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Abstract

In this work, we present a new Hermite-Hadamard inequality which is associated with
Hadamard-type integral with respect to another function. This fractional integral is
the generalization of fractional integral with respect to another function, Hadamard-type
fractional integral, Hadamard fractional integral, Tempered fractional integral, Katugam-
pola fractional integral and Riemann-Liouville fractional integral. The main significance
of the inequality is that it contains Hermite-Hadamard inequalities for many fractional
integrals as special cases. Generalized result of Hermite-Hadamard type inequality for

fractional integral with respect to another function is also established.
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Chapter 1

Basic Concepts

1.1 Introduction

Fractional calculus is a modern tool for researchers working in pure and applied mathe-
matics. The Fractional calculus journey goes back to seventeen century, when L’Hospital
raised a question to Leibniz that “what is the derivative of non-integer number”. Leibniz
response “an apparent paradox, from which one day useful consequences will be drawn,”.
First definition of fractional derivative was introduced by Lacroix in 1819. In 1823 Abel
was the first who solved the tautochrone problem by using arbitrary order derivative. In
1834 J. Liouville worked on complementary functions, gave a reasonable definition of a
fractional derivative and the point of existence of the right-sided and left-sided integrals
and derivatives. He has a great contributions in fractional calculus. In 1841 D. F. Gre-
gory gave the solution of heat equation. In 1846 P. Kelland assumed that the principal
of permanence state for algebra is valid for all symbolic operation.

In 1847 B. Riemann gave the definition of fractional integration in which he added com-
plementary function. In 1848 C. J. Hargreave generalized the Lebniz rule for arbitrary
order derivative. In 1892 J. Hadamard introduced the new concept of fractional inte-
grals and derivatives. Numerous mathematicians has contributed their work through out
the 19th and 20th century in the advancement of fractional calculus. Few of them are
W. Center(1850), H. R. Greer(1859), Z. Wastchenxo(1861), H. Holmgren(1865-67), A.
K. Grunwald(1867), A. V. Letnikov(1868-72). A. Cayley(1880), H. Laurent(1884), P.
A. Nekrassov(1888), A. Krug(1890), O. Heaviside(1893-99), G. Oltramare(1893), R. E.
Mortiz(1902), H. Weyl(1917), H. T. Davis(1936), H. Kober(1940), A. S. Peters(1961), G.
V. Welland, K. B. Oldham(1972), S. G. Samko, A. A. Kilbas, and O. I. Marichev(1993),



I. Podlubny(1999), N. Sudland(2000). For three centuries the theory of fractional deriva-
tive was only useful for mathematicians.

In literature there are different definitions of fractional operators. Among these, Riemann-
Liouville, Caputo and Hadamard are most commonly studied [33, 10, 22]. Fractional
calculus has wide applications in all fields of engineering and science [33, 35, 37, 42] such
as electromagnetism, viscoelasticity, hydraulics, electromagnetic, biological population
models [28, 30], optics, and signals processing. Fractional calculus is used to model the
physical and engineering process and they are described by fractional differential equa-
tions. Omne of the recent and famous application of fractional calculus is describing the

remembrance and ancestry properties of various materials and processes.

1.2 Some special functions of fractional calculus

In the first chapter we provide basic concept for the readers. We state fundamental theo-
rem of calculus, definition of gamma function, beta function, Riemann-Liouville fractional
integral and fractional derivative, Caputo fractional derivative, Hadamard fractional in-

tegral, Hadamard-type fractional integral and some of their basic properties.

1.2.1 Gamma function

Euler in 1729 discovered the gamma function. The gamma function plays an important
role in fractional calculus. Gamma function is the generalization of factorial function to

real and complex number argument.
Definition 1.2.1. [10] The function I' : (0,00) — R is defined as
INw) = /00 s e ds, w >0,
0
is called Euler’s gamma function.
Properties Following are some very common properties of gamma function.
(a) MNw+1) = wl(w);
(b) I'(3) = v

(¢) T'(w+ 1) = w!, if w is non-negative integer.



Proof. (a) By definition of gamma function
Iw+1) = /OO sPe”*ds.
0
Integrating by parts
I'w+1) =s"e®| — /00 ws" e *ds = 0 + /00 ws" e *ds
0 0

:w/ s e ds = wl'(w).
0

1
2

1 o0 o _
r (—) :/ s%_le_sds :/ sTle_Sds.
2 0 0

2

(b) Here substituting, w = = in definition of gamma function and integrating, we have

We evaluate the integral by substitution method. Let s = u

1 & €_u2 & 2
I'li=]= 2 =2 -
(2) /0 N udu /O e “du
:2/ e dv.
0

1\\?> Sl P
(F (—)) = 4/ / e~ W) dudw.
2 o Jo

We use transformation of rectangular coordinate to polar coordinates u = rcosf, v =

rsinf, 0 < 0 < 7, dudv = Jdrdf where J is called the Jacobi matrix. Here in this case

J =r. Thus
1\ ER
(F (—)) :4/ / e " rdrdf
2 o Jo
T & —r2
=4 <§—O>/O e " rdr.

Now,

Let z = r?, dz = 2rdr, then

1) >
r <§) = 2%/0 e Fdz=m(e"® +¢e") =m.

Taking square root on both side



(c) Since I'(1) = 1, by part (a)

r2)=T(1+1)=10I(1)=1.

Similarly,
ra)y=r2+2) =21(2) =2

In general
Fw+1) = (w)l.

Extension of domain of gamma function
The functional equation

I(G+1) =iI0), (1.2.1)

can be used to extend definition from j > 0 to all real number except j # 0, —1,—2---
From (1.2.1) we have,

I'(j+1)

-

Right hand side is define for j +1 >0, 7 > —1, j # 0 where I'(j) is define for j > 0.
Now from (1.2.1)

[(j+1) =3I(5) or I(j) =

I(j+2) =G+ 1D))T0)
I'(j) zjg—ifi j#0,—1,-2.

In general, repeated application of above procedure leads us to

FG+n)=G+n-10G+n=2)---(G—1)jT0)

S G +n) o1
G G T

Thus domain of I'(j) is extended for all real number except j # 0,—1,—2---

In mathematics, Euler integral of first kind is also called beta function, which is closely

related to the gamma function and to the binomial co-efficient.

1.2.2 Beta function
Definition 1.2.2. [10] The beta function is defined as
1
B((, ) = / V(1 = 2) Nz, > 0.
0

4



1.2.3 Relation between beta and gamma functions

The relationship between gamma and beta functions can mathematically be expressed

P(QT ()
L(C+u)’

where B((, ut) is two variable function and I'(y) is function of one independent variable.

B(C,p) =

Theorem 1.2.3. If h(z1, 29) is continuous on R = [ay, as] X [by, by] then,

az bo ba a2z
/ /h(Zl, Z2)dA = / / h(Zl, ZQ)dZQle = / / h(zl, ZQ)ledZQ. (122)
R a1 b1 b1 Jay

The integrals are called iterated integral.

Mittag-Leffler function is a generalization of exponential function. The Mittag-Leffler

function for two variable is defined as

Definition 1.2.4. [33] Let «, 5 > 0, then Mittag-Leffler function be defined as

Z ,yER.
kiOFB—i—ozk

Lemma 1.2.5. (Leibniz rule)
Let h(y,t) be continuous and be continuous in the domain of the yt—plane that contains
the rectangular region R. a § y < b, tg <t <ty and limit of integration n(y) and &(y).

Then function, and having continuous derivative on a <y < b.

d €W 5 d77 W 9
4 h(y, & _ L h(y, t)dt.
ol IR R (VR e )

1.2.4 Spaces

Definition 1.2.6. The space C[c,d] is the collection of all continuous real valued functions

defined on [c,d], such that
h(@)|| = sup|h(z)], for all he Cled

or

d
[|h(2)|| = / |h(s)|ds, for all h € Cle,d).



Definition 1.2.7. The space L,[c,d] (1 £ p £ o0) is the set of Lebesgue Measurable
function on A ( A=[c,d] ) for which ||A||, < oo, where

()}, = (/Cd|h<s>|pds)é, 1 <p<oo

and

|[2]|oc = ess sup [h(y)].
c<y<d

Definition 1.2.8. [22] The space XP(k,l) (¢ € R) consists of those complex valued

Lebesgue measurable functions h on (k,[) for which ||h||xr < oo, with

1
L@\
1hllxe = | [ER@)I" S ), 1S p<oo
k

and

||h||xge = ess sup [y°|h(y)]].
k<y<l

In particular when ¢ = % the space X? is coincides with the L,(k,l) space: X% (k1) =

L,(k,1).

Definition 1.2.9. [10] The space A™[c,d] is the set of functions h for which there exists

a function g € L][c,d] almost everywhere such that

R (2) = A" (e) + /Zg(t)dt

defines the set of functions with absolutely continuous (n — 1) derivative.

1.3 Fractional integrals and derivatives

Integrals and derivatives play a significant role in mathematics. Integrals helps us either
to obtain the area under the graph or to find the function whose derivative is integrated.
Fractional integral can be determined by repeated integration. In contrast of previous

section, the following concept seems rather natural.

1.3.1 Properties of differential and integral operators

Lemma 1.3.1. [10] Let h : [k,l] — R be a continuous function, and H : [k,l]] — R be
defined as

Then, H is differentiable and H'(t) = h.



Remark 1.3.2. [10] Lemma (1.3.1) can also be read as
d t
DLA(t) = h(), where D = % and T.h(t) = / h(s)ds. (1.3.1)

Now we state composition properties of differential and integral operators as follows.

Repeated application of (1.3.1) gives
D*T2h(t) = D(DI.(Z.h(t))) = DL.h(t) = h(t). (1.3.2)
By using Eqn (1.3.2) we can deduce that
D3T2h(t) = D(D*I?h(t)) = Dh(t),
D*Th(t) = D*T2(T.h(t)) = L.h(t).
Similarly we have
D3T2h(t) = D*(DL(Z: f(x))) = D*I2h(t) = D(DI.(Z.h(t))) = DI.h(t) = h(t). (1.3.3)
By using Eqn (1.3.3)
D'T2h(t) = D(D*Ih(t)) = Dh(t),
D3TAh(t) = D3T3 (T h(t)) = L.h(t).
In general

DPIEh(t) = D" *h(t), p 2 q

(1.3.4)
DPTIL(t) = T Ph(t), p < q.

From Remark (1.3.2) we can conclude that derivative is the left inverse of integral
when p = ¢. The composition of Integral with itself obey the law of exponent that is
IPTIh(t) = ZPT1h(t), Now we see the composition of integral Z.h(t f h(s)ds with

derivative D = d%. By Fundamental Theorem of Calculus we have

T.Dh(t / Dh(s)ds = h(t) — h(a).
Using above relation
Z.D*h( / D(Dh(s))ds = Dh(t) — I/ (a).
Similarly
Z.D?h( / D(D?h(s))ds = D*h(t) — h"(a).



I2Dh(t) = T.(Z.Dh(t)) = Z.h(t) — h(c)(z — c).
In general

IPDh(t) = IP9h(t) + extra term p > q, (135)
IPDh(t) = DPIh(t) + extra term p < q. -

Eqn (1.3.4) and Eqn (1.3.5) concide only when the extra term in Eqn (1.3.5) vanish this
means that h(c) = h'(c) = h"(c) = ... = 0.
1.3.2 Riemann-Liouville fractional integral and derivative

Riemann-Liouville fractional integral is obtained by the Cauchy iterated formula.

Lemma 1.3.3. [10, 22] Let h be Riemann integrable on [p,q|. Then, for p < z < q and
m € N we have

m _ 1 - m—1
I'h(z) = m/p (z — s)™ "h(s)ds.

Proof. Let us start from the simple integral
I,h(z) = / h(s)ds. (1.3.6)
p

Iterating integral (1.3.6), and by using Theorem (1.2.3)
z t1
I2h(z) = T,(L,h)z :/ / h(s)dt,dts
p Jp

p Jt

- / h(t)(= — t)dt.

The third iterate gives

Igh(z)zzp(zp(zph(z))):/z /t1 /tzh(t)dtdtgdtl.



By using Theorem (1.2.3)
t1 t1
Loh(z) = / h(t)dtydtdt,
¢

h(t)(ty — t)dtdt,

2 2

z (z —t)?

h(t) dt.

/
/
:/Z Bt — B)dtdt
/
/

2!

Repeating the above process upto m-times we have,

! ; / B (2 — "t

I;”h(z) = m

The last integral is called Cauchy iterated integral formula.

Zh(t) ((Z_t)Q — (t_t)Q) dt

(1.3.7)

]

Using relation between gamma function and factorial function, we can define fractional

integral. Replacing integer m with real v > 0 in Eqn (1.3.7). The integral (1.3.7) becomes

fractional integral.

Definition 1.3.4. [10, 22] For a function A : [p, ¢] — R, the Riemann-Liouville fractional

integral of order v > 0 is defined as

T'h(z) = r(lu) / (2= )7 Uh(s)ds.

Lemma 1.3.5. For h(y) = y* we have

vy L(C+1)
Iyh(y) = my .

Proof. By definition of Riemann-Liouville fractional integral

h(y) :ﬁ / "y — byt

L A AN
Ly :—/ Yy’ (1 — —> t~dt.
0 L(v) Jo Y

We evaluate the integral by substituting v = %

1 1
TV ¢ _ v—1 1 — v—1, ¢ Cd
Oy F(V) \/()\ Yy ( 'U) Yy voav

vACH1-1

Yy ! o) Nl du
e /0(1 V1ol du,

(1.3.8)



Since,
(1 o) oldu = B¢ + 1) and Blw,¢) = LT
/0(1 e = Bl +1) and B ) = s .
Therefore, we have
y B, (+1)
I'(v)
_P@)T(¢ + 1)y*e
T TWI(v+C¢+1)
F( ) v+¢
T T(w+(¢+1)

Iyy* =

]

Lemma (1.3.5) can be used to find fractional integrals of functions which can be expanded
by Maclaurin series. As an example, here we will find the fractional integral of sin z for

z e R.

Example 1.3.6. [10, 22| Find the fractional integral of sin z. First we expand sin z into

its maclaurin series

2 25 2T
81nz—z—§+g—ﬁ~~, (1.3.9)
B > (—1)az2a+!
=3 G (1.3.10)

q=0
where ¢ is non-negative integer. Using Eqn (1.3.8) and property of gamma function we
get

> —1)a7y 2%+

Vo (
IO SlHZ:ZW

q=0
(—1)T((2g +1) + 1)z
(2¢ + )IT(2q + 2+ v)
)QZQQ+1+V

(=
I'(2¢+2+v)

e

Il
=)

q

As,

Baap(—7%) i )"
v(—27) = _.
22 ~T(2+v+2)
Therefore



In the following theorem we state and prove the semi-group property of Riemann-

Liouville fractional integral

Theorem 1.3.7. [10, 22] Let v,{ > 0 and v € Ly[p,q|. Then
v C _ 14 C
LT (z) = T, (2).
If v € Clp,q] or v+ > q, then the identity holds everywhere on [p, q].

Proof.
Ly I5(z) / / )t — 8) (s dsdt .
Interchange the order of 1ntegrat10n

WAUATTIES / / (21 — 1) (ty — 5)S1ep(s)dtyds.

By substituting t; = s + z(z; — )

LyIs(z u)lr /

/ 21
:V);F/ / (21 = 8)" (1= 2)" 127 (21 = 8)° (21 — 8)9(s)d2ds
“rorw ), L

—s5—2(21 —5))" Hs+ z2(z1 — 8) — 8) (21 — 8)(s)dzds

§) TN — 2)Y 2y (s)dzds

__ _ gt ] e
_F(V)F(C)/p (2 — s)"" 1/0(1 2)" 12 ) (s)dzds,
where B(v + () = fo — 2)?7 1267 Y)(s)dz. Therefore
vrcy . B [F e
%%W”‘nmnoA@ (s,
By using relation between beta and gamma functions
v _ F(”)P(C) o . v+(—
Ipzpw(z)—r@)r(owwofp SR
1

= le—s”%_l s)ds = T (2
~frg ) (s = T (e)

[]

Having completed the fundamental properties of Riemann-Liouville fractional integral,
we are going to introduce the notation D which will denote the fractional derivative of

a function of an arbitrary order of v > 0.

11



Definition 1.3.8. [10, 22] Let v € R, and p = [v]. The operator DY, is defined as

Do) =2z vt) = (5) (5 [ 0= 0 vt

is called Riemann-Liouville fractional differential operator of order v. In ordinary calculus

Riemann-Liouville fractional derivative is the most essential extension.

Example 1.3.9. [10, 22] We will find the Riemann-Liouville fractional derivative of
é(y) = (y — )¢, ¢ > —1 and v > 0. This can be done by using definition and evaluating

the resulting integral. By definition of Riemann-Liouville fractional derivative
Dl¢(y) = DL ¢(y) = DI (y — o).

From Eqn (1.3.8) we have

" g L(¢C+1) _ o)avC
D¢(y) =D F(C+q_y+1)(y ) )
T(C+1) -

q(y _ C)q—u+C.

T +q—v+1)
Case 1: If v — ( € N, the right hand side is the gth derivative of a classical polynomial

of degree ¢ — (v — () and so the expression vanishes that is

forallv >0,¢g€1,2---[v].

Case 2: If v — ( # N, here we generalize the integer-order derivative of a power function
Dy —c) =r(y—c"
Dy —c) =r(r—1)(y—o

Dy — ) = r(r — 1)(r - 2)(y — ¢

In general

- = a) oo
RGP

_(T—Q)!(y )

D%y—@rzfggii%ﬂy—d“? (13.12)



Equation (1.3.11) becomes

v _ T+ I'(+g—v+1) g—v+C—q
DC(y_COC*F(C+q—u+1)P(q+1—1/+C—q)(y_c) C
DY(y —a) = %(y —a)s". (1.3.13)

Example 1.3.10. Now we will find the fractional derivative of sin z.

First we expand sin z into its Maclaurin series:

23 5 7

o z z
smz-z—§+a—ﬁ---,
e (—1)2z20+1
N (2¢+ 1)1

q=0
where ¢ is non-negative integers. Using Eqn (1.3.11) and property of gamma function we
get
(~1)7Dg 2!
(2¢ +1)!

(—1)IDIZI™" z2at!

(2¢ + 1)!
(=) ((2q + 1) + 1) D9z~ (v=2a-1)

20+ 1)T(2¢+2-v+q)

Disinz =

M 10

q=0

NE

Il
o

q

Case 1: If v — 2¢ — 1 € N then

Dgsinz = 0.
Case 2: If v —2¢g — 1 ¢ N then using Eqn (1.3.12)

> (_1)q22q+1711

Disinz = _—.
o sin z ZF(2q+2—y)

q=0
As,
= (=2
Ey 2—u( 22) =
qz_; ['2—-v+2q)
Therefore -
(=22)"

13



Next we come to show the relationship between Riemann-Liouville fractional integral
with derivative and vice versa. Here we see that Riemann-Liouville fractional derivative
is the left inverse of Riemann-Liouville fractional integral. Of course, we cannot claim

that, it is the right inverse, because even it is not true in integer case.

Theorem 1.3.11. [10, 22] Let v > 0. Then for every h € Li|a, b]
DI h(y) = h(y)

holds almost everywhere.

Proof. By definition of Riemann-Liouville fractional derivative, semi group property of

Riemann-Liouville fractional integral and by (1.3.4)

DyIyh(y) =D™I;" "I h(y) = DI " h(y)
=D"L;h(y) = h(y).

[
Theorem 1.3.12. [33] Assume that ;1 >0, m = [u] and h € A™[a,b]. Then
IEDER(y DI IRy a—
Z = F(N j+1)
Proof. By definition of Riemann-Liouville fractional integral
1 Y
TFD h(y) = —/ y — )" "DER(t)dt, 1.3.14
() o /. (y—1) (t) ( )

and

d 1 ! HH b Yy — i
d_y(m / (y—1) Dah(t)dt> - 50 / (y— " IDER(B)AL (13.15)

Equation (1.3.15) is a consequence of Leibniz’s Rule. Let us consider the left hand side

of (1.3.15)

% (ﬁ /ay(y _ t)“Dgh(t)dt)
1 d

TS TL AL Ol
S0 O POl @)+ s [ = 0 DER (e
“FTT ay<y P
0 | =t

14



On the other hand, by definition of Riemann-Liouville fractional derivative, repeatedly

integrating and by Theorem (1.3.7) we have

1 ! KM _ 1 ! _ PRk Tk—p
m/ (y—1) Dah(t)dt_F(MJrl)/a (y — FDTE R (1) dt
1 Y dr -
=T ) W T
Now we evaluate this by iterative method. Let k =1
1 Y d_,_ "
m/a(y )dtIa h(t)dt
— 1 pgl—p H ! _ A\p—lgl—p
FT b T O+ >/ BT di
1 Hl—p 1 # 171—p
EEES A w/ Fa o
For k =2
1 Y d> i
m/a (y—t)" FZ h(t)dt
L d.d_,,
o | W0z
B 1 d_o_ i Y 14 Y B L d_ o i
o 0] i [0 gz
1 d_ o, 1 Y 14y
T TR s [ = G
- T~ T + [ 0 T ),
+—%ii§¥/w(y-ty“azj—“hajdt
1 d_o_ u 1 p—17r2—
:—m(y— )%Ia h(t)la m(y—a) Zy h(t)]a
+—fiﬁ%jij%/z(y——ty“azf—#h@)dt
. 272 B d"7 " a(y_awfjﬂ
oo | T JZIWI@ L
In general
1 Y #dk k—p — 1 ! _ f\H—kTk—p
m/@ (y—1t) d—ykza h<t>dt_F(u—k+1)/a(y I f(t)dt
" k—p (y —a)—+!
_gzldt’“ a h(t)|aF<u—j+2)
ek gk |a(y—a)ufj+1

T(p—3j+2)
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| ' & gi Ty U=
_ y—t ;7 "h(t 7z, o .
Mt J, W D gt M Z Rl
(1.3.16)
Combing (1.3.16) and (1.3.15) we obtain
1 /y -1 1 (y —a)™
— y—t)"DER(t)dt —I a :
IN0D) a( ) Q Zl |F(/,L—J+1)
By Lemma (1.3.1)
— " (y —a)*
I¢Dih h(t) — T "h(t)|a
) =) = 3 G T Ol =y
—~ d*- (y —a)’
=h(t) — Th-w a
=
m
An important particular case of Theorem (1.3.12) is for 0 < p < 1 then,
— )1
TeDih(y) = h(y) — i n(o), L (13.17)
()
Above mentioned theorem is a particular case of more general property
e e (i (y —a)"™
TFDSh(y) = TFDSh(y ZD W) ly=apr— 1 (1.3.18)

(h=j+1)
Having established the relation between Riemann-Liouville fractional integral with deriva-

tive, now we discuss the composition of Riemann-Liouville fractional derivative with itself.

Theorem 1.3.13. [10, 22] Let m — 1 <v<m andn—1<<n. Then

_ v—j
DDSh(y) = D'+ h(y DS h(y)]ya L=V 1.3.19
( ) Z |y 1—\( —y _]) ( )
Proof. By definition of Riemann-Liouville fractional derivative
DIDShly) = D" Dh(y) = = 20" DShy)
By using (1.3.18) we obtain
dr (y—a)"
DYDSh 7" DSh(y DS h(y)|y=a
() dm a Z ’y F(1+m—u—])
v—j
_Du+< h(y DC ]h ﬂ'
Z A )

16



Theorem (1.3.13) is also true for fractional derivative of different orders

DSD¥h(y) = D"+ h(y ZD” Ih(y)]ye %

From relation given in Eqn (1.3.19) and (1.3.20) we conclude that in the general case, the

(1.3.20)

Riemann-Liouville fractional derivative operators do not commute but only with the one
exception that sum in right hand side of both equation vanish. In the following example

we show that the composition property do not hold for Riemann-Liouville derivative.

Example 1.3.14. For v = 1 ¢ = L and h(y) = y?, by using Eqn (1.3.11)
D%( )% - L%)Dm m+1 _ (%)F(m+2) it l—m 3\/_
0 I'(m+2) Y L(m+2)I'(m+1—m)
D)t = =G pmymer __ LOUMET) g S\f o OVE
1 13 3r 2 1 1.3 O
DsDQ 2 = 3 DQDs 5 — 3
T T TR
st3, 8 s T(3), a5 3T 2
Di yr =Dy = B (y): o = Y3,
' "I e

11 141 11 11
Clearly we can seen that D Dg h(y) # D§+2h(y) and also DD¢ # D¢D§.

1.3.3 Caputo derivative

Riemann-Liouville fractional derivative has a certain disadvantages when trying to model
the real world phenomena with fractional differential equations. Function need not to
be continuous when dealing with the Riemann-Liouville derivative. The derivative of
the constant term with Riemann-Liouville fractional derivative is not equal to zero. We
will now discuss the modified concept of fractional derivative, which is known as Caputo
derivative. It has more advantage then the first one. One of them is that the derivative

of a constant is zero.

Definition 1.3.15. [10, 22] Let ¥ > 0 and m = [v]. Then we define the operator (D! as
cDyh(y) =13 "D h(y), (1.3.21)

where D™h € L[a,b], is called Caputo derivative.

Lemma 1.3.16. Let v > 0 and m = [v]|. Assume that h is such that both D, , DY exist.
Then

eDyh(y) = Dih(y) (1.3.22)

17



holds if and only if h has k fold zero at a that is
DFh(y) =0, for k=0,1,2---m — 1.
Example 1.3.17. [10] We can find the Caputo derivative of h(y) = ¢ as under

Vs = M v
DYy = NOESEEY +e, (1.3.23)

By definition of the Caputo fractional derivative

1 )
cDYh(y) = T "D h(y) = ) / (y — )" =1 DM gy, (1.3.24)
0

L'(m—v

Case 1: If ( < m, then D™y¢ = 0.

Case 2: If ( € N and m < (. Then we generalize the integer-order derivative of a power

function

Dy* = qy*"

D>yt = q(q — 1)y*>

Dyt =q(g—1)(q —2)y*°
In general

(¢ —p)!
@
e
D, qd F(Q+1) q—p
DY =t ¥

Equation (1.3.24) reduce to

1 Yy
D'h(y) =——— — )T IpmC .
cHy (y) F(m . l/) /0 (y )

T
T m(+1>r)<m >/ i-y) e

F(C + 1)ym71/ ! — 5 m—v—1 ZC_m p
F((—m—i—l)F(m—y)/o(l ) dz.
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Let z =1
Y

cDGh(y) =




Since ) (1= 2)" 7 567z = B(m —v.¢ = m + 1) = {pttens),
Thus

I+ 1ym™
r¢—v+1)"

Example 1.3.18. To find the Caputo derivative of siny, we proceed as follows.

Dyt =

First we expand siny into its Maclaurin series:

Sln — _y_3+y_5_y_7...

= (—1)ryt
(2q+ 1)

q=0

where ¢ is non-negative integers. Using Eqn (1.3.12) and property of gamma function we

get
. LN (ED)IDy
Dy siny =Z)*7Y
¢To BT =50 q:ZO (2¢ + 1))
_i( 1)IT((2g + 1) + DI "yt
g (2¢+DII'(2¢+2—m)
o0 ( 1) :Z‘m v 2q+1 m
_qzzo I'(2¢+2—m)
0 ( ) 2q+1—v
_qzzor(zqw—y)
As,
Eya
22 qz r2—v + 2q)
Thus
(—y*)"

D _ 14v
C OSlny y ZF2+2q—V)
— y1+VE2’2,V(—y2>.

In the following we discussed the composition of Caputo derivative with Riemann-Liouville

fractional integral and vice versa.

Theorem 1.3.19. [10, 22] If h is continuous and v > 0, then

¢DIYTVh(z) = h(z). (1.3.25)
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Proof. Let ¢ = ZVh(z), where D¥¢(a) = 0, then using Lemma (1.3.16) and Eqn (1.3.4)

we have

¢DYTVh(z) = ¢Dih(z) = Dih(z) = DML "h(z) = h(z2).

Theorem 1.3.20. [22] Assume that v > 0, m = [v] and h € A™(a,b), then

TV DV h( Z D’“ (z —a)*.

Proof. By using fundamental theorem of calculus and iterative method we obtain

I,Dh(z) / ijh( )z = h(z) — h(a)

T2D(2) =L,(Z,D(Dh(2)))

7, (/:d%l)h( )d)

=7.,Dh(z) — Z,Dh(a)

:/:jzh( )dz — Dh(a )/Zdz

=h(2) = h(a) — Dh(a)(z — a)
I,D°h(z) =L.(Z.(Z.D(D(Dh(2)))))

:Ia( —D2
=I’D*h(z) — I?D*h(a)

=7.,Dh(z) — I,Dh(a) — D*h(a)

=h(z) — h(a) — Dh(a)(z — a) — D*h(a)

In general

I"D™h(z) = h(z) — th(a)(—
By definition of Caputo derivative

¢D"h(z) =" "D"h(z).

(1.3.26)

(1.3.27)

Apply Z? on both sides of Eqn (1.3.27), and using semi group property of Riemann-

Liouville fractional integral we have
IleD"h(z) = IIT"D™h(z) = I"D™h(2).

20
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Use Eqn (1.3.28) into (1.3.26) we obtain

m—1 &
T0eD (=) = hiz) = Y th(a)%
k=0
Replacing n with real a we have
m—1 &
T¢eD h(z) = h(z) = Y th(a)%
k=0

In particular, if 0 < v < 1 and h(z) € Cla,b] then Z!¢D"h(z) = h(z) — h(a)

1.3.4 Hadamard fractional integral and derivative

In 1892 Hadamard introduced the new fractional integral which involves logarithmic
function. In this section we give the definition and some properties of Hadamard fractional
integral and derivatives. The integration by part formula for integer order Hadamard
calculus, is given by.

/ay uHDv% = uvl¥ — /ay UHDU%, where 4D = ydi;
Lemma 1.3.21. Let h be Riemann integrable on [k,l], then for k <y <1 we have,

Zh0) = s | (0s2) " )%

S

(1.3.29)

Proof. We start with the simple integral

mm#éﬂ@@

S

The second iterate of the integral is,

dsd
T2h(y) = Tu(Zih( / / ; %
1

We can simplify this integral by Theorem (1.2.3). Since h(s) is not a function of v, it

can be moved outside the inner integral, so
Y Ydy, ds
L.(@ny) = [ his) [T
k s Y1 S
Y ds
= [ hs)tog 2
k

:/:h( )1og(s)‘is.
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The third order integral is

Zih(y) Ik(Ik Ik )
dS dyy dys

53/1 Yo

Using the same procedure as above we can simplify this integral and up-to mth order as

Y dys ds d
T (Th(Teh(y))) Lo

Y2 S Y1

T (v (s
yl d d
:/ / 10gy2’y1 o
n
_// dsdy1
N s s
dy, ds
—/k h(s)/ log <—> yll .
1 [Y Y ds
=5 | 1) (1o 2) 1
1 [Y 2 ds
:§/k (s) (log ) -

Consequently, mth order integral is of the form

T h(y) :ﬁ /ky <10g %)m_lh(s)% - ﬁ/j <log %)m_lh(s)%.

Here we defined Hadamard fractional integral and some of its properties.

Definition 1.3.22. [22] Let 0 < ¢ < d < oo be a finite or infinite interval of a half-axis

R, . Then the left-sided integrals of fractional order p > 0 is defined as

WTh(y) = ﬁ / (1oaD)" h9 w0 (1.3.30)

the 4 Z" is called the Hadamard fractional integral.

Example 1.3.23. [22] Let h(y) = (log(¥))".
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Then by definition of Hadamard fractional integral

WZitto) =i [ (108 2)" h)

(os )" (067)"

ﬂ\
—_

() /

ﬁ/ (logy — log s)"~ <10gk>n%

ﬁ/ (logy —logk — (log s — log k))** <10g%>n%
oty [ ot o)

1 Y\ k1 log 2\ *7! s\" ds
-——— | (1 Y (1 )T
(u)/k (ng> ( log%) ng) s
logk
log ¥

o) =g [ (s ) 0=yt ) (e )

:(lolg”(%u)) /0 (1= 2)" " 2"dy.

Since B(u,n+1) = fol(l — y)* " ly"dy. Using the relationship between gamma and beta

=

We evaluate the integral by substituting z =

functions we obtain

I, (log%)nz (log )" T(wT(n+1) _ Tn+1) <logy>u+n

I(p) T(u+n+1) Tp+n+1)\ "k (1.3.31)

The Hadamard fractional integral satisfies the semi-group property

Theorem 1.3.24. [22] Let v, > 0,1 <p <00, 0 <k <l < o0 and c <0 then for
h e XP(k,l)
T f(y) = wI1 " F ().

Proof. By definition of Hadamard fractional integral

et ) s
e L ) w2

Interchange the order of integration

wIinZph(y) = m/jh(s)§/j <log %)” (log )C 1“?. (1.3.32)

23

wIinIih(y) =




The inner integral can be evaluated as

Yy v—1 ¢—1 y ¢
N og ) [ oy g (10 t)
/S (log t) (1og S) ; —/s (logy — logt) <10g S) ;

y ¢-1
:/ (logy —logs — (logt —log s)"~* (log f) dt
s s

t
Y y\ vl log £\ £\ dt
:/ (log —) 1— : log — —.
s s log ¥ s t

t
Let y = %, then

Y v—1 ¢—1 1 v+(—1
) t dt / Y\ -1 -1
log?) (log) =] (l0g?) 1—y)"L(y)*ld
/S (ogt (og S) 7= ), Uos (1—y)" " (y) dy
By using definition of beta function and the relationship between gamma and beta func-

/Sy <log %)Vl (10g é)cl% :% (10g %>u+(1‘

Equation (1.3.32) will be

tions we obtain

v L TOUW) [ g\t ds
WEHT) =G T+ 0) /k (o) T
1 y g\ v -1 ds
T(v+0) J, (log§> hs)~
=nZ} “h(y)

]

In order to introduce fractional differential operator in Hadamard sense, we proceed

as follows.

Remark 1.3.25.

d . d [*h(s)
7 (2) ) Tdt
_Mz)

d
Z@H(Z) =h(z)



1 DL, h(z) =h(z). (1.3.33)
Where 4D := zdiz. Then repeated application of Eqn (1.3.33) gives,
#D*I;h(2) = D(#DLa(Z.h(2)))
=4 DZ,h(z) = h(z)
wD*T2h(2) =4 D* (4 DL, (I2h(2)))
=—HD?*I2h(z)
=nD(yDZL,(Z.1(2)))
=4DI,h(z) = h(z).
In general
1 D"T'h(z) = h(z). (1.3.34)
Definition 1.3.26. [22] The left sided fractional derivative of order v > 0 on [a,b] is

defined as

D7 h(y) =«DL7 " h(y)
o dN\" 1 4 Y\ a1 dt
~(v5) ma [ (=)0

where ¢ — 1 < v <q.

Example 1.3.27. [33,22] If v, > 0 and 0 < k <[ < 0o, then

Dy} (log %)g = % (log %)C_V. (1.3.35)

Proof. By definition of Hadamard fractional derivative

14 m m—v HDm Y y m_l/—l dt
Dih(y) =«D"n Iy h(y) = m/k <log —> h(t)—

Y\ < B yNS D™ [V yymev-l £\ dt
D”(l —):Dm ImV(l —) :—/ (1 —) log— | —.
E\O8Y ) THE e U8 ) T im0y J, VB %) %

From (1.3.31) we have

y\© I'(c+1) Y™
D} (log=)| = D™ (log = ) 1.3.
’f(ogk;) Tim—v+ct)™ (Ogt> (1.3.36)
Case:1 If v — ¢ € N, then D™ (log %)m—(y—o =0forallv >0, me1,2-- [v]

25



Case:2 If v — ( ¢ N, we find

”D<bg%)q_%%wﬁg%>q—yQ(bg%)wli;—q(mg%)wl
@ (o) v (v (o)
=yq(q — 1) <log . ! =q(qg—1) (log —)q_2 ,

In general,

nr (log %)q =q(g—1)---(¢g=p—1) <log %)q_p

I'(g—p+1) k
Eqn (1.3.36) reduce to
. y\¢ FC+)(m—v+(¢+1) y\movte—m
Di <10gE) T T(m—v+(+DI(m—v+(—m+1) <logE)
(1.3.37)
_ F(C—|—1) (10 g)(—u
TC—v+) \ 8%,
[l

In the following we show that Dy is left inverse of 4 Z} and #Z} is not the left inverse
of D},

Lemma 1.3.28. [22] Let v >0, if 0 <k <l < oo and 1 < p < oo then, for h € LP(k,I)
DinTih(y) = h(y)-

Proof. Now, by using definition of Hadamard fractional derivative, semi-group property

of Hadamard fractional integral and Eqn (1.3.33), we get

DinZih(y) =uD"w I "1 Zyh(y)
=u D" WLy I W(y)

=uD"n I h(y) = h(y).
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Theorem 1.3.29. [22] Let v, > 0 with ( > v, 0 < k <1 < oo, then for h € LP[k,l]
HIih(y) = Ty " h(y).
Proof. By using definition of Hadamard fractional derivative, semi-group property of
Hadamard fractional integral and Eqn (1.3.34), we obtain
DinZih(y) =uD"w Iy wIih(y)
=4 D" Iy Iy, h(y)

ZHIi_Vh(y)-
]
Theorem 1.3.30. [22] Assume that ;> 0, m = [u| and h € A™[a, D]
n Dn—qzn—uh(z)lzza 2\ B—q
TFDIR(2) = h(z) — a_“o (1 —> .
H*=aa (Z) (Z) qzzl F(///_q+1) Oga
Proof. By definition of Hadamard fractional integral
1 z A ds
TDR(z) = —— (1 —> Dih(s) . 1.3.
WZDin(:) = g [ (1082)" DER) T (1339

For (1.3.38), first we prove,

+D {ﬁ /a (b%)“Dgh@)%} - ﬁ/ <log E)M_ngh(s)%. (1.3.39)

We solve the Eqn (1.3.39) by using Leibniz rule. Let us consider the left hand side of
Eqn (1.3.39)

[ (0g2)" Hf(s)] i( . (log 2)" f(s)] d(a)
Flp+1) * s - dz Fp+1) “ s . dz
1 ? z i ds
F(,u—i—l)/a nD (log—> D! h(s)—

27



On the other hand, by definition of Hadamard fractional derivative, repeated integration

we have

1 z ds 1 z Z\H ds
- 1 - - ol m_m—p i
I(p+1) /a <log ) Dih(s)=5 s D(p+1) /a <log s) DG HI™ " h(s) s

For m = 1, integration by parts formula give,

1 ? 2\* d ds
- - log = — LTI rR ()22
F(u—i—l)/a <0g3> Tds e (5) s

Similarly for m = 2
1 z ds
| (logZ) DT (s
F(u+1)/a <Og ()s
1

1 Z\H 21 ; 1 N AL > 1 ds
- (mgs) (W DT W)z + / (1082)" " (uDwZE ()

T(p+1) () s
= (o5 2) AT he) — s (108 2) T2 h(s)
—1 [ 2\F2 uhs
g | (e )z

—qt1
1 z 2\P2 _ h(s) 2 _ _ (log )" -

R 1 _> Ti-n 22 e D4, Tk, A %a)
gy J, (o) s S e

In general

o | (o 2) )

ey ) (o Z) ) d—Z Dzl

F(p—q+1 I(p—q+2)
1 (g ) e (log )" ™"
- - log — Iq >z d — D4 Iq h _—
F(u—q+1)/a <Og8> % ’ ;H ($)la I(p—q+2)
logz)M_Q‘i‘l
I“ q+1Iq “h pm—a Iq Eh(s (a—

q=1
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iy | (062) D0 =z = 3o e

I'(p+ et

Combing (1.3.40) and (1.3.39) and by using (1.3.34), we have

(log Z)n—atl 1 [ Z\H-1 ds
1D (uZh(z D" T R log — DF h(s)—
(n ZH WTE ot = [ (10a2)" D)

e T (IOg)uq_l : 2\ ds
ZHD W hlage _P(u)/a <log;> D h(s)=.

Equation (1.3.38) becomes

(log )“ !
IZEDYh(z E D"y LT h(s)|las—"—.
" " (s)la C(p—q+1)

Having established the composition relations of Hadamard fractional integral with deriva-
tive and vice versa, now we will investigate the semi-group property of Hadamard frac-

tional derivatives.

Theorem 1.3.31. [22] Let m — 1 <v<m andn—1<{ <n. Then

(y—a) "t

D' DSh(y) = DUFh(y ZDC Fh(y) |y SNt

(1.3.42)

Proof. By definition of Hadamard fractlonal derivative and using Eqn (1.3.41) we find,
D, D;h(y) =xD"+Z; "Dih(y) = % D™ [wZy " Dgh(y)]

(log &)™ —~*
l+m—v—k)

_ m m—rvy¢ (—k
= D" |5 Z7 DS h(y ZD h(y |“r(

# D" (log 2)m v+

D!D$h(y) = 4 D" "DSh(y DS Fh(y oT : 1.3.43
a a(y) H Z ’y (1—|—m—1/—k) ( )
Using definition of Hadamard fractional derlvatlve we have
¥ D" u Iy "Dgh(y) = DyDgh(y) = Dy
The mth integer order derivative is
Yy T'(m—v—k+1) I‘(m — - k) Y m—v—k—m
D" (10g %) = (10g2) .
" R 'm—v—k—m+1) i
Now Eqn (1.3.43) becomes,
- D™ (log Z)m—v—F
D'DSA(y) = DY Fh(y) — S DS A(2)] gm0 = .
O
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1.3.5 The fractional integral with respect to another function

. In 1993 Samko et al. [39] defined the fractional integral which is known as Riemann-

Liouville fractional integral with respect to a function.

Definition 1.3.32. [39] Let 0 < ¢ < d < oo and v > 0. The left and right sided fractional

integrals with respect to another function v are defined as

TE0G) = oy [ D) =) v s 2> 0
d
TEHE) = gy [ 006) = () ) S = <

1.3.6 Katugampola fractional integral

Fractional operators with respect to 2” was defined by Erdelyi in 1964. This operator

was recently rediscovered by Katugampola [23] and studied by many researchers.

Definition 1.3.33. [23] Let [c,d] C R. Then the so called left-and right-sided Katugam-

pola fractional integrals of order v > 0 are defined as

y 1 Egp— Py
Tl f(z) = F(V)/c ( p”1> s f(s)ds; ¢ < z < d,

and

d e
I f(2) = F(ly) / (” ;lipl) 15”’1f(s)d8; c<z<d.

1.3.7 Hadamard-type fractional integral
In 2001 Kilbas [21] introduced the Hadamard-type fractional integral.

Definition 1.3.34. [21] Let 0 < @ < b < oo and v > 0. The left and right-sided

Hadamard-type fractional integrals are defined as

L) = i [ () (0 (2) 0D k<<

et = by [ ) s () 1 <<t

and
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1.3.8 Tempered fractional integral

In 2015 Sabzikar et al. [41] introduced the tempered fractional integral.

Definition 1.3.35. [41] Let z € (a,b) and ¢ € C. The right and left sided tempered

fractional integral of order v > 0 are defined as

v,C _ 1
Ia+ (Z) - F(l/
and
Tf() = o
b- 12 = ['(v

—)/ (z— )" te =) f(s)ds; a < z < b,

] / (s — 2)" te==2) f(s)ds; a < z < b.

1.3.9 The Hadamard-type fractional integral with respect to

another function

Fahad et al. [14] introduced the relation between Hadamard-type fractional calculus and

Tempered fractional calculus, then he defined the fractional integral which cover both

Tempered and Hadamard-type fractional calculus.

Definition 1.3.36. [14] Let v > 0 and ¢ € C where z € [a,b] and ¢ € C'[a,b] where
a < b. ¢ is positive increasing function such that ¢'(z) # 0 for all z € [a,b]. The left and

right-sided Hadamard-type fractional integral of h with respect to ¢ are defined as

) = .

i/

I f(z) =

Remark 1.3.37. [14]

50 (e
3) (e

o))" ¢/(5)
¢(3)) o05) h(s)ds. (1.3.44)
o(s)\" ¢/(s)
gb(z)) o05) h(s)ds. (1.3.45)

e For ¢ =0 and ¢(z) = e*, we get the original Riemann-Liouville fractional integrals

of order v > 0.
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For ¢(z) = z we obtain the Hadamard-type fractional integrals.
For ¢ = 0 and ¢(z) = z, we obtain the classical Hadamard fractional integrals.
2P
For ¢ = 0 and ¢(z) = e » , we obtain the so-called Katugampola fractional integral.

For ¢(z) = e* we recover the tempered fractional integrals.



e For c =0, ¢(z) = e¥®) get the Riemann-Liouville fractional integral of a function

with respect to another function .

e -1
b= L[ *{’3‘) (ﬂ) ¢
fa ”’J‘r{nnfu (q:m e\ am)] o M

. —“I _""\.
diz) = eV ) dlz)=1
Tempered fractional c=10, $iz) = 1 Hadamard-
integral with respect to a type
function Katugampola fractional fractional
integral integral
\ y, oy -

c=o Piz)=z
Riemann-Liouville Tempered
fractional integral fractional integral

tim 13#h(s) = I$"hz) |

Hadamard fractional e=0
imtegral
Hadamard
fractional

integral

with respect to a
function

iy I2Fhiz) = 12, hiz)

Rizmann-Livuville
fractional integral

c=0

Rizmann-Lisuville
fractional integral

5

izl =z

Wizl = leglz)

'E'":I“' Hadamard fractional
e imtegral
fractional e

\ intepral )
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Theorem 1.3.38. [14] Let p,q > 0 and ¢ € C'[p,q]. Then
V?qs 7¢ — v 7¢
LTy (y) = T 0(y).

Example 1.3.39. We will find the Hadamard-type fractional integral with respect to 1
of the function h(y) = ¥ (y) ° <1Og(zgzg))n.

Proof. By definition of Hadamard fractional integral

znn =i | () (o) Siopon
vy / (10g w<y>)”‘1 ¥(s) (1og vly) ) Is

I'(v) ¥(s) ¥(s) U(a)
—cC Yy / n
0 [ orwty) ~ towvta) - (og(s) ~ o vl S (10g 10) s
v—1

) ( w<y>)”‘1  log 13 ( w<s>>”@

T /a log “la) 1 log% log w(a) S

We evaluate the integral by substituting method. Let z = T)g%, then
8 3 (a)

(o (e 8)) 7 () () v
v (o)™
N ['(v) 0

— )"z

Since B(v,n+1) = fol(l — y)""Ly"dy. Using the relationship between gamma and beta

functions we obtain

79 (wy)_c (10 w<y>)") _ »(y) " (log %)”nr(y)r(m 1) T+ 1)1)¢(y)_c <log w<y>)”ﬂ

& 0(a) T(v) Twin+tl) Tw+nt

(1.3.46)
O
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Chapter 2

Classical Hermite-Hadamard

inequality

Inequalities were demonstrated as most significant tools for the researcher in different
fields of mathematics. Inequalities help us to analyzed the singularity and other proper-
ties of fractional differential equations. Integral inequalities have a fundamental role in
both theoretical and applied mathematics. From the past few decade integral inequalities
gain the attention of the researcher. Convexity plays an important role in establishing
the inequalities. In 1881 C. Hermite and J. Hadamard discovered the classical Hermite-
Hadamard inequality for convex function.

Various interesting results have been revealed by utilizing the concept of classical convex-
ity. Where as Hermite-Hadamard inequality has strike the eye of many researchers. From
classical Hermite-Hadamard inequality we can estimate the lower and upper integral av-
erage of any convex function. Numerous researcher established the Hermite-Hadamard
inequality for different types of convex function some of them are Deng and Wang [11]
for (a,m)-logarithmically convex functions, and Liao et al. [24, 25] for once and twice
differentiable geometric-arithmetically s-convex functions.

M. A. Noor, G. Cristescu and M. U. Awan [29] developed the Hermite-Hadamard inequal-
ities for twice differentiable s-convex functions. Du et al. [12] discussed some properties of
Riemann-Liouville fractional Hermite-Hadamard inequalities for the generalized («, m)-
preinvex function. Considerable amount of work on Hermite-Hadamard inequality is also
refer to Hwang, Y. Yeh, L. Tseng [7], Mehmet Zeki Sarikaya, Erhan Set and Hatice Yaldiz,
Nagihan Basak [40], Ohud Almutairi, Adem Kiliman [3], M. Z. Sarikaya, H. Budak, F.
Usta [38], Arran Fernandez, Pshtiwan Mohammed [15] and Hwang, Y. Yeh, L. Tseng [7].
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2.1 Hermite-Hadamard inequality

Convex function Convex functions are well know functions in literature. The theories
of convex functions and inequalities are closely interconnected. In past few decades it has
been a subject of extensive research. Convex function is defined as follow: The function

h is said to be convex on some interval I, if z;, zo € I such that z; < 2.
h((1 —u)zy +uzy) < (1 —u)h(z1) + uh(z),

for every u € [0, 1].

Above definition holds for concave function in reverse direction.

Theorem 2.1.1. [27] Let h be such that h" > 0 on (k,l) and let yo € (k,1). Then for
each y € (k1)
h(y) = h(yo) + 7' (y0)(y — %o)

Proof. Let yo € (k,l) by Mean value theorem for second order derivative there exit ¢

between y and yo such that,

h(y) = h(yo) + 1’ (o) (y — o) + h"(C)M.

Since h” > 0 on (k,l) and c is between y and y, then h”(c) > 0, we have

h(y) > hyo) + 1 (o) (y — vo)-

Classical Hermite-Hadamard inequality for a convex function is defined as

Theorem 2.1.2. [27] Let h(z) be defined on [k,l] with h" > 0. Then

h (#) (I—k) < /k h(2)dz < M(z ). (2.1.1)

Proof. First we prove the right hand side of inequality. For this, we let z = (1 —u)k + ul,

u € [0,1] and then by using definition of convex function. we obtain,
! 1 1
/ h(z)dz = (I — k)/ h((1 —w)k + ul)du <(I — k:)/ (1 —w)h(k) 4+ uh(l)dt
k 0 0

(I — k)h(k) /01<1 —w)du+ () /01 udu

h(k) + h(1)

(1= )=
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/l h(z)dz < w(l _R). (2.1.2)

For the left hand side inequality, the graph of convex function A is on or above the tangent

line by Theorem (2.1.1). So its graph lies above the tangent line at (£, h(£H)). That

w2 (5) e (51) (15

Integrating this with respect to z, we get

[z [on(tg ) () (-5
() [(-5)e
/kl h(2)dz > h (%) /kl dz > h (%) (I — k). (2.1.3)

Combining (2.1.2) and (2.1.3), we have

h (%) (k)< /k h(z)dz < M(z _ k).

is,

Since,

Then

]

Dragomir and Agrawal [9] use the right side of the classical Hermite-Hadamard inequality

to establish different inequalities.

Lemma 2.1.3. [9] Let h : I — R be a differentiable mapping on I, k,l € |a,b] with
k <l1. If b € L[k,l], then the following equality holds:

h(k) + h(l) 1

; S /k h(y)dy = % (1 —2s)"(sk + (1 — s)l)ds.

0

Theorem 2.1.4. [9] Let h : I — R be a differentiable mapping on I |, k,l € I with k <.
If V| 1 is convex on [k, 1], then the following inequality holds:

%/0 (1= 28)A/(sk + (1 — s)l)ds| < “"‘“)“h/g{)’*‘h/(l)'].

Theorem 2.1.5. [9] Let h: I — R be a differentiable mapping on I, k,l € I with k <,
and let ¢ > 1. If the mapping |h’|ff%1convex on |k, 1], then the following inequality holds:

‘h(k)+h(l)_ 1k/klh(y)dy‘§ ((l—k)

q—1
\h'<k>rq—1+rh'<w|w] ‘
2




2.1.1 Application of Classical Hermite-Hadamard inequality

Hermite-Hadamard inequality has a wide application in pure and applied mathematics. If
we apply HH-inequality For different convex function we can get Geometric, Logarithmic

and Arithmetic mean inequality.

Proposition 2.1.6. [31] Let x1,1, > 0 then

Y1 — 11 1+
N/ < < .
= Iny; —Ilnx; — 2

Proof. Let h(y;) = e¥* in Eqn (2.1.1) we have

! kol
ekzﬂ(l—k)g/ezdzge +€.
k

2
As x1,y1 > 0, we may let £k = Inz; and [ = Iny; then
Inz)+Inyg Iny: elnxl _|_6h’1y1

e 2 (Iny; —Inzy) < / efdz <

Inxzq

By simplifying this we get our desired result. [

The special means for arbitrary number that are also useful in proving new inequalities

using the above theorems are defined as

Definition 2.1.7.

A(w,n):w2n,w,n€R-
2
H(Wan):mawaHER—[O]-
i n
n—w
L = — 0.
(w,m) TSR n|# |w], wn #
n+1 n+17 5n
n — W
Lown) = |12 | neZ—[-1,0], w#l
) = || nez - 10 w2

If h(zy) = 2} where m € R in Theorem (2.1.4) and Theorem (2.1.5), then we have

following inequalities
Proposition 2.1.8. Let w,n € R, w,n and m € N, m > 2, then
m m m(n — w) m— m—
[A@™ +0™) = Lan(w,m)| < ————A(lw" [n™ 7).
Proposition 2.1.9. Let w,n € R, w <n and m € N, m > 2, then

m . .om n—w (m=1q¢  (m-1q 15
|A(w +1n ) - Lm(wan)| < (—)1 [A(|w| q-1 ,‘7]| q—1 )] )
2(q+ 1)
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If h(z) = £ where m € R in Theorem (2.1.4) and Theorem (2.1.5), then we have

following inequalities

Proposition 2.1.10. Let ¢,d € R, ¢ < d, and 0 & [c, d].

Al 4771 = L (w,n)| < MA(M‘Q, In~%).

Proposition 2.1.11. Letw,n € R, w <1, and 0 & [c,d].

— W —2q —2q o
A ) = L )| < 2= Al )
2(q + 1)

Dragomir and Agrawal [9] also discussed error estimation of trapezoidal formula.

Definition 2.1.12. [9] Let h : [k,[] — R is continuous on [k, ] and d be a division of the

interval [k, ], that isd: k=29 < 2 < -++ < 2,1 < 2z, = [, then trapezoidal formula is
defined as )
~ h(z) + h(z
T(h,d) = ; (=) 5 ( +1)(Zi + 2it1)-

If h:[k,l] = R is twice differentiable on [k,[] and M = max.cu|h" (y)|< oo, then

!
/ h(y)dy = T(h,d) + E(h, d). (2.1.4)
k
Where the approximation error E(h,d) of the integral satisfies

M n—1
= E Z(%H - yi)3

=0

|E(h, )]

Proposition 2.1.13. Let h be a differentiable mapping on I, k,1 € I with k < 1. If |W/|

is convez on [k,l], then in (2.1.4), for every division d of [k,l] we have

-1

|E(h,d)|§ éz_:(zi-&-l . ZZ)2<|h/(ZZ)|+|h/(zz+1)|) < max(’h/(iﬂa |h’(l)|) Z(Zi+1 N Zi)2

1=0 1=0
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Chapter 3
Fractional Hadamard inequality

Fractional inequalities plays a fundamental role in the field of Mathematics. These in-
equalities also abetment the unique solution of boundary value problem. Considerable
literature is available on the application of fractional inequalities. Fractional integral in-
equalities are helping hand to show the uniqueness of partial differential equation. Frac-
tional integral inequalities has a different generalization in literature. Here we discussed
some of the fractional integral inequalities.

Sarikaya et al. [40] established the Hermite-Hadamard inequality for Riemann-Liouville

fractional integral.

3.1 Hermite-Hadamard inequality

Theorem 3.1.1. [/0] Let h : [k,l] — R be a positive function and h € Li[k,l]. If h is
convex function on [k,l], then the following inequalities for Riemann-Liouville fractional

integral holds:

h(k) + h(l)
———

h (k * l) <LWHD oy 7 ) < (3.1.1)

2 —2(l— k)
with v > 0.

Proof. Since h is convex function on [k, ], we have for 21, 2, € [k, ], with u = 1

[\

R((1 —t)z1 +tze) < (1 —t)h(z1) + th(z2)
h (21 + ZQ) < h(Zl) + h(Zg)
2 - 2
By substituting z; =tk + (1 — t)l and 2z = (1 — )k + tl, we obtain

oh (%) < h(th+ (1= + h((1— )k +40).
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Multiply u*~! on both side and then integrating with respect to u over [0, 1], we obtain

k l 1 1 1
2h <T+> / u’ " tdu < / u” " 'h(uk + (1 —u)l)du +/ u’ " h((1 — u)k + ul)du
0 0 0

2 k +l ! v—1 ! v—1
—h 5 < [ «""h(uk+ (1 —uw)l)du+ [ v h((1—u)k+ ul)du.
v 0 0

By substituting w = uk + (1 — u)l and v = (1 — u)k + ul, we have

[ (=) gt [ () et
:(lr_(”%y (F(ly) /k = ) () + F(ly) /k ‘- k)”‘%(v)dv)

:(lr_(”k)y (Zy h(1) + Iy h(k))

%h (k + l> < (lf_(ulg)y[zz+h(l> + 7 h(k)]

k+1 I'(v+1)
h < ; h(l)+ I/ h(k)). 1.2
(557 < g @ttt + 7 ) 3.12)
For the proof of second inequality. Since h is convex function, then for u € [0, 1]

(1 = u)k +ul) < (1 — w)h(k) + uh(l)

and

h((1 —w)z +uy) < (1 —u)h(z) + uh(y).

By adding inequalities we have

R((1 —w)k +ul) +h((1 —u)z +uy) < (1 —u)h(k) +uh(l) + (1 — u)h(l) + uh(k).
Multiply w”~! on both side and integrating with respect to u over [0, 1], we get

1 1 1
/ u”"'h(uk + (1 —u)l)du +/ u’ Th((1 — w)k + ul)du < / u” " (h(k) + h(l)).
0 0 0

As we know that

/0 W h(uk + (1 — u)l)du + /0 w T h((1 = wk + ul)du = %@M(U + L h(k)).
Then

Lz ) + 7 i) < MELE
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H(%h(w T (k) < M (3.1.3)
Combining (3.1.2) and (3.1.3), we obtain
n (55 < g b + 7 ) < M,
]

Example 3.1.2. For h(z) = 2*™ , m € R, on the interval [k, (] = [0, 1]

By Lemma (1.3.5) we can find Riemann-Liouville fractional integral of a function is

F(Qm + 1) IQm-i-V
I@2m+v+1)

Iy h(z) =
For the right hand side

v _ 1 ! v+2m—1 o ]‘
B0 = 5 [ 7= s

Substituting this in Hermite-Hadamard inequality (3.1.1)

1\*" Tw+1) [ T@2m+1) 1
(é) =73 [F(2m v+ ) T o)

1
< -
— 2

Letnzl,l/:%weget

0.25 < 0.36 < 0.5.

3.1.1 Hermite-Hadamard type inequality

In the following we discuss the Hermite-Hadamard type inequality for a convex function

by considering integral identities which involve first order derivative of h.
Theorem 3.1.3. [40] If h : I — R is a convex function, then the following inequality

holds l
h kt1 < 1 / h(z)dz < M
2 I—k J, 2

Both inequalities hold in the reversed direction if h is concave.

Proof. Let o =1 in Eqn (3.1.1) and by using property I'(z + 1) = zI'(2), we obtain

h (?) < %mma) +7,_n(ry) < HBPO

h(k;l) : 2(l—1k;)a {/klh(z)dZ-F/klh(z)dz} M

k+1 1 : h(k) + h(l)
h( 5 >§(l_k)a/kh(z)dz§T.

IN
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Lemma 3.1.4. [40] Let h : I — R be a differentiable mapping. If h' € Li[k,l] then the
following equality holds:

h(k)+h(l) T(v+1)
2 20— k)

Proof. Let us consider the right hand side

T b0+ T () = 5 [ 0=t = Atk + (1=t

1 1 1

/ [(1—t1)"—ty|B (t1hk+(1—t1)1)dty :/ (1—t1)”h’(t1k+(1—t1)l)—/ tYR (t1k+(1—t1)1).
0 0 0

(3.1.4)

We evaluate the integrals in Eqn (3.1.4) by integration by part, properties of gamma

function and by the definition of Riemann-Liouville fractional integral

/1(1 W (k4 (1 - t)l) =L tl)yh(,?fj S ”/1(1 O i (_1z_ "

By substituting u = t1k + (1 — ¢1)] we have

h() T+ | 1 [*(u—a\"" hu)
Tk k-1 r(u)/, <l—k:) k—zd“]
M) Tw+1)

R Y s

Let us consider

k—1 O k=1

1 k
0 l

Again by substituting u = t1k + (1 — t1)I

v h(k) v [Fr—u\"! du

k
~ hk) | Tw+1) [ 1 [ o
=—+ -k lP(V) /k (I —u)"""h(u)du
h(k) Tw+1) _,
Rt k)y+11k+h(l).
Eqn (3.1.4) will become
J R L R = 1 L RO
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Multiply by % on both sides we obtain

-k (! ) h(k) +h(l) T(r+1 y
LE Tty — w1 iy = 2P 0D gy gy,
> J, 2 21— k)
O
Theorem 3.1.5. [40] Let h: [k,l] be a differentiable mapping. If |W'| is convex then
h(k)+h(l) T(w+1) l—k 1 , ,
- T h(D) + T (k)| < — (1 — = ) IW (k|| (1
' 5 Q(Z_k)y[m (1) + Z/_h(k)] <510 5 ) P (kIR DD
Proof. By using Lemma (3.1.4), and convexity of |h’| we have
h(k)+h(l) Tw+1). ., y
PR S T )+ 3 ()
[ -k ! v RN
o AR L{CU BRI
0
Wtk + (1= t)D)|< ta] b (k) |+(1 = t0)[R'(1)]
-k [ . .
= T/o (1 —=t1)" = t7[[ta| D (k) |+ (1 = t0) [P (D)]]dt
R A Ly R e e A (]S
0 0
1 1
L= [ (=t = g Bl - [ 00— = gl
Simplifying Z; and Z; and then add we get
1 2(H)! 1 1 1
o / / - (1= / / )
5 AT e | OGN = o (1- ) IOk
Hence we get our desired result O]

3.1.2 Fejér inequality

In the beginning of 20th century Fejér [13] proved the integral inequality which is weighted
generalization of Hermite- Hadamard inequality and known as Fejér inequality. Iscan [18]

established the Fejér inequality for the Riemann-Liouville fractional integral.

Lemma 3.1.6. [18] If h : [k,l] — R is integrable and symmetric to % with k <1, then

T3, h(D) = T h(k) = STEA() + Th(R)]
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Theorem 3.1.7. [18] Let h : [k,l] — R be convex function with k <1 and h € [k,1]. If

k+l

g : [k, 1] = R is non-negative, integrable and symmetric to , then the following

h(k) + h(l)

5 [Zy g(l) + I g(k)].

h (kTH) 1Zv g() + T g(k)] < Z¥, hg(l) + IV hg(k) <

Proof. Since g is symmetric to £, thus g(k + 1 — u) = g(u), for all u € [k,l] as h is

convex function on [k, 1], for all u = 5. Therefore we have
k+1
2h 5 < h((1 —uw)k +ul) + h(uk + (1 —u)l).
Multiply u”_lg((l — u)k + ul) on both sides and integrate over u € (0, 1)
k4l o Lo
2h 5 g(1—=wk+ul)du < | v g((1 —u)k+ul)h((1 —u)k + ul)du
0 0

N /1 uy_lg((l _ u)k + ul)h(uk; + (1 — u)l)du

Let v = (1 —u)k + ul

2h<<lTi = (Flu / d”)

=~

( >”—1g<v>h<v>dv)
1

+ (w) / (=0 g(ohe)n).

By using above Lemma (3.1.6)

L(v)h(*3)
(L= k)

As h is convex for all u € (0,1)

Zr 9(D) + Iy g(k)] < —— [Ty gh(l) + I gh(k)]. (3.1.5)

h((1 = w)k + ul) + h(uk + (1 — w)l) < h(k) + h(D).

Multiply v~ 'g((1 — u)k + ul) and integrate over [0, 1]
/1 u (1 — w)k 4 ul)h((1 — u)k + ul)du + /1 u "t g((1 = w)k + ul)h(uk + (1 — u)l)du
< /0 W Lg((1 — w)k + ul)[h(k) + A(D)]du.
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Let y = (1 — u)k + ul and using Lemma (3.1.6)

(lr_(yk?)u (F(ly) /k (y — k)" " g(y)h(y)dy + L/k (- y)“g(y)h(y)dy)

['(v)
y I
< s (v =0t + o).
¢ hg(1) + T hg(k)] < (25, h(1) + 37 n(i) M PD. (3.1.6)
Combining (3.1.5) and (3.1.6) we get the desired inequality. O

Corollary 3.1.8. [18] For v =1 in Theorem (3.1.7) we get Fejér inequality

() gan < [ wgtwin< "L g

Corollary 3.1.9. [18] For g(z) = 1 in Theorem (3.1.7) we get Hermite-Hadamard in-

equality for fractional integral

hk) + h(l)

h(kgﬁféiﬁiﬁﬁﬁmn+ﬂ%®ﬂé

3.2 A survey of generalized Hermite-Hadamard frac-

tional inequalities

The concept of Hermite-Hadamard inequality has been enhance various way in literature.
In this section we discuss some of the few. Jleli and Samet [19] established the Hermite-

Hadamard inequality via fractional integral with respect to another function given in Eqn
(3.2.1).
Theorem 3.2.1. [19] Let h: I — R be a convex function on for a > 0, then

h(k) + h(l)
———

k+1 Tla+1) e
h( )§4w IV H (L) + IV H () < (3.2.1)

2 () — o (k)
where H(y) = h(y) + h*(y) and h*(y) = h(k +1 —y).

If ¥(2) = z inequality (3.2.1) reduce to Hermite-Hadamard inequality for Riemann-

Liouville fractional integral.

Corollary 3.2.2. [19] If h is convex on [k,l] and a > 0, then

h(k) + h(l)
=

h (k ; l) < 5((la_+k;3‘ [Ze h(l) + I h(k)] <
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If ¥(2) = In(2), then inequality (3.2.1) reduce to Hermite-Hadamard inequality for

the Hadamard fractional integral.

Corollary 3.2.3. [19] If h is convex on [k,l] and a > 0 then

h(k) + h(1)

h(55) < e ) + 7 () <

2/ 7 4(n(y)
Theorem 3.2.4. [19] If h € C and |h'| is convex on [k,l] for a > 0 then the following
nequality holds:

(1K' (R) |+ R (D),
(3.2.2)

BR)+h(0)  T@+1) .y » 73 (k, 1)
' > ) — o e HOFEEHR < s e B

where L3 (k, 1) = LY(1,1) + LG (k, 1) — L (1, k) — LG (K, k).

If Y(z) = z in Eqn (3.2.2), we get Hermite-Hadamard type inequality for Riemann-

Liouville fractional integral.

Corollary 3.2.5. [19] If h is convex on [k,l] and a > 0, then

MO Bt D+ 3w < S (1- 1) o +

If ¥(z) = In(z) in Eqn (3.2.2), we get Hermite-Hadamard inequality for Hadamard

fractional integral.
Corollary 3.2.6. [19] If |W| is convex on [k,l] and o > 0, then

hk) 00 Dat L) 7a 0y 470 e))

2 alm(e

B 72 (k, 1)
~ AW = (k) (1 - k)

where I (k, 1) = L (1, 1) + L (k1) — L8 (1 k) — L8 (k, k).

n

|1 (k)R (D),

Raina’s [34] introduced the function of bounded sequence of real (or complex) number.

Definition 3.2.7. [34] Let p,A > 0 and o(m) be a bounded arbitrary sequence of real

numbers where m € N, and |y|< 1.

z0 _ 20(0)70(1).“ _ a(m) m

0

Raina [34] also defined the following left and right-sided fractional integral operators.

46



Definition 3.2.8. [34] Let p,A > 0 and u € R then the fractional integral of left and
right sided are defined as

(0 0ind) y = / "y — 927 [uly — 5)16(s)ds,

(Tona )= [ (s =00 Z55luls = y)1o(s)ds.

Let A = a, 0(0) = 1 and u = 0 we get the classical Riemann-Liouville fractional
integral. Set et al. [36] determine the Hermite-Hadamard type inequalities for above

defined integrals as

Theorem 3.2.9. [36] Let a,u € R and h : [¢,d] — R be a positive, twice differentiable
function, and h € L(c,d). Also, let h” be bounded on [c,d]. Then

c+d

o / N ( 22 y) [(y — ) 20 July — o)) + (L — 1) 20 [uly — o] dy

2

< s g e (4 (O] = (50 Zhaaluld - o]
= Q(djif e / (- J; _ y) [(y — ) 27 a[uly — )]+ (d — y)* " 27, [u(d — c)]ldy
And

-N C;d a—1 ~zo a—1 ~zo
o ), WA=l =" Zaluly = |+ U =y)* Zhaluly = ) lldy
1 - - h(c) + h(d) , p
S 2(d o C)a [(Tpa c+ uh)<d> + (Tpa df;uh‘) (C)] - 2 Zp,a+1[u<d - C) ]
< g [ ==l = 9 E Lty — o+ () Ll d = oy

Where n = infyceq f"(y) and N = SUDyeed R (y).

Theorem 3.2.10. [36] Let a,u € Ry and h : [k, 1] — R be a positive, differentiable
function, and h € L(k,1). If h (k+1—t) > h(t) for all t € [p, 5], then we have

h (%) Z pu(l = k)] < ﬁ[ 2 k() + 5 0 h(K)]
RO P
- 2 p,a+1 .

For ¢(0) = 1 and v = 0 in Theorem (3.2.10) then we get following:

47



Corollary 3.2.11. [36] Let h : [k,l] — R be a positive and differentiable function and
he L(k1). If W(k+1—z) > h(z) for all z € [k, 2] then the following inequality holds.

h(k) + h(l)
=R

h (k ;L l) < g((lajkii T2, h(l) + T2 h(k)] <

Chen and Katugampola [8] generalized the Hermite-Hadamard inequality for so called

Katugampola fractional integral they also generalized result of Jelli [20]

Theorem 3.2.12. [8] Let a,p > 0 and h : [p°,q°] — R be a positive function with
0<p<gqandheX;(p’q"). If his convex function on [p,q|, then
PP +a¢\ _ pT(a+1) o h(p) + h(q")
h < Z4Ph(q¢?) + TP h(p”)] < ————-2>.
( 2 )_2(pp—q”)"[p @)+ L) < 2
Theorem 3.2.13. [8/ Let h: [¢*,d’] — R be a differentiable mapping with 0 < ¢ < d. If
B’ is differentiable on (c*,dr), then we have

'h(cp) +h(d?)  ap*T(a+1)
2 2(dr — cr)e

(@ -y
= et Dia+2)

Theorem 3.2.14. [8] Let h : [¢*,d?] — R be a differentiable mapping. If |W'| is convex

1y s o).

a—+
( 297 eeler,de]

[Z5Ph(dP) 4+ T3 h(c”)]

on [c?,dP], then the following inequality holds:

HALHE s < S I @),

Lemma 3.2.15. Let h: [a”,b’] — R be a differentiable mapping on (a”,b”) with 0 < a <

[Z2Ph(d?) + T h(e”)]

b. Then the following equality holds, if the fractional integrals exist.
h(c?) + h(d’) ap*T'(a+1)

. S o) (L) + T ()

ct+

dr—cr [t
= / (1 —t°)> — P[P~ B (tPc — (1 — t°)dP)dt.
0
By using Lemma (3.2.15) Chen and Katugampola [19] found the more strict inequality.

Theorem 3.2.16. [8] Let h : [¢?,d’] — R be a differentiable mapping. If |I'| is convex

on [c¢?,dP], then we have

el < g (17 8 ) @@L

As Katugampola generalized the Riemann-Liouville fractional integral and Hadamard

dP — cP

[ZEPh(dP) + 23" h(c”)]

fractional integral, so the above result are also true for them.
Liu et al. [26] represented their work on Hermite-Hadamard and Hermite-Hadamard
type inequality for the Riemann-Liouville fractional integral of a function with respect to

another function. They also provided application to special means of real numbers.
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Theorem 3.2.17. [26] Let h : [k,l] — R be a differentiable mapping. Also suppose that
|| is conver on [k,l]. (x) is monotonically increasing function having a continuous

derivative and o € (0,1). Then we have

h(k) + h(l) _ Tla+ 13 (281 oy (h 0 ) (1)) + Loy (h o w)(@/f‘l(k‘))]‘

2 20— W)
l—k 1 / /
< oy (17 3¢ ) I

Liu et al. [26] also give application to the special means of real numbers.

Proposition 3.2.18. If h(z) = 22, a = 1, and (z) = z in Theorem (3.2.17), then

d? — 2
4 b

|A(02,d2) — Lg(c, d)‘ <
where ¢, d € R+, and ¢ < d.

Proposition 3.2.19. Let ¢,d € R+, ¢ < d. If h(z) = 2™, a = 1 and ¥(z) = z in
Theorem (3.2.17), Then

dm —cm
4

|A(c™,d™) — L(c,d)| < (mcm_1 + mdm_l),

where ¢, d € R+, and ¢ < d.

Proposition 3.2.20. If h(z) =€*, a =1 and ¥(z) = z in Theorem (3.2.17). Then

d—c

3 (e“+ ed),

|H (e, e) — L(e, e?)| <
where ¢,d € R+, and ¢ < d.

Proposition 3.2.21. If h(z) = %, « =1 and ¢(z) = z in Theorem (3.2.17). Then

d—c (1 1
-1 -1

where ¢, d € R+, and ¢ < d.

Theorem 3.2.22. [26] Let o € (0,1) and h : [k,l] = R be a differentiable mapping. Also
suppose that |I'| is convex on [k,l]. ¥(z) is an increasing and positive monotone function

having a continuous derivative ' (z) and h € Lq[k, f], the following inequality holds:

S T o )67 ) + Tl k) = (S5

2
< MO 3 "ol 2(la_+k1> (1 N zi) (17 (k) |7 (D)1].
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Proposition 3.2.23. Let c,d € R+, c < d. If h(z) =1, a =1 and ¢(z) = 2z in Theorem

(3.2.22). Then
d—c 1 1
L — At <—44+=+—= ).
| (c,d) (C>d)| =3 ( +Cz+d2)
Fernandez and Mohammed [15] used the Mittag-Leffler kernels to establish the Hermite-

Hadamard inequalities for following fractional operators.

Definition 3.2.24. [1] Let h be a function that is differentiable with L' derivative on an
interval [k, ] and for any y € [k,[]. The vth Atangana-Baleanu AB fractional derivative
of h(y) is defined for 0 < v < 1.

ABRDY h(y) = 1B 8’3}% /k 'E, ( —( —u)”) h(p)dp,

1—w
v B(v) (Y v
ABC v /
Dh(y) = 2 [ B Ly — ) ) B (w)dp,
K (Y) 1_U/k (1_U(y u)) (1)dp
where E,(z) is the standard 1—parameter Mittag-Leffler function and B(v) is a normal-

isation function that is real and positive and satisfies B(0) = B(1) = 1.

Definition 3.2.25. [1] Let h € L' on an interval [k, [], and for any z € [k, [], the vth AB
fractional integral of h(x) is defined as follows for 0 < v < 1

VRETY pisy 4 iV
B(U) IkJrh( )+ B(U)

Definition 3.2.26. [32] Let i € L' on an interval [k,(| and for any y € [k, ], o, 8 > 0

ABT} h(z) =

h(z).

and 7, i € C the Prabhakar fractional integral operator is defined as

k
T h(y) = / (y = 1) By a2y — ) h(u)dp,
y
where E. , 5(z) is the 3—parameter Mittag-Lefler function.

Theorem 3.2.27. [15] If h: [k,I] — R is L' and convez, o € (0,1), then we have the

following Hermite-Hadamard inequality for AB fractional integrals

kit B(a)l(a) ) —
' ( 2 ) < T e s ara)l Zesh LR < =

Theorem 3.2.28. [15] If h : [k,l] — R is Ly and convex, and « € (0,1), then we have

the following Hermite-Hadamard inequality for AB fractional derivatives

Ti(a,l — k)h (%) Tl — k)R ) 2* hl)

1—«
= 3B(a)B. (20— )

(A5 Dy (1) + D) (k)]

< Tola,l — k)h (%) + il | — k)w,

20



where the multipliers Ti(a,q — p) and Ta(a,l — k) sum to 1. Thus forming weighted
averages on both ends of the inequality. Specifically, these multipliers are defined as

follows:

Eaa((125)2(1 = K)**)
7-1(0571 - k) = < “a ;
Eo(irma)

2l = k) *Eaar1 (%) — k)*)
Eo (=5 —k)*) '

75(0[,[ - k) =

Theorem 3.2.29. [15] If h : [k,I] — R is L' and convex. The parameters a, 3,7, i,
are all real and positive, then we have the following Hermite-Hadamard inequality for
Prabhakar fractional integrals:

. (k + l) - PTYOT 0(1) 4+ P  h(k)

_ h(k) (D)
5 <

= 30— By (6~ F)) 2

Gurbuz et al. [16] generalized the Hermite-Hadamard inequality via Caputo-Fabrizo

integral.

Definition 3.2.30. [6, 2| Let h € Hy(k,l), m < n and « € [0,1], then the definition of

the left fractional derivative in the sense of Caputo and Fabrizio is

B y aly—a)®
Dy h(y) = %/h B (u)e =

And related fractional integral is

TO*h(y) = gz—a‘;‘h(y) + % /k ’ h(u)du.

The Hermite-Hadamard inequality for Caputo-Fabrizio fractional integral is stated as

Theorem 3.2.31. [16] Let a function h : [k,l]] C R — R be convex and h € Ly[k,l]. If
a € [0,1], then the following double inequality holds:

2
T

h (k > l) < aff(f)k) [a;:’*h)(a) (TR (a) -

where a € [k,l] and B(a) > 0 is a normalization function.

Theorem 3.2.32. [16] Let h,g: I CR — R be a convex function. If hg € L([k,1]), then

we have the following inequality:

2B(a) [ 4. o 2(1 — ) 2 1
2Rz 0o + 7)) - 2=t < Sarte) + V0,

where M (k,1) = h(k)g(k)+h()g(l), N(k,1) = h(k)g(1)+h(l)g(k), and a € [k,l], B(a) > 0

s a normalization function.
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Theorem 3.2.33. [16] Let h,g : I C R — R be a convex function. If hg € ([k,l]), the

set of integrable functions, then

o (55) o (557 123 o)) + T )@ + <=

2 2

2 4

where M(k,l) and N(k,l) are given in Theorem (3.2.32) and a € [k,l], B(a) > 0 is a

normalization function.

Theorem 3.2.34. [16] Let h : I C R — R be a differentiable positive mapping and |1 |

be convex. If h' € L1[k,l] and «[0,1], the following inequality holds:
h(k)+h(l) 2(1—«) B(«)

(= R)(W (R [+ (D))

2 =R ")~ S @ @) + (T ) )] <

where a € [k,l] and B(a) > 0 is a normalization function.
Gurbuz et al. [16] also give applications to the special means.

Proposition 3.2.35. Let ¢,d € R+, ¢ < d. Then
d—c
4
provided h(z) = z?, « =1 and B(a) = B(1) = 1 in Theorem (3.2.34).

|A(*, d*) — L3(c,d)| <

[lef+[dll;

Proposition 3.2.36. Let ¢,d € R+, c < d. Then

8
provided h(z) = €*, a = 1 and B(a) = B(1) = 1 in Theorem (3.2.34).

|A(e,e?) — L3(e, e?)| < C(eC +e?).

Proposition 3.2.37. Let ¢,d € R+, ¢ < d. Then
d —
|A(Cm’dm) — Lﬁ(@ d)| < w[‘cm—ll_’_‘dm_l“'

provided h(z) = 2", o« =1 and B(a) = B(1) =1 in Theorem (3.2.34).

Theorem 3.2.38. [16] Let h : I C R — R be a differentiable positive mapping and |1 |
be convexr on [k,l] where ¢ > 1. If [W|€ Ly[k,l] and o € [0,1], the following inequality

holds:
h(k)+h(l)  2(1—«) B B(a) o a (g
2 + a(f_k)h(k) () [(Zy"h)(a) + (Z;""h)(a)]
S%( ; )p<lh’<k>|q+!h’<mq>é

p+1
where a € [k,l] and B(a)) > 0 is a normalization function.
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Sarikaya et al. [38] introduced the new definition for fractional integral and then estab-

lished the Hermite-Hadamard type integral inequalities.

Definition 3.2.39. [38] Let v : [k,I] — R be an monotonically increasing function and

h,v € L[k,l] . The generalized Riemann-Liouville fractional integrals is defined as

L) = e [ = 0 00 = o) (i
and X l
T4 ) = F / (1 — 2)* (0(u) — v(2))h(u)du.

Theorem 3.2.40. [38] Let h : [k,l] — R be a convex function and u : [k,l] — R be an
monotonically increasing function on (k,l), and h,v € L[k,l] . Then H is also integrable

and the following inequalities for fractional integral holds:

h (%) [z, (@) + T, (D (R)] < %[I,?f,vH (1) + 27, H (k)]
h(E) + h() (3.2.3)
< [0 + 3, (k)= ——

Corollary 3.2.41. If ¢ = 0, then Eqn (3.2.3) reduce to classical Hermite-Hadamard

imequality.

Corollary 3.2.42. If v(t) = t, then we get following inequality for Riemann-Liouville

fractional integral

h ( b l) < ngf_q,;a” () + zea ) < M0,

Lemma 3.2.43. [38] Let h : [k,l]] — R be a differentiable function on (k,l) and v :
[k,l] — R be an monotonically increasing function. If h',v € Llk,l] then H is also
differentiable and H € L[k, 1], then following equality holds:

M _ %[I,f;gv(H)(l) + I (H) (k)]

= (;;(Z))a/k G(2)F'(2)dz,

where H'(z) = 1 (z) = W(k+1— z) and

—k

G(z) = [y s* Hv(b) —v(sl+ (1 —s)k))%ds + fgl,l%:(l —5) No(sk+ (1 —s)l) —v(k))%ds.

e, (W) + T2, (D (R)]

f
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Theorem 3.2.44. [38] Let h : [k,l] — R is a differentiable function and v : [k,l] — R be
an monotonically increasing function. Then H is also differentiable and H € L[k,1]. If

|| is convex on [k,l] and h',v € L[k,l] then the following inequality holds:

2,0 + 2 )01 0 - e () + 7 ) 1)

]‘ : / /
< m/k |G (2)|d=(|B (R)|+[R(D)])-

Corollary 3.2.45. Let h: [k,l] — R with k <, if |W| is convex then

O ) 4 )] < 5 (1 5 ) W + )

provided g = 0 then G(z) = %

Corollary 3.2.46. Let v : [k,l] — R, if |v| is convez on [k, 1] then the following inequality
holds:

h(k) + h(l) 1

A0+ T O] 50~ 5 B0 + T W)
(l — k) / /
< m[lv(k)\ﬂv(l)!](lh (B)[+[p" (D)),

. z—k)*—(l—2)~ 2(y—k)« —(z—k)*+(l—2)* 2(y—k)«
provided g = 1 then G(z) = |v(a)| [((a+1))(l—(k)a+)1 + a((%—kia] +|v(b)] [ ((a+1))(1j1£;)a+)1 + a(g_kga] .

Corollary 3.2.47. If v(t) =t then

21 — k) h(k) + h(l) T(a+q) oy »

@+ o(a) 20—k ()= Ry Dera O+ II,U<H><k>]\
(I — k)ota

“(at+g)(atqg+ 1)l ()

(7 (R) [+ (D).

We generalized the result of [38] for Generalized Riemann-Liouville fractional integral

with respect to a function .

3.3 Generalized Riemann-Liouville fractional integral

with respect to a function

We introduce the generalize Riemann-Liouville fractional integral with respect to a func-

tion by using the same technique as Sarikaya et al. [38] introduced.
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Definition 3.3.1. Let v : [k,l]] — R be an monotonically increasing function on (k,!)
and h,v € L[k,l] with k < [. The we define the generalized Riemann-Liouville fractional

integral with respect to a function as:

Tith(z) = ﬁ /:w(z) — () (0(2) — v(u)) h(u) (u)du,
and . l
I h(z) = & / (W (u) — () (0(u) — v(2)) ")y (u)du.

Example 3.3.2. Let v(u) = w(u) and h(u) = 1 then we get

1

o, ,q 2= : 2) — w))e q—1 "(wdu = W(z)—@b(kf’))aﬂ
) = g [ 06 = 00 ) .

(a+q)I'(e)

Similarly

a,,q 2) = W(l) - ¢(z))a+q
Ty (e) = B

We have to prove Hermite-Hadamard type inequality for new generalized fractional

integral

Theorem 3.3.3. Let h : [k,l]] — R be a conver function and v : [k,l]] — R be an
monotonically increasing function on (k,l). h,v € L[k,l] with k < | then H is also

integrable, and

(Y9 H (1) + If;f”v’qH(k)]

h(k) + h(l)
—

DO | —

k —|—l a,P,q @P.q
h <T) T WO + T 1) (k) < (3.3.1)
< [ZPA ) () + I8 (1) (k)]

k+,v

Proof. As h is a convex function, for u; = % Let 1 = (u1k + (1 — uy)l) and xo =

((1 — uy)k + uyl) where xq1, 29 € [k, 1] we have
k+1
2h 5 < h(urk + (1 —uq)l) + h((1 — up)k + wyl).

Multiplying (v(I) = ¢ ((1 = un)k +wil))* (0(1) = v((1 = un)k + ) ' ((1 = wa)k + ),

we have

o (E) 00 = 0l = )+ ) ) = (= )k ) (1 = )+ D

2
< /0 (Y1) — (1 —u)k +u])* () — v((1 = u)k + urd)* ' (1 — uy)k + wrlh(urk + (1 — uy)l)da
+ /0 (1) = (1 — ur)k +ual))*(w(l) = v((1 = ur)k 4+ wl)9' (1 — ur)k + wl)h((1 — w)k + uil)d
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Let z = (1 — uy)k + uyl, then we have
kot ,P,q ,P,q (1% ,,q
oh (XD ey @) < )0 + 2 ). (33.2)

Similarly multiplying (¢ (uik + (1 — u)l) — (k))* H(v(urk + (1 — uy)l) — v(k))*'((1 —
up)l + urk), and let z; = (1 — uy)l + urk we have

on (B0 ) Zt ) < T + T ) (333)
Add (3.3.2) and (3.3.3)
2 (%) (TSI + T2 () (k)] < TR H) (k) + T (H) (D).

Where H(k) = h(k) 4+ h*(k), for second inequality since h is convex then, h((1 — u1)k +
url) + h(urk + (1 —up)l) < h(k) + h(1). Multiplying (¢(1) — (1 —uq)l 4+ uik))*H(v(l) —
V(1 — ug)l + urk))* " ((1 — uy)l + urk), we have

/Ol(w(Z) — (1 = u)l+ wrk)*  (w(l) — o((1 = )l + wrk)) "9 (1 = un)l + urk)B((1 = ug)l + k)
+ /OI(W) — (1= un)l + urk))* () — o((1 = w)l + wrk)) ¥ (1 = )l + wk)h(url + (1 — uy)k)
< /Ol(w(b = (1 = wn)l + k)~ (v(l) — (1 = un)l + uk)) "¢ (1 — )l + wik)[A(k) + h(1)]-
Let y = (1 — uy)l + usk, we get
TR () () + T () (1) < Tl (@) [ak) + p(D)].

Ty (H) (1) S T OO [R(k) + (D). (3.3.4)

Similarly multiplying (¢((1 — u1)k + uyl) — (k) L (o((1 — wy)k + uil) — v(k)) ' (1 —
up)k + wuql), and let &1 = (1 — ug)k + uyl

l
/k () — B (k) (0(0) — o)) (@) h(k + 1 — 21)day
!
n / ($(x — 1) — $(R)* (0(1) — v{a2)*e! 1)z )day

< /k (Y(x1) = (k)" (v(l) = v(21)) ' (w1)dz [A(k) + R (D)]

TR0 () (k) + T () (k) < 00 (1) (k) [A(k) + h(1)]
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I (H) (k) < T3 () (R)[A(k) + (D). (3.3.5)

Add (3.3.4) and (3.3.5)

T (H) (k) + Tt (H) (1) < TRt (1)(k) + 8 (D ([A(k) + (D).

k+,v
We get our desired result. O]

Corollary 3.3.4. If ¢ = 0 then Eqn (3.3.1) reduce to Hermite-Hadamard inequality for

fractional integral with respect to another function.

h(k) + h(l)
=

k+1 Ma+1) - a
() < 1w Te HO) + IRV H () < (3.3.6)

2 () — (k)"
Corollary 3.3.5. Ifv(t) =t and (t) =t then Eqn (3.3.1) reduce to Eqn (3.2.2)

h (k ;— l) < Fglozl+_qk4)—a1) [I,?f’?jH(l) +Il°‘_ng(k)] < M
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Chapter 4

Generalized Hermite-Hadamard

inequality

Hadamard-type fractional integral with respect to a function cover both the Hadamard
and tempered fractional calculus as a special case. It also generalize some integral such as
Riemann-Liouville fractional integral, Hadamard fractional integral, Katugampola frac-
tional integral, Riemann-Liouville fractional integral with respect to a function. As the
Hermite-Hadamard inequality is the most well known inequality in literature, and due
to its wide applications. we emphasize to establish the Hermite-Hadamard inequality
for the Hadamard-type fractional integral with respect to a function which contain the

Hermite-Hadamard inequality for different fractional integrals.

4.1 Main Results

In this section, we generalize Hermite-Hadamard inequality and Hermite-Hadamard type
inequalities. Several special cases are also presented. For the sake of simplicity we assume
h : I := [k — R is twice differentiable increasing convex functions and we define
function g as g(y) = ¢*(y)h(y). Also, define g*(y) = g(k +1 —vy), h*(y) = h(k +1—y),
G(y) = h(y)+ h*(y) and H(y) = g(y) + g*(y). The substitution t = ;:’Z in (1.3.44) leads

to

cop oy _ Wk [P Sty A -OR)N (o) " ot ke D1
Thy) = U /0 ( oo ) (1g¢<ty+(1_t)k)) Ot b )h((1—t) 1) dt.

Similarly we introduce the transformation ¢ = =¥, or s =t/ + (1—t)y in (1.3.45) and get

wop oy (=) [’ o)\ (G, 2 A= DN\ T _
7 =5t <¢<u+<1—t>y>> (lg o) ) Ot ks DA+ (1=)y)dr
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In preceding equations, 0 is defined as 6(¢; k;1) = ¢((fgjf((11 tt)k) Setting y = (1 — t)k + tl,

y = (tk+ (1 —t)l) and t = § then definition of convex function we get

29 (k;l) < g((1 = )k + tl) + g(th + (1 —t)1). (4.1.1)
Theorem 4.1.1. Let h : I — R be positive function and h € X‘{c(k, l) is conver on I,
then
2 (k) (1 i ki) ?
(5 )(og¢k>) P + ¢(*3°) - Q(Ia G() + I H(E)
(I — k) (1) -
N (4.1.2)
I
(s 58)" (¢ o)

< ((Gar+ow) o+ v own).

Proof. Multiply both side of inequality (4.1.1) by (%)p(log %)“‘19@; k;l) and

integrate over t € [0, 1].

o [n(550) (4%

) log o) ))ale(tkl)d

0 (1 — )k + tl
L o((1 -tk + tl) 20 B
g/o ( 0 ) (log¢((1_t)k+tl>> O(t: ks Yh((1 — t)k + tl)dt
Lotk + (1 - 1))\ (1) R B
+/0 ( o0 ) <log¢<<1_t)k+ﬂ)) O(t; k; D)h(tk + (1 — t)l)dt

(4.1.3)

Left hand side of inequality (4.1.3) can be simplified as

2/olh (k;l) gbéﬁ%)y <10g @ _¢£§L+tl)>a_le(t; i 1) dt
) p/ol (10g P ¢£§L+tl))a_le(t;k;l)dt

ST (h(k; ) (%)) (1o 55 )

The first integral on the right side of inequality (4.1.1) simplifies as

_ (oA =tk + 1)) ¢() o Ia) 1o
7, _/0 < G ) (log (e tl)) 0t ks DR((1 — 1)k + tl)de = LT h(0)
Since ¢*(y) = g(k+1—vy). For y = (1 —t)k + tl, g*((1 — )k + tl) = g(tk + (1 — t)])

P (L=t k+tl) h* (1—t)k+tl) = ¢P(th+(1—t]))h(th+(1—t)l), and LL0= Qf&ﬁﬁ(l((f)ﬁt)Hﬂ) —
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h(tk + (1 — t)l). The second integral on the right side of inequality (4.1.1) becomes

(AR (e T _
12/0< o ) (1g¢((1_t)k+ﬂ)> O(t: ks ) (t + (1 — £)k)dt

_I(@) 7o s
=T W (0).

Therefore, inequality (4.1.1) reduces to
ki) ((oC5EH )P o) \*
(4 (%) (i) _ rio)
(I~ k)a e

Since h is convex functions, therefore

(22, G(1)). (4.1.4)

2% (Z”) < (1 — 1)k + ) + h(th + (1 — t)0). (4.1.5)

On both sides of inequality (4.1.5), multiplying by (¢(k))? (1og W) o(t; k: 1)

and integrate over t € [0, 1]

2/01h (%) (6(k))P (log il tb&)_ W‘“))M O(t: : 1)t

t+(1—t

< /01(¢(k))p (log i (k) >k))a_ O(t; k; D)h((1 —t)k 4 th)dt

+ /O (b)) <log il :5((2)‘ Dk >) B R DRtk + (1 — )0t = Iy 1 I,
(4.1.6)

Let left hand side of above inequality, we obtain
Vo4 Gt + (1 — k) \* 2 k1 o(1)
2/h(—)¢pk (log ) O(t; k;: 1)dt = <h oP(k (log—
)W (k) kb= g M7 e g
Now we solve the integral on right side of the inequality (4.1.6). Let y = (1 — t)k + ¢,

then h((1 —t)k +tl) = % Therefore, integral Z3 simplifies as

D) (1=K [ ¢(k) " (1 QA= DR )N -
S (F(a)/o <¢((1—t)k+tl)) (l 5T o) ) 0(t; k; Dg((1 t)k+tl)dt>
)

N
= Lg(k).

As h*(y) = h(k + 1 — y) therefore % = h(tk + (1 — t)l). The second integral in

inequality (4.1.6) implies

))

_ F(CY) (l—k) 1 ¢(k;) p . Qb((l—t)k’—f-tl) a—1 . . B
24_(l—k) ( I'(«a) /0 (¢((1—t)k+tl)) <l & o (k) > O(t; ks 1) g™ ((1 t)/ertl)dt)

_F(O[) *
== k;Il*g (k)
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I, = %Il_g*(k). Consequently, Zs + Zy = %Il_(g(k‘) + g*(k)) = %II—HU{?)- So,

inequality (4.1.6) becomes

(a0 E) (o 53) " ria
(I —k)a “ -k

~—

T,_H(k). (4.1.7)

Adding together the inequality (4.1.4) and (4.1.7), we get

2(E) 7 (k) (1og 28) " 2n(kh) (252" (tog 22 .
(l—k:<) ¢<>) n ((420_2)( <>> ngli(IﬁGU)HF(

~—

T HE)).

o~

2h log 20 k+1y\ P

i (l)_< ;j ) <¢P<kz> ¥ (gbfbg)) ) < g ow T Hk).  (418)
For the right side of the equality, the convexity of g allows us to write g ((1 — t)k + 1) <
(1 —t)g(k) + tg(l) and g(tk + (1 — t)]) < tg(k) + (1 — t)g(l). Adding preceding two
inequalities, we get g((1—t)k+tl)+g(tk+(1—t)l) < (1—t)g(k)+tg(l)+tg(k)+(1—1)g(l).

g(L =)k +t) + gtk + (1 —t)]) < g(k)+ g(1). (4.1.9)

a—1
Multiply inequality (4.1.9) by < p Z)) <10g %) 0(t; k;1) on both sides and in-
tegrate over t € [0, 1]

T4+ T, — / (Gb((l_%f“l)) (log¢<<1_¢£§)]€+tl)) O R DR((1 — Ok + t)dt

/01 (MH R ) (10%((1 —%+u>)a_19<t;k%l>h<tk+<1—tmdt
/0 (Ll)p (log gb(gc+tl)>a_19(t;k?l)’fph(k)dt

+/0 (ﬁ)p (log i _g;ﬂl))ale(t; ks DPR(D)dt = Tr + Ts.

(4.1.10)
_Tle) (=) [* (o =t)k+t\" [ é(1) ast )
Is _(l—/{,‘) ( F(a) /0 ( ¢(l) ) (1 g¢((1 —t)k?—i-tl)) G(t,k:, l)h((l t)k—f-tl)dt)
o) 4
=2 h(0).

The integral Zs simplifies as Zs = %I&h(l). Since ¢*(y) = g(k +1 —y). Fory =
(1 =t)k+tl) g*(1 =)k + tl) = gtk + (1 = t)]), o*((1 — )k + th)h*((1 — )k + tl) =
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PP (thk + (1 — t]))h(tk + (1 —t)l),

P((1—t)k-+t)h* (1—t)k+tl
il QP(Jtrkth(lf(tl)l)t) ) = h(tk + (1 — t)l). Therefore

16:/01 <¢<tk+(1_t)l))p(log T a0l )>a10(t;k;l)h(tk+(1—t)l)dt

o(1) 1—t)k +tl
_D(e) ((=k) [* (Sl =Dk (| oD\ (s), g S
‘Z—k(na) [ (55 () S ”’””)d>
T, .
H 7 )

:y o (WD) + b (1) = T8y (F ().

k
= () () mmomo= (35 )
<

o(0)
o(1— )k + t

)> O(t; k; Dh(l)dt = al—h)

Evaluating and adding Z; and Zg, we get Z; + Zg = <log o ))> ((%)ph(k) + h(l)) :
Therefore inequality (4.1.10) reduce to

«

(©) 7o o), (tos(55))
e ey < (G +n0 ) SO

—

E

Since h is convex function, therefore

h((1 = )k + t) + h(tk + (1 — t)I) < h(k) + (D).

Multiply both sides of the preceding inequality by ¢”(k (log «a ¢€kk+tl ) 0(t; k; 1) and

integrate over ¢ € [0, 1]

1—tk+tl olth— (L—D\"" B
To + Tyo = ( )(log 0 ) O(t: k; DR((1 — )k + tl)dt
! tkz+<1—t>l> S((L+t)k+tD\ _
+/0( o ><log s ) O(t: k: DAtk + (1 — t)1)dt
Vo eltk+ (=D
< /0 (log 0 ) O(t: ks (k) dt
U I ERLERD) ot
o[ (G) (s ) sk
=711 + 1.
(4.1.12)
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Since g(y) = ¢*(y)h(y), therefore Zy = %Iﬁig(k)

RIONEN. (k) PUs(A -tk )\
Ig_l_k(F(a) | Gar) (o250 o t)’“””d’f)

As I*(y) = h(k +1 —y). Hence S{0=08 0 — n(th + (1= 1)1). Thus Typ = T2 g* (k).

Consequently

(l—k —tk+t)\" B
Ty = < /(bp ( ¢() ) O(t; k; D)h(tk + (1 t)l)dt>

P ] \
:F(><(l k) ( 1—tk+tl)< (€ “‘”“)) O(t: k: DR((1 — t)k + t)dt

I—k\ T(a) )
e
Ty 4 Ty = T (6" () + g(K)) = 1 AT H(E).

Ty + Ty = L_al)Iﬁ(g*(k‘) +g(k)) = ﬁIlfH(k). In similar way one can show that

7, = / o (k ( otk + ( 1)‘””) o ks Dbkt
<log ¢((l))> ¢r (k)
 a(l—k)

g / o (k ( . 1>_m)> 19<t;k;z>h<wdt:qsp(k)(log“’“) hl).

h(k)

i +Tip = % (h(l) + h(k)). Thus inequality (4.1.12) reduces to
o log S) " 67 ()
ZPE li(z,a_ Hk)) < (h(k) + h(1)) ( Of(‘;)z T (4.1.13)
Add inequalities (4.1.11) and (4.1.13) we obtain
['(a+1) d(k)\°
s (@GO +TEHWK) < { (275 ) +97(k) ) h(k) + (67 (k) + 1) h(1).
<log ol ))> ! ((@5([)) )
(4.1.14)
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Combining (4.1.8) and (4.1.14), we get generalized Hermite-Hadamard inequality (4.1.2).

2h(t (logak) AN) 2T ez

< % ((@((’2 P ¢p<k>) )+ (1 DA

(4.1.15)

]

Now we present several special cases for the generalized Hermite-Hadamard inequality
(4.1.2). For p =0 and ¢(y) = ¢¥ we must obtain the following inequality which involve

Riemann-Liouville fractional operator.

Corollary 4.1.2. If p =0 and ¢(y) = €Y. Then

b (k+l) < ; ['(a+1) (Iﬁ;h(l) + I h(k)) < M (4.1.16)

2 (1= k)" 2
Proof. For p =0, we have h(y) = g(y), implies that h*(y) = ¢*(y) and H(y) = G(y). For
P(y) = e, <10g %)a = (I — k)*. Therefore

o

20(%5") (1os 565) oM\, kL (=R
0~ (Wl“”( o) ) ) AR
%(Za G() + 12 H(k)) %(Ia H() + I H(k))
1 I
:W/k(l_t)h<t)dt+m/k(l_t>h(k+l_t)dt
+ﬁ/ (t—k)h(t)dtJrﬁ/ (t = k)h(a +1 — t)dt.

(4.1.17)
Simplify the integrals which contain h(k + [ — t) for this let s = k +1 —t we get

l k
7o H(l) + ¢ H (k) :ﬁ /k (t—l)h(t)dt%—ﬁ /l (k — t)h(t)dt

1! 1"
+ W/k (s — 1)h(s)ds + m/l (k — s)h(s)d
1)+ I h(k)) .

2h(1)). Therefore, 1nequahty(
(I —k)* _ 2l (a
(ke  S1-n &

2(Zis
800 ) o
Also, we observe that g"’(k) << )"+ )) h(k) + (1+¢p(/€))h(l)> = Etga(Zh(k’H
.1.16) follows immediately.
)

(D) + I h(k)) < Ezl — Z))Z(Qh(k) + 2h(1)).
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For p = 0 and ¢(y) = e?®), we obtain the following inequality from inequality (4.1.2)

for fractional integral with respect to another function .

Corollary 4.1.3. If p =0 and ¢(y) = e*W). Then
h(k) + h(l)

(4.1.18)

k+1 Fa+1) o »
(55 < ) g T O T ) <

Proof. For p = 0 h(y) = g(y), implies that h*(y) = g*(y) as g"(y) = g(k + 1 — y),
Gy) = h(y) + h*(y) and H(y) = g(y) + g"(y) this imply that H(y) = G(y).
For 6(y) = ") (log ) = () =¥ (k)"

fﬁai (Zi G + L H (k) = fﬁo‘i (Ze H() + I H(K))
(o2 58)" /¢ 00, p 0~y
T ha @ T2 ) hk) + (L4 ¢ R) (D) ) =22= 75 = (h(k) + h(D))
n () OO < O )+ e ) <20 = 1,

Multiply by W we obtain

k+1 I'(a+1)
) S AW e

I (T H() + TR H(kK)) <

For p =0 and ¢(y) = y in (4.1.2) we get Hermite-Hadamard inequality for Hadamard

fractional integral.

Corollary 4.1.4. If p=0 and gb( )=1y. Then

h(k) + h(l)
.

(4.1.19)

)

Proof. For p = 0 h(y) = (
Gly) = hiy)+1(4) and H(y
<10g %) = (logE) .

implies that h*(y) = g*(y) as g"(y) = g(k +1 —y),
9(y)+g*(y). this imply that H(y) = G(y). For ¢(y) =




IN(e!
[ —

)(Za GI)+I}H(k) = Ha )(I" H(l) +Z H(k)).

f\
/\

E’T‘
N‘

10% ) (e k)) )+ (14 ) D) ) =2 U8 L) 14y + o).

Oé

(k;l) log Lo ,1<I§+H(l) + IO H(k)) <2
[ouD)"

Multiply with K we get

4(lo

k+1 I+ 1
()= ((1; é)z’(z’“(” +HILH() <

)

]

yP
If we let p = 0 and ¢(y) = e» in inequality (4.1.2) we obtain Hermite-Hadamard

inequality for so called Katugampola fractional integral.

p

Corollary 4.1.5. Let p =0 and ¢(y) = e'”. Then

h (kp ;- ZP> < 2_211(;1_;2)& (P h(l) + I (k) < W' (4.1.20)

Proof. For p =0 h(y) = g(y), implies that h*(y) = ¢*(y) as g"(y) = g(k +1—y), G(y) =

h(y) + h*(y) and H(y) = g(y) + ¢g*(y). this imply that H(y) = G(y). For ¢(y) = e,
o) \* _ (r—ar)*
(10% ¢<a>> =<

] (ﬂﬁ”(k) + <¢(%)>p> S ) Ul

(I = k) (1) 20 Tpe(l = k)
L@ 7o o) + 20 H(ky) =29 (2 / = s
[— [—k'T(a) ),  po?
L[N
i | S
1 l(lﬂ—sp)a—lsp_l oo grygs  (41:21)
F(@)/k = Bk + 10 — )

1 /l (8P — kPy>—t
+ sPTHh(KP + 1P — sP)dt
[(a) Ji ( )

:[1 + 12.
Evaluate I, by substituting t* = k” 4 [? — s” we get

1 [H(r — k)t 1L =)t
I, = / tPrh(t)dt + / tP~Lh(t)dt.
2 L pa_l ( ) P(O[) X pa—l ( )
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Equation 4.1.21 becomes

K(o)
l—k

(TG0 + T H @) = 2 (@ () + 7 b)),

o)

log—k i P — k)
<(z _42,))2 (((%’; P+ <b”<k)) h(k) + (L + ¢ (k) h(l)) = o LB (ko) 4 i),

4°h (/{,‘p + lp) (lp — ]{jp)a < F<05) (I]?+h(lp) _i_:z'la_h(kp)) < op -

2 ) pr(l=k)a = 1k Pl = K)o
(555 < g @) + T < HEEEL

Next we observe that the Hermite-Hadamard inequality (4.1.2), reduces to Hermite-

Hadamard inequality for Hadamard-type fractional integrals if ¢(y) = y.

Corollary 4.1.6. For ¢(y) =y
I'a+1)
2 (log £)*

()0 (5)
< <<(%>p + kp) h(k)+ (1 + kp)h(l)) :

The Hermite-Hadamard inequality (4.1.2), reduces to Hermite-Hadamard inequality for

IN

(T G(D) + 21" H(a))

Tempered fractional integrals, if ¢(y) = e¥.

Corollary 4.1.7. For ¢(y) = €Y,
n (DY (o (2 ") - Hat+ D) qorcy £ 207 H ()
2 el T 2(l— k)Rt -

(00 () ) )

4.1.1 Hermite-Hadamard type inequality

IN

First we prove a lemma which will be further used in our result.

Lemma 4.1.8. Let v > 0,n € N and hEZ} € Ly[k,l]. Then

7o - Zegmono) = 3 D= SO [yl 4 )

TR + (1) TR
(4.1.23)
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Proof. By definition of fractional integral and integration by parts

l _ s v+n—1 1
1) — k v+n—1 1

+ I,jj”*l’whig‘” (D).

A repeated application of above process leads to

n

n 1) — k v+n—i _ .
IZi"’¢h£b](l):—2(?((V)+:f(+>l)_i) U I(k) + T (). (4.1.24)

In a similar way, one can show that

TR ) = Y () (?Ely) ;gf?;) AR 4 ()P RE). (4.1.25)

Subtracting (4.1.25) from (4.1.24), we get (4.1.23). O

Theorem 4.1.9. Assume that h : [k,l] — R is n-times -differentiable and hEZ] ot is

convex. Then

zn: (w(l) _¢(k))y+n_i (—l)H_lhEZ_i](l)—{—hn l](k)} < [Ikyfh(l)—i— (—1)”+1Il'jfph(k:)

F'v+n—i+1)
+ wr(l()ujrlfz(ljr))ly)ﬂ (1 - 2l/+1n—1) (1 (k)] + RS D)),

=1

(4.1.26)

Proof. Let z = igi;:% which implies ¥(s) = z¢(k) + (1 — 2)(1). Therefore

l
zzfmwh$%k>—-121”¢h$%zw < f(;%pgij:@us>—¢wk»”+“ (D)= ()T ()
G Z)) " / (1 = 2)7 = 24 B o 7Y (k) + (1 — 2)w(1))de
< &l y+?yﬁi/| 2| IR+ (1 2) R

By similar calculations as in proof of Theorem 3 [40], we have

[ la= 2= Gl + - 2 o
=2 (1 ) (R0 WD

v+n
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Consequently, we have

T -z o) < S (1 ) (e +

(v+n)T(v+n) \© 2vtn-l
(4.1.27)
Combining inequality (4.1.27) with Equation (4.1.23) we get the desired result in (4.1.26).
[l

Remark 4.1.10. Inequality (4.1.26) generalizes the inequality (3.5) in [40]. However it
is still an open problem whether we can derive a similar result for generalized Hadamard-
type fractional integrals with respect to a function. In future work, we plan to generalize
various integral inequalities for the new generalized context of Hadamard-type operators

with respect to functions.
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Chapter 5
Summary

Chapter 1 begins by recalling some basic functions (gamma function, beta function,
Mittag-Leffler function) and their properties. Furthermore we discuses properties of dif-
ferential and integral operators and some function spaces. We study the different proper-
ties of Riemann-Liouville fractional integral and derivative, Caputo derivative, Hadamard
fractional integral and derivative and Hadamard-type fractional integral with respect to
a function ¢. Chapter 1 gives a broad view on the different properties of fractional inte-
grals and derivatives including composition property of integral over derivative and vice
versa. we also define generalized fractional integral with respect to another function,
Hadamard-type fractional integral, Tempered fractional integral and Katugampola frac-
tional integral.

In Chapter 2 we present an introduction of the classical Hermite-Hadamard inequality
and some of its applications. In Chapter 3, Hermite-Hadamard inequality, Hermite-
Hadamard type inequality and Fejér inequality for Riemann-Liouville fractional integral
are discussed. The major part of Chapter 3 consists of survey on Hermite-Hadamard and
Hermite-Hadamard type inequalities for different fractional integrals.

In Chapter 4, we established Hermite-Hadamard inequality for Hadamard-type fractional
integral with respect to a function. The main significance of the inequality is that it con-
tains Hermite-Hadamard inequalities for many fractional integrals as special cases. Gen-
eralized result of Hermite-Hadamard type inequality for fractional integral with respect

to another function is also established.
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