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Abstract

The theory of fixed point is one of the most incredible asset of present day Math-

ematical Analysis. Theorem concerning the presence and properties of fixed point

are known as fixed point theorems. Fixed point theory is the beautiful mixture of

Analysis, Topology and Geometry which has many applications in various fields. In

19th century the study of fixed point theory was initiated by Poincare and in the

20th century this area developed by many mathematicians like Brouwer, Schauder,

Kakutani, Banach, Kannan, Tarski and others.

In 1922 the concept of Banach Space was introduced by Stefen Banach and

introduced a Fixed Point Theorem for contraction mapping. There are numerous

generaliztaion of Banach contraction principle to unique fixed point of the mapping.

Sehgal, Kannan, Caristi and Husain worked for some generalization of contraction

mappings and proved number of the result for contraction mapping.

As the fundamental properties of contraction mapping do not extend to non-

expansive and mean nonexpansive mapping. Now, the study of nonexpansive and

mean nonexpansive mapping is the main feature in recent development of fixed

points. Contractive mappping, isometries and orthogonal projections are all non-

expansive mapping. In most of the cases we have studied fixed points for different

types of mapppings. The objective of following work is to find the fixed point for

mean-nonexpansive semigroup and fundamentally nonexpansive mapping.
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Chapter 1

Preliminaries

1.1 Introduction

The most basic results of Functional Analysis and Fixed Point Theory are the foun-

dation of our study. Over the years, there have been many efforts to generalize this

theorem for various classes of topological spaces and Banach spaces. In a broad

sense, by a fixed point theorem we would say a statement asserting that under def-

inite conditions a self map M on U accepts one or more points such as M(r) = r.

Many researchers have studied fixed point theory for a reason in its application to the

idea of variational and linear inequalities, boundary value problem, the approxima-

tion theory, chemical reactions, nonlinear analysis, integral equations, the dynamic

systems theory, mathematical economics, partial differential equations, economic

theory and game theory.

There are number of the fixed point theorems which fulfills specific conditions

for a compression type planning. In all of these one result looks at the sequence of

iterates, i.e. due to contraction conditions, it becomes the Cauchy sequence and its

limit is the fixed point of a defined mapping M .
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Fixed point theory has a key role for boundary value problems and eigen value

problems. For details one can see Williams [14], Cronin [9], Martin [32] ,Leggett [21],

Smart [29] , Collatz [8], Kreyszig [20] and Cesari [6], etc. Brouwer [3] proved the

fixed point theorems for Euclidean space which states that there is atleast one fixed

point for a continuous mapping of the closed unit ball in n-dimensional Euclidean

space.

Then Kellog, Birkhoff, Schwartz and Dunford proved Brouwer’s theorems by

using classical methods of analysis. Hopf and Alexendroff also proved this theorem

by using mechanisam from algebraic topology. Then Brouwer fixed point theorem

extended by Schaiider in this case the set S is the closed, bounded and convex subset

of a normed space. After that, Schaiider’ result extended by Tychonoff [24] from

normed space to the locally convex space.

In 1922 the concept of Banach Space was introduced by Stefen Banach and in-

troduced a Fixed Point Theorem for contraction mapping. There are numerous

generaliztaion of Banach contraction principle to unique fixed point of the mapping.

Sehgal [28], Kannan [18], Caristi [5] and Husain [17] worked for several generaliza-

tions of contraction mappings and proved number of results for contraction mapping.

As a fundamental properties of contraction mapping do not extend to the non-

expansive and mean nonexpansive mapping. Now, the study of nonexpansive and

mean nonexpansive mapping is the main feature in recent development of fixed

points. Contractive mappping, isometries and orthogonal projections are all nonex-

pansive mapping. Mean nonexpansive mapping first introduced in 2007 by Goebel

and Japon Pineda [15] and many authors working on propeties of Mean nonexpan-

sive mapping in different fields.

1.2 Metric Space

Let ℵ be a nonempty set. We define metric and metric space as folllows :
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Definition 1.2.1. Let ℵ be a nonempty set and defined a function ρ such that

ρ : ℵ × ℵ → R, then the pair M = (ℵ, ρ) is said to be the metric space if the

following condidtions are satisfied:

1. For all ζ1, ζ2 ∈ ℵ, ρ(ζ1, ζ2) ≥ 0

2. For all ζ1, ζ2 ∈ ℵ we have that ρ(ζ1, ζ2) = 0 ⇔ ζ1 = ζ2

3. For all ζ1, ζ2 ∈ ℵ, ρ(ζ1, ζ2) = ρ(ζ2, ζ1) (Symmetry)

4. (Triangular inequality) For all ζ1, ζ2, ζ3 ∈ ℵ

we have that

ρ(ζ1, ζ3) ≤ ρ(ζ1, ζ2) + ρ(ζ2, ζ3). (1.1)

Example 1.2.2. We can define the usual metric ρ on the set of real numbers R

such that for all ζ1, ζ2 ∈ R,

ρ(ζ1, ζ2) = |ζ1 − ζ2|. (1.2)

Example 1.2.3. The plane R2 with the usual distance (measured by using Pythago-

ras’s theorem): ρ((ξ1, ζ1), (ξ2, ζ2)) =
√

(ξ1 − ξ2)2 + (ζ1 − ζ2)2.

Definition 1.2.4. Let ℵ be the metric space and ℶ be the subset of ℵ , then ℶ is

said to be open if for every ζ in ℶ there exists ϵ > 0 such that Bϵ(ζ) is contained in

ℶ.

Example 1.2.5. The open interval (3, 6) is an open set in real line R.

Remark 1. The arbitrary union of open sets is an open set.

Example 1.2.6. The empty set ϕ and R both are open.
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Definition 1.2.7. Let ℵ be the metric space and the sequence ξn in ℵ is said to

converge to a point ξ0 belongs to ℵ if limn→∞ρ(ξn, ξ0) = 0. In this case we can write

ξn → ξ0. It can be easily proved that if ξn → ξ0 and ξn → ζ0, then ξ0 = ζ0, that is,

a convergent sequence has the unique limit.

Definition 1.2.8. A sequence ξn in the metric space ℵ is the Cauchy sequence if

for evey ϵ > 0, there is the N(ϵ) such that ρ(ξn, ξm) < ϵ whenever m,n ≥ N(ϵ).

Definition 1.2.9. A metric space ℵ is the complete metric space if every Cauchy

sequence in ℵ is convergent in ℵ.

1.3 Normed Spaces

Definition 1.3.1. A vector space ℶ with two binary operation addition and scalar

multiplication satisfy the following axioms ξ1, ξ2, ξ3 ∈ ℶ and λ, µ ∈ F;

1. ξ1 + ξ2 ∈ ℶ.

2. ξ1 + ξ2 = ξ2 + ξ1.

3. (ξ1 + ξ2) + ξ3 = ξ1 + (ξ2 + ξ3).

4. There is a zero vector in ℶ such that 0 + ξ = ξ for all ξ ∈ ℶ.

5. For every ξ ∈ ℶ there is a additive inverse of ξ such that ξ + (−ξ) = 0.

6. λξ ∈ ℶ.

7. λ(ξ1 + ξ2) = λξ1 + λξ2.

8. (λ+ µ)ξ = λξ + µξ.
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9. (λµ)ξ = λ(µξ).

10. 1.ξ = ξ.

Example 1.3.2. Euclidean space Rn is a vector space over the field R and the set

Cn is a vector space over the field C.

Example 1.3.3. The polynomial space Pn =
∑n

k=0 bkx
k of all polynomials of degree

n such thst b0, b2, ..., bn are the real numbers and n is the positive integer(called the

degree of the polynomial).

1. An operation of vector adddition + defined by,

(x1, x2, ..., xn) + (y1, y2, ..., yn) = (x1 + y1, x2 + y2, ..., xn + yn).

2. An operation of scalar multiplication defined by,

r(x1, x2, ..., xn) = (rx1, rx2, ..., rxn).

Pn is vector space with these operations.

Definition 1.3.4. Let ℶ be the vector space over a field K( R or C). A norm on

ℶ is map ∥.∥ : ℶ → [0,∞) satisfy the following properties:

1. ∥ξ∥ ≥ 0

2. ∥ξ∥ = 0 iff ξ = 0

3. ∥µξ∥ = |µ|∥ξ∥ for all ξ ∈ ℶ and µ ∈ K

4. ∥ξ1 + ξ2∥ ≤ ∥ξ1∥+ ∥ξ2∥ for all ξ1, ξ2 ∈ ℶ. The ordered pair (ℶ, ∥.∥) is said to

be a normed space.

Remark 2. Every normed space is a metric space.
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A metric induced by norm is defined as

ρ(ξ1, ξ2) = ∥ξ1 − ξ2∥ (1.3)

for all ξ1, ξ2 ∈ ℶ.

Lemma 1.3.5. A metric ρ induced by the norm on normed space ℶ satisfy the

following condition:

1. ρ(ξ1 + λ, ξ2 + λ) = ρ(ξ1, ξ2).

2. ρ(λξ1, λξ2) = |λ|ρ(ξ1, ξ2).

Example 1.3.6. The Euclidean space Rn and unitary space Cn are the normed

spaces with the norm defined by,

∥x∥ = (
n∑

i=1

|ξi|2)1/2 (1.4)

.

Example 1.3.7. Space C[a, b] is the normed space with a maximum norm given by,

∥ξ∥ = maxt∈K |ξ(t)| (1.5)

where K = [a, b] ⊂ R.

Definition 1.3.8. A sequence ξk in the normed space ℶ is convergent if there is

ξ ∈ ℶ such that,

∥ξk − ξ∥ → 0 (1.6)

as k → ∞.

Definition 1.3.9. Let ℶ be the normed space and the sequence ξk is Cauchy if,

∥ξm − ξn∥ → 0 (1.7)

as m,n → ∞.
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Definition 1.3.10. A normed space ℶ is the complete space if every Cauchy se-

quence is convergent in ℶ. A complete normed is a Banach space.

Example 1.3.11. C[a, b] is the Banach space with a maximum norm given by,

∥ξ∥ = maxt∈K |ξ(t)| (1.8)

where K = [a, b] ⊂ R.

1.4 Convexity

Definition 1.4.1. A subset ℵ of Rn is said to be a convex set if for any ξ1, ξ2 ∈ ℵ
and ζ ∈ [0, 1] ,

ζξ1 + (1− ζ)ξ2 ∈ ℵ. (1.9)

Definition 1.4.2. A function M : ℵ → R is the convex if for any ξ1, ξ2 ∈ ℵ and

ζ ∈ [0, 1] ,

M(ζξ1 + (1− ζ)ξ2 ≤ ζM(ξ1) + (1− ζ)M(ξ2). (1.10)

If the inequality (1.10) is strict whenever ξ1 ̸= ξ2 and µ ∈ (0, 1) then M is strictly

convex.

1.5 Mapping and Fixed Points

Mapping is the way of assigning to each member in first set with the particular

member of other set or with same set. For example, a mapping from the set of

whole numbers, onto the set of even numbers. In mathematics mappings, map, and

transformation are often used differently.

Some important mappings are isometries in geometry, operators in analysis,

homeomorphisms in topology, homomorphisms in algebra, representations in group

theory.
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Definition 1.5.1. Let ℶ ̸= ∅ and M be a mapping from ℶ to ℶ. A point ξ ∈ ℶ is

said to be a fixed point if M(ξ) = ξ.

For example, 0 and 1 are the two fixed point for the mapping ξ → ξ2 of R into

itself.

Example 1.5.2. If M is defined on a set of natural numbers by

M(ξ) = ξ2 − 3ξ + 4,

then 2 is a fixed point for M , because M(2) = 2.

1.6 Asymptotically Regular Sequences and Maps

Definition 1.6.1. [7] Let M be the mapping from metric space ℶ to ℶ a sequence

ξn in ℶ is asymptotically regular if limn→∞ρ(ξn,Mξn) = 0.

Definition 1.6.2. [7] A mapping M from the metric space ℶ to ℶ is said to be

asymptotically regular at the point ξ in ℶ if limn→∞ρ(Mnξ,Mn+1ξ) = 0.

Definition 1.6.3. Let ℵ be the Banach space. Let H and K be the two self mappings

of the Banach space ℵ. We can say that the pair H,K be weakly commuting if

|HKξ −KHξ| ≤ |Hξ −Kξ|, for all ξ ∈ ℵ. But the converse is not true in general.

Example 1.6.4. Let ℵ = [0, 1] be the usual metric. Then H and K are define as

Hξ = ξ
2+ξ

, Kξ = ξ
2

for every ξ ∈ ℵ.

Therefore for all ξ ∈ ℵ d(HKξ,KHξ) = ξ
ξ+4

− ξ
4+2ξ

= ξ2

(4+ξ)(4+2ξ)

≤ ξ2

4+2ξ
= ξ

2
− ξ

2+ξ
= d(Hξ,Kξ).

So H and K are weakly commuting.

But HK ̸= KH for any non-zero ξ in ℵ.

1.7 Banach Fixed Point Theorem

In several branches of Analysis, Banach F.P.T plays vital role in research of exis-

tence and uniqueness fixed point theorems. Banach fixed point gives the magnificent
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sketch of the combine power of functional analytic methods and the importance of

F.P.T in analysis. Banach F.P.T analyse the definite mappings of complete metric

space ℶ to itself. Banach F.P.T provides the sufficient condition for the existence

and uniqueness of that point which is mapped onto itself. Banach F.P.T also gives

the approximation to the fixed point and error bound by using iterative process.

This theorem also gives the effective method for achieving better and better ap-

proximation to the fixed point and the method is iterative.

Definition 1.7.1. A mapping M from the metric space ℶ to ℶ is said to be the

Lipschitz if ∃ L > 0 such that,

ρ(Mξ1,Mξ2) ≤ Lρ(ξ1, ξ2) (1.11)

for all ξ1, ξ2 ∈ ℶ.

Definition 1.7.2. Let ℶ be the metric space and the mapping M from ℶ to ℶ is

said to be a contraction on ℶ if ∃ 0 < L < 1 such that for all ξ1, ξ2 ∈ ℶ,

ρ(Mξ1,Mξ2) ≤ Lρ(ξ1, ξ2). (1.12)

This means that the ratio ρ(Mξ1,Mξ2)
ρ(ξ1,ξ2)

does not exceed a constant L which is strictly

less than 1.

1.8 Continuous Operator

Definition 1.8.1. Let H = (H, ρ1) and K = (K, ρ2) be two metric spaces. A

mapping M : H → K is continuous at h0, if for every ϵ > 0, there exists δ, such

that if ρ1(h0, h) < δ, then ρ2(M(h0),M(h)) < ϵ.

Lemma 1.8.2. If the mapping M is a continuous on the compact set ℶ, then a

mapping M is uniformly continuous on ℶ.
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Example 1.8.3. Suppose M : ℶ → R is a continuous function where

ℶ = {(ξ1, ξ2) : a ≤ ξ1 ≤ b, c ≤ ξ2 ≤ d} (1.13)

Since ℶ is the compact set and M is continuous, hence M is uniformly continu-

ous.

Example 1.8.4. Let H = (0, 1] and K = R be two sets with usual metric. The

mapping M from H to K is defined as M(h) = 1
h

which is continuous. M is not

uniformly continuous because H is not compact.

Theorem 1.8.1. If the mapping M is the contraction on a metric space ℶ, then

the mapping M is continuous on ℶ.

Proof. Let ϵ > 0 be given and ξ1 be the any point in ℶ. Since M is a contraction

mapping, we have

ρ(Mξ1,Mξ2) ≤ Lρ(ξ1, ξ2),

for all ξ1, ξ2 ∈ ℶ and L ∈ [0, 1). If L = 0, we have ρ(Mξ1,Mξ2) = 0 < ϵ for all

ξ ∈ ℶ, and M is continuous at ξ1. Otherwise, for L ̸= 0 let δ = ϵ
L

and ξ2 be any

other point in ℶ such that ρ(ξ1, ξ2) < δ, we have

ρ(Mξ1,Mξ2) ≤ Lρ(ξ1, ξ2) < L.δ = L.ϵ/L < ϵ.

Hence M is continuous at ξ1 which is an arbitrary point therefore, the contraction

map M is continuous everywhere.

Theorem 1.8.2. [1] (Banach F.P.T).

If M is the contraction mapping from the complete metric space ℶ to ℶ. Then

mapping M has the unique fixed point ξ ∈ ℶ ( that is M(ξ) = ξ).

Proof. Choose any ξ0 ∈ ℶ , and define the sequence ξn, where

ξ1 = Mξ0 , ξ2 = Mξ1 = M2ξ0 , ξ3 = Mξ2 = M3ξ0 , . . ., ξn = Mξn−1 = Mnξ0

10



or

ξn+1 = M(ξn), n = 0, 1, 2, ... (1.14)

The proof strategy is to show that:

1. ξn is a Cauchy sequence.

2. its limit is fixed point of ℶ.

3. And a fixed point ξ is the unique point.

Step 1: From (1.10) and (1.12)we have that

d(ξm+1, ξm) = d(M(ξm),M(ξm−1))

≤ Ld(ξm, ξm−1)

= Ld(M(ξm−1),M(ξm−2))

≤ L2d(ξm−1, ξm−2)

.

.

.

≤ Lmd(ξ1, ξ0).

Hence by the triangle inequality we get (for n ≥ m) that

d(ξm, ξn) ≤ d(ξm, ξm+1) + d(ξm+1, ξm+2) + ...+ d(ξn−1, ξn)

≤ (Lm + Lm+1 + + Ln−1)d(ξ1, ξ0)

= Lm(1− Ln−m)/(1− L)d(ξ0, ξ1),

Where in the last equality we have used the summation formula for a geometric

series. Since 0 < L < 1, we have 1− Ln−m < 1, and consequently

d(ξm, ξn) ≤ (Lm)(d(ξ1, ξ0))/(1− L). (1.15)
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Since 0 < L < 1 and d(ξ0, ξ1) are fixed, it is clear that we can make d(ξm, ξn) as

small as we required by choosing m sufficiently large. This shows that (ξn) is the

Cauchy squence. Finally, the metric space ℶ is complete, there exists an ξ ∈ ℶ such

that ξn → ξ.

Step 2: To show that ξ is a fixed point, we consider the distance d(ξ,M(ξ)). From

the triangle inequality and (1.10), we get

d(ξ,M(ξ)) ≤ d(ξ, ξm) + d(ξm,M(ξ))

= d(ξ, ξm) + d(M(ξm−1),M(ξ))

≤ d(ξ, ξm) + Ld(ξm−1, ξ) ,

and since ξn → ξ. It is clear that we can make this distance as small as we please

by choosing m sufficiently large. We conclude that

d(ξ,M(ξ)) = 0 ⇒ M(ξ) = ξ,

then ξ ∈ ℶ is the fixed point of M .

Step 3: Suppose there are two fixed points ξ = M(ξ) and ξ0 = M(ξ0). Then from

(1.10) it follows that

d(ξ, ξ0) = d(M(ξ),M(ξ0)) ≤ Ld(ξ, ξ0),

which implies d(ξ, ξ0) = 0, since 0 < L < 1. Hence ξ = ξ0, and ξ is the unique fixed

for contraction mapping M.

Theorem 1.8.3. [3] (Brouwer’s Theorem) There is a fixed point in every continuous

mapping from a unit ball of Rn into itself.

Theorem 1.8.4. [27] (Schauder’s Theorem) Let ℵ be the Banach space and H be

the nonempty closed convex bounded subset of ℵ. Then every continuous compact

mapping M : H → H has a fixed point.
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Theorem 1.8.5. [31] (Tychonoff’s Theorem) Let H be the nonempty compact con-

vex subset of the locally convex topological linear space Y and M : H → H is a

continuous mapping. Then M has the fixed point.

Example 1.8.5. Let M be the contraction mapping from R to R defined as M(r) =

r
2

for all r ∈ R. Then for the mapping M , 0 is a unique fixed point.

Example 1.8.6. A contraction mapping M from R to R is defined as M(ξ) = 3ξ
4
+2

for all ξ ∈ R then ξ = 8 is the unique fixed point.

1.9 Common Fixed Points

A point u ∈ U is the common fixed point for the pair of self mappings (H,K) on U

if H(u) = u = K(u).

Example 1.9.1. Let H and K be the two self mapping on Y = [1, 2] H and K are

defined as H(u) = u and K(u) = u2 for all u ∈ [1, 2]. Then 1 is the common fixed

point for H and K.
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Chapter 2

Fixed Point Results for
Nonexpansive and Mean
Nonexpansive Mapping

2.1 Expansive Mapping

Definition 2.1.1. [33] Let ℵ be a Banach space and ℶ be the nonemty subset of ℵ
and M is the mapping from ℶ to ℶ is a expansive map with a constant C > 1 such

that,

ρ(Mξ1,Mξ2) ≥ Cρ(ξ1, ξ2) (2.1)

for all ξ1, ξ2 ∈ ℶ.

2.2 Nonexpansive Mapping

Definition 2.2.1. [11] Let ℵ be a Banach space and ℶ be the bounded, closed and

convex subset of Banach ℵ and the mapping M from ℶ to ℶ is said to be the non-

expansive mapping with the constant C > 1 such that,

ρ(Mξ1,Mξ2) ≤ Cρ(ξ1, ξ2), (2.2)

for all ξ1, ξ2 ∈ ℶ.

14



The study of non-expansive mapping is the one of prominent characteristic work

in fixed point theory. A number of the basic properties of a contraction mapping

do not carry over to a non-expansive mapping. For example, the presence of the

fixed point does not guarantee its uniqueness and a sequence of iterates need not to

converge to the fixed point even in the case of compact space. Now it is important

to look over either the non-expansive mapping has the fixed points or not. To ensure

that the presence of fixed points for such mapping, other limitations should be made

on the domain or on the mappings itself.

In a general Banach space there is no fixed point for non-expansive mapping.

When we apply some additional conditions such as normal structure and uniform

convexity on the given space then it is possible to have a fixed point for the non-

expansive mapping. In 1967 the first existing result obtained by Belluce, Lawrence

and Kirk [2] for nonexpansive mapping in Banach space. The number of results

obtained by many authors on the generalization and extension of nonexpansive

mappings. Some of the generalization and extention of nonexpansive mapping can

be found in ([14], [12], [15] and [26]) and elsewhere. A class of new nonexpansive

type mapping founded in 2008 by Suzuki [30] that is satisfying condition (C) and

get some new important result for this type of mapping.

Example 2.2.2. Translation, isometry and identity mapping these are the nonex-

pansive mapping.

Definition 2.2.3. [19] Let ℶ be the metric space and the mapping M from metric

sapce ℶ to ℶ is said to be generalized nonexpansive if,

for all ζ1, ζ2 ∈ ℶ, ρ(Mζ1,Mζ2) ≤ h1ρ(ζ1,Mζ1) + h2ρ(ζ2,Mζ2) + h3ρ(ζ1,Mζ2) +

h4ρ(ζ2,Mζ1) + h5ρ(ζ1, ζ2).

Where hi ≥ 0 , i = 1, 2, 3, 4, 5 and
∑5

i=1 hi ≤ 1.
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In 1973 Hardy-Rogers [16] introduced the above type of mapping. Then many

mathematician studied contractive conditions for single and multi-valued mapping

for the generalization of nonexpansive mapping.

2.3 Mean Nonexpansive Mapping

Definition 2.3.1. [34] Let ℵ be a Banach space and ℶ be the closed, bounded and

convex subset of the Banach space and the mapping M is mean-nonexpansive map-

ping from ℶ to ℶ if for all ζ1, ζ2 ∈ ℶ,

∥Mζ1 −Mζ2| ≤ β1∥ξ1 − ζ2∥+ β2∥ζ1 −Mζ2| (2.3)

β1, β2 ∈ [0, 1) , β1 + β2 ≤ 1.

The class of mean nonexpannsive mapping is strictlly larger than the class of

nonexpansive, there are some mean nonexpansive mappings such that neither M

nor any iterate of Mn is nonexpansive.

Lemma 2.3.2. Let M be a affine mapping from ℶ to ℶ is defined as for the multi

index β = (β1, β2) such that c = β2
1 + β2 < 1 and d = β1+β2

β1
> 1 is (β1, β2)−mean

nonexpansive.

Definition 2.3.3. A mapping M is β-mean Lipschitzian mapping from metric space

ℶ to ℶ with constant L > 1,
n∑

i=1

βiρ(M
iξ1,M

iξ2) ≤ Lρ(ξ1, ξ2), (2.4)

for all ξ1, ξ2 ∈ ℶ.

Where β = (β1, β2, ..., βn) is multi index.

A mapping M is said to be mean Lipschitizian if there is a constan L > 1 and some

multi-index β satisfying the inequlity (2.4).

Remark 3. When the mapping M is the uniformly Lipschitzian then M is the

β-mean Lipschitzian mapping with same constant L, for every multi-index β.
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2.4 Isometry Mapping

The distance of any two points in a first or original space is equal to the distance

of their images in a second space when a metric space ℶ1 is mapped onto another

space ℶ2 or onto itself ℶ1.

Condition for the isometry mapping M ,

ρ(Mξ1,Mξ2) = ρ(ξ1, ξ2), (2.5)

for all ξ1, ξ2 ∈ ℶ.

Remark 4. Rotation and translation are the isometries of the plane.

2.5 Properties of Nonexpansive and Mean Nonex-
pansive Mapping

Definition 2.5.1. Let ℵ be a Banach space and ℶ be the convex subset of ℵ and M

is the mapping from ℶ to ℶ is affine if M(ζξ1+(1− ζ)ξ2) = ζM(ξ1)+ (1− ζ)M(ξ2)

for all ξ1, ξ2 ∈ ℶ and ζ ∈ [0, 1].

Affine mappings plays an important role in the study of fixed point theory. In

case of affine mappings, the fixed point property of nonexpansive mapping and mean

nonexpansive mapping are identical.

Theorem 2.5.1. [15] Let ℵ be the Banach space and ℶ be the nonempty convex

subset of ℵ and ℶ verifies the F.P.P for β-mean nonexpansive mappings for all

multi indics β = (β1, β2, ..., βn) with

β1 ≥
1

n−1
√
2

(2.6)

If the multi-index has length n = 2, Theorem 2.5.1 applies when β1 ≥ 1
2
. By above

Theorem 2.5.1 the following question can be uprised: Is it possible to weaken or

eliminate the condition β1 ≥ 1
n−1√2

?
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As a result, the following assumption emerges :

For nonexpansive and mean nonexpansive mapping, the fixed point property is equal

for the closed, bounded, and convex subset of the Banach space. The proof of

Theorem 2.5.1 strongly depends on forming of a auxiliary mapping Mβ. Let ℶ be

the convex subset, the mapping M : ℶ → ℶ and a multi index β = (β1, ..., βn),

this mapping is defined by Mβ(ξ) =
∑n

j=1 βjM
j(ξ) for every ξ ∈ ℶ. Then each

fixed point of M is the fixed point of Mβ, but the converse is not true in general.

It proves that Mβ is nonexpansive mappping when M is mean nonexpansive and

the existence of the fixed point for Mβ when β1 ≥ 1
n−1√2

shows the existence of the

fixed point for the original function M . It is worth pointing out that Mβ may be

nonexpansive even when M fails to be continuous ([13] Example 4).

Now we see the equivalence between Fixed Point Property (F.P.P) for affine non-

expansive mapping and F.P.P for affine mean-nonexpansive mapping. A mapping

M and ξ is in the domain of M , then the M−orbit of ξ is defined as the sequence

ξ,Mξ,M2ξ,M3ξ, .... Let β be the multi index and define Mβ as above. The fixed

point for Mβ does not shows generally the existence of the fixed point for M, even

in a case of Lipschitzian mapping.

Example 2.5.2. Let ℵ is the Banach space, there exist the Lipschitzian mapping

M : B̄ξ → Sξ, where B̄ξ is the closed unit ball and Sξ is the unit sphere of ℵ. Define

M : Bξ → Bξ and K = −M . For β = (1/2, 1/2), where Mβ is a constant function

Mβ(ξ) = 0 for every ξ ∈ By, this implies that Fix(Mβ) = 0. But Fix(M) is empty.

Theorem 2.5.2. [13] Let ℶ be a Topological vector space and Y be the convex

subset of ℶ, M be the mapping from Y to Y and β = (β1, β2, ..., βn) is a multi index.

Define Mβ from V to V such that Mβ =
∑n

i=1 βiM
i then the following condition are

equivalent:

1. Fix(M) ̸= ∅ .
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2. Fix(Mβ) ̸= ∅ there exist some v ∈ V whose M-orbit is bounded and belongs

to Fix(Mβ).

Proof. For proof see [13].

Corollary 2.5.3. [13] Let ℶ be a topological vector space and Y be the convex subset

of ℶ M be a mapping from Y to Y , β = (β1, β2, ..., βn) ∈ Rn where β is the multi

index and Mβ =
∑n

j=1 βjM
j. If M and Mβ commute then Fix(M) = Fix(Mβ).

Proof. As we know that every fixed point of the mapping M is the fixed point of

Mβ here we have to show that for any fix point of Mβ is the fix point of M . Let

y ∈ Fix(Mβ) then for every n ∈ N ,

Mβ(M
ny) = Mn(Mβy) = Mny.

This shows that the M orbit of y is hold in Fix(Mβ) and this implies that y ∈
Fix(M).

Definition 2.5.4. Frechet spaces are the special topological vector space and the

generalization of Banach spaces are complete with respect to a metric induced by

the norm. All Hilbert and Banach spaces are Frechet spaces. A Frechet space is a

complete locally convex sapce over a field R or C.

Theorem 2.5.3. [13] Let F be the Frechet space and Y be the convex subset of

F and M be the defined mapping from Y to Y . The following two conditions are

equivalent:

1. When mappings are affine nonexpansive then Y has fixed point property.

2. If the mappings are affine β−mean nonexpansive then Y has fixed point prop-

erty for every multi-index β.
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Proof. Case 1 is tirvial when 1 implies 2 because every nonexpansive mapping is

β-mean nonexpansive. Now we have to show that 2 impies 1 for this assume that Y

has fix point property for β-mean nonexpansive and Mβ be a β-mean nonexpansive

mapping from Y to Y and β = (β1, β2, ..., βn) be the multi index for Mβ and M is

nonexpansive mapping from Y to Y . By assumption we know that Fix(Mβ) ̸= ∅
so y ∈ Fix(Mβ). As the mapping are affine so by affinity implies that the mapping

M and Mβ commute. By Corollary 2.5.2 y ∈ Fix(M) = Fix(Mβ).

2.6 Certain Results for β = (β1, β2)

Goebel and Japon Pineda [15] studied the further class of (β, q)-nonexpansive maps.

A mapping M : U → U is called (β, q)-nonexpansive if, for some β = (β1, β2, ..., βn)

with
∑n

k=1 βk = 1 , βk ≥ 0 for all k, β1, βn > 0, and for some q ∈ [1,∞),

n∑
k=1

βk∥Mkξ1 −Mkξ2∥q ≤ ∥ξ1 − ξ2∥q, for all ξ1, ξ2 ∈ U. (2.7)

For simplicity, we generally discuss the case when n = 2. That is, M : U → U is

((β1, β2), q)- nonexpansive if for some q ∈ [1,∞), we have

β1∥Mξ1 −Mξ2∥q + β2∥M2ξ1 −M2ξ2∥q ≤ ∥ξ1 − ξ2∥q. (2.8)

∀ ξ1, ξ2 ∈ U When q = 1, then M is a (β1, β2)-nonexpansive. If the multi-index β

is not specified then the mapping M is mean nonexpansive mapping. It is simple

to verify that each and every one of them is correct (β, q)-nonexpansive map for

q > 1 is also β-nonexpansive, but the converse is true in general, there is the

mapping which is β-nonexpansive that is not (β, q)-nonexpansive for any q > 1

(see [25] for details). It is also easy to see that, by the triangle inequality the

mapping Mβ := β1M + β2M
2 is nonexpansive if M is (β1, β2)-nonexpansive. As

noted in [15], however, the nonexpansiveness of Mβ is significantly weaker than

the nonexpansiveness of M . For example, Mβ being nonexpansive does not even
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guarantee continuity of M . When M is mean nonexpansive, Goebel and Japon

Pineda [15] (and later Piasecki [25], Theorems 8.1 and 8.2) were able to use the

nonexpansiveness of Mβ to prove some interesting results about M , as sum up in a

following theorem.

Theorem 2.6.1. [25] Let S be the compact and convex subset of the Banach space

ℵ and M : S → S is ((β1, β2), q)-nonexpansive for some q ≥ 1. Then M has a

approximate fixed point sequence, provided that βq
2 ≤ β1 (note that for q = 1, this

inequality reduces to β1 ≥ 1
2
). Furthermore, if (B has a F.P.P for the nonexpansive

mapping, then M has a fixed point if βq
2 ≤ β1.

If Mβ = β1M + β2M
2, and so we can write Mβ = (β1I + β2M) ◦ M , here

I is a identity mapping. Here we will discuss properties of a mapping given by

mβ := M ◦ (β1I +β2M). This clearly implies that if M is affine then (α1I +α2M) ◦
M = M ◦ (α1I + α2M).

Definition 2.6.1. A sequence b = (bn) of complex numbers (or more generally,

elements of a Banach space) is called summable if,

N = sup

{∑
n∈E

|bn| : S is finite set

}
< ∞. (2.9)

All summable sequences form a vector space, and N is a norm in this vector space.

This vector space is complete, and it is called l1.

For each summable sequence, the sequence of its partial sums (sk),

sk =
∞∑
n=0

bn , k = 0, 1, 2, ...

This is the Cauchy sequence and every Cauchy is convergent, so it has a limit. This

limit is called the sum of the series,
∞∑
n=0

bn. (2.10)

Such series (whose terms form a summable sequence) are also called absolutely con-

vergent.

21



Definition 2.6.2. The space of square-summable (complex or real) sequences is the

Banach space w.r.t the norm,

∥y∥ = (
∑
j≥1

|yj|2)
1
2 . (2.11)

Definition 2.6.3. A normed vector space is uniformly convex space if, for every

ϵ ∈ (0, 2] there exist a some δ > 0 such that for any two vectors ∥ξ∥ = 1 and

∥ζ∥ = 1, the condition ∥ξ − ζ∥ ≥ ϵ implies that,∥∥∥∥ξ + ζ

2

∥∥∥∥ ≤ 1− δ.

Definition 2.6.4. A Banach space ℵ is said to satisfy Opial condition if for any

sequence ξn in ℵ such that ξn → ξ0 (weakly) it happens that for all ξ ∈ ℵ, ζ ̸= ξ0,

limn→∞inf∥ξn − ξ0∥ < limn→∞inf∥ξn − ζ∥. (2.12)

2.7 Demiclosedness Principle

Brouder’s demiclosedness principle [4] is the important result for the nonexpansive

mappings. Which states that let Y be the compact and convex subset of the uni-

formly convex Banach space ℵ and M is the nonexpansive mapping from Y to ℵ.

Then I − T is demiclosed for each ξ ∈ ℵ that is for any sequence ξn ∈ Y and ξn

converge weakly to ξ and (I − T )ξn → ζ this implies that (I − T )ξ = ζ. This

principle has the key role for the study of asymptotic behaviour of nonexpansive

mapping.

Theorem 2.7.1. [12] Let U be the compact and convex subset of the Banach space

ℵ and M be the (β1, β2)-nonexpansive mapping from U to U then un and vn are the

sequences in U such that,

∥M(β1un + β2vn)− un∥ → 0 and ∥M2(β1un + β2vn)− vn∥ → 0. (2.13)
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Particularly,

∥Mun − vn∥ → 0 and ∥M(β1un + β2Mvn)− vn∥ → 0. (2.14)

Or un is a approximate fixed point sequence for mβ := M ◦ (β1I + β2M).

Theorem 2.7.2. [12] Let ℵ be the Banach space and U be the compact and convex

subset of the Banach space ℵ and M is the ((β1, β2), q)-nonexpansive for some q ≥ 1.

Then un and vn are the sequences satisfying (2.13) and (2.14) from the Theorem

2.7.1. and sequence un is the approximate fixed point sequence for mβ := M ◦ (β1I+

β2M).

Corollary 2.7.1. Let U be the compact and convex subset of the Banach space ℵ
and M : U → U is ((β1, β2), q)-nonexpansive. Then Mβ has the approximate fixed

point sequence wn, where wn is defined as,

wn := β1un + β2Mun (2.15)

From the Theorem 2.7.2 wn is a approximat fixed point for mβ := M ◦ (β1I +β2M).

Corollary 2.7.2. [12] Let U be the compact convex subset of the Banach space ℵ,

if M is ((β1, β2), q)-nonexpansive mapping from U to U and (U2, ∥.∥β,q) admits a

F.P.P for nonexpansive mapping then ∃ u, v ∈ U such that,

M(β1u+ β2v) = u and M2(β1u+ β2v) = v (2.16)

In particular,

Mu = v and M(β1u+ β2Mu) = v (2.17)

⇒ mβ has the fixed point.

Corollary 2.7.3. [12] Let U be the compact convex subset of the Banach space ℵ,

and M is (β1, β2)-nonexpansive mapping from U to U and suppose that ℵ has the

fixed point then Mβ = β1M + β2M
2 has one fixed point v and V is defined as,

v = β1u+ β2Mu (2.18)

for some u ∈ U .
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Now we discuss the results for (β, q)-nonexpansive mapping with the arbitrary

length of β.

Theorem 2.7.3. [12] Let ℵ be the Banach space and U be the convex and compact

subset of ℵ and M is (β, q)-nonexpansive mapping from U to U , for q ≥ 1 and

β = (β1, β2, ..., βn) each βi > 0. Then ∃ sequence ui
m ∈ U , for i = 1, 2, . . . , n

such that,

∥M(β1u
1
m + β2u

2
m + ...+ βnu

n
m)− u1

m∥ → 0

∥M2(β1u
1
m + β2u

2
m + ...+ βnu

n
m)− u2

m∥ → 0

.

.

.

∥Mn(β1u
1
m + β2u

2
m + ...+ βnu

n
m)− un

m∥ → 0

In particular,

∥M(β1u
1
m + β2Mu1

m + ...+ βnM
n−1u1

m)− u1
m∥ → 0.

Then mβ = M ◦(β1I+β2M+...+βnM
n−1) has the approximate fixed point sequence.

Theorem 2.7.4. [12] Let ℵ be a Banach space and U is a closed, bounded and convex

subset of ℵ and (ℵn, ∥.∥β,q) has the fixed point for the nonexpansive mapping. If M

is a (β, q)-nonexpansive mapping for q ≥ 1 and β = (β1, β2, ..., βn) each βi > 0 then
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∃ u1, u2, ..., un ∈ U such that

Mu = u1

M2u = u2

.

.

.

Mnu = un.

Where u = β1u1 + β2u2 + ...+ βnun . In particular, mβu1 = u1.

Corollary 2.7.4. [12] Let U be the closed, bounded and convex subset of the Banach

space ℵ and M is the (β, q)-nonexpansive mapping for q ≥ 1 and β = (β1, β2, ..., βn)

each βi > 0. Then Mβ has the approximate fixed point sequence wn and wn is defined

as,

wn := β1un + β2Mun + ...+ βnM
n−1un. (2.19)

By Theorem 2.7.3 wn is the approximate fixed point for mβ. Further, suppose that

for nonexpansive mapping (ℵn, ∥.∥β,q) has the F.P.P, then Mβ has a fixed point w

and w is defined as,

w := β1u+ β2Mu+ ...+ βnM
n−1u. (2.20)

By Theorem 2.7.4 u is the fixed point of mβ.
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Chapter 3

Generalization of
Mean-Nonexpansive Semigroup and
Fundametally Nonexpansive
Mapping

3.1 Mean Nonexpansive Semigroup

Definition 3.1.1. Let ℵ be the Banach space and U be the closed and convex subset

of ℵ has normal structure if every compact and convex subset E of U with |E| > 1

hold a point ξ such that sup{∥ξ − ζ∥ : ζ ∈ E} < δ(E).

Theorem 3.1.1. [19] Let U be the nonempty closed and convex subset of Banach

space ℵ, if U is the weakly compact and has normal structure, then U has a fixed

point property.

Remark 5. Every compact and convex U subset of a Banach space ℵ every time

has the normal structure.

Theorem 3.1.2. [10] Let ℵ be the Banach space and U the weakly compact and

convex subset of ℵ and M be the nonexpansive mapping from U to U such that each

weakly compact convex subset of U having F.P.P for mapping M if the sequence of

iterates of M is bounded, then a nonexpansive mapping M has a fixed point.
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Dotson and Mann [10] proved this theorem by taking ℵ as a uniformly convex.

Then Simeon Reich [26] prvoed the above theorem in two different ways,

1. By using iteration scheme of Mann [22].

2. By using nonlinear nonexpansive semigroup [4].

Theorem 3.1.3. [26] Let ℵ be the Banach space and S be the boundedly weakly

compact and convex subset of ℵ. If M is the nonexpansive mapping from S to S and

each bondedly weakly compact and convex subset of S hold a fixed point property for

the nonexpansive mapping M . If T is a bounded sequence for some y0 in S, then M

has the fixed point.

The above sequence T is defined as, let B = {bjk : j, k ∈ N} be a infinite matrix

which satisfy the following properties,

bjk ≥ 0 for all j, k ∈ N

bjk = 0 ifk > j
j∑

k=0

bjk = 1 for all j ∈ N

limj→∞bjk = 0 for all k ∈ N.

If y0 ∈ S, then the sequence T = {yj : j ∈ N} ⊂ S which is defined as

yj = bj0y0 +

j∑
k=1

bjkMyk−1, j ∈ N. (3.1)

Simeon Reich [26] used this above Mann [22] iteration scheme to prove Theorem

2.8.3. The proof of Theorem 2.8.3 shows the set of asymptotic centers of the sequence

T with respect to S which is remained unchanged under the nonexpansive mapping

M . This is a fixed point set for nonexpansive mapping M from S to S. If we take

the space is uniformly convex then the mapping M also shows the set of asymptotic
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centers.

Let y1 ∈ S is a arbitrary element then we can defined this iteration process,

yk+1 = M(uk), (3.2)

where

uk =
k∑

j=1

bjkyk.

Theorem 3.1.4. Let uk and yk are the sequences if one them is converges then the

other sequence is conveges to same point then the common limit of thsese sequences

is the fixed point of M .

Definition 3.1.2. Let U be the boundedly weakly compact and convex subset ∃ the

point ξ ∈ U such that limsupj→∞|ξ − ζj| = R < ∞ this point ξ is said to be the

asymptotic center of a sequence T with respect to U .

Simeon Reich [26] also proved the Theorem 2.8.3 by using nonlinear nonexpansive

semigroup that is given by Browder [4].

Definition 3.1.3. [26] Let E be the subset of Banach space ℵ. A function D :

[0,∞)× E → E is nonexpansive semigroup if satisfying following properties:

1. D(ξ1 + ξ2, y) = D(ξ1, D(ξ2, y)), for ξ1, ξ2 ≥ 0 and y ∈ E .

2. |D(ξ, y1)−D(ξ, y2)| ≤ |y1 − y2| for ξ ≥ 0 and y1, y2 ∈ E .

3. D(0 , y) = y for y ∈ E.

If for every y ∈ E there is T (y) such that |D(ξ, Y )| ≤ T (y) for all ξ ≥ 0 then

D is said to be a bounded semigroup for each y ∈ E and y0 is said to be the fixed

point if d(ξ, y0) = y0 for all ξ ≥ 0.

Theorem 3.1.5. [26] Let ℵ be the Banach space and U be the boundedly weakly

compact convex suabset of ℵ and for nonexpansive mapping each subset of U hold the
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common fixed point proprty. If D : [0,∞)× U → U is the nonexpansive semigroup,

if D is bounded then D has the fixed point.

Definition 3.1.4. Let ℵ a Banach space and U be the nonempty subset of ℵ define

a function K : [0,∞) × U → U mean-nonexpansive semigroup if the following

properties are satisfied:

β1, β2 ∈ (0, 1)

K(β1t1 + β2t2, ξ) = K(β1t1, K(β2t2, ξ))

for

t1, t2 ≥ 0, ξ ∈ U,

|K(βt, ξ1)−K(βt, ξ2)| ≤ |(ξ1 − ξ2)|,

β ∈ (0, 1) for t ≥ 0 and ξ1, ξ2 ∈ U ,

K(α(0), ξ) = ξ,

or

K(0, ξ) = ξ, for ξ ∈ Y.

A mean-nonexpansive semigroup K is called bounded if for each ξ in ℵ there is M(ξ)

such that,

|K(βt, ξ)| ≤ M(ξ),

for all t ≥ 0 and β ∈ (0, 1).

Theorem 3.1.6. Let ℵ be a Banach space and U be the bounded weekly compact

convex set of t ℵ. Suppose each weakly compact and convex subset of U hold the

common F.P.P for mean-nonexpansive mapping and defined a function K such that

K : [0 , ∞) × U → U is a mean-nonexpansive semigroup. If K is buonded,then K

has a fixed point.
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Proof. Let ξ0 is the fix point in U and ζ be the other point in U and T is finite

T = limt→∞sup|ζ −K(βt, ξ0)| < ∞. (3.3)

We defined an orbit which is bounded
[
K(βt , ξ0) : t ≥ 0, β ∈ (0 , 1)

]
,

let

F =

[
z ∈ U : limt→∞sup|z −K(βt , ξ0)| ≤ T

]
, (3.4)

where F ̸= Φ and F is a closed and convex subset of U .

If z ∈ F , t0 ≥ 0 , ϵ ≥ 0 and β1, β2 ∈ (0 , 1) and t is large enough, then we have

|K(β1t0 , z)−K(β2t , ξ0)|

= |K(β1t0 , z)−K(β1t0 , K(β2t− β1t0 , ξ0))|

≤ |z −K(β2t− β1t0 , ξ0)|

≤ T

< T + ϵ .

⇒ K(βt0, z) ∈ F .

Thus K is invariant under the commuting family of mean-nonexpansive mapping[
K(αt, •) : t ≥ 0, α ∈ (0, 1)

]
.

This completes the proof.

3.2 Fundamentally Nonexpansive Mapping

Definition 3.2.1. Let ℵ be a Banach space and U be the nonempyt subset of ℵ and

the mapping M from U to U is said to be Fundamentally nonexpansive if,

|M2ξ1 −Mξ2| ≤ |Mξ1 − ξ2| , (3.5)

for all ξ1, ξ2 ∈ U .
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Theorem 3.2.1. Let U be the nonempty subset of the Banach space ℵ and U is

the bounded weakly compact and convex subset of ℵ and suppose that each weakly

compact convex subset of U hold common F.P.P for fundamentally non-expansive

maping and a mapping M : U → U is fundamentally nonexpansive and a sequence

ζn be the bounded sequence in U for some ζ0 in U . Then M has a fixed point.

Proof. Let ζ ∈ U and the set

T = limt→∞sup|ζ − ζn|. (3.6)

T is finite because the sequence ζn is bounded. Suppose B = (bnk : n, k ∈ N) is a

infinite matrix satisfy the following properties

bnk ≥ 0 ∀ n, k ∈ N,

bnk = 0 if k > n,

n∑
k=0

bnk = 1 ∀ n ∈ N,

limn→∞bnk = 0 ∀ k ∈ N.

If ζ0 ∈ U then the sequence ζn can be defined as

ζn = bn0ζ0 +
∞∑
n=0

bnkMζk−1
, (3.7)

and n ∈ N .

This iteration is due to Mann [22] and T is finite because the sequence is bounded.

Let

K = [z ∈ U : limn→∞sup|z − ζn| ≤ T ], (3.8)
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K ̸= ϕ, K < ∞
⇒ K is the closed and convex subset of U .

Then by fundamentally non expansive for any ζ1, ζ2 ∈ Y

∥M2ζ1 −Mζ2∥ ≤ ∥Mζ1 − ζ2∥, (3.9)

for any z ∈ K

∥M2z −Mζn∥ ≤ ∥Mz − ζn∥, (3.10)

≤ ∥Mz − (bn0ζ0 +
n∑

k=1

bnk
Mζk−1)∥

≤ bn0|Mz − ζ0|+
n∑

k=1

bn−k|Mz −Mζk−1|

≤ bn0|Mz − ζ0|+
n∑

k=1

bnk
|z − ζk−1|

for any ϵ > 0 ∃ m(ϵ) ∈ N such that

|z − ζk| ≤ T, (3.11)

|z − ζk| ≤ T + ϵ,

then we get n > m+ 1

|M2z −Mζn| ≤ bn0|Mz − ζ0|+
m∑
k=1

bnk
|z − ζk−1|+

n∑
k=m+2

bnk
(T + ϵ) (3.12)

≤ bn0|Mz − ζ0|+
m∑
k=1

bnk
|z − ζk−1|+ T + ϵ

= h(n) + T + ϵ,

where limn→∞h(n) = 0

⇒ M2z ∈ K.
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Corollary 3.2.2. Let ℵ be the Banach space and U be the bounded weakly compact

and convex subset of ℵ and M is the mean-nonexpansive mapping from U to U then

the mapping M has an approximate fixed point sequence in U .

Mathematically, for any arbitrary sequence ζn ∈ U

limn→∞∥Mζn − ζn∥ = 0. (3.13)

Theorem 3.2.2. Let ℵ be the Banach space and U be the bounded weakly compact

and convex subset of ℵ and each weakly compact convex subset of U hold the F.P.P

and a mapping M from U to U for any ζ1, ζ2 ∈ U ,

∥Mζ1 −Mζ2∥ ≤ β1∥ζ1 − ζ2∥+ β2∥ζ1 −Mζ2∥ (3.14)

β1, β2 > 0 , β1 + β2 ≤ 1 each βi ∈ (0, 1).

Then the mapping M has the fixed point.

Proof. As the mapping M is a mean-nonexpansive mapping by using corollary

3.2.2 every mean-nonexpansive mapping has a approximate fixed point sequence

in bounded weakly compact convex subset of the Banach space. Let ζn be a approx-

imate fixed point sequence in U then

limn→∞∥Mζn − ζn∥ = 0 (3.15)

Since U is the weakly compact convex subset of a Banach space ℵ .

⇒ Every convergent sequence ζn of U has convergent subsequence ζnk
⊂ ζn.

As ζn is convergent in U then the subsequence ζnk
is weakly convergent to ζ0 ∈ U

now we have to show that ζ0 is a fixed point for mapping M for this ζ0 = Mζ0 we

will proof this by taking a contradiction ζ0 ̸= Mζ0,

then

limn→∞inf∥ζn − ζ0∥ < limn→∞inf∥ζn −Mζ0∥ (3.16)

= limn→∞inf∥Mζn −Mζ0∥,
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since M is a mean-nonexpansive mapping so by definition we have

limn→∞inf∥Mζn −Mζ0∥ ≤ limn→∞

[
β1∥ζn − ζ0∥+ β2∥ζn −Mζ0∥

]
< limn→∞inf

[
β1∥ζn − ζ0∥+ (1− β1)∥ζn −Mζ0∥

]

⇒ limn→∞inf∥ζn −Mζ0∥ ≤ limn→∞inf∥ζn − ζ0∥,

this is a contradiction to eq.(3.16)

Therefore ζ0 is the fixed point of mapping M .
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Chapter 4

Summary

This chapter finishes up the thesis by expressing and summarizing the inferences

and findings. The knowledge assists the reader to understand the essence of Fixed

Point Theorems. From the above mentioned results of nonexpansive mapping and

mean nonexpansive mapping, we see that in most of the cases we have studied Fixed

Points for different types of mapppings. The objective of following work is to find

the Fixed Point for Fundamentally Nonexpansive Mapping and Mean Nonexpansive

Semigroup.
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