
i 
 

Optimization of Makespan for Flexible Job Shop 
Scheduling Problems using Genetic Algorithms 

 

 

 

 

By 

Muhammad Kamal Amjad 

(Registration Number NUST201490190PSMME2614F) 

 

 

Thesis Supervisor 

Prof Dr Shahid Ikramullah Butt 

 

 

 

Department of Design and Manufacturing Engineering 
School of Mechanical and Manufacturing Engineering  

National University of Sciences and Technology (NUST) 
Islamabad, Pakistan  

(2021) 
  



 
 

ii 
 

 
Optimization of Makespan for Flexible Job Shop 

Scheduling Problems using Hybrid Genetic Algorithms 
 

 

 

By 

Muhammad Kamal Amjad 

(Registration Number NUST201490190PSMME2614F) 

 

A thesis submitted to the National University of Sciences and Technology, Islamabad in partial 

fulfillment of the requirements for the degree of 

Doctor of Philosophy in 

Design and Manufacturing Engineering 

 

Thesis Supervisor 

Prof Dr Shahid Ikramullah Butt 

 

 

Department of Design and Manufacturing Engineering 
School of Mechanical and Manufacturing Engineering  

National University of Sciences and Technology (NUST) 
Islamabad, Pakistan 

(2021) 

  



 
 

iii 
 

Thesis Acceptance Certificate 

This is to certify that final copy of PhD thesis written by Muhammad Kamal Amjad, 

Registration No. NUST201490190PSMME2614F of School of Mechanical and 

Manufacturing Engineering (SMME) has been vetted by undersigned, found complete in all 

aspects as per NUST Statutes/ Regulations/ PhD Policy, is free of plagiarism, errors, and mistakes 

and is accepted as partial fulfillment for award of PhD Degree. It is further certified that necessary 

amendments as pointed out by GEC members and foreign/local evaluators of the scholar have 

also been incorporated in the said thesis.  

 

 

Signature: ____________________________________ 

           Name of Supervisor: Prof Dr Shahid Ikramullah Butt 

     Date: ________________________________________ 

 

 

Signature (HOD): ______________________________ 

Date: ________________________________________  

 

                              

 

Countersigned by 

 

Signature (Principal/ Dean): ______________________ 

Date: ________________________________________ 

  



 
 

iv 
 

 

 

 

National University of Sciences & Technology, Islamabad 

REPORT OF DOCTORAL THESIS DEFENCE 
We hereby recommend that the student:  Muhammad Kamal Amjad, Regn No.:  
NUST201490190PSMME2614F may be accepted for Doctor of Philosophy Degree. 

 

DOCTORAL DEFENSE COMMITTEE 
 
Doctoral Defense Held on                                                      
 
 
GEC Member 1: Prof Dr Riaz Ahmad                          Signature:    
 
 
GEC Member 2: Dr Mushtaq Khan    Signature:     
 
 
GEC Member 3 (External): Prof Dr Mujtaba Hassan Agha Signature:     
 
 
Supervisor: Prof Dr Shahid Ikramullah Butt      Signature:    
 
External Evaluator 1: Dr Zareena Kausar   Signature:    
 (Local Expert) 
 
External Evaluator 2: Dr Ghulam Hussain   Signature:    
 (Local Expert) 
 
External Evaluator 3: Dr Gong Lin    Signature: _________                                           

(Foreign Expert*) 
 
External Evaluator 4: Dr Muhammad Fahad               Signature:                                  

(Foreign Expert*) 

 
COUNTERSIGNED 

 
Dated: _________________________     
 Dean/Commandant/Principal 
 

Distribution: 1 x copy each for Director PGP, Registrar Directorate (Examination Branch), Director Research, Director 
Academics at Main Office, NUST, HoD, Supervisor, Co-Supervisor (if appointed), one for student’s dossier at the Institution 
and copy each for members of GEC. 

Note: * Decision of External Evaluators (Foreign Experts) will be sought through video conference, if possible, on the same date 
and their decision will be intimated (on paper) to Main Office, NUST at a later date. 



 
 

v 
 

Certificate of Approval 

This is to certify that the research work presented in this thesis entitled “Optimization of 

Makespan for Flexible Job Shop Scheduling Problems using Genetic Algorithms” was 

conducted by Muhammad Kamal Amjad under the supervision of Prof Dr Shahid Ikramullah 

Butt. 

No part of this thesis has been submitted anywhere else for any degree. This thesis is submitted 

to the School of Mechanical and Manufacturing Engineering in partial fulfillment of the 

requirements for the degree of Doctor of Philosophy in the field of Design and Manufacturing 

Engineering, Department of Design and Manufacturing Engineering, School of Mechanical 

and Manufacturing Engineering, National University of Sciences and Technology, 

Islamabad, Pakistan. 

 

Student Name: Muhammad Kamal Amjad                          Signature: _________________ 

Examination Committee: 

a) External Examiner 1 

Prof Dr Ghulam Hussain     Signature: _________________ 
Department of Mechanical Engineering, 
Ghulam Ishaq Khan Institute of Engineering Science and Technology, 
Topi, KPK, Pakistan 
 
b) External Examiner 2: 

Dr Zareena Kausar      Signature: _________________ 
Department of Mechatronics Engineering, 
Air University, 
Islamabad, Pakistan 
 

c) Internal Examiner: 

Prof Dr Riaz Ahmad      Signature: _________________ 
Directorate of Quality Assurance, 
National University of Sciences and Technology,  
Islamabad, Pakistan 

 

Supervisor Name: Prof Dr Shahid Ikramullah Butt  Signature: _________________ 

 

Name of Dean/ HoD: Prof Dr Javed Iqbal    Signature: _________________ 

  



 
 

vi 
 

Author’s Declaration  

I, Muhamad Kamal Amjad hereby state that my PhD thesis titled “Optimization of Makespan 

for Flexible Job Shop Scheduling Problems using Genetic Algorithms” is my own work and 

has not been submitted previously by me for taking any degree from “National University of 

Sciences and Technology (NUST)” or anywhere else in the country/worldwide. 

At any time if my statement is found to be incorrect even after my graduation, the university has 

the right to withdraw my PhD degree. 

 

 

 

 

Name of Student/ Author: Muhamad Kamal Amjad 

 

Signature: _____________________ 

Date: _____________________ 

  



 
 

vii 
 

Plagiarism Undertaking  

 

I, Muhammad Kamal Amjad, solemnly declare that research work presented in the PhD thesis 

titled “Optimization of Makespan for Flexible Job Shop Scheduling Problems using Genetic 

Algorithms” is solely my research work with no significant contribution from any other person. 

Small contribution / help wherever taken has been duly acknowledged and that complete thesis 

has been written by me. 

 I understand the zero-tolerance policy of the HEC and National University of Sciences and 

Technology (NUST) towards plagiarism. Therefore, I as an Author of the above titled thesis 

declare that no portion of my thesis has been plagiarized and any material used as reference is 

properly referred / cited. 

I undertake that if I found guilty of any formal plagiarism in the above titled thesis even after 

award of PhD Degree, the University reserves the right to withdraw/revoke my PhD Degree and 

that HEC and the University has the right to publish my name on the HEC / University website 

in which the names of the students are placed who submitted plagiarized thesis. 

 

 

 

Student/ Author Signature: __________________ 

                                                                         Name of Student:  Muhammad Kamal Amjad                      

  



 
 

viii 
 

Acknowledgement 

First of all, I am thankful to Allah, Who is the source of all knowledge in this world. Indeed, He 

has taught what all the mankind knows. 

I am deeply grateful to my supervisor Prof Dr Shahid Ikramullah Butt for his sincere guidance, 

suggestions and supervision. He has supported me through all the highs and lows of my research 

tenure and helped me manging my research work along with official commitments. I would also 

like to thank my GEC Prof Dr Riaz Ahmad, Dr Mushtaq Khan and Prof Dr Mujtaba Hassan 

Agha for their valuable inputs in conception, conducting the experimentation and supervision at 

various stages of the research. They helped and guided me sail through the hard times. Special 

thanks are due to Prof Dr Imram Ali Chaudhary for his thorough review and direction during 

my publications and thesis writing all the way from Kingdom of Saudi Arabia. 

I am also gratified to my colleague and one of my very best friends, Naveed Anjum for his 

devotion and all out help during the coding process. I am also thankful to Dr Umer Asgher and 

Dr Salman Sagheer Warsi (my PhD fellow colleagues), who have been a source of motivation 

and guidance and my companion throughout this journey. 

Finally, I am indebted to my father M Amjad Amin and mother Meher Un Nisa who believed 

in me, built my dream about doctorate and supported through all these years to complete my 

work. They also supported me out of the way through this task along with my professional 

responsibilities of job and took extra care of everything throughout these years. Special thanks 

are also due to my wife Dr Rubeena Kamal and children (M Ahmad Kamal and Fatimah 

Kamal) for providing me the peace of mind and time to pursue this milestone in my life. 

 

Muhammad Kamal Amjad 

December 2021 

  



 
 

ix 
 

 

 

 

 

 

 

 

 

To my parents, wife, and children 

  



 
 

x 
 

Abstract 

Manufacturing scheduling is one of the most researched areas since its optimality plays an 

important role in the operation of the shop floor. Manufacturing has a vital contribution in the overall 

economy of a country as it generates and attracts commercial activities.  The whole framework of 

business has changed in view of the fluctuating global customer demands and fierce opposition from 

technologically advanced competitors. There is always a pressure on the manufacturer to produce the 

designed products in the shortest possible time to capture the market. To the challenge of changing 

product requirements and market demands, flexible manufacturing system is the answer.  

 Flexible job shop is employed to produce a medium variety of products in a medium volume 

category. In contrast to the conventional job shop, it offers flexibility in performing operations on 

different machines; hence providing space for the manufacturing planner / scheduler for arranging 

parts as per corporate requirements. When seen in the context of optimal operation, this setting while 

offering such great advantage, also poses the scheduler with the decision regarding assignment of 

operations to available machines in addition to sequencing of operations. In this way, the complexity 

of the problem grows exponentially even in the small settings of the shop. 

The flexible job shop scheduling is a NP-hard combinatorial optimization problem with 

regards to complexity and its exact solution requires many lifetimes to reach. Consequently, 

techniques built around the concepts of artificial intelligence have been popularly used to solve the 

problem. Genetic Algorithm (GA) is one of the most attempted and widespread technique from this 

domain. GA can produce good results of the scheduling problems, however when stuck in the local 

minima, the algorithm normally fails to escape, and solution quality is badly affected. 

 In this research work, problem is formulated mathematically and insights to a selected 

benchmark is provided. Problem complexity is then evaluated in a quantitative way through 

estimation of search space of the selected datasets and an understanding to the actual area of search 

is developed. 

Priority rules are then integrated with the GA (GA-PR) to solve the FJSSP. In this regard, 

competitive modification in the rule has been proposed in addition to the integration scheme. The 

algorithm is also equipped with adaptive operators which also contribute to its performance. In 

addition to this a standalone pure GA (GA-IDT) is also proposed to efficiently solve the target 

problem. An iterative diversification technique is embedded into the proposed algorithm which 

proficiently manages the intensification and diversification of the population. 

The efficacy of both algorithms is tested against standard benchmark problems and it is 

concluded that proposed techniques are competitive with other concepts in literature. 

Keywords: Genetic algorithm; Flexible job shop scheduling problem; Iterative diversification 

technique; combinatorial optimization.  
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1 Chapter 1 - Introduction 

1.1 Background 

Since the beginning of intellectual evolution of mankind, efforts are being made to 

improve the lifestyle and living standard. The earliest documented human life on earth is divided 

into stone age, bronze age and iron age [1] which depict this continual struggle. As a result, 

humanity has seen marvelous growth in each race of everyday life. With the increase in 

population and the advent of technology, mankind developed machines to ease the availability 

and accessibility of daily used products. The need of machines for completing the repetitive and 

laborious work raised and eventually, the industrial age (1760 – 1970) saw unprecedented 

increase in the manufacturing sector. Today, one cannot imagine daily life without the presence 

of machines. 

As the humans saw the advancement in technology, the need for luxury and comfort 

increased. In addition, owing to the increase in population, the requirement of necessities was 

also increased. The amalgamated cultural and occupational requirements generated various types 

of product requirements. All products to be developed are to be manufactured, hence products 

and manufacturing go hand-in-hand. However, since products differ in nature according to their 

use, different machines are required for their manufacturing in order to optimize the production 

and cost effectiveness. Here comes the balance between the number of machines and number of 

products to be manufactured on these available machines. Obviously, both the industrialist and 

the customer want to get minimized production time and cost. 

The history of manufacturing can be traced back to the stone age whereby basic tools 

were invented for reshaping the materials recovered from natural environment [2]. The word 

“manufacture” itself is derived from Latin background which basically means “made by hand” 

[3]. The manufacturing process converts raw materials in products of use through use of tools 

and machines [4]. Hence, every product in our surrounding goes through this process during its 

creation. Therefore, manufacturing sector always faces challenging demands from inside and 

outside the engineering industry in view of push-pull system of technology change and market 

requirements [5]. 

Over the period of time, manufacturing has emerged as a key indicator of a country’s 

economic and commercial growth. World Bank has reported that manufacturing activity adds up 

to 18% of the Gross Domestic Product (GDP) of the world [6], thereby creating wealth. 
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Moreover, the industry gave employment to 23.083% of total employment share and added 2.7% 

in the annual growth of the world in year 2018 [7].  

Since, the manufacturing industry directly affects the product output of any country, its 

wellbeing guarantees economic plateau and improved standard of living / comfort. The 

manufacturing sector responds to market and product development needs and provides a concrete 

business opportunity [8] as shown in Figure 1.1. Consequently, the earlier the company responds 

to the market needs, the more profits are ensured and hence a competitive advantage is gained 

since no competitor is available in the market. This fact has risen aggressive competition in all 

the manufacturing industry owing to the constantly changing customer demand on one hand; 

while one the other hand, it has provided an excellent opportunity for a well-equipped industry 

to attain market supremacy. Effective manufacturing management techniques, therefore, warrant 

reduced product availability time to the market and hence increases market share of the said 

company in the longer run [9]. 

 

 

Figure 1.1: Business opportunity and manufacturing 
 

Conventional manufacturing operations are carried out in a machine shop where 

machines are installed in a certain layout. In order to undertake manufacturing in large quantities, 

production operations are to be planned carefully keeping in view predetermined objectives to 

ensure that maximum output is achieved with minimum resources. This is important because 

remaining resources may be assigned to other tasks. Sequencing of operations in a manufacturing 

Technology push Market pull
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facility directly contributes to its performance. It requires careful production planning to avoid 

wastage of manhours, materials, cost, and time. Scheduling directly contributes to better 

operations of a manufacturing facility.  

1.2 Problem Statement 

Manufacturing scheduling deals with planning of operations on machines to obtain 

intended output with regards to environmental constraints. The problem pertains to the classical 

scheduling problems generated in the early 20th century and since then enormous amount of 

research has been carried out to minimize the completion time of process / jobs on the available 

resources. The minimum completion time will not only utilize the resources in optimal manner 

but will also release them earlier for future operations with an added advantage of minimized 

cost over-run and manhours etc. 

The advancement in automated manufacturing and production engineering has led to 

many progressions in the modern manufacturing concern, one of the most important being the 

Flexible Manufacturing System (FMS). The FMS has been designed to encounter changing 

demands of different products with regards to operations (e.g., handling, machining operation) 

and process maximum number of different jobs. 

Where the idea feels astounding, it is a challenging task to allocate these advanced 

resources optimally. Scheduling in the flexible environment is one of the most tough optimization 

problems and has attracted researchers for over a century. The scheduling field proposes some 

of the most advanced, complex, and toughest combinatorial optimization problems. The search 

space of these problems is so huge that one cannot evaluate the complete space even by spending 

many complete lifetimes. This motivated the current research for actual evaluation of selected 

benchmark search space. This research is focused on minimization of makespan in a flexible job 

shop atmosphere. Since exact solution approaches cannot provide solution of these problems in 

a reasonable time, artificial intelligence techniques have been used as a popular alternative for 

solving these problems. The current research attempts to solve these problems by use of Genetic 

Algorithm (GA). 

1.3 Research objectives  

Following are the objectives of this work. 

a. To study the GA based FJSSP optimization literature 

b. To develop a thorough understanding of scheduling paradigm and its related 

mathematical intricacies 
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c. To optimize the processing times of jobs through proposition of efficient 

techniques 

d. To evolve a software-based environment for solving the scheduling problem in 

an automated manner 

e. To develop a heuristic based solution approach 

f. To develop a pure GA based approach 

g. To evaluate the complexity of scheduling problems on the basis of chromosome 

representation 

h. To solve selected benchmark instances and to identify improvement 

i. To identify the advantages of proposed solution architecture and methodologies 

1.4 Research methodology 

This work is organized in three stages as outlined in Figure 1.2. During the preparation 

phase, initial problem understanding was gathered, and a thorough literature review was 

conducted to reveal grey areas of the literature. The implementation stage was started with 

development of an integrated MATLAB-MS Excel based simulation environment to conduct of 

computational experiments. The phase was designed to achieve following objectives. 

a. Development of heuristics-GA based approach 

b. Development of a pure GA based approach 

The developed algorithms were evaluated thoroughly for correctness through solving 

small problems available before attempting the large problems. Conceptual or programming bugs 

were removed through solving the small instances with hand and verification of step-by-step 

ability of MATLAB bug removal. Moreover, the solution of software generated Gantt charts was 

also computed and compared with manual solutions for correctness. For awareness of problem 

complexity, the search space was also quantified. The algorithms were then tested on the selected 

datasets from literature and different experiments were conducted for the evaluation of proposed 

improvements. At the end, contributions are summarized, and conclusions are presented along 

with recommendation for further work. The scope of this work will be restricted to FJSSP. 
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Figure 1.2: Research methodology 
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1.5 Organization of thesis  

Following is the chapter-wise overview of the current research. Chapter-1 introduces the 

reader to the background of the research area, the research objectives, and the methodology of 

the study. Chapter-2 provides literature overview of the research area covering different aspects 

of the research area. Chapter-3 opens the scheduling problem by performing its mathematical 

formulation. For a clear understanding, numerical examples are given thoroughly, and each 

element is explained in a detailed manner. The chapter also covers the design scheme of the 

proposed solution environment for the modeled problem. Chapter-4 provides detailed 

explanations of the proposed algorithms for solving the FJSSPs using GA-PR and GA-IDT. 

Procedures and routines conducted during the algorithms have been illustrated using flowcharts 

extensively. Meanwhile, improvements in the algorithms have also been highlighted. Chapter-5 

deals with the experimental results of the selected benchmarks. Different experiments are 

conducted to outline the advantages of the proposed techniques and finally comparison has been 

made with other algorithms to effectively indicate the algorithm performance. Chapter-6 closes 

the thesis with identification of contributions to the existing knowledge area and future research 

guidelines.  



 
 

7 
 

2 Chapter 2 – Literature Review 

2.1 Introduction 

This chapter introduces concept of FMS, machine layouts, classifications and general 

optimization practice. These topics are necessary to understand and attempt Flexible Job Shops 

Scheduling Problems (FJSSPs). The literature of FJSSP is thoroughly discussed along with 

different solution approaches. The chapter has majorly been extracted and modified from the 

already published review work of the author [10] unless otherwise cited; in which a total of 190 

papers have been reviewed. 

2.2 Flexible Manufacturing Systems 

The craft manufacturing techniques (based on skill) has changed to global manufacturing 

(based on information) in the last century. The manufacturing industry has tailored itself to adapt 

to the changes and challenges posed by the demanding customer and market needs. Now, a 

manufacturing enterprise requires concurrent and up-to-date information instead of just skill-

based-information. Another huge impact during this change is the advent of automation in place 

of human operators. Figure 2.1 provides a pictorial layout of the changes that the manufacturing 

industry has undergone during last decades.  

 

Figure 2.1: Types of manufacturing in the last century 
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Manufacturing systems face the challenge of processing different types of jobs. Since 

different types of jobs require different machines, increasing the job variety increases machine 

types and consequently capital investment. Hence, a manufacturing system offers limited number 

of operations to be processes. 

There exists an inverse relation between the volume and variety of products that can be 

undertaken at a manufacturing concern [3, 11]. The production system can generate a low-

volume-high-variety product through a specialized and dedicated machinery to address a specific 

project need. Such systems are highly specialized and cannot encounter job flexibility. On the 

other hand, low-variety-high-volume systems produce continuous production in high numbers 

that mainly constitute the major consumer market products. 

Another aspect in this regard is that market share of a company depends upon the time to 

market for a certain product i.e., the time required to deliver the product to market. Obviously, 

this entails the efficient development and production of the product. The early the product is 

made available in the market, the more it gains the market share and customer loyalty 

accordingly. 

Therefore, the relation between the production capacity and production flexibility is 

inverse in nature and one must keep a balance in both aspects during the design phase of the 

production system. Since the increment in flexibility entails intermittent process flows and 

complex / diverse tasks, it cannot be increased infinitely. As a matter of fact, flexibility comes 

with a penalty of complexity. Moreover, low-volume-low-variety and high-volume-high-variety 

systems does not lie on the feasible production diagonal as pointed out in Figure 2.2 since they 

do not pose commercially reasonable. To achieve maximum share of the market, a manufacturing 

concern must produce a reasonable variety of products with a good volume. This constitutes a 

medium-volume-medium-flexibility manufacturing setup, commonly known as a Flexible 

Manufacturing System (FMS).  
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Figure 2.2: Relation between product volume and variety [3] 
  

FMS are modern systems which can handle a variety of product types through variable 

routings [3]. Similar types of operations are grouped together through employment of Group 

Technology (GT) [12] which generally incorporates a material handling system to produce 

medium volume and variety products [13]. 

GT has offered an alternative to the conventional batch production through reduction of 

downtime for changing jobs [3]. It operates on the concept that different parts contain certain 

similarities in the form of inherent features. Hence, similar features are processed through same 

process and tooling. Literature offers several classification schemes for division of parts in GT, 

e.g., Opitz, CUTPLAN, Brisch, DCLAS and CODE etc. Flexible manufacturing systems include 

automation in the GT cells.  
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As described in the section 1.1, customer demands verity of products in a limited time 

frame. Conventional manufacturing setups give a high production volume but cannot handle 

different types of products. On the other hands, workshops offer high level of flexibility, but can 

handle a low production volume. FMS is a trade-off between the conventional high-volume -

low-flexibility manufacturing setups and the low-volume-high-flexibility workshops. Major 

benefits of these systems include; a reduced manufacturing lead time, lower machine 

requirement, optimal shop floor utilization, medium volume-variety production [3, 14], thereby 

increasing flexibility in the system [15, 16]. 

Figure 2.3 presents a typical FMS with Automated Guided Vehicles (AGVs). The FMS 

is equipped with multiple machines because a certain flexibility has been introduced into the 

system. Increased number of milling and lathes indicate that this FMS is designed to undertake 

milling, facing and turning operations more often. The material handling system is used in 

conjunction with AGVs to load and unload jobs. A computer controller regulates the functioning 

of the FMS. Similar idea is implemented in the form of Flexible Manufacturing Cell (FMC) 

where machines are grouped together in order to accommodate a variety of operations. Such cells 

are designed to undertake similar groups of processes through use of group technology concepts. 

Different schedules can be executed in the FMS / FMC since it is adaptable to different types 

and sequences of operations; obviously, until a limitation [17]. 
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Figure 2.3: A typical Flexible Manufacturing System 

2.2.1 Dimensions of manufacturing flexibility 

Flexibility in manufacturing has been described as the ability of a manufacturing system 

to undertake different tasks of different nature through available resources [15, 18, 19]. It is 

evident that flexibility eases the operational scenario including many other benefits; however, it 

adds to the complexity of production management since it requires additional decision making 

in the process. 

The dimensions of flexibility are depicted in Figure 2.4 [20], e.g. flexibility in production 

means the system can handle variety of parts in production scope. Similarly, flexibility in product 

means the system can manufacture variety of products. Other dimensions include machine, 

tooling, and routing flexibility, whereby machines can perform different tasks, can incorporate 

different tools and can undertake different routing.  
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Figure 2.4: Dimensions of flexibility in a manufacturing environment 

2.2.2 The traditional job shop vs flexible job shop 

Depending upon the nature of the manufacturing processes and the product to be 

developed shop layouts have evolved over the period of time. Figure 2.5 presents a limited 

classification of the shop floor layouts with emphasis on current research problem. 

 

Figure 2.5: Classification of shop floor layouts 

 

A typical job shop layout is presented in Figure 2.6. The layout consists of different types 

of machines, whereby jobs can be processed as per requirement of operations. Different jobs 

have different sequence of operations; hence this problem deals with routing of each operation 

of a job on different machines. For example, Job 1 may process from saw-turn-paint-warehouse 

whereas Job 2 may process as grind-mill-drill-assembly-warehouse. Processing times of each 
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operation can differ on each machine or it may remain the same. Now, the interest is to sequence 

the total number of operations of each job on these available machines, since each machine is 

dedicated for a single operation. Obviously, the scheduler would want to schedule the tasks such 

that minimum time is consumed to complete all products. This gives rise to the classical Job 

Shop Scheduling Problem (JSSP). The problem has gained attention since decades, e.g. early 

attempts to find the schedules date back to early twentieth century [21]. Subsequently, the JSSP 

has attracted researchers in more recent times e.g., [22-25]. 

 

Figure 2.6: An example of job shop layout 
 

Hence, the major criterion in JSSP is that every operation must be carried out on a single 

pre-decided machine. This scenario has been schematically presented in Figure 2.7. Consider a 

job J1 requiring two operations O1 and O2 for its completion. In a Job Shop Scheduling Problem 

(JSSP) setting, O1 can only be performed on M1, while O2 can only be performed on M2.  

 

Figure 2.7: Traditional job shop layout setting 

 



 
 

14 
 

In actual scenario of the practical shop floors, there are often more than one machines 

that can perform a single specified task. Therefore, contrary to the scenario of job shop, flexible 

job shop has inherent flexibility with regards to decision of machine selection form the available 

pool of machines. This setting provides machines selection problem in addition to the routing 

problem. A sample FJS schematic is presented in Figure 2.8. Job 1 is to be processed by 

completing two operations and the shop setting has two available machines. Operation 1 can only 

be performed on machine 1, while operation 2 has the flexibility to be performed on either of 

Machine 1 or 2. 

 

Figure 2.8: A schematic of Flexible Job Shop 
 

FJSSP is another branch of the basic JSSP, whereby following two problems are 

considered simultaneously. 

a. Assignment / routing: The decision regarding processing of jobs on available 

machines. 

b. Scheduling / sequencing: The decision regarding the sequence of operations on a said 

machine. 

There exists a built-in flexibility in the FJSSP paradigm. This is due to fact that this setup 

offers routing and sequencing opportunities to the process planner. Literature has proposed 

different ways to incorporate flexibility in the manufacturing setup, some of which are 

summarized in Table 2.1.  

Table 2.1: Some concepts of flexibility in manufacturing 
Concept Reference 

Machines with different tools that can perform multiple operations [26] 

Commission more similar machines in case of a bottleneck [27] 

One machine for multiple operations  [28] 
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2.3 Manufacturing Scheduling 

Manufacturing scheduling is a decision making problem which involves the sequencing 

of tasks (i.e. jobs, operations, workers etc.) to available processing resources (machines, work 

etc.) keeping in view a certain pre-defined objective function in order to complete the tasks [29]. 

The problem involves sequencing of different jobs, which may contain different operations to 

different machines. Consequently, manufacturing scheduling becomes a combinatorial 

optimization problem [30] offering many solutions, only some of which meet the performance 

requirement, e.g. total completion time of all jobs. Since, infeasible schedules are rejected in a 

straightforward manner; the feasible schedules are searched for optimality against the objective 

function. It is evident that all feasible schedules can complete the jobs but will fail to utilize the 

resources in a good manner as compared to the optimal schedule. As the number of jobs increase, 

more resources are required which will incur more cost. Hence it is imperative that the interest 

in finding the optimal schedule grows with the increased number of jobs. 

Scheduling decisions are complex in nature since they deal with the problem of resource 

assignment to the upfront tasking [31]. Generally, the resources are scarce, and tasking becomes 

larger, so scheduling decisions are to be taken smartly to increase the productivity. Moreover, in 

view of the various manufacturing sectors involved, companies tend to customize the 

manufacturing setups, which further increases the complexity of the decision-making problem. 

In addition, the time available to undertake the scheduling decision is limited because goods are 

to be produced and forwarded to market. Also, the decision is order-dependent, since production 

is customer-oriented [32]. 

2.3.1 Classification of scheduling problems 

Scheduling can be divided into deterministic and stochastic [31] as shown in Figure 2.9. 

Deterministic scheduling involves jobs with known processing time and stochastic scheduling 

refers to real-time changing job processing time which only get confirmed after the job is 

completely processed [33-35]. Jobs arrive in a known manner in static scheduling, while dynamic 

scheduling deals with job arrivals at unknown intervals [36-38].  



 
 

16 
 

 

Figure 2.9: Classification of Scheduling 
 

Figure 2.10 presents the classification of scheduling problem. Following describes the 

salient features of each classification. 

a. Deterministic: All the variables have known value in the problem e.g., processing 

time, due date etc. 

b. Proactive: This enables the scheduler to undertake unforeseen aspects which can 

arise because of the stochastic nature of the problem. 

c. Real time: This scheme reallocates the resources according to the resources 

available at the shop floor. 

d. Adaptive: The scheduling software changes the scheduling methodology 

according to the history of the events. 

e. Reactive: This embarks on the current state of the shop floor and changes the 

schedules reactively according to the changing conditions. This scheme aims to 

change the implemented schedule. 

f. Stochastic: Some variable in the problem is not known but is determined through 

a probability function. 

g. Fuzzy: Deals with the fuzzy variables. 

h. Robust: The schedule is not affected by the unforeseen events that can occur on 

the shop floor. 
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Figure 2.10: Classification of the scheduling problem 

 

The scheduling models are conventionally classified through the characteristics of 

processing layout (α), constraints (β) and cost function (γ). The notation is summarized as α | β | 

γ. This scheme was introduced by Conway et al. [39], which was further extended by Graham et 

al. [40] and Lawler et al. [41]. The processing layouts are denoted as double index α1α2 which 

are further explained in Table 2.2, e.g., α = J3 means a job shop layout with 3 machines. 

Similarly, α =  P means a parallel machine setting with no count of machines available. The 

machine constraints are depicted in Table 2.3 

Table 2.2: Explanation of processing layout (α) 
Notation Values Description 

α1 

ϕ Single machine 

P Parallel identical machines 

Q Parallel uniform machines 

R Parallel unrelated machines 

F Flow shop 

J Job shop 

O Open shop 

α2 
1, 2, …, m Fixed machines 

ϕ No fixed machines 
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Table 2.3: Explanation of constraints (β) 
Notation Description 

β = prec 
There exist precedence relations between operations of the jobs, e.g., number 

of predecessor and successors.  

β = sd There is sequence dependent setup / removal time 

β = Mj Machine eligibility i.e., some machines can perform some operations only. 

β = prmu Permutation flow shop problem. 

β = brkdwn There can be possibility of breakdown in machines. 

β = recrc 
The process contains recirculation i.e., at least one job visits one machine more 

than once. 

β = no-idle There can be no idle machine. 

β = batch There are batches in jobs. 

 

Table 2.4: Examples of objective functions (γ) 
Notation Description 

γ = Cmax Minimize makespan 

γ = max Fj Minimize maximum flowtime 

γ = ∑ C Total completion time 

2.3.2 Complexity 

FJSSP is a NP-hard problem [42] that has received attention from different backgrounds 

of mechanical engineering, computer sciences and operations research due to its complex nature 

[43].  The scheduling decision is one of the most complex decision, owing to the various reasons 

including different objective functions, decision constraints, large number of feasible solutions, 

and time-domain dynamic nature [29, 44]. 

The complexity of the problem grows with the number of jobs in a JSSP since each job 

can have varied number of operations and corresponding different times. A total of (n!)m 

sequences can be generated in a JSSP environment [45], where n is the number of jobs and m is 

the number of machines. The problem complexity is increased manifold because of changing 

number of jobs, machines, processing times, uncertainties, and apprehended shop floor 

breakdowns [46]. It has been a major endeavor of this research to actually estimate the search 

space of the selected benchmark problems in a quantitative manner. 
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2.3.3 Benchmark problems 

The schedules generated for FJSSPs are evaluated on benchmark problems which have 

been developed to assess the efficacy of a said solution approach [47]. Several sets have been 

proposed in this regard, some of which are summarized below. 

a. Brandimarte (MK Data [48]): These instances are generated with different 

flexibilities of the available machines. This set includes 15 problems with minimum 

size of 10 jobs x 6 machines and maximum size of 30 jobs x 15 machines. However, 

first 10 problems from this dataset are generally used in literature.  

b. Hurink et al. (HU Data [49]): These instances were generated by using the classical 

JSSP formulations of Fisher and Thompson [50] with the assumption of multi-

purpose machines. This set includes a total of 264 instances with minimum size as 6 

job x 6 machine and maximum size as 15 job x 15 machines. HU data is further 

grouped as follows. 

i. Sdata: Each operation can be performed on one machine only. 

ii. Edata: Some operations can be performed on more than one machine. 

iii. Rdata: Many operations can be performed on more than one machine. 

iv. Vdata: Each operation can be performed on many machines. 

c. Dauzère-Pérès and Paulli (DPpaulli Data [51]): These instances were generated using 

the similar principles of multi-purpose machines with inherent flexibility. A salient 

feature of these instances is that operations to be scheduled are higher than the 

available machines in all possible cases. Moreover, these instances also provide 

variable times for selected machines against a similar problem. A total of 18 problems 

are presented in this data with minimum size of 10 jobs x 5 machines and maximum 

size of 20 jobs x 10 machines. 

d. Barnes & Chambers (BC Data [27, 52]): In these instances, processing times at 

relevant machines are not dependent on the selected machine; whereby the basic idea 

was to duplicate a machine depending upon seven (7) different policies. The instances 

have been driven from basic data by Fisher and Thompson [50] and Lawrence [53]. 

A total of 21 instances are included in this set with minimum size of 10 jobs x 11 

machines and maximum size of 15 jobs x 17 machines.  

e. Kacem et al. (Kacem Data [54]): These instances have been designed on the 

hypothesis that every process can be performed on a set of machines from the 

available set such that the number of operations are different for different jobs. A total 
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of 4 instances were produced with minimum size of 4 jobs x 5 machines and 

maximum size of 15 jobs x 10 machines. 

f. Fattahi et al. (FT data [55]): These instances contain 20 problems with small and 

medium sizes. Both partial and total flexible instances are available in this set. 

g. Industrial instances: In addition to the conventional benchmark problems, literature 

also proposes specific industrial problems e.g. [56-59]. Generally, these problems are 

seldom used widely for evaluating algorithm efficiency. 

2.3.4 An example of the scheduling problem 

Here, the basic explanation of a selected scheduling instance is explained. Let’s consider 

the scheduling problem as presented in Table 2.5. The problem consists of a total of 3 jobs J1, J2 

and J3, the first two consists of three operations and third job consists of two operations. The first 

operation of first job is denoted as O11, the second operation of third job is denoted as O32 and so 

on. In general, this is denoted as Oij. The operations are to be performed on one of the available 

four machines and all operations can be performed on all machines. The time required for a said 

operation on a selected machine is provided accordingly. Since all operations can be performed 

on all machines, the problem is considered total flexible. 

Table 2.5: The SFJS6 Benchmark 

 

The task of calculating the overall time for completion of all jobs (Cmax) problem can be 

undertaken through formulation of a Gantt Chart. Time is shown on x-axis and machines are 

shown on y-axis. The processes are placed on the chart keeping in view the prescribed constraints 

such that all processes are completed. In this way, Gantt chart is a graphical solution of the 

scheduling problem. 

Job Operation 
Processing Time 

M1 M2 M3 M4 

J1 

O11 1 3 4 1 

O12 3 8 2 1 

O13 3 5 4 7 

J2 

O21 4 1 1 4 

O22 2 3 9 3 

O23 9 1 2 2 

J3 
O31 8 6 3 5 

O32 4 5 8 1 
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A possible solution of the selected instance is shown in Figure 2.11. O11 and O32 are 

performed at M1 while O31 and O13 are performed on M3. Here, O12 is performed on M4, however 

it can also be performed on M1 however it will take more time on it. The makespan comes out to 

be 7 in case the jobs are scheduled as shown. It is evident that several other possible solutions 

are available for the considered instance and the makespan will vary accordingly. Optimal 

solution can only be found if all possible solutions are evaluated for makespan and the number 

of solutions will increase enormously with size of problem. Of course, it is an aspect of prime 

importance to the process planner to minimize the overall completion time of the problem.   

 

Figure 2.11: A sample Gantt chart 
 

2.3.5 Optimization of scheduling problems and objective functions 

Optimization deals with the generation of best solution from the set of available solutions 

to an upfront problem [60, 61]. The field is of concrete importance in the modern engineering 

world where multiple solutions of a single problem are available. In addition, the field also targets 

to solve problems that can achieve a cost function that addresses multiple objectives. Figure 2.12 

chalks out a typical process to be carried out to undertake an optimization problem. 
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Figure 2.12: The typical optimization process 

 

Whereas all feasible schedules can be executed on the shop floor for achieving the 

production order, only best solution will guarantee the utilization of resources and output 

efficiency. In view of the complexity of scheduling problems, many feasible solutions are 

available. The problem thus becomes twofold; one is to find feasible solutions and reject 

infeasible ones, second is to find optimal solution. A general optimization problem is formulated 

as follows. 

Minimize 

 ݂ሺݔሻ (1) 

w.r.t. 

 ݄ሺݔሻ ൌ 0 ∀ ݅ ൌ 1…݊ (2) 

 ݃ሺݔሻ ൌ 0 ∀ ݆ ൌ 1…݉ (3) 

Here, h(x) and g(x) represent the equalities and inequities constraints for the objective 

function f(x). The objective function defined in Eq. (1) can take the multi-objective form as 

݂ሺݔሻ ൌ ଵ݂ሺݔሻ  ଶ݂ሺݔሻ 	 ଷ݂ሺݔሻ  ⋯	 ݂ሺݔሻ. Here f1(x), f2(x), f3(x),… fn(x) are the sub-functions 

of the objective function describing different objectives. Objective functions are set in an 

optimization problem to achieve a pre-determined goal. In the current high business flux and 

customer-oriented market, it has become inevitable that the operations are performed on the 
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production shop floor in an optimal manner to reduce cost, wastage of resources and time. Table 

2.6 presents the popular objective functions that have been studied in the FJSSPs. 

Table 2.6: Popular Objective Functions for FJSSP 

Function Description Calculation 

Mean completion time Mean time required to complete a single job ̅ܥ ൌ
∑ ܥ

ୀଵ

݊
 

Total Tardiness 
Difference between due date and completion time 
for all jobs  

ܶ ൌ ܶ



ୀଵ

 

Makespan Total completion time for all jobs ܥ௫ ൌ max
ଵஸஸ

 ܥ

Maximum flow time 
Total time taken by the job to get processed from 
the shop floor (including wait)

ܨ ൌ max
ଵஸஸ

 ܨ

Total workload of 
machines 

Total time for which all machines are working ்ܹ ൌ  ܹ



ୀଵ

 

2.4 Algorithms for scheduling 

Scheduling problems need a structural approach for achieving solution [62]. There are 

many techniques available to solve the scheduling problems and a holistic classification is 

presented in Table 2.7. 

Table 2.7: Classification of scheduling algorithms 
Class Sub-class Algorithm Reference 

Exact 

Constructive 

Johnson’s algorithm  [63] 

Moore’s algorithm  [64] 

Lawler’s algorithm [65] 

Enumerative 

Integer programming  [66-68] 

Branch and bound [69, 70] 

Dynamic programming [40, 71] 

Approximate 

Heuristics 
NEH heuristic [72] 

Shifting bottleneck [24, 73] 

Metaheuristics 

Simulated annealing [25, 28] 

Tabu search [74, 75] 

Greedy search [76, 77] 

Genetic algorithm [78, 79] 

Ant colony optimization [80, 81] 

Artificial immune system [82-85] 
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Differential evolution [86, 87] 

Harmony search [88-90] 

Particle swarm optimization [91-93] 

Artificial bee colony [94, 95] 

Neighborhood search [96, 97] 

Frog leaping algorithm [98-100] 

Biogeography-based optimization [101] 

Firefly algorithm [102, 103] 

Invasive weed optimization [104] 

 

Generally scheduling techniques are classified as exact and approximate [105]. Recently, 

the approximate techniques have gained exceptional interest due to the increased complexity of 

the problems. Approximate techniques provide good solutions within acceptable time frame in 

comparison to the exact methods which can provide guaranteed optimal solutions for smaller 

instances but may tend to take infinite solution times on larger problems [106]. Heuristics provide 

a straight-forward rule-based solution for the problem at hand which may not be optimal. In the 

context of scheduling problems, priority rules are classical example of heuristics. In contrast, 

metaheuristics generate sequential neighborhood solutions through stochastic techniques or take 

inspiration from any other nature / technical process.  

Conventional optimization methods include calculus based techniques, e.g. Karuch-Khun 

Tucker methods, gradient based methods [107]. These methods reply on the availability of a 

mathematical objective function which can be optimized using calculus based or numerical 

techniques. Further, regularity and convexity checks are the hallmark requirement of these 

methods due to which they cannot undertake NP-hard problems. On the other hand, enumerative 

methods provide a step-by-step solution procedure which can check the best solution during the 

process. Depending upon the size of search space, these methods become inefficient and may 

cause huge delays in schedule generation. 

The basic ingredient of a metaheuristic technique is a guidance mechanism for the 

underlying heuristic to effectively evolve the solution until an acceptable termination criteria 

[108]. The search space is explored in this process through diversification (further evaluation of 

the unexplored areas) and intensification (exploration in the already explored area), whereby both 

techniques are used side-by-side. These methods can solve the NP-hard problems in an effective 

manner and hence they have gained extreme popularity and research interest during the last few 



 
 

25 
 

decades [109]. Metaheuristics methods have various techniques, which are generally inspired 

from nature-based systems, sometimes termed as nature-inspired-algorithms. The number of 

techniques are becoming more and more diverse in response to the No-Free-Lunch proposition 

[110] which demands different algorithms for different situations. A limited discussion for some 

selected metaheuristic methods is presented below. 

a. Tabu search: It is a neighborhood based local search method which uses a memory 

list to prevent a revisiting previously evaluated solution. This method is proven to be 

very useful in avoiding local minima traps. However, in a larger search space, the 

number of iterations to reach an acceptable solution increase enormously along with 

the length of tabu list [111]. 

b. Simulated annealing: The method is named after the famous heat treatment process. 

The method can deal with non-linear models and can find a good approximation to 

the global minima. The methods relies on the quality of initial startup solution for the 

final solution quality [112]. 

c. Ant colony optimization: It is one of the most popular nature-inspired-algorithm that 

relates to the social conduct of ant colonies. It imitates real ants when they search for 

food and tend to follow the shortest available path based upon pheromone trials. The 

method can evaluate multiple solutions at a time through various paths [113]. It relies 

on the probability calculations for path selection which ultimately govern the solution 

quality. 

d. Particle swarm optimization: This method adopts the actions of birds in flocks when 

they search for food. The method depends upon the current state, presumed best state 

and the velocity. The algorithm has proven difficulties in dealing with scattering 

problems [93].  

e. Artificial bee colony:  The method is inspired from the scavenging behavior of 

honeybees. As in all other metaheuristic approaches, the method has three agents (i.e., 

employed / unemployed bees and sources of food) which are used to incorporate 

search based on feedback mechanisms. 

f. Integer programming: These approaches attempt to solve the FJSSP through 

formulation of mathematical models. 

g. Artificial immune system: The method is derived from the behavior of immune 

system of living things that tries to drive the body back to normal i.e., optimal 

condition in case of any disease. 
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h. Harmony search: operates inspired from operation of orchestra that tries to produce 

melodious sound. 

i. Memetic algorithms: two algorithms are combined. 

j. Neighborhood search: these methods find the optimal solutions about the current 

solution through a strategy to explore the neighborhood. 

2.5 Dispatching rules 

Schedules can be generated using dispatching rules, which can undertake the problem 

under certain objective and return the schedule [114]. It has been reported that scheduling rules 

can be employed with ease for  obtaining acceptable solutions [115] in a stand-alone manner. 

Conventionally, these rules have been used for producing schedules on the production line in a 

manual manner. Since these rules target to optimize a single objective, they may not produce an 

overall optimal schedule, hence many combinations are used accordingly. Some of the important 

techniques are listed in Table 2.8. 

Table 2.8: Some important dispatching rules 
Rule Calculation Description 

Shortest processing time ܲ ൌ ݉݅ ݊ୀଵ
 ሾሿ 

Operation requiring minimum 

time is scheduled 

Longest processing time ܲ ൌ ୀଵݔܽ݉
 ሾሿ 

Operation requiring maximum 

time is scheduled 

Earliest due date ݀ ൌ ݉݅ ݊ୀଵ
 ൣ ݀൧ 

Operation with smallest due 

date is scheduled 

2.6 Genetic algorithm 

Genetic algorithm (GA) is the most popular evolutionary algorithms for finding near-

optimal global solutions. It was introduced by Holland [116] and further developed and 

popularized by Goldberg [117].  

GA has been developed in line with the natural evolution process and many 

advancements have been incorporated since its inception. It is a global optimization technique 

that searches the best solution by recombining the available solutions. Due to the unmatched ease 

of implementation and adaption to different sets of problems, GA has been applied to diversified 

fields of engineering [118, 119], data mining [120], demand estimation [121] and medicine [122]; 

only to mention a few. A great deal of literature has been published to describe the applications 

of GA e.g., [123-126]. 
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2.6.1 Theoretical background 

The algorithm is based on the well-known principles of “survival-of-the-fittest” and 

“natural-selection” introduced by Darwin [127]. He claims that the species of living being are 

evolving over the period of time through generations such that each generation exhibits more 

better individuals than the previous through adaptation to the prevalent environment. He further 

argues that nature, itself, tends to choose better individuals over time and the inheritance 

characteristics of parents are transferred to the offspring. Figure 2.13 presents a comparison of 

similarities between the natural evolutionary process and the terminology of GA. 

 

Figure 2.13: Analogies between genetic algorithm and natural evolution process 
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2.6.2 Explanation of GA 

The basic building block of GA is a ‘gene’ which contains relevant information regarding 

the optimization problem. Genes are stacked together to formulate a chromosome, which 

describe the characteristic information in the chromosome, i.e., essentially a candidate solution 

is represented in a holistic manner for further processing by the algorithm. General representation 

methods include strings, rules permutations etc. Every chromosome is different due to the 

inherent properties and information contained in the relevant genes. The intrinsic properties, 

either good or bad, depict the quality of the individual chromosome, i.e., it can be the potentially 

best solution, or it may be an infeasible one. Figure 2.14 presents two different chromosomes 

with every gene represented in a different box. It is evident that the 3rd gene differs in the two 

chromosomes. 

 

Figure 2.14: Two different chromosomes 
 

Several chromosomes group together to formulate a population of individuals. As 

different chromosomes are generated, a population has a diverse set of chromosomes. Population 

diversity plays a vital role in the exploration of best solution in the evolutionary algorithms [128]. 

An important consideration in this part is that generation methods must prevent the generation 

of infeasible solutions, otherwise the same will have to be evaluated at a later stage for rejection. 

The population has parent chromosomes which reproduce through recombination 

methods to generate offspring [129]. Since the offspring are generated through the parents, they 

typically include characteristic information from their parents; however, they are different owing 

to the sequence of the genes. 

GA has two distinct recombination operators, crossover and mutation which basically 

aim to explore the search space by generating neighborhood solutions. Crossover occurs between 

two parents such that the information exchanges between the parents. Conventionally, a single-

point crossover is employed whereby a random position for crossover is selected and the relative 

parent parts are swapped to generate two further offspring. Figure 2.15 presents a single-point 

crossover. In mutation, a single parent gene ‘mutates’ to generate a new offspring. Figure 2.16 

presents a representation of a typical swap mutation. Obviously, there are other formulations for 

recombination operators; however, they are algorithm specific.  

1 0 1 1 1 0 1 0 0 1 0 1
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Figure 2.15: A typical one-point crossover 
 

 

 

Figure 2.16: A typical swap mutation 

 

A new population group is then formulated with the inclusion of offspring with the 

parents. All chromosomes are then evaluated for ‘fitness’, i.e. the criteria against which the 

chromosomes are judged for being better individuals. This is the objective function of the 

optimization problem. The chromosomes are then ranked according to the fitness. 

Natural selection phenomenon is then performed to bring better individuals to the next 

population. Since GA requires several generations in order to explore the complete search space 

effectively and to achieve good solutions, the process continues as per requirement. In this regard, 

elite chromosomes are generally carried forward as they represent the best solution. Moreover, 

several chromosomes with compromised fitness are also carried forward in order to maintain 

population diversity. Finally, the algorithm terminates after achieving the prescribed criteria. The 

general termination criteria are the achievement of a predetermined number of generations or no 

solution improvement over a said number of generations. 

GA is an evolutionary process and the quality of solution provided by it depends on 

several things. However, one of the major considerations is to ensure the evaluation of complete 

search space. In this regard, following concepts are employed: 
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a. Exploration / Diversification: New areas of the search space in distant environments 

are evaluated in addition to the already explored areas. Crossover is an example of 

this technique. 

b. Exploitation / Intensification: An already searched solution is exploited further to 

yield a possibly better solution. Mutation is an example of this technique. 

Since, it becomes impossible in to completely evaluate the extremely huge search spaces, 

it is always a trade-off between maintaining the population diversity and convergence. An overly 

diverse population may fail to converge, and an under-diverse population may converge 

prematurely. In both cases, solution quality is badly hampered. 

Figure 2.17 presents a schematic with regards to different steps of GA. Here, four genes 

are generated with color-based coding to provide and idea of the evolutionary process.  
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Figure 2.17: Flowchart of GA with gene representations 
 

2.6.3 Advantages and disadvantages 

Following are the major advantages of GA. 

Population initialization

Encode solution

Select parents

Crossover Mutation

Evaluate fitness

Select new population

Start

End

Terminate

Yes

No

Best chromosome

Recombination operators

Decode solution
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a. The algorithm has been developed through taking inspiration from nature and it is 

easy to comprehend. 

b. Enables multiple search points at a single time depending upon the population which 

provides the facility of multi-dimensional search. 

c. Derivative free method. 

d. Based upon probabilistic techniques instead of deterministic techniques. 

e. Can undertake different types of optimization problems e.g. stochastic, continuous, 

and noise. 

f. GAs have been applied to vast nature of problems including stock prediction [130], 

financial planning [131], image processing [132], engineering design [133], trajectory 

planning [134], data fitting [135] etc. 

g. The algorithm has received special attention in solving the sequencing problems in 

various domains (e.g. flight schedules [136], operation room scheduling [137], 

traveling salesman problem [138], plant layout [139]). 

Following are some of the drawbacks of GA. 

a. Chromosome representation is to be changed for specific problem, even within the 

same nature of the problem. 

b. Similarly, the recombination operators are problem specific and may severely 

jeopardize the overall algorithm efficiency if not correctly defined. 

c. Definition of fitness function is an uphill task. 

d.  Decision regarding different parameters e.g. population size, generation size, 

termination criteria etc. is extremely important to ensure solution quality and to 

prevent premature convergence. 

e. Each solution must be evaluated for fitness. 

f. Premature convergence is generally encountered when a chromosome with far better 

solution is found since the elitist criteria takes it to new populations and it reproduces 

to generate many neighborhood solutions with better fitness. This situation ultimately 

results on local minima trap. 

2.7 GA for FJSSP 

2.7.1 Literature summary 

Davis [140] and Brucker [26] are the pioneers to use the adaptations of GA for FJSSPs. 

Since then, an enormous amount of literature has been published to solve various aspects of the 

problem. This is due to fact that the problems are truly challenging and provide many horizons 
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for optimization endeavors. Consolidated research surveys have also been published in the 

literature to address the application of GA to FJSSPs; some of which are presented in Table 2.9.  

Table 2.9: Surveys published to review FJSSP literature 

Reference Survey Focus 

Chaudhry et al [141] 
Classified the literature on FJSSP with solution approaches with 

statistical data 

Xie et al [142] 
Future research directions along with real world applications and 

development trends 

Gen et al [143] 

Multi-objective optimization of the FJSSP 
Lei et al [144] 

Lal et al [145] 

Genova et al [146] 

Amjad et al. [10] Literature classification for FJSSP solution approaches using GA

Zhang et al. [147] Viewpoint of industry 4.0 

Çaliş et al. [148] Artificial intelligence-based strategies 

Fan et al. [115] Review of scheduling rules  

Allahverdi [149] Setup times consideration 

 

Since there are two sub-problems encountered for the FJSSP, they can be solved in 

parallel (integrated method) [150, 151] or one by one (hierarchical method)  [152, 153]. Figure 

2.18 [10] presents the trend of FJSSP publications conducted by using GA based approached 

over the last few decades. It is evident that the trend is increasing which indicates the popularity, 

efficacy and adequacy of the algorithm. Amjad et al. [10] have classified the literature on 

following basis. 

a. Pure GA 

b. Advanced GA 

c. Hybrid GA 
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Figure 2.18: Trend of FJSSP publications with GA approaches 

2.7.2 Chromosome encoding 

Chromosomes are representatives of a candidate solution and hence researchers have 

endeavored to generate representations that can handle the problem in an effective manner. Some 

of the chromosome encoding / representation schemes are summarized below. 

a. Mesghouni et al. [154]: Developed for parallel machine problems, whereby machines 

are placed in parallel and operations are sequenced on them. 

b. Chen et al. [155]: Consists of two-part integer-based representation where the first 

part is for machine indexing and second is for operation sequencing. 

c. Ho et al. [156]: Consists of two-part representation where first part represents the 

operation sequence corresponding to other operations and second part deals with 

machine assignment. 

d. Kacem et al. [54]: Consists of coding based on start time and end time of a certain 

operation in conjunction with the assignment table. 

e. Zhang et al. [157]: Consists of machine selection and operations selection parts 

scheme whereby the whole chromosome interprets the schedule. 

2.7.3 Population initialization 

Since, GA needs several chromosomes, population initialization methods have also been 

evolved. The most popular in this regard is the random population initialization method [158, 

159]. Other important methods include global and local initialization [160]. 

2.7.4 Recombination operators 

The recombination operators play an important role in intensification and diversification 

of the initial population [77, 161]. Since these operators are used to generate new offspring, an 
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important factor is to ensure that feasible solutions are evolved during the process. Moreover, the 

operators are designed in accordance with the chromosome definition such that offspring are 

generated as per the selected definition. The operators are applied on the parent population 

through pre-defined probability; hence only some selected parents go through crossover. This 

can generate following scenarios: 

a. Elite (best) chromosomes may only be selected for recombination, which will 

eventually lead to premature convergence as all population will concentrate against 

the best chromosome. 

b. The chromosomes with compromised fitness will lead the convergence nowhere and 

a result with poor fitness will be obtained. 

c. Since the above-mentioned options will not generate good results, a selected 

population undergoes recombination in which both elite and non-elite parents are 

available. The selection is generally made through random criteria. 

The crossover operators are mainly used to inculcate diversification through 

recombination process in a random manner [162]. Traditionally, points are selected from the 

parents and swapping is performed to generate two offspring. Therefore, single-point [58, 163-

171], two-point [172-184], multi-point [37, 185-189] and uniform crossover [190-193] have been 

used. A major consideration is to avoid generation of infeasible chromosomes during this process 

[194, 195]. In this regard, precedence preserving order-based crossover (POX) and its improved 

forms [196-208] have been used tremendously. Moreover, multiple methods have also been 

combined in a single algorithm to enhance solution quality as every method has its own pros and 

cons [153, 157, 209-223]. Figure 2.19 depicts the frequency of use for different types of 

crossover. 
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Figure 2.19: Frequency of use for different crossover types 
 

 Mutation operators also inculcate the concept of search space evaluation, but they entail 

single gene change and hence promote more of a local search phenomenon since it generates 

offspring in the neighborhood. The process consists of selecting a random gene from the parent 

chromosome and changing it to generate new offspring which is termed as swap mutation [58, 

164, 169, 178-180, 182, 188, 190, 192-194, 201, 210, 215, 219, 220, 224-233]. Random mutation 

[37, 184-186, 207, 208, 234-237] is another similar nature of operator. As pointed out in 

crossover, mutation process has also to be developed carefully in order to avoid generation of 

infeasible solutions. Additionally, different combinations of mutation operators have also been 

used some of which are identified in [163, 208, 223, 238-246]. Figure 2.20 presents frequency 

of different types of mutation used in literature.  
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Figure 2.20 Frequency of use for different mutation types 
 

The selection process is employed to identify the most suitable individuals for inclusion 

in the population to improve the fitness function as much as possible. Following are the major 

types of selection used in the literature. 

a. Elitism [169, 191, 205, 218, 231, 233, 247-251]: Only the fittest individuals are 

selected for next generation. 

b. Roulette wheel [59, 150, 157, 180, 185, 186, 194, 197, 213, 224, 227, 252-256]: 

Individuals are selected based upon the probability such that fit offspring are selected 

more and fewer are selected from lesser fit offspring, however all types of individuals 

are permitted to pass.  

c. Random [162, 163, 257, 258]: Individuals are selected randomly. 

2.7.5 Classification of GA approaches for FJSSP 

The available literature reporting attempts for solving FJSSP instances with GA has been 

classified as pure GA, advanced forms of GA and hybrid GA. Pure GA has been used to attempt 

the FJSSP most of the times as shown in Figure 2.21 with hybrid and advanced GA in the second 

and third places respectively. NSGA has been used to attempt the multi-objective functions 

which have been attempted more than 3 times as compared to single objective functions. 
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Figure 2.21: Classification of GA based FJSSP literature 
 

Different GA based methods have been identified and presented in Figure 2.22 along with 

their frequency of use. It is noticeable that pure GA has been used the most for attempting the 

FJSSPs, while GA + TS [36, 170, 217, 221, 236, 245, 248, 251, 259-263] has been used the most 

in the hybrid methods. Other hybrid applications include local search GA + LS [160, 204-206, 

208, 222, 264-266], SA [244, 246, 250, 267, 268] and VNS [189, 207, 216, 269-271]. 

 

Figure 2.22: Different GA based approaches for FJSSP and their application 
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 Figure 2.23 presents the statistics for the use of different objective functions in 

the optimization process. It is evident that makespan is the most attempted single objective 

function while total workload has been attempted through multi-objective approach along with 

other functions. 

 

Figure 2.23: Frequency of objective function attempts (single / multi) 
 

2.8 Gap Analysis 

It is concluded from the sections presented above that an enormous amount of literature 

is available with GA based solution approaches for solving FJSSPs. In this regard, pure GA has 

been used for solution and dispatching rules have also been integrated. Hence, this research aims 

to formulate two separate solution approaches one with dispatching rules and other with pure 

GA. Following summarizes the gap in literature which has provided motivation for this research. 

2.8.1 GA integrated with scheduling rules (GA-PR) 

Hand-schedulers have traditionally been using the dispatching rules for generation of 

schedules for onward implementation at the shop floor. Since they are purely heuristic methods, 

they do not guarantee an optimal solution and GA has been integrated with them in order to 

improve their efficacy. Following is a summary of literature reporting these approaches: 

a. Hybrid dispatching rules have been utilized for machine assignment problem [171]. 

b. A procedure based upon priority rules has been suggested, however results were not 

comparable [206]. 
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c. A quantitative study has been conducted on 36 rules and their combinations for 

sequencing an industrial unit and it has been concluded that SPT provides best results 

[272]. 

The GA-PR algorithm attempts to further evaluate the performance of selected priority 

rules against the benchmark problems and various improvements have been incorporated in 

comparison to the available methods. 

2.8.2 GA with iterative diversification technique (GA-IDT) 

The evolution of GA is dependent upon the selection of best-fit individuals according to 

the optimization function / environment. To evolve properly, diversity of population is an 

essential phenomenon because it ensures search space exploration in an effective manner. 

Consequently, intensified population in a concentric point of the search space indicates 

convergence on one hand, but that may also occur due to local minima trap. This is a known 

issue of GA approach [273, 274] which hinders the solution quality. Alternatively, a needlessly 

diverse population induces convergence barrier and the algorithm may continue to run infinitely.  

It is therefore a matter of great interest to propose a method which provides balance between the 

two opposite extremes. Moreover, the fine tuning of mutation and crossover probabilities is also 

an essential requirement for exploration of search space. In this regard following relevant 

literature has been identified to maintain population diversity: 

a. The preservation of an elite individual has been used and other individuals have 

been selected through other selection techniques [201]. 

b. A specifically designed crowding distance has been proposed [275]. 

c. A modification in the mutation approach has been proposed [276]. 

Further, following literature reports efforts for different variations of GA for achieving / 

improving good quality results by improving exploration of search space: 

a. Adaptive recombination operators have been proposed in accordance with varied 

fitness values [277]. The reference algorithm was tested against a non-popular 

instance of the size of 10 x 10. 

b. Adaptive mutation technique has been proposed for smaller rates at the 

initialization stage of the algorithm and bigger rates at the end to forcefully 

increase the efficiency of search space exploration [278].  

c. A mixture of elitist and tournament selection techniques have been proposed with 

a linear interpolation method for recombination operator probabilities [247]. 
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d. A strategy for 3 level parametric setting (high-medium-low) has also been 

proposed for recombination operator probabilities in view of the convergence 

pattern of the algorithm [189]. 

As indicated above, limited literature reports the methodologies to manage the diversity 

in a holistic manner. Hence this aspect is a matter of further research. GA-IDT proposes a 

framework to maintain the population diversity and manage intensification and diversification in 

an effective manner to generate solutions of better quality.  

2.9 Summary 

This chapter offers an introductory preamble to the flexible manufacturing systems and 

different options of flexibility. An in-depth analysis of the literature on approaches for solving 

the FJSSP with an emphasis on genetic algorithm is then presented. The trends of literature are 

explored through statistical data and prospective research opportunities have been identified 

which contribute to the motivation of this research.  
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3 Chapter 3 – Problem Formulation and Simulation Environment 

3.1 Problem formulation 

FJSSP benchmark instances present a set of deterministic number of jobs, operations, 

machines and respective operation times.  Consequently, the FJSSP is modeled as M set of 

machines which have to process N set of jobs, where; 

ܯ  ൌ ሾܯଵ,ܯଶ,ܯଷ, …  ሿ (4)ܯ,

ܬ  ൌ ሾܬଵ, ,ଶܬ ,ଷܬ … ,  ேሿ (5)ܬ

Every job j from the set of jobs j ߳ N, consists of a pre-determined number of operations 

which have to be carried out on a machine to be selected from the available set of machines. 

 ܱ ൌ ሾ ܱଵ, ܱଶ, ܱଷ, … , ܱሿ (6) 

Here, the jth operation ith job is denoted as Oij and ith job will have a total number of 

operations as Jio. Now, every operation is to be completed on a machine Mk with following 

conditions. 

ܯ  ∈   (7)ܯ

ܯ  ⊂ ܯ ∀ ܲ െ  (8) ܲܵܵܬܨ

ܯ  ൌ ܯ ∀ ܶ െ  (9) ܲܵܵܬܨ

Where, P-FJSSP present the partial class of flexibility i.e. some operations cannot be 

performed on all machines and T-FJSSP belong to the total class of flexibility i.e. each operation 

can be performed on all available machines. 

3.2 Problem constraints and assumptions 

Since every operation must be scheduled, it will have a start time tijk and end time Eijk on 

machine Mk. The reference processing time on machine Mk is denoted as Pijk during which the 

machine will be bust and will not be able to take any other jobs.  There is a total number of 

sequences available for a specific instance of the problem, L. Now, for ease of sequencing, a 

number can be allocated to every operation as shown in Eq (11). 

ܮ  ൌܬ

ே

ୀଵ

 (10) 
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 ݊ ൌ ܬ௫

ିଵ

௫ୀଵ

 ݆ (11) 

 Consequently, the operation Oij can only start at machine Mk such that following 

conditions are fulfilled. 

a. The operation at hand has no previous operations pending i.e. its preceding operations 

have already been completed and it is in waiting state for the present operation.  

b. The machine on which the operation Oij is to be allotted is available to carry out the 

operation [Eq. (11)] at the time of release rijk of the operation. 

ݎ  ൌ max൫ܥ , ᇲᇲݐ  ܲᇲᇲ൯ (12) 

 Following are the integral problem specific variables which can vary in the ranges as 

mentioned in Eq. (13) through Eq. (16). 

 1  ݅  ܰ (13) 

 1  ݆    (14)ܬ

 1  ݇   (15) ܯ

 1  ݊   (16) ܮ

 Since we are considering the general form of FJSSP, its universal constraints are 

described as follows. 

ݐ   0 ∀ ܱ߳ܰ (17) 

ݎ   0 ∀ ܱ߳ܰ (18) 

ݐ  െ ′ݐ ′  ܲ′ ′ ∀൫ ܱ, ܱ′ ′൯߳ܵ (19) 

ݐ  െ ݐ ′′  ܲ ′′ ∀൫ ܱ, ܱ ′′൯ ߳   (20)ܬ

ܧ  െ ݐ ൌ ܲ ∀ ܱ ߳ ܬ & ܯ ߳  (21) ܯ

ݐ  ൌ max൫ܥ,  ൯ (22)ݎ

 In general setting of FJSSP, all machines are accessible and available when the jobs are 

to be started i.e. t = 0 [Eq. (17) & Eq. (18)]. The multi-purpose machines are allowed in the 

formulation however only operation can be undertaken on a said machine at a specific instance 

of time [Eq. (19)]. Referring to the physical restriction of the FJSSP, all operations are to be 

undertaken in a pre-decided sequence; hence O12 cannot be performed before O11 [Eq. (20)]. 

Machine breakdown are not considered hence all operations will be undertaken and completed 
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continuously without any break [Eq. (21)]. Similarly, there is no-wait shop scheduling system 

and operations will be undertaken as soon as the machines are available [Eq. (22)]. 

3.3 Insight to the problem formulation 

Let us consider the benchmark problem of Fattahi 12 i.e. MFJS 2 as shown in Table 3.1. 

The problem has a size of 5 jobs x 7 machines and each job has further three operations. Hence 

the problem has an overall size of 15 operations x 7 machines. This is a partial flexible instance 

as ܯ ⊂  e.g. O11 can only be performed on M1, M2 and M3 while it cannot be performed on ;ܯ

M4 – M7. Moreover, the operation times of O11 are different on all the possible machines, whereby 

the machines not available for a said operation are marked with infinity (∞).  

Table 3.1: MFJS 2 benchmark problem 

Job Operation 
Processing Time 

	ଵܯ ଶܯ ଷܯ  ܯ ܯ ହܯ ସܯ

 ଵܬ
ଵܱଵ	 147 123 145 ∞ ∞ ∞ ∞ 

ଵܱଶ	 123 130 ∞ 140 ∞ ∞ ∞ 

ଵܱଷ	 ∞ ∞ ∞ 150 160 ∞ 200 

	ଶܬ

ܱଶଵ	 214 ∞ 150 ∞ ∞ ∞ ∞ 

ܱଶଶ	 ∞ 66 87 99 ∞ ∞ ∞ 

ܱଶଷ	 ∞ ∞ ∞ ∞ 178 95 150 

	ଷܬ

ܱଷଵ	 87 62 ∞ ∞ ∞ ∞ ∞ 

ܱଷଶ	 ∞ ∞ 180 105 ∞ ∞ 145 

ܱଷଷ	 ∞ ∞ ∞ 190 100 153 ∞ 

 ସܬ
ସܱଵ 87 65 ∞ ∞ ∞ ∞ ∞ 

ସܱଶ ∞ ∞ 250 ∞ 173 ∞ ∞ 

ସܱଷ ∞ ∞ ∞ 145 ∞ 136 ∞ 

 ହܬ

ܱହଵ 128 123 145 ∞ ∞ ∞ ∞ 

ܱହଶ ∞ ∞ 86 65 47 ∞ ∞ 

ܱହଷ ∞ ∞ ∞ ∞ 110 85 ∞ 
 

Following are the salient mathematical interpretations of the selected problem. 

i. Since there are 5 jobs and 7 machines the first two parameters of the instance are 

N = 5 and M = 7. 

ii. All jobs have 3 operations each and total number of operations are L = 15. 

iii. The index i assumes a value from [1 – 5] since there are five jobs and all jobs are 

required to be addressed. 
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iv. Similarly, j assumes a value from [1 – 3] since maximum number of operations 

of any job are three. 

v. There are total seven machines available in this problem i.e. k can take any value 

from [1 – 7]. 

vi. According to the notation, index of machines is formulated as Eq. (23). This gives 

a complete row vector list of available machines. Furthermore, there are three 

operations for all jobs, hence the parameter Jio is formulated as Eq. (24). 

vii. In view of the reasoning explained in the nomenclature of i and j, Oij is formulated 

as a matrix of 5 rows and 3 columns where the rows denote the jobs and columns 

represent the relevant number of operation e.g. O42 means the 2nd operation of 4th 

job as i = 4 and j = 2.  

viii. Uij is a measure of flexibility of each machine with regards to the said operation. 

Only two machines are available to take the operation O53, however three 

machines can undertake O52. This aspect builds flexibility in the machine 

assignment because only the machines capable to undertake the operations are 

allowed to carry out the operation.  

ix. A sequence number (nij) for each operation is generated to track the sequence 

identification and is generated for problem under consideration in Eq. (27). This 

number is simply incremented for each operation and the value is stored in the 

corresponding matrix index. 

x. Since the index of Uij only provides the flexibility level of each operation and not 

the exact identification of machines which can undertake a selected operation Ωij 

is populated to resolve this aspect and presented in Eq. (28). Again, the index is 

mapped as per the already populated Oij scheme to impart a universal 

understanding. It is evident that O53 can be performed on M5 and M6, while O51 

can only be performed on M1, M2 and M3. This matrix can be searched to find out 

the exact information of machine which can undertake the relevant operation. 

ܯ  ൌ ሾܯଵ ଶܯ ଷܯ ସܯ ହܯ ܯ  ሿ (23)ܯ

ܬ  ൌ ሾ3 3 3 3 3ሿ (24) 

 ܱ ൌ

ۏ
ێ
ێ
ێ
ۍ ଵܱଵ ଵܱଶ ଵܱଷ
ܱଶଵ ܱଶଶ ܱଶଷ
ܱଷଵ ܱଷଶ ܱଷଷ
ସܱଵ ସܱଶ ସܱଷ

ܱହଵ ܱହଶ ܱହଷے
ۑ
ۑ
ۑ
ې

 (25) 
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 ܷ ൌ

ۏ
ێ
ێ
ێ
ۍ
3 3 3
2 3 3
2 3 3
2 2 2
3 3 ے2

ۑ
ۑ
ۑ
ې
 (26) 

 ݊ ൌ ܬ௫

ିଵ

௫ୀଵ

െ ݆ ൌ

ۏ
ێ
ێ
ێ
ۍ
1 2 3
4 5 6
7 8 9

10 11 12
13 14 ے15

ۑ
ۑ
ۑ
ې
 (27) 

 Ω ൌ

ۏ
ێ
ێ
ێ
ۍ
1,2,3 1,2,4 4,5,7
1,3 2,3,4 5,6,7
1,2 3,4,7 4,5,6
1,2 3,5 4,6

1,2,3 3,4,5 5,6 ے
ۑ
ۑ
ۑ
ې

 (28) 

Since FJSSP is a deterministic problem, its single lowest solution exists in each situation 

which is termed as the Lower bound (LB). This is the point beyond which no feasible solution 

exists. This aspect is supported by Ho et al. [234], which states that precedence constraints 

indicate the sequence of the operations of a job. This is one of the basic constraints of the FJSSP 

which formulate the very core of the optimization paradigm. The calculations of LB is fruitful 

gain insight to the possible solutions of the problem. Thus, completion time of each job is 

minimum if all operations are assigned with minimum possible times with subjective machine 

assignments as pointed out in Eq. (29). Moreover, any job cannot be completed before the 

completion of all of its operations and minimum time in this regard can be obtained just by adding 

the processing times of all operations without adding any delay as pointed out in Eq. (30). In 

order to calculate the makespan, it cannot be lower than the longest cumulative processing time 

of any job as shown in Eq. (31). Calculations for LB of MFJS-2 are shown in Table 3.2, which 

shows that lowest possible makespan is 396. For LB calculations, minimum possible operation 

time is taken for each operation and entered sequentially to obtain the completion time of the 

pertinent job. Accordingly, the maximum time of job completion is taken as LB since problem 

cannot be solved before that. A Gantt chart in this regard is presented in Figure 3.1. 

 ܲ
ᇱ ൌ  ܲ௫

ᇱ



௫ୀଵ

∀ ܱ (29) 

 ܲ
ᇱ ൌ min൫ ܲ൯ ∀  ߳Ω (30)ܯ

ܤܮ  ൌ max
ଵஸஸே ܲ

ᇱ (31) 
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Table 3.2: Calculation of LB for MFJS-2 

 

 

Figure 3.1: Makespan of MFJS-2 as per LB 
 

 

    M1 M2 M3 M4 M5 M6 M7 ܲ݅ ݆
′  ܲ݅′  LB

J1 

O11 147 123 145         123 

396 

396

O12 123 130   140       123 

O13       150 160   200 150 

J2 

O21 214   150         150 

311 O22   66 87 99       66 

O23         178 95 150 95 

J3 

O31 87 62           62 

267 O32     180 105     145 105 

O33       190 100 153   100 

J4 

O41 87 65           65 

374 O42     250   173     173 

O43       145   136   136 

J5 

O51 128 123 145         123 

255 O52     86 65 47     47 

O53         110 85   85 

JO
B

S
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3.4 Simulation environment 

Since the problem requires extensive computational routines, MATLAB® has been used 

to build the simulation environment for attempting the solution. MATLAB® is released by 

MathWorks and is one of the most popular computational programming languages that has been 

used in various engineering fields. It offers smooth integration with Microsoft Excel for read / 

write function in an autonomous mode and this functionality has been used to automate the 

algorithm execution. Benchmark problems have been obtained from the online repository of 

Mastrolilli [279].  

The simulation environment for the current study is built in following different parts as 

shown in Figure 3.2. 

i. Scheduler: The scheduler reads the problem from .fjs file and transforms it into 

an initial schedule through the predefined chromosome structure. The parametric 

setting of the algorithm is also fed into the solver through Excel worksheet. 

ii. GA solver: The solver intakes a seed chromosome and generates initial population 

through stipulated techniques. The GA routine then continues to converge until 

the termination criteria is met. Once the convergence is achieved the best 

chromosome is sent back to the scheduler and the same is translated into a Gantt 

Chart.  

 

Figure 3.2: Simulation environment for solving FJSSP 
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4 Chapter 4 – Proposed Algorithms 

4.1 Introduction 

It has been established adequately through extensive literature review that GA has been 

used as an effective technique to solve the combinatorial optimization problems. Although lot of 

research has been conducted to evolve different GA routines for improving the solution quality, 

areas for further research have been identified in section 2.8. This chapter provides details of the 

proposed algorithms for solving FJSSPs for optimization of makespan on selected benchmarks. 

The work presented in this chapter has been expanded from already published papers of the 

author [280, 281]. 

This work proposes two different approaches for solving the FJSSP as follows. 

i. GA integrated with scheduling rules: The two-part problem of FJSSP is addressed 

using a hybrid approach of GA and scheduling / dispatching rules. 

ii. Pure GA based technique: A pure GA based approach is proposed for solving the 

FJSSP in a holistic manner. 

4.2 GA with Priority Rules (GA-PR) 

Since there are two parts of the FJSSP, GA-PR is proposed, whereby the assignment part 

is solved by GA and scheduling part is solved by using five different dispatching rules. GA is 

used to search for the assignment problem after which the dispatching rules are used for the 

selected assignment scheme for finding the best makespan. The dispatching rule that gives best 

makespan is used finally to generate the solution. Figure 4.1 provides a flowchart of GA-PR and 

the following sections describe the algorithm in detail.  
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Figure 4.1: The flowchart of GA-PR 
 

4.2.1 Solution of assignment problem by GA 

The decision regarding assignment of operations to the available machines is made 

through application of GA. The chromosome is encoded using the scheme of Zhang et al. [157]. 

Considering the SFJS 6 problem as presented in Table 4.1. This is a partial flexible problem e.g. 

O11 can only be performed on M1 and O12 can be performed on both M1 and M2, but not on M3. 

A sample encoding is presented in Figure 4.2, where only M1 is shown below O11 since it can 

only be performed on this machine. The operation O32 is performed on M3 (blue gene) which is 

the second machine from the available set of possible machines i.e. M2 and M3. The operation 

which is assigned to a said machine is shown in black (circled) and other machines are shown in 
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red. In this way, the assignment of operations to available machines can be encoded in the form 

of a chromosome.  

Table 4.1: Fattahi SFJS6 

 

 

Figure 4.2: A sample chromosome encoding 
 

Figure 4.3 presents another chromosome following similar encoding scheme, whereby 

O32 will now be performed on first of the available machines i.e. M2. Here, all assignment options 

have been triggered to provide clarity of the representation, e.g, for O12, the available option of 

M2 is now selected from the available options of M1 and M2. This will change the spectrum of 

the scheduling problem since the operation will now be completed in 130 units of time instead 

of 40 units. 

Job Operation
Processing Time 

1ܯ 2ܯ 3ܯ

 1ܬ
1ܱ1 17 ∞ ∞ 

1ܱ2 40 130 ∞ 

1ܱ3 ∞ 50 60 

	2ܬ
ܱ21 30 ∞ ∞ 
ܱ22 150 160 ∞ 
ܱ23 ∞ ∞ 70 

	3ܬ
ܱ31 50 60 ∞ 
ܱ32 ∞ 170 180 
ܱ33 ∞ 90 100 

1 1 2 1 2 1 1 2 1

O11 O12 O13 O21 O22 O23 O31 O32 O33

M1 M1 M1 M1 M1

M2 M2 M2 M2 M2 M2

M3 M3 M3 M3
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Figure 4.3: Another sample chromosome 
 

In order to generate a population, random initialization of chromosomes is done as 

presented in Figure 4.4. The random initialization evaluates whether all operations of all jobs are 

assigned to the available machines and terminates when this condition is met. The loop continues 

to run until the required number of chromosomes are generated. 

 

Figure 4.4: Random population initialization 
 

Two-point crossover has been used for generating new offspring. First, two parent 

chromosomes are selected randomly from the current population and two crossover points are 

selected randomly. The parents are then swapped against these two points to generate two 

children. Since the assignment on the machines remains the same after crossover, this method 

restricts generation of infeasible children. Figure 4.5 provides an example of TPX where color-

coded parents are shown to produce children having inherited characteristics. 

1 2 1 1 1 1 1 1 2

O11 O12 O13 O21 O22 O23 O31 O32 O33

M1 M1 M1 M1 M1

M2 M2 M2 M2 M2 M2

M3 M3 M3 M3
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Figure 4.5: An example of TPX 
 

Crossover is performed over a selected population which is controlled by crossover 

probability (Pc). This value is traditionally taken as 0.8 – 0.9 to ensure a good evaluation 

throughout the search space. However, since the probability is selected at the start of the 

algorithm, the operator tends to remain stagnant during the algorithm execution. Hence, adaptive 

probability is proposed in GA-PR, whereby the probability starts increasing from the initial value 

as the convergence is achieved in order to ensure population diversity as depicted in Eq. 32. This 

helps the algorithm to reduce the chances of trapping in local minima. A flowchart of the TPX is 

presented in Figure 4.6. 

 ܲ ൌ
avg ௧ܨ
max ௧ܨ

 (32) 
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Figure 4.6: Flowchart of TPX  
 

A compulsory mutation (CM) technique is proposed in GA-PR which has been evolved 

through the concept of flexibility in machine assignment. The flexibility in genes depends upon 

the number of operations a machine can undertake i.e. the machine must be capable to complete 

at least two operations (Uij > 1).  This level of flexibility has also been indicated in the standard 

benchmarks and in corresponding .fjs files and the same is calculated as follows. 

 ݂ ൌ
∑ ∑ ܷ


ୀଵ

ே
ୀଵ

ܮ
 (33) 

Get parent chromosomes C1, C2 and Pc as 
input

START

R1← Generate random number between [1 ~ L]
R2← Generate random number between [1 ~ L]

P1←[C1 (1 : R1-1)    C2 (R1 : R2)    C1 (R2 + 1 : L)] 
P2←[C2 (1 : R1-1)    C1 (R1 : R2)    C2 (R2 + 1 : L)] 

END

Save small number in R1, and larger number in R2

Yes

Get P1 and P2 as offspring

Crossover completed for all parents as 
identified by Pc?

No
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The problem flexibility introduces computational complexity on one side and possibility 

of producing better solutions on the other side. Hence it is important to evaluate the overall 

options offered by problem flexibility in an adequate manner. In view of this fact, following 

propositions are made for the CM operator. 

i. CM Rule 1: Only flexible genes must be mutated (if available), instead of random 

genes; since random gene mutation will return same value as no other option is 

available or otherwise return an infeasible solution. 

ii. CM Rule 2: Once the gene with flexibility is selected, the already stored option in 

that gene must be changed to another value and same value return will not be 

allowed. 

Once the combination of above schemes is implemented, flexibility of mutated gene is 

evaluated in a better manner. Figure 4.7 provides an example of the CM operator. The operation 

O31 is selected for mutation out of the possible options of O12, O13, O22, O31, O32 and O32 (shown 

in blue). Rest of the genes will not be selected for mutation as per CM Rule 1 since they don’t 

offer flexibility. Now, O31 can be performed on M1 and M2. As per CM Rule 2, M2 cannot be 

selected again since it is already selected, hence M1 is selected and the updated gene is shown in 

red.  

 

Figure 4.7: An example of CM 
 

As also pointed out in TPX discussion, mutation operator is also performed on some 

randomly selected parents which are similarly controlled through probability of mutation (Pm). 

Traditionally, this vale is taken as 0.1 – 0.2. Since the value is selected in the start of the 

algorithm, it remains the same throughout the generations and loses effectivity regarding search 

1 2 1 1 2 1 2 1 2Parent

O11 O12 O13 O21 O22 O23 O31 O32 O33

1 2 2 1 2 1 2 2 2Uij

1 2 1 1 2 1 1 1 2Child

Selected flexible gene

M1 M2
Available options
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space exploration towards convergence. A similar adaptive mutation probability is proposed here 

as per Eq. 25 which increases the mutation probability as per the maximum population fitness 

value and increases the Pm value as convergence is achieved. This procedure incorporates further 

diversity in the population. A flowchart of CM procedure is presented in Figure 4.7. 

 ܲ ൌ
min ௧ܨ
maxܨ௧

 (34) 
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Figure 4.8: Flowchart of CM 
 

The algorithm continues to execute the recombination operators until the required number 

of parents get crossover as per Pc and mutation as Pm. This generates a new population pool 

which is greater than the allowed population and which contains both parents and the offspring. 

The rule of fitness survival is now applied on the whole population. The selection mechanism is 

Get parent chromosomes C1, Pm as input

START

Ind ← Evaluate flexible genes (Uij > 1) and return 
indices

Select flexible gene as per R

END

R ← Generate random number between [1 ~ N]

Yes

Get P1 offspring

Crossover completed for all parents as 
identified by Pm?

No

Mutate the gene with other available option
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hybrid mixture of elitism and roulette wheel techniques in a ratio of 40:60, respectively. These 

procedures are described below. 

a. Elitism: This procedure inputs population comprising of parents / offspring and 

sorts it in descending order. Best chromosomes are then selected depending upon 

the fitness value. The number of chromosomes selected through elitism is 

generally kept low because their increased number forces the algorithm to 

converge in premature manner and / or trap in local solution. Its flowchart is 

presented in Figure 4.9. 

b. Roulette wheel: This procedure intakes cumulative fitness of whole population 

and generates a random number in its stipulated range. The corresponding 

chromosome is then transported to the next generation irrespective of its own 

fitness. This operator ensures population diversity, and a higher number of 

chromosomes are selected through this procedure. Its flowchart is presented in 

Figure 4.10. 

 

Figure 4.9: Flowchart of elitism 
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Figure 4.10: Flowchart of roulette wheel 
 

4.2.2 Solution of scheduling problem by priority rules 

Once the assignment problem is addressed by GA, the scheduling problem is undertaken 

by using priority rules. The selected rules for implementation are explained below. 

a. SPT: This rule uses the processing time of jobs to schedule them based upon the 

least time required i.e., the job requiring minimum time will be scheduled first. 

This is modeled as defined in Eq. (26). Considering the SFJS-6 (Table 4.1), 

assume that all operations which can be completed on M1 are assigned to it (i.e. 

O11 = 17, O12 = 40, O21 = 30, O22 = 150, O31 = 50). Since, SPT is to be applied, 

the operation with minimum Pik i.e., O11 will be scheduled at priority. 

 ܲ ൌ ݉݅ ݊ୀଵ
 ሾሿ (35) 

b. LPT: This rule uses the processing time of jobs to schedule them based upon the 

longest time required i.e., the job requiring maximum time will be scheduled first. 

This is modeled as defined in Eq. (27). Considering the SFJS-6 (Table 4.1), 



 
 

60 
 

assume that all operations which can be completed on M2 are assigned to it (i.e. 

O12 = 130, O13 = 50, O22 = 160, O31 = 60, O32 = 170, O33 = 90). Since, LPT is to 

be applied, the operation with minimum Pik i.e., O32 will be scheduled at priority. 

 ܲ ൌ ୀଵݔܽ݉
 ሾሿ (36) 

c. MOR: This rule uses the remaining number of operations of the job as the decisive 

factor and schedules the job with the greatest number of remaining operations 

first. The remaining operations in this regard are calculated as defined in Eq. (28). 

Considering the SFJS-6 (Table 4.1), it is clear that all jobs have equal number of 

operations, i.e., 3. Let’s assume that an assignment arises such that all three 

operations of J1 and 2 operations of J2 have already been scheduled. Since the 

greatest number of operations will be from J3, it will be scheduled based upon 

MOR. 

 ܱܴ ൌ ܬ െ ݆  1 (37) 

d. MWR: This rule uses the most remaining work for scheduling and prioritizes the 

job with most work. The remaining work in this regard is evaluated as defined in 

Eq. (29). Here, k’ is the index assigned to the machine processing operation Oix. 

Irrespective of the operations, the remaining work in terms of time is given 

priority in MWR. Let’s assume that an assignment arises such that all three 

operations of J1 and 2 operations of J2 have already been scheduled. Even though 

all operations of J3 are remaining, this rule will schedule next operation of J2 since 

[(130 + 160 + 170 + 90 = 550) > (60 + 70 + 180 + 100 = 410)]. 

 ܹܴ ൌܲ௫′



௫ୀ

 (38) 

e. mMWR: The time required to process any operation on a said machine can be 

identified once the operation is assigned, because the operation time differs 

depending upon the machines. Thus, one must decide the assignment to execute 

the MWR. Here, proposition is made to modify the MWR to use average time of 

all process of an operation which can be undertaken on different machines. In this 

way, the rule becomes autonomous of the assignment. This is calculated as 

described in Eq. (30). An explanation in this regard is presented in Table 4.2. O12 

and O13 are scheduled by MWR as 11, however the mMWR generates an answer 

of 8.25.  
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 ܹܴ݉ ൌܽ݃ݒ ܲ௫



௫ୀ

 (39) 

 

Table 4.2: Example Instance for mMWR 

 
Table 4.3: Explanation of mMWR 

 

The algorithm calculates makespan based upon all five rules for each assignment and 

returns best makespan along with the used rule. The termination criteria are set as follows: 

a. Best known solution as identified by [282] or less is obtained. 

b. Total generations are exhausted. 

The output of GA-PR is evolved as a solution of the scheduling problem. Fitness function 

is used for the purpose of evaluating whether the solution is good or bad.  Figure 4.11 presents a 

process flow of fitness function used in GA-PR. The fitness is the total minimum time (Cmax) to 

finish all operations of all jobs which is found by taking inverse of Cmax.  

Job M1 M2 M3 M4 avgT 

J1 

O11 1 3 4 1 2.25 

O12 3 8 2 1 3.50 

O13 3 5 4 7 4.75 

J2 

O21 4 1 1 4 2.50 

O22 2 3 9 3 4.25 

O23 9 1 2 2 3.50 

J3 
O31 8 6 3 5 5.50 

O32 4 5 8 1 4.50 

Operation O11 O12 O13 O21 O22 O23 O31 O32 

Assignment M1 M2 M1 M4 M1 M1 M3 M2 

Tijk 1 8 3 4 2 9 3 5 

MWR 11      

avg Tijk 2.25 3.50 4.75 2.50 4.25 3.50 5.50 4.50 

mMWR 8.25      
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Figure 4.11: Fitness function 
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4.3 GA with iterative diversification technique (GA-IDT) 

Although FJSSP can be adequately handled with GA-PR, the approach is half-heuristic 

and half-metaheuristic. One hand, this architecture enables to evaluate the assignment part of the 

problem in an effective way, the setting also limits the scheduling part of the problem to be 

handled with priority rules. As evaluated earlier, the priority rules can address only a specific 

nature of instance in an optimal way. This setting, while providing ease of implementation and 

simplification in interpretation, has pitfalls in the solution of bigger problems as evident from the 

experiments. 

Apropos, a pure GA based approach is now proposed for addressing the complete 

landscape of the complex FJSSP in a holistic manner. This approach will undertake the 

assignment and routing problem in a parallel manner and will attempt to solve the problem 

simultaneously, such that space of both parts of the problem is evaluated by means of a meta-

heuristic.  

4.3.1 The need for IDT 

All population-based algorithms require a sufficient set of candidate solutions to evolve 

and produce possible best solutions and this basic ingredient of population is common amongst 

this family of algorithms, although described and implemented in conceptually different 

schemes. As an example, the PSO algorithm may be considered [283, 284] where a population 

of particles is maintained in a similar way, however fitness is estimated in a different manner. 

Population can be restrained in a certain area of the search space or it can be dispersed in 

the far spread areas. When concentrated in a certain area, it generally reflects a region of better 

solutions after convergence, but it may also be a local optimum very far away from the global 

one. On the other hand, well spread population indicates that the algorithm convergence is not 

met, and solution of equally good quality are being found in the far away areas. 

This is explained schematically in the Figure 4.12. The figure shows a search space for 

an arbitrary multi-solution optimization problem. The black dots present the candidate solutions, 

and the red dot represents the optimal solution. It is evident that the population is spread in the 

whole search space, however there are more solutions in the left side of the search space. The 

search algorithm (which in case is GA) initializes its population in a random manner and searches 

for a solution in four areas of the space. The concept of diversity starts right here, since increasing 

the number of initial solutions will increase the possibility of evaluating more search space in a 
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single time, however it will come at the cost of computational effort and will also lead to many 

similar solutions.     

 

Figure 4.12: A schematic representation of the search space 

 

Let’s consider the situation at reference location ‘A’. The algorithm starts to search (a1), 

finds only one solution, and then expands search to evaluate more space around its area (a2) , but 

doesn’t find anything. Similarly, it also sees no solution in intensification (a3). The solution 

presented as (a3) is saved as best in this case. This situation offers equal chances of finding 

solutions for both cases of intensification and diversification. 

In case ‘B’, the initial search location (b1) has no solution. When the solution space is 

expanded to (b2), four solutions are found, and the algorithm converges to the solution selected 

as (b3). In this scenario, if diversification is not carried out, no solution could be found inside the 

initial space. The best solution in this case is saved as (b3). 

In case ‘C’, the initial search location finds one solution (c1). In order to evaluate further, 

the search location is expanded (c2). Lets consider that the maximum number of solutions that 

can be saved in an iteration in this example are two and we find (c3). However, as evident from 

the figure we also have the optimal solution (c4) but cannot find it since the memory register has 

already been filled with best solutions. Now, to overcome this aspect, we intensify the search and 

find (c4) which is the better solution form (c3) so it is discarded. On comparison of the all 

solutions mentioned above, it is found that (c4) is the optimal solution.   

A

B

C

a2

a1

a1 a3
b2

b3

b1

c1
c2

c4

c3
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A well-spread population is required to evaluate the enormous search space offered by 

the FJSSPs. This diverse population guarantees that all possible locations of solutions are 

evaluated in an assertive manner; however, spreading the population unconventionally requires 

exceptional computational resources and it may also restrain the algorithm to converge since the 

algorithm will continue to evaluate the search space. On the other hand, restraining the population 

to a smaller number will result in insufficient evaluation of the search space and there will a 

possibility that better solutions are not found. It is therefore a factor of prime importance in the 

paradigm of evolutionary computation that population diversity is managed in a balanced manner 

such that search space is evaluated in an efficient way and unnecessary / recursive search is 

prohibited. 

With regards to GA, it is also a known fact that the algorithm tends to get trapped in local 

minima. This is again due to fact that the population tends to converge towards some elitist 

solutions, and it seems that the optimal point has been achieved; however, better solutions are 

available in the neighborhood or overall search space. It is pertinent to mention here that meta-

heuristic evolutionary algorithm does not guarantee a global optimum, but they provide a good 

solution that is near optimal.  

It is a matter of research to propose ways whereby the algorithm can produce near optimal 

solutions as close as possible to the global optima. With regards to the local minima trap, the 

algorithm is traditionally coupled with local search techniques of Tabu Search (TS) [236] or 

Simulated Annealing (SA) [285]. Although these are proven efficient techniques, they require 

additional implementation effort and corresponding computational cost. Another possibility in 

this regard to run the algorithm in extended generations [159]; however this option also requires 

computational efforts over extended periods of time. 

GA-IDT is purposefully built to propose mechanisms to restrict the above-mentioned 

challenges in the conventional GA approach. The algorithm proposes a strategy to manage 

diversification (to evaluate the whole search space in a sufficient manner) and intensification (to 

dig down a promising area of search space). Figure 4.13 presents the basic information and 

logical flowchart of IDT.  



 
 

66 
 

 

Figure 4.13; Flowchart of IDT 

4.3.2 Architecture of GA-IDT 

GA-IDT is built in four layers on the similar scheme of Figure 3.2. The simulation for 

solution search is executed in following steps. 

a. Step-1: Input parameters in MS Excel file: Different parameters are preset into 

the MS Excel sheet. Details are provided in Input Layer of the algorithm 

b. Step-2: MATLAB ® is opened and source code file is loaded and executed. 

c. Step-3: The algorithm reads the configuration settings and executes the algorithm 

accordingly. It converges as per stipulated criteria and terminates to produce Cmax 

and Gantt chart.  

d. Step-4: The algorithm saves the results in same MS Excel file for future use. 

Diversification Intensification

Input
Pc, Pm, GS, LS, RS, TerminationCtr, ReIntAttemptCtr 

Start algorithm and obtain convergence

GS LSPc

Pm

TerminationCtr > Tlimit?

ReInit

No

Yes

ReIntAttemptCtr > Rlimit?

START

END

Yes

ReInitAttempt

No
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Figure 4.14: Procedure for GA-IDT execution 
 

The algorithm is presented in Figure 4.15 and its functioning is presented in the following 

sections. 
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Figure 4.15: Flowchart of GA-IDT 

4.3.3 Layer 1: input 

The input layer takes parametric settings of the algorithm which are required for 

algorithm running through a pre-saved MS Excel file. This instrument is extremely helpful to 

conduct experiments over several settings of the algorithm such that settings / problems can be 

fed into next rows and the algorithm reads the settings before the start of each problem. 

 

Figure 4.16: A sample input MS Excel sheet 
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 presents a snapshot of input file and its different sections are explained below. 

a. Input directory: contains the path of ‘.fjs’ files to be read before algorithms start 

b. Output directory: contains the path of the folder where the convergence pattern 

and Gantt chart is saved in ‘.fig’ format. The algorithm is capable of reading the 

problem from ‘.fjs’ file and produce population.  

c. Filename: Contains the name of ‘.fjs’ file which is to be solved. Different 

problems can be fed into different rows and different parametric setting can be 

saved for experimentation. 

d. Maximum generations: The maximum number of generations are saved here, after 

the completion of which, the algorithm will terminate. 

e. Number of generations for termination: This counter continues to grow if no 

improvement is found in subsequent generations and is reset to zero once an 

improvement is found. The algorithm will terminate once the upper limit of this 

counter is hit. 

f. PopSize: The population size to retain in each iteration. 

g. SelRatio: The ratio of elitism and roulette wheel strategies to be used in the 

algorithm. 

h. Initialization: The percentage of global, local and random (GS, LS, RS) are saved 

here. 

i. Cmax: The algorithm saves the best solution here after convergence.  

 

Figure 4.16: A sample input MS Excel sheet 
 

4.3.4 Layer 2: GA 

This layer takes the input parameters from the input layer and executes the GA routine. 

The representation of MSOS proposed by Zhang [157] has been used in GA-IDT. Figure 4.17 

presents the Fattahi 12 problem and its conversion into an initial chromosome. The MS part is 

encoded as already explained in section 4.2.1. For further illustration, the first job (J1) is 
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comprised of three (03) operations i.e. O11, O12 and O13. If we consider O12, the operation can be 

performed on M1, M2 and M4, out of which it is currently being performed on M4 which is the 

third machine from the available machines. Hence, 3 is assigned to the respective gene. Similarly, 

the machine assignment is undertaken until all machines are assigned. The OS part defines the 

scheduling sequence for the assigned machines. The value of ‘1’ represents that the stated 

operation belongs to the first job. Since there are three operations of the first job, ‘1’ is repeated 

three times such that for the first time it represents O11, for the second time it represents O12 and 

for the third time it represents O13. Similar logic is applicable to other indices of the OS part. The 

initialization routine continues until all operations are assigned and scheduled according to the 

defined representation and a joint MS-OS based chromosome is formulated as shown in Figure 

4.18.    

 

Figure 4.17: Conversion of problem into MS and OS parts of chromosome 

 

Figure 4.18: An example chromosome 

 

Since the population consists of many chromosomes, the initialization mechanism is used 

to generate required number of individuals. Generally, random procedure is followed (refer 

Figure 4.4); which has been used for the OS part. However the proposed procedures of LS and 

GS [157] are also implemented in this algorithm for the MS part. 

The LS procedure searches for the available options of the sequences and schedules the 

process which has minimum processing time. For example, O22 can be scheduled on M2 with a 

M 1 M 2 M 3 M 4 M 5 M 6 M 7 MS OS

O 11 147 123 145 1 1

O 12 123 130 140 3 1

O 13 150 160 200 3 1

O 21 214 150 2 2

O 22 66 87 99 1 2

O 23 178 95 150 2 2

O 31 87 62 2 3

O 32 180 105 145 2 3

O 33 190 100 153 2 3

O 41 87 65 2 4

O 42 250 173 1 4

O 43 145 136 2 4

O 51 128 123 145 1 5

O 52 86 65 47 3 5

O 53 110 85 2 5

J1

J2

J3

J4

J5

1 3 3 2 1 2 2 2 2 2 1 2 1 3 2 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5

MS OS
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minimum time of 66. The GS procedure takes into consideration the machine busy time (Tk) in 

order to further minimize the processing time. In this regard, Tk is set equal to zero at first as 

there are no operations scheduled and machines are available / idle at the start of the problem. 

Once an operation is assigned and scheduled to a said machine, Tk assumes the subsequent value 

of relevant Pijk. The next operation is then scheduled to a machine where the added value of next 

Pijk becomes lowest when added to Tk. In this way, a global minimization is undertaken with 

reference to the machine busy time. These procedures are used in conjunction with each other so 

that an amalgamated population with properties of randomness, local and global best are 

produced for a selected machine selection. These procedure are presented pictorially in Figure 

4.19 and Figure 4.20 respectively. 
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Figure 4.19: Local search 

 

Figure 4.20: Global search 
 

The chromosomes are encoded until the required population strength is achieved as 

presented in Figure 4.21. The initial percentage of LS, RS and GS are pre-set into the input excel 

sheet.  

For each process Oij assign a 
machine Mk for which Pijk is 

minimum

All jobs 
assigned?

START

Select a job 
randomly

No

END

Yes
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Figure 4.21: Encoding of chromosome 
 

Since the algorithm needs to take decision whether the required number of chromosomes 

from a relevant technique have been generated or not, a decision tree is proposed for generation 

of population as presented in Figure 4.22. This procedure generates chromosomes until the 

number becomes equal to the required population size which was previously fed into the input 

sheet.  
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Figure 4.22: Decision tree for GS, LS and RS 
 

Once the population has been initialized, the termination counter is set equal to zero and 

the population is evaluated for fitness. The parent population in then set for recombination as 

summarized in Figure 4.23 and explained below. 

No. of chromosomes = 0

No. of Chromosomes ≥ pop size?

START

Take pop size, GS, LS & RS ratios as 
input

No

C ← Generate chromosomes randomly

Ɽ← Generate random  number 

POP ← save chromosome C in population
&

No of chromosome ++

Yes

Yes

No

Ɽ > (GS+LS)?

Yes

Ɽ > GS ?

END

C ← Generate chromosomes 
using LS technique

C ← Generate chromosomes 
using GS technique

No
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Figure 4.23: Recombination operators for GA-IDT 
 

For MS part, SPX [212], TPX [286] and UX [157] are executed. Let us consider two parent 

chromosomes (MS part only) extracted from Fattahi 12 as shown in Figure 4.24. The SPX 

generates two offspring from [1 ~ Թ] and [Թ ~ L] where Թ is a random number generated on the 

runtime in [1 ~ L]. An example of SPX is shown in 

 

Figure 4.25 and its flowchart is presented in Figure 4.26.  

 

Figure 4.24: Two parent chromosomes (MS part) 
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Figure 4.25: An example of SPX 
 

 

Figure 4.26: Flowchart of SPX 
 

The TPX generates two offspring from [1 ~ Թ1] and [Թ1 ~ Թ2] and [Թ2 ~ L] where Թ1	

and	Թ2 are random numbers generated on the runtime in the range of [1, L]. An example of TPX 

is presented in Figure 4.27 while its generalized flowchart has already been presented in Figure 

4.6.  
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Figure 4.27: An example of TPX 
 

The UX generates two offspring from such that offspring contain even and odd genes 

swapped from both parents turn by turn. An example of UX is presented in Figure 4.28, while its 

flowchart is shown in Figure 4.29. 

 

Figure 4.28: An example of UX 
 

1 3 3 2 1 2 2Parent -1 1 3 2

2 1 3 2 1 2 2 2 3Parent -2 1 2 1 3 3 2

1 1 3 2 1 2 2

2 3 3 2 1 2 2

Child -1

Child -2

2 2 2 1 2

2 2 1 1 1 1 3 2

2 3 2 2 2 3 3 2
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Figure 4.29: Flowchart of UX 
 

The OS part is represented such that the sequence of genes represents the order of 

operations. Thus, it is imperative that this order must be preserved to avoid generation of 

infeasible / false OS part solutions which will eventually prove meaningless when integrated with 

the MS part. To ensure that information of order is preserved, iPOX [208] has been implemented. 

In this procedure, sets of jobs [Js1, Js2] are generated randomly through a random integer in [1, 

n] and offspring are produced in [1 ~ x] and [x ~ n], where x is the random break point. An 

example in this regard is elaborated in Figure 4.30. Here, there are a total of 5 jobs, each having 

three operations. Js1 and Js2 are generated as [1, 2] and [3, 4, 5]. Now considering the Child-1, 

each gene in the chromosome pertaining to Job 1 and 2 will be transferred from Parent-1 and 

sequence will be copied as per original. Similarly, each gene in Child-1 pertaining to Job 3, 4 

and 5 will be copied from Parent-2 and sequence will be kept similar as of the parent. Child-2 is 

generated vice-versa and two different offspring are generated through a set of job sequences. 

Obviously, changing the job sequence will change the offspring. A schematic flowchart of iPOX 

is presented in Figure 4.31. 
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Figure 4.30: An example of iPOX 
 

 

Figure 4.31: Flowchart of iPOX 
 

Now coming to the mutation of the chromosome, Random Intelligent Mutation (RIM) 

has been used in GA-IDT for the MS part. A gene is selected and available options for machine 

assignment are evaluated and a new machine is assigned to mutate the gene. An example of this 

procedure is shown in Figure 4.32 and a flowchart is presented in Figure 4.33. Here, O32 can be 

performed on M4, M5 and M7. The operation was assigned to M7 before mutation and after 

mutation, it has been assigned to M4.  

2 3 4 3 1 1 2Parent -1 2 3 5

5 4 3 4 3 5 1 1 5Parent -2 4 1 3 2 2 2

2 5 4 3 1 1 2

5 4 3 4 3 5 2

Child -1

Child -2

5 4 1 4 5

4 3 1 5 5 2 4 3

1 5 4 1 3 2 1 2

Js1 = [1, 2]

Js2 = [3, 4, 5]

Divide jobs randomly in two sets as Js1

and Js2

START

END

Replace processes of Js1 in OS1

with processes of Js1 in OS2

Replace processes of Js2 in OS1

with processes of Js2 in OS2



 
 

80 
 

 

Figure 4.32: An example of RIM 
 

 

Figure 4.33: Flowchart of RIM 
 

A swap type of mutation (SM) has been implemented on the OS part, whereby two genes 

are randomly selected, and their places are changed. An example of SM is shown in Figure 4.34 

and its flowchart is presented in Figure 4.35. Here, gene number 4 and 13 are swapped together. 

 

Figure 4.34: An example of SM 
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Figure 4.35: Flowchart of SM 
 

As explained in GA-PR, the probabilities of recombination operators have also been 

taken as adaptive in GA-IDT [refer to Eq. (23) and Eq. (25)]. After the recombination process is 

culminated, hybrid selection mechanism is performed as already explained in Figure 4.9 and 

Figure 4.10. A set of new population is then achieved, and old population is replaced by it. 

The algorithm then performs the check whether the solution fitness has improved. A 

similar fitness function has been implemented in this algorithm as presented in Figure 4.11. In 

case the fitness is improved, the termination counter is set to zero again and algorithm continues 

to run. Otherwise, the termination counter is increased by one and the algorithm satisfies one of 

the termination conditions. In case the solution is not improved, the algorithm also checks 

whether the termination limit is hit or not. The algorithm proceeds to repeat the GA procedure in 

case a false is returned, otherwise it proceeds to the third layer of the algorithm. 

4.3.5  Layer 3: Re-initialization 

When the algorithm reaches this layer, the population has sufficient elite solutions since 

termination counter is hit. This layer re-initializes the population to induce diversity in the elitist 

solutions while preserving the best solution. This procedure is meant to further evaluate the 

possible search space areas those were not studied earlier. To further augment the process, the 

GS is decreased by 10% and LS is increased by 10%. 



 
 

82 
 

Since, the population has been dispersed, the increment in the LS leads to intensify the 

possibility of local search in the areas of promising solutions and the decrease in GS is 

compensated by the re-initialization process. Thus, increased computational evaluation is now 

performed around the best solution, while exploring the overall search space owing to the 

dispersed population. The overall procedure is further assisted through the adaptability of 

mutation and crossover probabilities for ensuing the possibility of generating new and better 

solutions. The newly formulated population is then returned to the GA layer after incorporation 

of the elite solution. The algorithm continues to cycle through Layer 2 and Layer 3 in a similar 

way until the re-initialization limit is achieved. 

4.3.6 Layer 4: Output 

This is the final layer that takes the elite chromosome and produces a Gantt chart file and 

a convergence pattern file. It saves these files in the intended directory as defined in the input 

layer. Let’s consider the example elite chromosome for Fattahi 12 problem as presented in Figure 

4.36. 

 

Figure 4.36: Chromosome to be decoded 
 

Figure 4.37 presents a pictorial representation of chromosome decoding. The MS part is 

translated into the y-axis of the Gantt chart. The operations are decoded to reveal the actual 

machine number on which the operation is to be performed, e.g. O52 is to be performed on third 

available machine. Since the available machines on which the said operation can be performed 

are M3, M4 and M5, the index of three points out M5. Consequently, the operation is translated to 

relevant machine accordingly. All machine assignments are decoded in a similar way and y-axis 

of the Gantt chart is populated completely while solving the assignment problem. 

Now coming to the sequencing problem is solved through decoding the OS part and 

translating relevant operation sequences to the corresponding machines. Again, considering the 

fifth job, first instance of 5 is obtained at gene number 8 which means that this operation is O51. 

We see that this operation has been assigned to M1. Remaining operations of fifth job, i.e. O52 

and O53 are obtained at gene number 12 and 15. The scheduler refers to the assignment part and 

finds that these operations are assigned to M5 and M6, respectively. In a similar way, the complete 

OS part is decoded, and Gantt chart is populated by placing each operation with relevant machine 

while incorporating its process time. The operation which culminates at the end i.e. O53 provides 

1 3 3 2 1 2 2 2 2 2 1 2 1 3 2 2 3 4 3 1 1 2 5 4 1 4 5 2 3 5
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the Cmax of the current chromosome which comes out to be 716 as shown in the final Gantt chart 

in Figure 4.38. 

 

Figure 4.37: A schematic of chromosome decoding 

 

Figure 4.38: Conversion of decoded chromosome into Gantt chart 
 

The termination criteria of this algorithm are as follows. 
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i. Maximum pre-set number of generations is acquired. 

ii. No further improvement is achieved until 100 generations & re-initialization 

counter is hit. 

4.4 Summary 

This chapter has explained the proposed algorithms, namely GA-PR and GA-IDT in a 

detailed manner and the constituent parts of the algorithm are elaborated through figures and 

flowcharts. Numerous contributions to the existing knowledge body are also highlighted. Results 

of the proposed algorithms will be presented in the next chapter.  
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5 Chapter 5 – Experimental Investigation and Performance 

Evaluation 

5.1 Introduction 

This chapter provides results of the developed algorithms. Firstly, a generalized and 

numerical insight to the search envelope of the FJSSP is suggested to provide a visualization of 

the complexity and magnitude of the attempted benchmarks. Section-wise results of GA-PR and 

GA-IDT are then presented and compared with other relevant algorithms for evaluation of 

performance. The standard datasets of Fattahi and Kacem are selected for this purpose. The 

reason behind selecting Kacem instances is that their optimal solution has been achieved [282] 

and the problem size is sufficiently large so there is a room for testing the newly developed 

algorithm against known best. The known tendency of GA to get trapped in local minima can be 

easily tested with this dataset. Moreover, Fattahi has been selected keeping in view the fact that 

initial ten problems are meant for testing purposes i.e., these are small problems and algorithm 

correctness can be easily assessed by them. However, the later ten problems pose a challenge 

since their optima is not known. 

A percentage deviation from the reported results of literature is calculated as follows. 

 %∆ൌ
௧௧௨݁ݑ݈ܸܽ െ ௩ௗ݁ݑ݈ܸܽ

௧௧௨݁ݑ݈ܸܽ
 (40) 

The results are compared with equated algorithms built on similar patterns, while not 

excluding the possibility of cross-technique comparison. This is due to fact that hybrid algorithms 

belong to a different class and their efficiency assessment and quality of result can only be 

compared with algorithms of similar class. In this regard results produced by HTS-TS / HTS-SA 

[55], GA [252], AIA [287], MILP [288] and CP [282] have been compared with developed 

algorithms. 

5.2 Evaluation of computational complexity and search space 

FJSSP belongs to one of the most challenging and computationally complex NP-hard 

problems [289, 290] and it has been reported that the problem is virtually impossible to solve 

and may take up to millions of years to find the exact solution [30]. A very straight-forward way 

to quantitatively assess the enormous complexity of the FJSSP is to evaluate search. Although 

this can be simply said that the problem is NP-hard, there is an academic interest to find what is 
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actual amount of the solutions available in the search space. This helps to design the search 

techniques accordingly. 

The search space size depends upon the chromosome length (and consequently the 

representation) and the flexibility (Uij) of the problem. As per the adopted representation in the 

current research, the search space size is a product of MS part search space and OS part search 

space i.e. Eq. (31).  

 Յ ൌ ܵܵሺܵܯሻ ൈ ܵܵሺܱܵሻ (41) 

The space of search for MS part is evaluated in combinatorial way through product of all 

possible blends of the operations. Moreover, the search space of the OS part is evaluated again a 

combinatorial fashion by obtaining ratio of L! and product of summations of Jio!. Following 

formulation [Eq. (32)] of the quantitative assessment of search space is proposed. 

 Յ ൌෑෑ ܷ



ୀଵ

ே

ୀଵ

ൈ
!ܮ

∏ !ேܬ
ୀଵ

 (42) 

This formulation provides an insight to the actual combinations of operations, jobs and 

machines. The formulation has been applied to complete datasets of Kacem (04 x instances) and 

Fattahi (20 x instances) and results are presented in Table 5.1. The table also shows the number 

of jobs and machines for each problem. There is an exponential increase in the search space size 

with the increase in number of combinations, e.g. for 2 x 2 size, search space is of the order of 

E+01 (SFJS 01) and for 3 x 3 size it shoots up to the order of E+05 (SFJS 09).  
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Table 5.1: Quantitative assessment of search space 

 

 

Figure 5.1: Graphical presentation of search space size 

5.3 The results of GA-PR 

The algorithms are implemented in MATLAB ® version 2018 and run on the Core-i7 

Pentium (RAM of 4 GB). Different types of analysis are conducted to evaluate the overall 

performance of the algorithm which are explained below. 

5.3.1 Contribution of priority rules 

As explained in section 4.2.2, the priority rules integrated with GA routine solve the 

scheduling part of the problem turn-by-turn and the rule that provides best solution to the specific 

instance is selected to generate the schedule. This is because priority rules do not guarantee the 

Instance N M L Յ Instance N M L Յ 

SFJS1 2 2 4 9.60E+01 MFJS3 6 7 18 4.67E+18 

SFJS2 2 2 4 2.40E+01 MFJS4 7 7 21 1.12E+23 

SFJS3 3 2 6 1.44E+03 MFJS5 7 7 21 7.45E+22 

SFJS4 3 2 6 1.44E+03 MFJS6 8 7 24 1.81E+27 

SFJS5 3 2 6 5.76E+03 MFJS7 8 7 32 3.00E+36 

SFJS6 3 3 9 1.08E+05 MFJS8 9 8 36 2.82E+42 

SFJS7 3 5 9 8.60E+05 MFJS9 11 8 44 1.35E+55 

SFJS8 3 4 9 8.60E+05 MFJS10 12 8 48 6.28E+61 

SFJS9 3 3 9 8.60E+05 Kacem 1 4 5 12 6.77E+13 

SFJS10 4 5 12 9.46E+07 Kacem 2 10 7 29 1.41E+48 

MFJS1 5 6 15 1.39E+13 Kacem 3 10 10 30 4.39E+54 

MFJS2 5 7 15 2.12E+14 Kacem 4 15 10 56 2.03E+112 
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optimality of the solution alone because they are heuristic methods, and the assignment part is 

being solved by GA. Nevertheless, certain priority rules outsmart other schemes in certain 

scenario. Therefore, it is imperative that different types of rules may be used such that they may 

perform in all scenarios e.g., SPT cannot perform best in an environment where all jobs have 

equal times. Obviously, a limited number of rules can be integrated. Therefore, the rules selected 

in this study have been identified on the assumption that at least one performs in each scenario. 

A procedure for evaluating the performance of rules has been suggested in Figure 5.2. 

The percentage contribution of each rule is finally calculated as shown in Eq. (33). 

ܥܲ  ൌ
ܧ

1000
ൈ 100 (43) 

 

Figure 5.2: Procedure for evaluating percentage contribution of selected rules 

The procedure presented in Figure 5.2 is applied to complete dataset of Fattahi. Step-6 

includes 1,000 iterations of previous steps. Since, the assignment part is being solved by GA, the 

solutions are randomly oriented. Therefore, 1,000 iterations of priority rules are performed to 

evaluate the overall effect of rules being used. This procedure has been devised for evaluating 

the contribution of each rule towards generating the makespan. A visualization is for assessment 

of percentage contribution is presented in Figure 5.3. The colored areas pertaining to each rule 

as pointed out in the legend represent the percentage contribution of said rule as compared to the 

other rules. Following are some observations from the visualizations. 
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a. Fattahi 2 is completely solved by SPT alone and no other rule has proven to be 

effective in this case over 1,000 iterations. 

b. Similarly, above 80% instances have been solved by SPT for Fattahi 1 and 

remaining instances were solved using LPT and no other rule proved to be 

effective. 

c. Overall, SPT has shown most contribution. 

d. The contribution of SPT falls drastically once the problem size increases and other 

rules start to play their role. 

e. The work / operations remaining rules does not play any part in the initial 4 

problems as all jobs are assigned and scheduled in the first instance. 

f. MOR has the sleekest contribution, whereas the contribution of LPT is also on the 

lower side.  

g. The MWR and mMWR increase their role in the larger problems because the 

number of machines become less as compared to the required number of 

operations to be conducted.  

h. The contribution of mMWR increases as the problems become larger. 

i. It is a general observation that the rule contribution depends upon the problem 

size and the specific machine assignment generated by GA. Hence, one rule can 

become more effective than the other in a specific instance depending upon the 

nature of prevalent instance, e.g. work remaining rule will dominate when the 

work remains, and the execution resources are scare etc. 

 

Figure 5.3: Visualization of percentage contribution of selected rules 

For further illustration of the contribution of each rule in the generation of best Cmax, the 

instance of Kacem-4 is solved with GA-PR. The upper half of Figure 5.4 shows the minimum, 
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maximum and average Cmax over 80 generations of GA-PR. The average and the minimum values 

continue to reduce over the generations, while the maximum value fluctuates owing to the 

adaptive parameters of recombination. The lower half of Figure 5.4 presents the contribution of 

each rule over each generation of algorithm and points out the best rule. The rule that contributes 

towards finding best solution has been indicated with a blue marker on the graph, e.g., in 

generation 73 – 75, SPT has contributed to finding the best solution. Similarly, during generations 

75 – 80, mMWR has contributed to find the best solution.  It is concluded that all rules play their 

part in providing best solutions over the generations. In addition, since the problem is a large 

problem, contribution of mMWR is significantly visible. 

 

Figure 5.4: Contribution of each rule in solving Kacem-4 

5.3.2 Behavior of adaptive recombination operator probabilities 

The initial probability of crossover (Pc) is taken as 0.8 which is then subjective to change 

as per the adaptive implementation. Figure 5.5 presents the behavior of Pc over the number of 

generations of a sample instance of FJSSP i.e., Kacem-4. The value of Pc tends to increase as 

shown on the right vertical axis of the figure with the convergence of population which is 

indicated by the average Cmax indicator plotted at the left vertical axis.  
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Figure 5.5: Behavior of Pc 

The initial setting of Pm is taken as 0.4 which is then subjected to adaptive increment. 

Figure 5.6 presents the behavior of Pm over similar generations as of Pc. The value of Pm starts 

to increase (right vertical axis) as the best Cmax is lowered (left vertical axis).   

 

Figure 5.6: Behavior of Pm 

This instrument of adaptive behavior is used to inculcate diversification in the population 

and to increase the possibility of finding new solutions and to explore extended search areas since 

the algorithm tends to converge around elite solution. 

5.3.3 Behavior of hybrid selection 

A dedicated experiment was conducted to evaluate the behavior of hybrid elite-RW 

selection mechanism. An initial population was generated using the random generation technique 

and its distribution of makespan against the number of individuals are shown in the left side of 

Figure 5.7.  
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Figure 5.7: Behavior of hybrid selection 

It is important to ascertain that the random population generation effectively generates a 

fairly distributed makespan individuals, both on the lower side and the higher side of the 

makespan bracket.  When the 20th generation is achieved, the population has been evolved 20 

times and convergence is now being started against the elite solution as indicated by the highest 

bar in the right side of Figure 5.7. Since the elitism effect is kept on a lower side to prevent hasty 

convergence, remaining population is undertaken by the RW criteria. It is thought-provoking that 

RW generates a Gaussian effect on the population distribution pattern. 

5.3.4 Results of attempted instances 

A total of 24 x instances were attempted using GA-PR, which contain 04 x instances of 

Kacem and 20 x instances of Fattahi. The parameters of GA-PR which were fed to the algorithm 

before start of execution are listed in Table 5.2. One approach could be to conduct a parametric 

study. However, the crossover and mutation probabilities are already adaptive, and they change 

according to the situation of the instance. Rest of the parameters have been taken from the 

literature review study [10].  
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Table 5.2: Input parameters of GA-PR 

 

Table 5.3 presents the results of Kacem problems as compared with CP. It has been 

reported that optimal solutions of these instances have been found [282] and thus comparison is 

thus only made with one other algorithm in order to assess the efficacy of the algorithm. GA-PR 

achieved best solutions for the first three problems, however lags for the fourth instance. 

Table 5.3: Results of Kacem dataset for GA-PR 

 

The results of Fattahi dataset are presented in Table 5.4 along with the results of other 

algorithms and relevant %Δ. It is concluded that the algorithm produces comparable solutions. 

The mean %Δ for each algorithm is shown pictorially in Figure 5.8. The positive value points 

out that the overall results of the dataset surpass the other algorithm, while in case of CP, the 

negative value indicates that an overall lag is observed. As an improvement has been indicated 

in the results of MFJS-7, the Gantt chart is presented in Figure 5.9. 

Parameter Description Value 

Population size Total chromosomes in a population 1500 

Generation size Number of iterations in GA 500 

Crossover probability Likelihood for chromosome crossover Adaptive 

Mutation probability Likelihood for chromosome mutation Adaptive 

Elitism ratio Elite chromosome selection factor 20 

Roulette wheel ratio Factor for roulette wheel selection 80 

Problem GA-PR 
CP 

Cmax %Δ
Kacem1 11 11 0
Kacem2 11 11 0
Kacem3 7 7 0
Kacem4 14 12 -16.7
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Table 5.4: Results of Fattahi dataset for GA-PR 

Problem GA-PR 
HTS/TS [55] HTS/SA [55] GA [252] AIA [287] MILP-1 [288] CP [282] 

Cmax %Δ Cmax %Δ Cmax %Δ Cmax %Δ Cmax %Δ Cmax %Δ 

SFJS1 66 66 0 66 0 66 0 66 0 66 0 66 0 

SFJS2 107 107 0 107 0 107 0 107 0 107 0 107 0 

SFJS3 221 221 0 221 0 221 0 221 0 221 0 221 0 

SFJS4 355 355 0 355 0 355 0 355 0 355 0 355 0 

SFJS5 119 119 0 119 0 119 0 119 0 119 0 119 0 

SFJS6 320 320 0 320 0 320 0 320 0 320 0 320 0 

SFJS7 397 397 0 397 0 397 0 397 0 397 0 397 0 

SFJS8 253 253 0 256 1.2 253 0 253 0 253 0 253 0 

SFJS9 210 210 0 210 0 210 0 210 0 210 0 210 0 

SFJS10 516 516 0 516 0 516 0 516 0 516 0 516 0 

MFJS1 468 469 0.2 469 0.2 468 0 468 0 468 0 468 0 

MFJS2 448 482 7.1 468 4.3 448 0 448 0 446 -0.4 446 -0.4 

MFJS3 468 533 12.2 538 13 466 -0.4 468 0 466 -0.4 466 -0.4 

MFJS4 554 634 12.6 618 10.4 554 0 554 0 564 1.8 554 0 

MFJS5 514 625 17.8 625 17.8 514 0 527 2.5 514 0 514 0 

MFJS6 634 717 11.6 730 13.2 634 0 635 0.2 635 0.2 634 0 

MFJS7 881 964 8.6 947 7 881 0 879 -0.2 935 5.8 931 5.4 

MFJS8 884 970 8.9 922 4.1 891 0.8 884 0 905 2.3 884 0 

MFJS9 1097 1105 0.7 1105 0.7 1094 -0.3 1088 -0.8 1192 8 1070 -2.5 

MFJS10 1275 1404 9.2 1384 7.9 1286 0.9 1267 -0.6 1276 0.1 1208 -5.5 
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Figure 5.8: Mean %Δ of GA-PR as compared with other Algorithms 

 

Figure 5.9: MFJS-7 Gantt chart 

 

It is deduced from the data presented in Figure 5.8 that GA-PR surpasses other algorithms 

in general, but is left behind from CP. Since CP is the constraint programming logic and performs 

on mathematical formulation, it has produced better results as compared to GA-PR. The 

algorithms outsmart all other algorithms which are designed on the same principles of GA. 
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5.4 The results of GA-IDT 

This algorithm is built to manage the aspects of diversification and intensification in an 

efficient manner. The algorithm is built in similar version of MATLAB ® and experiments are 

also conducted on similar machine as described in GA-PR. Again, judgement is made with 

comparable algorithms of similar nature only. 

5.4.1 Consequence of re-initialization 

GA-IDT undergoes re-initialization when termination counter is hit, and no further 

improvement is found until 100 generations are passed. This invokes changes in the population 

initialization schemes by altering the pre-set number of operators. To evaluate the effect of re-

initialization on makespan quality, let us consider the convergence of MFJS8 as shown in Figure 

5.10. 

 

Figure 5.10: Consequence of re-initialization on MFJS8 makespan 

When the algorithm starts, it undergoes multiple reductions in Cmax as lower values are 

continued to be found. The solution of simple GA does not improve after 180th generation and 

then stays there until another 120 generations have passed. and it seems that optimal point has 

been achieved as indicated by the straight blue line. However, as better solutions have already 

been found and reported in literature, it becomes evident that the point is local minima. 

Nevertheless, the algorithm stays there and terminates on local minima. 
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Now coming to the GA-IDT, the algorithm converges in a similar manner and attains 

stagnation after 120th generation. The results do not improve until 100 iterations and the 

algorithm re-initialize. The population diversity is dispersed after this and the algorithm is forced 

again to search the solution space while conserving the best solution. In addition to this, the 

initialization parameters are altered along with recombination probabilities. Just after the re-

initialization is complete and algorithm again starts to converge, an improvement of 38 is found 

in many steps as indicated by the oval shaped marker in Figure 5.10. The algorithm then 

continues to execute until the termination criteria are met. It is germane to note here that the 

simple GA does not get out of the local minima once the population has converged against the 

elite individual; however, the GA-IDT gets out of the local solution and strives to find more 

better solutions due to the methodology of iterative diversification. In this regard, re-

initialization, adaptive crossover, and global search tend to diversify the population, while 

adaptive mutation, local search and elitist preservation tend to intensify the population. This 

overall scheme has been termed as “Iterative Diversification Technique” (IDT). 

 Extended number of runs are conducted for other problems and similar behavior is found 

with regards to the IDT. Figure 5.11 presents the consequence of IDT on the convergence pattern. 

Following observations are found with analysis. 

a. MFJS-2 gets stuck in local minima at very initial stage (< 50 generations) and 

remains there until the algorithm is re-initialized thrice and improved solution is 

found afterwards. 

b. MFJS-4 gets caught in local minima after ~ 50 generations and re-initialization is 

invoked after completion of termination criteria. The algorithm finds better 

solutions after first attempt; however, no better solutions can be found after three 

further attempts. As a matter of fact, the solution found after first initialization is 

optimal. 

c. Similar behavior as of MFJS-4 can be found in the convergence patterns of MFJS-

5 and MFJS-6 (Figure 5.12). Both in MFJS 5 and MFJS 6, the algorithm gets 

trapped in local minima and evades from the trap after IDT is invoked. 

It is therefore concluded that IDT is effective in escaping from local minima and can 

divulge the algorithm to better solution, even in the presence of pre-elite solutions. It is also 

concluded that numerous attempts of re-initialization may also prove to be useful; however, this 

comes at the cost of computational resources. It is therefore suggested that a total of 04 re-
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initialization attempts be made as no improvements could be found after that during our 

experimentation. 

 

Figure 5.11: Consequence of re-initialization on convergence of MFJS-2 and MFJS-4 

 

Figure 5.12: Consequence of re-initialization on convergence of MFJS-5 and MFJS-6 

5.4.2 Results of attempted instances 

Table 5.6 presents the results of Fatthi and Kacem datasets in comparison with other 

algorithms. It is notable that GA-IDT outperforms GA-PR by providing best known Cmax for 

Kacem-4 instance. Since the global optima for these instances have already been met, no further 

comparison with other approaches have been undertaken. 

The algorithm is fed with predetermined parametric settings as pointed out in Table 5.5. 

For the purpose of this study, the recombination operator probabilities and selection operator 

ratios are kept adaptive. The termination counter in incremented after each generation with no 

improvement and continues to increment until 100 generations. After 100 iterations have been 
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conducted, the re-initialization counter is set-up and population is re-initialized as per the IDT 

and termination counter is set to zero again. This procedure continues until a total of 04 re-

initialization attempts are completed. 

Table 5.5: Parametric settings of GA-IDT 

 

The results of Fattahi dataset are also listed in Table 5.6. Percentage difference is 

calculated from Eq. (31). It is notable that the algorithm at least remains competitive even in the 

larger problems solved with ILOG programming engine of CP. All entries show positive 

difference which means that GA-IDT surpasses the obtained solutions accordingly. The 

algorithm lags in MFJS-10. 

 

Parameter Description Value 

Population size Total chromosomes in a population 1500 

Generation size Number of iterations in GA 250 

Crossover probability Likelihood for chromosome crossover Adaptive 

Mutation probability Likelihood for chromosome mutation Adaptive 

Global selection ratio 
Population initialization factor for global 
selection

Adaptive 

Local selection ratio Population initialization factor for local selection Adaptive 

Random selection ratio 
Population initialization factor for random 
selection

Adaptive 

Elitism ratio Elite chromosome selection factor 20 

Roulette wheel ratio Factor for roulette wheel selection 80 

Termination counter limit Limit for GA before re-initialization  100 

Re-initialization counter 
limit 

Number of re-initialization attempts 4 
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Table 5.6: Results of Fattahi and Kacem datasets for GA-IDT 

Problem 
GA-
IDT 

HTS/TS [55] HTS/SA [55] GA [252] AIA [287] MILP-1 [288] CP [282]
Cmax %Δ Cmax %Δ Cmax %Δ Cmax %Δ Cmax %Δ Cmax %Δ

SFJS1 66 66 0 66 0 66 0 66 0 66 0.0 66 0
SFJS2 107 107 0 107 0 107 0 107 0 107 0.0 107 0
SFJS3 221 221 0 221 0 221 0 221 0 221 0.0 221 0
SFJS4 355 355 0 355 0 355 0 355 0 355 0.0 355 0
SFJS5 119 119 0 119 0 119 0 119 0 119 0.0 119 0
SFJS6 320 320 0 320 0 320 0 320 0 320 0.0 320 0
SFJS7 397 397 0 397 0 397 0 397 0 397 0.0 397 0
SFJS8 253 253 0 256 1.2 253 0 253 0 253 0.0 253 0
SFJS9 210 210 0 210 0 210 0 210 0 210 0.0 210 0
SFJS10 516 516 0 516 0 516 0 516 0 516 0.0 516 0
MFJS1 468 469 0.2 469 0.2 468 0 468 0 468 0.0 468 0
MFJS2 446 482 7.5 468 4.7 448 0.4 448 0.4 446 0.0 446 0
MFJS3 466 533 12.6 538 13.4 466 0 468 0.4 466 0.0 466 0
MFJS4 554 634 12.6 618 10.4 554 0 554 0 564 1.8 554 0
MFJS5 514 625 17.8 625 17.8 514 0 527 2.5 514 0.0 514 0
MFJS6 634 717 11.6 730 13.2 634 0 635 0.2 635 0.2 634 0
MFJS7 879 964 8.8 947 7.2 881 0.2 879 0 935 6.0 931 5.6
MFJS8 884 970 8.9 922 4.1 891 0.8 884 0 905 2.3 884 0
MFJS9 1091 1105 1.3 1105 1.3 1094 0.3 1088 -0.3 1192 8.5 1070 -2
MFJS10 1238 1404 11.8 1384 10.5 1286 3.7 1267 2.3 1276 3.0 1208 -2.5
Kacem1 11 - - - - - - - - - - 11 0
Kacem2 11 - - - - - - - - - - 11 0
Kacem3 7 - - - - - - - - - - 7 0
Kacem4 12 - - - - - - - - - - 12 0

Mean %Δ 4.7 - 4.2 - 0.3 - 0.3 - 1.1 - 0
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It is also pointed out that no lag is observed in the overall mean deviation despite the fact 

that GA-IDT lags from CP and the overall value comes out to be zero as improvement from CP 

has also been obtained. This aspect is pictorially shown in Figure 5.13. Since improvement has 

been obtained for MFJS-8, its Gantt chart is shown in Figure 5.14. 

 

Figure 5.13: Mean %Δ of GA-IDT as compared with other Algorithms 

 

Figure 5.14: MFJS-8 Gantt chart 

5.5 Comparison of GA-PR and GA-IDT 

Although GA-PR and GA-IDT have been developed on different schemes and their 

architecture differs sufficiently, a comparison between the two algorithms is presented in this 

section. Figure 5.15 presents the comparison of GA-PR and GA-IDT in Fattahi dataset. It is 
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evident that as the problem size grows, the difference between the two algorithms become 

significant. The results of both algorithms are plotted as bar charts, while the difference between 

the two algorithms is shown on secondary axis through line graph. Hence GA-IDT surpasses 

GA-PR in obtaining Cmax. Similarly, in Kacem dataset, the algorithms perform in the same 

manner as shown in Figure 5.16 i.e., as the problem size grows, the difference becomes evident.   

 

Figure 5.15: Comparison between GA-and PR GA-IDT for Fattahi instances 

 

Figure 5.16: Comparison between GA-and PR GA-IDT for Kacem instances 

The comparison of GA-PR and GA-IDT shows that GA-IDT performs better. Both 

algorithms have their strengths and weaknesses, however, since the optimization objective is 

Cmax, GA-IDT provides better results. This is because half of the GA-PR is dependent upon 

selection and performance of rules. The algorithm cannot produce better results than theoretically 

possible from the heuristic rule. In addition, the search capability of the algorithm is dependent 

upon the GA part only. On the other hand, GA-IDT is completely based on GA and this provides 

advantage in further exploration of the search space and hence produces better results. 
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5.6 Summary 

This chapter presented the results of the two proposed algorithms i.e. GA-PR and GA-

IDT. The effectiveness and usefulness of the algorithms is then presented through conduct of 

different sorts of experiments to highlight the effect of proposed changes. The results show that 

the proposed algorithms perform in an efficient manner with other comparable methods and 

proposed improvements are useful. This fact is further augmented by the positive mean 

difference obtained from analysis of experimental results. 
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6 Chapter 6 – Conclusions and Recommendations 

6.1 Contribution to the existing body of knowledge 

Optimization of FJSSP by using artificial intelligence-based techniques is a widely 

researched area. Following are the contributions of the current work that stand-out from the 

already published literature. 

i. Thorough literature review: This work started with an in-depth literature 

assessment of the FJSSPs solved using different types of GA approaches. The work 

encompasses the study of more than 200 papers selected from a superset of more than 

400 papers. The literature review outlines major aspects of the solution approaches 

followed in the literature and classifies these papers in pure GA, advanced GA, and hybrid 

GA based approaches. Extended statistical analysis of data revealed that GA remain the 

most popular and attempted technique for solving FJSSP even though initial attempt was 

made back some four decades ago. Major GA based approaches (whether standalone or 

hybrid) are also identified, and an analysis of different parameters is also conducted to 

outline the most useful operators. The study also helps to identify different benchmarks 

in the field and some advanced formats of the basic FJSSP. The study not only provides 

a start-up guide for schedulers but also provides future research directions along with an 

introduction to the advanced concepts in the field. This work has received above 40 

citations till date. 

ii. Insights to scheduling problems: Manufacturing scheduling is a mathematically 

complicated area. This work has provided in depth coverage to the solution of scheduling 

problems through a sample benchmark instance. Different parameters have been solved 

and procedure has been outlined, in addition to the clear presentation of complex 

procedures through flowcharts. 

iii. Quantitative assessment of search space: The search apace of FJSSP is 

established as NP-hard and literature has proposed mathematical proofs in this regard. 

This work has proposed a formulation for evaluation of actual search space size through 

numerical estimation. Selected benchmarks have been evaluated accordingly and their 

search space is provided quantitatively to ascertain the genuine complexity. A 

comparative analysis in this regard the exponential increase in the problem complexity 

with the minimal increment in problem size. 

iv. Development of standalone software for scheduling: After the assessment of 

complexity, a software has been built in MATLAB ® for automated solution of the 
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problems. This software can undertake different settings of the problems through a pre-

set MS Excel file and continue to evaluate stipulated instances until they all have been 

solved. The methodology also automatically saves the generated results, both numerically 

and graphically for later analysis. 

v. Integration of rules with GA: A novel method for integration of priority rules 

with GA has been proposed, whereby 05 x rules are solved turn-by-turn and optimal 

solution is taken out instead of just relying on a single rule. The rules are selected keeping 

in view different scenarios developed during the solution of scheduling problem. A 

modified rule is proposed to further enhance the efficacy of the algorithm. 

vi. Development of mMWR: While integrating the priority rules, a modification in 

the MWR has been proposed which detaches the rule from machine assignment. The rule 

has been tested against different dataset and found that it solves the larger problems 

efficiently as compared to other conventional rules. However, the rule may still not be 

used in a standalone manner and the implementation of complete GA-PR is 

recommended, since heuristic rules are developed for a targeted environment.   

vii. Adaptive recombination operators: The classical approach of fixating the 

recombination operators for generation of offspring tends to stick the algorithm and 

promotes convergence in a haste. This work has proposed adaptive operators for 

crossover and mutation, which acclimate themselves according to the current state of the 

population fitness to promote further exploration of the search space for a possible better 

solution. 

viii. Development of an integrated GA approach for FJSSP: In addition to the 

integration of rules with GA, this work also proposes an integrated GA for solving the 

FJSSP in a parallel fashion. The GA-IDT is equipped with similar adaptive recombination 

operators as suggested earlier in this work. Moreover, advanced operators have been 

implemented for more spread in the population initialization instead of random generation 

only. The algorithm is implemented in four layers which function one by one depending 

upon the algorithm stage to manage the huge amount of data in a comprehensive manner. 

ix. Development of IDT: This work proposes IDT that has been integrated into the 

GA. The technique is built such that the algorithm explores the search space sufficiently 

without trapping into local minima. This is done through increment of GS and RS 

operators, hybrid selection mechanism, adaptive crossover, and re-initialization. Since 

this may require the algorithm to run unnecessarily and may also restrain the algorithm 

to exploit the areas of promising solutions, the algorithm is also equipped with techniques 

which encourage exploitation of the search space. This done through adjustment of LS 
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operator, adaptive mutation, and elitist preservation. This methodology is tested against 

benchmarks and it is concluded that it surpasses the other comparable algorithms. 

6.2 Future research directions 

This research has opened further avenues for future endeavors which may be pursued as 

follows. 

i. This research has evaluated the search spaces of basic FJSSPs. Efforts may be 

undertaken in future for numerical search space assessment of advanced forms of 

FJSSP, e.g. distributed FJSSP, just-in-time etc. 

ii. Five rules have been integrated with GA for performance assessment. Other 

advanced rules may be integrated in the algorithm for further analysis. In addition, 

the objective function change may also be given a preference in future. 

iii. The IDT may be further enhanced by integration of advanced concepts like Chaos 

maps for further enhanced of search performance.  

iv. The algorithm may be applied to advanced cases of scheduling problems like 

resource constrained, machine breakdown, setup dependent times etc. 

v. Lastly, other objective functions may be solved with this algorithm. In this regard 

fitness function for simultaneous optimization of multiple objectives may also be 

considered. 
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