
Upper and lower bounds of
some graph operations w.r.t.

Sombor index

By

Humna Arshad Butt

Supervised by

Dr. Rashid Farooq

School of Natural Sciences

Department of Mathematics

National University of Sciences and Technology

H-12, Islamabad, Pakistan

2021

© Humna Arshad Butt, 2021





To my parents and grandparents.

i



Acknowledgement

First of all I want to thanks Allah Almighty for showering His countless

blessings on me, for giving me health, ability and strength to carry out

this research work. Even thou it was difficult for me to choose this work

but Alhamdulillah He made everything easy for me and I completed my

dissertation successfully.

I would like to present my heartiest gratitude to my supervisor, Dr. Rashid

Farooq for his guidance throughout this work.

I would like to thank my parents for their support, prayers and their love

that leads me to be the person who I am today. If it wasn’t for them I

couldn’t be able to stand firm in my life. They are the reason I did hard

work because I never wanted to drag them down. I also want to thank my

siblings for cheering me up and for their moral support.

I would like to extend my gratitude towards Mr. Soban Ahmed for his

relentless faith in me. He helped me throughout the hard times and his trust

in me leads me to never give up and be able to carry out this research work.

Last but not least I would like to thank two most important people, Amna

Bibi and Amna Saher for their time. They were always there whenever I

needed them. Their support and appreciation for me leads me to my dream.

I am thankful to everyone especially my group members Abroo Batool,

Sofia Sarwar, Muhammad Faraz and Noman Ahmed who helped me

throughout this time period. Jazzak-Allah Khair.

Humna Arshad Butt

ii



Abstract

A topological index or a connectivity index is a mathematical measure,

which is a numerical value that correspond to the chemical structure of a

finite graph. Topological indices are isomorphism invariant and is also useful

in fields like chemical graph theory, molecular topology and mathematical

chemistry. They are an important tool in the study of QSAR (quantitative

structure-activity relationships) and QSPR (quantitative structure-property

relationships) where chemical structures are associated with other properties

of molecules. Recently, due to increasing scope in chemistry, they have be-

come more important.

The concept of Sombor index which is a topological index based on degrees,

was given by Ivan Gutman in the field of chemical graph theory. The upper

bounds as well as the lower bounds of Sombor index of graphs have been

already calculated. In this research work, we computed the upper and lower

bounds of some graph operations w.r.t. Sombor index.

iii



Introduction

In 18th century, Euler solved the Königsberg’s bridge problem which lead to

new branch of mathematics called graph theory. Graph theory is considered

as a field of modern mathematics and is applied due to its assorted applica-

tions in fields like chemistry, biology, biochemistry, electrical engineering and

computers applications, computer science, genetics, industry, communication

science, business, engineering, linguistics, sociology, physics, social sciences

and in psychology. It is an advance field used to address the problems that

are difficult to handle with other branches such as calculus or algebra. It is

also interlinked with other branches of mathematics, that is, matrics repre-

sentation, group theory, topology and probability.

A topological index or a connectivity index is a mathematical measure,

which is a numerical value that correspond to the chemical structure of a

finite graph. Topological indices are isomorphism invariant and is also useful

in fields like chemical graph theory, molecular topology and mathematical

chemistry. They are an important tool in the study of QSAR (quantitative

structure-activity relationships) and QSPR (quantitative structure-property

relationships) where chemical structures are associated with other properties

of molecules.

In 1947, the study of topological indices is being started by the introduc-

tion of a distance based topological index, the Wiener index. It assembles

the relation between the physico-chemistry and the structure of molecular

graphs of alkanes. The study shows that there is a strong relation between
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the chemical structures of drugs and compounds, that is, the boiling and

melting points and their structures. In the literature, there are a lot of topo-

logical indices and they have been thoroughly studied.Among these indices,

degree-based topological indices are considered to be most important indices.

The general formula [10] for topological indices is

TI = TI(G) =
∑

eij∈E(G)

F(deg(vi), deg(vj))

where F(w, z) is a function with symmetric property, that is, F(w, z) =

F(z,w).

In 1947, H. Wiener [8] introduced first degree based topological index known

as Wiener index which is defined as the summation of all distances between

the distinct pair of vertices of a finite graph. In 1998, Ivan Gutman [9] in-

troduced Szeged index which is the generalization of Wiener index. After

that, the Padmakar-Ivan or PI index [15] was given by Ivan Gutman and

Padmakar V. Khadikar.

There are several many degree-based topological indices. The topological

indices that are based on degrees were given by Gutman and Trinajstić [11]

in 1974. These indices were then named as the first and second Zagreb in-

dices. The Randić connectivity index [16] was then given by Milan Randić

in 1976 which is the most investigated degree-based topological index. Later

this concept was generalized by Li and Gutman in 2006. Later in 2009, Zhou

and Trinajstić [1] worked on the index known as sum-connectivity index.

This concept was generalized by them in 2010. Recently , Gutman gave the

concept of Sombor index [10] in the field of chemical graph theory.
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Chapter 1

Introduction to the graph

theory

In this chapter, we define some basic definitions which will be useful later in

our work. We also define different terminologies used in graph theory.

1.1 Introduction to graph

Graph is generally defined as visual representation of the data, which present

data in an organized manner. Mathematically, we define graph as G =

(V(G),E(G)), where the set V(G) 6= φ denotes the set contains all the vertices

and the edge set E(G), includes all the edges in the graph G. Mainly graphs

are divided into two caregories, that is, directed and undirected graphs. In

directed graphs, the edges are directed and they show a one way relation,

that is, the edges are traversed in only one direction whereas undirected

graphs does not contain such edges. Throughout this work, we will consider

undirected graphs.

Furthermore, the elements in vertex set V(G) depicts the order of the graph

G while edge set E(G) gives us the size of the graph. If we take the vertices

from V(G), say a and b, then the vertex a is adjacent to the vertex b, if there
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is an edge between them. We denote this edge as ab or ba. The edge e is

known to be incident to the vertex a and b if e = ab, where the vertices a

and b are called the endpoints of e. An edge e forms a loop in the graph G

if e = aa, where a ∈ V(G). However, two edges, say e1 and e2, forms multi-

edges if e1 = ab = e2, where a,b ∈ V(G). The degree of a ∈ V(G) is the total

count of edges that are connected to a and it is represented by deg(a). If

a ∈ V(G) has a degree 1, then it is called a pendant vertex and if the degree

is zero then it is known as an isolated vertex.

A simple graph, say G, is a graph if it neither have a loop, that is, the edge

with same starting and ending point, nor multi-edges. If it has any multi-edge

or the parallel edge, then the graph G becomes a multigraph. If the graph G

is a multigraph and also it has loops then G becomes a Pseudograph.

If we are able to find some path between every two distinct vertices in G, then

it becomes a connected graph, or else G is considered to be a disconnected

graph. If a graph is disconnected, this implies that it will have at least two

components. A component is defined as the maximal connected subgraph of

G.

Figure 1.1: (a) Simple Graph. (b) Pseudograph.
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1.2 Graph parameters and degrees

Definition 1.2.1. The minimum degree of a graph G is denoted by δ(G). It

is the smallest value of all the degrees of vertices in G.

Definition 1.2.2. The maximum degree of a graph G is denoted by �(G). It

is the largest value of all the degrees of vertices in G.

From these two definitions, it is clear that for any a ∈ V(G), δ(G) ≤
deg(a) ≤ �(G). Equality in this expression holds if each vertex of the graph

under consideration has equal number of edges incident to them, that is,

regular graph.

The most renowned finding concerning the sum of the degrees of vertices was

given by Leonhard Euler in his research paper. This lemma was named as

the Handshaking Lemma also known as the degree sum formula.

Definition 1.2.3 (Handshaking Lemma [3]). The sum of all the degrees of

the vertices in any graph G is always equal to double of its length. Mathe-

matically, we express it as:

2|E(G)| =
∑

a∈V(G)
deg(a).

Corollary 1.2.4 (Vasudev [3]). The sum of all vertex degrees is always an

even number. This means there will be an even number of vertices with odd

degrees.

Corollary 1.2.5 (Vasudev [3]). In a graph with n vertices, the greatest degree

of any vertex will be n− 1.

Definition 1.2.6. If V(G′) ⊆ V(G) and E(G′) ⊆ E(G), then the graph G′ is

called subgraph of G, represented by G′ ⊆ G. If V(G′) = V(G) then G′ becomes

a spanning subgraph .
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1.3 Some other graphs

Definition 1.3.1. A walk in G is given by a sequence W = a0e1a1e2...ar−1

erar. The terms in W alternate between edges and vertices and endpoints of

the edge ej are the vertices aj−1 and aj, that is, aj−1aj = ej, 1 ≤ j ≤ r. In a

walk, vertices and edges may repeat. A walk without any repetition in edges

is called a trail.

Definition 1.3.2. A walk in which there is no repetition in vertices and

edges, is known as path. Mathematically, a path in G is a sequence P =

a0e1a1e2...ar−1erar, the terms in P alternate between edges and vertices and

endpoints of the edge ej are the vertices aj−1 and aj and aj 6= ak, that is,

aj−1aj = ej, 1 ≤ j, k ≤ r. Invariably, a path of order n is indicated as Pn.

The length of P is equal to the total number of edges in P.

Proposition 1.3.3. If a walk (respectively a trail, a path) starts with a ∈
V(G) and terminates at b ∈ V(G), then it is called an (a,b)-walk (respectively

(a,b)-trail, (a,b)-path).

Theorem 1.3.4 (Derek [4]). If a and b are the two different vertices of V(G)

then every (a,b)-walk contains an (a,b)-path in it.

Remarks 1.3.5. (a) A walk or a trail is closed if it has the same vertex at

start and end.

(b) The length of a walk (respectively trail, path) is the total number of edges

in that walk (respectively trail, path).

(c) A closed trail with at least one edge is known as a circuit.

Definition 1.3.6. A cycle, say Cn containing n vertices where n ≥ 3, is a

simple graph where V(G) = E(G), is a circuit in which no other vertex except

the initial vertex (which is also a final vertex) is repeated. Mathematically,

a cycle is a trail a0e1a1e2...ar−1erar, 1 ≤ j ≤ r such that a0 = ar and aj 6=
ak, 2 ≤ j, k ≤ r− 1.
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If there is no cycle present in a graph, then such graph is called an acyclic

graph. A connected graph which contains only one cycle in it, is known as a

unicyclic graph. The circumference is defined as the largest length of a cycle

in G whereas the smallest length of the cycle in G is called the girth of G.

Proposition 1.3.7 (Doglas [5]). If a closed walk of odd length, say m, exists

in G, then it must include an odd cycle.

Proposition 1.3.8 (Wilson [17]). There is a cycle in G if each vertex in G

has a degree of at least 2.

Definition 1.3.9. A simple graph, say G, is defined as a complete graph if

each pair of distinct vertices are connected by an edge. A complete graph with

n vertices is represented by Kn.

Remarks 1.3.10. (a) Every complete graph of order n is (n− 1)-regular.

(b) A complete graph is always a regular graph but not the other way around.

Definition 1.3.11. An independent set of G = (V(G),E(G)) is a collection

of pairwise non-adjacent vertices in G.

Definition 1.3.12. A graph, say G, is known as bipartite if V(G) can be

partitioned into two independent sets, that is, V′(G) and V′′(G), such that

one end of each edge is in one independent set while other end is in the other

one. The graph G becomes a complete bipartite if every vertex present in one

independent set is linked to each vertex present in another independent set.

Theorem 1.3.13 (König [13]). A graph G is bipartite if and only if there

are no odd-length cycles, say m, in it.

Theorem 1.3.14 (Wilson [17]). If there is a cycle present in G, it will be of

even length if the said graph G is bipartite.
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1.4 Operation on graphs

In this section, we are going to define some graph operations w.r.t. two

graphs.

Definition 1.4.1. Let G′ and G with different vertex sets be the simple graphs

then the cartesian product is expressed as G′×G, where V(G′ × G) = V(G′)×
V(G) and (a1,b1)(a2,b2) make an edge in G′×G if a1 = a2 and b1b2 ∈ E(G)

or b1 = b2 and a1a2 ∈ E(G′).

If we have the graphs G1,G2,G3, ...,Gr, then the cartesian product G1 ×
G2×G3× ...×Gr of these graphs is expressed by

r⊗
i=1

Gi. In case of G1 = G2 =

G3 = ... = Gr,
r⊗
i=1

Gi is then expressed by Gr.

Example 1.4.2. Let us consider the graphs P3 and P2, where P3 and P2

are the paths of order 3 and 2, respectively. Here we will find the cartesian

product P3 × P2 as follows:

Figure 1.2: (a) P3 (b) P2 (c) P3 × P2

Example 1.4.3. Let us consider the graphs C3 and P2, where C3 and P2

are the cycle and path of order 3 and 2, respectively. Here we will find the

cartesian product C3 × P2 as follows:

6



Figure 1.3: (a) C3 (b) P2 (c) C3 × P2

Example 1.4.4. Let us consider the graphs C3 and C3, where both are the

cycles of order 3. Here we will find the cartesian product C3×C3 as follows:

7



Figure 1.4: (a) C3 (b) C3 (c) C3 × C3

Definition 1.4.5. Let G′ and G with dissociated vertex sets be the simple

graphs then the lexicographic product of these graphs is expressed by G′[G],

where V(G′[G]) is given by V(G′)×V(G) and (a1,b1)(a2,b2) make an edge in

G′[G] when a1a2 ∈ E(G′) or a1 = a2 and b1b2 ∈ E(G).

Example 1.4.6. By using the graphs from example 1.4.2, we can find the

lexicographic product of the graphs P3 and P2 as follow:
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Figure 1.5: (a) P3 (b) P2 (c) P3[P2]

Example 1.4.7. By using the graphs from example 1.4.3, we can find the

lexicographic product of the graphs C3 and P2 as follow:

Figure 1.6: (a) C3 (b) P2 (c) C3[P2]

Example 1.4.8. By using the graphs from example 1.4.4, we can find the

lexicographic product of the graphs C3 and C3 as follow:

9



Figure 1.7: (a) C3 (b) C3 (c) C3[C3]

Definition 1.4.9. Let G′ and G with different vertex sets be the simple graphs

then the tensor product of these graphs is expressed by G′⊗G, where V(G′⊗G)

is given by V(G′)×V(G) and (a1,b1)(a2,b2) make an edge in G′⊗G whenever

a1a2 ∈ E(G′) and b1b2 ∈ E(G).

Example 1.4.10. By using the graphs from example 1.4.2, we can find the

tensor product of the graphs P3 and P2 as follow:

10



Figure 1.8: (a) P3 (b) P2 (c) P3 ⊗ P2

Example 1.4.11. By using the graphs from example 1.4.3, we can find the

tensor product of the graphs C3 and P2 as follow:

Figure 1.9: (a) C3 (b) P2 (c) C3 ⊗ P2

Example 1.4.12. By using the graphs from example 1.4.4, we can find the

tensor product of the graphs C3 and C3 as follow:

11



Figure 1.10: (a) C3 (b) C3 (c) C3 ⊗ C3

Definition 1.4.13. Let G′ and G with different vertex sets be the simple

graphs then the strong product of the these graphs is expressed by G′ � G,

where V(G′ � G) is given by V(G′) × V(G) and (a1,b1)(a2,b2) make an edge

in G′ � G if a1 = a2 and b1b2 ∈ E(G) or b1 = b2 and a1a2 ∈ E(G′) or

a1a2 ∈ E(G′) and b1b2 ∈ E(G). Strong product can also be defined as the

union of products such as cartesian and tensor.

Example 1.4.14. By using the graphs from example 1.4.2, we can find the

strong product of the graphs P3 and P2 as follow:

12



Figure 1.11: (a) P3 (b) P2 (c) P3 � P2

Example 1.4.15. By using the graphs from example 1.4.3, we can find the

strong product of the graphs C3 and P2 as follow:

Figure 1.12: (a) C3 (b) P2 (c) C3 � P2
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Example 1.4.16. By using the graphs from example 1.4.4, we can find the

strong product of the graphs C3 and C3 as follow:

Figure 1.13: (a) C3 (b) C3 (c) C3 � C3

Definition 1.4.17. Let G′ and G with different vertex sets be the simple

graphs then the disjunction or co-normal product of the these graphs is ex-

pressed by G′∨G, where V(G′∨G) is given by V(G′)×V(G) and (a1,b1)(a2,b2)

make an edge in G′ ∨ G whenever a1a2 ∈ E(G′) or b1b2 ∈ E(G).

Example 1.4.18. By using the graphs from example 1.4.2, we can find the

disjunction of the graphs P3 and P2 as follow:

14



Figure 1.14: (a) P3 (b) P2 (c) P3 ∨ P2

Example 1.4.19. By using the graphs from example 1.4.3, we can find the

disjunction of the graphs C3 and P2 as follow:

Figure 1.15: (a) C3 (b) P2 (c) C3 ∨ P2

Example 1.4.20. By using the graphs from example 1.4.4, we can find the

disjunction of the graphs C3 and C3 as follow:
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Figure 1.16: (a) C3 (b) C3 (c) C3 ∨ C3

Definition 1.4.21. Let G′ and G with different vertex sets be the simple

graphs then the symmetric difference of the these graphs is represented by

G′ ⊕ G, where V(G′ ⊕ G) is given by V(G′) × V(G) and (a1,b1)(a2,b2) make

an edge in G′⊕G whenever a1a2 ∈ E(G′) or b1b2 ∈ E(G) but not both earlier

statements at once.
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Example 1.4.22. By using the graphs from example 1.4.2, we can find P3⊕
P2 as follow:

Figure 1.17: (a) P3 (b) P2 (c) P3 ⊕ P2

Example 1.4.23. By using the graphs from example 1.4.3, we can find C3⊕
P2 as follow:

17



Figure 1.18: (a) C3 (b) P2 (c) C3 ⊕ P2

Example 1.4.24. By using the graphs from example 1.4.4, we can find C3⊕
C3 as follow:

Figure 1.19: (a) C3 (b) C3 (c) C3 ⊕ C3

18



Chapter 2

Degree-Based Topological

Indices: Sombor Index

2.1 Topological indices

A topological index or a connectivity index is a mathematical measure [6, 7],

which is a numerical value that correspond to the chemical structure of a

finite graph. Topological indices are isomorphism invariant and is also useful

in fields like chemical graph theory, molecular topology and mathematical

chemistry. They are an important tool in the study of QSAR (quantitative

structure-activity relationships) and QSPR (quantitative structure-property

relationships) where chemical structures are associated with other properties

of molecules.

In 1947, the study of topological indices is being started by the introduction

of a distance based topological index, that is, the Wiener index. It assembles

the relation between the physico-chemistry and the structure of molecular

graphs of alkanes. The study shows that there is a strong relation between the

chemical structures of drugs and compounds, that is, the boiling and melting

points and their structures. In the literature, there are a lot of topological

indices and they have been thoroughly studied. Among these indices, degree-
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based topological indices are considered to be most important indices. The

general formula [10] for topological indices is

TI = TI(G) =
∑

eij∈E(G)

F(deg(vi), deg(vj))

where F(w, z) is a function with symmetric property, that is, F(w, z) =

F(z,w).

2.2 Distance based topological index

Initially, the topological indices that are based on distance were introduced.

Some of them are discussed in this section.

The Wiener index

Wiener index is considered as the first index based on distance and it was

given by Wiener [8] in 1947. Initially it was given the name path invariant

but after some time it was named as Wiener index. The Wiener index of

G is defined as the summation of all distances between the distinct pair of

vertices of a finite graph. Wiener index is given by

W(G) =
∑

{a,b}⊆V(G)

d(a,b)

where V(G) is a vertex set and d(a,b) denotes the shortest distance in G.

The Szeged Index

The Szeged index was made known by Gutman [9] in 1998. It is the gener-

alization of Wiener index, that was given by Wiener. The Szeged index is
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determined as

Sz(G) =
∑

e∈E(G)

n1(e|G)n2(e|G),

where e in the above expression represents an edge that attach the vertices a

and b and n1(e|G) displays the vertices count in G that are closer to a than

to b and n2(e|G) displays the vertices count in G that are closer to b than

to a.

Padmakar-Ivan Index

The Padmakar-Ivan or PI index [15] was made known by Gutman and Pad-

makar V. Khadikar. It is also the generalization of Wiener index, given by

Wiener. The PI index is summation all over the edges ab in G, where edges

that are equidistant from both ends of ab are not included. The PI index is

mathematically represented as

PI(G) =
∑

e∈E(G)

nea(e|G) + neb(e|G),

where e represents an edge in G that attach the vertices a and b and nea(e|G)

presents the number of edges in G that are closer to a than to b and neb(e|G)

presents the number of edges in G that are closer to b than to a.

2.3 Degree-based Topological Indices

There are several many topological indices that are based on degree. Some

of these are being discussed in this section.

The Zagreb Indices

The topological indices that are based on degree were given by Gutman and

Trinajsti´c [11] in 1974. These indices were then named as the first and
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second Zagreb indices. These indices are given by

M1(G) =
∑

a∈V(G)

(degG(a))2

M2(G) =
∑

ab∈E(G)

(degG(a)degG(b))

where M1(G) is known as the first Zagreb index and M2(G) is second Zagreb

index. After a while, the generalized Zagreb index was introduced, that is,

Mα(G) =
∑

a∈V(G)

(degG(a))α, α ∈ R.

In the first and generalised Zagreb indices, the sum is all over the vertices

but in the second Zagreb index, summation is all over the edges.

Randić connectivity index

The Randić connectivity index [16] was introduced by Milan Randić in 1976.

This degree-based topological index has received the most research. The

Randić connectivity index is mathematically written as

R(G) =
∑

ab∈E(G)

1√
degG(a)degG(b)

.

Later this concept was generalized by Li and Gutman in 2006. The general-

ized Randić connectivity index [19] is determined as

Rα(G) =
∑

ab∈E(G)

(degG(a)degG(b))α, α ∈ R.

where the sum is taken over the edges in G. Then R− 1
2

is recognized as Randić

connectivity index.

22



The sum-connectivity index

The concept of sum-connectivity index [1] was made known by Zhou and

Trinajstić in 2009. The sum-connectivity index is determined as

χ(G) =
∑

ab∈E(G)

1√
degG(a) + degG(b)

.

Later this concept was generalized by Zhou and Trinajstić in 2010. The

generalized sum connectivity index [2] is determined as

Rα(G) =
∑

ab∈E(G)

(degG(a) + degG(b))α,

where α ∈ R and the sum is defined over the edges in G. Then χ− 1
2

is

recognized as classical sum connectivity index.

Sombor Index

Recently , Gutman gave the concept of Sombor index [10] in the field of

chemical graph theory. It is also considered as a topological index based on

degree and is given by

SO = SO(G) =
∑

eij∈E(G)

√
degG(vi)2 + degG(vj)2

where the sum is over the edges in G. The reduced sombor index is given by

SOred(G) =
∑

eij∈E(G)

√
(degG(vi)− 1)2 + (degG(vj)− 1)2.

Some basic properties of Sombor index

In this part of chapter, we will go over some of the basic properties of the

Sombor index [10, 12].
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Theorem 2.3.1 (Gutman [10]). Let Kn be a complete graph with n vertices

and K̄n be the compliment of the graph Kn. Then for any graph G,

SO(K̄n) ≤ SO(G) ≤ SO(Kn).

Equality holds if and only if either K̄n or Kn is isomorphic to G.

Theorem 2.3.2 (Gutman [10]). Let a path with n vertices, say Pn and G be

any connected graph with n vertices. Then

SO(Pn) ≤ SO(G) ≤ SO(Kn).

Equality holds if and only if either Pn or Kn is isomorphic to G.

Theorem 2.3.3 (Gutman [10]). Let Sn be a star with n vertices and T be

any tree with n vertices. Then

SO(Pn) ≤ SO(T) ≤ SO(Sn).

Equality holds if and only if either Pn or Sn is isomorphic to T.

Theorem 2.3.4 (Gutman [12]). Let M1(G) be the first Zagreb index of G and

m be the edges of G. Then

M1(G) < SO(G) ≤ 1√
2
M1(G), (2.1)

and

M1(G)− 2m < SOred(G) ≤ 1√
2

[M1(G)− 2m]. (2.2)

Equality in above two expressions hold if and only if G or its components are

regular.
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2.4 The first Zagreb index of some graph op-

erations

We will go through some explicit formulae for the first Zagreb index of some

graph operations [14].

Some important results

Lemma 2.4.1 (Khalifeh [14]). Let G′ and G be the two simple graphs. Then

(a)

|V(G′ × G)| = |V(G′ ∨ G)| = |V(G′[G])| = |V(G′ ⊕ G)| = |V(G′)||V(G)|,

|E(G′ × G)| = |E(G′)||V(G)|+ |V(G′)||E(G)|,

|E(G′[G])| = |E(G′)||V(G)|2 + |V(G′)||E(G)|,

|E(G′ ∨ G)| = |E(G′)||V(G)|2 + |V(G′)|2|E(G)| − 2|E(G′)||E(G)|,

|E(G′ ⊕ G)| = |E(G′)||V(G)|2 + |V(G′)|2|E(G)| − 4|E(G′)||E(G)|.

(b) The cartesian product of graphs G′ and G is said to be connected in case

if both graphs are connected,

(c) If (a1,b1) and (a2,b2) are vertices in G′ × G then degG′×H′((a1,b1), (a2,b2)) =

deg(G′)(a1, a2) + deg(G)(b1,b2),

(d) The graph operations such as cartesian, composition, tensor, co-normal,

symmetric difference are associative and all these operations are commu-

tative with the exception of composition.

(e) degG′×G(a,b) = degG′(a) + degG(b),

(f) degG′[G](a,b) = |V(G)|degG′(a) + degG(b),

(g) degG′∨G(a,b) = |V(G)|degG′(a) + |V(G′)|degG(b)− degG′(a)degG(b),
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(h) degG′⊕G(a,b) = |V(G)|degG′(a) + |V(G′)|degG(b)− 2degG′(a)degG(b).

Theorem 2.4.2 (Khalifeh [14]). Let G1,G2, . . . ,Gr be graphs and let V(Gi)

and E(Gi), 1 ≤ i ≤ r be the vertex and edge set respectively. Also |V(Gi)| = ni,

|E(Gi)| = mi, 1 ≤ i ≤ r, and

∣∣∣∣E( r⊗
i=1

Gi

)∣∣∣∣ =
r∑
i=1

mi

r∏
l=1,l 6=i

nl. Then

M1

(
r⊗
i=1

Gi

)
= |V|

r∑
i=1

M1(Gi)

ni
+ 4|V|

r∑
i6=j,i,j=1

mimj

ninj
.

Specifically, M1(G
r) = rnr−2G (M1(G)nG + 4(r− 1)m2

G).

Theorem 2.4.3 (Khalifeh [14]). Let G′ and G be graphs. Then

(a)

M1(G
′[G]) = n3

GM1(G
′) + nG′M1(G) + 8nGmG′mG,

(b)

M1(G
′ ∨ G) = (n3

G − 4mGnG)M1(G
′) + M1(G

′)M1(G)+

8nG′mGmG′mG + (n3
G′ − 4mG′nG′)M1(G),

(c)

M1(G
′ ⊕ G) = (n3

G − 8mGnG)M1(G
′) + 4M1(G

′)M1(G)+

8nG′mGmG′mG + (n3
G′ − 8mG′nG′)M1(G).
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Chapter 3

Upper and lower bounds of

some graph operations w.r.t.

Sombor index

In this chapter, the work is done on some graph operations. We calculate

the upper and lower bounds of some graph operations w.r.t. Sombor index.

Moreover, these results are then elaborated by the help of some examples on

different graphs.

3.1 Cartesian product

Cartesian product of the graphs G′ and G is symbolized as G′ × G, where

the vertex set of the product is V(G′)× V(G) and ordered pairs (a1,b1) and

(a2,b2) make an edge if a1 = a2 and b1b2 ∈ E(G) or b1 = b2 and a1a2 ∈
E(G′).

The order of cartesian product is |V(G′)||V(G)| = nG′nG, whereas the size is

|E(G′)||V(G)|+ |E(G)||V(G′)| = mG′nG + mGnG′ , where nG′ and n(G) presents

the vertices count of G′ and G and mG′ and m(G) denotes the edge count of

the graphs G′ and G. Mathematically, The degree of a vertex (a,b) in G′ × G
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is given by

degG′×G((a,b)) = degG′(a) + degG(b). (3.1)

The bounds for cartesian product w.r.t. Sombor index are calculated in the

following theorem.

Theorem 3.1.1. Let G1,G2, . . . ,Gr be graphs with vertex and edges sets V(Gi)

and E(Gi), 1 ≤ i ≤ r, respectively. Also let |V(Gi)| = ni, |E(Gi)| = mi,

1 ≤ i ≤ r, and

∣∣∣∣E( r⊗
i=1

Gi

)∣∣∣∣ =
r∑
i=1

mi

r∏
l=1,l6=i

nl. Then

√
2

∣∣∣∣∣E
(

r⊗
i=1

Gi

)∣∣∣∣∣
r∑
i=1

δGi
≤ SO

(
r⊗
i=1

Gi

)
≤
√

2

∣∣∣∣∣E
(

r⊗
i=1

Gi

)∣∣∣∣∣
r∑
i=1

�Gi
.

Equality holds in case of G1,G2, . . . ,Gr being regular graphs.

Proof. We will prove by induction. For this, at first we will consider r = 2.

From the definition of Sombor index and equation (2.1), we have

SO(G1 × G2) =
∑

(a,b)(c,d)∈E(G1×G2)

√
(degG1×G2(a,b))2 + (degG1×G2(c, d))2

=
∑

a∈V(G1)

∑
bd∈E(G2)

√
deg2G1

(a) + deg2G2
(b) + 2degG1(a)degG2(b)

+deg2G1
(a) + deg2G2

(d) + 2degG1(a)degG2(d)

+
∑

b∈V(G2)

∑
ac∈E(G1)

√
deg2G1

(a) + deg2G2
(b) + 2degG1(a)degG2(b)

+deg2G1
(c) + deg2G2

(d) + 2degG1(c)degG2(d)

=
∑

a∈V(G1)

∑
bd∈E(G2)

√
2deg2G1

(a) + deg2G2
(b) + deg2G2

(d)

+2degG1(a)(degG2(b) + degG2(d))

+
∑

b∈V(G2)

∑
ac∈E(G1)

√
deg2G1

(a) + deg2G1
(c) + 2deg2G2

(b)

+2degG2(b)(degG1(a) + degG1(c))
.

Note that degG1(a), degG1(c) ≥ δG1 and degG2(b), degG2(d) ≥ δG2 , in case of
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G1 and G2 being regular graphs, equality holds.

SO(G1 × G2) ≥ nG1mG2

√
2δ2G1

+ δ2G2
+ δ2G2

+ 2δG1(δG2 + δG2)

+ nG2mG1

√
2δ2G2

+ δ2G1
+ δ2G1

+ 2δG2(δG1 + δG1)

= nG1mG2

√
2δ2G1

+ 2δ2G2
+ 4δG1δG2

+ nG2mG1

√
2δ2G1

+ 2δ2G2
+ 4δG1δG2

=
√

2(nG1mG2 + nG2mG1)
√
δ2G1

+ δ2G2
+ 2δG1δG2

=
√

2(nG1mG2 + nG2mG1)
√

(δG1 + δG2)
2

=
√

2|E(G1 × G2)|
2∑

i=1

δGi
.

Assume, the result holds for r = q, that is,

SO

(
q⊗

i=1

Gi

)
≥
√

2

∣∣∣∣∣E
(

q⊗
i=1

Gi

)∣∣∣∣∣
q∑

i=1

δGi
.

Now we will prove it for r = q + 1,

SO

(
q+1⊗
i=1

Gi

)
= SO

(
q⊗

i=1

Gi × Gq+1

)

≥
√

2

q+1∑
i=1

δi

(
q∑

i=1

mi

q∏
l=1,l 6=i

nl

)
+
√

2

q+1∑
i=1

δi

(
mq+1

q∏
l=1

nl

)

=
√

2

q+1∑
i=1

δi

(
q+1∑
i=1

mi

q+1∏
l=1,l 6=i

nl

)

=
√

2

∣∣∣∣∣E
(

q+1⊗
i=1

Gi

)∣∣∣∣∣
q+1∑
i=1

δi,
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Analogously, we can prove the upper bound

SO

(
q+1⊗
i=1

Gi

)
≤
√

2

∣∣∣∣∣E
(

q+1⊗
i=1

Gi

)∣∣∣∣∣
q+1∑
i=1

�i,

where

∣∣∣∣E(q+1⊗
i=1

Gi

)∣∣∣∣ =
q+1∑
i=1

mi

q+1∏
l=1,l6=i

nl and equality holds in case of Gi, 1 ≤ i ≤ r

being regular graphs.

Example 3.1.1. By Example 1.4.2, we can see that the degrees of the vertices

are 2, 3, 2, 2, 3, 2. The greatest and lowest degrees of P3 and P2 are 2, 1,

and 1, 1, respectively. So, the Sombor index of P3 × P2 is SO(P3 × P2) =

4
√

32 + 22 + 2
√

22 + 22 +
√

32 + 32 = 24.32. By the above result, we have

19.79 ≤ SO(P3 × P2) ≤ 29.69.

Example 3.1.2. By Example 1.4.3, we can see that the degrees of all vertices

in C3×P2 are 3, therefore it is a regular graph. Thus SO(C3 × P2) = 38.183.

Example 3.1.3. By Example 1.4.4, we can see that the degrees of all vertices

in C3 × C3 is 4 and it is a regular graph. Therefore SO(C3 × C3) = 101.82.

3.2 Lexicographic product

Lexicographic product or composition of the graphs G′ and G is given by G′[G],

where the vertex set of the product is V(G′)× V(G) and ordered pairs (a1,b1)

and (a2,b2) make an edge when a1a2 ∈ E(G′), or a1 = a2 and b1b2 ∈ E(G).

The order of lexicographic product is |V(G′)||V(G)| = nG′nG whereas the size

is given by |E(G′)||V(G)|2 + |E(G)||V(G′)| = mG′n2
G + mGnG′ . The degree of a

vertex in G′[G] is given by

degG′[G]((a,b)) = nGdegG′(a) + degG(b). (3.2)

The bounds for lexicographic product w.r.t. Sombor index are calculated in

the following theorem.
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Theorem 3.2.1. Let G1 and G2 be graphs with orders |V(G1)| = nG1 and

|V(G2)| = nG2, respectively. Then

√
2(nG2δG1 + δG2)|E(G1[G2])| ≤ SO(G1[G2]) ≤

√
2(nG2�G1 + �G2)|E(G1[G2])|.

Equality holds in case if the graphs under consideration are regular graphs.

Proof. By the definition of Sombor index and equation (2.2), we have

SO(G1[G2]) =
∑

(a,b)(c,d)∈E(G1[G2])

√
(degG1[G2](a,b))2 + (degG1[G2](c, d))2

=
∑

a∈V(G1)

∑
bd∈E(G2)

[n2
G2
deg2G1

(a) + deg2G2
(b) + 2nG2degG1(a)degG2(b)

+ nG2deg
2
G1

(c) + deg2G2
(d) + 2nG2degG1(c)degG2(d)]1/2

+
∑

b,d∈V(G2)

∑
ac∈E(G1)

[n2
G2
deg2G1

(a) + deg2G2
(b) + 2nG2degG1(a)degG2(b)

+ nG2deg
2
G1

(c) + deg2G2
(d) + 2nG2degG1(c)degG2(d)]1/2

=
∑

a∈V(G1)

∑
bd∈E(G2)

[2n2
G2
deg2G1

(a) + deg2G2
(b) + deg2G2

(d)

+ 2nG2degG1(a)(degG2(b) + degG2(d))]1/2

+
∑

b,d∈V(G2)

∑
ac∈E(G1)

[n2
G2
deg2G1

(a) + deg2G2
(b) + 2nG2degG1(a)degG2(b)

+ nG2deg
2
G1

(c) + deg2G2
(d) + 2nG2degG1(c)degG2(d)]1/2

≥ nG1mG2

√
2n2

G2
δ2G1

+ 2δ2G2
+ 4nG2δG1δG2

+ n2
G2
mG12

√
n2
G2
δ2G1

+ 2δ2G2
+ 4nG2δG1δG2

=
√

2
√
n2
G2
δ2G1

+ δ2G2
+ 2nG2δG1δG2(nG1mG2 + n2

G2
mG1)

=
√

2
√

(nG2δG1 + δG2)
2(nG1mG2 + m2

G2
mG1)

=
√

2(nG2δG1 + δG2)|E(G1[G2])|.
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Analogously, we can derive

SO(G1[G2]) ≤
√

2(nG2�G1 + �G2)|E(G1[G2])|.

Equality holds in case if the graphs under consideration are regular graphs.

Example 3.2.2. By Example 1.4.6, we can see that the degree of the ver-

tices are 3, 5, 3, 3, 5, 3 . The greatest and lowest degrees of P3 and P2 are 2,

1, and 1, 1, respectively. So the Sombor index of P3[P2] is SO(P3[P2]) =

8
√

52 + 32 + 2
√

32 + 32 +
√

52 + 52 = 62.20. By the above result, we have

46.667 ≤ SO(P3[P2]) ≤ 77.78.

Example 3.2.3. By Example 1.4.7, we can see that the degrees of all vertices

in C3[P2] is 5. Therefore, the Sombor index of C3[P2] is 106.06601, where C3

and P2 are regular graphs.

Example 3.2.4. By Example 1.4.8, we can see that the degrees of all vertices

in C3[C3] are 8. Therefore, the Sombor index of C3[C3] is SO(C3[C3]) =

407.29.

3.3 Tensor product

Tensor product of the graphs G′ and G is given by G′ ⊗ G, where the vertex set

of the product is V(G′)× V(G) and ordered pairs (a1,b1) and (a2,b2) make an

edge in G′ ⊗ G whenever a1a2 ∈ E(G′) and b1b2 ∈ E(G). The order of tensor

product is |V(G′)||V(G)| = nG′nG whereas the size is 2|E(G′)||E(G)| = 2mG′mG.

The degree of a vertex in G′ ⊗ G is given by

degG′⊗G((a,b)) = degG′(a)degG(b). (3.3)

The bounds for tensor product w.r.t. Sombor index are calculated in the

following theorem.

32



Theorem 3.3.1. Let G1 and G2 be graphs with |V(G1)| = nG1 and |V(G2)| =
nG2, |E(G1)| = mG1 and |E(G2)| = mG2. Then

2
√

2δG1δG2|E(G1 ⊗ G2)| ≤ SO(G1 ⊗ G2) ≤ 2
√

2�G1�G2|E(G1 ⊗ G2)|.

Equality holds in case if the graphs under consideration are regular graphs.

Proof. By the definition of Sombor index and equation (2.3), we have

SO(G1 ⊗ G2) =
∑

(a,b)(c,d)∈E(G1⊗G2)

√
(degG1⊗G2(a,b))2 + (degG1⊗G2(c, d))2

= 2
∑

ac∈E(G1)

∑
bd∈E(G2)

√
degG1(a)2degG2(b)2 + degG1(c)

2degG2(d)2

≥ 2mG1mG2

√
δ2G1

δ2G2
+ δ2G1

δ2G2

=
√

2δ2G1
δ2G2
|E(G1 ⊗ G2)|

=
√

2δG1δG2|E(G1 ⊗ G2)|.

Equality holds in case if the graphs under consideration are regular graphs.

Analogously, we can compute the upper bound of Sombor index of G1 ⊗
G2.

Example 3.3.2. By Example 1.4.10, we can see that the degrees of the ver-

tices are 1, 2, 1, 1, 2, 1. So the Sombor index of P3 ⊗ P2 is 4
√

22 + 12 = 8.9.

The greatest and lowest degrees of P3 and P2 are 2, 1, and 1, 1, respectively.

By the result, we have 5.65 ≤ SO(P3 ⊗ P2) ≤ 16.

Example 3.3.3. By Example 1.4.11, we can see that the degree of every ver-

tex in C3⊗P2 is 2. Therefore, the Sombor index of C3 ⊗ P2 is SO(C3 ⊗ P2) =

16.97.

Example 3.3.4. By Example 1.4.12, we can see that the degree of every ver-

tex in C3 ⊗ C3 is 4. Therefore, the Sombor index of C3 ⊗ C3 is SO(C3 ⊗ C3) =

101.82.
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3.4 Strong product

Strong product or normal product or AND product of the graphs G′ and G

is given by G′ � G, where the vertex set of the product is V(G′)× V(G) and

ordered pairs (a1,b1) and (a2,b2) make an edge in G′ � G if a1 = a2 and

b1b2 ∈ E(G) or b1 = b2 and a1a2 ∈ E(G′) or a1a2 ∈ E(G′) and b1b2 ∈ E(G).

The order of strong product is |V(G′)||V(G)| = nG′nG whereas the size is

|V(G′)||E(G)|+ |V(G)||E(G′)|+ 2|E(G′)||E(G)| = nG′mG+nGmG′+2mG′mG. The

degree of a vertex in G′ � G is given by

degG′�G((a,b)) = degG′(a) + degG(b) + degG′(a)degG(b). (3.4)

The bounds for strong product w.r.t. Sombor index are calculated in the

following theorem.

Theorem 3.4.1. Let G1 and G2 be graphs with |V(G1)| = nG1 and |V(G2)| =
nG2, |E(G1)| = mG1 and |E(G1)| = mG2. Then P ≤ SO(G1 � G2) ≤ Q, where

P =
√

2(δG1 + δG2 + δG1δG2)|E(G1 � G2)|,

Q =
√

2(�G1 + �G2 + �G1�G2)|E(G1 � G2)|.

Equality holds in case if the graphs under consideration are regular graphs.
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Proof. By the definition of Sombor index and equation (2.4), we have

SO(G1 � G2) =
∑

(a,b)(c,d)∈E(G1�G2)

√
(degG1�G2(a,b))2 + (degG1�G2(c, d))2

=
∑

a∈V(G1)

∑
bd∈E(G2)

[deg2G1
(a) + degG1(a)degG2(b) + deg2G1

(a)degG2(b)

+ deg2G2
(b) + degG1(a)degG2(b) + degG1(a)degG2(b)2

+ degG1(a)2degG2(b)2 + degG1(a)2degG2(b) + degG1(a)deg2G2
(b)

+ deg2G1
(c) + degG1(c)degG2(d) + deg2G1

(c)degG2(d) + deg2G2
(d)

+ degG1(c)degG2(d) + degG1(c)deg
2
G2

(d) + deg2G1
(c)deg2G2

(d)

+ deg2G1
(c)degG2(d) + degG1(c)deg

2
G2

(d)]1/2 +
∑

b∈V(G2)

∑
ac∈E(G1)

[deg2G1
(a)

+ degG1(a)degG2(b) + deg2G1
(a)degG2(b) + deg2G2

(b) + degG1(a)degG2(b)

+ degG1(a)deg2G2
(b) + deg2G1

(a)deg2G2
(b) + deg2G1

(a)degG2(b)

+ degG1(a)deg2G2
(b) + deg2G1

(c) + degG1(c)degG2(d) + deg2G1
(c)degG2(d)

+ deg2G2
(d) + degG1(c)degG2(d) + degG1(c)deg

2
G2

(d) + deg2G1
(c)deg2G2

(d)

+ deg2G1
(c)degG2(d) + degG1(c)deg

2
G2

(d)]1/2 + 2
∑

ac∈E(G1)

∑
bd∈E(G2)

[deg2G1
(a)

+ degG1(a)degG2(b) + deg2G1
(a)degG2(b) + deg2G2

(b)

+ degG1(a)degG2(b) + degG1(a)deg2G2
(b) + deg2G1

(a)deg2G2
(b)

+ deg2G1
(a)degG2(b) + degG1(a)deg2G2

(b) + deg2G1
(c) + degG1(c)degG2(d)

+ deg2G1
(c)degG2(d) + deg2G2

(d) + degG1(c)degG2(d) + degG1(c)deg
2
G2

(d)

+ deg2G1
(c)deg2G2

(d) + deg2G1
(c)degG2(d) + degG1(c)deg

2
G2

(d)]1/2

SO(G1 � G2) =
∑

a∈V(G1)

∑
bd∈E(G2)

[2deg2G1
(a) + deg2G2

(b) + deg2G2
(d) + 2degG1(a)(degG2(b)

+ degG2(d)) + 2deg2G1
(a)(degG2(b) + degG2(d)) + 2degG1(a)(deg2G2

(b)
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+ deg2G2
(d)) + degG1(a)2(deg2G2

(b) + deg2G2
(d))]1/2

+
∑

b∈V(G2)

∑
ac∈E(G1)

[2deg2G2
(b) + deg2G1

(a) + deg2G1
(c) + 2degG2(b)(degG1(a)

+ degG1(c)) + 2deg2G2
(b)(degG1(a) + degG1(c)) + 2degG2(b)(deg2G1

(a) + deg2G1
(c))

+ deg2G2
(b)(degG1(a)2 + deg2G1

(c))]1/2 + 2
∑

ac∈E(G1)

∑
bd∈E(G2)

[deg2G1
(a) + degG1(a)degG2(b)

+ deg2G1
(a)degG2(b) + deg2G2

(b) + degG1(a)degG2(b) + degG1(a)deg2G2
(b)

+ deg2G1
(a)deg2G2

(b) + deg2G1
(a)degG2(b) + degG1(a)deg2G2

(b) + deg2G1
(c)

+ degG1(c)degG2(d) + deg2G1
(c)degG2(d) + deg2G2

(d)

+ degG1(c)degG2(d) + degG1(c)deg
2
G2

(d) + deg2G1
(c)deg2G2

(d) + degG1(c)
2degG2(d)

+ degG1(c)degG2(d)2]1/2

≥ nG1mG2(2δ
2
G1

+ 2δ2G2
+ 2δ2G1

δ2G2
+ 4δG1δG2 + 4δ2G1

δG2 + 4δG1δ
2
G2

)1/2

+ nG2mG1(2δ
2
G1

+ 2δ2G2
+ 2δ2G1

δ2G2
+ 4δG1δG2 + 4δ2G1

δG2 + 4δG1δ
2
G2

)1/2

+ 2mG1mG2(2δ
2
G1

+ 2δ2G2
+ 2δ2G1

δ2G2
+ 4δG1δG2 + 4δ2G1

δG2 + 4δG1δ
2
G2

)1/2

SO(G1 � G2) ≥ [2δ2G1
+ 2δ2G2

+ 2δ2G1
δ2G2

+ 4δG1δG2 + 4δ2G1
δG2 + 4δG1δ

2
G2

]1/2[nG1mG2

+ nG2mG1 + 2mG1mG2 ]

≥
√

2(δ2G1
+ δ2G2

+ δ2G1
δ2G2

+ 2δG1δG2 + 2δ2G1
δG2

+ 2δG1δ
2
G2

)1/2|E(G1 � G2)|

≥
√

2
√

(δG1 + δG2 + δG1δG2)
2|E(G1 � G2)|

≥
√

2(δG1 + δG2 + δG1δG2)|E(G1 � G2)|.

Analogously, we acquire

SO(G1 � G2) ≤
√

2[�G1 + �G2 + �G1�G2 ]|E(G1 � G2)|.

Equality holds in case if the graphs under consideration are regular graphs.
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Example 3.4.2. By Example 1.4.14, we can see that the degrees of the ver-

tices are 3, 5, 3, 3, 5, 3. The greatest and lowest degrees of P3 and P2 are

2, 1 and 1, 1, respectively. Therefore, the Sombor index of P3 � P2 is

8
√

52 + 32 + 2
√

32 + 32 +
√

52 + 52 = 62.20. By the above result, we have

46.66 ≤ SO(P3 � P2) ≤ 77.78.

Example 3.4.3. By Example 1.4.15, we can see that the degree of every

vertex in C3 � P2 is 5. Therefore, the Sombor index of C3 � P2 is 106.06601,

where C3 and P2 are regular graphs.

Example 3.4.4. By Example 1.4.16, we can see that the degree of every

vertex in C3 � C3 is 8. Therefore, the Sombor index of C3 � C3 is 407.29,

where C3 and C3 are regular graphs.

3.5 Disjunction

Disjunction or co-normal product or OR product of the graphs G′ and G

is given by G′ ∨ G, where the vertex set of the product is V(G′)× V(G) and

ordered pairs (a1,b1) and (a2,b2) make an edge in G′ ∨ G whenever a1a2 ∈
E(G′) or b1b2 ∈ E(G). The order of disjunction is |V(G′)||V(G)| = nG′nG

whereas the size is |V(G′)|2|E(G)|+ |V(G)|2|E(G′)| − 2|E(G′)||E(G)| = n2
G′mG +

n2
GmG′ − 2mG′mG. The degree of a vertex in G′ ∨ G is given by

degG′∨G((a,b)) = nGdegG′(a) + nG′degG(b)− degG′(a)degG(b). (3.5)

The bounds for co-normal product w.r.t. Sombor index are calculated in the

following theorem.

Theorem 3.5.1. Let G1 and G2 be graphs with |V(G1)| = nG1 and |V(G2)| =
nG2, |E(G1)| = mG1 and |E(G2)| = mG2. Then P ≤ SO(G1 ∨ G2) ≤ Q, where

P =
√

2(nG2δG1 + nG1δG2 − δG1δG2
)|E(G1 ∨ G2)|,

Q =
√

2(nG2
�G1 + nG1�G2 − �G1�G2)|E(G1 ∨ G2)|.
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Equality holds in case if the graphs under consideration are regular graphs.

Proof. By the definition of Sombor index, we have

SO(G1 ∨ G2) =
∑

(a,b)(c,d)∈E(G1∨G2)

[(degG1∨G2(a,b))2 + (degG1∨G2(c, d))2]1/2

=
∑

a,c∈V(G1)

∑
bd∈E(G2)

[n2
G2
deg2G1

(a) + nG2nG1degG1(a)degG2(b)

− nG2deg
2
G1

(a)degG2(b) + n2
G1
deg2G2

(b) + nG2nG1degG1(a)degG2(b)

− nG1degG1(a)deg2G2
(b) + deg2G1

(a)deg2G2
(b)− nG2deg

2
G1

(a)degG2(b)

− nG1degG1(a)deg2G2
(b) + n2

G2
deg2G1

(c) + nG1nG2degG1(c)degG2(d)

− nG2deg
2
G1

(c)degG2(d) + n2
G1
deg2G2

(d) + nG1nG2degG1(c)degG2(d)

− nG1degG1(c)deg
2
G2

(d) + deg2G1
(c)deg2G2

(d)− nG2degG1(c)
2degG2(d)

− nG1degG1(c)degG2(d)2]1/2 +
∑

b,d∈V(G2)

∑
ac∈E(G1)

[n2
G2
deg2G1

(a)

+ nG2nG1degG1(a)degG2(b)− nG2deg
2
G1

(a)degG2(b) + n2
G1
deg2G2

(b)

+ nG2nG1degG1(a)degG2(b)− nG1degG1(a)deg2G2
(b) + degG1(a)2deg2G2

(b)

− nG2deg
2
G1

(a)degG2(b)− nG1degG1(a)deg2G2
(b) + n2

G2
deg2G1

(c)

+ nG1nG2degG1(c)degG2(d)− nG2degG1(c)
2degG2(d) + n2

G1
deg2G2

(d)

+ nG1nG2degG1(c)degG2(d)− nG1degG1(c)deg
2
G2

(d) + deg2G1
(c)deg2G2

(d)

− nG2deg
2
G1

(c)degG2(d)− nG1degG1(c)deg
2
G2

(d)]1/2 − 2
∑

ac∈E(G1)

∑
bd∈E(G2)

[n2
G2
deg2G1

(a) + nG1nG2degG1(a)degG2(b)− nG2deg
2
G1

(a)degG2(b)

+ n2
G1
deg2G2

(b) + nG2nG1degG1(a)degG2(b)− nG1degG1(a)deg2G2
(b)

+ deg2G1
(a)deg2G2

(b)− nG2deg
2
G1

(a)degG2(b)− nG1degG1(a)deg2G2
(b) + n2

G2
deg2G1

(c)

+ nG1nG2degG1(c)degG2(d)− nG2deg
2
G1

(c)degG2(d) + nG1nG2degG1(c)degG2(d)

+ n2
G1
deg2G2

(d)− nG1degG1(c)deg
2
G2

(d) + deg2G1
(c)deg2G2

(d)− nG2degG1(c)
2degG2(d)

− nG1degG1(c)degG2(d)2]1/2
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SO(G1 ∨ G2) =
∑

a,c∈V(G1)

∑
bd∈E(G2)

[2n2
G2
deg2G1

(a) + n2
G1
deg2G2

(b) + n2
G1
deg2G2

(d)

+ 2nG1nG2degG1(a)(degG2(b) + degG2(d))− 2nG2deg
2
G1

(a)[degG2(b)

+ degG2(d)]− 2nG2degG1(a)[deg2G2
(b) + degG2(d)2] + deg2G1

(a)[deg2G2
(b)

+ degG2(d)2]]1/2 +
∑

b,d∈V(G2)

∑
ac∈E(G1)

[2n2
G1
deg2G2

(b) + n2
G2
degG1(a)2

+ n2
G2
degG1(c)

2 + 2degG1nG2degG2(b)[degG1(a) + degG1(c)]

− 2nG1deg
2
G2

(b)[degG1(a) + degG1(c)]− 2nG1degG2(b)(deg2G1
(a)

+ deg2G1
(c)) + deg2G2

(b)(deg2G1
(a) + deg2G1

(c))]1/2 − 2
∑

ac∈E(G1)

∑
bd∈E(G2)

[n2
G2
deg2G1

(a) + nG2nG1degG1(a)degG2(b)− nG2deg
2
G1

(a)degG2(b)

+ n2
G1
deg2G2

(b) + nG2nG1degG1(a)degG2(b)− nG1degG1(a)deg2G2
(b)

+ deg2G1
(a)deg2G2

(b)− nG2deg
2
G1

(a)degG2(b)− nG1degG1(a)deg2G2
(b)

+ n2
G2
deg2G1

(c) + nG1nG2degG1(c)degG2(d)− nG2deg
2
G1

(c)degG2(d)

+ n2
G1
deg2G2

(d) + nG1nG2degG1(c)degG2(d)− nG1degG1(c)deg
2
G2

(d)

+ deg2G1
(c)deg2G2

(d)− nG2deg
2
G1

(c)degG2(d)− nG1degG1(c)deg
2
G2

(d)]1/2

≥ n2
G1
mG2 [2n

2
G2
δ2G1

+ 2n2
G1
δ2G2

+ 2δ2G1
δ2G2

+ 4nG1nG2δG1δG2

− 4nG2δ
2
G1
δG2 − 4nG1δG1δ

2
G2

]1/2 + n2
G2
mG1 [2n

2
G2
δ2G1

+ 2n2
G1
δ2G2

+ 2δ2G1
δ2G2

+ 4nG1nG2δG1δG2 − 4nG2δ
2
G1
δG2 − 4nG1δG1δ

2
G2

]1/2

− 2mG1mG2 [2n
2
G2
δ2G1

+ 2n2
G1
δ2G2

+ 2δ2G1
δ2G2

+ 4nG1nG2δG1δG2

− 4nG2δ
2
G1
δG2 − 4nG1δG1δ

2
G2

]1/2

SO(G1 ∨ G2) ≥
√

2
√

[nG2δG1 + nG1δG2 − δG1δG2 ]
2[n2

G1
mG2 + n2

G2
mG1 − 2mG1mG2 ]

=
√

2[nG2δG1 + nG1δG2 − δG1δG2 ]|E(G1 ∨ G2)|.

Analogously, we can get

SO(G1 ∨ G2) ≤
√

2[nG2�G1 + nG1�G2 − �G1�G2 ]|E(G1 ∨ G2)|.
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Equality holds in case if the graphs under consideration are regular graphs.

Example 3.5.2. By Example 1.4.14, we can see that the degrees of the

vertices are 4, 5, 4, 4, 5, 4. The greatest and lowest degrees of P3 and P2

are 2, 1 and 1, 1, respectively. Therefore, the Sombor index of P3 ∨ P2 is

8
√

52 + 42 + 4
√

42 + 42 +
√

52 + 52 = 80.923. By the result, we have 73.53 ≤
SO(P3 ∨ P2) ≤.

Example 3.5.3. By Example 1.4.15, we can see that the degree of every

vertex in C3 ∨ P2 is 5. Therefore, the Sombor index of C3 ∨ P2 is 106.06601,

where C3 and P2 are regular graphs.

Example 3.5.4. By Example 1.4.16, we can see that the degree of every

vertex in C3 ∨ C3 is 8. Therefore, the Sombor index of C3 ∨ C3 is 407.29,

where C3 and C3 are regular graphs.

3.6 Symmetric difference

Symmetric difference of the graphs G′ and G is given by G′ ⊕ G, where the ver-

tex set of the product is V(G′)× V(G) and ordered pairs (a1,b1) and (a2,b2)

make an edge in G′⊕G, whenever a1a2 ∈ E(G′) or b1b2 ∈ E(G) but not both.

The order of symmetric difference is |V(G′)||V(G)| = nG′nG whereas the size

is |V(G′)|2|E(G)|+ |V(G)|2|E(G′)| − 4|E(G′)||E(G)| = n2
G′mG +n2

GmG′ − 4mG′mG.

The degree of a vertex in G′ ⊕ G is given by

degG′⊕G((a,b)) = nGdegG′(a) + nG′degG(b)− 2degG′(a)degG(b). (3.6)

The bounds for symmetric difference w.r.t. Sombor index are calculated in

the following theorem.

Theorem 3.6.1. Let G1 and G2 be graphs with |V(G1)| = nG1 and |V(G2)| =
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nG2, |E(G1)| = mG1 and |E(G2)| = mG2. Then P ≤ SO(G1 ⊕ G2) ≤ Q, where

P =
√

2(nG2δG1 + nG1δG2 − 2δG1δG2
)|E(G1 ∨ G2)|,

Q =
√

2(nG2
�G1 + nG1�G2 − 2�G1�G2)|E(G1 ∨ G2)|.

Equality holds in case if the graphs under consideration are regular graphs.

Proof. By the definition of Sombor index, we have

SO(G1 ⊕ G2) =
∑

(a,b)(c,d)∈E(G1⊕G2)

[(degG1⊕G2(a,b))2 + (degG1⊕G2(c, d))2]1/2

=
∑

a,c∈V(G1)

∑
bd∈E(G2)

[n2
G2
deg2G1

(a) + nG2nG1degG1(a)degG2(b)

− 2nG2deg
2
G1

(a)degG2(b) + n2
G1
deg2G2

(b) + nG2nG1degG1(a)degG2(b)

− 2nG1degG1(a)deg2G2
(b) + 4deg2G1

(a)deg2G2
(b)− 2nG2deg

2
G1

(a)degG2(b)

− 2nG1degG1(a)deg2G2
(b) + n2

G2
deg2G1

(c) + nG1nG2degG1(c)degG2(d)

− 2nG2deg
2
G1

(c)degG2(d) + n2
G1
deg2G2

(d) + nG1nG2degG1(c)degG2(d)

− 2nG1degG1(c)deg
2
G2

(d) + 4deg2G1
(c)deg2G2

(d)− 2nG2degG1(c)
2degG2(d)

− 2nG1degG1(c)degG2(d)2]1/2 +
∑

b,d∈V(G2)

∑
ac∈E(G1)

[n2
G2
deg2G1

(a)

+ nG2nG1degG1(a)degG2(b)− 2nG2deg
2
G1

(a)degG2(b) + n2
G1
deg2G2

(b)

+ nG2nG1degG1(a)degG2(b)− 2nG1degG1(a)deg2G2
(b) + 4degG1(a)2deg2G2

(b)

− 2nG2deg
2
G1

(a)degG2(b)− 2nG1degG1(a)deg2G2
(b) + n2

G2
deg2G1

(c)
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+ nG1nG2degG1(c)degG2(d)− 2nG2degG1(c)
2degG2(d) + n2

G1
deg2G2

(d) + nG1nG2degG1(c)

degG2(d)− 2nG1degG1(c)deg
2
G2

(d) + 4deg2G1
(c)deg2G2

(d)− 2nG2deg
2
G1

(c)degG2(d)

− 2nG1degG1(c)deg
2
G2

(d)]1/2 − 4
∑

ac∈E(G1)

∑
bd∈E(G2)

[n2
G2
deg2G1

(a) + nG1nG2degG1(a)degG2(b)

− 2nG2deg
2
G1

(a)degG2(b) + n2
G1
deg2G2

(b) + nG2nG1degG1(a)degG2(b)− 2nG1degG1(a)

deg2G2
(b) + 4deg2G1

(a)deg2G2
(b)− 2nG2deg

2
G1

(a)degG2(b)− 2nG1degG1(a)deg2G2
(b)

+ n2
G2
deg2G1

(c) + nG1nG2degG1(c)degG2(d)− 2nG2deg
2
G1

(c)degG2(d)

+ n2
G1
deg2G2

(d) + nG1nG2degG1(c)degG2(d)− 2nG1degG1(c)deg
2
G2

(d) + 4deg2G1
(c)deg2G2

(d)

− 2nG2degG1(c)
2degG2(d)− 2nG1degG1(c)degG2(d)2]1/2

SO(G1 ⊕ G2) =
∑

a,c∈V(G1)

∑
bd∈E(G2)

[2n2
G2
deg2G1

(a) + n2
G1
deg2G2

(b) + n2
G1
deg2G2

(d)

+ 2nG1nG2degG1(a)(degG2(b) + degG2(d))− 4nG2deg
2
G1

(a)[degG2(b)

+ degG2(d)]− 4nG2degG1(a)[deg2G2
(b) + degG2(d)2] + 4deg2G1

(a)[deg2G2
(b)

+ degG2(d)2]]1/2 +
∑

b,d∈V(G2)

∑
ac∈E(G1)

[2n2
G1
deg2G2

(b) + n2
G2
degG1(a)2

+ n2
G2
degG1(c)

2 + 2degG1nG2degG2(b)[degG1(a) + degG1(c)]− 4nG1deg
2
G2

(b)

[degG1(a) + degG1(c)]− 4nG1degG2(b)[(deg2G1
(a) + deg2G1

(c))] + 4deg2G2
(b)

[(deg2G1
(a) + deg2G1

(c))]1/2 − 4
∑

ac∈E(G1)

∑
bd∈E(G2)

[n2
G2
deg2G1

(a) + nG2nG1degG1(a)

degG2(b)− 2nG2deg
2
G1

(a)degG2(b) + n2
G1
deg2G2

(b) + nG2nG1degG1(a)degG2(b)

− 2nG1degG1(a)deg2G2
(b) + 4deg2G1

(a)deg2G2
(b)− 2nG2deg

2
G1

(a)degG2(b)

− 2nG1degG1(a)deg2G2
(b) + n2

G2
deg2G1

(c) + nG1nG2degG1(c)degG2(d)

− 2nG2deg
2
G1

(c)degG2(d) + n2
G1
deg2G2

(d) + nG1nG2degG1(c)degG2(d)

− 2nG1degG1(c)deg
2
G2

(d) + 4deg2G1
(c)deg2G2

(d)− 2nG2deg
2
G1

(c)degG2(d)

− 2nG1degG1(c)deg
2
G2

(d)]1/2
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≥ n2
G1
mG2 [2n

2
G2
δ2G1

+ 2n2
G1
δ2G2

+ 8δ2G1
δ2G2

+ 4nG1nG2δG1δG2

− 8nG2δ
2
G1
δG2 − 8nG1δG1δ

2
G2

]1/2 + n2
G2
mG1 [2n

2
G2
δ2G1

+ 2n2
G1
δ2G2

+ 8δ2G1
δ2G2

+ 4nG1nG2δG1δG2 − 8nG2δ
2
G1
δG2 − 8nG1δG1δ

2
G2

]1/2

− 4mG1mG2 [2n
2
G2
δ2G1

+ 2n2
G1
δ2G2

+ 8δ2G1
δ2G2

+ 4nG1nG2δG1δG2

− 8nG2δ
2
G1
δG2 − 8nG1δG1δ

2
G2

]1/2

SO(G1 ⊕ G2) ≥
√

2
√

[nG2δG1 + nG1δG2 − 2δG1δG2 ]
2[n2

G1
mG2 + n2

G2
mG1 − 4mG1mG2 ]

=
√

2[nG2δG1 + nG1δG2 − 2δG1δG2 ]|E(G1 ⊕ G2)|.

Analogously, we can get

SO(G1 ⊕ G2) ≤
√

2[nG2�G1 + nG1�G2 − 2�G1�G2 ]|E(G1 ⊕ G2)|.

Equality holds in case if the graphs under consideration are regular graphs.

Example 3.6.2. By Example 1.4.22, we can see that the degree of every ver-

tex in P3 ⊕ P2 is 3. Therefore, the Sombor index of P3 ⊕ P2 is 9
√

32 + 32 =

38.183, because P3 ⊕ P2 is a regular graph.

Example 3.6.3. By Example 1.4.23, we can see that the degree of every ver-

tex in C3 ⊕ P2 is 3. Therefore, the Sombor index of C3 ⊕ P2 is 9
√

32 + 32 =

38.183, because C3 ⊕ P2 is a regular graph.

Example 3.6.4. By Example 1.4.24, we can see that the degree of every ver-

tex in C3 ⊕ C3 is 4. Therefore, the Sombor index of C3 ⊕ C3 is 18
√

42 + 42 =

101.82, because C3 ⊕ P2 is a regular graph.
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Chapter 4

Conclusion

The first chapter of this dissertation includes the fundamentals of graph the-

ory. Different graphs are being discussed and further we have dealt with

graph operations such as cartesian product, lexicographic product, tensor

product, strong product, disjunction and symmetric difference.

In the second chapter, we discussed the literature review of topological in-

dices. We briefly discussed the distance based topological indices, that is,

Weiner index, Szeged index, PI index. Furthermore degree based topological

indices such as first and second Zagreb index, Randić connectivity index,

sum connectivity index and Sombor index are being discussed.

In chapter 3, we have computed the upper and lower bounds of some graph

operations w.r.t. Sombor index. Moreover, these results are then elaborated

by the help of some examples on different graphs.
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