ASSESSING THE PHOTOLYTIC DEGRADATION OF SULFAMETHOXAZOLE (SMX) USING FISH AS A MODEL ORGANISM

By

Laraib Shahid

(Reg# 00000276590)

A thesis submitted in partial fulfillment of requirements for the degree of

Master of Science

In

Environmental Sciences

Institute of Environmental Sciences and Engineering (IESE)

School of Civil and Environmental Engineering (SCEE)

National University of Sciences and Technology (NUST)

Islamabad, Pakistan

(2021)

ASSESSING THE PHOTOLYTIC DEGRADATION OF SULFAMETHOXAZOLE (SMX) USING FISH AS A MODEL ORGANISM

By

Laraib Shahid

(Reg#00000276590)

A thesis submitted in partial fulfillment of requirements for the degree of

Master of Science

In

Environmental Sciences

Institute of Environmental Sciences and Engineering (IESE)

School of Civil and Environmental Engineering (SCEE)

National University of Sciences and Technology (NUST)

Islamabad, Pakistan

(2021)

Annex A To. NUST Letter No 0972/102/Exams/Thesis Cert Dated _____ July, 2021

THESIS ACCEPTANCE CERTIFICATE

Certified that final copy of MS/MPhil thesis written by Miss Laraib Shahid, (Registration No. 00000276590), of IESE-SCEE has been examined by undersigned, found complete in all respects as per NUST Statutes / Regulations, is free of plagiarism, errors, and mistakes and is accepted as partial fulfilment for award of MS/MPhil degree. It is further certified that necessary amendments as pointed out by GEC members of the scholar have also been incorporated in the said thesis.

Name of Supervisor: Dr. Imran Hashmi

Signature: _____

Date: _____

Signature (HOD): _____

Date: _____

Signature (Dean/Principal): _____

Date: _____

It is certified that the contents and forms of the thesis entitled

ASSESSING THE PHOTOLYTIC DEGRADATION OF SULFAMETHOXAZOLE (SMX) USING FISH AS A MODEL ORGANISM

Submitted by

Laraib Shahid

Has been found satisfactory for the requirements of the degree of Master of Science in Environmental Sciences

Supervisor: _____

Dr. Imran Hashmi

Professor IESE, SCEE, NUST

Member: _____

Dr. Muhammad Arshad

Assistant Professor IESE, SCEE, NUST

Member: _____

Dr. Habib Nasir

Professor SNS, NUST

I dedicate this thesis to my beloved parents and siblings for their endless support and encouragement

ACKNOWLEDGEMENTS

In the name of Allah, the Most Gracious and the Most Merciful, all praises to Him for the strengths and blessing in completing this thesis.

I would like to express my gratitude to my supervisor, **Dr. Imran Hashmi**, Professor, IESE, SCEE, NUST for his consistent support, patience, guidance, appreciation and motivation throughout my research work. I have been extremely lucky to have a supervisor who cared so much about my work, and who responded to my questions and queries promptly.

I owe my heartfelt thanks to all my Guidance and Examination Committee members (GEC), **Dr. Muhammad Arshad**, Associate Professor, IESE, SCEE, NUST and **Dr. Habib Nasir**, Professor, SNS, NUST for their motivation and insightful comments.

In particular I would also like to acknowledge lab demonstrator Environmental Microbiology lab, **Ms. Mahwish Khalid**, and lab demonstrator Environmental Toxicology lab **Ms. Romana Khan** and Lab Technician **Mr. Muhammad Basharat**, IESE for their kind support and cooperation. My special thanks to **Ms. Nazish Iftikhar** (PhD Scholar) and **Ms. Rabeea Zafar** (PhD Scholar), for assisting me time to time whenever I needed their guidance and help.

And at the last but not the least, I would like to express my gratitude to my friends Huda Kamal, Hina Ishaq and Momina Durrani for moral support and being there for practical support whenever I needed it and for helping me to keep things in perspective.

LARAIB SHAHID

Table of Contents

List of Tables	
List of Figures	
Abstract	1-2
Introduction	3-6
1.1 Present Study	5
1.2 Aims and Objectives	6
Literature Review	7-13
2.1 Background	7
2.2 Situation in Pakistan	7
2.3 The lifecycle of pharmaceuticals	8
2.4 Antibiotics as pollutants and their infestation in aquatic environment	8
2.5 Release and toxicity in the environment	9
2.6 Antibiotics a threat to aquaculture	10
2.7 Target antibiotic	10
2.8 Fate of SMX in environment	11
2.9 SMX degradation	12
2.10 Degradation product toxicity	12
2.11 Model organism Grass carp (Ctenopharyngodon idella)	13
Materials and Methods	14-24
3.1 Research design	14
3.2 Chemicals	15
3.3 Sampling	15

3.4 Acclimation and maintenance	5
3.5 Experimental protocol	5
3.6 Dose preparation	7
3.7 Exposure concentrations and period	7
3.8 SMX degradation by direct photolysis	8
3.9 Physicochemical parameters of experimental tanks	9
3.10 Blood collection)
3.11 Determination of lethal dose (LD50)	0
3.12 Sub-Lethal toxicity of sulfamethoxazole in fish	0
3.13 Analytical method)
3.13.1 Determination of SMX in water samples	0
3.14 Biochemical analysis	1
3.15 Toxicity assessment through Histopathology	2
3.15.1 Histopathology of tissues	2
3.15.2 Preparation of samples	2
3.16 In-Silico toxicity analysis	2
3.16.1 Selection of fish proteins	2
3.16.2 Protein preparation	3
3.16.3 Ligand preparation	3
3.16.4 Binding site prediction	1
3.16.5 Virtual screening	1
3.16.6 Molecular docking	4
3.16.7 Structural analysis and visualization	4

Results and Discussion	
4.1 Lethal dose (LD50) determination	25
4.2 Sulfamethoxazole degradation and percent removal	26
4.3 Physicochemical parameters	
4.3.1 pH	
4.3.2 Temperature	28
4.3.3 Turbidity	29
4.3.4 Dissolved Oxygen	
4.3.5 Hardness	31
4.4 Biochemical parameters	32
4.4.1 Glucose	32
4.4.2 Total protein	33
4.4.3 Triglycerides	35
4.4.4 Albumin	36
4.4.5 Calcium	37
4.4.6 Urea	
4.5 Histopathological analysis	39
4.5.1 Gills	
4.5.2 Liver	45
4.5.3 Kidney	
4.5.4 Brain	54
4.5.5 Muscle	
4.6 In-silico molecular docking	63

4.6.1 Protein preparation	
4.6.2 Ligand preparation	65
Conclusions and Recommendations	69-70
5.1 Conclusions	69
5.2 Recommendations	70
References	71-79

List of Tables

Table 3.1: Morphometric parameters of selected fish	15
Table 3.2: Specifications of UV lamp	18
Table 3.3: Physiochemical parameters of the experimental tanks, lake	
and hatchery water	19
Table 3.4: Proteins selected for in-silico analysis	

List of Figures

Figure 1.1: Sulfamethoxazole chemical structure
Figure 2.1: The lifecycle of pharmaceuticals from production to release into the aquatic
environment
Figure 2.2: Sources and contamination of sulfamethoxazole in environment11
Figure 2.3: Grass carp (Ctenopharyngodon idella)
Figure 3.1: General layout of research plan14
Figure 3.2: Research methodology phases
Figure 3.3: Experimental setup
Figure 3.4: SMX suspension
Figure 3.5: Sonication
Figure 3.6: UV lamp
Figure 3.7: Lamp placement in tank
Figure 3.8: UV-Vis spectrophotometer
Figure 3.9: Procedure for biochemical analysis
Figure 3.10: Fish tissues for histopathology
Figure 4.1: SMX lethal dose (LD50 mg/L) for grass carp25
Figure 4.2: SMX % removal after 15 min UV degradation
Figure 4.3: SMX % removal after 30 min UV degradation27
Figure 4.4: SMX % removal after 60 min UV degradation27
Figure 4.5: pH of water at 100, 300 and 500 mg/L of SMX with different
degradation time
Figure 4.6: Temperature of water at 100, 300 and 500 mg/L of SMX with different

degradation time
Figure 4.7: Turbidity of water at 100, 300 and 500 mg/L of SMX with different
degradation time
Figure 4.8: Dissolved oxygen in water at 100, 300 and 500 mg/L of SMX with different degradation time
Figure 4.9: Hardness of water at 100, 300 and 500 mg/L of SMX with different degradation time
Figure 4.10: Glucose (GLU) level of sulfamethoxazole (SMX) exposed fish at 100, 300 and 500 mg/L with different degradation time
Figure 4.11: Total Protein (TP) level of sulfamethoxazole (SMX) exposed fish at 100, 300 and 500 mg/L and different degradation time
Figure 4.12: Triglyceride (TRIG) level of sulfamethoxazole (SMX) exposed fish at 100, 300 and 500 mg/L and different degradation time
Figure 4.13: Albumin level of sulfamethoxazole (SMX) exposed fish at 100, 300 and 500 mg/L and different degradation time
Figure 4.14: Calcium level of sulfamethoxazole (SMX) exposed fish at 100, 300 and 500 mg/L and different degradation time
Figure 4.15: Urea level of control and sulfamethoxazole (SMX) exposed fish at 100, 300 and 500 mg/L with different degradation time
Figure 4.16: Photomicrographs of gill tissues of grass carp exposed to 100mg/L concentration of SMX
Figure 4.17: Photomicrographs of gill tissues of grass carp exposed to 300mg/L concentration of SMX
Figure 4.18: Photomicrographs of gill tissues of grass carp exposed to 500mg/L concentration of SMX

Figure 4.19: Photomicrographs of liver tissues of grass carp exposed to 100mg/L concentration of SMX
Figure 4.20: Photomicrographs of liver tissues of grass carp exposed to 300mg/L concentration of SMX
Figure 4.21: Photomicrographs of liver tissues of grass carp exposed to 500mg/L concentration of SMX
Figure 4.22: Photomicrographs of kidney tissues of grass carp exposed to 100mg/L concentration of SMX
Figure 4.23: Photomicrographs of kidney tissues of grass carp exposed to 300mg/L concentration of SMX
Figure 4.24: Photomicrographs of kidney tissues of grass carp exposed to 500mg/L concentration of SMX
Figure 4.25: Photomicrographs of brain tissues of grass carp exposed to 100mg/L concentration of SMX
Figure 4.26: Photomicrographs of brain tissues of grass carp exposed to 300mg/L concentration of SMX
Figure 4.27: Photomicrographs of brain tissues of grass carp exposed to 500mg/L concentration of SMX
Figure 4.28: Photomicrographs muscle tissues of grass carp exposed to 100mg/L concentration of SMX
Figure 4.29: Photomicrographs muscle tissues of grass carp exposed to 300mg/L concentration of SMX
Figure 4.30: Photomicrographs muscle tissues of grass carp exposed to 500mg/L concentration of SMX
Figure 4.31: 3-D structure of Heat Shock Protein 70 (HSP-70)63
Figure 4.32: 3-D structure of protein Tumor Necrosis Factor-Alpha (TNF-α)63

Figure 4.33: 3-D structure of protein Complement C3
Figure 4.34: 3-D structure of protein Interleukin-6 (IL-6)
Figure 4.35: 3-D structure of protein Interleukin-10 (IL-10)64
Figure 4.36: 2-D structure of sulfamethoxazole
Figure 4.37: 3-D structure of sulfamethoxazole
Figure 4.38: SMX 3-D(right) and 3-D(left) interaction of SMX with the binding pockets of Heat Shock Protein-70
Figure 4.39: SMX 3-D(right) and 3-D(left) interaction of SMX with the binding pockets of Interleukin 10 protein
Figure 4.40: SMX 3-D(right) and 3-D(left) interaction of SMX with the binding pockets of Tumor Necrosis Factor Alpha
Figure 4.41: SMX 3-D(right) and 3-D(left) interaction of SMX with the binding pockets of Complement C3
Figure 4.42: SMX 3-D(right) and 3-D(left) interaction of SMX with the binding pockets of Interleukin-10