
i

Optimization of Makespan for Flexible Job Shop
Scheduling Problems using Genetic Algorithms

By

Muhammad Kamal Amjad

(Registration Number NUST201490190PSMME2614F)

Thesis Supervisor

Prof Dr Shahid Ikramullah Butt

Department of Design and Manufacturing Engineering
School of Mechanical and Manufacturing Engineering

National University of Sciences and Technology (NUST)
Islamabad, Pakistan

(2021)

ii

Optimization of Makespan for Flexible Job Shop

Scheduling Problems using Hybrid Genetic Algorithms

By

Muhammad Kamal Amjad

(Registration Number NUST201490190PSMME2614F)

A thesis submitted to the National University of Sciences and Technology, Islamabad in partial

fulfillment of the requirements for the degree of

Doctor of Philosophy in

Design and Manufacturing Engineering

Thesis Supervisor

Prof Dr Shahid Ikramullah Butt

Department of Design and Manufacturing Engineering
School of Mechanical and Manufacturing Engineering

National University of Sciences and Technology (NUST)
Islamabad, Pakistan

(2021)

iii

Thesis Acceptance Certificate

This is to certify that final copy of PhD thesis written by Muhammad Kamal Amjad,

Registration No. NUST201490190PSMME2614F of School of Mechanical and

Manufacturing Engineering (SMME) has been vetted by undersigned, found complete in all

aspects as per NUST Statutes/ Regulations/ PhD Policy, is free of plagiarism, errors, and mistakes

and is accepted as partial fulfillment for award of PhD Degree. It is further certified that necessary

amendments as pointed out by GEC members and foreign/local evaluators of the scholar have

also been incorporated in the said thesis.

Signature: ____________________________________

 Name of Supervisor: Prof Dr Shahid Ikramullah Butt

 Date: __

Signature (HOD): ______________________________

Date: __

Countersigned by

Signature (Principal/ Dean): ______________________

Date: __

iv

National University of Sciences & Technology, Islamabad

REPORT OF DOCTORAL THESIS DEFENCE
We hereby recommend that the student: Muhammad Kamal Amjad, Regn No.:
NUST201490190PSMME2614F may be accepted for Doctor of Philosophy Degree.

DOCTORAL DEFENSE COMMITTEE

Doctoral Defense Held on

GEC Member 1: Prof Dr Riaz Ahmad Signature:

GEC Member 2: Dr Mushtaq Khan Signature:

GEC Member 3 (External): Prof Dr Mujtaba Hassan Agha Signature:

Supervisor: Prof Dr Shahid Ikramullah Butt Signature:

External Evaluator 1: Dr Zareena Kausar Signature:
 (Local Expert)

External Evaluator 2: Dr Ghulam Hussain Signature:
 (Local Expert)

External Evaluator 3: Dr Gong Lin Signature: _________

(Foreign Expert*)

External Evaluator 4: Dr Muhammad Fahad Signature:

(Foreign Expert*)

COUNTERSIGNED

Dated: _________________________
 Dean/Commandant/Principal

Distribution: 1 x copy each for Director PGP, Registrar Directorate (Examination Branch), Director Research, Director
Academics at Main Office, NUST, HoD, Supervisor, Co-Supervisor (if appointed), one for student’s dossier at the Institution
and copy each for members of GEC.

Note: * Decision of External Evaluators (Foreign Experts) will be sought through video conference, if possible, on the same date
and their decision will be intimated (on paper) to Main Office, NUST at a later date.

v

Certificate of Approval

This is to certify that the research work presented in this thesis entitled “Optimization of

Makespan for Flexible Job Shop Scheduling Problems using Genetic Algorithms” was

conducted by Muhammad Kamal Amjad under the supervision of Prof Dr Shahid Ikramullah

Butt.

No part of this thesis has been submitted anywhere else for any degree. This thesis is submitted

to the School of Mechanical and Manufacturing Engineering in partial fulfillment of the

requirements for the degree of Doctor of Philosophy in the field of Design and Manufacturing

Engineering, Department of Design and Manufacturing Engineering, School of Mechanical

and Manufacturing Engineering, National University of Sciences and Technology,

Islamabad, Pakistan.

Student Name: Muhammad Kamal Amjad Signature: _________________

Examination Committee:

a) External Examiner 1

Prof Dr Ghulam Hussain Signature: _________________
Department of Mechanical Engineering,
Ghulam Ishaq Khan Institute of Engineering Science and Technology,
Topi, KPK, Pakistan

b) External Examiner 2:

Dr Zareena Kausar Signature: _________________
Department of Mechatronics Engineering,
Air University,
Islamabad, Pakistan

c) Internal Examiner:

Prof Dr Riaz Ahmad Signature: _________________
Directorate of Quality Assurance,
National University of Sciences and Technology,
Islamabad, Pakistan

Supervisor Name: Prof Dr Shahid Ikramullah Butt Signature: _________________

Name of Dean/ HoD: Prof Dr Javed Iqbal Signature: _________________

vi

Author’s Declaration

I, Muhamad Kamal Amjad hereby state that my PhD thesis titled “Optimization of Makespan

for Flexible Job Shop Scheduling Problems using Genetic Algorithms” is my own work and

has not been submitted previously by me for taking any degree from “National University of

Sciences and Technology (NUST)” or anywhere else in the country/worldwide.

At any time if my statement is found to be incorrect even after my graduation, the university has

the right to withdraw my PhD degree.

Name of Student/ Author: Muhamad Kamal Amjad

Signature: _____________________

Date: _____________________

vii

Plagiarism Undertaking

I, Muhammad Kamal Amjad, solemnly declare that research work presented in the PhD thesis

titled “Optimization of Makespan for Flexible Job Shop Scheduling Problems using Genetic

Algorithms” is solely my research work with no significant contribution from any other person.

Small contribution / help wherever taken has been duly acknowledged and that complete thesis

has been written by me.

 I understand the zero-tolerance policy of the HEC and National University of Sciences and

Technology (NUST) towards plagiarism. Therefore, I as an Author of the above titled thesis

declare that no portion of my thesis has been plagiarized and any material used as reference is

properly referred / cited.

I undertake that if I found guilty of any formal plagiarism in the above titled thesis even after

award of PhD Degree, the University reserves the right to withdraw/revoke my PhD Degree and

that HEC and the University has the right to publish my name on the HEC / University website

in which the names of the students are placed who submitted plagiarized thesis.

Student/ Author Signature: __________________

 Name of Student: Muhammad Kamal Amjad

viii

Acknowledgement

First of all, I am thankful to Allah, Who is the source of all knowledge in this world. Indeed, He

has taught what all the mankind knows.

I am deeply grateful to my supervisor Prof Dr Shahid Ikramullah Butt for his sincere guidance,

suggestions and supervision. He has supported me through all the highs and lows of my research

tenure and helped me manging my research work along with official commitments. I would also

like to thank my GEC Prof Dr Riaz Ahmad, Dr Mushtaq Khan and Prof Dr Mujtaba Hassan

Agha for their valuable inputs in conception, conducting the experimentation and supervision at

various stages of the research. They helped and guided me sail through the hard times. Special

thanks are due to Prof Dr Imram Ali Chaudhary for his thorough review and direction during

my publications and thesis writing all the way from Kingdom of Saudi Arabia.

I am also gratified to my colleague and one of my very best friends, Naveed Anjum for his

devotion and all out help during the coding process. I am also thankful to Dr Umer Asgher and

Dr Salman Sagheer Warsi (my PhD fellow colleagues), who have been a source of motivation

and guidance and my companion throughout this journey.

Finally, I am indebted to my father M Amjad Amin and mother Meher Un Nisa who believed

in me, built my dream about doctorate and supported through all these years to complete my

work. They also supported me out of the way through this task along with my professional

responsibilities of job and took extra care of everything throughout these years. Special thanks

are also due to my wife Dr Rubeena Kamal and children (M Ahmad Kamal and Fatimah

Kamal) for providing me the peace of mind and time to pursue this milestone in my life.

Muhammad Kamal Amjad

December 2021

ix

To my parents, wife, and children

x

Abstract

Manufacturing scheduling is one of the most researched areas since its optimality plays an

important role in the operation of the shop floor. Manufacturing has a vital contribution in the overall

economy of a country as it generates and attracts commercial activities. The whole framework of

business has changed in view of the fluctuating global customer demands and fierce opposition from

technologically advanced competitors. There is always a pressure on the manufacturer to produce the

designed products in the shortest possible time to capture the market. To the challenge of changing

product requirements and market demands, flexible manufacturing system is the answer.

 Flexible job shop is employed to produce a medium variety of products in a medium volume

category. In contrast to the conventional job shop, it offers flexibility in performing operations on

different machines; hence providing space for the manufacturing planner / scheduler for arranging

parts as per corporate requirements. When seen in the context of optimal operation, this setting while

offering such great advantage, also poses the scheduler with the decision regarding assignment of

operations to available machines in addition to sequencing of operations. In this way, the complexity

of the problem grows exponentially even in the small settings of the shop.

The flexible job shop scheduling is a NP-hard combinatorial optimization problem with

regards to complexity and its exact solution requires many lifetimes to reach. Consequently,

techniques built around the concepts of artificial intelligence have been popularly used to solve the

problem. Genetic Algorithm (GA) is one of the most attempted and widespread technique from this

domain. GA can produce good results of the scheduling problems, however when stuck in the local

minima, the algorithm normally fails to escape, and solution quality is badly affected.

 In this research work, problem is formulated mathematically and insights to a selected

benchmark is provided. Problem complexity is then evaluated in a quantitative way through

estimation of search space of the selected datasets and an understanding to the actual area of search

is developed.

Priority rules are then integrated with the GA (GA-PR) to solve the FJSSP. In this regard,

competitive modification in the rule has been proposed in addition to the integration scheme. The

algorithm is also equipped with adaptive operators which also contribute to its performance. In

addition to this a standalone pure GA (GA-IDT) is also proposed to efficiently solve the target

problem. An iterative diversification technique is embedded into the proposed algorithm which

proficiently manages the intensification and diversification of the population.

The efficacy of both algorithms is tested against standard benchmark problems and it is

concluded that proposed techniques are competitive with other concepts in literature.

Keywords: Genetic algorithm; Flexible job shop scheduling problem; Iterative diversification

technique; combinatorial optimization.

xi

List of Publications

1. M. K. Amjad, S. I. Butt, R. Kousar, R. Ahmad, M. H. Agha, Z. Faping, et al., "Recent

Research Trends in Genetic Algorithm Based Flexible Job Shop Scheduling Problems,"

Mathematical Problems in Engineering, vol. 2018, p. 32, 2018. [IF: 1.009, HJRS Cat W]

2. M. K. Amjad, S. I. Butt, N. Anjum, I. A. Chaudhry, Z. Faping, and M. Khan, "A layered

genetic algorithm with iterative diversification for optimization of flexible job shop

scheduling problems," Advances in Production Engineering & Management, vol. 15, pp.

377-389, 2020. [IF: 2.347, HJRS Cat W]

3. M. K. Amjad, S. I. Butt, N. Anjum, “Improved Genetic Algorithm Integrated with

Scheduling Rules for Flexible Job Shop Scheduling Problems,” in 5th International

Conference on Power, Energy and Mechanical Engineering, Shinghai, China, 2021.

[Scopus Indexed]

xii

List of Abbreviations

Abbreviation Description

AGVs Automated Guided Vehicles

AIA Artificial Immune Algorithm

Avg Average

CM Compulsory mutation

CP Constraint Programming

FJS Flexible Job Shop

FJSSP Flexible Job Shop Scheduling Problem

FMC Flexible Manufacturing Cell

FMS Flexible Manufacturing System

GA Genetic Algorithm

GA-IDT Genetic Algorithm - Iterative Diversification Technique

GA-PR Genetic Algorithm - Priority Rules

GB Giga Bytes

GDP Gross Domestic Product

GS Global selection

GT Group Technology

JSSP Job Shop Scheduling Problem

LB Lower bound

LPT Longest processing time

LS Local selection

M Set of machines

Max Maximum

MFJS Medium Flexible Job Shop

MILP Mixed Integer Linear Programming

Min Minimum

mMWR Modified most work remaining

MOR Most operations remaining

MS Machine selection

xiii

MWR Most work remaining

NP Non polynomial

NSGA Nondominated Sorting Genetic Algorithm

OS Operation selection

PC Percentage contribution

P-FJSSP Partial FJSSP

PopSize Population size

POX Precedence preserving order-based crossover

PSO Particle Swarm Optimization

RAM Random Access Memory

RIM Random intelligent mutation

RS Random selection

RW Roulette wheel

SA Simulated Annealing

SFJS Small Flexible Job Shop

SM Swap Mutation

SPT Shortest processing time

SPX Single-point crossover

SS Search space

T-FJSSP Total FJSSP

Tk Machine busy time

TPX Two-point crossover

TS Tabu Search

UX Universal crossover

VNS Variable Neighborhood Search

xiv

List of Symbols

Symbol Description

Cmax Makespan

Eijk End time

J Set of jobs

Jio Total number of operations

L Total number of sequences

m Number of machines

M Set of machines

n Number of jobs

O Operation

Oij jth operation of ith job

OS Operation selection

Pc Probability of crossover

Pijk Processing time

Pm Probability of mutation

PopSize Population size

rijk Release time

SelRatio Selection Ratio

tijk Start time

Tk Machine busy time

Uij Flexibility index

α Machine characteristics

β Job characteristics

γ Cost Function

Ωij
Actual identification of machines available to undertake
operation

xv

Table of Contents

Thesis Acceptance Certificate ... iii

Certificate of Approval ... v

Author’s Declaration ... vi

Plagiarism Undertaking .. vii

List of Publications .. viii

Acknowledgement ... viii

List of Abbreviations .. xii

List of Symbols ... xiv

Abstract .. x

Table of Contents ... xv

1 Chapter 1 - Introduction ... 1

1.1 Background .. 1

1.2 Problem Statement ... 3

1.3 Research objectives ... 3

1.4 Research methodology ... 4

1.5 Organization of thesis .. 6

2 Chapter 2 – Literature Review ... 7

2.1 Introduction .. 7

2.2 Flexible Manufacturing Systems ... 7

2.2.1 Dimensions of manufacturing flexibility ... 11

2.2.2 The traditional job shop vs flexible job shop ... 12

2.3 Manufacturing Scheduling ... 15

2.3.1 Classification of scheduling problems ... 15

2.3.2 Complexity ... 18

2.3.3 Benchmark problems .. 19

xvi

2.3.4 An example of the scheduling problem .. 20

2.3.5 Optimization of scheduling problems and objective functions 21

2.4 Algorithms for scheduling ... 23

2.5 Dispatching rules ... 26

2.6 Genetic algorithm .. 26

2.6.1 Theoretical background .. 27

2.6.2 Explanation of GA .. 28

2.6.3 Advantages and disadvantages ... 31

2.7 GA for FJSSP .. 32

2.7.1 Literature summary .. 32

2.7.2 Chromosome encoding ... 34

2.7.3 Population initialization ... 34

2.7.4 Recombination operators .. 34

2.7.5 Classification of GA approaches for FJSSP ... 37

2.8 Gap Analysis .. 39

2.8.1 GA integrated with scheduling rules (GA-PR) .. 39

2.8.2 GA with iterative diversification technique (GA-IDT) .. 40

2.9 Summary .. 41

3 Chapter 3 – Problem Formulation and Simulation Environment 42

3.1 Problem formulation .. 42

3.2 Problem constraints and assumptions .. 42

3.3 Insight to the problem formulation .. 44

3.4 Simulation environment ... 48

4 Chapter 4 – Proposed Algorithms .. 49

4.1 Introduction .. 49

4.2 GA with Priority Rules (GA-PR) .. 49

4.2.1 Solution of assignment problem by GA ... 50

4.2.2 Solution of scheduling problem by priority rules ... 59

xvii

4.3 GA with iterative diversification technique (GA-IDT) ... 63

4.3.1 The need for IDT .. 63

4.3.2 Architecture of GA-IDT ... 66

4.3.3 Layer 1: input ... 68

4.3.4 Layer 2: GA .. 69

4.3.5 Layer 3: Re-initialization .. 81

4.3.6 Layer 4: Output .. 82

4.4 Summary .. 84

5 Chapter 5 – Experimental Investigation and Performance Evaluation 85

5.1 Introduction .. 85

5.2 Evaluation of computational complexity and search space ... 85

5.3 The results of GA-PR .. 87

5.3.1 Contribution of priority rules ... 87

5.3.2 Behavior of adaptive recombination operator probabilities 90

5.3.3 Behavior of hybrid selection .. 91

5.3.4 Results of attempted instances ... 92

5.4 The results of GA-IDT ... 96

5.4.1 Consequence of re-initialization ... 96

5.4.2 Results of attempted instances ... 98

5.5 Comparison of GA-PR and GA-IDT ... 101

5.6 Summary .. 103

6 Chapter 6 – Conclusions and Recommendations ... 104

6.1 Contribution to the existing body of knowledge ... 104

6.2 Future research directions .. 106

References .. 107

xviii

List of Figures

Figure 1.1: Business opportunity and manufacturing .. 2

Figure 1.2: Research methodology ... 5

Figure 2.1: Types of manufacturing in the last century ... 7

Figure 2.2: Relation between product volume and variety [3] ... 9

Figure 2.3: A typical Flexible Manufacturing System ... 11

Figure 2.4: Dimensions of flexibility in a manufacturing environment 12

Figure 2.5: Classification of shop floor layouts ... 12

Figure 2.6: An example of job shop layout .. 13

Figure 2.7: Traditional job shop layout setting .. 13

Figure 2.8: A schematic of Flexible Job Shop ... 14

Figure 2.9: Classification of Scheduling .. 16

Figure 2.10: Classification of the scheduling problem ... 17

Figure 2.11: A sample Gantt chart ... 21

Figure 2.12: The typical optimization process ... 22

Figure 2.13: Analogies between genetic algorithm and natural evolution process 27

Figure 2.14: Two different chromosomes .. 28

Figure 2.15: A typical one-point crossover .. 29

Figure 2.16: A typical swap mutation .. 29

Figure 2.17: Flowchart of GA with gene representations .. 31

Figure 2.18: Trend of FJSSP publications with GA approaches .. 34

Figure 2.19: Frequency of use for different crossover types .. 36

Figure 2.20 Frequency of use for different mutation types .. 37

Figure 2.21: Classification of GA based FJSSP literature ... 38

Figure 2.22: Different GA based approaches for FJSSP and their application 38

Figure 2.23: Frequency of objective function attempts (single / multi) 39

Figure 3.1: Makespan of MFJS-2 as per LB .. 47

Figure 3.2: Simulation environment for solving FJSSP ... 48

Figure 4.1: The flowchart of GA-PR .. 50

Figure 4.2: A sample chromosome encoding ... 51

Figure 4.3: Another sample chromosome .. 52

Figure 4.4: Random population initialization ... 52

Figure 4.5: An example of TPX ... 53

Figure 4.6: Flowchart of TPX .. 54

xix

Figure 4.7: An example of CM .. 55

Figure 4.8: Flowchart of CM .. 57

Figure 4.9: Flowchart of elitism ... 58

Figure 4.10: Flowchart of roulette wheel ... 59

Figure 4.11: Fitness function .. 62

Figure 4.12: A schematic representation of the search space ... 64

Figure 4.13; Flowchart of IDT ... 66

Figure 4.14: Procedure for GA-IDT execution .. 67

Figure 4.15: Flowchart of GA-IDT .. 68

Figure 4.16: A sample input MS Excel sheet ... 69

Figure 4.17: Conversion of problem into MS and OS parts of chromosome 70

Figure 4.18: An example chromosome .. 70

Figure 4.19: Local search ... 72

Figure 4.20: Global search ... 72

Figure 4.21: Encoding of chromosome .. 73

Figure 4.22: Decision tree for GS, LS and RS ... 74

Figure 4.23: Recombination operators for GA-IDT ... 75

Figure 4.24: Two parent chromosomes (MS part) ... 75

Figure 4.25: An example of SPX ... 76

Figure 4.26: Flowchart of SPX ... 76

Figure 4.27: An example of TPX ... 77

Figure 4.28: An example of UX ... 77

Figure 4.29: Flowchart of UX .. 78

Figure 4.30: An example of iPOX .. 79

Figure 4.31: Flowchart of iPOX ... 79

Figure 4.32: An example of RIM ... 80

Figure 4.33: Flowchart of RIM .. 80

Figure 4.34: An example of SM ... 80

Figure 4.35: Flowchart of SM .. 81

Figure 4.36: Chromosome to be decoded ... 82

Figure 4.37: A schematic of chromosome decoding .. 83

Figure 4.38: Conversion of decoded chromosome into Gantt chart ... 83

Figure 5.1: Graphical presentation of search space size .. 87

Figure 5.2: Procedure for evaluating percentage contribution of selected rules 88

Figure 5.3: Visualization of percentage contribution of selected rules 89

xx

Figure 5.4: Contribution of each rule in solving Kacem-4 ... 90

Figure 5.5: Behavior of Pc .. 91

Figure 5.6: Behavior of Pm ... 91

Figure 5.7: Behavior of hybrid selection .. 92

Figure 5.8: Mean %Δ of GA-PR as compared with other Algorithms 95

Figure 5.9: MFJS-7 Gantt chart .. 95

Figure 5.10: Consequence of re-initialization on MFJS8 makespan .. 96

Figure 5.11: Consequence of re-initialization on convergence of MFJS-2 and MFJS-4 98

Figure 5.12: Consequence of re-initialization on convergence of MFJS-5 and MFJS-6 98

Figure 5.13: Mean %Δ of GA-IDT as compared with other Algorithms 101

Figure 5.14: MFJS-8 Gantt chart .. 101

Figure 5.15: Comparison between GA-and PR GA-IDT for Fattahi instances 102

Figure 5.16: Comparison between GA-and PR GA-IDT for Kacem instances 102

xxi

List of Tables

Table 2.1: Some concepts of flexibility in manufacturing ... 14

Table 2.2: Explanation of processing layout (α) .. 17

Table 2.3: Explanation of constraints (β) ... 18

Table 2.4: Examples of objective functions (γ) .. 18

Table 2.5: The SFJS6 Benchmark .. 20

Table 2.6: Popular Objective Functions for FJSSP .. 23

Table 2.7: Classification of scheduling algorithms .. 23

Table 2.8: Some important dispatching rules ... 26

Table 2.9: Surveys published to review FJSSP literature .. 33

Table 3.1: MFJS 2 benchmark problem ... 44

Table 3.2: Calculation of LB for MFJS-2 .. 47

Table 4.1: Fattahi SFJS6 .. 51

Table 4.2: Example Instance for mMWR .. 61

Table 4.3: Explanation of mMWR ... 61

Table 5.1: Quantitative assessment of search space ... 87

Table 5.2: Input parameters of GA-PR .. 93

Table 5.3: Results of Kacem dataset for GA-PR .. 93

Table 5.4: Results of Fattahi dataset for GA-PR .. 94

Table 5.5: Parametric settings of GA-IDT ... 99

Table 5.6: Results of Fattahi and Kacem datasets for GA-IDT ... 100

1

1 Chapter 1 - Introduction

1.1 Background

Since the beginning of intellectual evolution of mankind, efforts are being made to

improve the lifestyle and living standard. The earliest documented human life on earth is divided

into stone age, bronze age and iron age [1] which depict this continual struggle. As a result,

humanity has seen marvelous growth in each race of everyday life. With the increase in

population and the advent of technology, mankind developed machines to ease the availability

and accessibility of daily used products. The need of machines for completing the repetitive and

laborious work raised and eventually, the industrial age (1760 – 1970) saw unprecedented

increase in the manufacturing sector. Today, one cannot imagine daily life without the presence

of machines.

As the humans saw the advancement in technology, the need for luxury and comfort

increased. In addition, owing to the increase in population, the requirement of necessities was

also increased. The amalgamated cultural and occupational requirements generated various types

of product requirements. All products to be developed are to be manufactured, hence products

and manufacturing go hand-in-hand. However, since products differ in nature according to their

use, different machines are required for their manufacturing in order to optimize the production

and cost effectiveness. Here comes the balance between the number of machines and number of

products to be manufactured on these available machines. Obviously, both the industrialist and

the customer want to get minimized production time and cost.

The history of manufacturing can be traced back to the stone age whereby basic tools

were invented for reshaping the materials recovered from natural environment [2]. The word

“manufacture” itself is derived from Latin background which basically means “made by hand”

[3]. The manufacturing process converts raw materials in products of use through use of tools

and machines [4]. Hence, every product in our surrounding goes through this process during its

creation. Therefore, manufacturing sector always faces challenging demands from inside and

outside the engineering industry in view of push-pull system of technology change and market

requirements [5].

Over the period of time, manufacturing has emerged as a key indicator of a country’s

economic and commercial growth. World Bank has reported that manufacturing activity adds up

to 18% of the Gross Domestic Product (GDP) of the world [6], thereby creating wealth.

2

Moreover, the industry gave employment to 23.083% of total employment share and added 2.7%

in the annual growth of the world in year 2018 [7].

Since, the manufacturing industry directly affects the product output of any country, its

wellbeing guarantees economic plateau and improved standard of living / comfort. The

manufacturing sector responds to market and product development needs and provides a concrete

business opportunity [8] as shown in Figure 1.1. Consequently, the earlier the company responds

to the market needs, the more profits are ensured and hence a competitive advantage is gained

since no competitor is available in the market. This fact has risen aggressive competition in all

the manufacturing industry owing to the constantly changing customer demand on one hand;

while one the other hand, it has provided an excellent opportunity for a well-equipped industry

to attain market supremacy. Effective manufacturing management techniques, therefore, warrant

reduced product availability time to the market and hence increases market share of the said

company in the longer run [9].

Figure 1.1: Business opportunity and manufacturing

Conventional manufacturing operations are carried out in a machine shop where

machines are installed in a certain layout. In order to undertake manufacturing in large quantities,

production operations are to be planned carefully keeping in view predetermined objectives to

ensure that maximum output is achieved with minimum resources. This is important because

remaining resources may be assigned to other tasks. Sequencing of operations in a manufacturing

Technology push Market pull

New product requirement

Manufacturing

Business

Design and development

3

facility directly contributes to its performance. It requires careful production planning to avoid

wastage of manhours, materials, cost, and time. Scheduling directly contributes to better

operations of a manufacturing facility.

1.2 Problem Statement

Manufacturing scheduling deals with planning of operations on machines to obtain

intended output with regards to environmental constraints. The problem pertains to the classical

scheduling problems generated in the early 20th century and since then enormous amount of

research has been carried out to minimize the completion time of process / jobs on the available

resources. The minimum completion time will not only utilize the resources in optimal manner

but will also release them earlier for future operations with an added advantage of minimized

cost over-run and manhours etc.

The advancement in automated manufacturing and production engineering has led to

many progressions in the modern manufacturing concern, one of the most important being the

Flexible Manufacturing System (FMS). The FMS has been designed to encounter changing

demands of different products with regards to operations (e.g., handling, machining operation)

and process maximum number of different jobs.

Where the idea feels astounding, it is a challenging task to allocate these advanced

resources optimally. Scheduling in the flexible environment is one of the most tough optimization

problems and has attracted researchers for over a century. The scheduling field proposes some

of the most advanced, complex, and toughest combinatorial optimization problems. The search

space of these problems is so huge that one cannot evaluate the complete space even by spending

many complete lifetimes. This motivated the current research for actual evaluation of selected

benchmark search space. This research is focused on minimization of makespan in a flexible job

shop atmosphere. Since exact solution approaches cannot provide solution of these problems in

a reasonable time, artificial intelligence techniques have been used as a popular alternative for

solving these problems. The current research attempts to solve these problems by use of Genetic

Algorithm (GA).

1.3 Research objectives

Following are the objectives of this work.

a. To study the GA based FJSSP optimization literature

b. To develop a thorough understanding of scheduling paradigm and its related

mathematical intricacies

4

c. To optimize the processing times of jobs through proposition of efficient

techniques

d. To evolve a software-based environment for solving the scheduling problem in

an automated manner

e. To develop a heuristic based solution approach

f. To develop a pure GA based approach

g. To evaluate the complexity of scheduling problems on the basis of chromosome

representation

h. To solve selected benchmark instances and to identify improvement

i. To identify the advantages of proposed solution architecture and methodologies

1.4 Research methodology

This work is organized in three stages as outlined in Figure 1.2. During the preparation

phase, initial problem understanding was gathered, and a thorough literature review was

conducted to reveal grey areas of the literature. The implementation stage was started with

development of an integrated MATLAB-MS Excel based simulation environment to conduct of

computational experiments. The phase was designed to achieve following objectives.

a. Development of heuristics-GA based approach

b. Development of a pure GA based approach

The developed algorithms were evaluated thoroughly for correctness through solving

small problems available before attempting the large problems. Conceptual or programming bugs

were removed through solving the small instances with hand and verification of step-by-step

ability of MATLAB bug removal. Moreover, the solution of software generated Gantt charts was

also computed and compared with manual solutions for correctness. For awareness of problem

complexity, the search space was also quantified. The algorithms were then tested on the selected

datasets from literature and different experiments were conducted for the evaluation of proposed

improvements. At the end, contributions are summarized, and conclusions are presented along

with recommendation for further work. The scope of this work will be restricted to FJSSP.

5

Figure 1.2: Research methodology

6

1.5 Organization of thesis

Following is the chapter-wise overview of the current research. Chapter-1 introduces the

reader to the background of the research area, the research objectives, and the methodology of

the study. Chapter-2 provides literature overview of the research area covering different aspects

of the research area. Chapter-3 opens the scheduling problem by performing its mathematical

formulation. For a clear understanding, numerical examples are given thoroughly, and each

element is explained in a detailed manner. The chapter also covers the design scheme of the

proposed solution environment for the modeled problem. Chapter-4 provides detailed

explanations of the proposed algorithms for solving the FJSSPs using GA-PR and GA-IDT.

Procedures and routines conducted during the algorithms have been illustrated using flowcharts

extensively. Meanwhile, improvements in the algorithms have also been highlighted. Chapter-5

deals with the experimental results of the selected benchmarks. Different experiments are

conducted to outline the advantages of the proposed techniques and finally comparison has been

made with other algorithms to effectively indicate the algorithm performance. Chapter-6 closes

the thesis with identification of contributions to the existing knowledge area and future research

guidelines.

7

2 Chapter 2 – Literature Review

2.1 Introduction

This chapter introduces concept of FMS, machine layouts, classifications and general

optimization practice. These topics are necessary to understand and attempt Flexible Job Shops

Scheduling Problems (FJSSPs). The literature of FJSSP is thoroughly discussed along with

different solution approaches. The chapter has majorly been extracted and modified from the

already published review work of the author [10] unless otherwise cited; in which a total of 190

papers have been reviewed.

2.2 Flexible Manufacturing Systems

The craft manufacturing techniques (based on skill) has changed to global manufacturing

(based on information) in the last century. The manufacturing industry has tailored itself to adapt

to the changes and challenges posed by the demanding customer and market needs. Now, a

manufacturing enterprise requires concurrent and up-to-date information instead of just skill-

based-information. Another huge impact during this change is the advent of automation in place

of human operators. Figure 2.1 provides a pictorial layout of the changes that the manufacturing

industry has undergone during last decades.

Figure 2.1: Types of manufacturing in the last century

8

Manufacturing systems face the challenge of processing different types of jobs. Since

different types of jobs require different machines, increasing the job variety increases machine

types and consequently capital investment. Hence, a manufacturing system offers limited number

of operations to be processes.

There exists an inverse relation between the volume and variety of products that can be

undertaken at a manufacturing concern [3, 11]. The production system can generate a low-

volume-high-variety product through a specialized and dedicated machinery to address a specific

project need. Such systems are highly specialized and cannot encounter job flexibility. On the

other hand, low-variety-high-volume systems produce continuous production in high numbers

that mainly constitute the major consumer market products.

Another aspect in this regard is that market share of a company depends upon the time to

market for a certain product i.e., the time required to deliver the product to market. Obviously,

this entails the efficient development and production of the product. The early the product is

made available in the market, the more it gains the market share and customer loyalty

accordingly.

Therefore, the relation between the production capacity and production flexibility is

inverse in nature and one must keep a balance in both aspects during the design phase of the

production system. Since the increment in flexibility entails intermittent process flows and

complex / diverse tasks, it cannot be increased infinitely. As a matter of fact, flexibility comes

with a penalty of complexity. Moreover, low-volume-low-variety and high-volume-high-variety

systems does not lie on the feasible production diagonal as pointed out in Figure 2.2 since they

do not pose commercially reasonable. To achieve maximum share of the market, a manufacturing

concern must produce a reasonable variety of products with a good volume. This constitutes a

medium-volume-medium-flexibility manufacturing setup, commonly known as a Flexible

Manufacturing System (FMS).

9

Figure 2.2: Relation between product volume and variety [3]

FMS are modern systems which can handle a variety of product types through variable

routings [3]. Similar types of operations are grouped together through employment of Group

Technology (GT) [12] which generally incorporates a material handling system to produce

medium volume and variety products [13].

GT has offered an alternative to the conventional batch production through reduction of

downtime for changing jobs [3]. It operates on the concept that different parts contain certain

similarities in the form of inherent features. Hence, similar features are processed through same

process and tooling. Literature offers several classification schemes for division of parts in GT,

e.g., Opitz, CUTPLAN, Brisch, DCLAS and CODE etc. Flexible manufacturing systems include

automation in the GT cells.

10

As described in the section 1.1, customer demands verity of products in a limited time

frame. Conventional manufacturing setups give a high production volume but cannot handle

different types of products. On the other hands, workshops offer high level of flexibility, but can

handle a low production volume. FMS is a trade-off between the conventional high-volume -

low-flexibility manufacturing setups and the low-volume-high-flexibility workshops. Major

benefits of these systems include; a reduced manufacturing lead time, lower machine

requirement, optimal shop floor utilization, medium volume-variety production [3, 14], thereby

increasing flexibility in the system [15, 16].

Figure 2.3 presents a typical FMS with Automated Guided Vehicles (AGVs). The FMS

is equipped with multiple machines because a certain flexibility has been introduced into the

system. Increased number of milling and lathes indicate that this FMS is designed to undertake

milling, facing and turning operations more often. The material handling system is used in

conjunction with AGVs to load and unload jobs. A computer controller regulates the functioning

of the FMS. Similar idea is implemented in the form of Flexible Manufacturing Cell (FMC)

where machines are grouped together in order to accommodate a variety of operations. Such cells

are designed to undertake similar groups of processes through use of group technology concepts.

Different schedules can be executed in the FMS / FMC since it is adaptable to different types

and sequences of operations; obviously, until a limitation [17].

11

Figure 2.3: A typical Flexible Manufacturing System

2.2.1 Dimensions of manufacturing flexibility

Flexibility in manufacturing has been described as the ability of a manufacturing system

to undertake different tasks of different nature through available resources [15, 18, 19]. It is

evident that flexibility eases the operational scenario including many other benefits; however, it

adds to the complexity of production management since it requires additional decision making

in the process.

The dimensions of flexibility are depicted in Figure 2.4 [20], e.g. flexibility in production

means the system can handle variety of parts in production scope. Similarly, flexibility in product

means the system can manufacture variety of products. Other dimensions include machine,

tooling, and routing flexibility, whereby machines can perform different tasks, can incorporate

different tools and can undertake different routing.

12

Figure 2.4: Dimensions of flexibility in a manufacturing environment

2.2.2 The traditional job shop vs flexible job shop

Depending upon the nature of the manufacturing processes and the product to be

developed shop layouts have evolved over the period of time. Figure 2.5 presents a limited

classification of the shop floor layouts with emphasis on current research problem.

Figure 2.5: Classification of shop floor layouts

A typical job shop layout is presented in Figure 2.6. The layout consists of different types

of machines, whereby jobs can be processed as per requirement of operations. Different jobs

have different sequence of operations; hence this problem deals with routing of each operation

of a job on different machines. For example, Job 1 may process from saw-turn-paint-warehouse

whereas Job 2 may process as grind-mill-drill-assembly-warehouse. Processing times of each

13

operation can differ on each machine or it may remain the same. Now, the interest is to sequence

the total number of operations of each job on these available machines, since each machine is

dedicated for a single operation. Obviously, the scheduler would want to schedule the tasks such

that minimum time is consumed to complete all products. This gives rise to the classical Job

Shop Scheduling Problem (JSSP). The problem has gained attention since decades, e.g. early

attempts to find the schedules date back to early twentieth century [21]. Subsequently, the JSSP

has attracted researchers in more recent times e.g., [22-25].

Figure 2.6: An example of job shop layout

Hence, the major criterion in JSSP is that every operation must be carried out on a single

pre-decided machine. This scenario has been schematically presented in Figure 2.7. Consider a

job J1 requiring two operations O1 and O2 for its completion. In a Job Shop Scheduling Problem

(JSSP) setting, O1 can only be performed on M1, while O2 can only be performed on M2.

Figure 2.7: Traditional job shop layout setting

14

In actual scenario of the practical shop floors, there are often more than one machines

that can perform a single specified task. Therefore, contrary to the scenario of job shop, flexible

job shop has inherent flexibility with regards to decision of machine selection form the available

pool of machines. This setting provides machines selection problem in addition to the routing

problem. A sample FJS schematic is presented in Figure 2.8. Job 1 is to be processed by

completing two operations and the shop setting has two available machines. Operation 1 can only

be performed on machine 1, while operation 2 has the flexibility to be performed on either of

Machine 1 or 2.

Figure 2.8: A schematic of Flexible Job Shop

FJSSP is another branch of the basic JSSP, whereby following two problems are

considered simultaneously.

a. Assignment / routing: The decision regarding processing of jobs on available

machines.

b. Scheduling / sequencing: The decision regarding the sequence of operations on a said

machine.

There exists a built-in flexibility in the FJSSP paradigm. This is due to fact that this setup

offers routing and sequencing opportunities to the process planner. Literature has proposed

different ways to incorporate flexibility in the manufacturing setup, some of which are

summarized in Table 2.1.

Table 2.1: Some concepts of flexibility in manufacturing
Concept Reference

Machines with different tools that can perform multiple operations [26]

Commission more similar machines in case of a bottleneck [27]

One machine for multiple operations [28]

15

2.3 Manufacturing Scheduling

Manufacturing scheduling is a decision making problem which involves the sequencing

of tasks (i.e. jobs, operations, workers etc.) to available processing resources (machines, work

etc.) keeping in view a certain pre-defined objective function in order to complete the tasks [29].

The problem involves sequencing of different jobs, which may contain different operations to

different machines. Consequently, manufacturing scheduling becomes a combinatorial

optimization problem [30] offering many solutions, only some of which meet the performance

requirement, e.g. total completion time of all jobs. Since, infeasible schedules are rejected in a

straightforward manner; the feasible schedules are searched for optimality against the objective

function. It is evident that all feasible schedules can complete the jobs but will fail to utilize the

resources in a good manner as compared to the optimal schedule. As the number of jobs increase,

more resources are required which will incur more cost. Hence it is imperative that the interest

in finding the optimal schedule grows with the increased number of jobs.

Scheduling decisions are complex in nature since they deal with the problem of resource

assignment to the upfront tasking [31]. Generally, the resources are scarce, and tasking becomes

larger, so scheduling decisions are to be taken smartly to increase the productivity. Moreover, in

view of the various manufacturing sectors involved, companies tend to customize the

manufacturing setups, which further increases the complexity of the decision-making problem.

In addition, the time available to undertake the scheduling decision is limited because goods are

to be produced and forwarded to market. Also, the decision is order-dependent, since production

is customer-oriented [32].

2.3.1 Classification of scheduling problems

Scheduling can be divided into deterministic and stochastic [31] as shown in Figure 2.9.

Deterministic scheduling involves jobs with known processing time and stochastic scheduling

refers to real-time changing job processing time which only get confirmed after the job is

completely processed [33-35]. Jobs arrive in a known manner in static scheduling, while dynamic

scheduling deals with job arrivals at unknown intervals [36-38].

16

Figure 2.9: Classification of Scheduling

Figure 2.10 presents the classification of scheduling problem. Following describes the

salient features of each classification.

a. Deterministic: All the variables have known value in the problem e.g., processing

time, due date etc.

b. Proactive: This enables the scheduler to undertake unforeseen aspects which can

arise because of the stochastic nature of the problem.

c. Real time: This scheme reallocates the resources according to the resources

available at the shop floor.

d. Adaptive: The scheduling software changes the scheduling methodology

according to the history of the events.

e. Reactive: This embarks on the current state of the shop floor and changes the

schedules reactively according to the changing conditions. This scheme aims to

change the implemented schedule.

f. Stochastic: Some variable in the problem is not known but is determined through

a probability function.

g. Fuzzy: Deals with the fuzzy variables.

h. Robust: The schedule is not affected by the unforeseen events that can occur on

the shop floor.

17

Figure 2.10: Classification of the scheduling problem

The scheduling models are conventionally classified through the characteristics of

processing layout (α), constraints (β) and cost function (γ). The notation is summarized as α | β |

γ. This scheme was introduced by Conway et al. [39], which was further extended by Graham et

al. [40] and Lawler et al. [41]. The processing layouts are denoted as double index α1α2 which

are further explained in Table 2.2, e.g., α = J3 means a job shop layout with 3 machines.

Similarly, α = P means a parallel machine setting with no count of machines available. The

machine constraints are depicted in Table 2.3

Table 2.2: Explanation of processing layout (α)
Notation Values Description

α1

ϕ Single machine

P Parallel identical machines

Q Parallel uniform machines

R Parallel unrelated machines

F Flow shop

J Job shop

O Open shop

α2
1, 2, …, m Fixed machines

ϕ No fixed machines

18

Table 2.3: Explanation of constraints (β)
Notation Description

β = prec
There exist precedence relations between operations of the jobs, e.g., number

of predecessor and successors.

β = sd There is sequence dependent setup / removal time

β = Mj Machine eligibility i.e., some machines can perform some operations only.

β = prmu Permutation flow shop problem.

β = brkdwn There can be possibility of breakdown in machines.

β = recrc
The process contains recirculation i.e., at least one job visits one machine more

than once.

β = no-idle There can be no idle machine.

β = batch There are batches in jobs.

Table 2.4: Examples of objective functions (γ)
Notation Description

γ = Cmax Minimize makespan

γ = max Fj Minimize maximum flowtime

γ = ∑ C Total completion time

2.3.2 Complexity

FJSSP is a NP-hard problem [42] that has received attention from different backgrounds

of mechanical engineering, computer sciences and operations research due to its complex nature

[43]. The scheduling decision is one of the most complex decision, owing to the various reasons

including different objective functions, decision constraints, large number of feasible solutions,

and time-domain dynamic nature [29, 44].

The complexity of the problem grows with the number of jobs in a JSSP since each job

can have varied number of operations and corresponding different times. A total of (n!)m

sequences can be generated in a JSSP environment [45], where n is the number of jobs and m is

the number of machines. The problem complexity is increased manifold because of changing

number of jobs, machines, processing times, uncertainties, and apprehended shop floor

breakdowns [46]. It has been a major endeavor of this research to actually estimate the search

space of the selected benchmark problems in a quantitative manner.

19

2.3.3 Benchmark problems

The schedules generated for FJSSPs are evaluated on benchmark problems which have

been developed to assess the efficacy of a said solution approach [47]. Several sets have been

proposed in this regard, some of which are summarized below.

a. Brandimarte (MK Data [48]): These instances are generated with different

flexibilities of the available machines. This set includes 15 problems with minimum

size of 10 jobs x 6 machines and maximum size of 30 jobs x 15 machines. However,

first 10 problems from this dataset are generally used in literature.

b. Hurink et al. (HU Data [49]): These instances were generated by using the classical

JSSP formulations of Fisher and Thompson [50] with the assumption of multi-

purpose machines. This set includes a total of 264 instances with minimum size as 6

job x 6 machine and maximum size as 15 job x 15 machines. HU data is further

grouped as follows.

i. Sdata: Each operation can be performed on one machine only.

ii. Edata: Some operations can be performed on more than one machine.

iii. Rdata: Many operations can be performed on more than one machine.

iv. Vdata: Each operation can be performed on many machines.

c. Dauzère-Pérès and Paulli (DPpaulli Data [51]): These instances were generated using

the similar principles of multi-purpose machines with inherent flexibility. A salient

feature of these instances is that operations to be scheduled are higher than the

available machines in all possible cases. Moreover, these instances also provide

variable times for selected machines against a similar problem. A total of 18 problems

are presented in this data with minimum size of 10 jobs x 5 machines and maximum

size of 20 jobs x 10 machines.

d. Barnes & Chambers (BC Data [27, 52]): In these instances, processing times at

relevant machines are not dependent on the selected machine; whereby the basic idea

was to duplicate a machine depending upon seven (7) different policies. The instances

have been driven from basic data by Fisher and Thompson [50] and Lawrence [53].

A total of 21 instances are included in this set with minimum size of 10 jobs x 11

machines and maximum size of 15 jobs x 17 machines.

e. Kacem et al. (Kacem Data [54]): These instances have been designed on the

hypothesis that every process can be performed on a set of machines from the

available set such that the number of operations are different for different jobs. A total

20

of 4 instances were produced with minimum size of 4 jobs x 5 machines and

maximum size of 15 jobs x 10 machines.

f. Fattahi et al. (FT data [55]): These instances contain 20 problems with small and

medium sizes. Both partial and total flexible instances are available in this set.

g. Industrial instances: In addition to the conventional benchmark problems, literature

also proposes specific industrial problems e.g. [56-59]. Generally, these problems are

seldom used widely for evaluating algorithm efficiency.

2.3.4 An example of the scheduling problem

Here, the basic explanation of a selected scheduling instance is explained. Let’s consider

the scheduling problem as presented in Table 2.5. The problem consists of a total of 3 jobs J1, J2

and J3, the first two consists of three operations and third job consists of two operations. The first

operation of first job is denoted as O11, the second operation of third job is denoted as O32 and so

on. In general, this is denoted as Oij. The operations are to be performed on one of the available

four machines and all operations can be performed on all machines. The time required for a said

operation on a selected machine is provided accordingly. Since all operations can be performed

on all machines, the problem is considered total flexible.

Table 2.5: The SFJS6 Benchmark

The task of calculating the overall time for completion of all jobs (Cmax) problem can be

undertaken through formulation of a Gantt Chart. Time is shown on x-axis and machines are

shown on y-axis. The processes are placed on the chart keeping in view the prescribed constraints

such that all processes are completed. In this way, Gantt chart is a graphical solution of the

scheduling problem.

Job Operation
Processing Time

M1 M2 M3 M4

J1

O11 1 3 4 1

O12 3 8 2 1

O13 3 5 4 7

J2

O21 4 1 1 4

O22 2 3 9 3

O23 9 1 2 2

J3
O31 8 6 3 5

O32 4 5 8 1

21

A possible solution of the selected instance is shown in Figure 2.11. O11 and O32 are

performed at M1 while O31 and O13 are performed on M3. Here, O12 is performed on M4, however

it can also be performed on M1 however it will take more time on it. The makespan comes out to

be 7 in case the jobs are scheduled as shown. It is evident that several other possible solutions

are available for the considered instance and the makespan will vary accordingly. Optimal

solution can only be found if all possible solutions are evaluated for makespan and the number

of solutions will increase enormously with size of problem. Of course, it is an aspect of prime

importance to the process planner to minimize the overall completion time of the problem.

Figure 2.11: A sample Gantt chart

2.3.5 Optimization of scheduling problems and objective functions

Optimization deals with the generation of best solution from the set of available solutions

to an upfront problem [60, 61]. The field is of concrete importance in the modern engineering

world where multiple solutions of a single problem are available. In addition, the field also targets

to solve problems that can achieve a cost function that addresses multiple objectives. Figure 2.12

chalks out a typical process to be carried out to undertake an optimization problem.

22

Figure 2.12: The typical optimization process

Whereas all feasible schedules can be executed on the shop floor for achieving the

production order, only best solution will guarantee the utilization of resources and output

efficiency. In view of the complexity of scheduling problems, many feasible solutions are

available. The problem thus becomes twofold; one is to find feasible solutions and reject

infeasible ones, second is to find optimal solution. A general optimization problem is formulated

as follows.

Minimize

 ݂ሺݔሻ (1)

w.r.t.

 ݄ሺݔሻ ൌ 0 ∀ ݅ ൌ 1…݊ (2)

 ݃ሺݔሻ ൌ 0 ∀ ݆ ൌ 1…݉ (3)

Here, h(x) and g(x) represent the equalities and inequities constraints for the objective

function f(x). The objective function defined in Eq. (1) can take the multi-objective form as

݂ሺݔሻ ൌ ଵ݂ሺݔሻ ଶ݂ሺݔሻ 	 ଷ݂ሺݔሻ ⋯	 ݂ሺݔሻ. Here f1(x), f2(x), f3(x),… fn(x) are the sub-functions

of the objective function describing different objectives. Objective functions are set in an

optimization problem to achieve a pre-determined goal. In the current high business flux and

customer-oriented market, it has become inevitable that the operations are performed on the

23

production shop floor in an optimal manner to reduce cost, wastage of resources and time. Table

2.6 presents the popular objective functions that have been studied in the FJSSPs.

Table 2.6: Popular Objective Functions for FJSSP

Function Description Calculation

Mean completion time Mean time required to complete a single job ̅ܥ ൌ
∑ ܥ

ୀଵ

݊

Total Tardiness
Difference between due date and completion time
for all jobs

ܶ ൌ ܶ

ୀଵ

Makespan Total completion time for all jobs ܥ௫ ൌ max
ଵஸஸ

 ܥ

Maximum flow time
Total time taken by the job to get processed from
the shop floor (including wait)

ܨ ൌ max
ଵஸஸ

 ܨ

Total workload of
machines

Total time for which all machines are working ்ܹ ൌ ܹ

ୀଵ

2.4 Algorithms for scheduling

Scheduling problems need a structural approach for achieving solution [62]. There are

many techniques available to solve the scheduling problems and a holistic classification is

presented in Table 2.7.

Table 2.7: Classification of scheduling algorithms
Class Sub-class Algorithm Reference

Exact

Constructive

Johnson’s algorithm [63]

Moore’s algorithm [64]

Lawler’s algorithm [65]

Enumerative

Integer programming [66-68]

Branch and bound [69, 70]

Dynamic programming [40, 71]

Approximate

Heuristics
NEH heuristic [72]

Shifting bottleneck [24, 73]

Metaheuristics

Simulated annealing [25, 28]

Tabu search [74, 75]

Greedy search [76, 77]

Genetic algorithm [78, 79]

Ant colony optimization [80, 81]

Artificial immune system [82-85]

24

Differential evolution [86, 87]

Harmony search [88-90]

Particle swarm optimization [91-93]

Artificial bee colony [94, 95]

Neighborhood search [96, 97]

Frog leaping algorithm [98-100]

Biogeography-based optimization [101]

Firefly algorithm [102, 103]

Invasive weed optimization [104]

Generally scheduling techniques are classified as exact and approximate [105]. Recently,

the approximate techniques have gained exceptional interest due to the increased complexity of

the problems. Approximate techniques provide good solutions within acceptable time frame in

comparison to the exact methods which can provide guaranteed optimal solutions for smaller

instances but may tend to take infinite solution times on larger problems [106]. Heuristics provide

a straight-forward rule-based solution for the problem at hand which may not be optimal. In the

context of scheduling problems, priority rules are classical example of heuristics. In contrast,

metaheuristics generate sequential neighborhood solutions through stochastic techniques or take

inspiration from any other nature / technical process.

Conventional optimization methods include calculus based techniques, e.g. Karuch-Khun

Tucker methods, gradient based methods [107]. These methods reply on the availability of a

mathematical objective function which can be optimized using calculus based or numerical

techniques. Further, regularity and convexity checks are the hallmark requirement of these

methods due to which they cannot undertake NP-hard problems. On the other hand, enumerative

methods provide a step-by-step solution procedure which can check the best solution during the

process. Depending upon the size of search space, these methods become inefficient and may

cause huge delays in schedule generation.

The basic ingredient of a metaheuristic technique is a guidance mechanism for the

underlying heuristic to effectively evolve the solution until an acceptable termination criteria

[108]. The search space is explored in this process through diversification (further evaluation of

the unexplored areas) and intensification (exploration in the already explored area), whereby both

techniques are used side-by-side. These methods can solve the NP-hard problems in an effective

manner and hence they have gained extreme popularity and research interest during the last few

25

decades [109]. Metaheuristics methods have various techniques, which are generally inspired

from nature-based systems, sometimes termed as nature-inspired-algorithms. The number of

techniques are becoming more and more diverse in response to the No-Free-Lunch proposition

[110] which demands different algorithms for different situations. A limited discussion for some

selected metaheuristic methods is presented below.

a. Tabu search: It is a neighborhood based local search method which uses a memory

list to prevent a revisiting previously evaluated solution. This method is proven to be

very useful in avoiding local minima traps. However, in a larger search space, the

number of iterations to reach an acceptable solution increase enormously along with

the length of tabu list [111].

b. Simulated annealing: The method is named after the famous heat treatment process.

The method can deal with non-linear models and can find a good approximation to

the global minima. The methods relies on the quality of initial startup solution for the

final solution quality [112].

c. Ant colony optimization: It is one of the most popular nature-inspired-algorithm that

relates to the social conduct of ant colonies. It imitates real ants when they search for

food and tend to follow the shortest available path based upon pheromone trials. The

method can evaluate multiple solutions at a time through various paths [113]. It relies

on the probability calculations for path selection which ultimately govern the solution

quality.

d. Particle swarm optimization: This method adopts the actions of birds in flocks when

they search for food. The method depends upon the current state, presumed best state

and the velocity. The algorithm has proven difficulties in dealing with scattering

problems [93].

e. Artificial bee colony: The method is inspired from the scavenging behavior of

honeybees. As in all other metaheuristic approaches, the method has three agents (i.e.,

employed / unemployed bees and sources of food) which are used to incorporate

search based on feedback mechanisms.

f. Integer programming: These approaches attempt to solve the FJSSP through

formulation of mathematical models.

g. Artificial immune system: The method is derived from the behavior of immune

system of living things that tries to drive the body back to normal i.e., optimal

condition in case of any disease.

26

h. Harmony search: operates inspired from operation of orchestra that tries to produce

melodious sound.

i. Memetic algorithms: two algorithms are combined.

j. Neighborhood search: these methods find the optimal solutions about the current

solution through a strategy to explore the neighborhood.

2.5 Dispatching rules

Schedules can be generated using dispatching rules, which can undertake the problem

under certain objective and return the schedule [114]. It has been reported that scheduling rules

can be employed with ease for obtaining acceptable solutions [115] in a stand-alone manner.

Conventionally, these rules have been used for producing schedules on the production line in a

manual manner. Since these rules target to optimize a single objective, they may not produce an

overall optimal schedule, hence many combinations are used accordingly. Some of the important

techniques are listed in Table 2.8.

Table 2.8: Some important dispatching rules
Rule Calculation Description

Shortest processing time ܲ ൌ ݉݅ ݊ୀଵ
 ሾሿ

Operation requiring minimum

time is scheduled

Longest processing time ܲ ൌ ୀଵݔܽ݉
 ሾሿ

Operation requiring maximum

time is scheduled

Earliest due date ݀ ൌ ݉݅ ݊ୀଵ
 ൣ ݀൧

Operation with smallest due

date is scheduled

2.6 Genetic algorithm

Genetic algorithm (GA) is the most popular evolutionary algorithms for finding near-

optimal global solutions. It was introduced by Holland [116] and further developed and

popularized by Goldberg [117].

GA has been developed in line with the natural evolution process and many

advancements have been incorporated since its inception. It is a global optimization technique

that searches the best solution by recombining the available solutions. Due to the unmatched ease

of implementation and adaption to different sets of problems, GA has been applied to diversified

fields of engineering [118, 119], data mining [120], demand estimation [121] and medicine [122];

only to mention a few. A great deal of literature has been published to describe the applications

of GA e.g., [123-126].

27

2.6.1 Theoretical background

The algorithm is based on the well-known principles of “survival-of-the-fittest” and

“natural-selection” introduced by Darwin [127]. He claims that the species of living being are

evolving over the period of time through generations such that each generation exhibits more

better individuals than the previous through adaptation to the prevalent environment. He further

argues that nature, itself, tends to choose better individuals over time and the inheritance

characteristics of parents are transferred to the offspring. Figure 2.13 presents a comparison of

similarities between the natural evolutionary process and the terminology of GA.

Figure 2.13: Analogies between genetic algorithm and natural evolution process

28

2.6.2 Explanation of GA

The basic building block of GA is a ‘gene’ which contains relevant information regarding

the optimization problem. Genes are stacked together to formulate a chromosome, which

describe the characteristic information in the chromosome, i.e., essentially a candidate solution

is represented in a holistic manner for further processing by the algorithm. General representation

methods include strings, rules permutations etc. Every chromosome is different due to the

inherent properties and information contained in the relevant genes. The intrinsic properties,

either good or bad, depict the quality of the individual chromosome, i.e., it can be the potentially

best solution, or it may be an infeasible one. Figure 2.14 presents two different chromosomes

with every gene represented in a different box. It is evident that the 3rd gene differs in the two

chromosomes.

Figure 2.14: Two different chromosomes

Several chromosomes group together to formulate a population of individuals. As

different chromosomes are generated, a population has a diverse set of chromosomes. Population

diversity plays a vital role in the exploration of best solution in the evolutionary algorithms [128].

An important consideration in this part is that generation methods must prevent the generation

of infeasible solutions, otherwise the same will have to be evaluated at a later stage for rejection.

The population has parent chromosomes which reproduce through recombination

methods to generate offspring [129]. Since the offspring are generated through the parents, they

typically include characteristic information from their parents; however, they are different owing

to the sequence of the genes.

GA has two distinct recombination operators, crossover and mutation which basically

aim to explore the search space by generating neighborhood solutions. Crossover occurs between

two parents such that the information exchanges between the parents. Conventionally, a single-

point crossover is employed whereby a random position for crossover is selected and the relative

parent parts are swapped to generate two further offspring. Figure 2.15 presents a single-point

crossover. In mutation, a single parent gene ‘mutates’ to generate a new offspring. Figure 2.16

presents a representation of a typical swap mutation. Obviously, there are other formulations for

recombination operators; however, they are algorithm specific.

1 0 1 1 1 0 1 0 0 1 0 1

29

Figure 2.15: A typical one-point crossover

Figure 2.16: A typical swap mutation

A new population group is then formulated with the inclusion of offspring with the

parents. All chromosomes are then evaluated for ‘fitness’, i.e. the criteria against which the

chromosomes are judged for being better individuals. This is the objective function of the

optimization problem. The chromosomes are then ranked according to the fitness.

Natural selection phenomenon is then performed to bring better individuals to the next

population. Since GA requires several generations in order to explore the complete search space

effectively and to achieve good solutions, the process continues as per requirement. In this regard,

elite chromosomes are generally carried forward as they represent the best solution. Moreover,

several chromosomes with compromised fitness are also carried forward in order to maintain

population diversity. Finally, the algorithm terminates after achieving the prescribed criteria. The

general termination criteria are the achievement of a predetermined number of generations or no

solution improvement over a said number of generations.

GA is an evolutionary process and the quality of solution provided by it depends on

several things. However, one of the major considerations is to ensure the evaluation of complete

search space. In this regard, following concepts are employed:

30

a. Exploration / Diversification: New areas of the search space in distant environments

are evaluated in addition to the already explored areas. Crossover is an example of

this technique.

b. Exploitation / Intensification: An already searched solution is exploited further to

yield a possibly better solution. Mutation is an example of this technique.

Since, it becomes impossible in to completely evaluate the extremely huge search spaces,

it is always a trade-off between maintaining the population diversity and convergence. An overly

diverse population may fail to converge, and an under-diverse population may converge

prematurely. In both cases, solution quality is badly hampered.

Figure 2.17 presents a schematic with regards to different steps of GA. Here, four genes

are generated with color-based coding to provide and idea of the evolutionary process.

31

Figure 2.17: Flowchart of GA with gene representations

2.6.3 Advantages and disadvantages

Following are the major advantages of GA.

Population initialization

Encode solution

Select parents

Crossover Mutation

Evaluate fitness

Select new population

Start

End

Terminate

Yes

No

Best chromosome

Recombination operators

Decode solution

32

a. The algorithm has been developed through taking inspiration from nature and it is

easy to comprehend.

b. Enables multiple search points at a single time depending upon the population which

provides the facility of multi-dimensional search.

c. Derivative free method.

d. Based upon probabilistic techniques instead of deterministic techniques.

e. Can undertake different types of optimization problems e.g. stochastic, continuous,

and noise.

f. GAs have been applied to vast nature of problems including stock prediction [130],

financial planning [131], image processing [132], engineering design [133], trajectory

planning [134], data fitting [135] etc.

g. The algorithm has received special attention in solving the sequencing problems in

various domains (e.g. flight schedules [136], operation room scheduling [137],

traveling salesman problem [138], plant layout [139]).

Following are some of the drawbacks of GA.

a. Chromosome representation is to be changed for specific problem, even within the

same nature of the problem.

b. Similarly, the recombination operators are problem specific and may severely

jeopardize the overall algorithm efficiency if not correctly defined.

c. Definition of fitness function is an uphill task.

d. Decision regarding different parameters e.g. population size, generation size,

termination criteria etc. is extremely important to ensure solution quality and to

prevent premature convergence.

e. Each solution must be evaluated for fitness.

f. Premature convergence is generally encountered when a chromosome with far better

solution is found since the elitist criteria takes it to new populations and it reproduces

to generate many neighborhood solutions with better fitness. This situation ultimately

results on local minima trap.

2.7 GA for FJSSP

2.7.1 Literature summary

Davis [140] and Brucker [26] are the pioneers to use the adaptations of GA for FJSSPs.

Since then, an enormous amount of literature has been published to solve various aspects of the

problem. This is due to fact that the problems are truly challenging and provide many horizons

33

for optimization endeavors. Consolidated research surveys have also been published in the

literature to address the application of GA to FJSSPs; some of which are presented in Table 2.9.

Table 2.9: Surveys published to review FJSSP literature

Reference Survey Focus

Chaudhry et al [141]
Classified the literature on FJSSP with solution approaches with

statistical data

Xie et al [142]
Future research directions along with real world applications and

development trends

Gen et al [143]

Multi-objective optimization of the FJSSP
Lei et al [144]

Lal et al [145]

Genova et al [146]

Amjad et al. [10] Literature classification for FJSSP solution approaches using GA

Zhang et al. [147] Viewpoint of industry 4.0

Çaliş et al. [148] Artificial intelligence-based strategies

Fan et al. [115] Review of scheduling rules

Allahverdi [149] Setup times consideration

Since there are two sub-problems encountered for the FJSSP, they can be solved in

parallel (integrated method) [150, 151] or one by one (hierarchical method) [152, 153]. Figure

2.18 [10] presents the trend of FJSSP publications conducted by using GA based approached

over the last few decades. It is evident that the trend is increasing which indicates the popularity,

efficacy and adequacy of the algorithm. Amjad et al. [10] have classified the literature on

following basis.

a. Pure GA

b. Advanced GA

c. Hybrid GA

34

Figure 2.18: Trend of FJSSP publications with GA approaches

2.7.2 Chromosome encoding

Chromosomes are representatives of a candidate solution and hence researchers have

endeavored to generate representations that can handle the problem in an effective manner. Some

of the chromosome encoding / representation schemes are summarized below.

a. Mesghouni et al. [154]: Developed for parallel machine problems, whereby machines

are placed in parallel and operations are sequenced on them.

b. Chen et al. [155]: Consists of two-part integer-based representation where the first

part is for machine indexing and second is for operation sequencing.

c. Ho et al. [156]: Consists of two-part representation where first part represents the

operation sequence corresponding to other operations and second part deals with

machine assignment.

d. Kacem et al. [54]: Consists of coding based on start time and end time of a certain

operation in conjunction with the assignment table.

e. Zhang et al. [157]: Consists of machine selection and operations selection parts

scheme whereby the whole chromosome interprets the schedule.

2.7.3 Population initialization

Since, GA needs several chromosomes, population initialization methods have also been

evolved. The most popular in this regard is the random population initialization method [158,

159]. Other important methods include global and local initialization [160].

2.7.4 Recombination operators

The recombination operators play an important role in intensification and diversification

of the initial population [77, 161]. Since these operators are used to generate new offspring, an

N
o

of
 p

ub
li

ca
ti

on
s

35

important factor is to ensure that feasible solutions are evolved during the process. Moreover, the

operators are designed in accordance with the chromosome definition such that offspring are

generated as per the selected definition. The operators are applied on the parent population

through pre-defined probability; hence only some selected parents go through crossover. This

can generate following scenarios:

a. Elite (best) chromosomes may only be selected for recombination, which will

eventually lead to premature convergence as all population will concentrate against

the best chromosome.

b. The chromosomes with compromised fitness will lead the convergence nowhere and

a result with poor fitness will be obtained.

c. Since the above-mentioned options will not generate good results, a selected

population undergoes recombination in which both elite and non-elite parents are

available. The selection is generally made through random criteria.

The crossover operators are mainly used to inculcate diversification through

recombination process in a random manner [162]. Traditionally, points are selected from the

parents and swapping is performed to generate two offspring. Therefore, single-point [58, 163-

171], two-point [172-184], multi-point [37, 185-189] and uniform crossover [190-193] have been

used. A major consideration is to avoid generation of infeasible chromosomes during this process

[194, 195]. In this regard, precedence preserving order-based crossover (POX) and its improved

forms [196-208] have been used tremendously. Moreover, multiple methods have also been

combined in a single algorithm to enhance solution quality as every method has its own pros and

cons [153, 157, 209-223]. Figure 2.19 depicts the frequency of use for different types of

crossover.

36

Figure 2.19: Frequency of use for different crossover types

 Mutation operators also inculcate the concept of search space evaluation, but they entail

single gene change and hence promote more of a local search phenomenon since it generates

offspring in the neighborhood. The process consists of selecting a random gene from the parent

chromosome and changing it to generate new offspring which is termed as swap mutation [58,

164, 169, 178-180, 182, 188, 190, 192-194, 201, 210, 215, 219, 220, 224-233]. Random mutation

[37, 184-186, 207, 208, 234-237] is another similar nature of operator. As pointed out in

crossover, mutation process has also to be developed carefully in order to avoid generation of

infeasible solutions. Additionally, different combinations of mutation operators have also been

used some of which are identified in [163, 208, 223, 238-246]. Figure 2.20 presents frequency

of different types of mutation used in literature.

37

Figure 2.20 Frequency of use for different mutation types

The selection process is employed to identify the most suitable individuals for inclusion

in the population to improve the fitness function as much as possible. Following are the major

types of selection used in the literature.

a. Elitism [169, 191, 205, 218, 231, 233, 247-251]: Only the fittest individuals are

selected for next generation.

b. Roulette wheel [59, 150, 157, 180, 185, 186, 194, 197, 213, 224, 227, 252-256]:

Individuals are selected based upon the probability such that fit offspring are selected

more and fewer are selected from lesser fit offspring, however all types of individuals

are permitted to pass.

c. Random [162, 163, 257, 258]: Individuals are selected randomly.

2.7.5 Classification of GA approaches for FJSSP

The available literature reporting attempts for solving FJSSP instances with GA has been

classified as pure GA, advanced forms of GA and hybrid GA. Pure GA has been used to attempt

the FJSSP most of the times as shown in Figure 2.21 with hybrid and advanced GA in the second

and third places respectively. NSGA has been used to attempt the multi-objective functions

which have been attempted more than 3 times as compared to single objective functions.

38

Figure 2.21: Classification of GA based FJSSP literature

Different GA based methods have been identified and presented in Figure 2.22 along with

their frequency of use. It is noticeable that pure GA has been used the most for attempting the

FJSSPs, while GA + TS [36, 170, 217, 221, 236, 245, 248, 251, 259-263] has been used the most

in the hybrid methods. Other hybrid applications include local search GA + LS [160, 204-206,

208, 222, 264-266], SA [244, 246, 250, 267, 268] and VNS [189, 207, 216, 269-271].

Figure 2.22: Different GA based approaches for FJSSP and their application

39

 Figure 2.23 presents the statistics for the use of different objective functions in

the optimization process. It is evident that makespan is the most attempted single objective

function while total workload has been attempted through multi-objective approach along with

other functions.

Figure 2.23: Frequency of objective function attempts (single / multi)

2.8 Gap Analysis

It is concluded from the sections presented above that an enormous amount of literature

is available with GA based solution approaches for solving FJSSPs. In this regard, pure GA has

been used for solution and dispatching rules have also been integrated. Hence, this research aims

to formulate two separate solution approaches one with dispatching rules and other with pure

GA. Following summarizes the gap in literature which has provided motivation for this research.

2.8.1 GA integrated with scheduling rules (GA-PR)

Hand-schedulers have traditionally been using the dispatching rules for generation of

schedules for onward implementation at the shop floor. Since they are purely heuristic methods,

they do not guarantee an optimal solution and GA has been integrated with them in order to

improve their efficacy. Following is a summary of literature reporting these approaches:

a. Hybrid dispatching rules have been utilized for machine assignment problem [171].

b. A procedure based upon priority rules has been suggested, however results were not

comparable [206].

40

c. A quantitative study has been conducted on 36 rules and their combinations for

sequencing an industrial unit and it has been concluded that SPT provides best results

[272].

The GA-PR algorithm attempts to further evaluate the performance of selected priority

rules against the benchmark problems and various improvements have been incorporated in

comparison to the available methods.

2.8.2 GA with iterative diversification technique (GA-IDT)

The evolution of GA is dependent upon the selection of best-fit individuals according to

the optimization function / environment. To evolve properly, diversity of population is an

essential phenomenon because it ensures search space exploration in an effective manner.

Consequently, intensified population in a concentric point of the search space indicates

convergence on one hand, but that may also occur due to local minima trap. This is a known

issue of GA approach [273, 274] which hinders the solution quality. Alternatively, a needlessly

diverse population induces convergence barrier and the algorithm may continue to run infinitely.

It is therefore a matter of great interest to propose a method which provides balance between the

two opposite extremes. Moreover, the fine tuning of mutation and crossover probabilities is also

an essential requirement for exploration of search space. In this regard following relevant

literature has been identified to maintain population diversity:

a. The preservation of an elite individual has been used and other individuals have

been selected through other selection techniques [201].

b. A specifically designed crowding distance has been proposed [275].

c. A modification in the mutation approach has been proposed [276].

Further, following literature reports efforts for different variations of GA for achieving /

improving good quality results by improving exploration of search space:

a. Adaptive recombination operators have been proposed in accordance with varied

fitness values [277]. The reference algorithm was tested against a non-popular

instance of the size of 10 x 10.

b. Adaptive mutation technique has been proposed for smaller rates at the

initialization stage of the algorithm and bigger rates at the end to forcefully

increase the efficiency of search space exploration [278].

c. A mixture of elitist and tournament selection techniques have been proposed with

a linear interpolation method for recombination operator probabilities [247].

41

d. A strategy for 3 level parametric setting (high-medium-low) has also been

proposed for recombination operator probabilities in view of the convergence

pattern of the algorithm [189].

As indicated above, limited literature reports the methodologies to manage the diversity

in a holistic manner. Hence this aspect is a matter of further research. GA-IDT proposes a

framework to maintain the population diversity and manage intensification and diversification in

an effective manner to generate solutions of better quality.

2.9 Summary

This chapter offers an introductory preamble to the flexible manufacturing systems and

different options of flexibility. An in-depth analysis of the literature on approaches for solving

the FJSSP with an emphasis on genetic algorithm is then presented. The trends of literature are

explored through statistical data and prospective research opportunities have been identified

which contribute to the motivation of this research.

42

3 Chapter 3 – Problem Formulation and Simulation Environment

3.1 Problem formulation

FJSSP benchmark instances present a set of deterministic number of jobs, operations,

machines and respective operation times. Consequently, the FJSSP is modeled as M set of

machines which have to process N set of jobs, where;

ܯ ൌ ሾܯଵ,ܯଶ,ܯଷ, … ሿ (4)ܯ,

ܬ ൌ ሾܬଵ, ,ଶܬ ,ଷܬ … , ேሿ (5)ܬ

Every job j from the set of jobs j ߳ N, consists of a pre-determined number of operations

which have to be carried out on a machine to be selected from the available set of machines.

 ܱ ൌ ሾ ܱଵ, ܱଶ, ܱଷ, … , ܱሿ (6)

Here, the jth operation ith job is denoted as Oij and ith job will have a total number of

operations as Jio. Now, every operation is to be completed on a machine Mk with following

conditions.

ܯ ∈ (7)ܯ

ܯ ⊂ ܯ ∀ ܲ െ (8) ܲܵܵܬܨ

ܯ ൌ ܯ ∀ ܶ െ (9) ܲܵܵܬܨ

Where, P-FJSSP present the partial class of flexibility i.e. some operations cannot be

performed on all machines and T-FJSSP belong to the total class of flexibility i.e. each operation

can be performed on all available machines.

3.2 Problem constraints and assumptions

Since every operation must be scheduled, it will have a start time tijk and end time Eijk on

machine Mk. The reference processing time on machine Mk is denoted as Pijk during which the

machine will be bust and will not be able to take any other jobs. There is a total number of

sequences available for a specific instance of the problem, L. Now, for ease of sequencing, a

number can be allocated to every operation as shown in Eq (11).

ܮ ൌܬ

ே

ୀଵ

 (10)

43

 ݊ ൌ ܬ௫

ିଵ

௫ୀଵ

 ݆ (11)

 Consequently, the operation Oij can only start at machine Mk such that following

conditions are fulfilled.

a. The operation at hand has no previous operations pending i.e. its preceding operations

have already been completed and it is in waiting state for the present operation.

b. The machine on which the operation Oij is to be allotted is available to carry out the

operation [Eq. (11)] at the time of release rijk of the operation.

ݎ ൌ max൫ܥ , ᇲᇲݐ ܲᇲᇲ൯ (12)

 Following are the integral problem specific variables which can vary in the ranges as

mentioned in Eq. (13) through Eq. (16).

 1 ݅ ܰ (13)

 1 ݆ (14)ܬ

 1 ݇ (15) ܯ

 1 ݊ (16) ܮ

 Since we are considering the general form of FJSSP, its universal constraints are

described as follows.

ݐ 0 ∀ ܱ߳ܰ (17)

ݎ 0 ∀ ܱ߳ܰ (18)

ݐ െ ′ݐ ′ ܲ′ ′ ∀൫ ܱ, ܱ′ ′൯߳ܵ (19)

ݐ െ ݐ ′′ ܲ ′′ ∀൫ ܱ, ܱ ′′൯ ߳ (20)ܬ

ܧ െ ݐ ൌ ܲ ∀ ܱ ߳ ܬ & ܯ ߳ (21) ܯ

ݐ ൌ max൫ܥ, ൯ (22)ݎ

 In general setting of FJSSP, all machines are accessible and available when the jobs are

to be started i.e. t = 0 [Eq. (17) & Eq. (18)]. The multi-purpose machines are allowed in the

formulation however only operation can be undertaken on a said machine at a specific instance

of time [Eq. (19)]. Referring to the physical restriction of the FJSSP, all operations are to be

undertaken in a pre-decided sequence; hence O12 cannot be performed before O11 [Eq. (20)].

Machine breakdown are not considered hence all operations will be undertaken and completed

44

continuously without any break [Eq. (21)]. Similarly, there is no-wait shop scheduling system

and operations will be undertaken as soon as the machines are available [Eq. (22)].

3.3 Insight to the problem formulation

Let us consider the benchmark problem of Fattahi 12 i.e. MFJS 2 as shown in Table 3.1.

The problem has a size of 5 jobs x 7 machines and each job has further three operations. Hence

the problem has an overall size of 15 operations x 7 machines. This is a partial flexible instance

as ܯ ⊂ e.g. O11 can only be performed on M1, M2 and M3 while it cannot be performed on ;ܯ

M4 – M7. Moreover, the operation times of O11 are different on all the possible machines, whereby

the machines not available for a said operation are marked with infinity (∞).

Table 3.1: MFJS 2 benchmark problem

Job Operation
Processing Time

	ଵܯ ଶܯ ଷܯ ܯ ܯ ହܯ ସܯ

 ଵܬ
ଵܱଵ	 147 123 145 ∞ ∞ ∞ ∞

ଵܱଶ	 123 130 ∞ 140 ∞ ∞ ∞

ଵܱଷ	 ∞ ∞ ∞ 150 160 ∞ 200

	ଶܬ

ܱଶଵ	 214 ∞ 150 ∞ ∞ ∞ ∞

ܱଶଶ	 ∞ 66 87 99 ∞ ∞ ∞

ܱଶଷ	 ∞ ∞ ∞ ∞ 178 95 150

	ଷܬ

ܱଷଵ	 87 62 ∞ ∞ ∞ ∞ ∞

ܱଷଶ	 ∞ ∞ 180 105 ∞ ∞ 145

ܱଷଷ	 ∞ ∞ ∞ 190 100 153 ∞

 ସܬ
ସܱଵ 87 65 ∞ ∞ ∞ ∞ ∞

ସܱଶ ∞ ∞ 250 ∞ 173 ∞ ∞

ସܱଷ ∞ ∞ ∞ 145 ∞ 136 ∞

 ହܬ

ܱହଵ 128 123 145 ∞ ∞ ∞ ∞

ܱହଶ ∞ ∞ 86 65 47 ∞ ∞

ܱହଷ ∞ ∞ ∞ ∞ 110 85 ∞

Following are the salient mathematical interpretations of the selected problem.

i. Since there are 5 jobs and 7 machines the first two parameters of the instance are

N = 5 and M = 7.

ii. All jobs have 3 operations each and total number of operations are L = 15.

iii. The index i assumes a value from [1 – 5] since there are five jobs and all jobs are

required to be addressed.

45

iv. Similarly, j assumes a value from [1 – 3] since maximum number of operations

of any job are three.

v. There are total seven machines available in this problem i.e. k can take any value

from [1 – 7].

vi. According to the notation, index of machines is formulated as Eq. (23). This gives

a complete row vector list of available machines. Furthermore, there are three

operations for all jobs, hence the parameter Jio is formulated as Eq. (24).

vii. In view of the reasoning explained in the nomenclature of i and j, Oij is formulated

as a matrix of 5 rows and 3 columns where the rows denote the jobs and columns

represent the relevant number of operation e.g. O42 means the 2nd operation of 4th

job as i = 4 and j = 2.

viii. Uij is a measure of flexibility of each machine with regards to the said operation.

Only two machines are available to take the operation O53, however three

machines can undertake O52. This aspect builds flexibility in the machine

assignment because only the machines capable to undertake the operations are

allowed to carry out the operation.

ix. A sequence number (nij) for each operation is generated to track the sequence

identification and is generated for problem under consideration in Eq. (27). This

number is simply incremented for each operation and the value is stored in the

corresponding matrix index.

x. Since the index of Uij only provides the flexibility level of each operation and not

the exact identification of machines which can undertake a selected operation Ωij

is populated to resolve this aspect and presented in Eq. (28). Again, the index is

mapped as per the already populated Oij scheme to impart a universal

understanding. It is evident that O53 can be performed on M5 and M6, while O51

can only be performed on M1, M2 and M3. This matrix can be searched to find out

the exact information of machine which can undertake the relevant operation.

ܯ ൌ ሾܯଵ ଶܯ ଷܯ ସܯ ହܯ ܯ ሿ (23)ܯ

ܬ ൌ ሾ3 3 3 3 3ሿ (24)

 ܱ ൌ

ۏ
ێ
ێ
ێ
ۍ ଵܱଵ ଵܱଶ ଵܱଷ
ܱଶଵ ܱଶଶ ܱଶଷ
ܱଷଵ ܱଷଶ ܱଷଷ
ସܱଵ ସܱଶ ସܱଷ

ܱହଵ ܱହଶ ܱହଷے
ۑ
ۑ
ۑ
ې

 (25)

46

 ܷ ൌ

ۏ
ێ
ێ
ێ
ۍ
3 3 3
2 3 3
2 3 3
2 2 2
3 3 ے2

ۑ
ۑ
ۑ
ې
 (26)

 ݊ ൌ ܬ௫

ିଵ

௫ୀଵ

െ ݆ ൌ

ۏ
ێ
ێ
ێ
ۍ
1 2 3
4 5 6
7 8 9

10 11 12
13 14 ے15

ۑ
ۑ
ۑ
ې
 (27)

 Ω ൌ

ۏ
ێ
ێ
ێ
ۍ
1,2,3 1,2,4 4,5,7
1,3 2,3,4 5,6,7
1,2 3,4,7 4,5,6
1,2 3,5 4,6

1,2,3 3,4,5 5,6 ے
ۑ
ۑ
ۑ
ې

 (28)

Since FJSSP is a deterministic problem, its single lowest solution exists in each situation

which is termed as the Lower bound (LB). This is the point beyond which no feasible solution

exists. This aspect is supported by Ho et al. [234], which states that precedence constraints

indicate the sequence of the operations of a job. This is one of the basic constraints of the FJSSP

which formulate the very core of the optimization paradigm. The calculations of LB is fruitful

gain insight to the possible solutions of the problem. Thus, completion time of each job is

minimum if all operations are assigned with minimum possible times with subjective machine

assignments as pointed out in Eq. (29). Moreover, any job cannot be completed before the

completion of all of its operations and minimum time in this regard can be obtained just by adding

the processing times of all operations without adding any delay as pointed out in Eq. (30). In

order to calculate the makespan, it cannot be lower than the longest cumulative processing time

of any job as shown in Eq. (31). Calculations for LB of MFJS-2 are shown in Table 3.2, which

shows that lowest possible makespan is 396. For LB calculations, minimum possible operation

time is taken for each operation and entered sequentially to obtain the completion time of the

pertinent job. Accordingly, the maximum time of job completion is taken as LB since problem

cannot be solved before that. A Gantt chart in this regard is presented in Figure 3.1.

 ܲ
ᇱ ൌ ܲ௫

ᇱ

௫ୀଵ

∀ ܱ (29)

 ܲ
ᇱ ൌ min൫ ܲ൯ ∀ ߳Ω (30)ܯ

ܤܮ ൌ max
ଵஸஸே ܲ

ᇱ (31)

47

Table 3.2: Calculation of LB for MFJS-2

Figure 3.1: Makespan of MFJS-2 as per LB

 M1 M2 M3 M4 M5 M6 M7 ܲ݅ ݆
′ ܲ݅′ LB

J1

O11 147 123 145 123

396

396

O12 123 130 140 123

O13 150 160 200 150

J2

O21 214 150 150

311 O22 66 87 99 66

O23 178 95 150 95

J3

O31 87 62 62

267 O32 180 105 145 105

O33 190 100 153 100

J4

O41 87 65 65

374 O42 250 173 173

O43 145 136 136

J5

O51 128 123 145 123

255 O52 86 65 47 47

O53 110 85 85

JO
B

S

48

3.4 Simulation environment

Since the problem requires extensive computational routines, MATLAB® has been used

to build the simulation environment for attempting the solution. MATLAB® is released by

MathWorks and is one of the most popular computational programming languages that has been

used in various engineering fields. It offers smooth integration with Microsoft Excel for read /

write function in an autonomous mode and this functionality has been used to automate the

algorithm execution. Benchmark problems have been obtained from the online repository of

Mastrolilli [279].

The simulation environment for the current study is built in following different parts as

shown in Figure 3.2.

i. Scheduler: The scheduler reads the problem from .fjs file and transforms it into

an initial schedule through the predefined chromosome structure. The parametric

setting of the algorithm is also fed into the solver through Excel worksheet.

ii. GA solver: The solver intakes a seed chromosome and generates initial population

through stipulated techniques. The GA routine then continues to converge until

the termination criteria is met. Once the convergence is achieved the best

chromosome is sent back to the scheduler and the same is translated into a Gantt

Chart.

Figure 3.2: Simulation environment for solving FJSSP

49

4 Chapter 4 – Proposed Algorithms

4.1 Introduction

It has been established adequately through extensive literature review that GA has been

used as an effective technique to solve the combinatorial optimization problems. Although lot of

research has been conducted to evolve different GA routines for improving the solution quality,

areas for further research have been identified in section 2.8. This chapter provides details of the

proposed algorithms for solving FJSSPs for optimization of makespan on selected benchmarks.

The work presented in this chapter has been expanded from already published papers of the

author [280, 281].

This work proposes two different approaches for solving the FJSSP as follows.

i. GA integrated with scheduling rules: The two-part problem of FJSSP is addressed

using a hybrid approach of GA and scheduling / dispatching rules.

ii. Pure GA based technique: A pure GA based approach is proposed for solving the

FJSSP in a holistic manner.

4.2 GA with Priority Rules (GA-PR)

Since there are two parts of the FJSSP, GA-PR is proposed, whereby the assignment part

is solved by GA and scheduling part is solved by using five different dispatching rules. GA is

used to search for the assignment problem after which the dispatching rules are used for the

selected assignment scheme for finding the best makespan. The dispatching rule that gives best

makespan is used finally to generate the solution. Figure 4.1 provides a flowchart of GA-PR and

the following sections describe the algorithm in detail.

50

Figure 4.1: The flowchart of GA-PR

4.2.1 Solution of assignment problem by GA

The decision regarding assignment of operations to the available machines is made

through application of GA. The chromosome is encoded using the scheme of Zhang et al. [157].

Considering the SFJS 6 problem as presented in Table 4.1. This is a partial flexible problem e.g.

O11 can only be performed on M1 and O12 can be performed on both M1 and M2, but not on M3.

A sample encoding is presented in Figure 4.2, where only M1 is shown below O11 since it can

only be performed on this machine. The operation O32 is performed on M3 (blue gene) which is

the second machine from the available set of possible machines i.e. M2 and M3. The operation

which is assigned to a said machine is shown in black (circled) and other machines are shown in

51

red. In this way, the assignment of operations to available machines can be encoded in the form

of a chromosome.

Table 4.1: Fattahi SFJS6

Figure 4.2: A sample chromosome encoding

Figure 4.3 presents another chromosome following similar encoding scheme, whereby

O32 will now be performed on first of the available machines i.e. M2. Here, all assignment options

have been triggered to provide clarity of the representation, e.g, for O12, the available option of

M2 is now selected from the available options of M1 and M2. This will change the spectrum of

the scheduling problem since the operation will now be completed in 130 units of time instead

of 40 units.

Job Operation
Processing Time

1ܯ 2ܯ 3ܯ

 1ܬ
1ܱ1 17 ∞ ∞

1ܱ2 40 130 ∞

1ܱ3 ∞ 50 60

	2ܬ
ܱ21 30 ∞ ∞
ܱ22 150 160 ∞
ܱ23 ∞ ∞ 70

	3ܬ
ܱ31 50 60 ∞
ܱ32 ∞ 170 180
ܱ33 ∞ 90 100

1 1 2 1 2 1 1 2 1

O11 O12 O13 O21 O22 O23 O31 O32 O33

M1 M1 M1 M1 M1

M2 M2 M2 M2 M2 M2

M3 M3 M3 M3

52

Figure 4.3: Another sample chromosome

In order to generate a population, random initialization of chromosomes is done as

presented in Figure 4.4. The random initialization evaluates whether all operations of all jobs are

assigned to the available machines and terminates when this condition is met. The loop continues

to run until the required number of chromosomes are generated.

Figure 4.4: Random population initialization

Two-point crossover has been used for generating new offspring. First, two parent

chromosomes are selected randomly from the current population and two crossover points are

selected randomly. The parents are then swapped against these two points to generate two

children. Since the assignment on the machines remains the same after crossover, this method

restricts generation of infeasible children. Figure 4.5 provides an example of TPX where color-

coded parents are shown to produce children having inherited characteristics.

1 2 1 1 1 1 1 1 2

O11 O12 O13 O21 O22 O23 O31 O32 O33

M1 M1 M1 M1 M1

M2 M2 M2 M2 M2 M2

M3 M3 M3 M3

53

Figure 4.5: An example of TPX

Crossover is performed over a selected population which is controlled by crossover

probability (Pc). This value is traditionally taken as 0.8 – 0.9 to ensure a good evaluation

throughout the search space. However, since the probability is selected at the start of the

algorithm, the operator tends to remain stagnant during the algorithm execution. Hence, adaptive

probability is proposed in GA-PR, whereby the probability starts increasing from the initial value

as the convergence is achieved in order to ensure population diversity as depicted in Eq. 32. This

helps the algorithm to reduce the chances of trapping in local minima. A flowchart of the TPX is

presented in Figure 4.6.

 ܲ ൌ
avg ௧ܨ
max ௧ܨ

 (32)

54

Figure 4.6: Flowchart of TPX

A compulsory mutation (CM) technique is proposed in GA-PR which has been evolved

through the concept of flexibility in machine assignment. The flexibility in genes depends upon

the number of operations a machine can undertake i.e. the machine must be capable to complete

at least two operations (Uij > 1). This level of flexibility has also been indicated in the standard

benchmarks and in corresponding .fjs files and the same is calculated as follows.

 ݂ ൌ
∑ ∑ ܷ

ୀଵ

ே
ୀଵ

ܮ
 (33)

Get parent chromosomes C1, C2 and Pc as
input

START

R1← Generate random number between [1 ~ L]
R2← Generate random number between [1 ~ L]

P1←[C1 (1 : R1-1) C2 (R1 : R2) C1 (R2 + 1 : L)]
P2←[C2 (1 : R1-1) C1 (R1 : R2) C2 (R2 + 1 : L)]

END

Save small number in R1, and larger number in R2

Yes

Get P1 and P2 as offspring

Crossover completed for all parents as
identified by Pc?

No

55

The problem flexibility introduces computational complexity on one side and possibility

of producing better solutions on the other side. Hence it is important to evaluate the overall

options offered by problem flexibility in an adequate manner. In view of this fact, following

propositions are made for the CM operator.

i. CM Rule 1: Only flexible genes must be mutated (if available), instead of random

genes; since random gene mutation will return same value as no other option is

available or otherwise return an infeasible solution.

ii. CM Rule 2: Once the gene with flexibility is selected, the already stored option in

that gene must be changed to another value and same value return will not be

allowed.

Once the combination of above schemes is implemented, flexibility of mutated gene is

evaluated in a better manner. Figure 4.7 provides an example of the CM operator. The operation

O31 is selected for mutation out of the possible options of O12, O13, O22, O31, O32 and O32 (shown

in blue). Rest of the genes will not be selected for mutation as per CM Rule 1 since they don’t

offer flexibility. Now, O31 can be performed on M1 and M2. As per CM Rule 2, M2 cannot be

selected again since it is already selected, hence M1 is selected and the updated gene is shown in

red.

Figure 4.7: An example of CM

As also pointed out in TPX discussion, mutation operator is also performed on some

randomly selected parents which are similarly controlled through probability of mutation (Pm).

Traditionally, this vale is taken as 0.1 – 0.2. Since the value is selected in the start of the

algorithm, it remains the same throughout the generations and loses effectivity regarding search

1 2 1 1 2 1 2 1 2Parent

O11 O12 O13 O21 O22 O23 O31 O32 O33

1 2 2 1 2 1 2 2 2Uij

1 2 1 1 2 1 1 1 2Child

Selected flexible gene

M1 M2
Available options

56

space exploration towards convergence. A similar adaptive mutation probability is proposed here

as per Eq. 25 which increases the mutation probability as per the maximum population fitness

value and increases the Pm value as convergence is achieved. This procedure incorporates further

diversity in the population. A flowchart of CM procedure is presented in Figure 4.7.

 ܲ ൌ
min ௧ܨ
maxܨ௧

 (34)

57

Figure 4.8: Flowchart of CM

The algorithm continues to execute the recombination operators until the required number

of parents get crossover as per Pc and mutation as Pm. This generates a new population pool

which is greater than the allowed population and which contains both parents and the offspring.

The rule of fitness survival is now applied on the whole population. The selection mechanism is

Get parent chromosomes C1, Pm as input

START

Ind ← Evaluate flexible genes (Uij > 1) and return
indices

Select flexible gene as per R

END

R ← Generate random number between [1 ~ N]

Yes

Get P1 offspring

Crossover completed for all parents as
identified by Pm?

No

Mutate the gene with other available option

58

hybrid mixture of elitism and roulette wheel techniques in a ratio of 40:60, respectively. These

procedures are described below.

a. Elitism: This procedure inputs population comprising of parents / offspring and

sorts it in descending order. Best chromosomes are then selected depending upon

the fitness value. The number of chromosomes selected through elitism is

generally kept low because their increased number forces the algorithm to

converge in premature manner and / or trap in local solution. Its flowchart is

presented in Figure 4.9.

b. Roulette wheel: This procedure intakes cumulative fitness of whole population

and generates a random number in its stipulated range. The corresponding

chromosome is then transported to the next generation irrespective of its own

fitness. This operator ensures population diversity, and a higher number of

chromosomes are selected through this procedure. Its flowchart is presented in

Figure 4.10.

Figure 4.9: Flowchart of elitism

59

Figure 4.10: Flowchart of roulette wheel

4.2.2 Solution of scheduling problem by priority rules

Once the assignment problem is addressed by GA, the scheduling problem is undertaken

by using priority rules. The selected rules for implementation are explained below.

a. SPT: This rule uses the processing time of jobs to schedule them based upon the

least time required i.e., the job requiring minimum time will be scheduled first.

This is modeled as defined in Eq. (26). Considering the SFJS-6 (Table 4.1),

assume that all operations which can be completed on M1 are assigned to it (i.e.

O11 = 17, O12 = 40, O21 = 30, O22 = 150, O31 = 50). Since, SPT is to be applied,

the operation with minimum Pik i.e., O11 will be scheduled at priority.

 ܲ ൌ ݉݅ ݊ୀଵ
 ሾሿ (35)

b. LPT: This rule uses the processing time of jobs to schedule them based upon the

longest time required i.e., the job requiring maximum time will be scheduled first.

This is modeled as defined in Eq. (27). Considering the SFJS-6 (Table 4.1),

60

assume that all operations which can be completed on M2 are assigned to it (i.e.

O12 = 130, O13 = 50, O22 = 160, O31 = 60, O32 = 170, O33 = 90). Since, LPT is to

be applied, the operation with minimum Pik i.e., O32 will be scheduled at priority.

 ܲ ൌ ୀଵݔܽ݉
 ሾሿ (36)

c. MOR: This rule uses the remaining number of operations of the job as the decisive

factor and schedules the job with the greatest number of remaining operations

first. The remaining operations in this regard are calculated as defined in Eq. (28).

Considering the SFJS-6 (Table 4.1), it is clear that all jobs have equal number of

operations, i.e., 3. Let’s assume that an assignment arises such that all three

operations of J1 and 2 operations of J2 have already been scheduled. Since the

greatest number of operations will be from J3, it will be scheduled based upon

MOR.

 ܱܴ ൌ ܬ െ ݆ 1 (37)

d. MWR: This rule uses the most remaining work for scheduling and prioritizes the

job with most work. The remaining work in this regard is evaluated as defined in

Eq. (29). Here, k’ is the index assigned to the machine processing operation Oix.

Irrespective of the operations, the remaining work in terms of time is given

priority in MWR. Let’s assume that an assignment arises such that all three

operations of J1 and 2 operations of J2 have already been scheduled. Even though

all operations of J3 are remaining, this rule will schedule next operation of J2 since

[(130 + 160 + 170 + 90 = 550) > (60 + 70 + 180 + 100 = 410)].

 ܹܴ ൌܲ௫′

௫ୀ

 (38)

e. mMWR: The time required to process any operation on a said machine can be

identified once the operation is assigned, because the operation time differs

depending upon the machines. Thus, one must decide the assignment to execute

the MWR. Here, proposition is made to modify the MWR to use average time of

all process of an operation which can be undertaken on different machines. In this

way, the rule becomes autonomous of the assignment. This is calculated as

described in Eq. (30). An explanation in this regard is presented in Table 4.2. O12

and O13 are scheduled by MWR as 11, however the mMWR generates an answer

of 8.25.

61

 ܹܴ݉ ൌܽ݃ݒ ܲ௫

௫ୀ

 (39)

Table 4.2: Example Instance for mMWR

Table 4.3: Explanation of mMWR

The algorithm calculates makespan based upon all five rules for each assignment and

returns best makespan along with the used rule. The termination criteria are set as follows:

a. Best known solution as identified by [282] or less is obtained.

b. Total generations are exhausted.

The output of GA-PR is evolved as a solution of the scheduling problem. Fitness function

is used for the purpose of evaluating whether the solution is good or bad. Figure 4.11 presents a

process flow of fitness function used in GA-PR. The fitness is the total minimum time (Cmax) to

finish all operations of all jobs which is found by taking inverse of Cmax.

Job M1 M2 M3 M4 avgT

J1

O11 1 3 4 1 2.25

O12 3 8 2 1 3.50

O13 3 5 4 7 4.75

J2

O21 4 1 1 4 2.50

O22 2 3 9 3 4.25

O23 9 1 2 2 3.50

J3
O31 8 6 3 5 5.50

O32 4 5 8 1 4.50

Operation O11 O12 O13 O21 O22 O23 O31 O32

Assignment M1 M2 M1 M4 M1 M1 M3 M2

Tijk 1 8 3 4 2 9 3 5

MWR 11

avg Tijk 2.25 3.50 4.75 2.50 4.25 3.50 5.50 4.50

mMWR 8.25

62

Figure 4.11: Fitness function

63

4.3 GA with iterative diversification technique (GA-IDT)

Although FJSSP can be adequately handled with GA-PR, the approach is half-heuristic

and half-metaheuristic. One hand, this architecture enables to evaluate the assignment part of the

problem in an effective way, the setting also limits the scheduling part of the problem to be

handled with priority rules. As evaluated earlier, the priority rules can address only a specific

nature of instance in an optimal way. This setting, while providing ease of implementation and

simplification in interpretation, has pitfalls in the solution of bigger problems as evident from the

experiments.

Apropos, a pure GA based approach is now proposed for addressing the complete

landscape of the complex FJSSP in a holistic manner. This approach will undertake the

assignment and routing problem in a parallel manner and will attempt to solve the problem

simultaneously, such that space of both parts of the problem is evaluated by means of a meta-

heuristic.

4.3.1 The need for IDT

All population-based algorithms require a sufficient set of candidate solutions to evolve

and produce possible best solutions and this basic ingredient of population is common amongst

this family of algorithms, although described and implemented in conceptually different

schemes. As an example, the PSO algorithm may be considered [283, 284] where a population

of particles is maintained in a similar way, however fitness is estimated in a different manner.

Population can be restrained in a certain area of the search space or it can be dispersed in

the far spread areas. When concentrated in a certain area, it generally reflects a region of better

solutions after convergence, but it may also be a local optimum very far away from the global

one. On the other hand, well spread population indicates that the algorithm convergence is not

met, and solution of equally good quality are being found in the far away areas.

This is explained schematically in the Figure 4.12. The figure shows a search space for

an arbitrary multi-solution optimization problem. The black dots present the candidate solutions,

and the red dot represents the optimal solution. It is evident that the population is spread in the

whole search space, however there are more solutions in the left side of the search space. The

search algorithm (which in case is GA) initializes its population in a random manner and searches

for a solution in four areas of the space. The concept of diversity starts right here, since increasing

the number of initial solutions will increase the possibility of evaluating more search space in a

64

single time, however it will come at the cost of computational effort and will also lead to many

similar solutions.

Figure 4.12: A schematic representation of the search space

Let’s consider the situation at reference location ‘A’. The algorithm starts to search (a1),

finds only one solution, and then expands search to evaluate more space around its area (a2) , but

doesn’t find anything. Similarly, it also sees no solution in intensification (a3). The solution

presented as (a3) is saved as best in this case. This situation offers equal chances of finding

solutions for both cases of intensification and diversification.

In case ‘B’, the initial search location (b1) has no solution. When the solution space is

expanded to (b2), four solutions are found, and the algorithm converges to the solution selected

as (b3). In this scenario, if diversification is not carried out, no solution could be found inside the

initial space. The best solution in this case is saved as (b3).

In case ‘C’, the initial search location finds one solution (c1). In order to evaluate further,

the search location is expanded (c2). Lets consider that the maximum number of solutions that

can be saved in an iteration in this example are two and we find (c3). However, as evident from

the figure we also have the optimal solution (c4) but cannot find it since the memory register has

already been filled with best solutions. Now, to overcome this aspect, we intensify the search and

find (c4) which is the better solution form (c3) so it is discarded. On comparison of the all

solutions mentioned above, it is found that (c4) is the optimal solution.

A

B

C

a2

a1

a1 a3
b2

b3

b1

c1
c2

c4

c3

65

A well-spread population is required to evaluate the enormous search space offered by

the FJSSPs. This diverse population guarantees that all possible locations of solutions are

evaluated in an assertive manner; however, spreading the population unconventionally requires

exceptional computational resources and it may also restrain the algorithm to converge since the

algorithm will continue to evaluate the search space. On the other hand, restraining the population

to a smaller number will result in insufficient evaluation of the search space and there will a

possibility that better solutions are not found. It is therefore a factor of prime importance in the

paradigm of evolutionary computation that population diversity is managed in a balanced manner

such that search space is evaluated in an efficient way and unnecessary / recursive search is

prohibited.

With regards to GA, it is also a known fact that the algorithm tends to get trapped in local

minima. This is again due to fact that the population tends to converge towards some elitist

solutions, and it seems that the optimal point has been achieved; however, better solutions are

available in the neighborhood or overall search space. It is pertinent to mention here that meta-

heuristic evolutionary algorithm does not guarantee a global optimum, but they provide a good

solution that is near optimal.

It is a matter of research to propose ways whereby the algorithm can produce near optimal

solutions as close as possible to the global optima. With regards to the local minima trap, the

algorithm is traditionally coupled with local search techniques of Tabu Search (TS) [236] or

Simulated Annealing (SA) [285]. Although these are proven efficient techniques, they require

additional implementation effort and corresponding computational cost. Another possibility in

this regard to run the algorithm in extended generations [159]; however this option also requires

computational efforts over extended periods of time.

GA-IDT is purposefully built to propose mechanisms to restrict the above-mentioned

challenges in the conventional GA approach. The algorithm proposes a strategy to manage

diversification (to evaluate the whole search space in a sufficient manner) and intensification (to

dig down a promising area of search space). Figure 4.13 presents the basic information and

logical flowchart of IDT.

66

Figure 4.13; Flowchart of IDT

4.3.2 Architecture of GA-IDT

GA-IDT is built in four layers on the similar scheme of Figure 3.2. The simulation for

solution search is executed in following steps.

a. Step-1: Input parameters in MS Excel file: Different parameters are preset into

the MS Excel sheet. Details are provided in Input Layer of the algorithm

b. Step-2: MATLAB ® is opened and source code file is loaded and executed.

c. Step-3: The algorithm reads the configuration settings and executes the algorithm

accordingly. It converges as per stipulated criteria and terminates to produce Cmax

and Gantt chart.

d. Step-4: The algorithm saves the results in same MS Excel file for future use.

Diversification Intensification

Input
Pc, Pm, GS, LS, RS, TerminationCtr, ReIntAttemptCtr

Start algorithm and obtain convergence

GS LSPc

Pm

TerminationCtr > Tlimit?

ReInit

No

Yes

ReIntAttemptCtr > Rlimit?

START

END

Yes

ReInitAttempt

No

67

Figure 4.14: Procedure for GA-IDT execution

The algorithm is presented in Figure 4.15 and its functioning is presented in the following

sections.

68

Figure 4.15: Flowchart of GA-IDT

4.3.3 Layer 1: input

The input layer takes parametric settings of the algorithm which are required for

algorithm running through a pre-saved MS Excel file. This instrument is extremely helpful to

conduct experiments over several settings of the algorithm such that settings / problems can be

fed into next rows and the algorithm reads the settings before the start of each problem.

Figure 4.16: A sample input MS Excel sheet

69

 presents a snapshot of input file and its different sections are explained below.

a. Input directory: contains the path of ‘.fjs’ files to be read before algorithms start

b. Output directory: contains the path of the folder where the convergence pattern

and Gantt chart is saved in ‘.fig’ format. The algorithm is capable of reading the

problem from ‘.fjs’ file and produce population.

c. Filename: Contains the name of ‘.fjs’ file which is to be solved. Different

problems can be fed into different rows and different parametric setting can be

saved for experimentation.

d. Maximum generations: The maximum number of generations are saved here, after

the completion of which, the algorithm will terminate.

e. Number of generations for termination: This counter continues to grow if no

improvement is found in subsequent generations and is reset to zero once an

improvement is found. The algorithm will terminate once the upper limit of this

counter is hit.

f. PopSize: The population size to retain in each iteration.

g. SelRatio: The ratio of elitism and roulette wheel strategies to be used in the

algorithm.

h. Initialization: The percentage of global, local and random (GS, LS, RS) are saved

here.

i. Cmax: The algorithm saves the best solution here after convergence.

Figure 4.16: A sample input MS Excel sheet

4.3.4 Layer 2: GA

This layer takes the input parameters from the input layer and executes the GA routine.

The representation of MSOS proposed by Zhang [157] has been used in GA-IDT. Figure 4.17

presents the Fattahi 12 problem and its conversion into an initial chromosome. The MS part is

encoded as already explained in section 4.2.1. For further illustration, the first job (J1) is

70

comprised of three (03) operations i.e. O11, O12 and O13. If we consider O12, the operation can be

performed on M1, M2 and M4, out of which it is currently being performed on M4 which is the

third machine from the available machines. Hence, 3 is assigned to the respective gene. Similarly,

the machine assignment is undertaken until all machines are assigned. The OS part defines the

scheduling sequence for the assigned machines. The value of ‘1’ represents that the stated

operation belongs to the first job. Since there are three operations of the first job, ‘1’ is repeated

three times such that for the first time it represents O11, for the second time it represents O12 and

for the third time it represents O13. Similar logic is applicable to other indices of the OS part. The

initialization routine continues until all operations are assigned and scheduled according to the

defined representation and a joint MS-OS based chromosome is formulated as shown in Figure

4.18.

Figure 4.17: Conversion of problem into MS and OS parts of chromosome

Figure 4.18: An example chromosome

Since the population consists of many chromosomes, the initialization mechanism is used

to generate required number of individuals. Generally, random procedure is followed (refer

Figure 4.4); which has been used for the OS part. However the proposed procedures of LS and

GS [157] are also implemented in this algorithm for the MS part.

The LS procedure searches for the available options of the sequences and schedules the

process which has minimum processing time. For example, O22 can be scheduled on M2 with a

M 1 M 2 M 3 M 4 M 5 M 6 M 7 MS OS

O 11 147 123 145 1 1

O 12 123 130 140 3 1

O 13 150 160 200 3 1

O 21 214 150 2 2

O 22 66 87 99 1 2

O 23 178 95 150 2 2

O 31 87 62 2 3

O 32 180 105 145 2 3

O 33 190 100 153 2 3

O 41 87 65 2 4

O 42 250 173 1 4

O 43 145 136 2 4

O 51 128 123 145 1 5

O 52 86 65 47 3 5

O 53 110 85 2 5

J1

J2

J3

J4

J5

1 3 3 2 1 2 2 2 2 2 1 2 1 3 2 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5

MS OS

71

minimum time of 66. The GS procedure takes into consideration the machine busy time (Tk) in

order to further minimize the processing time. In this regard, Tk is set equal to zero at first as

there are no operations scheduled and machines are available / idle at the start of the problem.

Once an operation is assigned and scheduled to a said machine, Tk assumes the subsequent value

of relevant Pijk. The next operation is then scheduled to a machine where the added value of next

Pijk becomes lowest when added to Tk. In this way, a global minimization is undertaken with

reference to the machine busy time. These procedures are used in conjunction with each other so

that an amalgamated population with properties of randomness, local and global best are

produced for a selected machine selection. These procedure are presented pictorially in Figure

4.19 and Figure 4.20 respectively.

72

Figure 4.19: Local search

Figure 4.20: Global search

The chromosomes are encoded until the required population strength is achieved as

presented in Figure 4.21. The initial percentage of LS, RS and GS are pre-set into the input excel

sheet.

For each process Oij assign a
machine Mk for which Pijk is

minimum

All jobs
assigned?

START

Select a job
randomly

No

END

Yes

73

Figure 4.21: Encoding of chromosome

Since the algorithm needs to take decision whether the required number of chromosomes

from a relevant technique have been generated or not, a decision tree is proposed for generation

of population as presented in Figure 4.22. This procedure generates chromosomes until the

number becomes equal to the required population size which was previously fed into the input

sheet.

74

Figure 4.22: Decision tree for GS, LS and RS

Once the population has been initialized, the termination counter is set equal to zero and

the population is evaluated for fitness. The parent population in then set for recombination as

summarized in Figure 4.23 and explained below.

No. of chromosomes = 0

No. of Chromosomes ≥ pop size?

START

Take pop size, GS, LS & RS ratios as
input

No

C ← Generate chromosomes randomly

Ɽ← Generate random number

POP ← save chromosome C in population
&

No of chromosome ++

Yes

Yes

No

Ɽ > (GS+LS)?

Yes

Ɽ > GS ?

END

C ← Generate chromosomes
using LS technique

C ← Generate chromosomes
using GS technique

No

75

Figure 4.23: Recombination operators for GA-IDT

For MS part, SPX [212], TPX [286] and UX [157] are executed. Let us consider two parent

chromosomes (MS part only) extracted from Fattahi 12 as shown in Figure 4.24. The SPX

generates two offspring from [1 ~ Թ] and [Թ ~ L] where Թ is a random number generated on the

runtime in [1 ~ L]. An example of SPX is shown in

Figure 4.25 and its flowchart is presented in Figure 4.26.

Figure 4.24: Two parent chromosomes (MS part)

76

Figure 4.25: An example of SPX

Figure 4.26: Flowchart of SPX

The TPX generates two offspring from [1 ~ Թ1] and [Թ1 ~ Թ2] and [Թ2 ~ L] where Թ1	

and	Թ2 are random numbers generated on the runtime in the range of [1, L]. An example of TPX

is presented in Figure 4.27 while its generalized flowchart has already been presented in Figure

4.6.

77

Figure 4.27: An example of TPX

The UX generates two offspring from such that offspring contain even and odd genes

swapped from both parents turn by turn. An example of UX is presented in Figure 4.28, while its

flowchart is shown in Figure 4.29.

Figure 4.28: An example of UX

1 3 3 2 1 2 2Parent -1 1 3 2

2 1 3 2 1 2 2 2 3Parent -2 1 2 1 3 3 2

1 1 3 2 1 2 2

2 3 3 2 1 2 2

Child -1

Child -2

2 2 2 1 2

2 2 1 1 1 1 3 2

2 3 2 2 2 3 3 2

78

Figure 4.29: Flowchart of UX

The OS part is represented such that the sequence of genes represents the order of

operations. Thus, it is imperative that this order must be preserved to avoid generation of

infeasible / false OS part solutions which will eventually prove meaningless when integrated with

the MS part. To ensure that information of order is preserved, iPOX [208] has been implemented.

In this procedure, sets of jobs [Js1, Js2] are generated randomly through a random integer in [1,

n] and offspring are produced in [1 ~ x] and [x ~ n], where x is the random break point. An

example in this regard is elaborated in Figure 4.30. Here, there are a total of 5 jobs, each having

three operations. Js1 and Js2 are generated as [1, 2] and [3, 4, 5]. Now considering the Child-1,

each gene in the chromosome pertaining to Job 1 and 2 will be transferred from Parent-1 and

sequence will be copied as per original. Similarly, each gene in Child-1 pertaining to Job 3, 4

and 5 will be copied from Parent-2 and sequence will be kept similar as of the parent. Child-2 is

generated vice-versa and two different offspring are generated through a set of job sequences.

Obviously, changing the job sequence will change the offspring. A schematic flowchart of iPOX

is presented in Figure 4.31.

79

Figure 4.30: An example of iPOX

Figure 4.31: Flowchart of iPOX

Now coming to the mutation of the chromosome, Random Intelligent Mutation (RIM)

has been used in GA-IDT for the MS part. A gene is selected and available options for machine

assignment are evaluated and a new machine is assigned to mutate the gene. An example of this

procedure is shown in Figure 4.32 and a flowchart is presented in Figure 4.33. Here, O32 can be

performed on M4, M5 and M7. The operation was assigned to M7 before mutation and after

mutation, it has been assigned to M4.

2 3 4 3 1 1 2Parent -1 2 3 5

5 4 3 4 3 5 1 1 5Parent -2 4 1 3 2 2 2

2 5 4 3 1 1 2

5 4 3 4 3 5 2

Child -1

Child -2

5 4 1 4 5

4 3 1 5 5 2 4 3

1 5 4 1 3 2 1 2

Js1 = [1, 2]

Js2 = [3, 4, 5]

Divide jobs randomly in two sets as Js1

and Js2

START

END

Replace processes of Js1 in OS1

with processes of Js1 in OS2

Replace processes of Js2 in OS1

with processes of Js2 in OS2

80

Figure 4.32: An example of RIM

Figure 4.33: Flowchart of RIM

A swap type of mutation (SM) has been implemented on the OS part, whereby two genes

are randomly selected, and their places are changed. An example of SM is shown in Figure 4.34

and its flowchart is presented in Figure 4.35. Here, gene number 4 and 13 are swapped together.

Figure 4.34: An example of SM

81

Figure 4.35: Flowchart of SM

As explained in GA-PR, the probabilities of recombination operators have also been

taken as adaptive in GA-IDT [refer to Eq. (23) and Eq. (25)]. After the recombination process is

culminated, hybrid selection mechanism is performed as already explained in Figure 4.9 and

Figure 4.10. A set of new population is then achieved, and old population is replaced by it.

The algorithm then performs the check whether the solution fitness has improved. A

similar fitness function has been implemented in this algorithm as presented in Figure 4.11. In

case the fitness is improved, the termination counter is set to zero again and algorithm continues

to run. Otherwise, the termination counter is increased by one and the algorithm satisfies one of

the termination conditions. In case the solution is not improved, the algorithm also checks

whether the termination limit is hit or not. The algorithm proceeds to repeat the GA procedure in

case a false is returned, otherwise it proceeds to the third layer of the algorithm.

4.3.5 Layer 3: Re-initialization

When the algorithm reaches this layer, the population has sufficient elite solutions since

termination counter is hit. This layer re-initializes the population to induce diversity in the elitist

solutions while preserving the best solution. This procedure is meant to further evaluate the

possible search space areas those were not studied earlier. To further augment the process, the

GS is decreased by 10% and LS is increased by 10%.

82

Since, the population has been dispersed, the increment in the LS leads to intensify the

possibility of local search in the areas of promising solutions and the decrease in GS is

compensated by the re-initialization process. Thus, increased computational evaluation is now

performed around the best solution, while exploring the overall search space owing to the

dispersed population. The overall procedure is further assisted through the adaptability of

mutation and crossover probabilities for ensuing the possibility of generating new and better

solutions. The newly formulated population is then returned to the GA layer after incorporation

of the elite solution. The algorithm continues to cycle through Layer 2 and Layer 3 in a similar

way until the re-initialization limit is achieved.

4.3.6 Layer 4: Output

This is the final layer that takes the elite chromosome and produces a Gantt chart file and

a convergence pattern file. It saves these files in the intended directory as defined in the input

layer. Let’s consider the example elite chromosome for Fattahi 12 problem as presented in Figure

4.36.

Figure 4.36: Chromosome to be decoded

Figure 4.37 presents a pictorial representation of chromosome decoding. The MS part is

translated into the y-axis of the Gantt chart. The operations are decoded to reveal the actual

machine number on which the operation is to be performed, e.g. O52 is to be performed on third

available machine. Since the available machines on which the said operation can be performed

are M3, M4 and M5, the index of three points out M5. Consequently, the operation is translated to

relevant machine accordingly. All machine assignments are decoded in a similar way and y-axis

of the Gantt chart is populated completely while solving the assignment problem.

Now coming to the sequencing problem is solved through decoding the OS part and

translating relevant operation sequences to the corresponding machines. Again, considering the

fifth job, first instance of 5 is obtained at gene number 8 which means that this operation is O51.

We see that this operation has been assigned to M1. Remaining operations of fifth job, i.e. O52

and O53 are obtained at gene number 12 and 15. The scheduler refers to the assignment part and

finds that these operations are assigned to M5 and M6, respectively. In a similar way, the complete

OS part is decoded, and Gantt chart is populated by placing each operation with relevant machine

while incorporating its process time. The operation which culminates at the end i.e. O53 provides

1 3 3 2 1 2 2 2 2 2 1 2 1 3 2 2 3 4 3 1 1 2 5 4 1 4 5 2 3 5

83

the Cmax of the current chromosome which comes out to be 716 as shown in the final Gantt chart

in Figure 4.38.

Figure 4.37: A schematic of chromosome decoding

Figure 4.38: Conversion of decoded chromosome into Gantt chart

The termination criteria of this algorithm are as follows.

84

i. Maximum pre-set number of generations is acquired.

ii. No further improvement is achieved until 100 generations & re-initialization

counter is hit.

4.4 Summary

This chapter has explained the proposed algorithms, namely GA-PR and GA-IDT in a

detailed manner and the constituent parts of the algorithm are elaborated through figures and

flowcharts. Numerous contributions to the existing knowledge body are also highlighted. Results

of the proposed algorithms will be presented in the next chapter.

85

5 Chapter 5 – Experimental Investigation and Performance

Evaluation

5.1 Introduction

This chapter provides results of the developed algorithms. Firstly, a generalized and

numerical insight to the search envelope of the FJSSP is suggested to provide a visualization of

the complexity and magnitude of the attempted benchmarks. Section-wise results of GA-PR and

GA-IDT are then presented and compared with other relevant algorithms for evaluation of

performance. The standard datasets of Fattahi and Kacem are selected for this purpose. The

reason behind selecting Kacem instances is that their optimal solution has been achieved [282]

and the problem size is sufficiently large so there is a room for testing the newly developed

algorithm against known best. The known tendency of GA to get trapped in local minima can be

easily tested with this dataset. Moreover, Fattahi has been selected keeping in view the fact that

initial ten problems are meant for testing purposes i.e., these are small problems and algorithm

correctness can be easily assessed by them. However, the later ten problems pose a challenge

since their optima is not known.

A percentage deviation from the reported results of literature is calculated as follows.

 %∆ൌ
௧௧௨݁ݑ݈ܸܽ െ ௩ௗ݁ݑ݈ܸܽ

௧௧௨݁ݑ݈ܸܽ
 (40)

The results are compared with equated algorithms built on similar patterns, while not

excluding the possibility of cross-technique comparison. This is due to fact that hybrid algorithms

belong to a different class and their efficiency assessment and quality of result can only be

compared with algorithms of similar class. In this regard results produced by HTS-TS / HTS-SA

[55], GA [252], AIA [287], MILP [288] and CP [282] have been compared with developed

algorithms.

5.2 Evaluation of computational complexity and search space

FJSSP belongs to one of the most challenging and computationally complex NP-hard

problems [289, 290] and it has been reported that the problem is virtually impossible to solve

and may take up to millions of years to find the exact solution [30]. A very straight-forward way

to quantitatively assess the enormous complexity of the FJSSP is to evaluate search. Although

this can be simply said that the problem is NP-hard, there is an academic interest to find what is

86

actual amount of the solutions available in the search space. This helps to design the search

techniques accordingly.

The search space size depends upon the chromosome length (and consequently the

representation) and the flexibility (Uij) of the problem. As per the adopted representation in the

current research, the search space size is a product of MS part search space and OS part search

space i.e. Eq. (31).

 Յ ൌ ܵܵሺܵܯሻ ൈ ܵܵሺܱܵሻ (41)

The space of search for MS part is evaluated in combinatorial way through product of all

possible blends of the operations. Moreover, the search space of the OS part is evaluated again a

combinatorial fashion by obtaining ratio of L! and product of summations of Jio!. Following

formulation [Eq. (32)] of the quantitative assessment of search space is proposed.

 Յ ൌෑෑ ܷ

ୀଵ

ே

ୀଵ

ൈ
!ܮ

∏ !ேܬ
ୀଵ

 (42)

This formulation provides an insight to the actual combinations of operations, jobs and

machines. The formulation has been applied to complete datasets of Kacem (04 x instances) and

Fattahi (20 x instances) and results are presented in Table 5.1. The table also shows the number

of jobs and machines for each problem. There is an exponential increase in the search space size

with the increase in number of combinations, e.g. for 2 x 2 size, search space is of the order of

E+01 (SFJS 01) and for 3 x 3 size it shoots up to the order of E+05 (SFJS 09).

87

Table 5.1: Quantitative assessment of search space

Figure 5.1: Graphical presentation of search space size

5.3 The results of GA-PR

The algorithms are implemented in MATLAB ® version 2018 and run on the Core-i7

Pentium (RAM of 4 GB). Different types of analysis are conducted to evaluate the overall

performance of the algorithm which are explained below.

5.3.1 Contribution of priority rules

As explained in section 4.2.2, the priority rules integrated with GA routine solve the

scheduling part of the problem turn-by-turn and the rule that provides best solution to the specific

instance is selected to generate the schedule. This is because priority rules do not guarantee the

Instance N M L Յ Instance N M L Յ

SFJS1 2 2 4 9.60E+01 MFJS3 6 7 18 4.67E+18

SFJS2 2 2 4 2.40E+01 MFJS4 7 7 21 1.12E+23

SFJS3 3 2 6 1.44E+03 MFJS5 7 7 21 7.45E+22

SFJS4 3 2 6 1.44E+03 MFJS6 8 7 24 1.81E+27

SFJS5 3 2 6 5.76E+03 MFJS7 8 7 32 3.00E+36

SFJS6 3 3 9 1.08E+05 MFJS8 9 8 36 2.82E+42

SFJS7 3 5 9 8.60E+05 MFJS9 11 8 44 1.35E+55

SFJS8 3 4 9 8.60E+05 MFJS10 12 8 48 6.28E+61

SFJS9 3 3 9 8.60E+05 Kacem 1 4 5 12 6.77E+13

SFJS10 4 5 12 9.46E+07 Kacem 2 10 7 29 1.41E+48

MFJS1 5 6 15 1.39E+13 Kacem 3 10 10 30 4.39E+54

MFJS2 5 7 15 2.12E+14 Kacem 4 15 10 56 2.03E+112

88

optimality of the solution alone because they are heuristic methods, and the assignment part is

being solved by GA. Nevertheless, certain priority rules outsmart other schemes in certain

scenario. Therefore, it is imperative that different types of rules may be used such that they may

perform in all scenarios e.g., SPT cannot perform best in an environment where all jobs have

equal times. Obviously, a limited number of rules can be integrated. Therefore, the rules selected

in this study have been identified on the assumption that at least one performs in each scenario.

A procedure for evaluating the performance of rules has been suggested in Figure 5.2.

The percentage contribution of each rule is finally calculated as shown in Eq. (33).

ܥܲ ൌ
ܧ

1000
ൈ 100 (43)

Figure 5.2: Procedure for evaluating percentage contribution of selected rules

The procedure presented in Figure 5.2 is applied to complete dataset of Fattahi. Step-6

includes 1,000 iterations of previous steps. Since, the assignment part is being solved by GA, the

solutions are randomly oriented. Therefore, 1,000 iterations of priority rules are performed to

evaluate the overall effect of rules being used. This procedure has been devised for evaluating

the contribution of each rule towards generating the makespan. A visualization is for assessment

of percentage contribution is presented in Figure 5.3. The colored areas pertaining to each rule

as pointed out in the legend represent the percentage contribution of said rule as compared to the

other rules. Following are some observations from the visualizations.

89

a. Fattahi 2 is completely solved by SPT alone and no other rule has proven to be

effective in this case over 1,000 iterations.

b. Similarly, above 80% instances have been solved by SPT for Fattahi 1 and

remaining instances were solved using LPT and no other rule proved to be

effective.

c. Overall, SPT has shown most contribution.

d. The contribution of SPT falls drastically once the problem size increases and other

rules start to play their role.

e. The work / operations remaining rules does not play any part in the initial 4

problems as all jobs are assigned and scheduled in the first instance.

f. MOR has the sleekest contribution, whereas the contribution of LPT is also on the

lower side.

g. The MWR and mMWR increase their role in the larger problems because the

number of machines become less as compared to the required number of

operations to be conducted.

h. The contribution of mMWR increases as the problems become larger.

i. It is a general observation that the rule contribution depends upon the problem

size and the specific machine assignment generated by GA. Hence, one rule can

become more effective than the other in a specific instance depending upon the

nature of prevalent instance, e.g. work remaining rule will dominate when the

work remains, and the execution resources are scare etc.

Figure 5.3: Visualization of percentage contribution of selected rules

For further illustration of the contribution of each rule in the generation of best Cmax, the

instance of Kacem-4 is solved with GA-PR. The upper half of Figure 5.4 shows the minimum,

90

maximum and average Cmax over 80 generations of GA-PR. The average and the minimum values

continue to reduce over the generations, while the maximum value fluctuates owing to the

adaptive parameters of recombination. The lower half of Figure 5.4 presents the contribution of

each rule over each generation of algorithm and points out the best rule. The rule that contributes

towards finding best solution has been indicated with a blue marker on the graph, e.g., in

generation 73 – 75, SPT has contributed to finding the best solution. Similarly, during generations

75 – 80, mMWR has contributed to find the best solution. It is concluded that all rules play their

part in providing best solutions over the generations. In addition, since the problem is a large

problem, contribution of mMWR is significantly visible.

Figure 5.4: Contribution of each rule in solving Kacem-4

5.3.2 Behavior of adaptive recombination operator probabilities

The initial probability of crossover (Pc) is taken as 0.8 which is then subjective to change

as per the adaptive implementation. Figure 5.5 presents the behavior of Pc over the number of

generations of a sample instance of FJSSP i.e., Kacem-4. The value of Pc tends to increase as

shown on the right vertical axis of the figure with the convergence of population which is

indicated by the average Cmax indicator plotted at the left vertical axis.

91

Figure 5.5: Behavior of Pc

The initial setting of Pm is taken as 0.4 which is then subjected to adaptive increment.

Figure 5.6 presents the behavior of Pm over similar generations as of Pc. The value of Pm starts

to increase (right vertical axis) as the best Cmax is lowered (left vertical axis).

Figure 5.6: Behavior of Pm

This instrument of adaptive behavior is used to inculcate diversification in the population

and to increase the possibility of finding new solutions and to explore extended search areas since

the algorithm tends to converge around elite solution.

5.3.3 Behavior of hybrid selection

A dedicated experiment was conducted to evaluate the behavior of hybrid elite-RW

selection mechanism. An initial population was generated using the random generation technique

and its distribution of makespan against the number of individuals are shown in the left side of

Figure 5.7.

92

Figure 5.7: Behavior of hybrid selection

It is important to ascertain that the random population generation effectively generates a

fairly distributed makespan individuals, both on the lower side and the higher side of the

makespan bracket. When the 20th generation is achieved, the population has been evolved 20

times and convergence is now being started against the elite solution as indicated by the highest

bar in the right side of Figure 5.7. Since the elitism effect is kept on a lower side to prevent hasty

convergence, remaining population is undertaken by the RW criteria. It is thought-provoking that

RW generates a Gaussian effect on the population distribution pattern.

5.3.4 Results of attempted instances

A total of 24 x instances were attempted using GA-PR, which contain 04 x instances of

Kacem and 20 x instances of Fattahi. The parameters of GA-PR which were fed to the algorithm

before start of execution are listed in Table 5.2. One approach could be to conduct a parametric

study. However, the crossover and mutation probabilities are already adaptive, and they change

according to the situation of the instance. Rest of the parameters have been taken from the

literature review study [10].

93

Table 5.2: Input parameters of GA-PR

Table 5.3 presents the results of Kacem problems as compared with CP. It has been

reported that optimal solutions of these instances have been found [282] and thus comparison is

thus only made with one other algorithm in order to assess the efficacy of the algorithm. GA-PR

achieved best solutions for the first three problems, however lags for the fourth instance.

Table 5.3: Results of Kacem dataset for GA-PR

The results of Fattahi dataset are presented in Table 5.4 along with the results of other

algorithms and relevant %Δ. It is concluded that the algorithm produces comparable solutions.

The mean %Δ for each algorithm is shown pictorially in Figure 5.8. The positive value points

out that the overall results of the dataset surpass the other algorithm, while in case of CP, the

negative value indicates that an overall lag is observed. As an improvement has been indicated

in the results of MFJS-7, the Gantt chart is presented in Figure 5.9.

Parameter Description Value

Population size Total chromosomes in a population 1500

Generation size Number of iterations in GA 500

Crossover probability Likelihood for chromosome crossover Adaptive

Mutation probability Likelihood for chromosome mutation Adaptive

Elitism ratio Elite chromosome selection factor 20

Roulette wheel ratio Factor for roulette wheel selection 80

Problem GA-PR
CP

Cmax %Δ
Kacem1 11 11 0
Kacem2 11 11 0
Kacem3 7 7 0
Kacem4 14 12 -16.7

94

Table 5.4: Results of Fattahi dataset for GA-PR

Problem GA-PR
HTS/TS [55] HTS/SA [55] GA [252] AIA [287] MILP-1 [288] CP [282]

Cmax %Δ Cmax %Δ Cmax %Δ Cmax %Δ Cmax %Δ Cmax %Δ

SFJS1 66 66 0 66 0 66 0 66 0 66 0 66 0

SFJS2 107 107 0 107 0 107 0 107 0 107 0 107 0

SFJS3 221 221 0 221 0 221 0 221 0 221 0 221 0

SFJS4 355 355 0 355 0 355 0 355 0 355 0 355 0

SFJS5 119 119 0 119 0 119 0 119 0 119 0 119 0

SFJS6 320 320 0 320 0 320 0 320 0 320 0 320 0

SFJS7 397 397 0 397 0 397 0 397 0 397 0 397 0

SFJS8 253 253 0 256 1.2 253 0 253 0 253 0 253 0

SFJS9 210 210 0 210 0 210 0 210 0 210 0 210 0

SFJS10 516 516 0 516 0 516 0 516 0 516 0 516 0

MFJS1 468 469 0.2 469 0.2 468 0 468 0 468 0 468 0

MFJS2 448 482 7.1 468 4.3 448 0 448 0 446 -0.4 446 -0.4

MFJS3 468 533 12.2 538 13 466 -0.4 468 0 466 -0.4 466 -0.4

MFJS4 554 634 12.6 618 10.4 554 0 554 0 564 1.8 554 0

MFJS5 514 625 17.8 625 17.8 514 0 527 2.5 514 0 514 0

MFJS6 634 717 11.6 730 13.2 634 0 635 0.2 635 0.2 634 0

MFJS7 881 964 8.6 947 7 881 0 879 -0.2 935 5.8 931 5.4

MFJS8 884 970 8.9 922 4.1 891 0.8 884 0 905 2.3 884 0

MFJS9 1097 1105 0.7 1105 0.7 1094 -0.3 1088 -0.8 1192 8 1070 -2.5

MFJS10 1275 1404 9.2 1384 7.9 1286 0.9 1267 -0.6 1276 0.1 1208 -5.5

95

Figure 5.8: Mean %Δ of GA-PR as compared with other Algorithms

Figure 5.9: MFJS-7 Gantt chart

It is deduced from the data presented in Figure 5.8 that GA-PR surpasses other algorithms

in general, but is left behind from CP. Since CP is the constraint programming logic and performs

on mathematical formulation, it has produced better results as compared to GA-PR. The

algorithms outsmart all other algorithms which are designed on the same principles of GA.

96

5.4 The results of GA-IDT

This algorithm is built to manage the aspects of diversification and intensification in an

efficient manner. The algorithm is built in similar version of MATLAB ® and experiments are

also conducted on similar machine as described in GA-PR. Again, judgement is made with

comparable algorithms of similar nature only.

5.4.1 Consequence of re-initialization

GA-IDT undergoes re-initialization when termination counter is hit, and no further

improvement is found until 100 generations are passed. This invokes changes in the population

initialization schemes by altering the pre-set number of operators. To evaluate the effect of re-

initialization on makespan quality, let us consider the convergence of MFJS8 as shown in Figure

5.10.

Figure 5.10: Consequence of re-initialization on MFJS8 makespan

When the algorithm starts, it undergoes multiple reductions in Cmax as lower values are

continued to be found. The solution of simple GA does not improve after 180th generation and

then stays there until another 120 generations have passed. and it seems that optimal point has

been achieved as indicated by the straight blue line. However, as better solutions have already

been found and reported in literature, it becomes evident that the point is local minima.

Nevertheless, the algorithm stays there and terminates on local minima.

97

Now coming to the GA-IDT, the algorithm converges in a similar manner and attains

stagnation after 120th generation. The results do not improve until 100 iterations and the

algorithm re-initialize. The population diversity is dispersed after this and the algorithm is forced

again to search the solution space while conserving the best solution. In addition to this, the

initialization parameters are altered along with recombination probabilities. Just after the re-

initialization is complete and algorithm again starts to converge, an improvement of 38 is found

in many steps as indicated by the oval shaped marker in Figure 5.10. The algorithm then

continues to execute until the termination criteria are met. It is germane to note here that the

simple GA does not get out of the local minima once the population has converged against the

elite individual; however, the GA-IDT gets out of the local solution and strives to find more

better solutions due to the methodology of iterative diversification. In this regard, re-

initialization, adaptive crossover, and global search tend to diversify the population, while

adaptive mutation, local search and elitist preservation tend to intensify the population. This

overall scheme has been termed as “Iterative Diversification Technique” (IDT).

 Extended number of runs are conducted for other problems and similar behavior is found

with regards to the IDT. Figure 5.11 presents the consequence of IDT on the convergence pattern.

Following observations are found with analysis.

a. MFJS-2 gets stuck in local minima at very initial stage (< 50 generations) and

remains there until the algorithm is re-initialized thrice and improved solution is

found afterwards.

b. MFJS-4 gets caught in local minima after ~ 50 generations and re-initialization is

invoked after completion of termination criteria. The algorithm finds better

solutions after first attempt; however, no better solutions can be found after three

further attempts. As a matter of fact, the solution found after first initialization is

optimal.

c. Similar behavior as of MFJS-4 can be found in the convergence patterns of MFJS-

5 and MFJS-6 (Figure 5.12). Both in MFJS 5 and MFJS 6, the algorithm gets

trapped in local minima and evades from the trap after IDT is invoked.

It is therefore concluded that IDT is effective in escaping from local minima and can

divulge the algorithm to better solution, even in the presence of pre-elite solutions. It is also

concluded that numerous attempts of re-initialization may also prove to be useful; however, this

comes at the cost of computational resources. It is therefore suggested that a total of 04 re-

98

initialization attempts be made as no improvements could be found after that during our

experimentation.

Figure 5.11: Consequence of re-initialization on convergence of MFJS-2 and MFJS-4

Figure 5.12: Consequence of re-initialization on convergence of MFJS-5 and MFJS-6

5.4.2 Results of attempted instances

Table 5.6 presents the results of Fatthi and Kacem datasets in comparison with other

algorithms. It is notable that GA-IDT outperforms GA-PR by providing best known Cmax for

Kacem-4 instance. Since the global optima for these instances have already been met, no further

comparison with other approaches have been undertaken.

The algorithm is fed with predetermined parametric settings as pointed out in Table 5.5.

For the purpose of this study, the recombination operator probabilities and selection operator

ratios are kept adaptive. The termination counter in incremented after each generation with no

improvement and continues to increment until 100 generations. After 100 iterations have been

0 200 400 600 800

Generations

400

500

600

700

800

900

1000

1100
MFJS5

Avg Cmax
Min Cmax (514)

0 200 400 600 800
Generations

500

1000

1500
MFJS6

Avg Cmax
Min Cmax (634)

99

conducted, the re-initialization counter is set-up and population is re-initialized as per the IDT

and termination counter is set to zero again. This procedure continues until a total of 04 re-

initialization attempts are completed.

Table 5.5: Parametric settings of GA-IDT

The results of Fattahi dataset are also listed in Table 5.6. Percentage difference is

calculated from Eq. (31). It is notable that the algorithm at least remains competitive even in the

larger problems solved with ILOG programming engine of CP. All entries show positive

difference which means that GA-IDT surpasses the obtained solutions accordingly. The

algorithm lags in MFJS-10.

Parameter Description Value

Population size Total chromosomes in a population 1500

Generation size Number of iterations in GA 250

Crossover probability Likelihood for chromosome crossover Adaptive

Mutation probability Likelihood for chromosome mutation Adaptive

Global selection ratio
Population initialization factor for global
selection

Adaptive

Local selection ratio Population initialization factor for local selection Adaptive

Random selection ratio
Population initialization factor for random
selection

Adaptive

Elitism ratio Elite chromosome selection factor 20

Roulette wheel ratio Factor for roulette wheel selection 80

Termination counter limit Limit for GA before re-initialization 100

Re-initialization counter
limit

Number of re-initialization attempts 4

100

Table 5.6: Results of Fattahi and Kacem datasets for GA-IDT

Problem
GA-
IDT

HTS/TS [55] HTS/SA [55] GA [252] AIA [287] MILP-1 [288] CP [282]
Cmax %Δ Cmax %Δ Cmax %Δ Cmax %Δ Cmax %Δ Cmax %Δ

SFJS1 66 66 0 66 0 66 0 66 0 66 0.0 66 0
SFJS2 107 107 0 107 0 107 0 107 0 107 0.0 107 0
SFJS3 221 221 0 221 0 221 0 221 0 221 0.0 221 0
SFJS4 355 355 0 355 0 355 0 355 0 355 0.0 355 0
SFJS5 119 119 0 119 0 119 0 119 0 119 0.0 119 0
SFJS6 320 320 0 320 0 320 0 320 0 320 0.0 320 0
SFJS7 397 397 0 397 0 397 0 397 0 397 0.0 397 0
SFJS8 253 253 0 256 1.2 253 0 253 0 253 0.0 253 0
SFJS9 210 210 0 210 0 210 0 210 0 210 0.0 210 0
SFJS10 516 516 0 516 0 516 0 516 0 516 0.0 516 0
MFJS1 468 469 0.2 469 0.2 468 0 468 0 468 0.0 468 0
MFJS2 446 482 7.5 468 4.7 448 0.4 448 0.4 446 0.0 446 0
MFJS3 466 533 12.6 538 13.4 466 0 468 0.4 466 0.0 466 0
MFJS4 554 634 12.6 618 10.4 554 0 554 0 564 1.8 554 0
MFJS5 514 625 17.8 625 17.8 514 0 527 2.5 514 0.0 514 0
MFJS6 634 717 11.6 730 13.2 634 0 635 0.2 635 0.2 634 0
MFJS7 879 964 8.8 947 7.2 881 0.2 879 0 935 6.0 931 5.6
MFJS8 884 970 8.9 922 4.1 891 0.8 884 0 905 2.3 884 0
MFJS9 1091 1105 1.3 1105 1.3 1094 0.3 1088 -0.3 1192 8.5 1070 -2
MFJS10 1238 1404 11.8 1384 10.5 1286 3.7 1267 2.3 1276 3.0 1208 -2.5
Kacem1 11 - - - - - - - - - - 11 0
Kacem2 11 - - - - - - - - - - 11 0
Kacem3 7 - - - - - - - - - - 7 0
Kacem4 12 - - - - - - - - - - 12 0

Mean %Δ 4.7 - 4.2 - 0.3 - 0.3 - 1.1 - 0

101

It is also pointed out that no lag is observed in the overall mean deviation despite the fact

that GA-IDT lags from CP and the overall value comes out to be zero as improvement from CP

has also been obtained. This aspect is pictorially shown in Figure 5.13. Since improvement has

been obtained for MFJS-8, its Gantt chart is shown in Figure 5.14.

Figure 5.13: Mean %Δ of GA-IDT as compared with other Algorithms

Figure 5.14: MFJS-8 Gantt chart

5.5 Comparison of GA-PR and GA-IDT

Although GA-PR and GA-IDT have been developed on different schemes and their

architecture differs sufficiently, a comparison between the two algorithms is presented in this

section. Figure 5.15 presents the comparison of GA-PR and GA-IDT in Fattahi dataset. It is

102

evident that as the problem size grows, the difference between the two algorithms become

significant. The results of both algorithms are plotted as bar charts, while the difference between

the two algorithms is shown on secondary axis through line graph. Hence GA-IDT surpasses

GA-PR in obtaining Cmax. Similarly, in Kacem dataset, the algorithms perform in the same

manner as shown in Figure 5.16 i.e., as the problem size grows, the difference becomes evident.

Figure 5.15: Comparison between GA-and PR GA-IDT for Fattahi instances

Figure 5.16: Comparison between GA-and PR GA-IDT for Kacem instances

The comparison of GA-PR and GA-IDT shows that GA-IDT performs better. Both

algorithms have their strengths and weaknesses, however, since the optimization objective is

Cmax, GA-IDT provides better results. This is because half of the GA-PR is dependent upon

selection and performance of rules. The algorithm cannot produce better results than theoretically

possible from the heuristic rule. In addition, the search capability of the algorithm is dependent

upon the GA part only. On the other hand, GA-IDT is completely based on GA and this provides

advantage in further exploration of the search space and hence produces better results.

103

5.6 Summary

This chapter presented the results of the two proposed algorithms i.e. GA-PR and GA-

IDT. The effectiveness and usefulness of the algorithms is then presented through conduct of

different sorts of experiments to highlight the effect of proposed changes. The results show that

the proposed algorithms perform in an efficient manner with other comparable methods and

proposed improvements are useful. This fact is further augmented by the positive mean

difference obtained from analysis of experimental results.

104

6 Chapter 6 – Conclusions and Recommendations

6.1 Contribution to the existing body of knowledge

Optimization of FJSSP by using artificial intelligence-based techniques is a widely

researched area. Following are the contributions of the current work that stand-out from the

already published literature.

i. Thorough literature review: This work started with an in-depth literature

assessment of the FJSSPs solved using different types of GA approaches. The work

encompasses the study of more than 200 papers selected from a superset of more than

400 papers. The literature review outlines major aspects of the solution approaches

followed in the literature and classifies these papers in pure GA, advanced GA, and hybrid

GA based approaches. Extended statistical analysis of data revealed that GA remain the

most popular and attempted technique for solving FJSSP even though initial attempt was

made back some four decades ago. Major GA based approaches (whether standalone or

hybrid) are also identified, and an analysis of different parameters is also conducted to

outline the most useful operators. The study also helps to identify different benchmarks

in the field and some advanced formats of the basic FJSSP. The study not only provides

a start-up guide for schedulers but also provides future research directions along with an

introduction to the advanced concepts in the field. This work has received above 40

citations till date.

ii. Insights to scheduling problems: Manufacturing scheduling is a mathematically

complicated area. This work has provided in depth coverage to the solution of scheduling

problems through a sample benchmark instance. Different parameters have been solved

and procedure has been outlined, in addition to the clear presentation of complex

procedures through flowcharts.

iii. Quantitative assessment of search space: The search apace of FJSSP is

established as NP-hard and literature has proposed mathematical proofs in this regard.

This work has proposed a formulation for evaluation of actual search space size through

numerical estimation. Selected benchmarks have been evaluated accordingly and their

search space is provided quantitatively to ascertain the genuine complexity. A

comparative analysis in this regard the exponential increase in the problem complexity

with the minimal increment in problem size.

iv. Development of standalone software for scheduling: After the assessment of

complexity, a software has been built in MATLAB ® for automated solution of the

105

problems. This software can undertake different settings of the problems through a pre-

set MS Excel file and continue to evaluate stipulated instances until they all have been

solved. The methodology also automatically saves the generated results, both numerically

and graphically for later analysis.

v. Integration of rules with GA: A novel method for integration of priority rules

with GA has been proposed, whereby 05 x rules are solved turn-by-turn and optimal

solution is taken out instead of just relying on a single rule. The rules are selected keeping

in view different scenarios developed during the solution of scheduling problem. A

modified rule is proposed to further enhance the efficacy of the algorithm.

vi. Development of mMWR: While integrating the priority rules, a modification in

the MWR has been proposed which detaches the rule from machine assignment. The rule

has been tested against different dataset and found that it solves the larger problems

efficiently as compared to other conventional rules. However, the rule may still not be

used in a standalone manner and the implementation of complete GA-PR is

recommended, since heuristic rules are developed for a targeted environment.

vii. Adaptive recombination operators: The classical approach of fixating the

recombination operators for generation of offspring tends to stick the algorithm and

promotes convergence in a haste. This work has proposed adaptive operators for

crossover and mutation, which acclimate themselves according to the current state of the

population fitness to promote further exploration of the search space for a possible better

solution.

viii. Development of an integrated GA approach for FJSSP: In addition to the

integration of rules with GA, this work also proposes an integrated GA for solving the

FJSSP in a parallel fashion. The GA-IDT is equipped with similar adaptive recombination

operators as suggested earlier in this work. Moreover, advanced operators have been

implemented for more spread in the population initialization instead of random generation

only. The algorithm is implemented in four layers which function one by one depending

upon the algorithm stage to manage the huge amount of data in a comprehensive manner.

ix. Development of IDT: This work proposes IDT that has been integrated into the

GA. The technique is built such that the algorithm explores the search space sufficiently

without trapping into local minima. This is done through increment of GS and RS

operators, hybrid selection mechanism, adaptive crossover, and re-initialization. Since

this may require the algorithm to run unnecessarily and may also restrain the algorithm

to exploit the areas of promising solutions, the algorithm is also equipped with techniques

which encourage exploitation of the search space. This done through adjustment of LS

106

operator, adaptive mutation, and elitist preservation. This methodology is tested against

benchmarks and it is concluded that it surpasses the other comparable algorithms.

6.2 Future research directions

This research has opened further avenues for future endeavors which may be pursued as

follows.

i. This research has evaluated the search spaces of basic FJSSPs. Efforts may be

undertaken in future for numerical search space assessment of advanced forms of

FJSSP, e.g. distributed FJSSP, just-in-time etc.

ii. Five rules have been integrated with GA for performance assessment. Other

advanced rules may be integrated in the algorithm for further analysis. In addition,

the objective function change may also be given a preference in future.

iii. The IDT may be further enhanced by integration of advanced concepts like Chaos

maps for further enhanced of search performance.

iv. The algorithm may be applied to advanced cases of scheduling problems like

resource constrained, machine breakdown, setup dependent times etc.

v. Lastly, other objective functions may be solved with this algorithm. In this regard

fitness function for simultaneous optimization of multiple objectives may also be

considered.

107

References

1. Stearns, P.N. and W.L. Langer, The encyclopedia of world history, W.L. Langer, Editor.

2001, Houghton Mifflin Harcourt.

2. Beausmeister III, T.A.E.A., Mark’s Standard Handbook for Mechanical Engineers. 11

ed, ed. A.M. Sadegh. 2007, New York: McGraw-Hill, New York. 2304.

3. Groover, M.P., Automation, production systems, and computer-integrated

manufacturing. 2016: Pearson Education India.

4. Timings, R., Basic manufacturing. 2006, UK: Newnes, Elsevier.

5. Swamidass, P.M., Encyclopedia of production and manufacturing management. 2000,

Springer Science & Business Media: United States of America.

6. WorldBank. Manufacturing, value added (% of GDP). 2016; Available from:

http://data.worldbank.org/indicator/NV.IND.MANF.ZS/countries?display=graph.

7. WorldBank. World Bank Open Data. 2020 02-02-2021]; Available from:

https://data.worldbank.org/.

8. Rehman, F.U., A. Duffy, and X. Yan, Design management and prediction. 2008:

Northwestern Polytechnical University Press.

9. Andreasen, M.M. and L. Hein, Integrated product development. 2000, Denmark: IFS.

10. Amjad, M.K., et al., Recent Research Trends in Genetic Algorithm Based Flexible Job

Shop Scheduling Problems. Mathematical Problems in Engineering, 2018. 2018: p. 32.

11. Koren, Y., The global manufacturing revolution: product-process-business integration

and reconfigurable systems. Vol. 80. 2010: John Wiley & Sons.

12. Kusiak, A., The generalized group technology concept. International journal of

production research, 1987. 25(4): p. 561-569.

13. Ham, I., K. Hitomi, and T. Yoshida, Group technology: applications to production

management. 2012: Springer Science & Business Media.

14. Tempelmeier, H. and H. Kuhn, Flexible manufacturing systems: decision support for

design and operation. Vol. 12. 1993: John Wiley & Sons.

15. Sethi, A.K. and S.P. Sethi, Flexibility in manufacturing: a survey. International journal

of flexible manufacturing systems, 1990. 2(4): p. 289-328.

16. Slack, N., The flexibility of manufacturing systems. International Journal of Operations &

Production Management, 1987. 7(4): p. 35-45.

17. Hyer, N. and U. Wemmerlov, Reorganizing the factory: Competing through cellular

manufacturing. 2001: CRC Press.

108

18. Bessant, J. and B. Haywood, Flexibility in manufacturing systems. Omega, 1986. 14(6):

p. 465-473.

19. Jain, A., et al., A review on manufacturing flexibility. International Journal of Production

Research, 2013. 51(19): p. 5946-5970.

20. Browne, J., et al., Classification of flexible manufacturing systems. The FMS magazine,

1984. 2(2): p. 114-117.

21. Ploydanai, K. and A. Mungwattana, Algorithm for solving job shop scheduling problem

based on machine availability constraint. International Journal on Computer Science and

Engineering, 1919. 2(5): p. 2010.

22. Mellor, P., A review of job shop scheduling. OR, 1966: p. 161-171.

23. Kiran, A.S. and M.L. Smith, Simulation studies in job shop sheduling—I a survey.

Computers & Industrial Engineering, 1984. 8(2): p. 87-93.

24. Adams, J., E. Balas, and D. Zawack, The Shifting Bottleneck Procedure for Job Shop

Scheduling. Management Science, 1988. 34(3): p. 391-401.

25. Krishna, K., K. Ganeshan, and D.J. Ram, Distributed simulated annealing algorithms for

job shop scheduling. Systems, Man and Cybernetics, IEEE Transactions on, 1995. 25(7):

p. 1102-1109.

26. Brucker, P. and R. Schlie, Job-shop scheduling with multi-purpose machines. Computing,

1990. 45(4): p. 369-375.

27. Chambers, J.B. and J.W. Barnes, Tabu Search for the Flexible-Routing Job Shop

Problem. 1996, University of Texas at Austin: Austin, Texas.

28. Najid, N.M., S. Dauzere-Peres, and A. Zaidat, A modified simulated annealing method

for flexible job shop scheduling problem, in IEEE International Conference on Systems,

Man and Cybernetics, A.E. Kame, K. Mellouli, and P. Borne, Editors. 2002: Tunisia. p.

6 pp.

29. Pinedo, M.L., Scheduling: theory, algorithms, and systems. 2012, New York: Springer

Science & Business Media.

30. Framinan, J.M., R. Leisten, and R.R. García, Manufacturing scheduling systems. London:

Springer-Verlag. Vol. 10. 2014. 978-1.

31. Baker, K.R. and D. Trietsch, Principles of sequencing and scheduling. 2013: John Wiley

& Sons.

32. T'kindt, V. and J.-C. Billaut, Multicriteria scheduling: theory, models and algorithms.

2006: Springer Science & Business Media.

109

33. Mokhtari, H. and M. Dadgar, Scheduling optimization of a stochastic flexible job-shop

system with time-varying machine failure rate. Computers & Operations Research, 2015.

61: p. 31-45.

34. Pinedo, M. and L. Schrage, Stochastic shop scheduling: A survey. Deterministic and

Stochastic Scheduling, ed. M.A.H. Dempster. 1982: D. Reidel Publishing Company.

35. Kamburowski, J., Stochastically minimizing the makespan in two-machine flow shops

without blocking. European Journal of Operational Research, 1999. 112(2): p. 304-309.

36. Kundakcı, N. and O. Kulak, Hybrid genetic algorithms for minimizing makespan in

dynamic job shop scheduling problem. Computers & Industrial Engineering, 2016. 96: p.

31-51.

37. Elgendy, A.E., M. Hussein, and A. Elhakeem, Optimizing Dynamic Flexible Job Shop

Scheduling Problem Based on Genetic Algorithm. International Journal of Current

Engineering and Technology, 2017.

38. Xiong, H., et al., A simulation-based study of dispatching rules in a dynamic job shop

scheduling problem with batch release and extended technical precedence constraints.

European Journal of Operational Research, 2017. 257(1): p. 13-24.

39. Conway, R., W. Maxwell, and L. Miller, Theory of scheduling. 1967. Addison-Wesley,

Reading, Mass.[: 5] M. Eisenberg, Two queues with changeover times, Oper Res.(2),

1971. 19: p. 386-401.

40. Graham, R.L., et al., Optimization and approximation in deterministic sequencing and

scheduling: a survey, in Annals of discrete mathematics. 1979, Elsevier. p. 287-326.

41. Lawler, E.L., et al., Sequencing and scheduling: Algorithms and complexity. Handbooks

in operations research and management science, 1993. 4: p. 445-522.

42. Cuiyu, W., L. Yang, and L. Xinyu, Solving flexible job shop scheduling problem by a

multi-swarm collaborative genetic algorithm. Journal of Systems Engineering and

Electronics, 2021. 32(2): p. 261-271.

43. Brucker, P., Y.N. Sotskov, and F. Werner, Complexity of shop-scheduling problems with

fixed number of jobs: a survey. Mathematical Methods of Operations Research, 2007.

65(3): p. 461-481.

44. Gepp, M., et al., A structured review of complexity in engineering-projects: State-of-

research and solution concepts for the plant manufacturing business. International

Journal of Business and Management Studies, 2013. 5(1): p. 318-327.

45. Van Dyke Parunak, H., Characterizing the manufacturing scheduling problem. Journal

of Manufacturing Systems, 1991. 10(3): p. 241-259.

110

46. Saidat, S., et al., Modified job shop scheduling via Taguchi method and genetic algorithm.

Neural Computing and Applications, 2021: p. 1-18.

47. Yang, R. An improved genetic algorithm for solving flexible job shop. in Journal of

Physics: Conference Series. 2021. IOP Publishing.

48. Brandimarte, P., Routing and scheduling in a flexible job shop by tabu search. Annals of

Operations Research, 1993. 41(3): p. 157-183.

49. Hurink, J., B. Jurisch, and M. Thole, Tabu search for the job-shop scheduling problem

with multi-purpose machines. Aerospace Science and Technology Operations Research

Spektrum, 1994. 15(4): p. 205-215.

50. Fisher, H. and G.L. Thompson, Probabilistic learning combinations of local job-shop

scheduling rules. Industrial scheduling, 1963. 3(2): p. 225-251.

51. Dauzère-Pérès, S. and J. Paulli, An integrated approach for modeling and solving the

general multiprocessor job-shop scheduling problem using tabu search. Annals of

Operations Research, 1997. 70: p. 281-306.

52. Barnes, J.W.C., J. B, Flexible Job Shop Scheduling by Tabu Search, T.R.S. Graduate

Program in Operations Research and Industrial Engineering, ORP96-09, Editor. 1996,

University of Texas at Austin.

53. Lawrence, S., Resource constrained project scheduling: an experimental investigation of

heuristic scheduling techniques (supplement). Graduate School of Industrial

Administration, 1984.

54. Kacem, I., S. Hammadi, and P. Borne. Approach by localization and multiobjective

evolutionary optimization for flexible job-shop scheduling problems. in Systems, Man,

and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on. 2002.

55. Fattahi, P., M. Saidi-Mehrabad, and F. Jolai, Mathematical modeling and heuristic

approaches to flexible job shop scheduling problems. Journal of Intelligent

Manufacturing, 2007. 18(3): p. 331-342.

56. Li, L.H., Jia-zhen, Multi-Objective Flexible Job-Shop Scheduling Problem in Steel Tubes

Production. Systems Engineering - Theory & Practice, 2009. 29(8): p. 117-126.

57. Mati, Y.L., Chams; Dauzère-Pérès, Stéphane, Modelling and solving a practical flexible

job-shop scheduling problem with blocking constraints. International Journal of

Production Research, 2011. 49(8): p. 2169-2182.

58. Wong, S.V.K.Y., A Genetic Algorithm Approach for Solving a Flexible Job Shop

Scheduling Problem. International Journal of Computer Science Issues, 2012. 9(3): p. 6

pages.

111

59. Zhang, T.R., Oliver, Scheduling in a Flexible Job Shop with Continuous Operations at

the Last Stage, in 15th ASIM 'Simulation in Production and Logistics' 2013. 2013:

Paderborn, Germany. p. 611-620.

60. Li, Y., G. Luo, and B. Wu. Flexible Job Shop Scheduling Based on Genetically Modified

Neighborhood Hybrid Algorithm. in 2019 IEEE International Conference on Artificial

Intelligence and Computer Applications (ICAICA). 2019. IEEE.

61. Bhatti, M.A., Practical Optimization Methods: With Mathematica® Applications. 2012:

Springer Science & Business Media.

62. Balci, S.A., Solution Approaches For Flexible Job Shop Scheduling Problems, in

Department of Industrial Engineering. 2013, Middle East Technical University, Turkey:

Middle East Technical University, Turkey.

63. Johnson, S.M., Optimal two- and three-stage production schedules with setup times

included. Naval Research Logistics Quarterly, 1954. 1(1): p. 61-68.

64. Moore, J.M., An n job, one machine sequencing algorithm for minimizing the number of

late jobs. Management science, 1968. 15(1): p. 102-109.

65. Lawler, E.L., Optimal sequencing of a single machine subject to precedence constraints.

Management science, 1973. 19(5): p. 544-546.

66. Chen, Y.J., M. Zhang, and M.M. Tseng, An Integrated Process Planning and Production

Scheduling Framework for Mass Customization. Journal for Manufacturing Science and

Production, 2004. 6(1-2): p. 89–101.

67. Brucker, P., E.K. Burke, and S. Groenemeyer, A mixed integer programming model for

the cyclic job-shop problem with transportation. Discrete Applied Mathematics, 2012.

160(13): p. 1924-1935.

68. Mehrabad, M.S. and S. Zarghami, Exact Mixed Integer Programming for Integrated

Scheduling and Process Planning in Flexible Environment. Journal of Optimization in

Industrial Engineering, 2014. 7(15): p. 47-53.

69. Shim, S.-O. and Y.-D. Kim, A branch and bound algorithm for an identical parallel

machine scheduling problem with a job splitting property. Computers & Operations

Research, 2008. 35(3): p. 863-875.

70. Brucker, P., E.K. Burke, and S. Groenemeyer, A branch and bound algorithm for the

cyclic job-shop problem with transportation. Computers & Operations Research, 2012.

39(12): p. 3200-3214.

71. Rinnooy Kan, A., B. Lageweg, and J.K. Lenstra, Minimizing total costs in one-machine

scheduling. Operations research, 1975. 23(5): p. 908-927.

112

72. Taillard, E., Benchmarks for basic scheduling problems. European Journal of Operational

Research, 1993. 64(2): p. 278-285.

73. Liu, S.Q. and E. Kozan, A hybrid shifting bottleneck procedure algorithm for the parallel-

machine job-shop scheduling problem. Journal of the Operational Research Society,

2012. 63(2): p. 168-182.

74. Logendran, R., P. Ramakrjshna, and C. Sriskandarajah, Tabu search-based heuristics for

cellular manufacturing systems in the presence of alternative process plans. International

Journal of Production Research, 1994. 32(2): p. 273-297.

75. Armentano, V.A. and D.S. Yamashita, Tabu search for scheduling on identical parallel

machines to minimize mean tardiness. Journal of Intelligent Manufacturing, 2000. 11(5):

p. 453-460.

76. Mati, Y., N. Rezg, and X. Xiaolan, An integrated greedy heuristic for a flexible job shop

scheduling problem, in IEEE International Conference on Systems, Man, and

Cybernetics. 2001: Arizona, USA. p. 2534-2539.

77. Resende, M.G.C. and C.C. Ribeiro, Greedy Randomized Adaptive Search Procedures:

Advances, Hybridizations, and Applications, in Handbook of Metaheuristics, M.

Gendreau and J.-Y. Potvin, Editors. 2010, Springer US. p. 283-319.

78. Baker, J.E., Adaptive Selection Methods for Genetic Algorithms, in Proceedings of the

1st International Conference on Genetic Algorithms. 1985, L. Erlbaum Associates Inc. p.

101-111.

79. Biegel, J.E. and J.J. Davern, Genetic algorithms and job shop scheduling. Computers &

Industrial Engineering, 1990. 19(1): p. 81-91.

80. Kumar, R., M.K. Tiwari, and R. Shankar, Scheduling of flexible manufacturing systems:

an ant colony optimization approach. Proceedings of the I MECH E Part B Journal of

Engineering Manufacture, 2003. 217(11): p. 1443-1453.

81. Dorigo, M. and C. Blum, Ant colony optimization theory: A survey. Theoretical computer

science, 2005. 344(2): p. 243-278.

82. Hart, E., P. Ross, and J. Nelson. Producing robust schedules via an artificial immune

system. in IEEE International Conference on Evolutionary Computation Proceedings and

IEEE World Congress on Computational Intelligence. 1998.

83. Hong, L., A new artificial immune algorithm for flexible job-shop scheduling. Advanced

Materials Research, 2010. 121-122: p. 266-270.

84. Davarzani, Z., M.-R. Akbarzadeh-T, and N. Khairdoost, Multiobjective Artificial Immune

Algorithm for Flexible Job Shop Scheduling Problem. International Journal of Hybrid

Information Technology, 2012. 5(3): p. 75-88.

113

85. Sipahioglu, A. and A. Aladag, An Artificial Immune System Approach for Flexible Job

Shop Scheduling Problem, in 2012 International Conference on Industrial Engineering

and Operations Management. 2012: Istanbul, Turkey.

86. Tasgetiren, M.F., et al. A Discrete Differential Evolution Algorithm for the No-Wait

Flowshop Scheduling Problem with Total Flowtime Criterion. in Computational

Intelligence in Scheduling, 2007. SCIS '07. IEEE Symposium on. 2007.

87. Wang, L., et al., A novel hybrid discrete differential evolution algorithm for blocking flow

shop scheduling problems. Computers & Operations Research, 2010. 37(3): p. 509-520.

88. Gao, K.-z., et al. A novel grouping harmony search algorithm for the no-wait flow shop

scheduling problems with total flow time criteria. in Computer Communication Control

and Automation (3CA), 2010 International Symposium on. 2010.

89. Wang, L., Q.-K. Pan, and M.F. Tasgetiren, Minimizing the total flow time in a flow shop

with blocking by using hybrid harmony search algorithms. Expert Systems with

Applications, 2010. 37(12): p. 7929-7936.

90. Gao, K.-Z., Q.-K. Pan, and J.-Q. Li, Discrete harmony search algorithm for the no-wait

flow shop scheduling problem with total flow time criterion. International Journal of

Advanced Manufacturing Technology, 2011. 56(5-8): p. 683-692.

91. Mingyue, F., et al., A Grouping Particle Swarm Optimization Algorithm for Flexible Job

Shop Scheduling Problem, in IEEE Pacific-Asia Workshop on Computational

Intelligence and Industrial Application (PACIIA '08), Y. Xianqing, et al., Editors. 2008:

Wuhan, China. p. 332-336.

92. Pan, Q.-K., L. Wang, and Q. B, A novel multi-objective particle swarm optimization

algorithm for no-wait flow shop scheduling problems. Proceedings of the Institution of

Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2008. 222(4): p. 519-

539.

93. Pongchairerks, P. and V. Kachitvichyanukul, A particle swarm optimization algorithm

on job-shop scheduling problems with multi-purpose machines. Asia-Pacific Journal of

Operational Research, 2009. 26(02): p. 161-184.

94. Pansuwan, P., N. Rukwong, and P. Pongcharoen. Identifying Optimum Artificial Bee

Colony (ABC) Algorithm's Parameters for Scheduling the Manufacture and Assembly of

Complex Products. in Second International Conference on Computer and Network

Technology (ICCNT). 2010.

95. Junqing, L., P. Quanke, and X. Shengxian, Flexible job shop scheduling problems by a

hybrid artificial bee colony algorithm, in IEEE Congress on Evolutionary Computation

(CEC). 2011. p. 78-83.

114

96. Mladenović, N. and P. Hansen, Variable neighborhood search. Computers & Operations

Research, 1997. 24(11): p. 1097-1100.

97. Liu, H., et al., A Novel Variable Neighborhood Particle Swarm Optimization for Multi-

objective Flexible Job-shop Scheduling Problems, in 2nd International Conference on

Digital Information Management (ICDIM '07). 2007: Lyon, France. p. 138-145.

98. Lei, D., Y. Zheng, and X. Guo, A shuffled frog-leaping algorithm for flexible job shop

scheduling with the consideration of energy consumption. International Journal of

Production Research, 2017. 55(11): p. 3126-3140.

99. Lu, K., et al., An Improved Shuffled Frog-Leaping Algorithm for Flexible Job Shop

Scheduling Problem. Algorithms, 2015. 8(1): p. 19-31.

100. Ye, X., W. Ling, and W. Shengyao, An effective shuffled frog-leaping algorithm for the

flexible job-shop scheduling problem, in IEEE Symposium on Computational Intelligence

in Control and Automation (CICA). 2013. p. 128-134.

101. Lin, J., A hybrid biogeography-based optimization for the fuzzy flexible job-shop

scheduling problem. Knowledge-Based Systems, 2015. 78: p. 59-74.

102. Karthikeyan, S., et al., A hybrid discrete firefly algorithm for solving multi-objective

flexible job shop scheduling problems. International Journal of Bio-Inspired

Computation, 2015. 7(6): p. 386-401.

103. Karthikeyan, S., P. Asokan, and S. Nickolas, A hybrid discrete firefly algorithm for multi-

objective flexible job shop scheduling problem with limited resource constraints. The

International Journal of Advanced Manufacturing Technology, 2014. 72(9-12): p. 1567-

1579.

104. Mekni, S. and B.C. Fayech, A modified invasive weed optimization algorithm for

multiobjective flexible job shop scheduling problems. International Journal of Computer

Science & Information Technology, 2014. 6(6): p. 51-60.

105. Talbi, E.-G., Metaheuristics: from design to implementation. Vol. 74. 2009: John Wiley

& Sons.

106. Gogna, A. and A. Tayal, Metaheuristics: review and application. Journal of Experimental

& Theoretical Artificial Intelligence, 2013. 25(4): p. 503-526.

107. Sundaram, R.K., A first course in optimization theory. 1996: Cambridge university press.

108. Onar, S.Ç., et al., A Literature Survey on Metaheuristics in Production Systems, in

Metaheuristics for Production Systems. 2016, Springer. p. 1-24.

109. Li, M. and D. Lei, An imperialist competitive algorithm with feedback for energy-efficient

flexible job shop scheduling with transportation and sequence-dependent setup times.

Engineering Applications of Artificial Intelligence, 2021. 103: p. 104307.

115

110. Wolpert, D.H. and W.G. Macready, No free lunch theorems for optimization. IEEE

transactions on evolutionary computation, 1997. 1(1): p. 67-82.

111. Vilcot, G. and J.-C. Billaut, A tabu search algorithm for solving a multicriteria flexible

job shop scheduling problem. International Journal of Production Research, 2011. 49(23):

p. 6963-6980.

112. Yazdani, M., et al., A simulated annealing algorithm for flexible job shop scheduling

problem. Journal of Applied Sciences, 2009. 9(4): p. 662-670.

113. Xing, L.-N., et al., A Knowledge-Based Ant Colony Optimization for Flexible Job Shop

Scheduling Problems. Applied Soft Computing, 2010. 10(3): p. 888-896.

114. Bihari, M. and P. Kane, Evaluation and Improvement of Makespan Time of Flexible Job

Shop Problem Using Various Dispatching Rules—A Case Study, in Advances in

Mechanical Engineering. 2021, Springer. p. 611-617.

115. Fan, H.-L., et al. Survey of the selection and evaluation for dispatching rules in dynamic

job shop scheduling problem. in Chinese Automation Congress (CAC), 2015. 2015. IEEE.

116. Holland, J.H., Adaptation in natural and artificial systems. 1975, Ann Arbor, MI:

University of Michigan Press.

117. Goldberg, D.E., Genetic algorithms in search, optimization and machine learning. 1989:

Addison-Wesley Longman Publishing Co., Inc.

118. Yamamoto, K. and O. Inoue. Applications of genetic algorithm to aerodynamic shape

optimization. in 12th Computational Fluid Dynamics Conference. 1995.

119. Kasat, R.B., A.K. Ray, and S.K. Gupta, Applications of genetic algorithm in polymer

science and engineering. Materials and Manufacturing Processes, 2003. 18(3): p. 523-

532.

120. Verma, G. and V. Verma, Role and applications of genetic algorithm in data mining.

International journal of computer applications, 2012. 48(17): p. 5-8.

121. Canyurt, O.E. and H.K. Öztürk, Three different applications of genetic algorithm (GA)

search techniques on oil demand estimation. Energy conversion and management, 2006.

47(18-19): p. 3138-3148.

122. Ghaheri, A., et al., The applications of genetic algorithms in medicine. Oman medical

journal, 2015. 30(6): p. 406.

123. Chardaire, P., et al. Applications of Genetic Algorithms. in Proceedings of the

International Workshop on Applications of Neural Networks to Telecommunications.

1995. Psychology Press.

124. Karr, C. and L.M. Freeman, Industrial applications of genetic algorithms. Vol. 5. 1998:

CRC press.

116

125. Roeva, O., Real-world applications of genetic algorithms. 2012: BoD–Books on

Demand.

126. Grefenstette, J.J., Genetic algorithms and their applications: proceedings of the second

international conference on genetic algorithms. 2013: Psychology Press.

127. Darwin, C., On the origin of species by means of natural selection. 1859. Ed. Joseph

Carroll. Toronto: Broadview, 2003.

128. Tamaki, H. Maintenance of Diversity in a Genetic Algorithm and an Application to the

Jobshop Scheduling. in IMACS/SICE International Symposium on MR2. 1992.

129. Park, J.-S., et al., Unified Genetic Algorithm Approach for Solving Flexible Job-Shop

Scheduling Problem. Applied Sciences, 2021. 11(14): p. 6454.

130. Chung, H. and K.-s. Shin, Genetic algorithm-optimized long short-term memory network

for stock market prediction. Sustainability, 2018. 10(10): p. 3765.

131. Sun, W. and Y. Xu, Financial security evaluation of the electric power industry in China

based on a back propagation neural network optimized by genetic algorithm. Energy,

2016. 101: p. 366-379.

132. Mirjalili, S., et al., Genetic algorithm: Theory, literature review, and application in image

reconstruction, in Nature-Inspired Optimizers. 2020, Springer. p. 69-85.

133. Yan, X., et al., Hybrid genetic algorithm for engineering design problems. Cluster

Computing, 2017. 20(1): p. 263-275.

134. Tian, L. and C. Collins, An effective robot trajectory planning method using a genetic

algorithm. Mechatronics, 2004. 14(5): p. 455-470.

135. Gulsen, M., A. Smith, and D. Tate, A genetic algorithm approach to curve fitting.

International Journal of Production Research, 1995. 33(7): p. 1911-1923.

136. Lee, L.H., C.U. Lee, and Y.P. Tan, A multi-objective genetic algorithm for robust flight

scheduling using simulation. European Journal of Operational Research, 2007. 177(3): p.

1948-1968.

137. Lin, Y.-K. and Y.-Y. Chou, A hybrid genetic algorithm for operating room scheduling.

Health Care Management Science, 2019: p. 1-15.

138. Potvin, J.-Y., Genetic algorithms for the traveling salesman problem. Annals of

Operations Research, 1996. 63(3): p. 337-370.

139. Caputo, A.C., et al., Safety-based process plant layout using genetic algorithm. Journal

of Loss Prevention in the Process Industries, 2015. 34: p. 139-150.

140. Davis, L. Job Shop Scheduling with Genetic Algorithms. in Proceedings of the 1st

International Conference on Genetic Algorithms. 1985. L. Erlbaum Associates Inc.

117

141. Chaudhry, I.A. and A.A. Khan, A research survey: review of flexible job shop scheduling

techniques. International Transactions in Operational Research, 2015: p. 41.

142. Xie, J., et al., Review on flexible job shop scheduling. IET Collaborative Intelligent

Manufacturing, 2019. 1(3): p. 67-77.

143. Gen, M. and L. Lin, Multiobjective evolutionary algorithm for manufacturing scheduling

problems: state-of-the-art survey. Journal of Intelligent Manufacturing, 2013: p. 1-18.

144. Lei, D., Multi-objective production scheduling: a survey. International Journal of

Advanced Manufacturing Technology, 2009. 43(9-10): p. 926-938.

145. Lal, V. and C.A.D. Durai, A Survey on Various Optimization Techniques with Respect to

Flexible Job Shop Scheduling. International Journal of Scientific and Research

Publications, 2014. 4(3): p. 7 pages.

146. Genova, K., L. Kirilov, and V. Guliashki, A Survey of Solving Approaches for Multiple

Objective Flexible Job Shop Scheduling Problems. Cybernetics and Information

Technologies, 2015. 15(2): p. 3-22.

147. Zhang, J., et al., Review of job shop scheduling research and its new perspectives under

Industry 4.0. Journal of Intelligent Manufacturing, 2019. 30(4): p. 1809-1830.

148. Çaliş, B. and S. Bulkan, A research survey: Review of AI solution strategies of job shop

scheduling problem. Journal of Intelligent Manufacturing, 2015. 26(5): p. 961-973.

149. Allahverdi, A., The third comprehensive survey on scheduling problems with setup

times/costs. European Journal of Operational Research, 2015. 246(2): p. 345-378.

150. Chen, J.W., Wei; Rong, Gang; Fujimura, Shigeru, Integrating Genetic Algorithm with

Time Control for Just-In-Time Scheduling Problems. IFAC-PapersOnLine, 2015. 48(3):

p. 893-897.

151. Buddala, R. and S.S. Mahapatra, An integrated approach for scheduling flexible job-shop

using teaching–learning-based optimization method. Journal of Industrial Engineering

International, 2018: p. 1-12.

152. KołOdziej, J. and S.U. Khan, Multi-level hierarchic genetic-based scheduling of

independent jobs in dynamic heterogeneous grid environment. Information Sciences,

2012. 214: p. 1-19.

153. Ishikawa, S.K., Ryosuke; Horio, Keiichi, Effective hierarchical optimization by a

hierarchical multi-space competitive genetic algorithm for the flexible job-shop

scheduling problem. Expert Systems with Applications, 2015. 42(24): p. 9434-9440.

154. Mesghouni, K., et al., Hybrid approach to decision-making for job-shop scheduling.

Production Planning & Control, 1999. 10(7): p. 690-706.

118

155. Chen, H.I., Jiirgen; Lehmann, Carsten. A genetic algorithm for flexible job-shop

scheduling. in Robotics and Automation, 1999. Proceedings. 1999 IEEE International

Conference on. 1999. IEEE.

156. Tay, J.C.W., Djoko, An Effective Chromosome Representation for Evolving Flexible Job

Shop Schedules, in Genetic and Evolutionary Computation – GECCO 2004, K. Deb,

Editor. 2004, Springer Berlin Heidelberg. p. 210-221.

157. Zhang, G.G., Liang; Shi, Yang, An effective genetic algorithm for the flexible job-shop

scheduling problem. Expert Systems with Applications, 2011. 38(4): p. 3563-3573.

158. Saidi-Mehrabad, M. and P. Fattahi, Flexible job shop scheduling with tabu search

algorithms. The International Journal of Advanced Manufacturing Technology, 2007.

32(5-6): p. 563-570.

159. Pezzella, F.M., G.; Ciaschetti, G., A genetic algorithm for the Flexible Job-shop

Scheduling Problem. Computers & Operations Research, 2008. 35(10): p. 3202-3212.

160. Shi, Y.Z., Guohui; Gao, Liang; Yuan, Kun, A novel initialization method for solving

Flexible Job-shop Scheduling Problem, in International Conference on Computers &

Industrial Engineering (CIE 2009). 2009. p. 68-73.

161. Zeb, A., et al., Hybridization of simulated annealing with genetic algorithm for cell

formation problem. The International Journal of Advanced Manufacturing Technology,

2016. 86(5): p. 2243-2254.

162. Zhang, H. and M. Gen, Multistage-based genetic algorithm for flexible job-shop

scheduling problem. Journal of Complexity International, 2005. 11: p. 223-232.

163. Asma, F.O., J.; Atidel, B. H. A.; Ibtissem, B. N., The performance of the AGAIS (II)

algorithm for the resolution of the Flexible Job-shop scheduling problem, in Second

International Conference on Engineering Systems Management and Its Applications

(ICESMA). 2010: Sharjah. p. 1-6.

164. Agrawal, R.P., L.N.; Kumar, S., Scheduling of a flexible job-shop using a multi-objective

genetic algorithm. Journal of Advances in Management Research, 2012. 9(2): p. 178-

188.

165. Pandian, P.P.S., S. Saravana; Ponnambalam, S. G.; Raj, Victor, Scheduling of Automated

Guided Vehicle and Flexible Jobshop using Jumping Genes Genetic Algorithm.

American Journal of Applied Sciences, 2012. 9(10): p. 1706-1720.

166. Ren, H.X., Han; Sun, Shenshen. Immune genetic algorithm for multi-objective flexible

job-shop scheduling problem. in Control and Decision Conference (CCDC), 2016

Chinese. 2016. IEEE.

119

167. Butt, S.I. and S. Hou-Fang, Application of Genetic Algorithms & Rules in Scheduling of

Flexible Job Shops. Journal of Applied Sciences, 2006. 6(7): p. 1586-1590.

168. Xu, X.-h.Z., Ling-Li; Fu, Yue-wen, Hybrid particle swarm optimization for flexible job-

shop scheduling problem and its implementation, in IEEE International Conference on

Information and Automation (ICIA). 2010. p. 1155-1159.

169. Manier, Q.Z.H.M.M.-A., A hybrid metaheuristic algorithm for flexible job-shop

scheduling problems with transportation constraints, in Proceedings of the Fourteenth

International Conference on Genetic and Evolutionary Computation Conference. 2012,

ACM: Philadelphia, Pennsylvania, USA. p. 441-448.

170. Zhang, Q., H. Manier, and M.A. Manier, A genetic algorithm with tabu search procedure

for flexible job shop scheduling with transportation constraints and bounded processing

times. Computers & Operations Research, 2012. 39(7): p. 1713-1723.

171. Kaweegitbundit, P. and T. Eguchi, Flexible job shop scheduling using genetic algorithm

and heuristic rules. Journal of Advanced Mechanical Design, Systems, and

Manufacturing, 2016. 10(1).

172. Jang, Y.-J.K., Ki-Dong; Jang, Seong-Yong; Park, Jinwoo, Flexible Job Shop Scheduling

with Multi-level Job Structures. JSME International Journal Series C Mechanical

Systems, Machine Elements and Manufacturing, 2003. 46(1): p. 33-38.

173. Ho, N.B. and J.C. Tay, GENACE: an efficient cultural algorithm for solving the flexible

job-shop problem, in Congress on Evolutionary Computation (CEC2004). 2004. p. 1759-

1766 Vol.2.

174. Ming, W.X., Fan; Fengming, Zhang; Chaohui, Bai, An Integrated Genetic Algorithm for

Flexible Job-Shop Scheduling Problem, in International Conference on Computational

Intelligence and Software Engineering (CiSE). 2010: Wuhan, China. p. 1-4.

175. Sheng-Ta, H.S.-Y., Chiu; Shi-Jim, Yen, An improved multi-objective genetic algorithm

for solving flexible job shop problem, in IET International Conference on Frontier

Computing : Theory, Technologies and Applications. 2010. p. 427-431.

176. Sun, W.P., Ying; Lu, Xiaohong; Ma, Qinyi, Research on flexible job-shop scheduling

problem based on a modified genetic algorithm. Journal of Mechanical Science and

Technology, 2010. 24(10): p. 2119-2125.

177. Phanden, R.K.J., Ajai; Verma, Rajiv, A Genetic Algorithm-Based Approach for Flexible

Job Shop Scheduling, in Applied Mechanics and Materials. 2011. p. 3930-3937.

178. Fan, S.C.W., J. F., Scheduling for the flexible job-shop problem based on genetic

algorithm (GA), in Advanced Materials Research. 2012. p. 616-619.

120

179. Wang, Y.M.Y., Hong Li; Qin, Kai Da, A novel genetic algorithm for flexible job shop

scheduling problems with machine disruptions. International Journal of Advanced

Manufacturing Technology, 2013. 68(5-8): p. 1317-1326.

180. Hao-Chin, C.H.-T., Tsai; Tung-Kuan, Liu. Application of genetic algorithm to optimize

unrelated parallel machines of flexible job-shop scheduling problem. in 11th IEEE

International Conference on Control & Automation (ICCA). 2014.

181. Zambrano Rey, G.B., Abdelghani; Prabhu, Vittaldas; Trentesaux, Damien, Coupling a

genetic algorithm with the distributed arrival-time control for the JIT dynamic scheduling

of flexible job-shops. International Journal of Production Research, 2014. 52(12): p. 3688-

3709.

182. Parjapati, S.K.J., Ajai, Optimization of Flexible Job Shop Scheduling Problem with

Sequence Dependent Setup Times Using Genetic Algorithm Approach. International

Journal of Mathematical, Computational, Natural and Physical Engineering, 2015. 9: p.

41-47.

183. Phanden, R.K.J., Ajai, Assessment of makespan performance for flexible process plans in

job shop scheduling. IFAC-PapersOnLine, 2015. 48(3): p. 1948-1953.

184. Wu, M.-C., et al., Effects of different chromosome representations in developing genetic

algorithms to solve DFJS scheduling problems. Computers & Operations Research, 2017.

80: p. 101-112.

185. Qiao, L., Z. Zhang, and M.K. Nawaz. Genetic Algorithm Based Novel Methodology of

Multi-Constraint Job Scheduling. in Enterprise Systems (ES), 2017 5th International

Conference on. 2017. IEEE.

186. Zhou, E., J. Zhu, and L. Deng. Flexible job-shop scheduling based on genetic algorithm

and simulation validation. in MATEC Web of Conferences. 2017. EDP Sciences.

187. Jamrus, T.C., Chen-Fu; Gen, Mitsuo; Sethanan, Kanchana, Hybrid Particle Swarm

Optimization combined with Genetic Operators and Cauchy Distribution for Flexible

Job-shop Scheduling Problem, in Asia Pacific Industrial Engineering and Management

System Conference 2013: Cebu, The Philippines. p. 12 pages.

188. Rohaninejad, M.K., Amirsaman; Fattahi, Parviz, Simultaneous lot-sizing and scheduling

in flexible job shop problems. The International Journal of Advanced Manufacturing

Technology, 2015. 78(1-4): p. 1-18.

189. Azzouz, A., M. Ennigrou, and L.B. Said. A self-adaptive evolutionary algorithm for

solving flexible job-shop problem with sequence dependent setup time and learning

effects. in Evolutionary Computation (CEC), 2017 IEEE Congress on. 2017. IEEE.

121

190. Na, H.P., Jinwoo, Multi-level job scheduling in a flexible job shop environment.

International Journal of Production Research, 2014. 52(13): p. 3877-3887.

191. Frutos, M.O., Ana Carolina; Tohmé, Fernando, A memetic algorithm based on a NSGAII

scheme for the flexible job-shop scheduling problem. Annals of Operations Research,

2010. 181(1): p. 745-765.

192. Ida, K.O., Kensaku, Flexible job-shop scheduling problem by genetic algorithm.

Electrical Engineering in Japan, 2011. 177(3): p. 28-35.

193. Tavakkoli-Moghaddam, R.S., N.; Mohammadi-Andargoli, H.; Abolhasani-Ashkezari,

M.H., Duplicate Genetic Algorithm for Scheduling a Bi-Objective Flexible Job Shop

Problem. International Journal of Research in Industrial Engineering, 2012. 1(2): p. 10-

26.

194. Tung-Kuan, L.Y.-P., Chen; Jyh-Horng, Chou, Solving Distributed and Flexible Job-Shop

Scheduling Problems for a Real-World Fastener Manufacturer. IEEE Access, 2014. 2: p.

1598-1606.

195. ZHANG, L. and T.N. Wong, Solving Integrated Process Planning and Scheduling

Problem with Constraint Programming, in The 13th Asia Pacific Industrial Engineering

and Management Systems Conference (APIEMS 2012) and 15th Asia Pacific Regional

Meeting of the International Foundation for Production Research. 2012: Phuket,

Thailand. p. 1525-1532.

196. Guimaraes, K.F.F., M. A., An Approach for Flexible Job-Shop Scheduling with Separable

Sequence-Dependent Setup Time, in IEEE International Conference on Systems, Man and

Cybernetics (SMC '06). 2006: Taiwan. p. 3727-3731.

197. Hongze, Q.W., Zhou; Hailong, Wang, A Genetic Algorithm-Based Approach to Flexible

Job-Shop Scheduling Problem, in Fifth International Conference on Natural

Computation (ICNC '09), H.W.K.S.L.K.W.J. Sun, Editor. 2009: China. p. 81-85.

198. Liu, J., et al. Research on flexible job-shop scheduling problem under uncertainty based

on genetic algorithm. in Natural Computation (ICNC), 2010 Sixth International

Conference on. 2010. IEEE.

199. Al-Hinai, N.E., T. Y., Robust and stable flexible job shop scheduling with random

machine breakdowns using a hybrid genetic algorithm. International Journal of

Production Economics, 2011. 132(2): p. 279-291.

200. Ahmadi, E.Z., Mostafa; Farrokh, Mojtaba; Emami, Seyed Mohammad, A multi objective

optimization approach for flexible job shop scheduling problem under random machine

breakdown by evolutionary algorithms. Computers & Operations Research, 2016. 73: p.

56-66.

122

201. Wang, L., C. Luo, and J. Cai, A Variable Interval Rescheduling Strategy for Dynamic

Flexible Job Shop Scheduling Problem by Improved Genetic Algorithm. Journal of

Advanced Transportation, 2017. 2017.

202. He, Y., W. Weng, and S. Fujimura. Improvements to genetic algorithm for flexible job

shop scheduling with overlapping in operations. in Computer and Information Science

(ICIS), 2017 IEEE/ACIS 16th International Conference on. 2017. IEEE.

203. Zribi, N.K., I.; El-Kamel, A.; Borne, P., Optimization by phases for the flexible job-shop

scheduling problem, in 5th Asian Control Conference. 2004: Melbourne, Victoria,

Australia. p. 1889-1895.

204. Al-Hinai, N.E., T. Y., An efficient hybridized genetic algorithm architecture for the

flexible job shop scheduling problem. Flexible Services and Manufacturing Journal,

2011. 23(1): p. 64-85.

205. Fard, A.R.Y., B.Y.; Khanlarzade, N., Hybrid Genetic Algorithm for Flexible Job Shop

Scheduling with Overlapping in Operations, in Advanced Materials Research. 2012. p.

1499-1505.

206. Yokoyama, S.I., H.; Yamamoto, M. Hybrid genetic algorithm with priority rule-based

reconstruction for flexible job-shop scheduling. in Soft Computing and Intelligent

Systems (SCIS), 2014 Joint 7th International Conference on and Advanced Intelligent

Systems (ISIS), 15th International Symposium on. 2014.

207. Azzouz, A., M. Ennigrou, and L.B. Said, A hybrid algorithm for flexible job-shop

scheduling problem with setup times. International Journal of Production Management

and Engineering, 2017. 5(1): p. 23-30.

208. Nouri, H.E., O.B. Driss, and K. Ghédira, Solving the flexible job shop problem by hybrid

metaheuristics-based multiagent model. Journal of Industrial Engineering International,

2017: p. 1-14.

209. Li, M.Y., M., Research on improved genetic algorithm solving flexible job-shop problem.

Advanced Materials Research, 2012. 479-481: p. 1918-1921.

210. Demir, Y. and S.K. İşleyen, An effective genetic algorithm for flexible job-shop

scheduling with overlapping in operations. International Journal of Production Research,

2014. 52(13): p. 3905-3921.

211. Moghadam, A.M.K.Y., Wong; Piroozfard, H. An efficient genetic algorithm for flexible

job-shop scheduling problem. in IEEE International Conference on Industrial

Engineering and Engineering Management (IEEM), 2014 2014.

123

212. Song, W.J., et al., Flexible Job-Shop Scheduling Problem with Maintenance Activities

Considering Energy Consumption. Applied Mechanics and Materials, 2014. 521: p. 707-

713.

213. Chang, H.-C.C., Yeh-Peng; Liu, Tung-Kuan; Chou, Jyh-Horng, Solving the Flexible Job

Shop Scheduling Problem With Makespan Optimization by Using a Hybrid Taguchi-

Genetic Algorithm. IEEE Access, 2015. 3: p. 1740-1754.

214. Driss, I.M., KinzaNadia; Laggoun, Assia, A new genetic algorithm for flexible job-shop

scheduling problems. Journal of Mechanical Science and Technology, 2015. 29(3): p.

1273-1281.

215. Zhang, J. and J. Yang, Flexible job-shop scheduling with flexible workdays, preemption,

overlapping in operations and satisfaction criteria: an industrial application.

International Journal of Production Research, 2016. 54(16): p. 4894-4918.

216. Zhang, G.G., L.; Shi, Y., A novel variable neighborhood genetic algorithm for multi-

objective flexible job-shop scheduling problems, in Advanced Materials Research. 2010.

p. 369-373.

217. Zhang, G.G., Liang; Shi, Yang, A Genetic Algorithm and Tabu Search for Multi Objective

Flexible Job Shop Scheduling Problems, in International Conference on Computing,

Control and Industrial Engineering (CCIE). 2010. p. 251-254.

218. Javadi, R.H., M., A new method for hybridizing metaheuristics for multi-objective flexible

job shop scheduling, in 2nd International eConference on Computer and Knowledge

Engineering (ICCKE). 2012. p. 105-110.

219. Araghi, M.E.T.J., F.; Rabiee, M., Incorporating learning effect and deterioration for

solving a SDST flexible job-shop scheduling problem with a hybrid meta-heuristic

approach. International Journal of Computer Integrated Manufacturing, 2013. 27(8): p.

733-746.

220. Wang, S.X.Z., Chao Yong ; Jin, Liang Liang A Hybrid Genetic Algorithm for Flexible

Job-Shop Scheduling Problem. Advanced Materials Research, 2014. 889 - 890: p. 1179-

1184.

221. Yanguang, L.G., Zhou. The flexible job shop scheduling based on ATC and GATS hybrid

algorithm. in Information and Automation (ICIA), 2014 IEEE International Conference

on. 2014.

222. Wang, C., et al. A hybrid evolutionary algorithm for flexible job shop scheduling

problems. in 35th Chinese Control Conference (CCC), 2016. 2016. IEEE.

124

223. Chang, H.-C. and T.-K. Liu, Optimisation of distributed manufacturing flexible job shop

scheduling by using hybrid genetic algorithms. Journal of Intelligent Manufacturing,

2017. 28(8): p. 1973-1986.

224. Girish, B.S.J., N., Scheduling job shop associated with multiple routings with genetic and

ant colony heuristics. International Journal of Production Research, 2009. 47(14): p.

3891-3917.

225. Liu, X.L., C.; Tao, Z., Study on scheduling optimization for flexible job shop. Applied

Mechanics and Materials, 2010. 26-28: p. 821-825.

226. Liu, X.X.L., C. B.; Tao, Z., Research on bi-objective scheduling of dual-resource

constrained flexible job shop, in Advanced Materials Research. 2011. p. 1091-1095.

227. Candan, G.Y., Harun Resit, Genetic algorithm parameter optimisation using Taguchi

method for a flexible manufacturing system scheduling problem. International Journal of

Production Research, 2015. 53(3): p. 897-915.

228. Lu, P.-H.W., Muh-Cherng; Tan, Hao; Peng, Yong-Han; Chen, Chen-Fu, A genetic

algorithm embedded with a concise chromosome representation for distributed and

flexible job-shop scheduling problems. Journal of Intelligent Manufacturing, 2015: p. 1-

16.

229. Lei, D., Co-evolutionary genetic algorithm for fuzzy flexible job shop scheduling. Applied

Soft Computing, 2012. 12(8): p. 2237-2245.

230. Tamaki, H.O., T.; Murao, H.; Kitamura, S., Modeling and genetic solution of a class of

flexible job shop scheduling problems, in 8th IEEE International Conference on

Emerging Technologies and Factory Automation. 2001. p. 343-350.

231. Cao, X.Y., Zhenhe, An Improved Genetic Algorithm for Dual-Resource Constrained

Flexible Job Shop Scheduling, in International Conference on Intelligent Computation

Technology and Automation (ICICTA). 2011. p. 42-45.

232. Geyik, F.D., AyşeTuğba, Process plan and part routing optimization in a dynamic

flexible job shop scheduling environment: an optimization via simulation approach.

Neural Computing and Applications, 2013. 23(6): p. 1631-1641.

233. Selvaraj, N., An Effective Hybrid Heuristic to Solve Multiobjective Flexible Job Shop

Scheduling Problems. Academic Journal of Science, 2014. 3(1): p. 61-73.

234. Ho, N.B.T., Joe Cing, Solving Multiple-Objective Flexible Job Shop Problems by

Evolution and Local Search. IEEE Transactions on Systems, Man, and Cybernetics, Part

C: Applications and Reviews, 2008. 38(5): p. 674-685.

125

235. Moon, I.L., Sanghyup; Bae, Hyerim, Genetic algorithms for job shop scheduling

problems with alternative routings. International Journal of Production Research, 2008.

46(10): p. 2695-2705.

236. Zhang, G.S., Yang; Gao, Liang, A Genetic Algorithm and Tabu Search for Solving

Flexible Job Shop Schedules, in International Symposium on Computational Intelligence

and Design (ISCID '08). 2008: Wuhan, China. p. 369-372.

237. Azardoost, E.B., A Hybrid Algorithm for Multi Objective Flexible Job Shop Scheduling

Problem, in 2nd International Conference on Industrial Engineering and Operations

Management (IEOM 2011). 2011: Kuala Lumpur, Malaysia. p. 795-801.

238. Defersha, F.M.M., Chen, A Coarse-Grain Parallel Genetic Algorithm for Flexible Job-

Shop Scheduling with Lot Streaming, in International Conference on Computational

Science and Engineering (CSE '09). 2009: Vancouver, Canada. p. 201-208.

239. Guohui, Z., Using Matrix-Coded Genetic Algorithm for Solving the Flexible Job-Shop

Scheduling, in International Conference on Computational Intelligence and Software

Engineering (CiSE). 2010: China. p. 1-4.

240. Moradi, E.F.G., S. M. T.; Zandieh, M., An efficient architecture for scheduling flexible

job-shop with machine availability constraints. International Journal of Advanced

Manufacturing Technology, 2010. 51(1-4): p. 325-339.

241. Tanev, I.T.U., Takashi; Morotome, Yoshiharu, Hybrid evolutionary algorithm-based

real-world flexible job shop scheduling problem: application service provider approach.

Applied Soft Computing, 2004. 5(1): p. 87-100.

242. Zribi, N.E.-K., A.; Borne, P., Total Tardiness in a Flexible Job-shop, in IMACS

Multiconference on Computational Engineering in Systems Applications. 2006: Beijing,

China. p. 1543-1549.

243. Xing, L.-N.C., Ying-Wu; Yang, Ke-Wei, Multi-population interactive coevolutionary

algorithm for flexible job shop scheduling problems. Computational Optimization and

Applications, 2011. 48(1): p. 139-155.

244. Jalilvand-Nejad, A.F., Parviz, A mathematical model and genetic algorithm to cyclic

flexible job shop scheduling problem. Journal of Intelligent Manufacturing, 2013: p. 1-

14.

245. Li, X. and L. Gao, An effective hybrid genetic algorithm and tabu search for flexible job

shop scheduling problem. International Journal of Production Economics, 2016. 174: p.

93-110.

126

246. Mokhtari, H. and A. Hasani, An energy-efficient multi-objective optimization for flexible

job-shop scheduling problem. Computers & Chemical Engineering, 2017. 104: p. 339-

352.

247. Pan, Y.Z., W. X.; Gao, T. Y.; Ma, Q. Y.; Xue, D. J., An adaptive Genetic Algorithm for

the Flexible Job-shop Scheduling Problem, in IEEE International Conference on

Computer Science and Automation Engineering (CSAE). 2011. p. 405-409.

248. Liang, D.T., Ze, A genetic algorithm with Tabu Search for multi-objective scheduling

constrained flexible job shop, in Cross Strait Quad-Regional Radio Science and Wireless

Technology Conference (CSQRWC). 2011: Harbin, CHINA p. 1662-1665.

249. Hui, H., Approach for multi-objective flexible job shop scheduling. Advanced Materials

Research, 2012. 542-543: p. 407-410.

250. Shahsavari-Pour, N.G., Behrooz, A novel hybrid meta-heuristic algorithm for solving

multi objective flexible job shop scheduling. Journal of Manufacturing Systems, 2013.

32(4): p. 771-780.

251. Azzouz, A.E., Meriem; Jlifi, Boutheina. Diversifying TS using GA in multi-agent system

for solving Flexible Job Shop Problem. in Informatics in Control, Automation and

Robotics (ICINCO), 2015 12th International Conference on. 2015. IEEE.

252. Zandieh, M., I. Mahdavi, and A. Bagheri, Solving the Flexible Job-Shop Scheduling

Problem by a Genetic Algorithm. Journal of Applied Sciences, 2008. 8(24): p. 4650-4655.

253. Xiu-li, W.S.-J., Li Mass Variety and Small Batch Scheduling in the Flexible Job Shop, in

2nd International Conference on Biomedical Engineering and Informatics (BMEI '09),

R.F. Shi, Wenjiang; Wang, Yuanquan; Wang, Huaibin, Editor. 2009. p. 1-7.

254. Saravanan, M.N.E.C.D., Single Objective Evolutionary Algorithm for Flexible Job-shop

Scheduling Problem. International Journal of Mathematics Trends and Technology, 2012.

3(2): p. 78-81.

255. Yang, X.W., Jianming; Hou, Minglei; Fan, Xiaoliang. Job shop scheduling based on

genetic algorithm using Matlab. in 2015 IEEE Advanced Information Technology,

Electronic and Automation Control Conference (IAEAC). 2015. IEEE.

256. Chan, F.T.S.W., T. C.; Chan, L. Y., Flexible job-shop scheduling problem under resource

constraints. International Journal of Production Research, 2006. 44(11): p. 2071-2089.

257. Goodman, P.U.E., Solving multiobjective flexible job-shop scheduling using an adaptive

representation, in Proceedings of the 12th Annual Conference on Genetic and

Evolutionary Computation. 2010, ACM: Portland, Oregon, USA. p. 737-742.

127

258. Li, X., et al. An effective multi-swarm collaborative evolutionary algorithm for flexible

job shop scheduling problem. in Computer Supported Cooperative Work in Design

(CSCWD), 2011 15th International Conference on. 2011. IEEE.

259. Zribi;, N., et al., Minimizing the total tardiness in a flexible job-shop, in International

Symposium on Intelligent Automation and Control, World Automation Congress. 2006:

Budapest, Hungary.

260. Vilcot, G.B., J.; Esswein, C., A Genetic Algorithm For A Bicriteria Flexible Job Shop

Scheduling Problem, in International Conference on Service Systems and Service

Management. 2006. p. 1240-1244.

261. Lee, S.M., Ilkyeong; Bae, Hyerim; Kim, Jion, Flexible job-shop scheduling problems

with ‘AND’/‘OR’ precedence constraints. International Journal of Production Research,

2012. 50(7): p. 1979-2001.

262. Palacios, J.J.G., Miguel A.; Vela, Camino R.; González-Rodríguez, Inés; Puente, Jorge,

Genetic tabu search for the fuzzy flexible job shop problem. Computers & Operations

Research, 2015. 54: p. 74-89.

263. Morinaga, Y., M. Nagao, and M. Sano, Balancing setup workers' load of flexible job shop

scheduling using hybrid genetic algorithm with tabu search strategy. International

Journal of Decision Support Systems, 2016. 2(1-3): p. 71-90.

264. Gao, J.G., Mitsuo; Sun, Linyan, Scheduling jobs and maintenances in flexible job shop

with a hybrid genetic algorithm. Journal of Intelligent Manufacturing, 2006. 17(4): p.

493-507.

265. Zribi, N.K., I.; El Kamel, A.; Borne, P., Assignment and Scheduling in Flexible Job-Shops

by Hierarchical Optimization. IEEE Transactions on Systems, Man, and Cybernetics,

Part C: Applications and Reviews, 2007. 37(4): p. 652-661.

266. Yi, W., X. Li, and B. Pan, Solving flexible job shop scheduling using an effective memetic

algorithm. International Journal of Computer Applications in Technology, 2016. 53(2):

p. 157-163.

267. Li, J.J.M.W.K.M.X.L.J., Hybrid Genetic Algorithm for Flexible Job-shop Scheduling

with Multi-objective. Journal of Information and Computational Science, 2011. 8(11): p.

2197- 2205.

268. Zhou, D.L.Z., A Flexible Job-shop Scheduling Method Based on Hybrid Genetic

Annealing Algorithm. Journal of Information and Computational Science, 2013. 10(17):

p. 5541-5549.

128

269. Li, J.P., Q.; Xie, S, A Hybrid Variable Neighborhood Search Algorithm for Solving Multi-

Objective Flexible Job Shop Problems. Computer Science and Information Systems,

2010. 7(4): p. 907-930.

270. Tayebi Araghi, M.E.J., F.; Rabiee, M., Incorporating learning effect and deterioration

for solving a SDST flexible job-shop scheduling problem with a hybrid meta-heuristic

approach. International Journal of Computer Integrated Manufacturing, 2013. 27(8): p.

733-746.

271. Türkyılmaz, A.B., Serol, A hybrid algorithm for total tardiness minimisation in flexible

job shop: genetic algorithm with parallel VNS execution. International Journal of

Production Research, 2015. 53(6): p. 1832-1848.

272. Doh, H.-H., et al., A priority scheduling approach for flexible job shops with multiple

process plans. International Journal of Production Research, 2013. 51(12): p. 3748-3764.

273. Xia, W. and Z. Wu, An effective hybrid optimization approach for multi-objective flexible

job-shop scheduling problems. Computers & Industrial Engineering, 2005. 48(2): p. 409-

425.

274. Kang, Y.W., Z. M.; Lin, Y.; Zhang, Y. F., An improved genetic algorithm for flexible job-

shop scheduling problems, in Advanced Materials Research. 2013. p. 345-348.

275. Xiong, J.T., Xu; Yang, Ke-wei; Xing, Li-ning; Chen, Ying-wu, A Hybrid Multiobjective

Evolutionary Approach for Flexible Job-Shop Scheduling Problems. Mathematical

Problems in Engineering, 2012. 2012: p. 1-27.

276. Teekeng, W.T., Arit. Modified genetic algorithm for flexible job-shop scheduling

problems. in Procedia Computer Science. 2012.

277. Qiao, W.L., Qiaoyun, Solving the Flexible Job Shop Scheduling Problems Based on the

Adaptive Genetic Algorithm, in International Forum on Computer Science-Technology

and Applications IFCSTA '09), Z. Qihai, Editor. 2009. p. 97-100.

278. Yang, J.J.J., L. Y.; Liu, B. Y., The improved genetic algorithm for multi-objective flexible

job shop scheduling problem, in Applied Mechanics and Materials. 2011. p. 870-875.

279. Mastrolilli, M. Flexible Job Shop Problem. Available from:

https://people.idsia.ch//~monaldo/fjsp.html.

280. Amjad, M.K., et al., A layered genetic algorithm with iterative diversification for

optimization of flexible job shop scheduling problems. Advances in Production

Engineering & Management, 2020. 15(4): p. 377-389.

281. Amjad, M.K., S.I. Butt, and N. Anjum. Improved Genetic Algorithm Integrated with

Scheduling Rules for Flexible Job Shop Scheduling Problems. in 5th International

Conference on Power, Energy and Mechanical Engineering. 2021. Shanghai, China.

129

282. Behnke, D. and M.J. Geiger, Test Instances for the Flexible Job Shop Scheduling Problem

with Work Centers. 2012, Universitätsbibliothek der Helmut-Schmidt-Universität:

Hamburg.

283. Kennedy, J. and R. Eberhart. Particle swarm optimization. in IEEE International

Conference on Neural Networks. 1995.

284. Eberhart, R. and J. Kennedy. A new optimizer using particle swarm theory. in

Proceedings of the Sixth International Symposium on Micro Machine and Human Science

(MHS '95). 1995.

285. Wen, C.D., Lei; Tao, Wang; Qiongfang, Zhang, GA and SA based Evolutionary algorithm

for fuzzy flexible job shop scheduling, in 8th World Congress on Intelligent Control and

Automation (WCICA). 2010. p. 688-693.

286. De Giovanni, L.P., Ferdinando, An improved genetic algorithm for the distributed and

flexible job-shop scheduling problem. European journal of operational research, 2010.

200(2): p. 395-408.

287. Bagheri, A., et al., An artificial immune algorithm for the flexible job-shop scheduling

problem. Future Generation Computer Systems, 2010. 26(4): p. 533-541.

288. Özgüven, C.Ö., Lale; Yavuz, Yasemin, Mathematical models for job-shop scheduling

problems with routing and process plan flexibility. Applied Mathematical Modelling,

2010. 34(6): p. 1539-1548.

289. Zhou, W.B., Yan-ping; Zhou, Ye-qing, An improved genetic algorithm for solving

flexible job shop scheduling problem, in 25th Chinese Control and Decision Conference

(CCDC). 2013: Guiyang, China. p. 4553-4558.

290. Yazdani, M., M. Amiri, and M. Zandieh, Flexible job-shop scheduling with parallel

variable neighborhood search algorithm. Expert Systems with Applications, 2010. 37(1):

p. 678-687.

