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Abstract

Fixed allocation of GPU resources to virtual machines increases idle time in utilization

of GPU resources when the workloads are being executed on a different machine and

increases the cost of hardware as it requires GPUs for every virtual machine. Recent

solutions optimise scheduling algorithms in container orchestration environments to dis-

tribute workloads across machines having GPUs directly attached to them. However

if the workloads are distributed across different machines but require GPU for short

periods, GPU resources will stay idle on different machines for remaining time and that

results in increased cost and under-utilization of the available resources. To address this

under-utilization problem we present a framework to arrange available resources in a

way that it allocates GPU to a machine only when required for processing and after

processing that GPU can be shared with other machines for their workloads. The Key

of our framework is to create a pool of all the available GPUs and then reserve a GPU

for workload if it requests processing and add that GPU back to the pool of available

resources once released from workload. Therefore, this framework assures the maximum

utilization of GPUs with minimum available resources that results in significant decrease

in cost as well. Furthermore this framework proposes integration container orchestration

through kubernetes, provisioning resources and managing kubernetes clusters through

Rancher. This provides an end to end infrastructure to deploy workloads in a container-

ized environment and improve utilization of available resources. Experiment results

show that with our approach there’s very little overhead with time but we do not need

to directly attach GPU on each virtual machine to execute workloads.

Keywords: Resource Under-utilization, GPU, Containers, Kubernetes, Rancher

xi



Chapter 1

Introduction

With the increasing demand of cloud based deployments, containers and container or-

chestration platforms have gained immense popularity. Containers are lightweight vir-

tualization platforms and are highly appreciated by microservices based architectures.

Developers adapted to the microservices and containerization practices to develop appli-

cations and containers provided enhanced portability of application, speedy delivery and

synchronization in the environment. Cloud infrastructures also demand containerized

environments for cost, deployment, delivery and various other reasons. A lot of work

is carried out on distribution of underlying resources to run the microservices and gain

maximum throughput.

With the involvement of containers in almost every development life cycle, AI/ML work-

loads and applications that use GPUs to accelerate processing started adapting to mi-

croservices and containerization platforms very quickly. These workloads require GPUs

to execute some operations. GPU has a key role in the cost management of any ar-

chitecture and it is important to maximize the utilization of available GPU resources.

With the approach of distribution frameworks, scheduling the available GPUs and shar-

ing resources across different workloads became a challenge. Kubernetes clusters have

different worker machines which are used to run containerized workloads and are respon-

sible for the execution of jobs. But to run the workloads with the requirement of a GPU

worker machine must have a GPU attached to it. Scheduling algorithms are highly ef-

fective and are required to share the GPU to the containers running on the same worker

machine. But with orchestration clusters there are multiple machines where workloads

are distributed and containers run. If applications are designed with the requirement

1



Chapter 1: Introduction

that one microservice requires GPU resources for a very limited amount of time and

then GPU can be used by other microservices or some other application running in the

same cluster, we cannot schedule workloads on machines having No GPUs. So we either

have to buy more GPUs for other machines as well or schedule most of the workloads

on limited machines compromising the efficiency, utilization and costs.

In our work, we present a solution that enables workloads running on different machines

in the same cluster to utilize the same GPU resources at different times. We create a

pool of all the GPUs available in our servers and then a centralized server is responsible

to manage and execute GPU oriented tasks of each machine. Every workload distributed

across different machines in a kubernetes cluster requests for a fixed number of GPUs

from the GPU server and once the operation is completed and GPU is no more required

server can add the GPU back to the available pool. Now when some other workload

requires a GPU, since the GPU was released from the previous machine, the same GPU

can be utilized for the new machine and a new GPU for the new machine is not needed.

This way, by using a centralized pool of GPUs we can share GPUs on worker machines

running in the same network and increase utilization of available GPU resources and

significantly decrease cost and idle time.

1.1 Problem Statement

The superposition of artificial intelligence, data analytics, and IoT has aided the develop-

ment of sophisticated, intelligent, and computationally complex algorithms. These algo-

rithms require significant computing power to perform as they are desired to. Therefore,

executing these applications using traditional design frameworks leads to performance

bottlenecks. Thus, to alleviate the performance bottlenecks of these computationally

extensive workloads, there is a need for a framework which efficiently maps these ap-

plications on the underlying hardware with the goal to achieve maximum efficiency and

alleviate resource under-utilization.

1.2 Purpose

The main purpose of this research is to develop an approach to enhance the efficiency

of resource intensive complex workloads and increase the utilization of available hard-

2



Chapter 1: Introduction

ware resources. Organizations who have distributed application clusters across regions

in different time zones or require GPUs for certain operations across workloads in se-

quential or non-conflicting manners face a lot of GPU dead cycles when they have GPU

for every machine that runs a GPU oriented workload. Therefore, this solution will help

organizations to increase the utilization of GPU for those microservices and avoid idle

time significantly. This will eventually help them significantly improve their cost of un-

derlying hardware resources. The other main purpose of this framework was to provide

an end to end deployment infrastructure from application and hardware provisioning

aspects for the containerized AI/Ml workloads in a distributed environment.

1.3 Objectives

The objectives of the proposed framework are

1. Alleviate GPU under-utilization in distributed frameworks

2. Share GPU resources in distributed systems

3. Alleviate performance bottlenecks for resource intensive workloads

4. Cost effective hardware resource management

1.4 Background

Distributed system is an environment where the tasks are distributed across different

machines or networks or devices[1]. Distributed systems plays an essential role avoiding

single point of failures and helps with parallel computation or processing for complex

applications. Distributed programming or computing frameworks provides an environ-

ment for developers where they have predefined steps and faster development process.

Cloud computing and distributed systems made way for numerous other techniques and

patterns for the development of applications to make them salable, cost effective, easy to

manage and various other reasons. Microservices design pattern is one of the architec-

tural design patterns which gained high popularity over the traditional big monolithic

applications because of its various advantages. Microservices are decomposed sections

of one big application which are executed separately and coordinate with each other to

3



Chapter 1: Introduction

form one big application or perform a main course of actions. These decomposed parts

of an application gave high popularity to the concept of containers. Continuous deliv-

ery, reduced complexity, resource isolation and many other requirements which play an

important role for the success of microservices architectures are successfully achieved by

containers. Containerization is the concept of lightweight virtualization. Where a small

package for a microservices is created which has all the dependencies required to execute

the microservice and that is just about everything in that package. No individual host

or kernel requirements. With this lightweight packaging, microservices became highly

portable, it became easy to manage multiple environments for applications. This led to

high success of containers in a short time and every organization started adapting to this

new set of practices for ultimate success. With the high success of containers, container

orchestration platforms e.g. Kubernetes took over the infrastructure designs for both on

premises and public cloud deployments for distributed frameworks. Clusters of multiple

machines are configured and containerized workloads are deployed on the machines with

the required set of resources to execute those distributed workloads and communicate

with each other to complete the functional requirements of the applications.

With the high success of containerized microservices architectures, heterogeneous pro-

gramming systems also started adapting to the concept of containerization. AI/ML or

other resource intensive applications are designed to use GPUs as accelerators in par-

allel with CPUs to perform complex operations. As container orchestration platforms

are used to distribute containerized workloads across machines, availability of GPU re-

sources for the architecture, optimized distributions of workloads across machines and

resource sharing are some critical challenges for resource intensive applications. Ortho-

dox or conventional methods can cause exhaustive cost increments and bad utilization

of the available resources which in return will be a pathway for performance bottlenecks

and bad management. Scheduling algorithms are introduced from time to time to im-

prove sharing the GPU resources across multiple containers for workloads to increase

efficiency and utilization. These algorithms are important for GPU sharing but cannot

contribute to another problem that often gets neglected is that for these algorithms

machines must have GPUs directly attached to them. But if the workloads are designed

in a way that microservices require GPU for very short periods or certain tasks but in

spare time other microservices require GPU for their operations organizations have to

bear high costs of increased number of GPUs which are required for short patches of

4



Chapter 1: Introduction

time and are idle for remaining time.

To solve the problem of sharing GPU resources for complex architectures, there is also a

need for pre-defined architecture to manage hardware resources and a set of components

that can complement functional behaviour of other complements and enhance overall

productivity of the architecture which in the end is essential for productivity of any

design pattern. We carried this research to work on these two main problems and

provide a comprehensive framework using Vmware components and Rancher server is

used to provision resources for container orchestration and deploy microservices on that

platform. In the following sections a comprehensive description is available on how

multiple components are integrated for this framework and how applications running in

a distributed system can access GPU resources from a pool instead of a locally attached

GPU to accelerate their complex computations and achieve their results in an efficient

and timely method.

1.5 Thesis Outline

Rest of the thesis document is divided into 5 chapters. In chapter 1 we have explained the

introduction of the research domain, problem statement, purpose, objectives and back-

ground of the research. In chapter 2 we have included related work done on distributed

frameworks, microservices and GPU resource utilization. Chapter 3 explains our ap-

proach for research, implementation and write-up of this thesis. Chapter 4 presents a

comprehensive overview of all the required components, their integration with each other

and an architecture of the framework formed as a result of the combination of all those

components. Chapter 5 contains the experiments that we performed on conventional

architectures and proposed framework their results and a short evaluation of framework

based on those results. Chapter 6 provides the conclusion and future direction in this

domain.
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Chapter 2

Literature Review

Key concept of virtualization is adding a layer of abstraction on underlying hardware

resources. There are two kinds of virtualization, hardware virtualization and application

virtualization. A manager or software component is used to provide virtualization and

that could be considered as an additional complexity of virtualization but virtualization

helps getting maximum output from limited underlying hardware resources[2].

Specific computing applications can cause mismatch with the algorithms provided by

legacy operating systems. These mismatches cause significant performance degradation.

The support for the virtualization in hardware architectures enables new methods to

execute computing applications without losing the support of existing OS[3].

Virtualization is becoming a key variant for various IT enterprises. Containers is an

emerging approach for virtualization. It is a lightweight virtualization where we do not

need a complete host but the package required to run the microservices and multiple

microservices can be managed on one machine without occupying too many resources

and a short abstraction over the host OS. After performing various tests on microservices

deployed on containers and VMs it was evaluated that containers are better in every

aspect compared to virtual machines. These performance tests were carried out using

different benchmarking tools including Sysbench, Phoronix and apache benchmarking[4].

The rise of complex architectures with microservices and the need for ever shorter de-

ployment life cycles, continuous delivery and high cost of resources from different cloud

environments gave rise to the need of containers[5]. Lightweight virtualization or con-

tainers provide near native performance. Docker, a platform for managing containers,

provides abstraction between different containers and restricts those containers from
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Chapter 2: Literature Review

accessing host OS but containers still depend on the host OS kernel and could be vul-

nerable as they do not have any OS.

For edge devices where low cost low computation is required containers and microservices

are beneficial in many ways. Autoscaling, enough computation and flexible deployment

can be achieved even with all the challenges at hand[6]. Dynamic distribution or deploy-

ment of microservices is still a big challenge but autoscaling of the containers is feasible

using a fuzzy controller.

Integration, feasible scaling and isolated nature of containers has made them popular in

recent times and edge devices have also become powerful enough to run containerized

workloads[7]. This calls for the need of optimized placement of containers on devices

or underlying machines. Container orchestration tools are still resource intensive so

FLEDGE, a container orchestration tool, is introduced. It is based on Kubernetes but

could be considered as a lighter version for edge devices. Where networking orchestration

and placement methods are customized and then evaluated against k3s and kubernetes

clusters by deploying workloads on edge devices.

Sometimes native kubernetes algorithms schedule workloads unequally distributed across

the environment. This [8] approach proposes a hybrid shared state scheduling frame-

work. Main focus here is diverted towards unscheduled or unprioritized tasks and deci-

sions are based on state management of complete clusters continuously updated through

master. By employing a synchronized state in a kubernetes cluster conflicting jobs are

avoided which leads to better scheduling and utilization of available resources in a ku-

bernetes cluster compared to native algorithms.

The SLATE (Services Layer at the Edge) is a framework for monitoring and security

purposes of container orchestration through kubernetes clusters[9]. It involved a com-

bination of monitoring tools like prometheus prometheus operators and thanos. The

purpose of SLATE is to provide visibility of resource utilization and deployment in-

frastructures of applications on independently running kubernetes clusters on different

networks.

Kubernetes is one of the most widely used open source platform used for container

orchestration even though orchestration of simple microservices is optimised to a good

extent by now but scheduling GPUs is still a big challenge that requires optimisation[10].

Gaia is a topology based scheduling framework for kubernetes clusters. It is based on

7
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traditional GPU scheduling algorithms. In Kubernetes GPU sharing a GPU can only be

fully allocated and this results in waste of resources and high costs and low performance

as well. In Gaia GPU sharing is converted into a resource-access cost tree. It helped

achieve optimal scheduling of GPU clusters and has improved the performance by 10%

compared to traditional sharing algorithms.

Applications nowadays want to make the best use of their parallel architectures by in-

tegrating use of GPUs[11]. Different Deep Learning or even simple video processing

applications want to use GPUs to accelerate their processing and increase performance.

Kubernetes, Docker and other platforms are continuously working on the optimized us-

age of available GPU resources inside containers. KubeCG is an algorithm based on

heterogeneous kubernetes clusters to make use of CPUs and GPUs in parallel. This

scheduler takes into account multiple matrices of kubernetes pods and containers and

schedules them on available GPU machines accordingly. Tests have revealed approxi-

mately 64% less time required to perform tasks if KubeCG is used to schedule workloads

on a kubernetes cluster compared to native kubernetes clusters.

Due to high performance requirements of different applications, maximum throughput

of GPU resources from the underlying architectures is considered a key factor[12]. GPU

sharing across multiple containers in kubernetes clusters is a challenge as native ku-

bernetes scheduling algorithms do not allow sharing GPU resources between different

pods which leads to the big problem of resource under-utilization. Kube-Share extends

native kubernetes GPU sharing algorithms with fine-grained GPU allocation. Kube-

Share allows to schedule GPUs as first class resources in a kubernetes cluster. GPU

sharing through KubeShare increases the overall system throughput with a minimum

overhead on the execution or initialization of containers inside a cluster making it a bet-

ter approach to use compared to native kubernetes algorithms for GPU sharing inside

a cluster.

8



Chapter 3

Methodology

In our previous chapter we did literature review. We gathered information on the use of

microservices and their role for proficient use of underlying resources. We discussed the

role of Kubernetes and GPU’s in compute sharing and acceleration. We have also dis-

cussed how critical optimised utilization of resources is in case of healthcare applications

because of their critical nature.

This chapter presents a detailed methodology on how to create a framework which effi-

ciently maps applications based on their underlying hardware resources to achieve max-

imum throughput.Fig. 3.1 provides technical workflow of framework implementation.

Figure 3.1: Flow Diagram for Framework

9



Chapter 3: Methodology

3.1 Literature

We started our work with literature review. In literature review we realized there are

multiple frameworks which help GPU acceleration through Kubernetes but No partic-

ular framework is officially available to share GPUs across all Kubernetes nodes for

applications to utilize available GPU resources if need be.

3.2 Hypervisors

After literature review, we evaluated two different hypervisors for the framework we

planned to create. For this evaluation we worked on Xenserver Hypervisor and Vmware

ESXi Hypervisor and opted for the later for it’s unique property of allowing to share

GPU resources across bare-metals through the network not to mention it’s compatibility

with other required tools. e.g. Rancher.

3.3 Deployment

After deciding to use Vmware Hypervisor for our framework we went through the fol-

lowing steps.

1. Install ESXi on all servers.

2. Install vcenter on one ESXi server.

3. Configure vcenter to create a cluster of all available ESXi servers.

4. Install and configure Bitfusion server to create a cluster of GPUs across all bare-

metals.

5. Launch Kubernetes cluster from Rancher. add rancher details separately

(a) Create 1 vm on ESXi 1.

(b) Launch a minimum Rancher 2.0 container on that vm.

(c) Create a Node template inside rancher.

(d) Configure Cloud credentials for rancher to deploy k8 on vcenter.

(e) Launch K8 cluster with above template and creds through rancher on vcenter.

10
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6. Enable Bitfusion Client on all nodes created by rancher.

3.4 Verification

After creating the framework we installed Bitfusion CLI inside application containers and

configured applications to run through Bitfusion CLI inside containers. Then deployed

these modified applications on the Kubernetes cluster and verified through Vmware

Vcenter that requested GPU resources are allocated to our application containers even

if they are running on Worker nodes having No GPU resource attached to them.

3.5 Experiments and Results

After the installation and verification part was completed we executed cuda Matrix

Mul and cuda Matrix Multiplication cuBLAS workloads on our framework and also

on a conventional GPU allocated cluster. We compared the results and evaluated how

this framework helps alleviate the problem of resource under utilization with negligble

overhead.

3.6 Write-up

In our final step, we wrote down a detailed introduction for the set of tools and services

being used. We provided a comprehensive literature review in Background. We wrote

all our findings and detailed steps on how to recreate the proposed framework explained

with Diagrams and then we verified successful allocation of GPU resources to Non-GPU

Virtual Machines. After verification we executed cuda 11 provided scripts to run 2

experiments on vm having directly attached GPU and our framework. We compared

our results and described how with slight overhead we can minimize resource under

utilization problem. Then we concluded this thesis.
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Chapter 4

Framework Explanation

In the previous section, we discussed the methodology of the research work we carried

out for this thesis. In this section we will discuss comprehensive details of the proposed

framework.

Comprehensive details include the set of tools and technologies being used for this

framework, where and how those tools and technologies are installed and how they

communicate with each other to make this framework work.

4.1 Components

Set of components required to create this framework include VMware ESXi, VMware

vcenter, VMware bitfusion, ubuntu, docker, rancher, kubernetes.

4.1.1 VMware ESXi

VMware ESXi is a hypervisor solution to completely manage processors, memory, stor-

age and other resources available on bare-metal servers and their abstractions for the

virtual machines. We can also create snapshots and store certain stages of those virtual

machines as a backup in case those are required later on.

We installed VMware ESXi version 7.0 Update 2 on our bare-metals. This helps with

the abstractions of resources for virtual machines we need to create in the later part of

the framework.[13] [14] We use those machines to deploy applications and then utilize

resources to get maximum output.

12
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4.1.2 VMware Vcenter

VMware vcenter is a management tool provided by VMware. It helps manage resources

across ESXi hosts and in some ways act as a single point of reference to manage multi-

ple ESXi servers.[15] It also has additional plugins to manage some resources, monitor

ESXi hosts for their various states and allows us to perform everything we need from a

hypervisor.

We are using VMware vcenter server appliance version 7.0 update 2 to manage all our

ESXi hosts. Once the deployment on VMware vcenter is completed we do not use ESXi

hosts directly for any further creation of resources or anything else. We create resources,

configure plugins, and connect to resources only through vcenter after first deployment.

4.1.3 VMware Bitfusion

VMware Bitfusion virtualized GPUs for AI and ML applications. It provides shar-

ing of GPU resources across virtual machines over the network. It has three main

components.[16]

• Bitfusion Server

Bitfusion server is installed on the ESXi host. It is a pre configured virtual machine

that requires direct access to local GPUs. These GPUs are connected through Di-

rectPath I/O to this vm. It intercepts CUDA calls made by applications, processes

them and returns to the application running on Bitfusion Client.

• Bitfusion Client

Bitfusion Client is installed on virtual machines where we need to run our appli-

cation which require GPU resources for their processing. These Virtual machines

are also enabled to function as bitfusion clients through Bitfusion Plugin.

• Bitfusion Plugin

The Bitfusion server registers bitfusion plugin to VMware vcenter. This plugin

registers virtual machines acting as bitfusion servers or clients across ESXi hosts.
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We can manage those machines and monitor utilization of GPU resources with

this plugin.

We configured bitfusion server version 3.5.0 update 5 on one of our ESXi hosts and

registered GPU resources attached to the hosts with this server. After this we installed

nvidia drivers on this server and made sure all our GPUs are accessible.[17] Installation

of GPUs added Bitfusion Plugin to vcenter. We enabled Bitfusion Plugin and from there

we are able to manage and monitor utilization of available GPU resources.

4.1.4 Ubuntu

Ubuntu is an open source debian based Linux Operating system. We can manage

resources attached with machines and install other third party tools required to proceed

with framework deployment on virtual machines.

We created one virtual machine on ESXi hosts and installed Ubuntu version 20.04 as

the operating system on that machine. Where we deploy other tools like docker and

rancher which play an essential role in the deployment of complete framework.

4.1.5 Docker

Docker is an open source platform that helps with the development and delivery of

application services completely isolated from our infrastructure. We can run application

containers with the help of this platform isolated from our underlying operating system

architecture.[4]

We installed docker version 20.10.8 on Ubuntu operating system installed on managing

vm. We used docker to run rancher as a container on our virtual machine. Rancher

plays an essential role in the management of kubernetes clusters that we need to deploy

our application workloads eventually.

4.1.6 Rancher

Rancher is an open source set of tools that helps us deploy production scale kuber-

netes clusters on different cloud platforms e.g. digital ocean, google kubernetes engine,

VMware vsphere etc. We can not only deploy kubernetes clusters with rancher but also
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the application workloads on those clusters and have access to them all through a single

platform.[18]

We deployed rancher as a single node container version 2.6 on our virtual machine to

deploy a kubernetes cluster on VMware ESXi hosts that we need for the deployment

of applications. We created a cloud credential in rancher with credentials for VMware

vcenter that manages our ESXi hosts and a node template that contains specifications

for the resources we need to create worker nodes for cluster. Then we used rancher to

deploy a kubernetes cluster based on the above mentioned template and cloud credentials

to create and deploy resources on our ESXi hosts.

4.1.7 Kubernetes

Kubernetes is an open source container orchestration platform. A kubernetes cluster

contains a set of virtual machines that are also known as worker nodes. These worker

nodes are being used to run containerized application workloads. We can handle auto-

scaling of our application containers and also the number of worker nodes as well in a

kubernetes cluster.

We deployed a group of kubernetes worker nodes on ESXi hosts through rancher. That’s

where we will deploy our workloads. Those worker nodes are registered as bitfusion

clients and can request GPU resources from the bitfusion server if need be. [9] [18]

4.2 Framework

In this section the relationship of different components essential to the framework is

discussed. First we break down architecture and describe the relation of components

directly relating to each other. After the breakdown explanation, complete architecture

and dependency of every component with every other component is discussed. It is also

discussed how each component was configured to other and what essential part did those

components play by connecting each other.
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4.2.1 ESXi hosts and VMware vcenter

In this section we discuss where in the framework ESXi servers are configured. How

those ESXi hosts are an integral part of the framework and how do we manage more

than one ESXi hosts in our framework.

To add a layer of abstraction to the resources of any bare-metal server hypervisors play an

important role. For the proposed framework we are using VMware ESXi hypervisor. We

install VMware ESXi servers on bare-metal hardware so we can manage our processors,

memory, storage and other hardware resources through those ESXi hosts. Once ESXi

hosts are installed we can create or delete virtual machines, take snapshots and perform

other required actions on underlying hardware resources.

To manage ESXi hosts at one place VMware vcenter server was installed on a virtual

machine on one of the ESXi hosts. We create a cluster inside VMware vcenter and add

all ESXi hosts connection details to that cluster. Once the VMware vcenter cluster is

configured with all hosts we can manage all bare-metal nodes from a centralized solution

virtual machines, plugins, services etc. all can be configured and managed across ESXi

hosts from a single point of authentication with the help of VMware vcenter.

See Fig. 4.1 to understand how a VMware vcenter is used to manage resources across

all ESXi hosts.

Figure 4.1: Vmware vcenter and ESXi hosts
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4.2.2 Bitfusion in vcenter cluster

After the configuration of ESXi hosts cluster on a VMware vcenter, Bitfusion server can

be installed. VMware bitfusion plays an integral role in sharing GPU resources across

ESXi hosts and thus our application can use those GPUs even if running on virtual

machines having no GPU resources directly attached to it.

Bitfusion Server is a pre-configured ova template provided by VMware. We load this

template in our vcenter and create a virtual machine of this on one of ESXi hosts. After

creation of the virtual machine it is required to find compatible Nvidia drivers and then

install those drivers in the virtual machine. This virtual machine is now called bitfusion

server vm. Once Bitfusion server vm is ready, it will generate a plugin in VMware

vcenter. Once the bitfusion plugin is enabled in VMware vcenter it indicates successful

configuration of bitfusion server inside a VMware vcenter.

Install the bitfusion client on virtual machines which require GPU resources to run AI or

ML workloads and have no direct GPU attached to them. After installation of Bitfusion

client in VMware vcenter we can enable those virtual machines as bitfusion clients. Once

a bitfusion client is configured GPU resources can be allocated to those virtual machines

using bitfusion cli commands to run workloads. Bitfusion server in a vcenter cluster is

accessible to all bitfusion clients, no matter on which ESXi host that client is created

on.

See Fig. 4.2 understand scope of bitfusion with Vmware vcenter.

Figure 4.2: Vmware vcenter and ESXi hosts
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4.2.3 VMware Bitfusion with Vmware vcenter

In the previous section we discussed the part where we configure the bitfusion server and

what is the part played by VMware vcenter in bitfusion configurations. In this section

the need of the VMware bitfusion and its role for the framework is discussed.

Once a VMware bitfusion server is configured in VMware vcenter, we can see the list of all

available GPU resources, their utilization over the time and the clients for which servers

were being used. To run the microservices inside docker containers and assign them

GPU resources, we run AI and ML workload application containers with the bitfusion

client installed in those containers and run those on a bitfusion client virtual machine.

Once the container with the bitfusion client is started the bitfusion server intercepts

the cuda call and then gets the data and remaining cuda calls from the bitfusion client

container to process them with the requested number of GPU resources if available.

After completion it returns the data back to the bitfusion client container.

After the bitfusion client container receives the processed data the bitfusion server adds

the previously allocated GPU back to the GPU pool. This way whenever a GPU resource

is required to run any workload on any container we do not need to shift them to some

particular machine with GPU being directly attached to it. And this way we can make

sure we can use available GPU resources for multiple application containers running

across various ESXi hosts and do not need conventional ways to use dedicated GPU

resources directly allocated to virtual machines to run AI or ML workloads.

See Fig. 4.3 to understand how the introduction of Bitfusion Server has enabled us to

make better use of available GPU resources across ESXi hosts now.

Figure 4.3: Bitfusion Server in Framework
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4.2.4 Rancher VMware Vcenter and kubernetes

In the previous section we have discussed the role of bitfusion in sharing GPU resources

and its configuration with VMware vcenter. In this section we will discuss how the

rancher deploys kubernetes cluster in our ESXi hosts cluster in VMware vcenter.

Run a rancher container on a virtual machine that can be anywhere but has access

to the vcenter network. In this framework we deployed it on one of the ESXi hosts.

Once the rancher container is up and running login to the rancher portal on a mapped

port through the browser. In the rancher portal add credentials of VMware vcenter in

cloud credentials. Create a Node template and fill in all the details to create worker

nodes where we want to run our AI or ML workloads. Fill in the form to complete

specifications for worker nodes and save that node template to be used next.

Create a kubernetes cluster select VMware vsphere as the provisioner to provision kuber-

netes cluster. Select cloud credentials created earlier to connect with VMware vcenter

and then use the node template configured to create virtual machines and configure them

as worker nodes of kubernetes cluster. Select number of master and worker nodes to be

created in VMware vcenter and proceed with deployment. Once the deployment process

begins, Rancher will communicate with VMware vcenter to create virtual machines on

ESXi hosts using VMware api and get its configurations from previously provided node

template. After this rancher will create a user on those machines and start downloading

required images to complete the deployment of the kubernetes cluster for future usage.

Once virtual machines are created on ESXi hosts and the kubernetes cluster is deployed

we can register these machines as Bitfusion clients in our VMware vcenter cluster.

Fig. 4.4 explains how a rancher communicates with VMware vcenter to create virtual

machines by and then connect with those machines to deploy kubernetes.
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Figure 4.4: Rancher VMware vcenter and Kubernetes

4.2.5 Architecture

So far we have divided the framework in different sections and discussed how those com-

ponents are connected with each other, the role of those components in the framework

and explained the interaction between those components with a diagram in relative sec-

tions. In this section a brief explanation is provided on the complete architecture of

the proposed framework. What is the role of all components when they all combine

with each other and cumulative outcome of what do we get when all components are

configured with each other.

Start with the deployment for VMware ESXi hypervisor on bare-metal servers. VMware

ESXi provides an abstraction for the underlying resources to all the virtual machines

being created in process. Every bare-metal with ESXi installed will serve as an ESXi host

to create and deploy different resources required for the framework. After installation

of ESXi hypervisor on bare-metal configure VMware vcenter on the primary ESXi host.

Create a cluster in VMware vcenter and add connection details of all hosts in that cluster

so all ESXi hosts can be managed through a centralized platform.

Once the cluster is ready and resources can be created across all ESXi hosts from a

single point of authentication, deploy the VMware bitfusion server on the ESXi host
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that contains GPU resources directly attached to id. Pass that GPU as Direct Path I/O

to VMware bitfusion server. Install nvidia driver on bitfusion server machine. VMware

bitfusion machine serves as a GPU server across all ESXi hosts inside the cluster where

the parent ESXi host is configured. With VMware bitfusion, AI and ML applications

can be deployed on virtual machines across all ESXi hosts in the cluster and can still get

the GPU resource whenever they need to run the workloads or need GPU resources for

any activity. With the configuration of VMware Bitfusion, GPU resources are no more

reserved for their parent hosts only but now function as a pool and any client machine

can request GPU resources whenever they need it.

Next step is towards the creation of the bitfusion client machines and creating a kuber-

netes cluster so we provide a platform to actually deploy the applications and utilize

those resources. Create a virtual machine on any of the ESXi hosts with available

resources, install Ubuntu as operating system and docker engine to run containerized

rancher. Rancher is the platform that helps manage kubernetes clusters on VMware

ESXi hosts and help manage the deployment of microservices. Once rancher is installed,

create cloud credentials in rancher with the connection and user details of VMware vcen-

ter. With cloud credentials rancher can connect with earlier deployed VMware vcenter

while creating virtual machines for the deployment of kubernetes cluster. Second thing

in rancher is to create a Node template. Node template, as the name suggests, is a tem-

plate for rancher to create virtual machines. It contains the configuration of resources

the virtual machines will be created with vcenter details where those will be created.

Finally select the vsphere plugin of rancher from cluster creation form. Fill in the config-

urations for the vsphere plugin for which template to use, how many virtual machines to

create , how many worker and master nodes and other essential resources and deploy the

kubernetes cluster. Rancher will connect with VMware vcenter and start creating vir-

tual machines to work as master and worker nodes of kubernetes. Once those machines

are created, rancher will connect with those machines directly, download and configure

resources and the kubernetes cluster will be provisioned for users to deploy their appli-

cation resources directly to those virtual machines. Now from VMware vcenter, enable

these newly created virtual machines as VMware bitfusion clients. Now the microservice

resources that have bitfusion cli installed in them can request GPU resources whenever

it needs any.

Fig. 4.5 explains the complete architecture of the framework, where the resources are
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created or deployed and how these resources combine to complete the framework.

Figure 4.5: Architecture Diagram
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Experiments and Results

In the previous section, we discussed the comprehensive architecture of the proposed

framework. We discussed how one component is connected with another and how all

those components work together to form the framework.

In this section we will discuss some experiments that we did on the virtual machine

having a GPU directly attached to it, that is also a conventional way of allocating GPU

resources. We repeated those same experiments with the virtual machines deployed

through the framework and then we compared results retrieved from both cases to

evaluate the effects of the framework and with how little overhead we can resolve a big

challenge of resource under utilization.

5.1 Conventional Method

We created a virtual machine on one of the esxi hosts that also has GPU resources.

We attached that GPU resource to the virtual machine through direct I/O in virtual

machine configurations. Once the GPU was attached we installed Ubuntu 20.04 on that

virtual machine as an operating system to perform experiments. [19]

Once the virtual machine was initiated with the operating system, we installed nvidia

drivers and nvidia-docker2 to utilize the attached GPU in a containerized environment.

We initiated a docker container with cuda-11 to run our experiments on the machine.
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5.1.1 Matrix Multiplication

Once we have cuda 11 installed and gpu usable inside the container we used cuda

sample provided by cuda 11 i.e. matrixMul to perform matrix multiplication utilizing

GPU attached to virtual machine. Table Experiment 1 Conventional Method shows

the sample set number of operations and time taken for those operations.[20] Table 5.1

shows the sample set number of operations and time taken for those operations in this

experiment.

Experiment Cuda

Ver.

Data

set

No. of

opera-

tions

Time

matrixMul
11

MatrixA(320,320),

MatrixB(640,320)

131072000 0.130 msec

Table 5.1: Experiment 1 Conventional Method

5.1.2 Matrix Multiplication cuBLAS

After the results of first experiments were stored and GPU was released for next exper-

iments we executed another sample provided by Cuda 11. For this experiment we used

matrix multiplication through cuBLAS. cuBLAS library is optimized for performance

on NVIDIA GPUs, and leverages tensor cores for acceleration of low and mixed preci-

sion matrix multiplication.[21] Table 5.2 shows the sample set number of operations and

time taken for those operations in this experiment.
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Experiment Cuda

Ver.

Data

set

No. of

opera-

tions

Time

matrixMulCUBLAS
11

MatrixA(640,480),

MatrixB(480,320),

MatrixC(640,320)

196608000 0.056 msec

Table 5.2: Experiment 2 Conventional Method

5.2 Proposed Framework

Once we have performed both the experiments Matrix Multiplication and Matrix Mul-

tiplication through cuBLAS on virtual machine with GPU directly attached to it we

will perform both operations on the proposed framework where we are sharing GPUs

through a GPU pool and running experiments on kubernetes worker nodes having No

GPU directly attached to them.

5.2.1 Matrix Multiplication

For this experiment we modified the cuda 11 container image and installed bitfusion-cli

in that container. After that we launched the updated image in a kubernetes worker

node and executed cuda 11 matrix multiplication scripts. Table 5.3 shows the sample

set number of operations and time taken for those operations in this experiment by our

framework.

Experiment Cuda

Ver.

Data

set

No. of

opera-

tions

Time

matrixMul
11

MatrixA(320,320),

MatrixB(640,320)

131072000 0.132 msec

Table 5.3: Experiment 1 Proposed Framework
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5.2.2 Matrix Multiplication cuBLAS

After the first experiments results were generated GPU was released in the gpu pool

for other machines to access, we deployed the same container on another worker node

and this time we executed matrixMulCUBLAS available in cuda samples and got the

execution time. Table 5.4 shows the sample set number of operations and time taken

for those operations in this experiment by our framework.

Experiment Cuda

Ver.

Data

set

No. of

opera-

tions

Time

matrixMulCUBLAS
11

MatrixA(640,480),

MatrixB(480,320),

MatrixC(640,320)

196608000 0.059 msec

Table 5.4: Experiment 2 Proposed Framework

5.3 Compare and Evaluate

So far we discussed the results we got by running matrixMul and matrixMulCUBLAS

[21] by cuda 11 on a virtual machine having a GPU directly attached to it.[19] Then

we executed the same experiments with the exact cuda version using bitfusion-cli on

virtual machines in our framework which did not have any GPU resources attached to

them but used them from a shared pool. Figure 5.3.a Comparison between conventional

method and proposed framework shows the difference of time it took to perform those

experiments on available GPU resources.

We can notice that for experiment 1 on conventional method matrixMul took 0.130

msec to run 131072000 of operations. But when exact matrixMul was performed in

the proposed framework our framework took 0.132 msec to execute them fully. Our

framework took slightly higher time (i.e. 0.02 msec) to execute 131072000 of operations.

It’s behavior was very similar in matrixMulCUBLAS experiment as well. Conventional

method took 0.056 msec to execute 196608000 operations and our framework took 0.059
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Figure 5.1: Comparison between conventional method and proposed framework

msec. We also had similar behaviour when we executed some proprietary algorithms in

both cases.

GPU performance is not really in question as in our framework all the processing is

performed on GPUs just like every other framework but we face slight delays because

in our framework cuda calls and data pointers are transferred over the network to the

GPU pool where any available GPU is allocated to perform the required set of actions.

That’s why we can label those delays as network delays and not the GPU ones.

Considering the fact that with our framework we do not have to allocate GPU resources

to specific virtual machines and we can assign GPU resources to whatever virtual ma-

chines require on run time, we can avoid significant hardware under-utilization at a

negligible time over-head. Which can also be reduced by using better network resources

in our data centers to connect esxi hosts. Even in that case the cost of network resources

is negligible compared to the cost of additional GPU resources.
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Conclusions and Future directions

6.1 Conclusions

In our work we have developed a framework that allows GPU sharing for the workloads

running in a distributed system from a centralized pool. For all native kubernetes GPU

scheduling algorithms, GPU is scheduled between multiple containers but worker nodes

should have GPUs directly attached to the machine if the user wants to deploy workloads

with GPU requirements on that worker. But this direct binding of GPU makes that

GPU unusable for other worker machines and workloads deployed on other machines

must have their own GPU resources which leads to resource under-utilization and expo-

nential increase in hardware costs. We used VMware ESXi hypervisors for virtualization

and VMware vCenter to manage the data-center with all bare-metal servers to form a

private cloud. After the configuration of the data-center we used VMware Bitfusion

servers to create a pool of all the available GPU resources on all ESXi hosts included

in VMware data-center. We then provisioned a Kubernetes cluster on our data-center

with a defined template for worker machines and deployed containerized workloads on

that cluster. We then enabled Bitfusion Client access for the worker machines in our

cluster and installed Bitfusion cli for the workloads which require GPU resources for ex-

ecution. Workloads whenever they require GPU for processing, request GPU resources

from centralized Bitfusion server for GPU. Requested number of GPUs is reserved in

the pool for the workloads which are used for all the processing requirements of the

microservices and are added back to the pool once it is released from microservice which

then can be allocated for other workloads on other machines in the cluster. This GPU
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sharing mechanism alleviates GPU under-utilization in a distributed system for resource

intensive or complex microservices.

6.2 Future Directions

In the future this framework can be extended to share GPUs with workloads running

on machines in different clusters making it a multi-cluster platform. This can be further

extended to share GPUs for workloads on multiple clouds which can be referred as

multi-cloud GPU sharing framework.
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A.1 vCenter Deployment requirements

To deploy a VMware vCenter with static IP address make sure you have a valid FQDN

with forward and reverse lookup validity. Even though it is claimed to be optional for

deployment but process cannot be completed without a valid FQDN.

Use the following command to make sure that you have a valid FQDN before starting

the deployment process.

• nslookup -nosearch -nodefname FQDN_or_IP_address

If you use IP_address with above value make sure it returns FQDN and vice versa. Use

a browser to initiate stage 2 of Vmware vCenter deployment instead of deployment man-

ager. Management console should be available at url ‘https://<fqdn_ip>:5480 which

can lead to configuration tab, once in configuration tab replace url ‘https://<fqdn_ip>:5480/configurev2’

with ‘https://<fqdn_ip>:5480/configure’ as for both deployment manager and config-

urev2 are unstable and cause interrupts in deployment process.
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A.2 Bitfusion Deployment Modifications

Successful deployment of VMware Bitfusion server in a vCenter cluster requires few not

so popular modifications and restrictions in the process.

When making configurations for the template make sure to use staticIP as Hostname of

the bitfusion server it uses the value of hostname to look for monitoring health checks

and other endpoints during installation process.

Second thing that has a critical impact during the deployment process is nvidia drivers

installation. Do not select the ‘download and install nvidia drivers’ check box. It is

unchecked by default but if selected can cause conflicting driver installations which does

not allow GPU sharing in the cluster.

After successful creation and initialization of the Bitfusion server, copy compatible nvidia

drivers NVIDIA-Linux-x86_xxx.run file to the Bitfusion server. Create a ssh connection

with the server and use following commands to install drivers on Bitfusion server.

• sudo su

• cd /path/to/file/

• chmod +x NVIDIA-Linux-x86_xxx.run

• ./NVIDIA-Linux-x86_xxx.run –kernel-source-path /usr/src/linux-headers-xxx.ph3

–ui none –no-x-check

After successful installation of nvidia drivers, shutdown server and add the following

parameter in the server configurations.

• hypervisor.cpuid.v0 = FALSE

When the server gets started, the Bitfusion plugin will be integrated in the cluster and

can be managed through the plugins section in vCenter.
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