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Abstract

Analysis of point clouds through deep convolutional neural networks is an active area

of research due to their massive real-world applications including autonomous driving,

indoor navigation, robotics, virtual/augmented reality, unmanned aerial vehicles and

drones technology. However, to capture fine grained geometric and semantic properties

for the underlying recognition task with raw point cloud is exceedingly challenging due to

their irregular and unordered nature, sparsity and lack of implicit neighborhood. In this

paper, we have introduced a deep, hierarchical, 3d point based architecture to address

the highly challenging problem of object classification and part segmentation using raw

point cloud. The proposed architecture consists of multiple layers of Sampling, Annular

convolution and Pooling, cascaded together in accordance with the principle of deep

residual learning. In the skip connections of our deep residual design, we propose to

use a combination of linear Projection shortcut and nonlinear Relu group normalization

shortcut with batch normalization, to improve both the optimization landscape and

representational power. Our network achieves on par or even better than state of the

art results on synthetic and real-world benchmark datasets of object classification i.e.

MODELNET40 and ScanObjectNN and part segmentation i.e. ShapeNet-part.

Keywords: Point clouds,residual learning,group normalization,batch normalization
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Chapter 1

Introduction

1.1 what is a point cloud?

Pointclouds also known as point sets are irregular and unordered collection of points

scattered in 2D or 3D space.

Mathematically:-

P = {Pi|i = 1, 2, . . . , n}

where Pi represents a 3d point comprises of x,y and z coordinate.it can also include

added features such as normals, RGB or color values etc depending upon the nature of

the task and n represents the number of points in a pointcloud i.e. its size.

Being comprised of only raw coordinates, pointclouds form a simplest and fundamental

representation of 3d shape. The remarkable advancement in sensing technology such

as Kinect, Google Tango,LIDAR, MEMS sensors and RGB-D cameras has made point

clouds readily available as a dense representation of the real world. Both of the above

mentioned factors together with the availability of well-defined and richly annotated

benchmark datasets e.g. MODELNET[48], SHAPENET [79] and SEMANTIC3D [80]

have led to the rise in interests of researchers to directly process 3d point clouds in the

applications related to computer vision and graphics.

1



Chapter 1: Introduction

1.2 Deep learning on Raw pointcloud

Although deep learning has managed to bring impressive results on 1D and 2D data,

yet its adaptation to perceptual tasks related to 3d point clouds is a fiercely challenging

problem. Standard deep neural networks consume input with a regular structured for-

mat such as 2d images, multi view images and volumetric grids etc. while point cloud

is inherently irregular and sparse in nature. Moreover, the lack of implicit notion of

neighborhood relationship between points in the space in case of point clouds adds to

the difficulty of defining convolution operator which is the real essence of conventional

neural networks. One obvious solution is to transform raw point cloud into an inter-

mediate structured representation e.g. Multiview images [81,82,85,83,84] or volumetric

grids [9,10,11,12,13,86,88,92] and then process them using Multiview CNNs and volu-

metric/grid CNNs respectively. These transformations, however, not only incur huge

computational cost and memory expense but also lead to the loss of inherent geometric

info embedded in raw point clouds, which obstructs the performance of neural architec-

tures by making it difficult for them to capture fine grained features.

1.3 Background and Motivation

As point clouds are often sampled with non-uniform densities therefore multiscale archi-

tectures such as pointnet++[2] learn local features at various contextual scales and then

progressively formulate a global signature of each point. Although this approach ele-

gantly addresses the issues incurred by variation in density of input such as the inability

of network to learn fine grained contextual features from under sampled input and the

difficulty in generalization of features learnt in denser regions to sparsely sampled re-

gions. But at the same time, it redundantly includes the neighboring points of one scale

in the other which prevents the network from learning the discriminative features and

hence reduces the performance. To address the afore mentioned limitation Komarichev

et al. [32] proposed annular convolution operator which uses multi ring strategy to avoid

the duplication of neighboring points at various scales. To wisely utilize the notion of

scales, they apply constraint based KNN search within the region spanned in different

rings to capture unique neighboring points. It further refines the neighboring relation

between points by ordering them using surface normals and then performs convolution

2



Chapter 1: Introduction

on ordered neighbors using kernels of arbitrary size. Inspired by its exquisite properties

such as invariance to orientation of local patches, ability to adapt to geometric variabil-

ity and robustness towards the direction of surface normals etc. [32] we use annular

convolution to encode the local neighborhood features.

1.4 Proposed Solution

To this end, we propose a deep, hierarchical 3d point based architecture for point cloud

classification and segmentation which exploits deep residual learning [33] to integrate

features at various levels/blocks. The proposed architecture processes pointsets in hi-

erarchical manner to capture fine grained contextual geometric information in local

regions. It extracts local features from smaller neighborhoods in various blocks using

annular convolution [32] and then group them together into larger units and process

them further to formulate higher level features. The architecture includes skip connec-

tions to deal with the infamous vanishing gradient problem. Instead of using linear

projection shortcuts as in [33], we formulate the shortcuts for the skip connections in

our deep architecture by adding the linear projection shortcut and nonlinear Relu group

normalization shortcut [46] followed by batch normalization to assist in optimization

further by stabilizing the gradient behaviors. This design reaps the benefits of both the

inherent linear characteristics of projection shortcut and better representational power

induced by RG shortcut and hence boosts the performance. The key contributions of

the proposed work are summarized as follows: -

• The proposed Annular convolution based Deep Residual Network (PointADRNet)

architecture comprises of cascaded combination of sampling, annular convolution

and pooling layers to learn and aggregate the geometric point features.

• To exploit the residual learning, skip connections with nonlinear shortcuts have

been designed in accordance with the requirements of hierarchical networks in

which points are down sampled while feature space expends as it gets deeper.

• It is showed through experimentation that our proposed architecture demonstrates

comparable performance to existing state of the art approaches on three bench-

mark datasets including MODELNET40 [48], ScanObjectNN[52] and ShapeNet-

part [61] datasets.

3



Chapter 1: Introduction

1.5 Thesis Structure

The thesis is structured as follows.

• Chapter 2: Related work

• Chapter 3: Methodology.

• Chapter 4: Experiments, Results and Analysis.

• Chapter 5: Ablation Study.

• Chapter 6: Conclusion and Future Work.

4



Chapter 2

Related Work

2.1 Volumetric Methods

3d data is available in so many significantly different formats ,structured formats such

as multi view images and voxelized volumes and unstructured formats like point cloud

are few to mention.With the remarkable success of deep learning methods for 2d and

1d data the quest to apply it for3d data came into being.One of the renowned way

followed by voxnet[9] and subsequent architectures [10,11,12,13] is to convert 3d point

cloud into volumetric occupancy grids and advocate the use of 3d convolution for fea-

ture learning.However voxel resolution is an inevitable parameter which makes these

methods computationally intensive. To cater for this issue Gernot et al.[86] proposed

OctNet. Essentially built on sparsity property of point cloud, OctNet constructs oc-

trees of occupied voxels along a regular grid. The proposed data structuring decreases

the memory footprint and manages computation somewhat but still its hard to keep

the data granularity intact using volumetric approaches.Qiangneg et al.[59] introduced

Grid-GCN which benefits both from the computational efficiency of point based meth-

ods as well as effective data structuring of volumetric methods. The processing of points

through proposed GridConv layers is twofold. After voxelizing the Input space it com-

putes group centers and neighboring node points and then projects them onto to a graph

for context aggregation which greatly facilitates learning by capturing the edge relations

between group centers and neighboring nodes.

5



Chapter 2: Related Work

2.2 Graph based Methods

GCNs have created a recent surge in the point cloud recognition tasks. Being based

on graph formalism they offer a quite elegant way to capture geometric properties of

non-Euclidian points. The underlying graph convolution method segregates GCNs into

two categories.Spatial graph convolution operates on local neighborhood and tends to

learn a node’s features based on its neighboring node’s features. Being a local opera-

tion it can conveniently share kernel weights across different locations.Edge conditioned

convolution (EEC) proposed by Simonovsky et al.[14] was a breakthrough work in this

domain which exploited edge labels as information channel with an effect same as that of

rotational invariance enforced by regular convolution on images. Subsequent noteworthy

architectures [15,16,17,18,19,20,21] exploited different renditions of spatial graph convo-

lution with interleaved spatial graph pooling layers to coarsen graph formalism into high

level representations.[26,27,28,29,30,31] uses Spectral graph convolution which charac-

terizes convolution as spectral filtering between signals on the graph and eigenvectors of

Laplacian matrix[23,24].Spectral approach has to process complex graphs with billions

of nodes and edges simultaneously which restricts it to take the advantage of parallel

processing. It together with the signal transformation across difference domains entails

high computational complexity [25].

2.3 Point based Methods

Pointnet[1] is a seminal paper which applies deep learning techniques on raw point

cloud.it processes points from metric space individually by passing them through con-

secutive layers of multi-layer perceptron due to which it fails to capture local context.

Pointnet++[2] addresses this issue by processing points in hierarchical manner at differ-

ent scales. However, it tends to learn redundant features due to the overlapping nature

of different scales. ACNN[32] alleviates this problem by introducing annular convolu-

tion which restricts the inclusion of features learnt at one scale in the other by imposing

ring shaped local regions.Our deep residual architecture exploits anuular convolution to

learn the local geometric features . However the dilated rings proposed by ACNN have

empty spaces between them which leads to wastage of the region lying distance wise

closer to the query point. Due to which the neighbors captured from the last ring lie far

6



Chapter 2: Related Work

away from the query point and hence context is compromised. Our proposed method

makes use of this empty space and captures the neighborhood in a batter way.There

are various other noteworthy architectures which applied deep learning on point cloud.

PointCNN[4] exploits canonical ordering of points using operator X-conv to weight the

input points and features and then process them using conventional method of convolu-

tion. Wenxuan et al.[5] proposed an operation PointConv which uses relative positions of

points as input and projects them as weight to convolution using MLP. Pointweb[6] ex-

plores the relationship among points in local neighborhood by densely connecting each

point with the other which facilitates a point to learn features from all other points.

Qingyong et al.[7] introduced a method to process large scale point clouds which uses

random sampling to find query points. However random sampling is susceptible to drop

important points so to cater for this problem they propose two powerful modules named

as LocSE which learns an augmented feature vector corresponding to each point and

attentive pooling to perform feature aggregation using attention mechanism. It stacks

these modules together in the form of dilated residual block using skip connections.

2.4 Methods based on attention mechanisim

The prime focus of all of above mentioned point based methods is to learn local context

and then acquire global context by successive aggregation of these locally learnt features

in hierarchical fashion. On the other hand there are various methods which directly learn

global context form local features using attention mechanism. A-SCN[8] combines the

idea of shape context with global self-attention which embodies both the selection and

aggregation operations into a single alignment process. But its results suffer due to

the lack of support of local features. PointASNL[39] on the other hand achieves much

superior performance by incorporating attention mechanism both on local as well as

global level. It learns to weight the points lying in the neighborhood of initially sampled

point obtained as a result of farthest point sampling using self-attention and then use

these weights to adjust the coordinates of sampled points. It uses attention on global

level in its PNL(point non local )cell for global context aggregation and fuses features

learnt in both local and non local cells which greatly facilitates the recognition tasks.

7



Chapter 3

Methodology

We propose an end to end framework for raw point cloud classification and part seg-

mentation which exploits deep residual learning to integrate features at various levels.

Our method belongs to the paradigm of hierarchical feature learning in which points are

down sampled as we go deeper while features belong to the higher dimensional space.

3.1 Building Blocks

The proposed architecture is composed of multiple blocks to process the points in hier-

archical manner and encode features. These blocks are stacked together following the

framework of residual learning [33] which facilitates the propagation of information along

the hierarchy. Fundamental building blocks comprise of three component layers. First

layer is sampling layer to select subset of points as query points which serve as candidates

around which local neighborhood is abstracted using constraint based KNN search. The

second layer is a baseline layer of annular convolution proposed by Komarichev et al.

[32] which is used as a mechanism of feature extraction. Although annular convolution

tends to capture discriminative features by leveraging the use of multiscale ring shaped

regions but the empty spaces between proposed dilated rings miss out the potential

neighbors lying contextually closer to query points. Moreover, in our architecture as the

deeper layer of annular convolution contains rings lying potentially far from the query

point so empty spaces of dilated rings adversely affect the quality of learnt features. To

overcome this issue, we use concentric rings instead of dilated rings. Third layer is pool-

ing layer which serves as a mechanism of feature aggregation to summarize the relation

8



Chapter 3: Methodology

between candidate points and their local neighborhood. In the subsequent section we

will illustrate the component layers in detail.

3.1.1 Farthest point sampling

FPS algorithm has been widely used to generate smaller sub set point cloud for vari-

ous tasks related to surface processing from graph clustering [34], to progressive image

sampling [35], to curved manifold and point cloud sampling [36].Pointnet++[2] and sub-

sequent architectures [4,32,5,39,40] continued to use it to make the computation feasible

for the architecture. It incurs great advantage as far as computational efficiency is con-

cerned and tends to minimize the information loss by picking the candidate points from

all over the input point cloud. It iteratively operates over entire point cloud and picks up

the farthest point from the already selected points [36]. E.g. given M ⊂ Rn pointsets,

it finds {m1,. . . ,mk . . . ,mK},which represents a reordering of metric space such that the

kth selected point i.e. mk is lying farthest out of {m1,. . . ,mk} points [7].The purpose

to give preference to FPS over other contemporary techniques [39,41] is its ability to

produce relatively uniform and original points i.e. the generated subset is always a part

of original point cloud.

3.1.2 Annular convolution

The essence of CNNs is the convolution operator which captures correlational charac-

teristics of points in their local neighborhood. Deep learning on 3d data can be either

on structured representation such as volumetric grids and multi-view images or on un-

structured representation such as point clouds. Convolution on former can be easy to

implement but it comes with the expense of memory and computation. However, con-

volution on latter is a challenging task due to irregular and sparse nature of raw point

cloud.

9
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Figure 3.1: Graphical illustration of annular convolution.Given a query point qj , constraint

based KNN search fetches K nearest neighbors i.e. {N1, N2, . . . , Nk} on the

rings.Given normal nj corresponding to query point qj ,it projects the neighbor-

ing points onto a tangent plane to calculate the projections of neighboring points

denoted by {O1, O2, . . . , Ok}.In the next step,these projections are used to ordered

neighboring points in counterclockwise direction as per the reference direction c.

Lastly convolution is performed with the kernels of size 1×3 to abstract per point

features.

We employ annular convolution operator (introduced in [32]) to capture the local ge-

ometric representation of points. Annular convolution is a four fold process whose

graphical illustration is given in figure 3.1.Unlike images, the notion of neighborhood

is not implicit fo‘r point clouds due to their unordered and irregular nature. Since the

marvel of CNNs lies in the ability of convolution operator to learn the abstraction of

points in their local neighborhood so it has to be captured explicitly using K-NN search

or ball query algorithm [2]. Annular convolution uses multi ring strategy to restrict the

infusion of neighbors of one scale in the other. The regular and dilated rings impose the

constraint on search area of the points to materialize the constraint based K-NN search

which actually guarantees to find the closest and unique neighbors of a point.

3.1.2.1 Concentric Rings

Let’s say (M,dm) is a point-set and metric on the set pair,where M ⊂ Rn represents

the underlying 3 dimensional points and dm defines a notion of distance between these

points which is a non-negative and real number.Together they constitute the Y metric

space which implies Y = (M,dm).This metric space induces very interesting properties

10
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Figure 3.2: Dilated rings grow in size much rapidly as compare to concentric rings due to empty

spaces in between.In the deeper layers,the neighbours extracted on a concentric

rings are contextually more meaningful being closer to the query points.Each ring

is characterized by inner radius i.e. Ri and outer radius i.e. Ro.The term concentric

points towards the common centre of each ring i.e. the query point.

in point-sets. Implicit notion of open sphere and ball, neighborhood and nice geometric

properties are few to mention. The point-sets lying in 3d metric space satisfy the

equation x2 + y2 + z2 < r2 which means that these points are actually contained by an

open sphere of radius r centered at origin. Likewise the neighborhood of a point in 3d

space corresponds to actually the interior points of a sphere which is centered exactly

at that point. Ball query algorithm used by pointnet++ considers a neighborhood

within a ball of a particular radius centered at query points, while [32] proposed a ring

shaped strategy which splits a ball into multiple dilated and regular rings by imposing

a constraint of distance in the form of radius.Dilated rings used in annular convolution

inspired by dilated convolution [37] span over larger area with same kernel size.

As our deeper architecture tends to stack more layers of annular convolution than [32] so

the choice of dilated rings induces a huge amount of wastage of space lying contextually

closer to the query point which actually contains the potentially meaningful neighbors.

To make use of that empty space we propose to use concentric rings by fusing both the

regular and dilated rings together. Each concentric ring is characterized by inner and

outer radius as depicted in figure 3.2. Although Next ring starts where the previous

ends so outer radius of inner ring becomes the inner radius of the next one but the

term concentric points towards the common center of all rings which is the query point.

This strategy not only manages to improve the count of unique number of neighbors by
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exploiting the left over space around point sets but also restricts the inclusion of features

learnt at one scale into the other. Both of these factors benefit the multiscale feature

aggregation for our deeper architecture.

3.1.2.2 Projection and Ordering

Annular convolution [32] further refines the notion of neighborhood in a local region

by ordering the neighbors w.r.t angle. Normal being an extremely important geometric

property of point-clouds, is used as a helping hand to find projections which facilitates

the ordering process. The Constraint based K-NN search gives Ni, i ∈ {1, 2, . . . ,K}

neighbors corresponding to a query point qj , where K represents the total number of

neighbors.The points belonging to the neighborhood set are projected onto a tangent

plane characterized by a unit normal nj , to compute the orthogonal projections on rings

and use them in the dot and cross product to compute the angle between query points

and neighboring points w.r.t a reference direction c as given below[32]:

Oi = Ni − ((Ni − qj).nj).n(j)), i ∈ {1, 2, . . . ,K} (3.1.1)

cos(Θoi) = c · (Oi − qj)
‖c‖ ‖Oi − qj‖

(3.1.2)

In third step it sorts the neighboring points based upon ascending or descending val-

ues of Θoi to obtain the clockwise or counterclockwise order. This technique elevates

the quality of neighborhood by exploiting angle between the points besides distance of

course. It yields the neighbors both distance wise and angle wise. Lastly convolution is

performed on these ordered point sets with kernels of arbitrary choice to abstract the

per point features.

3.1.3 Pooling

Annular convolution encodes features from query point based upon neighborhood point

set. As we have used ring based convolution scheme as a mechanism of feature learning

so feature aggregation has to be applied across all neighbors in each ring individually

[32].We tested various approaches of feature aggregation including average pooling, max

pooling, exponential softmax aggregation [38] and attentive pooling [7].Our idea behind

using attentive pooling was to let the network learn how to assign weights to multi-scale
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features from different rings based upon their proximity to the query point by incor-

porating attention mechanism. Max pooling stood tall out of all the tested approaches

and manages to aggregate the distinctive features from concentric rings.

Attentive pooling underperformed max pooling in this scenario because network suf-

fers from overfitting which affects its generalizability. Since in our deeper architecture

the number of filters in deeper layers of annular convolution increases to upheave the

dimensions of feature space and attentive pooling adds to the load of number of param-

eters with its MLP and convolution layer. The overall load incurred by both annular

convolution and attentive pooling in deeper layers cause the network to over-fit which

undermines its performance hence max pooling is the better choice.

3.2 Proposed Architecture

Our deep residual hierarchical architecture is composed of three blocks connected to each

other using the residual framework[33] which facilitates the training of deeper networks.it

takes raw point cloud as an input and assigns a category label to a complete object or

a part category label (such as airplane wing, table leg) to each point in the input.

Workflow begins by applying set of operations such as sampling, annular convolution

and pooling in each block to compute point features which uniquely describe the local

regions. To allow the stacking of these blocks , theory of residual networks has been

employed which is explained at great length in the subsequent part of this section.

Features extracted from three blocks are concatenated and processed again in the last

convolutional layer with kernel size 1×1 followed by batch normalization and ReLU

layer to compute high level features. These high level concatenated features are passed

through fully connected layers followed by dropout and ReLU activation layers in the

end. Although in case of segmentation, a mechanism for feature propagation from all

three blocks and an interpolation technique has to be placed before fully connected

layers to predict the per point label. We use the same strategy as used in [32] to

compute the segmentation class distribution for each point.The architecture diagram

can be visualized in figure 3.3.
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Figure 3.3: The proposed Architecture. N ,N1 and N2 represent the input to the first,second

and third block respectively (where N > N1 > N2).Each block of annular convolu-

tion comprises of two rings with K1 and K2 number of neighbors in ring1 and ring2

respectively. IN3 represents the indices of N3 points of block-three.N
′

3 denotes the

previously computed features of points with IN3 indices. C and M are the number

of classification and segmentation classes.

We took the inspiration to exploit the network depth from [33] which states that the

depth of representations being a crucial aspect of networks causes them to achieve a gain

in accuracy and ease of optimization if used in accordance with the residual learning

principle.In hierarchical feature learning paradigm point cloud usually down samples,

while the size and dimensions of feature space increase drastically as we go deeper.

The down sampling strategy helps the network to manage computational load which is

incurred by the processing of features belonging to much higher dimensional space. The

size of neighborhood employed in annular convolution [32] is fixed for both rings so if

the total number of neighbors fall short of a fixed count, it appends the nearest neighbor

to the query point in the list of neighbors to keep the count consistent. Following the

down sampling approach, the size of input point cloud is decreased considerably in

deeper layers due to which the neighborhood captured by constraint based KNN search
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contains less unique points and more redundantly replicated nearest neighbor points

which adversely affects the quality of features learnt in deeper layers. Both the difficulty

in optimization faced by deeper networks in general [33] and non-discriminative features

learnt due to redundant neighborhood cause the network’s performance to suffer. To

address this issue, we bring skip connections into the picture which not only helps

alleviate the optimization difficulty of deeper network but also improve the quality of

features by propagating the features of initial layers to deeper ones. The Superior

results shown by deeper network with skip connection than its plan deeper counterpart

consolidates our claim (as explained in next section).

3.2.1 Residual Block

The general form of residual block is given in figure 3.4 which illustrates the propagation

of feature maps from first annular layer to third. Second layer is skipped to keep the

residual learning principle intact. Its worth noting that we use two skip connections

because of two rings in annular convolutional layer to add the feature maps from both

rings in block-one to that of block-three individually. To facilitate the argument, we

present the general mathematical form of residual block given in [33]:

yl = F (xl,Wl) + f(xl) (3.2.1)

f(xl) = σ1(σ2(Wsxl) + σ3(Wsxl)) (3.2.2)

xl+1 = σ4(yl) (3.2.3)

Where F denotes the residual function which is the nonlinear,Wl depicts the learnable

weights.xl and xl+1 represent the input of the lth and (l+ 1)th unit respectively i.e. the

skip connection or the shortcut.f(xl) depicts the mapping function which facilitates the

addition of both the residual and skip parts. The residual part F is learnt by the stack

of annular convolution layers. We use two rings in each layer. Annular convolution

can support kernels of arbitrary size but we use kernels of size 1 × 3 for each ring.To

compensate for the reduction in size due to valid convolution we pad two neighbors from

original list to the neighbor’s list to restore the actual size.
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Figure 3.4: Simplified form of the building blocks with residual learning.Two skip connections

indicate the propagation of features from Ring1 and Ring2 of the annular layer in

block-one to the Ring1 and Ring2 of the annular layer in block-three.

3.2.2 Skip Connection

f(xl) represents the mapping function over here which has been exploited in different

ways in the literature. E.g. it was identity mapping in case of Resnet [33] and pre-

activation Resnet [42].

The whole idea of pre activation Resnet was to ensure the unimpeded flow of information

from the beginning till end and it is particularly prevalent in rather deeper networks.

In Resnet[33] although the Relu activation applied after addition operation becomes

dormant after a while but still it modifies the info being propagated which hinders the

direct path. Pre activation Resnet proposes to apply Relu activation before, instead of

after summation which facilitates the info to have a direct path. Motivated by the trans-

former [44] Fenglin et al. [43] proposed to use skip connection and layer normalization

in combination to build a skip connection based architecture which uses a modulating

scalar to adjust the weighting between the residual part and the skip part. Although

layer normalization somewhat eases out the hindrance in optimization due to gradient

distortion caused by modulating scalar, but to stabilize the gradient further, they as-

sign equal weightage to the skip and residual part and add them recursively with layer

normalization which improves the expressive power of the model.

We propose a mapping function which can be visualized in figure 3.5.c. As we are

applying the residual principle over point based hierarchical network in which the input

i.e. point cloud is successively down sampled as it passes through different blocks unlike

images in Resnet[33]. Due to this operation of down sampling, the feature maps of

block-one cannot be directly added into the feature maps of block-three. Block-one
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down samples the received input containing 1024 points to 512 points and then generates

the feature maps for down sampled point cloud comprised of 512 points. These feature

maps are propagated as it is to the block-three as skip connection. Likewise block-three

down samples the input comprised of 128 points to 64 points and generates the feature

maps accordingly. Feature maps computed in both the blocks cannot be added together

unless they are made dimensionally compatible. To cater for this issue, we pass the

volume generated by block-one through a look-up layer which searches for the previous

feature maps of 64 points of block-three in it. This nonlinear look-up operation as shown

in figure 3.3 fetches the tensor containing previous feature maps w.r.t the indices of 64

points of block-three from the volume propagated by block-one to facilitate the addition

operation latter.

Figure 3.5: The Shortcut schematics: (3.5a) Original Resnet,(3.5b) Res-RGSNet, (3.5c) Ours

3.2.2.1 Projection shortcut

Equation 4 gives the mathematical illustration of the proposed mapping function in

which σ1 and σ2 depict batch normalization.In spite of the look-up operation both the

volumes i.e. the one propagated from block-one and the one computed in block-three

are not compatible to be added together yet , due to the mismatch of last channel

dimension. Number of input and output channels vary due to increase in the number
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filters as it gets deeper. The channel dimension is increased significantly in latter layers

due to increase in the number of filters applied by annular convolution. This issue can

be resolved by using techniques such as zero padding or interpolation, but we employed

a more plausible solution suggested by [33] which multiplies the identity mapping by a

linear projection Ws.The linear projection is implemented using a convolutional layer

with filters of size 1× 1 which expands the channel dimension of the shortcut to match

it to the residual part learnt in block-three. The convolutional layer is followed by a

batch normalization layer which adds the extra stability to the gradients by smoothing

out the optimization landscape[47].

3.2.2.2 Relu group normalization shortcut

σ3 in in equation 5 depicts the non linear RG operation[46] which is a combination of Relu

and group normalization. There has to exist a trade-off between the gradient stability

and the representational power in deep networks [45].Though identity shortcuts are a

strength of deep residual networks being helpful in their training by fixing the infamous

vanishing/exploding gradient problems but is also a weakness at the same time in terms

of representational power. Gradient is not forced to go through the weights of residual

blocks during its flow through the network, so it can possibly learn very little meaningful

representation through some residual blocks which affects the overall representational

power [50]. To circumvent this problem Zhang et al.[46] propose a nonlinear RG shortcut

in which Relu induces non linear characteristics and the group normalization applied

along the channel direction adds the stability.

3.2.2.3 Mapping function

Our mapping function (represented in equation 3.2.2) is inspired by Res-RGSNet pro-

posed in [46] which is intuitively based upon the claim made in [45] that the gradient

stability and representational power both being extremely important aspects can con-

tribute significantly towards the superior performance if somehow a trade-off can be

reached between the both ,while degrading either one of them can abysmally impair

the training process which can lead to decline in performance. Res-RGSNet combines

both the identity shortcut and non linear RG shortcut as shown in figure 3.5.b and
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claims that it manages to achieve a boost in performance as compare to the individ-

ual shortcuts at different depths. We got the motivation from this design to add our

projection shortcut and RG shortcut together to exploit the advantages of inherent lin-

ear characteristics of projection shortcut and better representational power induced by

RG shortcut. Batch normalization depicted by σ1 entails effective and faster optimiza-

tion by stabilizing the behavior of gradients [47]. It prevents the activation magnitude

from exploding and acts as an important regularizer by maintaining non vanishing and

non-exploding model parameters[51].

We also tested our network with both the projection shortcut and RG shortcut indi-

vidually, but it encounters the decline in accuracy as depicted in table 4. The superior

results brought by this design choice than both of the independently used shortcuts

validates the claim made in [46] and reinforces the argument presented in [45] .
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Experiments, Results And

Analysis

We evaluate the proposed model on variety of tasks such as classification on both the

synthetic as well as real world dataset and part segmentation. We will share the precise

details of the experiments and comparisons of our model with the state of the art in the

next subsection.

4.1 Point cloud classification

4.1.1 Synthetic Data

In point cloud classification, the goal is to assign a correct label to the point cloud of

the 3d shape. We evaluate our architecture on MODELNET40[48] dataset which is

comprised of 12,311 CAD models out of which 9843 models correspond to the train

split and 2468 correspond to the test split. Being synthetic dataset, MODELNET40

contains well segmented, free from noise and complete objects which are grouped into

40 categories.

We sample 1024 points with normals as input from each mesh surface and normalize

them into unit sphere as given in [2] where normals are only used for the ordering of

neighboring points in local regions. Similarly, 512 and 128 points are sampled as input in

subsequent blocks using farthest point sampling as explained earlier. Data augmentation

being a prevalent strategy these days helps improve the generalizability of network and
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induce diversification in the training data without getting to increase the actual quantity

of data. As a measure of augmentation, we apply techniques such as random scaling to

diversify the size of objects, shift the object’s locations, apply jittering to point positions

with Gaussian noise and shuffle the order of points to help FPS produce different query

points.

Table 4.1 summarizes the quantitative comparison of our method with state-of-the-

art point-based methods in terms of classification. Our method evidently outperforms

existing state of the art point-based methods in the category of 1K input points while it

gives slightly worse performance than PAN and SO-Net which use rather denser point

clouds with 5k points and normals as input.RS-CNN manages to improve from 92.9%

to 93.6% by incorporating a voting mechanism with various transformations which is

different from one time vote setting therefore we exclude its results from comparison.
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Point based methods with 1K points

Method name Input type # points AAC OA

Pointnet xyz 1K – 89.2

Pointet++ xyz 1K – 90.7

SO-Net xyz 2K 87.3 90.9

PAT xyz+norms 1K – 91.7

3DGCN xyz 1K – 92.1

PointWeb xyz - 89.4 92.3

WCP-Net xyz 1K 90.53 92.41

PointConv xyz+norms 1K – 92.5

FPConv xyz+norms – – 92.5

ACNN xyz 1K 90.3 92.6

Point2Sequence xyz 1K 90.4 92.6

DensePoint xyz 1K – 92.8

DensePoint(vote) xyz 1K – 93.2

RS-CNN xyz 1K – 92.9

RS-CNN(Vote)* xyz 1K – 93.6

InterpCNN xyz 1K – 93.0

PointGLR xyz 1K – 93.0

PAN xyz 1K – 93.1

ShellNet xyz 1K – 93.1

DRNet xyz 1K – 93.1

Grid-GCN xyz 1K 91.3 93.1

PointASNL xyz+norms 1K – 93.2

ours xyz 1K 90.9 93.27

Point based methods with more points

Pointnet++ xyz+norms 5K – 91.9

ψ-CNN xyz 10K 88.7 92.0

KPConv rigid xyz 6.8K – 92.9

PAN xyz+norms 5K – 93.4

SO-Net xyz+norms 5K 90.8 93.4

Table 4.1: Classification results on ModelNet40 dataset. AAC is accuracy average class, OA is

overall accuracy.xyz means 3d coordinates and norms means surface normal vector.
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4.1.2 Real world Data

To inspect the performance of our architecture on real world point cloud based data we

test it on ScanObjectNN[52] which is a benchmark dataset of real world classification.

Uy et.al [52] formulated this dataset by initially segmenting objects from mesh based

scene datasets SceneNN[49] and ScanNet[53] then pre-processing and grouping them into

15 categories of household objects. Dataset has several variants to offer the difficulty

levels of various kinds, but we use OBJ-ONLY variant which is by far the best real

world counter part of MODELNET dataset.

4.1.2.1 Pre processing

We pre process ScanObjectNN[52] dataset to make it suitable for training and testing

on our architecture.Several variants of this dataset are available which offer variety of

challenges to the neural network.The first step of pre processing pipeline is to separate

the pointclouds without background from those with background.The dataset contains a

flag to indicate the occurance of background instance in the pointcloud we used that flag

to group both the categories separately with the help of a script in python.Calculation

of surface normals is explained at length in the next paragraph.There are few more

conversions in the pipeline such as conversion from H5 to xyz or txt to H5 which are

actualized with the help of python scripts.

Figure 4.1: Pre processing pipeline of ScanObjectNN dataset.
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Estimation of Surface Normals

We compute surface normals of ScanObjectNN dataset for annular convolution by

using first order 3D plane fitting method [54]. To compute the normal of a point

lying on 3D surface, a plane has to be fitted at that point which is tangent to

the surface. Then the normal to that Tangent plane corresponds to the surface

normal of the point [55]. So instead of finding normal directly, it becomes a least

square plane fitting estimation problem [56]. Plane is characterized by a point qj
and normal ~nj .Neighborhood X = {xi|i = 1, 2, . . . ,K} of the point qj has to be

considered to compute any geometric feature such as normal. The solution for

normal ~nj lies in the eigenvalues and eigenvectors of covariance matrix C of the

neighborhood X which is given as [56]:

C = 1/K
K∑
i=1

ζj(xi − qj) · (xi − qj)T , C ∈ Rn (4.1.1)

C · ~vα = λα · ~vα, α ∈ {0, 1, 2} (4.1.2)

where λα and ~vα represent the αth eigenvalue and eigen vector respectively out of

the total three eigenvalues and eigenvectors produced by solving Covariance matrix.

Eigenvalues produced by C are always real numbers because of its symmetric, pos-

itive and semi definite nature. As the correct eigenvector for least square solution

is the one which corresponds to the smallest eigenvalue [56] so if λ2 ≥ λ1 ≥ λ0 ≥ 0

then eigenvector corresponding to smallest eigenvalue i.e. ~v0 gives the approxima-

tion of normal vector ~nj .

Out of total 2902 objects we use the default train and test split percentage (training 80%,

test 20%) given by [52]. we sample 1024 points with normals as input and normalize

them into unit sphere. Network uses (x,y,z) coordinates as input for training and normals

for the ordering of neighboring points. Table 4.2 gives the comparison of performance

between our architecture and existing state of the art architectures on ScanObjectNN

dataset. Our technique outperforms the existing state of the art except PointGLR[57]

which belongs to the un-supervised learning paradigm.

It can be clearly inferred from Table 4.1 and Table 4.2 that the results of existing archi-

tectures on real world dataset lag behind their synthetic counter part by a significant

margin. The reason behind this lag is the fierce challenges offered by real world data to

the networks such as incomplete and partial objects due to scanning or reconstruction
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Method Accuracy

3DmFV [58] 73.8

PointNet[1] 79.2

SpiderCNN[60] 79.5

PointNet++[2] 84.3

PointCNN[4] 85.5

DGCNN[15] 86.2

Ours 86.4

PointGLR[57] 87.2

Table 4.2: Classification accuracy on ScanObjectNN dataset.

errors or occlusion, lack of definite and accurate boundaries around the objects and

presence of low frequency noise etc. as shown in figure 4.2.

Figure 4.2: Visualization of objects belonging to OBJ-ONLY variant of ScanObjectNN dataset.

4.2 Point cloud Segmentation

We test the proposed architecture on ShapeNet-part [61] dataset which is a renowned

dataset for part segmentation. In part segmentation the goal is to assign a correct

part category label such as airplane wing, table leg etc. to each point of the 3d shape.

ShapeNet-part [61] dataset is comprised of 16,881 richly annotated 3d shapes belonging

to 16 categories labelled with 50 parts in total. It contains 14,007 and 2874 shapes in
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Method mIOU aero bag cap car chair ear guitar knife lamp laptop motor mug pistol roccket Skate table

PointNet[1] 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6

SO-Net[62] 84.6 81.9 83.5 84.8 78.1 90.8 72.2 90.1 83.6 82.3 95.2 69.3 94.2 80.0 51.6 72.1 82.6

PointNet++[2] 85.1 82.4 79.0 87.7 77.3 90.8 71.8 91.0 85.9 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6

3D-GCN[64] 85.1 83.1 84.0 86.6 77.5 90.3 74.1 90.9 86.4 83.8 95.6 66.8 94.8 81.3 59.6 75.7 82.8

P2Sequence[67] 85.2 82.6 81.8 87.5 77.3 90.8 77.1 91.1 86.9 83.9 95.7 70.8 94.6 79.3 58.1 75.2 82.8

DGCNN[15] 85.2 84.0 83.4 86.7 77.8 90.6 74.7 91.2 87.5 82.8 95.7 66.3 94.9 81.1 63.5 74.5 82.6

SRN[77] 85.3 82.4 79.8 88.1 77.9 90.7 69.6 90.9 86.3 84.0 95.4 72.2 94.9 81.3 62.1 75.9 83.2

SFCNN[78] 85.4 83.0 83.4 87.0 80.2 90.1 75.9 91.1 86.2 84.2 96.7 69.5 94.8 82.5 59.9 75.1 82.9

PAN[71] 85.7 82.9 81.3 86.1 78.6 91.0 77.9 90.9 87.3 84.7 95.8 72.9 95.0 80.8 59.6 74.1 83.5

PointConv[5] 85.7 — — — — — — — — — — — — — — — —

ACNN [32] 85.9 83.9 86.7 83.5 79.5 91.3 77.0 91.5 86.0 85.0 95.5 72.6 94.9 83.8 57.8 76.6 83.0

PointASNL[39] 86.1 84.1 84.7 87.9 79.7 92.2 73.7 91.0 87.2 84.2 95.8 74.4 95.2 81.0 63.0 76.3 83.2

RS-CNN[69] 86.2 83.5 84.8 88.8 79.6 91.2 81.1 91.6 88.4 86.0 96.0 73.7 94.1 83.4 60.5 77.7 83.6

InterpCNN[70] 86.3 — — — — — — — — — — — — — — — —

PointADRNet

(Ours)
86.3 84.0 84.8 85.2 80.1 91.3 78.8 91.6 86.9 84.6 95.3 73.6 95.5 84.6 60.5 76.7 84.1

KPConv

deform[74]
86.4 84.6 86.3 87.2 81.1 91.1 77.8 92.6 88.4 82.7 96.2 78.1 95.8 85.4 69.0 82.0 83.6

DensePoint[68] 86.4 84.0 85.4 90.0 79.2 91.1 81.6 91.5 87.5 84.7 95.9 74.3 94.6 82.9 64.6 76.8 83.7

DRNet[73] 86.4 84.3 85.0 88.3 79.5 91.2 79.3 91.8 89.0 85.2 95.7 72.2 94.2 82.0 60.6 76.8 84.2

ψ-CNN [75] 86.8 84.2 82.1 83.8 80.5 91.0 78.3 91.6 86.7 84.7 95.6 74.8 94.5 83.4 61.3 75.9 85.9

Table 4.3: Part segmentation results (instance mIOU %) on shapenet part dataset.

train and test split, respectively. We sample 2048 points with normals for each shape

as input same as given in [32], where normal are not as additional features but just

as helping hand for the ordering of points in annular convolution. We compute mIOU

(mean intersection over union) of the shapes as well as overall categories and use it as

evaluation metric.

In table 4.3 we compare our PointADRNet with other state of the art methods which

consume raw point cloud as input. Our method achieves 86.30 mIOU which is evidently

on par with state of the art.For fair comparison we exclude the specialized networks of

segmentation [3,91,93] and only include joint networks of classification and segmentation.
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4.3 Qualitative Results

Figure 4.3: Qualitative results of part segmentation w.r.t ShapeNet-part dataset.Input and

Ground Truth are plotted with around 2500 points per point cloud and predictions

with 2048 points per point cloud.

Figure 4.4: Overall Accuracy of existing state of the art networks of point cloud classification

on Modelnet40 dataset.The input to all these networks is raw pointclouds with

1024 points representing xyz coordinates.
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Figure 4.5: Overall Accuracy of existing state of the art networks of point cloud classification

on ScanobjectNN dataset.The results on real world dataset clearly lags behind

their synthetic counterpart.

Figure 4.6: Comparison of state of the art methods on Shapenetpart dataset for part segmen-

tation with mIOU as evaluation metric.

28



Chapter 5

Ablation Study and Discussion

5.1 Ablation Experiments on Modelnet40 dataset

We conduct the ablation study of our network w.r.t modelnet40 dataset to study the

effectiveness of architectural components. We conduct detailed experimentation to eval-

uate the proposed skip connection (Sec 3.2.2) and its components such as projection

shortcut (Sec 3.2.2.1), Relu group normalization shortcut (Sec 3.2.2.2) and our proposed

mapping function which exploits the sum of both these shortcuts (Section 3.2.2.3).

In first experiment we remove the skip connections i.e., we train and test a three blocks

deeper plane network of classification on Modelnet40 dataset and report the results

in table 5.1. A clear decline in accuracy can be witnessed in plan deeper network

i.e., without skip connections. Due to hierarchical nature of our network, the quality

of features learnt in last block suffer because of redundantly replicated neighboring

points from the successively down sampled point cloud.We intuitively claim that the skip

connections not only help alleviate the optimization difficulties faced by the gradient like

it does in any deep network, but they also boost up the overall quality of features by

adding the features of block-one to otherwise poorly learnt features in block-three. The

comparison between the results of three blocks deeper plane network and three blocks

deeper network with skip connections reinforces our claim.

In the second and third experiments, we incorporate the skip connections with simple

projection shortcuts and Relu group normalization shortcuts respectively but both of

them clearly under perform our final choice of shortcut which is formulated by the

addition of both the projection and ReLU group normalization shortcuts.
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Method AAC OA

1): -Remove skip connections 90.29 92.56

2):-Skip connections with Projection shortcuts 90.55 93.11

3):-Skip Connections with RG shortcuts 90.24 92.97

4):- Skip connections with RG+ projection

shortcuts followed by batch norm
90.9 93.27

Table 5.1: Ablation experiments of our proposed architecture on ModelNet40 dataset to rein-

force the importance of proposed architectural components. Where ,AAC denotes

the accuracy average class and OA denotes overall accuracy.

5.2 Testing with various configurations

We also test the proposed architecture by replacing the ReLU activation with CReLU

as well as with various configurations given in [42] such as ReLU only pre-activation and

full pre-activation and report results in table 5. Although pre-activation configuration

[42] ensures the direct flow of information from beginning till the very end but it mostly

benefits the networks which are extremely deep. Moreover, in our case information

cannot flow unimpeded anyway due to the convolution followed by batch normalization

operation in the projection shortcuts to overcome the dimensional mismatch. Hence it

gives underwhelming performance in the current setting as evident from table 5.2.

Network AAC OA

1): - Replace ReLU with CReLU 89.89 93.07

2):- ReLU only pre-activation[42] 90.05 92.99

3):- Full pre-activation[42] 89.81 92.91

Table 5.2: Results of experiments with CRELU,Relu only pre-activation and full pre-activation

on Modelnet40 dataset.
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Depth No of Skip connections AAC OA

3 blocks deep network 2 90.9 93.27

5 blocks deep network 4 89.99 92.48

Table 5.3: The comparison of accuracy w.r.t the depth and number of skip connections.Each

block processes 512,128,64,32 and 16 points respectively.Number of points can not be

decreased beyond it due to hierarchical down sampling nature of the network.These

experiments are done on MODELNET40 dataset where AAC denotes the accuracy

average class and OA denotes the overall accuracy.

Network Training Accuracy Test Accuracy

1): - Attentive pooling [7] 92.99 92.03

2):- Exponential Softmax aggregation [38] 92.7 92.4

3):- Average pooling 92.55 93.07

4):- Max pooling 92.54 93.27

Table 5.4: In this experiment,we replace the pooling layer of each block with different pooling

strategies to see its impact.Max pooling outperforms all the tested techniques and

hence it is kept as a final design choice in the architecture.Training and testing is

conducted using MODELNET40 dataset.

Network AAC (Accuracy Average Class) OA (Overall Accuracy)

1):- Merged Rings plus attention Mechanism 90.23 92.34

2):- Annular Rings plus attention Mechanism 90.1 92.38

Table 5.5: In the first experiment,we merge the annular rings and then apply attention mech-

anism to assign the attention weights to neighbors in unified ring.Let’s say N(xi)

denotes the K nearest neighbors of a query point xi and together they form a

group.We apply attention mechanism same as [39] to let the network assign scores

to the group members as per their significance which is captured in the form of con-

text vector.Likewise, in the second experiment attention mechanism is applied to

annular rings but both the experiments evidently give underwhelming performance.
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No of MLPs Accuracy Average Class (AAC) Overall Accuracy (OA)

[256,512,1024] 90.9 93.27

[256,512,1024,2048] 90.88 93.25

[64,128,256,512,1024,2048] 90.9 93.25

[16,32,64,128,256,512,1024,2048] 90.62 92.887

Table 5.6: Comparison of accuracy in terms of different number of MLPs used post annular

convolution.

No of MLPs Accuracy Average Class (AAC) Overall Accuracy (OA)

[512,256,40] 90.9 93.27

[1024,512,256,64,40] 90.56 93.0325

[2048,1024,512,256,64,40] 90.53 92.92

Table 5.7: Comparison of accuracy in terms of different number of Neurons in fully connected

layers.The accuracy tends to drop due to over fitting as number of neurons in-

crease.To manage the computational load of increasing number of neurons batch

size has to be decreased accordingly.
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Conclusion And Future Work

6.1 Conclusion

In this work, we have proposed PointADRNet, a novel 3d point based deep, hierarchical

architecture for object classification and part segmentation of raw point clouds. Despite

of its simpler and modular design it achieves on par or even better performance in

comparison to existing state of the art architectures. This simple methodology and

its superior results are expected to offer a new perspective to potentially explore the

network depth and its relevant aspects such as skip connections and shortcut designs to

improve the performance of convolutional architectures for raw point cloud.

6.2 Future Work

In this section,we propose some future recommendations for the design of proposed

network and few design parameters.

6.2.1 Adaptive Adjustment of Neighborhood

Currently, the size of neighborhood employed in annular convolution is fixed so if the

total number of neighbors fall short of a fixed count, it appends the nearest neighbor

to the query point in the list of neighbors to keep the count consistent. However,

we have empirically observed that the performance of architecture suffers due to these

redundantly replicated nearest neighbor points. Therefore, in future, we intend to exploit

Recurrent neural networks to adaptively adjust the neighborhood size individually for
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each query point which can possibly give a boost in accuracy.

6.2.2 3d Convolution

Currently,the proposed architecture employs annular convolution as a mechanism of

feature extraction. As a future recommendation,we propose to incorporate other state

of the art point based convolution methods such as FPConv[94] PAConv [95] in the

existing backbone architecture.PAConv dynamically builds up the kernels by using point

positions as weights of coefficients.FPConv flattens the surface encompassed by pointsets

and softly projects the points onto a 2d grid by learning a weight map and then perform

2d convolution on them. It would be an interesting insight to see how network performs

with these methods of convolution.

6.2.3 Weighted Aggregation

In annular convolution,the ring based strategy ensures that features are learnt from all

the rings.We apply max pooling to aggregate the features from those rings.An interesting

future direction would be to apply weighted aggregation instead of max aggregation.A

Gaussian function can be used to assign decaying weights to the rings based upon their

proximity to the query point and then aggregation can be applied on those Gaussian

weighted features.

6.2.4 Use of Additional Features

So far,we have only used features computed as a result of annular convolution for the

underlying recognition task but an other credible future direction can be to concatenate

conventional 3d point cloud features such as surface normals,eigen based features or

plane residuals etc with the features computed as a result of annular convolution.Such

a combination of features can possibly elevate the accuracy.

6.2.5 To further refine the neighborhood

Currently,the annular convolution captures the neighbors of query points by using eu-

clidean distance as a metric ,then it further sorts those neighbors w.r.t angle by calcu-

lating projections of points.These points can be categorized as both distance wise and
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angle wise neighbors.An other future direction can be to further refine the notion of

neighborhood w.r.t angle.The idea is to compute the dot product of surface normals

of all the neighboring points with query point and then sort the neighbors in decreas-

ing order of the dot product.It will possibly refine the notion of neighborhood and will

contribute towards the improvement in accuracy.
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