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Abstract 

 

Earthquakes are one of the devastating natural disasters which cause significant damage 

to property due to their destructive nature. Seismic stations around the globe record data 

continuously to make it available for research and information purpose. An enormous amount of 

research has been done in this regard in the past as well but generally, the research is done on the 

seismic regions only. This identifies that there is limited work done on the data analysis for 

country-wise seismic data. This thesis specifically analyzes and evaluates collective country-

wise seismic data through machine learning algorithms. From a geological perspective, Pakistan is 

located on three tectonic plates. The historic seismic activity of Pakistan along with its neighboring 

countries including China and Afghanistan is considered for an efficient evaluation. For an 

unbiased comparative analysis, two evaluation techniques are considered that include threshold-

based binary seismic classification and magnitude categorization based on the Mercalli intensity 

scale for determining magnitude destructive nature. Decision tree, Random 

forest, XGBoost, Adaboost, and KNN are implemented on three country-wise seismic datasets. 

Among the five applied algorithms, two algorithms including Random forest and XGB performed 

exceptionally well in the selected evaluation methods. 

The proposed evaluation methods can be applied to other natural hazardous data as well to evaluate 

the performance of applied algorithms on selected evaluation criteria. 

All the algorithms are compared on the basis of selected comparative metrics that provides an 

insight into the quality of the algorithm performance on country-wise seismic historic activity. 
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CHAPTER 1 

Introduction 
 

Earthquakes are among one of the major destructive natural hazards that harm properties and 

cause huge loss of lives all around the globe. Geographically Pakistan is located on three active 

tectonic plates including Eurasian, Arabian, and Indian plates [1]. Asian countries including 

Pakistan, China, and Japan are prone to disastrous high-intensity earthquakes[2]. The 

worldwide statistics show almost 1433 earthquakes of magnitude greater than or equal to 5.0 

are recorded in 2020[3]. The deadliest earthquake of 7.6 magnitude hits the northern area of 

Pakistan on 8th October 2005 at 8:50 am that affected the neighboring countries as well. An 

analysis stated that almost nighty thousand people died and seventy-nine were injured whereas 

at least 3.5 million were homeless[4]. The major shock was followed by more than 1200 

aftershocks in a one-month time span. 

Seismology is the interpretation of seismic waves which occurred due to the movement of the 

materials within the soil which  causes fault slips, avalanches, and explosions[5]. The seismic 

activity takes place due to the sudden breaking of rocks underground and results in a fault. The 

instant release of energy through seismic waves causes the earth’s vibration[6]. Earth’s crust is 

made up of tectonic plates which are continuously moving. The boundary of the plates slips 

within each other creating fault zones, this is known as tectonic earthquakes[7]. Other than 

tectonic earthquakes seismologist identifies other types of earthquakes which include volcanic 

earthquakes, explosive earthquake, and collapse earthquake. Volcanic earthquakes are caused 

due to fault occurrence near the volcano[8]. Explosion earthquakes are caused due to nuclear 

explosions[9]. Collapse earthquakes are caused due to rock explosions in mines and caves[10]. 

Tectonic plates are huge blocks of rocks that move around the earth’s lithosphere and slide 

right on the top of the earth’s mantle. There are seven tectonic plates that cover up almost 95% 

of the surface of the earth. These tectonic plates include Eurasian, South American, North 

American, Antarctic, African, Pacific, and Indo-Australian plates [11]. These tectonic plates 

continually move around which causes the plate’s boundaries to strike into each other. Tectonic 

plate movements are further categorized into three types based on their interactability with each 

other. The types are categorized as convergent, divergent, and transform boundaries [12]. 

Convergent boundaries happen when two tectonic plates collide with each other at the same 

point. Divergent boundaries occur when tectonic plate glides apart and move away from each 
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other. Whereas transform boundaries slide side by side in an opposite direction causing an 

earthquake. 

According to the global seismic hazard assessment program constructs a major seismic zones 

map where scientists split the map into 20 seismic regions based on the historic seismic 

activities [13]. These regions were identified from prime seismic active zones which include 

Asia, South America, North America, Africa, Antarctica, Europe, and Oceania. Pakistan is 

divided into five active zones based on the severity of the earthquakes[14]. The zones are 

categorized from lowest to highest magnitude scale. 

 

Figure 1: Seismic zones of Pakistan 

Figure 1 [14] shows the active seismic zones in all the four provinces of Pakistan divided on 

the basis of recorded magnitude in all the highlighted regions. 
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Moreover, Japan is considered the most active seismic country due to its opaque seismic 

network as compared to the rest of the world. Japan lies beside the pacific ring of fire where 

the majority of volcanic and earthquake activity takes place [15]. 

1.1 Background and Motivation 

The thesis mainly focused on the tectonic plate’s movement which causes the plate’s 

boundaries to collide and emits seismic wave’s energy in all directions. Major seismic 

terminologies include a brief description of earthquake occurrence, types of seismic waves, 

calculating the magnitude and the depth, locating the epicenter, categorization of earthquake 

magnitude in multiple classes as well as the correlation of recorded depth with the destructions 

caused on the surface of the earth.   

1.1.1. Seismic activity 

Earthquakes are mainly caused due to sudden ground movement which is caused due to the 

movement of tectonic plates [16]. The plates of the earth’s surface move which results in fault 

that occurred due to the release of strong seismic waves beneath the earth’s surface which is 

the hypocenter and the location directly above the surface are known as the epicenters [17]. 

 

Figure 2: Origin of seismic activity 

Figure 2 clearly shows the origin of seismic wave activity occurrence [18]. The distance 

between the hypocenter and the epicenter is the recorded depth covered by an earthquake in 

kilometers. Distance is categorized into three categories which include shallow earthquakes 

which range from 0 to 70 km, intermediate earthquakes that cover a distance from 70 to 300 

km, and deep earthquakes range from 300 to 700 km from the epicenter [19]. 

1.1.2. Types of seismic waves 

The seismic waves are categorized into two types which are listed below: 

1. Body waves. 
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2. Surface waves. 

Body waves include primary and secondary wave which is denoted as P-waves and S-waves. 

The primary waves are the initial waves that are captured by the seismographs and are 

compressional in nature which could travel through the liquid and solid objects [20]. These 

primary waves travel way faster than the surface waves due to the energy transmit ability as 

the earth’s internal component is incompressible. Secondary waves are always the second 

waves that are recorded after the arrival of the primary waves because they are slower in speed. 

The S-wave is also called shearing waves as it can only move on solid objects. 

Surface waves arrived at the very end of body waves and they are also sub-categorized into 

two types which include Love and Raleigh waves known as L-waves and R-waves [21]. Both 

the surface waves cause serious destruction and have different amplitude properties. These 

surface waves can be easily distinguished from the seismogram reading due to lowered 

captured frequency. Love waves travel horizontally on the surface and Raleigh waves travel in 

all directions of the surface [22]. The amplitude intensity in the love wave is greater as they 

horizontally travel which is interconnected with the depth. Amplitude intensity for shallow 

earthquakes is quite greater on the seismographs reading and it disperses as the traveled depth 

of the seismic wave kept on increasing with the passage of time.   

 

Figure 3: Seismic waves recording 

Figure 3 [23] distinguished both the waves and it also depicts the amplitude length as well as 

the frequency at which all these waves travel through the body and the surface of the earth. 

Initially, both the body waves are recorded. Through the peaks of the recorded waves, the 
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categorization is taken place. As the figure shows high amplitude waves at first and at the very 

end the intensity is reduced due to the dispersion of the seismic waves’ energy due to the high 

depth covered along the way towards the bottom of the earth. 

1.1.3. Magnitude calculation 

The Richter scale used for magnitude calculation was initially developed in 1935 by Charles 

Francis Richter [24]. It calculates the earthquake magnitude by applying the logarithm of the 

seismograph recorded wave’s amplitude. 

 

Figure 4: Richter scale 

Figure 4 [25] is the Richter scale which was first developed for magnitude calculation but now 

it’s used for small-scale surface earthquakes.  The calculation procedure through the Richter 

scale to record local earthquakes denoted by ml after recording the seismic waves is: 

1. The distance of the recorded P-wave and S-wave is calculated in seconds. 

2. Measuring the total height of the overall wave which is denoted as amplitude. 

3. Pointing out the time on the left and the amplitude placed on the right; a line is drawn 

which passes through the middle magnitude scale. 

4. Through this procedure the total distance recorded in kilometers is also identified along 

with the total wave travel time. 
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5. The identified local magnitude value is equal to 5.0. 

The Richter scale is replaced by the moment magnitude scale developed in 1970 by Thomas 

C. Hanks and Hiroo Kanamori which is efficient in calculating large scale earthquakes [26]. It 

mainly covers the physical aspect of the earthquake including the total energy released and the 

total covered area of the fault along with the covered distance.  

1.1.4. Epicenter Location 

As the seismographs capture the seismic waves, it doesn’t update on the location of the 

recorded earthquake waves [27]. Seismic stations after receiving the seismic data find out the 

distance and the magnitude but not the actual location where the fault occurs. For finding the 

right direction of the earthquake triangulation method is applied [28]. 

 

Figure 5: Locating epicenter 

 

Figure 5 [29] shows the triangulation method used by the station in order to locate the epicenter 

on the map. This method is quite simple; the seismic stations draw a circle with a radius equal 

to the total distance covered in kilometers. The point where these three circles intersect together 

is the epicenter point on earth. For getting the exact location of the fault, the triangulation 

method implemented by three seismic stations is mandatory. 

1.1.5. Magnitude categorization 

The magnitude categorization is based on the level of destruction it can cause on the surface. 

On the scale, as the number increases so does the intensity as well as the energy of the seismic 

waves gets stronger [30]. The seismic wave’s amplitude can easily differentiate between small-
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scale and large-scale earthquakes. If the recorded wave is shorter; it’s considered as a local 

earthquake that is easily calculated by the Richter scale but if the wave is longer in nature it 

depicts the total fault area as well as the intensity.  

 

Figure 6: Magnitude scale division 

Figure 6 [31] shows the division of magnitude in separate classes starting with micro magnitude 

equal to 1.0 till great earthquakes with a magnitude value of 10. The destructive effect of 

recorded magnitude on the surface is categorized into different classes. Table 1 [32] shows the 

magnitude division along with the damage caused on the surface. 

Magnitude Division Effect 

0-1.9 It’s not felt by humans 

2.0-3.0 It’s hardly felt on the surface 

3.1-3.9 Felt by very few individuals 

4.0-4.9 It causes slight damage to buildings 

5.0-5.9 Significant damage on the surface 

6.0-6.9 Great damage to poorly constructed buildings  

7.0-7.9 It causes huge destruction on the surface 

8.0-8.9 It results in massive destruction  

9.0-10 Destroy everything on the surface of earth 

Table 1: Intensity of magnitude scale division 
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1.1.6. Region vs country-wise seismic analysis 

A region specifies a specific part of land whereas a country is a separate territory sharing 

borders with other countries and is controlled by a government. Multiple studies have been 

done on different regions to evaluate machine learning classifiers performance. Forecasting 

earthquake intensity through seven supervised machine learning algorithms on six different 

regions of India is performed for efficient comparison [33]. Country-wise comparative analysis 

of global seismic data analysis through magnitude discretization to predict the earthquake 

occurrence through KNN and Random forest classifier is performed [34]. 

1.2. Problem Statement 

Comparative analysis of earthquake occurrences of Pakistan with its neighboring countries and 

then comparing Pakistan with the earthquake hot spot country Japan. The analysis is performed 

to not only evaluate country-wise earthquake data but also to classify the severity of the 

earthquakes as well.  

1.3. Objectives  

The objective of this research is to perform: 

1. Country-wise seismic exploratory data analysis of Pakistan along with its neighboring 

countries which share borders such as Afghanistan and China.  

2. Performing comparative study of supervised machine learning algorithms’ performance 

of Pakistan’s seismic data.  

3. Lastly, to compare the outcomes with the most vulnerable country with respect to 

earthquake occurrences in the same continent.  

1.4. Thesis Contribution  

Following is the thesis contribution: 

1. Best to our knowledge limited research is done regarding Pakistan and its neighboring 

countries with respect to evaluating seismic activities. We used machine learning 

techniques in this least explored domain.  

2. The applied analysis criteria aren’t limited to a single dataset but instead, multiple 

country-wise datasets are taken to critically analyze the quality of evaluation methods. 

The proposed framework of the comparative analysis can be adopted to perform 

efficient analysis of any real-world disastrous events. 



9 
 

3. This research critically analyzes the algorithm’s performance on a standard time-series 

seismic dataset to predict the earthquake type based on the Mercalli intensity scale. The 

proposed evaluation methods are feasible in nature and can be utilized in the future to 

evaluate the severity of natural hazards on people and the infrastructure. This research 

focuses on an in-depth analysis of the machine learning algorithm’s performance for 

evaluating collective country-wise historic seismic data. 
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CHAPTER 2 

Literature Review 
 

A comparison of multiple machine learning algorithms’ performance for predicting 

earthquakes on Indonesia’s seismic data was performed [35]. Prediction of multiple features 

including depth, location, and magnitude is done. Three algorithms are used on multiple 

combinations of datasets which are SVM, Naïve Bayes, and multinomial logistic regression 

which got accuracy ranging between 72 to 92%. On both the collective grouped and ungrouped 

data SVM shows good performance as compared to the other two algorithms. Authors in [36] 

performed extensive exploratory data analysis on Pacific and Australian plate boundaries 

through line plots and pie charts which provides an insight into performing analysis on historic 

time series seismic datasets. Authors in [37] classify bridge damage caused due to strong 

seismic waves in which supervised machine learning algorithms performed well in analyzing 

damage caused on the surface. Five algorithms including Random Forest, Decision Tree, 

Logistic Regression, KNN, and XG Boost were applied to the dataset acquired from Github. 

Out of the applied algorithms, the decision tree predicted bridge damage with a mean accuracy 

of 96% along with higher precision and recall rate. The results were significantly better than 

the previous research done on the same dataset.  

Another study provides a methodology to detect aftershocks after an earthquake of 7.3 

magnitude hits the western part of Iran [38]. A binary approach is applied to accurately classify 

an aftershock and non-aftershock by considering two faults location out of four that got smaller 

Euclidean distance from the epicenter. Four machine learning algorithms including Naïve 

Bayes, Logistic Regression, KNN, and RBF were applied. Naïve Bayes got the highest 

accuracy of 78% whereas logistic regression obtained a higher AUC value equal to 0.85. In 

[39], volcanic eruption classification is performed to find useful hidden patterns from Nevado 

del Ruiz and Telica Volcano in order to differentiate a volcanic activity as eruptive or non-

eruptive. Four supervised machine learning algorithms including SVM, Logistic Regression, 

Random Forest, and Gaussian Process Classifier were applied. SVM got 82.6% accuracy in 

Nevado data whereas Gaussian Process Classifier obtained 90.5% accuracy in the Telica 

dataset.  The authors in [40] forecast earthquakes in Indian Subcontinent to avoid damage in 

the early stages through acquiring the dataset from USGS and the Indian meteorological 

department. Support vector regressor and random forest regressor along with ensemble 
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stacking, bagging, and boosting techniques were applied. The applied ensemble techniques 

obtained accuracy that ranges between 74%-83%. However, ensemble stacking got the highest 

accuracy of 83%. 

In [41], an earthquake-damaged building’s architectural safety is classified through Random 

forest and CART. Both algorithms were applied to predict whether the building is safe or not 

for living. The overall accuracy of both classifiers ranges between 90%- 91%. The patterns 

obtained from the proposed methodology could be utilized in order to get prior confirmation 

of the damaged building's safety status. In [42], laboratory-created acoustic experimented data 

that imitate earthquakes is predicted through the XGB algorithm. A six-fold cross-validation 

strategy was adopted to find out good mean absolute error for selecting optimal features. The 

result concludes that three features which include acoustic data, first amplitude value on sliding 

window and amplitude obtained the lowest mean absolute error value of 1.913 as compared to 

other feature combinations. Another interesting approach is presented in [43] to analyze 

residential building conditions after an earthquake. The engineers had inspected each building 

and assigned three tags based on the overall damage caused to the buildings. Unsafe buildings 

are assigned red and safe buildings are assigned green whereas yellow tag is given to buildings 

that can be reoccupied. For accurate classification linear discriminant analysis, KNN, Decision 

Tree, and Random Forest were applied. Random Forest got the highest accuracy of 66%. A 

similar approach for classifying damage can be applied to other natural disaster data to detect 

potential harm in the early stages. 

The authors in [44] identified posttraumatic stress disorder (PTSD) in children due to 

earthquakes. Combinations of multiple factors including sleep cycle, analyzing mood, 

earthquake experience faced, and daily activities are utilized to identify potential posttraumatic 

stress disorder. The study identifies female adolescents are more vulnerable to stress due to 

emotional thinking mechanisms. The XGBoost classifier obtained an AUC value equal to 0.80 

along with 74% accuracy. Authors in [45] presented similar work to this paper through 

magnitude conversion into binary classification through setting threshold greater than equal to 

5.0 for differentiating positive and negative magnitude instances and selecting best-performing 

algorithms. Eight algorithms including Random forest, SVM, Naïve Bayes, Logistic 

regression, Adaboost, KNN, Multilayer perceptron, and CART are applied. Random forest got 

the highest accuracy of 76.97% whereas KNN got 75.53%. Another similar binary approach in 

[46] was applied to Hindukush region seismic activities after acquiring the dataset from USGS. 

Binary magnitude conversion is performed by setting a feasible threshold value. Tree-based 
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algorithms are implemented which include decision tree, random forest, rotboost, and rotation 

forest. Rotation forest gained maximum performance by obtaining AUC and precision values 

as 95.9% and 90.5% respectively.  

Similar binary seismic classification analysis performed on the global seismic dataset 

highlights the importance of distinguishing medium or big earthquakes after magnitude 

discretization [34]. The conversion was performed by considering magnitude ranging from 0 

to 5.8 as medium and 5.8-10 as big scale earthquakes. Random forest and KNN were 

implemented for accurate comparative analysis. Random forest obtained 99% accuracy 

whereas KNN only obtained 55% accuracy.  

The authors in [33] conducted related multiclass magnitude division through forecasting types 

of earthquakes mainly divided into fatal, moderate, and mild earthquakes. Considering regional 

magnitude value greater than 5.5 categorized as fatal whereas range from 4.5-5.5 as moderate 

and 2.5-4.5 as mild earthquakes. The study was conducted to avoid major disasters in India’s 

six different regions by implementing seven algorithms including Random forest, Bayes net, 

Logistic regression, Simple logistic, Random tree,  ZeroR, and LMT. Simple logistic regression 

and LMT achieved accuracy ranging from 98.18%-99.94% on multiple regions of India. 

2.1 Limitations 

After doing an in-depth literature review, some of the major observed limitations in performing 

evaluation on seismic data is: 

1. Most of the machine learning algorithms applied on multiple small regions of a country 

are taken into account instead of considering the overall country’s historic seismic 

occurrences. Overall country-based analysis can provide an in-depth insight into the 

overall magnitude intensity through active tectonic plates. 

2. Only limited work is done on Pakistan and its neighboring countries’ seismic analysis 

performed through implementing machine learning algorithms. 

3. As evident from the literature review, cutoff magnitude is set based on the highest 

magnitude occurrence in a dataset for binary analysis. This technique ignores other 

major magnitude values causing major destruction on the surface of the earth which 

damages the infrastructure. 

4. Most of the work is only focused on forecast and prediction performed through 

magnitude conversion to binary class or multiclass. However, we can also categorize 
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magnitude value in terms of the level of severity and the destruction capability each 

earthquake holds based on the Mercalli intensity scale. 
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CHAPTER 3 

Methodology 

This chapter provides a detailed explanation of the proposed methodology used for this 

research. Two seismic evaluation techniques are utilized. The chapter is divided into two 

sections; the first section provides the working of applied machine learning algorithms and the 

second section includes the adopted proposed methodology for seismic evaluation. 

3.1 Applied Algorithms Description 

For a fair comparison of machine learning algorithms on the acquired seismic data from the 

United States geological survey; five supervised machine learning algorithms are applied. The 

selected supervised machine learning algorithms working are given below. 

3.1.1 Decision Tree 

Decision tree is the simplest algorithm used for both classification and regression [47]. The 

decision tree split is dependent on split purity calculated through entropy, information gain, or 

Gini impurity [48]. Purity denotes that the split chosen has data samples belonging to only one 

class. The leaf nodes denote the class labels. Figure 7 [49] shows the general architecture of 

the decision tree algorithm. 

 

Figure 7: Decision Tree workflow 

 

3.1.2 Random Forest 

Random forest is an ensemble-based algorithm also known as a bootstrap aggregation that 

simply builds multiple decision trees in order to avoid high variance.  
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Figure 8: Random forest architecture 

 

Figure 8 [50] depicts the overall working architecture of the algorithm. The training data 

instances are provided to multiple decision trees. The leaf node of all the decision trees contains 

the prediction of a specific class. In classification, maximum voting is considered for assigning 

a class label. 

3.1.3 Adaboost Classifier 

The adaptive boosting algorithm merges weak learners into a stronger ones. The basic idea 

behind the adaptive boosting is creating multiple decision stumps corresponding to each feature 

in the training data. After selecting the initial base model; number of incorrect observations are 

noted and total error value is calculated for the stump performance. Weights are updated 

according to the obtained performance which will eventually assign more value to incorrectly 

classified points and lesser values to correctly classified points.[51] 
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Figure 9: Adaboost classifier workflow 

Figure 9 [52] demonstrates the sequential trained classifier along with the updated weights. 

The misclassification error obtained from the initial model is updated with new weights, and 

the process continues until every class is classified accurately.  

3.1.4 XGBoost Classifier 

Extreme gradient boosting classifier is one of the most powerful gradient boosting algorithm 

for regression and classification. It is an ensemble of decision trees that optimizes the loss 

function. Multiple decision trees are constructed as base learners to classify the dependent 

feature by calculating the similarity weight and gain of each split. The output of multiple base 

models is combined together for efficient prediction. Regularization parameter controls 

overfitting [53].  
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Figure 10: XGB classifier workflow 

Figure 10 [54] illustrates the overall working of the XGBoost algorithm which constructs the 

decision tree sequentially whereas each decision tree generates residual errors that denote the 

total loss of each base model.  

3.1.5 K-nearest Neighbors 

K-nearest neighbors is the simplest supervised classification algorithm based on the simplest 

nonparametric approach that emphasizes that the same class data points are close to each other. 

It can be used for binary along with multi-class classification problems due to its versatile 

nature. By selecting an optimal value of K, the data points are assigned to their nearest neighbor 

that is at a minimum distance.  

 

Figure 11: KNN workflow 

Figure 11 [55] shows a multiclass classification problem having data points distributed in three 

classes. Accuracy is mostly improved in KNN if standardization or normalization is performed. 
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3.2 Proposed Approach 

In this section, the proposed approach for seismic data evaluation is discussed along with the 

acquired seismic dataset and applied supervised machine learning algorithms. The proposed 

methodology includes six major stages, each containing multiple steps. Figure 12 illustrates all 

the necessary steps taken in every stage. 

 

Figure 12: Proposed methodology 

 

3.2.1 Data Acquisition 

The seismic dataset is acquired from the United States Geological Survey (USGS) earthquake 

catalog [56]. The historic seismic activity records range from 1990 to 2020. The major 

countries include Pakistan, Afghanistan, China, and Japan.  

3.2.2 Data pre-processing Data pre-processing is an essential step in machine learning as data 

quality directly influences the applied algorithm learning capability. Real-world datasets have 

missing values and categorical features that must be cleaned and formatted to obtain good 

accuracy [57]. Another essential step in pre-processing is scaling. Features scaling is an 

important aspect as the range of features in USGS data varies in their units of measurement as 

well as their magnitude. 
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3.2.2.1 Dealing with outliers 

The interquartile range is used to detect outliers and visualize the spread of data as well. 

Outliers are mostly deleted from the dataset but since we have smaller datasets; treating the 

outliers by imputing it is a better option as to not lose any data [58]. 

 

Figure 13: Boxplot of gap feature 

 

Figure 14: Boxplot after imputation 

 

Figure 13 is the boxplot of the gap feature containing outliers after the max value whisker. This 

feature is imputed with zero value because its original format recorded by the catalog is in 

degrees ranging from 0.0 to 180 respectively. Figure 14 shows the distribution of data after 

imputation. 
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3.2.2.2 Handling missing values 

There might be various reasons behind missing values which includes data entry error or 

problem during data gathering. However, the performance of the algorithms is highly 

dependent on how we handle missing values present in the dataset [59]. To not lose any 

information from the seismic dataset, data imputation methods were applied.  

 

Figure 15: Missing values histogram 

 

Figure 15 shows the bar plot of missing features values in the Japan dataset. These are the eight 

features that contain missing values in all the six datasets utilized in this thesis. The applied 

methods for data imputation are as follows: 

1. Mean imputation: It is the simplest method to deal with missing values. It substitutes the 

mean of the available values on missing values. The advantage of mean imputation is that 

it maintains the size of the dataset. 

2. Mode imputation: This method substitutes the missing values with the most frequent value 

present in the missing features columns. The mode imputation is a better method as it 

considers the maximum values present in the data. 

3.2.2.3 Country wise evaluation criteria 

The two seismic data evaluation criteria adopted in the thesis are as follows: 

1. Binary classification: The magnitude value ranges from 3.5 to 10. 
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2. Multiclass classification: Categorization of the magnitude values into their appropriate 

class that corresponds to the strength and effect of the seismic waves on the surface. 

For better categorization, the seismic magnitude range is from 0-10 which contains 

body waves as well as surface waves. 

3.2.2.3.1 Evaluation methods implementation 

1. Setting the average magnitude value as a threshold for conversion into binary 

classification. The magnitude value greater than and equal to the obtained average is 

set to 1 else 0. 

2. The minimum magnitude in collective data is set as the initial starting point for 

categorization. The largest magnitude varies in all the datasets that’s why it’s different 

from each other. The example of categorization in the Pakistan and China dataset is set 

as values ranging from 2.8-4.0 are mild earthquakes. Whereas magnitude greater than 

4.0 till 4.4 are major earthquakes. And lastly values greater than 4.4 till 7.9 are 

destructive earthquakes.  

Both the binary and multi-class categorization will provide an in-depth evaluation of country-

wise seismic datasets. 

3.2.2.4 Handling categorical features 

Handling categorical features of a dataset plays a significant role in preprocessing step. 

Category label encoding is applied to convert the object feature into its appropriate numeric 

machine-understandable format.  

3.2.2.5 Handling imbalanced dataset 

Imbalanced dataset problem arises after magnitude categorization in multiclass japan 

evaluation. Handling imbalanced datasets is a crucial component of seismic evaluation to avoid 

bias towards the majority class. Random oversampling technique is adopted to handle the 

imbalanced dataset. In random oversampling, the minority class in the data is balanced by 

randomly replicating the samples in the training dataset [60]. By applying the oversampling 

technique to balance the class distribution, the results obtained were significantly better than 

other available balancing techniques.  

3.2.3 Feature Selection 

Feature selection is one of the fundamental steps in machine learning as the performance of the 

applied models is heavily dependent on it. Selecting fewer features from the dataset while 
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achieving good performance is the goal of feature selection. The adopted algorithms for feature 

selection are as follows: 

1. Removal of constant features by applying a feature selector variance threshold 

algorithm to get rid of all those features present in the dataset that have zero variance. 

As the features having less variance carry little to no information, it contains exact same 

value in the entire dataset. 

2. Mutual info classification algorithm is applied which calculates the dependency among 

the features. The value is zero when the features are independent whereas the greater 

value depicts high dependability. Mutual information is an interchangeable term of 

information gain which calculates how much information is obtained from a variable 

given another. 

3. Top ten features are selected by specifying k value equal to 10 in SelectKBest along 

with mutual information algorithm scoring function. 

3.2.4 Model training and selection 

The applied machine learning algorithms are trained on 80% of the dataset and the remaining 

20% is set as testing data. K-fold cross-validation technique is applied to obtain a generalized 

model. Only those models are selected which obtained the best cross-validation accuracy, 

precision, recall, f1-score, and AUC. 

Machine learning algorithm’s performance is highly dependent on selecting the best 

hyperparameters. Hyperparameter tuning is performed through Randomized Search which 

selects random combinations from the parameter distribution. In this thesis, Randomized 

Search is used for tuning hyperparameters instead of Grid Search as it gets better results in the 

lower-dimensional datasets [61]. 

3.2.5 Evaluation Metrics 

The obtained results are evaluated based on multiple evaluation metrics which include area 

under the receiver operating characteristics, precision, recall, and f1-score. These performance 

metrics will provide an insight into the performance of machine learning algorithms. Precision 

indicates the percentage of actual positive values predicted by each classifier. Whereas recall 

indicates how many positive values are predicted correctly. Precision takes into account the 

type 1 error that is false positive rate whereas recall considers type 2 error that is false-negative 

rate. The formula for calculating precision and recall is given in figure 16. 
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Figure 16: Precision and Recall formula 

To get good precision and recall score, the number of false-positive and false-negative should 

be minimum.  

Another metric which is the f1-score considers both false positives and false negatives. It’s 

basically an amalgamation of recall and precision and takes a harmonic mean of both recall 

and precision as seen in figure 17.  

 

Figure 17: F1 score formula 

 

The f1-score is a more practical measure as compared to accuracy and is considered mostly for 

measuring the quality of the classifier. Classifiers that obtained a higher f1-score is considered 

good in term of classification capability. 

The most significant component for comparing the classifier’s performance is through plotting 

the AUC-ROC curve in binary as well as multiclass classification. It basically denotes the 

capability of an applied model in distinguishing classes at multiple threshold values. 
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Figure 18: AUC-ROC curve structure 

 

In Figure 18, the x-axis denotes the false positive rate whereas the true positive rate is on the 

y-axis. The rate of true positive value and false-positive value of the applied algorithm at 

multiple threshold levels is denoted by the curve. An optimal model covers more area under 

the curve and distinguishes between the classes efficiently by keeping the rate of true-positive 

higher than the false-positive rate. 

3.2.6 Comparative Analysis 

The end goal is to perform a comparative analysis of all the seismic datasets to compare the 

performance of applied supervised machine learning algorithms. The results are based on 

multiple metrics which involve area under the curve, accuracy, precision, recall, and f1-score 

obtained through 5-fold cross-validation. Through these evaluation metrics, the outcome of 

applied algorithms can be better analyzed and won’t be dependent on only a single performance 

measure. 
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CHAPTER 4 

Results 
 

This chapter provides seismic evaluation results obtained from the selected countries’ datasets. 

4.1 Dataset Description 

The dataset is acquired from the United States Geological Survey (USGS) Agency located in 

the United States that collects natural hazards data. The data can be easily acquired from the 

geographical earthquake USGS catalog by mentioning the countries as well as the range of 

magnitude value required [56]. The time series seismic record consists of a total of 22 features 

and their description is provided in table 2. 

Features Description 

time The earthquake occurrence time recorded in date and time both in UTC 

format. The initial rupture time also known as the origin time recorded 

through the seismographs. 

latitude To locate an earthquake epicenter coordinates the latitude and longitude is 

used. It’s basically division of the earth from the equator in to two parts 

which is north and south. The degrees ranges from -90 to +90 which 

differentiate the two hemispheres. 

longitude The division of globe in to east and west is done from the center vertically 

which is known as the prime meridian. The range of the longitude is from 

-180 to +180, in which the eastern part is taken as positive and western as 

negative. 

depth The recorded seismic activity recorded depth in kilometers. It denotes how 

deep the earthquake is from the epicenter which signifies the intensity. 

Shallow earthquakes which ranges from 0-70 kilometers which are 

considered destructive. Intermediate earthquakes which ranges from 70 to 

300 km and deep earthquakes which ranges from 300 to 700 km. The USGS 

earthquake catalog records depth from 0 to 1000 km. 

mag The recorded Richter’s magnitude scale of earthquake that ranges from 0 

to 10. 
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magType The selected method for calculating the earthquake magnitude. 

Nst The total sum of earthquake stations near the epicenter which reported the 

location. 

Gap The distance recorded as an azimuthal gap between the stations. The 

smaller the reported degree, more reliable is the reported location. 

dmin The minimum distance recorded in degrees between the epicenter and the 

nearby stations. The total distance of 1 degree is equal to 111.2 km 

approximately.  

rms Root mean square which is the surplus value obtained in seconds and 

basically denotes the observed fit of the reported and predicted time of 

earthquake. 

Net The original network source of the reported seismic activity. 

Id The identifier assigned to the event which differentiates every natural 

hazard accurately. 

updated It basically denotes the latest updation done on the recorded event in case 

if there’s any error in the reported time initially. 

place The reported place of the earthquake. 

type The type of hazardous event which in this case is either earthquake or a 

quarry. 

horizontalError The seismic location uncertainty recorded in kilometers ranging from 0 to 

100. 

depthError The seismic depth uncertainty recorded in kilometers ranging from 0 to 100. 

magError The seismic magnitude uncertainty recorded in the data. 

magNst The total sum of stations which calculates the event magnitude. 

status The status represented by three values which are deleted, automatic and 

reviewed that basically denotes whether the reported seismic event is 

verified by a human or it’s recorded automatically. 

locationSource The authorized source of the epicenter location. 

magSource The authorized source of the magnitude of the seismic activity. 

Table 2: Dataset description 
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Other than the described features in table 2, four more features are extracted from the time 

feature which are month, year, weekday, and day. These four features are retrieved to perform 

exploratory data analysis by plotting graphs and pie charts to visualize the relationship between 

the features. Moreover, month-wise and day-wise percentages of seismic activity are visualized 

to compare which country encounters more earthquakes in the past 31 years of historic data.  

Another reason for discarding the retrieved feature is to avoid overfitting since the time feature 

is already been selected during feature selection. Table 3 shows the selected ten features for 

evaluation. 

No. Features 

1 time 

2 depth 

3 Nst 

4 Gap 

5 Rms 

6 Depth error 

7 Mag error 

8 Mag nst 

9 Mag type 

10 Mag source 

Table 3: Selected features 

 

4.1.1 Specified Region 

The collective datasets include four main countries includes Pakistan, Afghanistan, China, and 

Japan. Collective 31 years of seismic datasets include combined data of China and Pakistan, 

Afghanistan and Pakistan, and the Japan dataset is taken alone. 
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Figure 19: Selected countries for seismic evaluation 

Figure 19 highlights all the main countries selected for historic earthquake data evaluation. 

4.1.2 Country-wise seismic data distribution 

The data size for each country in binary classification seismic data is presented in table 4. 

Country Total Volume Distribution 

Pakistan and Afghanistan 6917 Pakistan:2177 

Afghanistan:4740 

Pakistan and China 9785 China:7371 

Pakistan:2414 

Japan 19090 ___ 

Table 4: Country-wise binary data distribution 

Country-wise data size in multiclass seismic evaluation is given in table 5.  

Country Total Volume Distribution 

Pakistan and Afghanistan 7399 Pakistan:2343 

Afghanistan:5056 

Pakistan and China 8848 China:6540 

Pakistan:2308 

Japan 18628 ___ 

Table 5:Country-wise multiclass data distribution 

The collective dataset is acquired to analyze the total seismic activity of Pakistan’s neighboring 

countries. And since the border sharing countries face more seismic activity in all regions on 

yearly basis, combined time-series data provides insight into the total tectonic movement in 

Pakistan as well.  



29 
 

4.2 Exploratory Data Analysis 

This section presents an in-depth country-wise exploratory data analysis. Seismic time series 

data provides descriptive statistics about the tectonic movement over a period of time. 

Earthquake data is interpreted with line plots, pie charts, and histograms to visualize the 

underlying patterns. 

4.2.1 Binary classification seismic data 

Richter scale magnitude average value is taken as the standard threshold for binary 

classification. Magnitude greater than average is considered as class 1 and others as class 0. 

Through binary conversion, we can get a frequent average magnitude that hits each country in 

the past 31 years of the historic seismic record. The average earthquake threshold obtained in 

all the specified countries ranges between 4.29-4.49 that is of medium intensity according to 

the Mercalli intensity scale and carries enough potential to cause minor damage. 

 

Figure 20: Day wise Pie-chart of Pakistan and Afghanistan 

Figure 20 shows the day-wise seismic activity percentage in Afghanistan and Pakistan in 31 

years of historic data. Approximately 17% of earthquake hits on Saturday whereas the least 

amount of seismic activity occurred on Tuesday, Wednesday, and Thursday with a total of 13% 

only. 
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Figure 21: Day wise Pie-chart of Pakistan and China 

Figure 21 shows most of the seismic activity towards the northeast of Pakistan occurs on 

Monday with the highest 16% percentage. Only 13% of seismic waves are recorded on 

Thursday. 

 

Figure 22: Day wise Pie-chart of Japan 

Figure 22 depicts Japan’s highest seismic activity is recorded on Friday, Saturday, and Sunday 

with a total of 15% seismic occurrences all over the country. 
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These pie charts further depict that frequent seismic activity is mostly recorded on Saturdays.  

 

Figure 23: Month wise pie-chart of Pakistan and Afghanistan 

Figure 23 presents month-wise seismic activity through which we have further gained insight 

that 14% of earthquake hits in October followed by March with 10% of the total seismic record. 

 

Figure 24: Year wise magnitude count in Pakistan and China 

Figure 24 shows year-wise magnitude count in Pakistan and China seismic data. The highest 

magnitude count is recorded in the year 2008 with more than 1750 earthquakes. 
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Figure 25: Year wise magnitude count in Japan 

In Japan, more than four thousand earthquakes occurred in 2011 as shown in Figure 25. 

 

Figure 26: Day wise seismic count in Pakistan and China 

A line plot is retrieved to visualize total day-wise seismic occurrences shown in Figure 26. This 

is an extension to the pie chart shown in Figure 21, instead, here we visualize the total count 

on the y-axis. Monday got most of the seismic occurrences followed by Saturday. 
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Figure 27: Average year wise magnitude in Pakistan and Afghanistan 

 

Figure 27 shows the average magnitude with respect to every year that ranges between 4.1-4.7. 

In all the binary seismic datasets, the highest average is recorded in the years 1990 and 2010. 

 

Figure 28: Depth of recorded magnitude in Pakistan and China 

Depth is recorded in kilometers which shows how far the seismic waves travel from the 

epicenter. Figure 28 shows that the depth of 7.1 and 7.5 magnitude earthquake covers more 

than 35 kilometers. It’s categorized as a shallow destructive earthquake because the seismic 
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wave’s intensity doesn’t disperse farther into the earth’s surface. The least distance from the 

epicenter to the hypocenter, the more destruction is caused on the surface due to its strong 

seismic intensity [62]. 

 

Figure 29: Magnitude count plot of binary Pakistan and Afghanistan data 

The histogram in figure 29 shows the magnitude values on the x-axis and their corresponding 

count on the y-axis. As the binary threshold evaluation magnitude starts from 3.5, it’s the same 

for all binary datasets whereas the last highest recorded magnitude varies. The ending 

magnitude in Pakistan and Afghanistan data is 7.7 as shown in figure 28, whereas in the other 

two datasets the highest recorded magnitude is equal to 7.9. This plot further depicted that both 

the neighboring countries of Pakistan and Japan faces a few damaging seismic waves in past. 
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Figure 30: Correlation graph 

Figure 30 is the correlation graph of Pakistan and China earthquake data. The correlation matrix 

shows that there’s a positive correlation between the features time and gap, nst and magnst, 

depth and deptherror. Whereas little negative correlation between magtype and magSource, nst 

and gap, rms and magnst, magSource and magtype. And few of the features in the dataset have 

no correlation which is close to 0. 
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4.2.2 Multiclass classification seismic data 

This section includes a histogram plot of multiclass seismic data. Most of the plots in multiclass 

seismic evaluation are the same as the binary evaluation because of the exact year range. The 

only difference between the two evaluation methods is the magnitude range that’s why only 

one plot is included which varies from the previous magnitude plot figure 28. 

 

Figure 31: Magnitude count plot of categorical evaluation 

Figure 31 shows the magnitude count histogram of Pakistan and China categorical evaluation 

data which ranges from 2.9 to 7.9. As the selected time is the same, the highest recorded 

magnitude is identical too. 

4.3 Binary seismic evaluation results 

For obtaining an appropriate evaluation of the retrieved seismic data, multiple machine learning 

algorithms have been applied such as Random Forest, Decision Tree, K Nearest Neighbor, 

Extreme gradient boosting, and Adaptive boosting. The derived results from each country-wise 

data are given in tables [6-11] along with the selected metrics for comparison that are obtained 

through applying 5-fold cross-validation technique.  

ROC curves obtained through 5 fold cross-validation are derived for each classifier in order to 

compare the classifier performance. The comparison through ROC curves provides a better 

representation of the applied seismic evaluation techniques. Average roc is computed of each 

5-fold cross-validation to get a stable value for performance comparison. Out of 30 roc curves; 

a few are attached below. For the collective countries dataset, the roc curves are titled according 

to the initial alphabet of each country to distinguish the curves. 
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Figure 32: Random forest roc of Pakistan and Afghanistan data 

 

 

Figure 33: Adaboost roc of Pakistan and China data 
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Figure 34: XGboost roc of Japan data 

 

4.3.1 Pakistan and Afghanistan dataset 

Classifier AUC Precision Recall F1 Score Accuracy 

Random 

Forest 

0.85 0.82 0.71 0.76 77 

Decision Tree 0.79 0.76 0.66 0.70 72 

AdaBoost 0.83 0.84 0.61 0.70 74 

XGBoost 0.84 0.80 0.69 0.73 75 

KNN 0.50 0.41 0.55 0.45 53 

Table 6: Binary evaluation results of Pakistan and Afghanistan data 

 

Table 6 shows the binary cross-validated evaluation results of the Pakistan and Afghanistan 

seismic dataset. Random Forest achieved the highest cross-validated accuracy of 77%, AUC 

of 0.85, 0.71 recall value, and F1- Score of 0.76 respectively. Out of the applied five algorithms, 

KNN performed the worst with 53% accuracy. 
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4.3.2 Pakistan and China dataset 

Classifier AUC Precision Recall F1 Score Accuracy 

Random 

Forest 

0.86 0.82 0.73 0.76 77 

Decision Tree 0.82 0.83 0.65 0.72 76 

AdaBoost 0.83 0.84 0.70 0.75 78 

XGBoost 0.85 0.87 0.67 0.75 78 

KNN 0.51 0.37 0.67 0.48 51 

Table 7: Binary evaluation results of Pakistan and China data 

Table 7 shows the binary evaluation results of the Pakistan and China dataset. Random Forest 

classifier obtained the highest AUC of 0.86. Random Forest obtained a 0.73 recall value, f1-

score of 0.76.  XGBoost algorithm obtained the highest precision rate of 0.87.  

4.3.3 Japan dataset 

Classifier AUC Precision Recall F1 Score Accuracy 

Random 

Forest 

0.85 0.75 0.81 0.75 73 

Decision Tree 0.77 0.74 0.73 0.72 71 

AdaBoost 0.83 0.75 0.75 0.73 72 

XGBoost 0.85 0.79 0.74 0.73 73 

KNN 0.56 0.47 0.47 0.40 59 

Table 8: Binary evaluation results of Japan data 

Table 8 shows Japan’s binary evaluation results. Random forest and XGB algorithm obtained 

the highest accuracy of 73% and AUC as 0.85 respectively.  Whereas Random Forest obtained 

0.81 recall along with a 0.75 f1-score. 

4.4 Multiclass seismic evaluation results 

The applied algorithm’s performance obtained from the country-wise multiclass seismic 

evaluation is discussed in this section. The selected roc curves for multiclass seismic evaluation 

are attached below. 
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Figure 35: Random forest roc of multiclass Pakistan and Afghanistan data 

 

 

Figure 36: Adaboost roc of multiclass Pakistan and China data 
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Figure 37: XGboost roc of multiclass Japan data 

4.4.1 Pakistan and Afghanistan dataset 

Classifier AUC Precision Recall F1 Score Accuracy 

Random Forest 0.81 0.60 0.60 0.59 64 

Decision Tree 0.77 0.57 0.57 0.56 60 

AdaBoost 0.77 0.60 0.59 0.57 63 

XGBoost 0.82 0.66 0.61 0.61 65 

KNN 0.59 0.43 0.43 0.44 44 

Table 9: Multiclass evaluation results of Pakistan and Afghanistan data 

Multiclass seismic evaluation results of Afghanistan and Pakistan are shown in table 9. Among 

the applied algorithms, XGBoost remains the best-performing supervised algorithm with an 

AUC of 0.82, 0.66 precision, 0.61 recall value along with the highest F1-Score and accuracy 

score of 0.61 and 65%. However, KNN performed the worst amongst the applied algorithms 

with 44% accuracy only. 

4.4.2 Pakistan and China dataset 

  Classifier AUC Precision Recall F1 Score Accuracy 

Random Forest 0.81 0.62 0.58 0.57 63 

Decision Tree 0.79 0.59 0.54 0.59 59 
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AdaBoost 0.75 0.61 0.57 0.56 62 

XGBoost 0.82 0.63 0.58 0.57 63 

KNN 0.60 0.38 0.33 0.23 38 

Table 10: Multiclass evaluation results of Pakistan and China data 

The multiclass seismic evaluation result of China and Pakistan is shown in table 10. The 

evaluation results show that XGB got the highest AUC of 0.82, 0.63 precision value, 0.58 recall 

value, and 63% accuracy. The highest F1 score of the Decision tree is 0.59. KNN is the only 

classifier that obtained the lowest evaluation results in all performance metrics. 

4.4.3 Japan dataset 

Classifier AUC Precision Recall F1 Score Accuracy 

Random Forest 0.81 0.65 0.65 0.64 65 

Decision Tree 0.67 0.60 0.61 0.61 61 

AdaBoost 0.71 0.64 0.61 0.61 61 

XGBoost 0.81 0.67 0.54 0.53 67 

KNN 0.62 0.53 0.54 0.53 53 

Table 11: Multiclass evaluation results of Japan data 

Japan’s historic seismic data evaluation results are shown in Table 11. XGB classifier got 67% 

accuracy, 0.67 precision, and AUC equals 0.81. Whereas Random Forest got the best recall 

and F1-Score of 0.65 and 0.64 respectively. KNN obtained the lowest accuracy of 53% only. 
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CHAPTER 5 

Discussion 
 

Machine learning algorithms play a significant role in identifying yearly and monthly seismic 

activity patterns from collective neighboring country data. Analyzing seismic activity based on 

its intensity along with an evidence-based threshold further aids in evaluating the classifier’s 

performance. Depending on the nature and complexity of the selected evaluation methods; each 

machine learning algorithm performs differently. 

Authors in [46] performed seismic analysis on the Hindukush region through cut-off magnitude 

binary classification. As the seismic records data source is similar to this thesis and the time 

period range overlaps with our specified historic records as well. The comparison of the applied 

Decision tree and Random forest performance is performed with our evident-based binary 

threshold. The results obtained through 10-fold cross-validation are given below. 

Classifier AUC Precision Recall F1-Score 

Decision Tree 0.861 0.785 0.778 0.861 

Random Forest 0.854 0.791 0.803 0.797 

Table 12:10-fold CV results of Hindukush region 

As compared to the results derived in the paper [46], our cross-validated binary evaluation 

through setting an evident average magnitude obtained higher precision value in collective 

country-wise seismic records. In collective Afghanistan and China data, the Random forest 

algorithm obtained precision value equal to 0.82 which is greater than 10-fold cross-validated 

precision of 0.79, whereas the Decision tree applied on the China dataset got higher precision 

value of 0.83. Moreover, Random forest implemented on collective Afghanistan and China 

data got a similar AUC of 0.85 respectively. 

Through evaluating historic country-wise data, it’s been observed that machine learning plays 

a major contribution in the seismic field. The final conclusion derived from the above-

mentioned results is that we have to apply multiple machine learning algorithms initially for 

evaluation in order to select the best one’s among them by comparing multiple performance 

metrics. Every country’s performance metrics accuracies differ as each seismic data feature 

varies. 
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CHAPTER 6 

Conclusion 
 

The seismic datasets are constantly recorded for keeping us updated about the recent activity 

that happened anywhere in the globe. Retrieving the publically available dataset and evaluating 

it holds significant importance. This thesis presents two major techniques for analyzing 

magnitude intensity and evaluating the performance of multiple machine learning algorithms. 

Through machine learning algorithms earthquake datasets can be analyzed further based on the 

unit of measurement through which the natural hazard is analyzed for its intensity and potential 

risk to human lives. Based on the proposed methodology any natural hazardous event can be 

evaluated through machine learning algorithms and their performance can be compared. 

Furthermore, the proposed approach evaluated the publically available dataset through two 

methods, and it’s then compared to most seismic active country Japan; which gives us further 

assurance of both the selected methods for evaluation. As the country-wise comparative 

evaluation hasn’t been done in the past especially concerning Pakistan and its border sharing 

countries; this particular thesis plays a significant role. 

6.1 Future Work  

In future work, the proposed evaluation can be applied to any country’s seismic record that has 

contributing features that could result in improved performance of applied classifiers. 

Moreover, the seismic analysis can be applied to the Eurasian continent as both Europe and 

Asia lies on the same tectonic plate. Historic seismic events analysis of transcontinental 

countries including Kazakhstan, Turkey, Russia, Georgia, and Azerbaijan can be considered as 

it’ll provide insight into seismic activities of both European and Asian countries. Similar 

evaluation through machine learning can be applied to public hurricane and tornado datasets in 

the future. Enhanced Fujita scale division comparative analysis through machine learning 

algorithms can contribute to analyzing and predicting the damage caused by tornadoes. 

Similarly, the Saffir-Simpson division from light to strong wind intensity can be divided into 

its appropriate five categories and analyzed accordingly as well. Another perspective could be 

performing geological tectonic plate-wise earthquake analysis. 
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