primary Tupaia hepatocytes. *Hepatology*.41:247-256
- Block, T. M., Guo, H. and Guo, J. T. (2007). Molecular virology of hepatitis B virus for clinicians. *Clinical Liver Disease*. 11:685-706.
- Botha, J. F., Ritchie, M. J., Dusheiko, G. M., Mouton, H. W. and Kew, M. C. (1984). Hepatitis B virus carrier state in black children in Ovamboland: role of perinatal and horizontal infection. *Lancet*. 323:1210–1212.
- Brunetto, M. R., Rodriguez, U. A. and Bonino, F. (1999).Hepatitis B virus mutants.*Intervirology*. 42(2-3):69-80.
- Cane, P. A., Mutimer, D., Ratcliffe, D., Cook, P., Beards, G., Elias, E., Pillay, D.(1999). Analysis of hepatitis B virus quasispecies changes duringemergence and reversion of lamivudine resistance in liver transplantation. *Antiviral Therapies*.4:7-14.
- Chakravarty, R. (2005). Host genetic factors in hepatitis Bvirus infection. *International Journal of Human Genetics*. 5:33-36.
- Chemin, I. and Zoulim, F. (2009). Hepatitis B virus induced hepatocellular carcinoma. *Cancer Letters*. 286:52-9.

- Dane, D. S., Cameron, C. H., and Briggs, M. (1970). Virus-like particles in serum of patients with Australia-antigen-associated hepatitis. *Lancet*. 1:695-698.
- Fan, W., Huang, L., Zhou, Z. and Li, Y. (2011). A336C/A336T/T337C variations in HBV coregene and spontaneous hepatitis B e antigen loss in chronic hepatitis B patients. *Virology Journal*.8: 226.
- Fan, W., Huang, L., Zhou, Z. and Li, Y. (2011).A336C/A336T/T337C variations in HBV core gene and spontaneous hepatitis B e antigen loss in chronic hepatitis B patients.*Virology Journal*. 8:226.
- Feitelson M. A. and Larkin, J. D.(2001). New Animal Models of Hepatitis B and C. *ILAR Journal*.42:2.
- Ganem, D. and Varmus, H. E. (1987). The molecular biology of the hepatitis B viruses. *Annual Review of Biochemistry*. 56:651-693.
- Gao, W. and Hu, J. (2007). Formation of hepatitis B virus covalently closed circular DNA: removal of genome-linked protein. *Journal of Virology*. 81(12):6164- 6174.
- Gerber, M. A. and Thung, S. N. (1985).Molecular and cellular pathology of hepatitis B. *Lab Investigation*.52:572-590.
- Girones, R. and Miller, R. H. (1989).Mutation rate of the hepadnavirus genome.*Virology*. 170:595-597.
- Glebe, D. and Urban, S. (2007). Viral and cellular determinants involved in hepadnaviral entry. *World Journal of Gastroenterol.* 13:22-38.
- Gunther, S., Fischer, L., Pult, I., Sterneck, M. and Will, H. (1999).Naturally occurring variants G of hepatitis B virus.*Advances in Virus Research*. 52:25-137.

- Gunther, S., Netter, H. J., Sommer, G., Wollersheim- Kolmer, M., Li, B. C., Chassot, S., Iwanska, A., Piwon, N. and Will, H. (1997). Structural and functional complexity of hepatitis B virus variant genomes and virus populations; in Rizzetto M, Purcell RH, Gerin JH, Verme G (editions): Viral Hepatitis and Liver Disease. *Minerva Medica*. 116-120.
- Hunt, C. M., McGill, J. M., Allen, M. I. and Condreay, L. D. (2000).Clinical relevance of hepatitis B viral mutations.*Hepatology*.31(5):1037-1044.
- Huy, T. T., Ushijima, H., Quang, V. X., Win, K. M. Luengrojanakul, P. Kikuchi,
 K. Sata1, T. and Abel, K. (2004). Genotype C of hepatitis B virus can be classified into at least two subgroups. *Journal of General Virology*.85:283-292.
- Hyams, K. C. (1995). Risks of chronicity following acute hepatitis B virus infection: a review. *Clinical Infectious Diseases*. 20:992-1000.
- Idrees, M., Khan, S. and Riazuddin, S. (2004). Common genotypes of hepatitis B virus. *Journal College of Physicians and Surgeons Pakistan*. 14(6):344-347.
- Ikeda, K., Saitoh, S., Suzuki, Y., Kobayashi, M., Tsubota, A., Koida, I., Arase, Y., Fukuda, M., Chayama, K., Murashima, N. and Kumada, H. (1998). Disease progression and hepatocellular carcinogenensis in patients with chronic viral hepatitis: a prospective observation in 2215 patients. *Journal of Hepatology*. 28:930-938.
- Kann, M. and Gerlich, W. H. (2005). Hepatitis B. in: Collier, L., Balows, A., Sussmann, M., Topley Wilson's Microbiology and Microbial Infections. *London: Edward Arnold Ltd*, 2005.

- Kao, J. H. (2007). Role of viral factors in the natural course and therapy of chronic hepatitis B. *Hepatology International*. 1:415-30.
- Kao, J. H., Chen, P. J., Lai, M. Y. and Chen, D. S. (2000). Hepatitis B genotypes correlate with clinical outcomes in patients with chronic hepatitis B. Gastroenterology. 118:554-559.
- Khawaja, R. A. and Khawaja, A. A. (2009). Hepatitis B virus genotypes: "clinical & therapeutic implications". *Journal of Pakistan Medical Association*. 59(2):101-104.
- Kidd-Ljunggren, K., Miyakawa, Y. and Kidd, A. H. (2002).Genetic variability in hepatitis B viruses.*Journal of General Virology*. 83:1267-1280.
- Kim, H., Jee, Y. M., Song, B. C., Hyun, J. W., Mun, H. S., Kim, H. J., Oh, E. J., Yoon, J. H., Kim, Y. J., Lee, H. S. Hwang, E. S. Cha, C. Y., Kook, Y. H. and Kim, B. J. (2007). Analysis of hepatitis B virus quasispecies distribution in a Korean chronic patient based on the full genome sequences. *Journal of Medical Virology*. 79:212-219.
- Knaus, T. and Nassal, M. (1993). The encapsidation signal on the hepatitis B virusRNA pregenome forms a stem-loop structure that is critical for its function.*Nucleic Acids Research*. 21(17):3967-3975.
- Kock, J., Nassal, M., Deres, K., Blum, H. E. and von Weizsacker, F. (2004).
 Hepatitis B virus nucleocapsids formed by carboxy-terminally mutated core proteins contain spliced viral genomes but lack full-size DNA. *Journal of Virology*. 78(24):13812-13818.

- Kramvis, A. and Kew, M.C. (2005). Relationship of genotypes of hepatitis B virus to mutations, disease progression and response to antiviral therapy. *Journal of Viral Hepatitis*. 12:456-464.
- Lavanchy, D. (2004). Hepatitis B virus epidemiology, disease burden, treatment, and current and emerging prevention and control measures. *Journal of Viral Hepatology*. 11: 97-107.
- Lee, W. M. (1997). Hepatitis B virus infection. *New England Journal of Medicine*. 337:1733-1745.
- Levrero, M., Pollicino, T. and Petersen, J. (2009).Control of cccDNA function in hepatitis B virus infection.*Journal of Hepatololgy*. 51:581-592.
- Li, J. S., Tong, S. P., Wen, Y. M., Vitvitski, L., Zhang, Q., and Trepo, C. (1993).
 Hepatitis B virus genotype A rarely circulates as an HBe-minus mutant: possible contribution of a single nucleotide in the precore region. *Journal of Virology*. 67(9):5402-5410.
- Liang, T. J. and Ghany, M. (2002). Hepatitis B e Antigen-the dangerous endgame of hepatitis B. *New England Journal of Medicine*. 347(3): 208-210.
- Liang, T. J., Hasegawa, K., Rimon, N., Wands, J. R. and Ben-Porath, E. (1991). A hepatitis B virus mutant associated with an epidemic of fulminant hepatitis. *New England Journal of Medicine*.324:1705-1709.
- Lin, H. H., Kao, J. H., Chang, T. C., Hsu, H. Y. and Chen, D. S. (2003).Secular trend of age-specific prevalence of hepatitis B surface and antigenemia in pregnant women in Taiwan.*Journal of Medical Virology*. 69:466-70.

- Lin, X.,Qian, G. S., Lu, P. X., Wu, L. and Wen, Y. M. (2001).Full-length genomic analysis of hepatitis B virusIsolates in a patient progressing from hepatitis to hepatocellular carcinoma. *Journal of Medical Virology*. 64:299-304.
- Lindh, M., Andersson, A. S. and Gusdal, A. (1997). Genotypes, nt 1858 variants, and geographic origin of hepatitis B virus--large-scale analysis using a new genotyping method. *Journal of Infectious Diseases*.175(6):1285-93.
- Lindh, M., Hannoun, C., Dhillon, A. P., Norkrans, G. and Horal, P. (1999).Core promoter mutations and genotypes in relation to viral replication and liver damage in East Asian hepatitis B virus carriers.*Journal of Infectious Disease*.179:775-782
- Lok, A. S. (2004). Prevention of hepatitis B virus-related hepatocellular carcinoma. *Gastroenterology*. 127:303-309.
- Lucifora, J., Arzberger, S. and Durantel, D. (2011). Hepatitis B virus X protein is essential to initiate and maintain virus replication after infection. *Journal of Hepatology*. 55:996-1003.
- McMillan, J. S., Bowden, D. S., Angus, P. W., McCaughan, G. W. and Locarnini, S. A. (1996). Mutations in the hepatitis B virus precore/core gene and corepromoter in patient with severe recurrent disease following liver transplantation. *Hepatology*. 24(6):1371-1378.
- Ming, L., Thorgeirsson, S. S., Gail, M. H., Lu, P., Harris, C. C., Wang, N., Shao, Y., Wu, Z., Liu, G., Wang, X. and Sun, Z. (2002). Dominant role of hepatitis
 B virus and cofactor role of aflatoxin in hepatocarcinogenesis in Qidong.
 China. *Hepatology*. 36:1214-1220.

- Mizokamia, M.,Nakanob, T. Oritob, E., Tanakab, Y., Sakugawac, H., Mukaided,
 M. and Robertsone, B. H. (1999).Hepatitis B virus genotype assignment using restriction fragment length polymorphism patterns.*FEBS Letters*. 450:66-71.
- Nassal, M. (2008). Hepatitis B viruses: reverse transcription a different way. *Virus Research*. 134:235-249.
- Norder, H., Courouce, A. M. andMagnius, L. O. (1994).Complete genomes, phylogenetic relatedness, and structural proteins of six strains of the hepatitis B virus, four of which represent two new genotypes. *Virology*.198:489-503.
- Norder, H., Hammas, B., Lee, S. D., Bile, K., Courouce, A. M., Mushahwar, I. K. andMagnius, L. O. (1993).Genetic relatedness of hepatitis B viral strains of diverse geographical origin and natural variations in the primary structure of the surface antigen. *Journal of General Virology*.74:1341-1348.
- Okada, K., Kamiyama, I., Inomata, M., Imai, M. and Miyakawa, Y. (1976). E antigen and anti-e in the serum of asymptomatic carrier mothers as indicators of positive and negative transmission of hepatitis B virus to their infants.*New England Journal of Medicine*. 294:746–749.
- Okamoto, H., Tsuda, F., Sakugawa, H., Sastrosoewingnjo, R. I., Imai, M., Miyakawa, Y. and Mayumi, M. (1988). Typing hepatitis B virus by homology in nucleotide sequence: comparison of surface antigen subtypes. *Journal of General Virology*. 69:2575-2583.
- Oldstone, S. (1991).Molecular anatomy of viral persistence.*Journal of Virology*. 65:6381-6388.

- Pawlotsky, J. M. (2005). The concept of hepatitis B virus mutant escape. *Journal of Clinical Virology*. 34(1):125-129.
- Polish, L. B., Shapiro, C. N., Bauer, F., Klotz, P., Ginier, P., Roberto, R. R., Margolis, H. S. and Alter, M. J. (1992). Nosocomial transmission of hepatitis
 B virus associated with the use of a spring-loaded finger-stick device. *New England Journal of Medicine*.326:721-725.
- Pollicino, T., Saitta, C. and Raimondo, G. (2011). Hepatocellular carcinoma: the point of view of the hepatitis B virus. *Carcinogenesis*. 32:1122-1132.
- Robinson, W. S. and Greenman, R. L. (1974).DNA polymerase in the core of the human hepatitis B virus candidate.*Journal of Virology*.13:1231-1236.
- Sakugawa, H., Nakasone, H., Nakayoshi, T., Orito, E., Mizokami, M. and Yamashiro, T. (2002). Preponderance of hepatitis B virus genotype B contributes to a better prognosis of chronic HBV infection in Okinawa, Japan. *Journal of Medical Virology*.67(4):484-9.
- Sanchez-Tapias, J. M., Costa, J., Mas, A., Bruguera, M. and Rodes, J. (2002). Influence of hepatitis B virus genotype on the long-term outcome of chronic hepatitis B in western patients. *Gastroenterology*.123(6):1848-56.
- Sayan, M. and Akhan, S. C. (2011). Antiviral drug-associated potential vaccineescapehepatitis B virus mutants in Turkish patients with chronic hepatitis B. *International Journal of Infectious Diseases*. 15(10):722-726.
- Schildgen, O., Sirma, H., Funk, A., Olotu, C., Wend, U. C., Hartmann, H., Helm,
 M., Rockstroh, J. K., Willems, W. R., Will, H. and Gerlich, W. H. (2006).
 Variant of hepatitis B virus with primary resistance toadefovir.*New England Journal of Medicine*.354:1807-1812.

- Seeger, C. and Mason, W. S. (2000). Hepatitis B virus biology. *Microbiology and Molecular Biology Review*. 64(1):51-68.
- Stuyver, L., De Gendt, S., Van Geyt, C., Zoulim, F., Fried, M., Schinazi, R. F. andRossau, R. (2000). A new genotype of hepatitis B virus: complete genome and phylogenetic relatedness. *Journal of General Virology*.81:67-74.
- Summers, J. and Mason, W. S. (1982).Replication of the genome of a hepatitis Blike virus by reverse transcription of an RNA intermediate.*Cell*. 29:403-415.
- Takahashi, K., Aoyama, K., Ohno, N., Iwata, K., Akahane, Y. and Baba, K. (1995). The precore/core promoter mutant (T1762A1764) of hepatitis B virus: clinical significance and an easy method for detection. *Journal of General Virology*.76(12):3159-3164.
- Takahashi, K., Ohta, Y., Kanai, K., Akahane, Y., Iwasa, Y., Hino, K., Ohno, N., Yoshizawa, H. and Mishiro, S. (1999). Clinical implications of mutations Cto-T1653 and T-to-C/A/G1753 of hepatitis B virus genotype C genome in chronic liver disease.*Archives of Virology*.144:1299-1308.
- Thursz, M. R. (1997). Host genetic factors influencing the outcome of hepatitis. *Journal Viral Hepatitis*. 4:215-220.
- Tong, M. J., Hsu, L., Hsien, C., Kao, J. H., Durazo, F. A., Saab, S. and Blatt, L. M. (2010). A comparison of hepatitis B viral markers of patients in different clinical stages of chronic infection., *Hepatology International*. 4(2):516-522.
- Tong, S., Kim, K. H., Chante, C., Wands, J. and Li, J. (2005). Hepatitis B Virus E Antigen Variants.*International Journal of Medical Sciences*. 2(1):2-7.

- Villet, S., Pichoud, C., Billioud, G., Barraud, L., Durantel, S., Trepo, C. and Zoulim, F. (2008).Impact of hepatitis B virus rtA181V/T mutants on hepatitis B treatment failure.*Journal of Hepatology*. 48(5):747-755.
- Wang, B., Schreiber, G. B., Glynn, S. A., Kleinman, S., Wright, D. J., Murphy, E.
 L. and Busch, M. P. (2005). Does prevalence of transfusion-transmissible viral infection reflect corresponding incidence in United States blood donors? *Transfusion*. 45:1089-1096.
- Wasley, A., Grytdal, S. and Gallagher, K. (2008).Surveillance for acute viral hepatitis-United States, 2006.Morbidity and Mortality Weekly Report. 57:1-24.
- Yang, H. I., Lu, S. N., Liaw, Y. F., You, S. L., Sun, C. A., Wang, L. Y., Hsiao, C. K., Chen, P. J., Chen, D. S. and Chen, C. J. (2002). Hepatitis B e antigen and the risk of hepatocellular carcinoma.*New England Journal of Medicine*. 347:168-174.
- Zoulim, F. (2004).Mechanism of viral persistence and resistance to nucleoside and nucleotide analogs in chronic hepatitis B virus infection.Antiviral Research.64:1-15.
- Zoulim, F., Saputelli, J. and Seeger, C. (1994). Woodchuck hepatitis virus X protein is required for viral infection in vivo. *Journal of Virology*. 68:2026-2030.
- Zhang, Q., Wu, G., Richards, E., Jia, S., Zeng, C. (2007).Retraction. Universal primers for HBV genome DNA amplification across subtypes: a case study for designing more effective viral primers. *Virol J.* 31;4:119.