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Preface

This issue of the journal reports regular papers. The first contribution is by
Paras Chopra and Andreas Bender and discusses quantitative modelling aspects
of the bgl operon for E.coli. The second contribution is by Rodrick Wallace and
Deborah Wallace and deals with ecosystem transitions affecting phenotype ex-
pressions and selection mechanisms. The techniques used are statistical models.
The third contribution is by Roberto Barbuti, Andrea Maggiolo-Schettini, Paolo
Milazzo, Paolo Tiberi and Angelo Troina and presents the Stochastic Calculus
of Looping Sequences (SCLS) suitable for the description of microbiological sys-
tems, such as cellular pathways, and their evolution. The last contribution is
by Federica Ciocchetta and describes the use of biological transactions to make
atomic sequences of interactions in the BlenX language.

May 2008 Corrado Priami
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Abstract. The bgl operon is responsible for the metabolism of β-
glucoside sugars such as salicin or arbutin in E. coli. Its regulatory
system involves both positive and negative feedback mechanisms and
it can be assumed to be more complex than that of the more closely
studied lac and trp operons. We have developed a quantitative model for
the regulation of the bgl operon which is subject to in silico experiments
investigating its behavior under different hypothetical conditions.
Upon administration of 5mM salicin as an inducer our model shows
80-fold induction, which compares well with the 60-fold induction
measured experimentally. Under practical conditions 5-10mM inducer
are employed, which is in line with the minimum inducer concentration
of 1mM required by our model. The necessity of BglF conformational
change for sugar transport has been hypothesized previously, and in
line with those hypotheses our model shows only minor induction if
conformational change is not allowed. Overall, this first quantitative
model for the bgl operon gives reasonable predictions that are close
to experimental results (where measured). It will be further refined as
values of the parameters are determined experimentally. The model
was developed in Systems Biology Markup Language (SBML) and
it is available from the authors and from the Biomodels repository
[www.ebi.ac.uk/biomodels].

Keywords: bgl operon, operon, transcriptional regulation, mathematical
modeling, SBML model, biochemical modeling.

1 Introduction

The transcriptional control of gene expression is one of the major regulatory
mechanisms by which both prokaryotic and eukaryotic organisms distinguish
different phases of both the cell cycle [1] as well as during development [2], and
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2 P. Chopra and A. Bender

one of the ways to adapt to the particular demands imposed by different environ-
ments. Nuclear hormone receptors are an example of receptors influencing gene
transcription directly, and they have also been exploited as drug development
targets, for example as the target of contraceptives. Modeling factors which in-
fluence gene transcription is a crucial step to understand living organisms. This
is true on a fundamental level; but knowing how gene transcription is regulated
in an organism could, for example in case of parasites, also lead to the discovery
of novel drug targets which may be suitable points of modulation.

In this work, we will present, to the knowledge of the authors, the first com-
putational model for bgl transcriptional regulation that combines experimental
observations into a coherent way to give, on a small set of model perturbations,
results which are close to experimental results which have been obtained until
this stage.

We will in the following introduce the experimental evidence that is known
today regarding the transcriptional regulation of the bgl operon. The model is
discussed fully in the section ”Computational Model Derivation of bgl Transcrip-
tion”, followed by a discussion of results obtained from the model.

An operon is a set of genes which are transcribed together to produce a sin-
gle messenger RNA (mRNA) [3]. It is one of the most prominent (and at the
same time simplest) strategies for genetic regulation in prokaryotes; having a
single promoter, all the constituting genes in an operon are controlled simulta-
neously. Two of the best known and well studied examples of operons are the
lac operon, which is involved in the metabolism of lactose, as well as the trp
operon, involved in metabolism of trypthophane. Literature on simulating and
modeling these operons abounds; for a general literature review on modeling
and simulation strategies for genetic regulatory networks see a recent publica-
tion [4]. Specifically, a comprehensive mathematical modeling of the lac operon
can be found in Yildirum et al. [3,4], while the trp operon has been simulated by
Santillan et al. [5]. This paper extends the list of operons modeled by the first
quantitative model for the bgl operon in E. coli.

The bgl operon is a cryptic operon [6], where by default the operon is in
the silent state which disallows transcription. Only upon mutation the operon
can become constitutively active, allowing for its transcription and regulatory
control. The fact that no deletion of the gene occurred despite being a cryptic
operon hints at the possibility that the bgl operon confers growth advantage
under certain conditions [7,8].This work is concerned with the active version of
the operon.

Structurally, the bgl operon in E. coli consists of three protein-encoding genes
[9] (see Figure 1): bglF, which is involved in the transport of β-glucoside sug-
ars such as salicin and arbutin; bglB, which is responsible for hydrolyzing the
transported sugar; and bglG, which acts as a positive regulator of the operon.
Even though the bgl operon is inducible by β-glucoside sugars, the mechanism
of regulation is different from other inducible operons such as the lac operon.
From a regulatory point of view, the bgl operon encodes two proteins with op-
posing behavior: BglG acts to increase the expression of the operon, while BglF
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Fig. 1. Regulatory system of the bgl operon. (The bglB gene is omitted since it is only
involved in sugar hydrolysis and not directly in regulation of bgl.) It is with our current
knowledge likely to be more complex than that of the lac and trp operon due to the
interplay between BglG, BglF and RNA terminators. See main text for a description
of the regulatory mechanism of this operon.

interacts with BglG and renders it incapable of this function, thus inhibiting
expression of the bgl gene. In contrast to the simple regulatory mechanism of
lac and trp operons, this dual control mechanism of bgl expression possesses a
comparatively complex structure.

In the work presented here, salicin was used as an inducer which was also
employed in previous experimental settings [10]. Salicin, a β-glycoside sugar,
does not have a direct effect on bgl regulation, but it gets phosphorylated as it is
transported across the membrane. In turn, this phosphorylation of salicin results
in a dephosphorylation of BglG monomers, which further leads to the formation
of BglG dimers which act as anti-terminators of bgl transcription and, thereby,
higher transcription levels.

The mechanism for bgl transcriptional regulation has been studied extensively
in experiments [10,11,12,13]. The operon has two transcriptional terminators
sandwiching the gene bglG, which is the first gene of the three to be transcribed
(see Figure 1). The terminators cause a majority of RNA polymerases transcrib-
ing the operon to halt transcription, producing incomplete transcripts. Never-
theless, a small number of RNA polymerases go on to produce a full transcript
which is translated to the proteins BglG, BglF and BglB. The regulatory system
of the operon, considered in the model, is composed of only two components,
BglG and BglF. BglB is only involved in sugar hydrolysis and has no regulatory
function. See Figure 1 for an overview of the regulatory mechanism.
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BglG, once produced, is phosphorylated by the phosphocarrier protein HPr,
which is part of the bacterial Phosphotransferase System (PTS). Phosphoryla-
tion by HPr causes BglG to dimerise [14]. BglF also needs to be phosphorylated
by HPr for its proper functioning [15]. Regarding the regulation of bgl induc-
tion by β-glucoside sugars, apart from transferring a phosphate group to BglG
and BglF, HPr does not play any other significant role and thus it is not in-
cluded in the model. This means that, at all times, the proteins BglG and BglF
are assumed to be present in their phosphorylated form (for justifications of
this and other model assumptions see ”Computational Model Derivation of bgl
Transcription” section).

The BglG dimer, once formed, can bind to the terminators that results in
anti-termination of operon’s transcription [16] and, thus, higher levels of tran-
scription. This way, BglG can act as a positive regulator. BglF is a part of the
PTS in E. coli which is responsible for transporting all kinds of sugars inside
the cell. The specific function of BglF is to transport β-glucoside sugars such as
salicin or arbutin [11]. However, in absence of any β-glucoside sugar in the ex-
tracellular environment BglF phosphorylates the BglG dimer [17,18], converting
it into two monomers [19] and hence the dimer is no longer available to act as
an anti-terminator [11]. This way, BglF decreases the expression of the operon
in absence of β-glucoside sugars and, thus, it acts as a negative regulator.

While transporting a sugar molecule, BglF can transfer a phosphate group
to it in two ways. Firstly (and most commonly), the phosphate transfer can
occur through the PTS system. Secondly, BglF can dephosphorylate the already
phosphorylated BglG and it can then transfer the available phosphate group
to the sugar [11]. Thereby, when sugar is present, BglF allows the formation
of BglG dimer. The dimer can, then, act as an anti-terminator and thus, the
expression of the bgl operon is increased in presence of β-glucoside sugars. For a
review on bgl’s transcription anti-termination, see [20]. Also see [21] for a review
on the structural basis of BglG’s regulation.

As described above BglF can perform two opposite functions, both the phos-
phorylation and the dephosphorylation of BglG. It has been suggested that BglF
acts as a molecular switch which can be stimulated by β-glucosides which causes
it to change its role from phosphorylating BglG to dephosphorylating it [22].
The detailed molecular mechanism of the switching action is yet to be investi-
gated. Preliminary research, however, reveals that the sugar transformation is
concerted with the conformational change of BglF so that it can no longer phos-
phorylate the BglG dimer. This conformation change involves the disulphide
bond formation between two cysteine residues at its active site [22]. Investigat-
ing the importance of allowing BglF conformational change is one of the central
points of the current work, as outlined and analyzed later.

Apart from the regulation of the bgl operon directly by transcription anti-
termination, a distinct regulatory pathway has also been discovered, namely
catabolite repression [23]. As described, HPr, which itself is part of the PTS
system, phosphorylates BglG which causes the formation of BglG dimer. Since
HPr is part of the PTS system, it can directly control the degree of BglG’s
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phosphorylation depending upon types of sugars available to the bacterium. We
do not consider catabolite repression in our model for two reasons. On the prac-
tical side, we needed to reduce complexity of the model to a reasonable degree.
On the scientific side, excluding catabolite repression from the model represents
a situation when only β-glucoside sugars are available in the medium, which is
precisely the situation when the bgl operon is expressed and not repressed - the
the situation we are attempting to model. On the other hand that means that
our model is not an accurate model of the behavior of bgl operon under more
common conditions when both glucose and other sugars are available (but when
bgl is inactivated).

To the best of the authors’ knowledge, the work presented here is the first
comprehensive attempt to model the regulation of the bgl operon. While ex-
perimentally the operon has been investigated before (as outlined above), no
attempt has been made yet to integrate the factors influencing bgl transcription
into a single model.

For the interested reader, Kremling et al. recently presented [24] a mathemati-
cal model for the catabolite repression in E. coli. More generally, comprehensive
modeling of carbohydrate uptake and metabolism has been performed by the
same group [25].

2 Computational Model Derivation of bgl Transcription

2.1 Model Approximations

We have made several assumptions while designing the model. Firstly, the growth
rate of the bacterium has been neglected so as to reduce the complexity of the
model. Secondly, as exact quantitative data was not available, the concentration
of all species except genes, RNA polymerase and ribosome was assumed to be
zero at the start of the simulations, while the inducer, salicin, is only introduced
once the species take a steady state concentration. Thirdly, some backward reac-
tions such as unbinding of the RNA polymerase from an open complex were not
considered because they are very slow in comparison to their respective forward
reactions. For instance, the dissociation rate of BglG Dimer and Terminator 1
(GG.Ter1) complex is 106 times slower than the corresponding association rate
[26]. Fourthly, in all experiments except one, the concentration of the extracel-
lular β-glucoside sugar (salicin) was taken as constant over time. This is also the
case in real-world experiments to a sufficient degree.

2.2 Model Equations

The model consists of a set of deterministic chemical reactions. The important
reactions for the regulation of the operon include the interactions between
RNA polymerase and terminators, BglF and BglG, BglF and salicin, and BglG
dimer and terminators. The reactions are defined by their kinetic parameters.
Except for few parameters where direct kinetic values were available we needed to
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estimate the values of most of the parameters. Table 1 lists the reactions and
their corresponding kinetic parameters while Table 2 lists the constants chosen
for the model with their experimental, where known, or the estimated values.
The transcription of bgl by RNA polymerase follows a serial route. It means
that the first terminator (Ter1) can only be transcribed once RNA polymerase
has made a complex with the promoter region. Similarly, bglG can only be tran-
scribed once Ter1 has been transcribed. This is represented in the model as
follows. RNApolcell is the free RNA polymerase available in the cell. It binds
with the bglR region, which is the promoter for the bgl operon, and the com-
plex thus formed is represented by RNApolbglR in the model (Table 1, Reaction
1). RNApolbglR interacts with DNATer1 (DNA coding for the first terminator)
to make Ter1 and RNApolTer1. (RNApolTer1 represents RNA Polymerase af-
ter transcribing Ter1.) RNApolTer1 is a precursor of mRNAG (mRNA coding
for BglG; Reaction 2). This way, mRNAG can only be produced after the first
terminator has been produced (Reaction 3). Both the incompletely transcribed
transcript and fully transcribed transcript of the bgl operon contain a ribosome
binding site for bglG. Hence, BglG is produced from both of the transcripts and,
thus, in the model, mRNAG is produced corresponding to both of the tran-
scripts. Only the fully transcribed transcript has a ribosome binding site for
bglF, therefore mRNAF (mRNA coding for BglF) is produced corresponding
only to the production of a complete bgl transcript. Hence in the simulation
results, the actual bgl operon’s expression level (concentration of the fully tran-
scribed bgl transcript) is represented by the concentration of mRNAF (Reaction
4). The first terminator has already slowed the transcription in the previous
step; the second terminator further slows down the process. Both, mRNAG and
mRNAF are produced in this reaction because the full bgl operon’s transcript
codes for both BglG and BglF proteins mRNAG now binds to the ribosome,
which gives the mRNAG/ribosome complex (Reaction 5). This complex pro-
duces the translated protein BglG (plus unbound ribosome and mRNAG) with
the rate constant Ktran G. mRNAF on the other hand also forms a complex with
the ribosome (Reaction 6) and is translated with rate constant Ktran F to give
BglF (which is already phorphorylated), as well as again free ribosome and free
mRNAF. BglG is now able to dimerise with rate constant Kdimer (Reaction 7),
while BglF is able to interact with the salicin inducer as follows (Reaction 8):
Firstly, BglF (which is still phosphorylated) interacts with salicin to form a com-
plex. This complex can either dissociate (second part of Reaction 8) or transport
the sugar into the cell, with rate constant Ksalin. If the latter takes place, BglF
will form a disulphide bond which introduces conformational change (third part
of Reaction 8). This disulphide bridge will be cleaved in cellular environments by
thioredoxin and glutaredoxin, as Reaction 10 outlines. The BglG dimer on the
other hand undergoes a two-step reversible reaction which is shown in Reaction
9. In the first step, an equilibrium exists between phosphorylated BglF and the
BglG dimer as individual monomers, and the complex between BglF and the
BglG dimer. In the second step, phosphorylated BglF is able to phosphorylate
the BglG dimer, which leads to phosphorylated BglG monomers. On the other
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hand, the BglG dimer can also undergo a second reaction (Reaction 11), namely
complex formation with the terminators, both Ter1 and Ter2. In both cases, this
increases the transcription rate because now the terminators are unable to block
the RNA polymerase. For all species, degradation is considered in the model
with the reactions outlined in Reaction 12.

Table 1. Reactions constituting the model and their kinetic parameters

S.
No.

Chemical reactions and their kinetic parameters

1. RNApolcell + bglR
Kr cell
−−−−−→RNApolbglR

RNApolcell is the RNA Polymerase in cell. RNApolbglR is the RNA Poly-
merase attached with the bglR.

Kr cell = 6.41 × 104M−1sec−1; [RNApolcell] = 2.6µM

[Operon] = 2.075nM; [bglR], [bglG], [bglF] and the [DNATer1]= [Operon]

2. RNApolbglR + DNATer1
Kter1
−−−−→Ter1 + RNApolTer1

RNApolTer1
Krnap diss
−−−−−−−→RNApolcell + DNATer1

DNATer1 is the DNA coding for first terminator (Ter1). The second re-
action shows the dissociation of RNA Polymerase when the transcription
halts due to blockage by the terminators. RNApolTer1 represents RNA
Polymerase after transcribing Ter1.

Kter1 = 5.87 × 108M−1sec−1

Krnap diss = 0.01sec−1

3.

RNApolTer1 + bglG
KbglG× Kinb1

Kinb1+[T er1]
−−−−−−−−−−−−−−→mRNAG + Ter2 + RNApolG
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Table 1. (continued)

The second factor Kinb1
Kinb1+[Ter1] in reaction kinetics decreases the rate of

reaction as the concentration of first terminator increases. Thus, it ac-
counts for the activity of first terminator. Only mRNAG is produced in
this reaction because the incomplete transcript codes only for the BglG.

KbglG = 2.245 × 107M−1sec−1; Kinb1 = 0.264nM

4.

RNApolG + bglF
KbglF× Kinb2

Kinb2+[T er2]
−−−−−−−−−−−−−−→mRNAF + mRNAF + RNApolcell

The first terminator has already slowed the transcription in previous step;
the second terminator further slows down the process. Both, mRNAG and
mRNAF are produced in this reaction because the full bgl operon’s tran-
script codes for both BglG and BglF proteins.

KbglF = 9.83 × 106M−1sec−1; Kinb2 = 0.366nM

5. mRNAG + Ribosome
Kg ribo
−−−−−→mRNAG · Ribo

mRNAG · Ribo
Ktran G
−−−−−−→G + Ribosome + mRNAG

The first reaction represents the binding of Ribosome with mRNA. The
second step represents the elongation step. Here, the protein BglG is rep-
resented by ’G’.

Kg ribo = 108M−1sec−1; Ktran G = 0.048sec−1

6. mRNAF + Ribosome
Kf ribo
−−−−−→mRNAF · Ribo

mRNAF · Ribo
Ktran F
−−−−−−→F ∗ + Ribosome + mRNAF

These reactions represent the production of BglF. The enzyme BglF is rep-
resented by F ∗ to show that it is already phosphorylated by Hpr through
the Phosphotransferase system (PTS) system.



A Quantitative bgl Operon Model 9

Table 1. (continued)

Kf ribo = 108M−1sec−1; Ktran F = 0.023sec−1

7.
G + G

Kdimer
−−−−−→GG

This reaction represents the dimerization of BglG.

Kdimer = 3860 × 106M−1sec−1

8. F ∗ + Salicinout
Ksalout
−−−−−→Salicinout · F ∗

Salicinout · F ∗ K−salout
−−−−−−→F ∗ + Salicinout

Salicinout · F ∗ Ksalin
−−−−→Salicin∗

in + F ∗
S−S

The above reactions represent the transport of β-glucoside sugar(s) such
as salicin. Once the sugar has been transported, the conformation of BglF
changes so that it may not phosphorylate the BglG dimer. This confor-
mation change is represented by change of F ∗ to F ∗

S−S which now has
disulphide bonds between two of its cysteine residues [22].

Ksalout = 1.04 × 106M−1sec−1; K−salout = 1.55sec−1;
Ksalin = 19.2sec−1

9.
F ∗ + GG

Kphos G
−−−−−→F ∗

· GG

F ∗
· GG

K−phos G

−−−−−−→F ∗ + GG

F ∗
· GG

Kphos G∗

−−−−−−→F ∗ + 2G∗
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Table 1. (continued)

F ∗ + 2G∗
K∗

−phos G

−−−−−−→F ∗
· GG

The phosphorylation of the BglG dimer is shown by above reactions. It is
a two step reaction in which both the steps are reversible.

Kphos G = 0.83 × 106M−1sec−1; K−phos G = 1.55sec−1

Kphos G∗ = 19.2sec−1; K∗
−phos G∗ = 5.4 × 106M−1sec−1

10.

F ∗
S−S

V max×[S]
Km+[S]

−−−−−−→F ∗

The disulfide bonds are continuously reduced in the cellular environment
by two main pathways: thioredoxin and glutaredoxin [22,1]. We model the
enzymatic reaction which reduces the disulphide bonds in the thioredoxin
pathway [31].

V max = 0.331µM−1sec−1; Km = 13.4µM

11. GG + Ter1
Kanti−ter1
−−−−−−−→GG · Ter1

GG + Ter2
Kanti−ter2
−−−−−−−→GG · Ter2

When the BglG dimer forms a complex with the terminators, it increases
the transcription rate because now the terminators are unable to block
the RNA polymerase. Mathematically, the formation of this complex de-
creases the concentration of Ter1 & Ter2. When [Ter1], for instance, is
decreased, the magnitude of the factor Kinb1

Kinb1+[Ter1] is increased, which

results in net increase of the transcription rate.

Kanti−ter1 = 106M−1sec−1; Kanti−ter2 = 106M−1sec−1
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Table 1. (continued)

12. mRNAG, mRNAF , T er1, T er2
KRNA degrad

−−−−−−−−→

G, G∗, F ∗, F ∗
S−S

Kprotein degrad
−−−−−−−−−−→

GG · Ter1, GG · Ter2
Kprotein degrad

−−−−−−−−−−→

Representation of the degradation of various species over the time.

KRNA degrad = 0.00235sec−1; Kprotein degrad = 0.000385sec−1

For a list of model equations see Table 1 and for the choice of constants with
literature references see Table 2.

2.3 Computational Details

The model was developed in Systems Biology Markup Language (SBML) [27].
The SBML model file may be requested from the authors (P.C.). The software
chosen for modeling was CellDesigner [28] while simulations were performed
using Jarnac [29]. (For an overview of tools that can be used for kinetic modeling
of biochemical networks see a recent review [30].)

Species not mentioned explicitly in Table 2 have initially zero concentrations.

Table 2. Model parameters and their corresponding values

S.
No.

Parameter Notes/Reference

1. Used the value of transcription initia-
tion rate for the trypthophan operon
[5].

2. [RNApolcell] = 2.6µM Concentration of the RNA poly-
merase in vivo [32].

Kr cell = 6.41 × 104M
−1sec

−1
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Table 2. (continued)

3. [Operon] = 2.075nM Calculated as follows. Assuming the
volume of an E. coli cell to be 8 ×

10−16 liters [5]. (Note that only one
copy of the bgl operon is present in
the wild type cell.) Now, the con-
centration of one copy (or molecule)
is 1

(6.023×1023)(8×10−16) = 2.075nM .

Note: Here, the ’Operon’ represents
bglR, bglG, bglF and the DNATer1.

4. Kter1 = 5.87 × 108M−1sec−1 Calculated as follows. The length of
DNATer1 is 32bp and the transcrip-
tion rate in E. coli is 39 nt/sec
[ ]. Therefore, the time taken for
the transcription of DNATer1 is 0.82
seconds.

5. KbglG = 2.245 × 107M−1sec−1 Calculated in the same way as done
for calculating Kter1 above. In this
case, the length of the bglG is 837bp.

6. Kinb1 = 0.264nM Calculated as follows. An 8.8 fold
increase in operon expression is
seen if first terminator is not
present/non-functional [10]. So,
taking Kinb2

Kinb2+[Ter2] = 1
8.8 and

tting [Ter1]=2.075nM, we get
Kinb1=0.264nM.

7. KbglF = 9.83 × 106M−1sec−1 Calculated in the same way as done
for calculating Kter1 above. In this
case, the length of bglF + DNATer2

is 1910 bp.
8. Kinb2 = 0.366nM Calculated in the same way as done

for calculating Kter1 above. In this
case, a 6.7 fold increase in operon ex-
pression is seen if second terminator
is functionally inactive [10].

9. Kg ribo = 108M−1sec−1 Taken from [33].

se

5
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Table 2. (continued)

10. Ktran G = 0.048sec−1 Calculated as follows. The length of
mRNAG is 278 amino acids (AAs)
and the transcription rate in E. coli
is 15 AAs/sec [34]. Therefore, total
time taken for synthesis of G is 20.5
seconds. The total time includes the
time spent (2 seconds) for translation
initiation step also.

11. Kf ribo = 108M−1sec−1 Taken from [33].
12. Ktran F = 0.023sec−1 Calculated in the same way as done

for calculating Ktran G above. In
this case, the length of mRNAF is
of 625 AAs.

13. Kdimer = 3860 × 106M−1sec−1 Taken from [35].
14. Ksalout = 1.04 × 106M−1sec−1;

K−salout = 1.55sec−1; Ksalin =
19.2sec−1

Calculated [34,35,36]. The salicin
transport rate in E. coli is 24% of
the glucose transport rate, therefore
kinetic parameters involved in salicin
transport is taken to be 0.24 times
the corresponding parameters in glu-
cose transport.

15. Kphos G = 0.83 × 106M−1sec−1 Taken from [18].
16. K−phos G = 1.55sec−1; Kphos G∗ =

19.2sec−1; K−phos G∗ = 5.4 ×

106M−1sec−1

Calculated using data from [36].
Treating the phosphorylation &
dephosphorylation of GG analogous
to that of glucose in PTS and then
using the same kinetic values for GG
as for glucose transport.

17. Kanti−ter1 = 106M−1sec−1;
Kanti−ter2 = 106M−1sec−1

Assumed values. Standard values of
RNA binding proteins fall in this
range.

18. V max = 0.331µM−1sec−1; Km =
13.4µM

Taken from [36]. The values cor-
respond to the enzymatic reaction
in Helicobacter pylori which reduces
the disulphide bonds in thioredoxin
pathway

19. KRNA degrad = 0.00235sec−1 Calculated. average half life
of bgl operon’s transcript as 294 sec-
onds [37].

20. Kprotein degrad = 0.000385sec−1 Calculated. The Standard half life of
a protein in E. coli is 30 minutes.

21. Krnap diss = 0.01sec−1 Taken from [38]

Assumed
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3 Results and Discussion

3.1 Steady State Levels with and without Inducer

The model is simulated over a period of time and the concentration of species
under observation (mRNAF in this case) is tracked. During the course of simu-
lation, when the value becomes constant with respect to time, the value is said
to be steady-state value of the species’ concentration. At the start of the simu-
lation, the concentrations of all species (except RNA polymerase, ribosome, and
Genes) was taken to be zero. The results of this steady-state experiment are
listed in Table 3, both for settings without inducer and at a concentration of the
inducer salicin of 5mM. It can be seen that the bgl transcript concentration is
increased 80-fold in the presence of salicin, while the concentration of phospho-
rylated BglF is decreased to the millionth part. The BglG concentration as well
as the phosphorylated BglG concentration is virtually unchanged, while more
dimer (concentration increased by a factor of 105) is present. Concentrations
of the BglG dimer with the first and second terminator complex are increased
between 103 and 105 fold.

3.2 Induction of the bgl Operon

Upon administration of 5mM salicin as an inducer, an 80 fold increase (Fig-
ure 2 and Table 3) in the bgl operon (mRNAF) expression level could be ob-
served. Experimentally, a 60 fold induction has been reported by Schnetz and
Rak [10] at the same inducer concentration. Given the large number of esti-
mated parameters of the model both numbers are roughly of the same order of
magnitude.

Table 3. Steady state levels of different species when (a) no inducer is present, and
(b) when 5mM inducer is present

Inducer Concentration (a) No inducer (b) 5mM

Species Conc. (M) Conc. (M)

bgl transcript (ribosome un-
bound) (mRNAF )

3.90 x 10−10 2.26 x 10−08

BglF phosphorylated (F*) 1.38 x 10−05 6.43 x 10−11

BglF changed conformation
(F*s−s)

0 1.49 x 10−05

BglG (G) 1.68 x 10−09 1.59 x 10−09

BglG Dimer (GG) 1.20 x 10−12 1.86 x 10−07

BglG phosphorylated (G*) 5.68 x 10−05 4.77 x 10−05

BglG Dimer & first termina-
tor complex (GG.Ter1)

4.53 x 10−10 8.77 x 10−07

BglG Dimer & second termi-
nator complex (GG.Ter2)

3.80 x 10−12 3.26 x 10−07



A Quantitative bgl Operon Model 15

1 00E 08

1.50E-08

2.00E-08

2.50E-08

3.00E-08

3.50E-08
n

tr
a

ti
o

n
 o

f 
m

R
N

A
 F

(M
)

0.00E+00

5.00E-09

1.00E-08

-6 -4 -2 0 2 4 6 8 10 12 14 16

C
o

n
c
e
n

Time (sec)

Thousands

Inducer Introduced

Fig. 2. An 80-fold induction of bgl expression is seen at an inducer (salicin) concentra-
tion of 5mM. The concentration of mRNAF (representative of the bgl full transcript)
reached a plateau at about 310 nM, representing about 80 times the basal level of
mRNAF without inducer. This compares to 60-fold induction seen experimentally at
this inducer concentration [10].

3.3 The Dynamics of Induction When Inducer Is Present in
Limiting Amounts

The biologically most appropriate regulatory behavior would boost the operon
expression only as long as the inducer is available. The operon should not remain
at high expression levels when the inducer is exhausted in the medium due to its
consumption or otherwise. To check if the bgl operon is optimal in this regard, we
performed this hypothetical experiment with our model. Unlike previous exper-
iments where the inducer was throughout present at a constant concentration,
the inducer in this experiment could be depleted (and ultimately get exhausted)
as it was being transported across the membrane. The model predicts a rate of
transport of the inducer (salicin) by BglF of ∼ 0.31µM/s. Therefore, to carry
out this experiment for 20,000 seconds, ∼ 0.31µM/s × 20, 000 = 6.2mM of in-
ducer was introduced at time zero. It can be observed in Figure 3 that initially
the expression level of the bgl operon rises considerably (∼ 80 fold) and then
when salicin gets exhausted, expression gradually falls to basal levels within the
expected timeframe of 20,000 seconds.

3.4 Inducer Concentration vs. Induction Intensity

We next determined the minimum concentration of the inducer needed for any
significant induction in the operon. This experiment involved the determination
of the increase in the operon’s expression levels at different inducer concentra-
tions. The results are shown in Figure 4. It can be observed that there is no
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Fig. 3. Induction of bgl expression at limiting amounts of inducer (6.2 mM). The in-
ducer in this experiment does not have a constant concentration. It is being depleted,
hence limiting, as it is being transported by BglF. At t=0, 6.2 mM inducer are intro-
duced, leading to rapid induction followed by relaxation to basal expression levels.

significant induction of the inducer up to concentration of around 1mM. This
value of 1mM, hence, is the minimum concentration of the inducer to cause any
significant induction. As most of the induction experiments are performed at 5-
10 mM inducer concentration [10,11,12,13], the minimum inducer concentration
given by our model is in agreement with experimental procedures.

3.5 Sensitivity of the Model to the Kinetic RNA-Binding
Parameters Kter1 and Kter2

The parameters Kter1 and Kter2 were assigned the value for kinetic rates of
standard RNA binding proteins (106M−1sec−1) [26]. This was necessary since
no kinetic data for BglG-terminator binding has yet been reported. To investi-
gate the sensitivity of our model to these assumed kinetic parameters we now
examined the sensitivity of the model to variations of Kter1 and Kter2 which
were changed simultaneously to 10−2, 10−1, 101 and 102 fold the initially as-
sumed value. We then observed the changes in the bgl transcript’s concentration
when (a) no inducer and (b) 5mM inducer were present. Results are shown in
Figure 5. If no inducer was present, induction was independent of this parame-
ter. At an inducer concentration of 5mM, induction did depend on the particular
value of this constant, but to a much lesser than linear degree. For our model this
means that the precise choice of Kter1 and Kter2 is less critical and that we can
be confident to obtain satisfactory model behavior with the chosen parameters.
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Fig. 4. Induction of bgl expression at different inducer concentrations. The results
suggest that at least a concentration of 1mM is needed for significant induction. Since
in practice experiments are usually carried out at concentrations between 5mM and
10mM, this is in agreement with our model.
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18 P. Chopra and A. Bender

3.6 The Failure of BglF to Change Its Conformation While
Transporting the Sugar Results in Loss of Induction

One of the regulatory steps of bgl induction is the conformational change in BglF
while transporting the sugar [22]. This phenomenon of conformational change,
however, is still largely a hypothesis and has not been investigated in detail.
We were investigating how crucial the conformational change in BglF is to the
regulation of the operon. In this experiment, we mutated BglF so that now it is
not able to change its conformation while transporting sugar. Particularly, the

reaction Salicinout·F
∗ Ksalin
−−−−→Salicin∗

in+F ∗
S−S (Table 1, Reaction 8) in the model

was modified to Salicinout · F ∗ Ksalin
−−−−→Salicin∗

in + F ∗. Results of this modified
system are shown in Figure 6. It can be observed that upon administration
of the inducer the concentration of bgl transcript increases only very slightly
(from 3.9E-10 M to 3.95E-10 M; about 1%), compared to a change of about 80-
fold when conformational change is allowed (see Table 2). Even though inducer
concentrations are kept constant in this case, the concentration of bgl transcript
falls to pre-inducer levels very quickly. Thus we can conclude that our model
confirms the requirement of a conformational change of BglF proposed by Chen
et al. [22].
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Fig. 6. Induction dynamics of the bgl operon when BglF is modified not to be able
to undergo a conformational change while transporting sugar. Initially, upon inducer
administration, a minimal (∼ 1%) induction can be observed. in the bgl transcript
concentration, followed by relaxation to basal values. Unlike in Figure 3 the inducer
concentration is constant throughout the simulation. This result supports that BglF
conformational change is required to keep bgl expression and constantly high levels.
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3.7 Mutations in bglG and bglF Make the Expression of bgl Operon
Constitutive

It has been shown experimentally that loss-of-function mutations in either the
bglG or bglF genes cause constitutive expression of the bgl operon [12,13]. Thus,
both of the components of this regulatory system are required for normal reg-
ulation. If in our model system bglF is mutated, we observe a 200-fold change
of bgl expression, while bglG mutations lead to basal expression levels. (Data
are given in Table 4.) In both cases, expression is independent of the presence
of inducer. This is in agreement with experimental observation, where consti-
tutive expression results in expression independent of inducer concentrations.
Functionally speaking, the bglG mutation results in the inability of this protein

Table 4. Change in operon’s expression when bglG or bglF is mutated. The expression
becomes constitutive when these genes are mutated. That is, it becomes independent
of the presence of inducer.

With no inducer
Mutation in Fold change in expression

bglF ˜200

bglG 1 (basal level)

With 5mM inducer

Mutation in Fold change in expression

bglF ˜ 200

bglG 1 (basal level)

Table 5. Predictions made by the model and experimental status

Experiment
No.

Prediction Experimental Status

1. No oscillatory expression of the
operon seen in the model.

Unknown.

2. 80 fold induction at 5mM inducer. 60 fold induction at 5mM inducer
[10].

3 The lower threshold for the in-
ducer concentration for induction is
˜1mM.

Most of the induction experiments
are carried at 5-10 mM inducer
[10,13].

4 The conformational change in BglF
is an essential part of the regula-
tion.

The role of conformation change of
BglF has been suggested in [22].

5 Loss-of-function mutation in either
BglF or BglG make the operon’s ex-
pression constitutive.

Confirmed in [12,13].

7 Steady state concentration levels of
various species.

Unknown.
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to form a dimer, while a bglF mutation results in its inability to transport the
inducer and phosphorylate the BglG dimer.

3.8 Predictions Made by the Model

Table 5 summarizes all the predictions made by the model, as discussed in the
previous sections, along with their respective experimental status. It can be
seen that for conditions where experimental data are present our model gives
results which agree with experimental data. Further experiments performed in
the future will be used to further refine this model.

4 Conclusions

The bgl operon is involved in the metabolism of β-glucoside sugars such as salicin
or arbutin which also act as its inducers. In this work we present the first quan-
titative model for the regulation of the bgl operon. Upon administration of 5mM
inducer our model shows 80-fold induction, which compares well with the 60-fold
induction measured experimentally. In practice usually 5-10mM inducer are em-
ployed, which is in agreement with the minimum inducer concentration necessary
in our model of 1mM. The necessity of BglF conformational change for sugar
transport has been hypothesized previously, and our model shows only minor
induction if this conformational change is not allowed. Overall, this first model
for the bgl operon gives reasonable predictions that are close to experimental
results (where measured). Given continuously available new experimental data,
we will update the model in the future and ensure its consistency.
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Abstract. We argue that mesoscale ecosystem resilience shifts akin to
sudden phase transitions in physical systems can entrain similarly punc-
tuated events of gene expression on more rapid time scales, and, in part
through such means, slower changes induced by selection pressure, trig-
gering punctuated equilibrium Darwinian evolutionary transitions on ge-
ologic time scales. The approach reduces ecosystem, gene expression, and
Darwinian genetic dynamics to a least common denominator of informa-
tion sources interacting by crosstalk at markedly differing rates. Pettini’s
‘topological hypothesis’, via a homology between information source un-
certainty and free energy density, generates a regression-like class of statis-
tical models of sudden coevolutionary phase transition based on the Rate
Distortion and Shannon-McMillan Theorems of information theory which
links all three levels. A mathematical treatment of Holling’s extended key-
stone hypothesis regarding the particular role of mesoscale phenomena
in entraining both slower and faster dynamical structures produces the
result. A main theme is the necessity of a cognitive paradigm for gene
expression, mirroring I. Cohen’s cognitive approach to immune function.
Invocation of the necessary conditions imposed by the asymptotic limit
theorems of communication theory enables us to penetrate one layer more
deeply before needing to impose an empirically-derived phenomenologi-
cal system of ‘Onsager relation’ recursive coevolutionary stochastic differ-
ential equations. Extending the development to second order via a large
deviations argument permits modeling the influence of human cultural
structures on ecosystems as ‘farming’.

1 Introduction

Early in the twentieth century, evolutionary biologists debated whether species
change occurred gradually or as a result of massive catastrophes. At that time,
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the gradualists prevailed, and the catastrophists were marginalized. Speciation
was viewed as a gradual process of incremental changes in response to incre-
mental environmental challenges. However, Eldredge and Gould [28, 42], after
study of the fossil record, concluded that speciation occurred suddenly. Species
appeared in the fossil record, remained in the fossil record largely unchanged,
and then disappeared. There was little or no evidence of gradual incremental
changes that led to speciation. Eldredge and Gould called the process that they
saw ‘punctuated equilibrium’, a term that referred to the sudden changes (punc-
tuations) and the quiet interims (equilibria), a combination of gradualism and
catastrophism. Eldredge and Gould published their initial findings in the early
1970’s.

In the same period C. S. Holling developed the ecosystem equivalent of punc-
tuated equilibrium, namely ecosystem resilience theory [35, 44, 47, 81]. Resilience
theory views each ecosystem as normally in a quasi-equilibrium state. As the
ecosystem is subjected to various impacts, it shows no obvious changes in struc-
ture or function but the relationships between the species become tighter as the
perturbations erode the more delicate peripheral relationships. Finally, either a
more intense impact occurs or the aggregated impacts over time shatter so many
loose relationships that those remaining become brittle and shatter. The ecosys-
tem then shifts relatively suddenly into a different dynamic domain, a different
quasi-equilibrium with markedly different structure and function. Examples of
domain change include natural ones such as change of forest into prairie after
drought and major forest fires in areas marginal for forests and unnatural ones
such as eutrophication of waterbodies from agricultural runoff and discharge of
urban wastewater. A great body of empirical work supports this perspective [44].

Ecosystems provide the niches for species. If ecosystems are suddenly trans-
formed into different configurations, then species are confronted with sudden
changes in selection pressures. It seems likely that Holling’s theory provides
something of an explanation for Eldredge and Gould’s reading of the fossil
record. Besides the fossil record, the climatological and geological records also
show major changes in temperature, atmospheric composition, and geological
processes such as volcanoes, earthquakes, and movements of tectonic plates.
These, of course, form the macroscale of ecosystems. Local topography, geol-
ogy, hydrology, and microclimate lead to ecological niches. Organisms by their
activities modify their own niches and the niches of other organisms [55, 64].
These localized processes form the microscale of ecosystems. Landscape pro-
cesses such as wildfires which spread and affect large numbers of niches form the
mesoscale [48].

Niches within ecosystems select for the fittest phenotypes for them. Not all
genes of an organism are expressed. Thus, the genetic variability within the
population of a particular niche may be far greater than the relatively uni-
form phenotype presented to the examining ecologist. If a characteristic may
potentially be influenced by multiple genes, the niche may select for a pheno-
type consonant with the expression of only a single, or a very few, genes. The
species in the fossil record reflect only phenotypes, not the full range of genetic
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variability. Ecosystem domain shift would lead to selection for different pheno-
types. Those individuals with the genes that can express these newly ‘preferred’
phenotypes will supplant the old phenotypes in the new ecosystem configura-
tion, producing apparent speciation. As time hardens the new ecoconfiguration,
the genetic composition of the ‘new species’ will indeed shift toward the old
alleles and new mutations expressing the new phenotypes most efficiently, and
true speciation occurs. The book Animal Traditions [8] describes in detail how
behavioral phenotypes can become encoded in the genome, as does Ancel’s anal-
ysis of the Baldwin effect [4] in which the ability to learn becomes convoluted
with gene expression and selection.

Here we will analyze the interaction of these phenomena using a principled
approach which reduces ecosystem dynamics, gene expression, and Darwinian ge-
netic selection to a least common denominator of interacting information sources
constrained by the asymptotic limit theorems of information theory. This is not
an entirely new perspective. Priami [73], for example, finds that the interaction
between biological entities can be represented as an exchange of information be-
tween programs. Earlier, Jimenez-Montano [49] and Waddington [82] had sug-
gested that language may become a paradigm for a theory of general biology,
but a language in which basic sentences are programs, not simple statements.
Our particular contribution is to hew very closely indeed to the basic mathemat-
ical structure of the asymptotic limit theorems of information theory and the
associated generalizations afforded by the large deviations program of applied
probability.

We will begin by first placing ecosystem dynamics, gene expression, and Dar-
winian gene selection on a similar footing as expressions of different information
sources. We will then examine the interaction between information sources, us-
ing the homology between information source uncertainty and the free energy
density of a physical system to import phase transistion methods from statistical
physics via Pettini’s [68, 69] topological hypothesis. An analog to the Onsager
relations of nonequilibrium statistical mechanics permits study of these systems
far from phase transisiton, leading to a coevolutionary paradigm which extends
much contemporary analysis focused on genes alone. The reexpression of Ancel’s
work on the Baldwin effect [4] in terms of a ‘tuning theorem’ variant of the Shan-
non coding theorem produces the essential result that mesoscale ecosystem shifts
will be particularly powerful in entraining gene expression and gene selection.

2 Ecosystems as Information Sources

2.1 Coarse-Graining a Simple Model

We begin with a simplistic picture of an elementary predator/prey ecosystem
which, nonetheless, provides a useful pedagogical starting point. Let X represent
the appropriately scaled number of predators, Y the scaled number of prey, t
the time, and ω a parameter defining their interaction. The model assumes that
the ecologically dominant relation is an interaction between predator and prey,
so that
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dX/dt = ωY (1)

dY/dt = −ωX

Thus the predator populations grows proportionately to the prey population,
and the prey declines proportionately to the predator population.

After differentiating the first and using the second equation, we obtain the
differential equation

d2X/dt2 + ω2X = 0 (2)

having the solution

X(t) = sin(ωt); Y (t) = cos(ωt).

with

X(t)2 + Y (t)2 = sin2(ωt) + cos2(ωt) ≡ 1.

Thus in the two dimensional phase space defined by X(t) and Y (t), the system
traces out an endless, circular trajectory in time, representing the out-of-phase
sinusoidal oscillations of the predator and prey populations.

Divide the X − Y phase space into two components – the simplest coarse
graining – calling the halfplane to the left of the vertical Y -axis A and that to
the right B. This system, over units of the period 1/(2πω), traces out a stream
of A’s and B’s having a very precise grammar and syntax, i.e.

ABABABAB...

Many other such statements might be conceivable, e.g.

AAAAA..., BBBBB..., AAABAAAB..., ABAABAAAB...,

and so on, but, of the obviously infinite number of possibilities, only one is
actually observed, is ‘grammatical’, i.e. ABABABAB....

More complex dynamical system models, incorporating diffusional drift
around deterministic solutions, or even very elaborate systems of complicated
stochastic differential equations, having various domains of attraction, i.e. dif-
ferent sets of grammars, can be described by analogous symbolic dynamics (e.g.,
[11], Ch. 3).

2.2 Ecosystems and Information

Rather than taking symbolic dynamics as a simplification of more exact analytic
or stochastic approaches, it proves useful, as it were, to throw out the Cheshire
cat, but keep the cat’s smile, generalizing symbolic dynamics to a more com-
prehensive information dynamics: Ecosystems may not have identifiable sets of
stochastic dynamic equations like noisy, nonlinear clocks, but, under appropri-
ate coarse-graining, they may still have recognizable sets of grammar and syntax
over the long-term.
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Examples abound. The turn-of-the seasons in a temperate climate, for many
natural communities, looks remarkably the same year after year: the ice melts,
the migrating birds return, the trees bud, the grass grows, plants and animals
reproduce, high summer arrives, the foliage turns, the birds leave, frost, snow,
the rivers freeze, and so on.

Suppose it is indeed possible to empirically characterize an ecosystem at a
given time t by observations of both habitat parameters such as temperature
and rainfall, and numbers of various plant and animal species.

Traditionally, one can then calculate a cross-sectional species diversity index
at time t using an information or entropy metric of the form

H = −
M
∑

j=1

(nj/N) log[(nj/N)],

N ≡
M
∑

j=1

nj

where nj is the number of observed individuals of species j and N is the total
number of individuals of all species observed (e.g., [32, 70, 74]).

This is not the approach taken here. Quite the contrary, in fact. Suppose it is
possible to coarse grain the ecosystem at time t according to some appropriate
partition of the phase space in which each division Aj represent a particular
range of numbers of each possible species in the ecosystem, along with associ-
ated parameters such as temperature, rainfall, and the like. What is of particular
interest to our development is not cross sectional structure, but rather longitu-
dinal paths, i.e. ecosystem statements of the form x(n) = A0, A1, ..., An defined
in terms of some natural time unit of the system, i.e. n corresponds to an again
appropriate characteristic time unit T , so that t = T, 2T, ..., nT .

To reiterate, unlike the traditional use of information theory in ecology, our
interest is in the serial correlations along paths, and not at all in the cross-
sectional entropy calculated for of a single element of a path.

Let N(n) be the number of possible paths of length n which are consistent
with the underlying grammar and syntax of the appropriately coarsegrained
ecosystem, e.g. spring leads to summer, autumn, winter, back to spring, etc.
but never something of the form spring to autumn to summer to winter in a
temperate ecosystem.

The fundamental assumptions are that – for this chosen coarse-graining –
N(n), the number of possible grammatical paths, is much smaller than the total
number of paths possible, and that, in the limit of (relatively) large n,

H = lim
n→∞

log[N(n)]

n
(3)

both exists and is independent of path.
This is a critical foundation to, and limitation on, the modeling strategy

and its range of strict applicability, but is, in a sense, fairly general since it is
independent of the details of the serial correlations along a path.
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Again, these conditions are the essence of the parallel with parametric statis-
tics. Systems for which the assumptions are not true will require special nonpara-
metric approaches. We are inclined to believe, however, that, as for parametric
statistical inference, the methodology will prove robust in that many systems
will sufficiently fulfill the essential criteria.

This being said, not all possible ecosystem coarse-grainings are likely to work,
and different such divisions, even when appropriate, might well lead to different
descriptive quasi-languages for the ecosystem of interest. The example of Markov
models is relevant. The essential Markov assumption is that the probability of
a transition from one state at time T to another at time T + ΔT depends only
on the state at T , and not at all on the history by which that state was reached.
If changes within the interval of length ΔT are plastic, or path dependent, then
attempts to model the system as a Markov process within the natural interval
ΔT will fail, even though the model works quite well for phenomena separated
by natural intervals.

Thus empirical identification of relevant coarse-grainings for which this body
of theory will work is clearly not trivial, and may, in fact, constitute the hard
scientific core of the matter.

This is not, however, a new difficulty in ecosystem theory. Holling [48], for
example, explores the linkage of ecosystems across scales, finding that mesoscale
structures – what might correspond to the neighborhood in a human community
– are ecological keystones in space, time, and population, which drive process
and pattern at both smaller and larger scales and levels of organization. This
will, in fact, be a core argument of our development.

Levin [54] argues that there is no single correct scale of observation: the in-
sights from any investigation are contingent on the choice of scales. Pattern is
neither a property of the system alone nor of the observer, but of an interaction
between them. Pattern exists at all levels and at all scales, and recognition of
this multiplicity of scales is fundamental to describing and understanding ecosys-
tems. In his view there can be no ‘correct’ level of aggregation: we must recognize
explicitly the multiplicity of scales within ecosystems, and develop a perspective
that looks across scales and that builds on a multiplicity of models rather than
seeking the single ‘correct’ one.

Given an appropriately chosen coarse-graining, whose selection in many cases
will be the difficult and central trick of scientific art, suppose it possible to
define joint and conditional probabilities for different ecosystem paths, having
the form P (A0, A1, ..., An), P (An|A0, ..., An−1), such that appropriate joint and
conditional Shannon uncertainties can be defined on them. For paths of length
two these would be of the form

H(X1, X2) ≡ −
∑

j

∑

k

P (Aj , Ak) log[P (Aj , Ak)] (4)

H(X1|X2) ≡ −
∑

j

∑

k

P (Aj , Ak) log[P (Aj |Ak)],
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where the Xj represent the stochastic processes generating the respective paths
of interest.

The essential content of the Shannon-McMillan Theorem is that, for a large
class of systems characterized as information sources, a kind of law-of-large num-
bers exists in the limit of very long paths, so that

H [X ] = lim
n→∞

log[N(n)]

n
= (5)

lim
n→∞

H(Xn|X0, ..., Xn−1) =

lim
n→∞

H(X0, X1, ..., Xn)

n + 1
.

Taking the definitions of Shannon uncertainties as above, and arguing back-
wards from the latter two equations (e.g., [51]), it is indeed possible to recover
the first, and divide the set of all possible temporal paths of our ecosystem into
two subsets, one very small, containing the grammatically correct, and hence
highly probable paths, which we will call ‘meaningful’, and a much larger set of
vanishingly low probability.

Basic material on information theory can be found in any number of texts,
e.g., [5, 21, 51].

The next task is to show how the cognitive processes which so distinguish much
individual and collective animal activity, as well as many basic physiological
processes, can be fitted into a similar context, i.e. characterized as information
sources.

3 Cognition as an Information Source

Atlan and Cohen [6] argue that the essence of cognition is comparison of a
perceived external signal with an internal, learned picture of the world, and
then, upon that comparison, the choice of one response from a much larger
repertoire of possible responses. Such reduction in uncertainty inherently carries
information, and, following the approach of [84, 89], it is possible to make a very
general model of this process as an information source.

Cognitive pattern recognition-and-selected response, as conceived here,
proceeds by convoluting an incoming external ‘sensory’ signal with an inter-
nal ‘ongoing activity’ – the learned picture of the world – and, at some point,
triggering an appropriate action based on a decision that the pattern of sensory
activity requires a response. It is not necessary to specify how the pattern recog-
nition system is trained, and hence possible to adopt a weak model, regardless
of learning paradigm, which can itself be more formally described by the Rate
Distortion Theorem. Fulfilling Atlan and Cohen’s (1998) criterion of meaning-
from-response, we define a language’s contextual meaning entirely in terms of
system output.

The model, an extension of that presented in [89], is as follows.
A pattern of ‘sensory’ input, say an ordered sequence y0, y1, ..., is mixed in a

systematic (but unspecified) algorithmic manner with internal ‘ongoing’ activity,
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the sequence w0, w1, ..., to create a path of composite signals x = a0, a1, ..., an, ...,
where aj = f(yj , wj) for some function f . This path is then fed into a highly
nonlinear, but otherwise similarly unspecified, decision oscillator which generates
an output h(x) that is an element of one of two (presumably) disjoint sets B0

and B1. We take

B0 ≡ b0, ..., bk, (6)

B1 ≡ bk+1, ..., bm.

Thus we permit a graded response, supposing that if

h(x) ∈ B0 (7)

the pattern is not recognized, and if

h(x) ∈ B1 (8)

the pattern is recognized and some action bj , k + 1 ≤ j ≤ m takes place.
The principal focus of interest is those composite paths x which trigger pat-

tern recognition-and-response. That is, given a fixed initial state a0, such that
h(a0) ∈ B0, we examine all possible subsequent paths x beginning with a0 and
leading to the event h(x) ∈ B1. Thus h(a0, ..., aj) ∈ B0 for all 0 ≤ j < m, but
h(a0, ..., am) ∈ B1.

For each positive integer n let N(n) be the number of grammatical and syn-
tactic high probability paths of length n which begin with some particular a0

having h(a0) ∈ B0 and lead to the condition h(x) ∈ B1. We shall call such paths
meaningful and assume N(n) to be considerably less than the number of all pos-
sible paths of length n – pattern recognition-and-response is comparatively rare.
We – again – assume that the longitudinal finite limit H ≡ limn→∞ log[N(n)]/n
both exists and is independent of the path x. We will – not surprisingly – call
such a cognitive process ergodic.

Note that disjoint partition of state space may be possible according to sets of
states which can be connected by meaningful paths from a particular base point,
leading to a natural coset algebra of the system, a groupoid. This is a matter of
some mathematical importance pursued in [39, 84, 89].

It is thus possible to define an ergodic information source X associated with
stochastic variates Xj having joint and conditional probabilities P (a0, ..., an)
and P (an|a0, ..., an−1) such that appropriate joint and conditional Shannon un-
certainties may be defined which satisfy the relations of equation (5) above.

This information source is taken as dual to the ergodic cognitive process.
We reiterate that the Shannon-McMillan Theorem and its variants provide

‘laws of large numbers’ which permit definition of the Shannon uncertainties in
terms of cross-sectional sums of the form H = − ∑

Pk log[Pk], where the Pk

constitute a probability distribution.
It is important to recognize that different quasi-languages will be defined by

different divisions of the total universe of possible responses into various pairs
of sets B0 and B1. Like the use of different distortion measures in the Rate
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Distortion Theorem (e.g., [21]), however, it seems obvious that the underlying
dynamics will all be qualitatively similar.

Nonetheless, dividing the full set of possible responses into the sets B0 and B1

may itself require higher order cognitive decisions by another module or mod-
ules, suggesting the necessity of choice within a more or less broad set of possible
quasi-languages. This would directly reflect the need to shift gears according to
the different challenges faced by the organism or social group. A critical problem
then becomes the choice of a normal zero-mode language among a very large set
of possible languages representing the excited states accessible to the system.
This is a fundamental matter which mirrors, for isolated cognitive systems, the
resilience arguments applicable to more conventional ecosystems, i.e. the pos-
sibility of more than one zero state to a cognitive system. Identification of an
excited state as the zero mode becomes, then, a kind of generalized autoimmune
disorder which can be triggered by linkage with external ecological informa-
tion sources of structured psychosocial stress, a matter we explore at length
elsewhere [84].

In sum, meaningful paths – creating an inherent grammar and syntax –
have been defined entirely in terms of system response, as Atlan and Cohen [6]
propose.

This formalism can easily be applied to the stochastic neuron in a neural
network, as done in [92].

Ultimately it becomes necessary to parametize the information source un-
certainty of the dual information source to a cognitive pattern recognition-
and-response with respect to one or more variates, writing, e.g., H [K], where
K ≡ (K1, ..., Ks) represents a vector in a parameter space. Let the vector K
follow some path in time, i.e. trace out a generalized line or surface K(t). We
assume that the probabilities defining H , for the most part, closely track changes
in K(t), so that along a particular piece of a path in parameter space the in-
formation source remains as close to stationary and ergodic as is needed for
the mathematics to work. Between pieces we will, below, impose phase transi-
tion characterized by a renormalization symmetry, in the sense of [95]. See the
Mathematical Appendix for further details.

Such an information source can be termed adiabatically piecewise stationary
ergodic (APSE). To reiterate, the ergodic nature of the information sources is a
generalization of the law of large numbers and implies that the long-time averages
we will need to calculate can, in fact, be closely approximated by averages across
the probability spaces of those sources. This is no small matter.

The reader may have noticed parallels with Dretske’s speculations on the the
role of the asymptotic limit theorems of information theory in constraining high
level mental function [26, 84, 92].

Wallace [92] and Wallace and Fullilove [84] describe in some detail how, for
larger animals, immune function, tumor control, the hypothalamic-pituitary-
adrenal (HPA) axis (the flight-or-fight system), emotion, conscious thought, and
embedding group (and sometimes cultural) structures are all cognitive in this
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simple sense. In general these cognitive phenomena will occur at far faster rates
than embedding ecosystem changes.

It is worth a more detailed recounting of the arguments for characterizing a
number of physiological subsystems as cognitive in the sense of this section.

3.1 Immune Cognition

Atlan and Cohen [6] have proposed an information-theoretic cognitive model
of immune function and process, a paradigm incorporating cognitive pattern
recognition-and-response behaviors analogous to those of the central nervous
system. This work follows in a very long tradition of speculation on the cognitive
properties of the immune system (e.g., [43, 71, 80]).

From the Atlan/Cohen perspective, the meaning of an antigen can be reduced
to the type of response the antigen generates. That is, the meaning of an antigen
is functionally defined by the response of the immune system. The meaning of
an antigen to the system is discernible in the type of immune response produced,
not merely whether or not the antigen is perceived by the receptor repertoire.
Because the meaning is defined by the type of response there is indeed a response
repertoire and not only a receptor repertoire.

To account for immune interpretation Cohen [17, 18] has reformulated the
cognitive paradigm for the immune system. The immune system can respond to
a given antigen in various ways, it has ‘options.’ Thus the particular response we
observe is the outcome of internal processes of weighing and integrating infor-
mation about the antigen. In contrast to Burnet’s view of the immune response
as a simple reflex, it is seen to exercise cognition by the interpolation of a level of
information processing between the antigen stimulus and the immune response.
A cognitive immune system organizes the information borne by the antigen stim-
ulus within a given context and creates a format suitable for internal processing;
the antigen and its context are transcribed internally into the ‘chemical language’
of the immune system.

The cognitive paradigm suggests a language metaphor to describe immune
communication by a string of chemical signals. This metaphor is apt because
the human and immune languages can be seen to manifest several similarities
such as syntax and abstraction. Syntax, for example, enhances both linguistic
and immune meaning.

Although individual words and even letters can have their own meanings, an
unconnected subject or an unconnected predicate will tend to mean less than
does the sentence generated by their connection.

The immune system creates a ‘language’ by linking two ontogenetically differ-
ent classes of molecules in a syntactical fashion. One class of molecules are the T
and B cell receptors for antigens. These molecules are not inherited, but are so-
matically generated in each individual. The other class of molecules responsible
for internal information processing is encoded in the individual’s germline.

Meaning, the chosen type of immune response, is the outcome of the concrete
connection between the antigen subject and the germline predicate signals.
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The transcription of the antigens into processed peptides embedded in a con-
text of germline ancillary signals constitutes the functional ‘language’ of the
immune system. Despite the logic of clonal selection, the immune system does
not respond to antigens as they are, but to abstractions of antigens-in-context.

Cohen [19] provides a more recent perspective, focusing on inflammatory pro-
cesses as maintenance in which the immune decision-making process uses strate-
gies similar to those observed in the nervous system.

3.2 Tumor Control

We argue that the next larger cognitive submodule after the immune system
must be a tumor control mechanism which may include immune surveillance, but
clearly transcends it. Nunney [63] has explored cancer occurrence as a function
of animal size, suggesting that in larger animals, whose lifespan grows as about
the 4/10 power of their cell count, prevention of cancer in rapidly proliferating
tissues becomes more difficult in proportion to size. Cancer control requires the
development of additional mechanisms and systems to address tumorigenesis as
body size increases – a synergistic effect of cell number and organism longevity.
Nunney ([63], p. 497) concludes that this pattern may represent a real barrier to
the evolution of large, long-lived animals and predicts that those that do evolve
have recruited additional controls over those of smaller animals to prevent cancer.

Different tissues may have evolved markedly different tumor control strate-
gies. All of these, however, are likely to be energetically expensive, permeated
with different complex signaling strategies, and subject to a multiplicity of re-
actions to signals, including those related to psychosocial stress. Forlenza and
Baum [36] explore the effects of stress on the full spectrum of tumor control in
higher animals, ranging from DNA damage and control, to apoptosis, immune
surveillance, and mutation rate. Elsewhere [88] we argue that this elaborate tu-
mor control strategy, particularly in large animals, must be at least as cognitive
as the immune system itself, which is one of its components. That is, some com-
parison must be made with an internal picture of a ‘healthy’ cell, and a choice
made as to response: none, attempt DNA repair, trigger programmed cell death,
engage in full-blown immune attack. This is, from the Atlan/Cohen perspective,
the essence of cognition.

3.3 A Cognitive Paradigm for Gene Expression

While modes of genetic inheritance are assumed well understood since the Grand
Evolutionary Synthesis of the early 20th Century, the mechanisms of gene acti-
vation, regulation, and expression remain largely hidden. A random reading of
the literature illuminates a stark and increasingly mysterious landscape.

Liu and Ringner [58] find gene expression signatures consisting of tens to
hundreds of genes determine different biological states and conclude that it is
crucial to systematically analyze gene expression signatures in the context of
signaling pathways.
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Soyer et al. [79] find that, although massive network structures are associated
with the biological signal transduction which allows a cell or organism to sense
its environment and react accordingly, the experimental work needed to gather
enough quantitative information to develop accurate mathematical models is
highly labor intensive, so that the modeling of specific networks may be of limited
use in developing a broad understand of the general properties of biological
signaling networks.

One possible mathematical characterization of these difficulties is found in
Sayyed-Ahmad et al. [77], who explore the basic conundrum in terms of a dy-
namic model. In their view the state of a cell is specified by a set of variables Ψ
for which we know the governing equations and a set T which is at the frontier
of our understanding (i.e., for which we do not know the governing equations).
The challenge is that the dynamics of Ψ is given by a cell model, e.g.,

dΨ/dt = G(Ψ, T (t), Λ) (9)

in which the rate G depends not only on many rate and equilibrium constants Λ,
but also on the time-dependent frontier variables T (t). The descriptive variables,
Ψ , can only be determined as a function of the unknown time courses T (t). Thus
the model cannot be simulated.

Liao et al [57] find that use of statistical methods on biological networks,
such as principal component analysis, ignore the underlying network structures
and provide decompositions based on a priori statistical constraints on the com-
puted component signals. The resulting decomposition, in their view, provides a
phenomenological model for the observed data and does not necessarily contain
physically or biologically meaningful signals.

Baker and Stock [9], however, pose the questions in a more general manner,
using an information metaphor in which understanding of signal transduction
systems has focused on mechanisms that allow crosstalk between different in-
formation processing modalities. They particularly ask what are the decision
making mechanisms by which a bacterium controls the activities of its genes
and proteins to adapt to changing environmental conditions? That is, how is
information converted into knowledge, and how is knowledge sorted, evaluated
and combined to guide action, morphogenesis and growth?

O’Nuallain [67] provides an important perspective on this approach. In his
view the categorical failure to solve the general problem of natural language
processing by computer is prognostic of the future of gene expression work. Af-
ter what seemed like a promising start, in his view, the field was stalled by an
inability to handle, or even define coherently, ‘contextual’ factors. Currently, he
continues, the field is gradually being taken over by Bayesian ‘methods’ that
simply look for the statistical incidence of co-occurrence of lexical items in the
source (analogous to gene) and target (analogous to protein) languages. Contex-
tual factors in the case of gene expression include the bioenergetic status of the
cell, a status that can be assessed properly only with painstaking work; yet it
determines what genes are being turned on and off at any particular moment.

It seems clear that 18th Century dynamical models using 19th Century differ-
ential equation generalizations of equation (9) have little to offer in addressing
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fundamental questions of gene activation and regulation. More sophisticated
work must clearly move in the direction of an Atlan/Cohen cognitive paradigm
for gene expression, characterizing the processes, and their embedding contexts,
in terms of nested sets of interacting dual information sources, whose behav-
ior is constrained by the necessary conditions imposed by the asymptotic limit
theorems of communications theory.

That is, properly coarse-grained and nested biochemical networks will have
an observed grammar and syntax, and, limited by powerful probability limit
theorems, such description can enable construction of robust and meaningful
statistical models of gene expression which may then be used for real scientific
inference.

In sum, generalizing symbolic dynamics to a more inclusive, and less restric-
tive, cognitive paradigm for gene expression in terms of the model of equations
(5) - (7), while invoking the inherent complexities of topological groupoids de-
scribed in [39, 84], seems likely to provide badly needed illumination for this
dark and confusing realm.

Not uncharacteristically, I. Cohen and colleagues (e.g., [20]) have, in fact,
already proposed something much in this direction, using a ‘reactive system’
paradigm for gene expression taken from computer models. Reactive systems, in
their view, call our attention to their emergent properties. An emergent property
of a system is a behavior of the system, taken as a whole, that is not expressed
by any one of the lower-scale components that comprise it. Although Cohen and
Harel [20] then attempt to develop a complicated computer modeling strategy
to address such reactive systems, Cohen [19] describes the essential differences
between them and conventional computer architecture in some detail. There is no
external operator or programmer, no programs, algorithms or software distinct
from the system’s hardware, no central processing unit, no operating system, no
formal mathematical logic, no termination criteria, since the system never stops,
no verification procedures, and so on.

Zhu et al. [97], by contrast, take an explicit kinetic chemical reaction approach
to gene expression involving delayed stochastic differential equations. They be-
gin by coarse-graining multi-step biochemical processes with single-step delayed
reactions. Thus their coarse-graining involves not only collapsing biochemical
steps, but collapsing as well the inevitable associated serial correlations into a
small number of ‘time delays’. The key feature of their model is that the complex
multiple-step biochemical processes, such as transcription, translation, and even
the whole gene expression, are simplified to single-step time delayed reactions.

While there are sufficiently many gene expression mechanisms so that some
of them, at least, will yield to this method, we are interested in those which are
more complex, and indeed broadly cognitive, subject to emergent patterns which
cannot be modeled simply as bifurcations of stochastically-perturbed mechanis-
tic models.

Indeed, rather than pursuing the computer models that [20] and [97] invoke,
here we will attempt to extend our statistical and dynamic analytic treatment of
the cognitive paradigm to a structure incorporating gene expression in a broadly
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coevolutionary manner. As Richard Hamming so famously put it, “The purpose
of computing is insight, not numbers”, and analytic models offer transparency
as well as insight. We will, however, recover a phenomenological formalism as a
kind of generalized Onsager model, but at a later, and far more global, stage of
structure. That is, invocation of the necessary conditions imposed by the limit
theorems of communication theory enables us to penetrate one layer deeper be-
fore it becomes necessary to call for an empirically-determined phenomenological
system of Onsager relation stochastic differential equations.

4 Darwinian Genetic Inheritance as an Information

Source

Adami et al. [2] make a case for reinterpreting the Darwinian transmission of
genetic heritage in terms of a formal information process. They assert that ge-
nomic complexity can be identified with the amount of information a sequence
stores about its environment: genetic complexity can be defined in a consistent
information-theoretic manner. In their view, information cannot exist in a vac-
uum and must have an instantiation. For biological systems the instantiation of
information is DNA. To some extent it is the blueprint of an organism and thus
information about its own structure. More specifically, it is a blueprint of how
to build an organism that can best survive in its native environment, and pass
on that information to its progeny. They assert that an organism’s DNA thus is
not only a ‘book’ about the organism, but also a book about the environment it
lives in, including the species it co-evolves with. They identify the complexity of
geonomes by the amount of information they encode about the world in which
they have evolved.

Ofria et al. [65] continue in the same direction and argue that genomic com-
plexity can be defined rigorously within standard information theory as the in-
formation the genome of an organism contains about its environment. From the
point of view of information theory, it is convenient to view Darwinian evolu-
tion on the molecular level as a collection of information transmission channels,
subject to a number of constraints. In these channels, they state, the organism’s
genomes code for the information (a message) to be transmitted from progenitor
to offspring, and are subject to noise due to an imperfect replication process.
Information theory is concerned with analysing the properties of such channels,
how much information can be transmitted and how the rate of perfect informa-
tion transmission of such a channel can be maximized.

Adami and Cerf [1] argue, using simple models of genetic structure, that the in-
formation content, or complexity, of a genomic string by itself (without referring
to an environment) is a meaningless concept and a change in environment (catas-
trophic or otherwise) generally leads to a pathological reduction in complexity.

The transmission of genetic information is thus a contextual matter which
involves operation of an information source which, according to this development,
must interact with embedding (ecosystem) structures.

Such interaction is, as we show next, often highly punctuated.
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5 Interacting Information Sources: Punctuated Crosstalk

Suppose that a cognitive, or Darwinian, information process of interest can be
represented by a sequence of states in time, the path x ≡ x0, x1, .... Similarly, we
assume an embedding ecosystem with which that process interacts can also be
represented by a path y ≡ y0, y1, .... These paths are both very highly structured
and, within themselves, are serially correlated and can, in fact, be represented by
information sources X and Y. We assume the process of interest and the embed-
ding ecosystem interact, so that these sequences of states are not independent,
but are jointly serially correlated. We can, then, define a path of sequential pairs
as z ≡ (x0, y0), (x1, y1), ....

The essential content of the JointAsymptotic Equipartition Theorem (JAEPT)
version of the Shannon-McMillan Theorem is that the set of joint paths z can be
partitioned into a relatively small set of high probability which is termed jointly
typical, and a much larger set of vanishingly small probability. Further, according
to the JAEPT, the splitting criterion between high and low probability sets of
pairs is the mutual information

I(X, Y ) = H(X) − H(X |Y ) = H(X) + H(Y ) − H(X, Y ) (10)

where H(X), H(Y ), H(X |Y ) and H(X, Y ) are, respectively, the Shannon
uncertainties of X and Y , their conditional uncertainty, and their joint uncer-
tainty. Again, see [5, 21] for mathematical details. As stated above, the Shannon-
McMillan Theorem and its variants permit expression of the various uncertainties
in terms of cross sectional sums of terms of the form −Pk log[Pk] where the Pk

are appropriate direct or conditional probabilities. Similar approaches to neural
process have been recently adopted by Dimitrov and Miller [25].

The high probability pairs of paths are, in this formulation, all equiprobable,
and if N(n) is the number of jointly typical pairs of length n, then, according to
the Shannon-McMillan Theorem and its ‘joint’ variants,

I(X, Y ) = lim
n→∞

log[N(n)]

n
. (11)

Generalizing the earlier language-on-a-network models of [85, 86], suppose
there is a coupling parameter P representing the degree of linkage between the
cognitive human subsystem of interest and the structured quasi-language of the
embedding ecosystem, and set K = 1/P , following the development of those
earlier studies. Then we have

I[K] = lim
n→∞

log[N(K, n)]

n
.

The essential homology between information theory and statistical mechanics
lies in the similarity of this expression with the infinite volume limit of the free
energy density. If Z(K) is the statistical mechanics partition function derived
from the system’s Hamiltonian, then the free energy density is determined by
the relation

F [K] = lim
V →∞

log[Z(K)]

V
. (12)
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F is the free energy density, V the system volume and K = 1/T , where T is the
system temperature.

Various authors argue at some length (e.g., [34, 76, 84, 92]) that this is in-
deed a systematic mathematical homology which, as described in the Appendix,
permits importation of renormalization methods into information theory. Impo-
sition of invariance under renormalization on the mutual information splitting
criterion I(X, Y ) implies the existence of phase transitions analogous to learning
plateaus or punctuated evolutionary equilibria in the relations between cognitive
mechanism and the embedding ecosystem. An extensive mathematical treatment
of these ideas is presented elsewhere (e.g., [68, 69, 84, 89, 91]) and in the Math-
ematical Appendix. A detailed example will be given in a subsequent section.
Much of the uniqueness of the system under study will be expressed in the
renormalization relations associated with that punctuation.

Elaborate developments are possible. From a the more limited perspective
of the Rate Distortion Theorem, a selective corollary of the Shannon-McMillan
Theorem, we can view the onset of a punctuated interaction between the cogni-
tive process and embedding ecosystem as the literal writing of distorted image
of those systems upon each other, Lewontin’s [56] interpenetration:

Suppose that two (adiabatically, piecewise stationary, ergodic) information
sources Y and B begin to interact, to talk to each other, i.e. to influence each
other in some way so that it is possible, for example, to look at the output of
B – strings b – and infer something about the behavior of Y from it – strings
y. We suppose it possible to define a retranslation from the B-language into
the Y-language through a deterministic code book, and call Ŷ the translated
information source, as mirrored by B.

Define some distortion measure comparing paths y to paths ŷ, d(y, ŷ) [21].
We invoke the Rate Distortion Theorem’s mutual information I(Y, Ŷ ), which is
the splitting criterion between high and low probability pairs of paths. Impose,
now, a parametization by an inverse coupling strength K, and a renormalization
symmetry representing the global structure of the system coupling.

Extending the analyses, triplets of sequences, Y1, Y2, Z, for which one in par-
ticular, here Z, is the ‘embedding context’ affecting the other two, can also be
divided by a splitting criterion into two sets, having high and low probabilities
respectively. The probability of a particular triplet of sequences is then deter-
mined by the conditional probabilities

P (Y1 = y1, Y2 = y2, Z = z) = Πn
j=1p(y1

j |zj)p(y2
j |zj)p(zj). (13)

That is, Y1 and Y2 are, in some measure, driven by their interaction with Z.
For large n the number of triplet sequences in the high probability set will be

determined by the relation ([21], p. 387)

N(n) ∝ exp[nI(Y1; Y2|Z)], (14)

where splitting criterion is given by
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I(Y1; Y2|Z) ≡
H(Z) + H(Y1|Z) + H(Y2|Z) − H(Y1, Y2, Z).

It is then possible to examine mixed cognitive/adaptive phase transitions
analogous to learning plateaus [91] in the splitting criterion I(Y1, Y2|Z). We
reiterate that these results are almost exactly parallel to the Eldredge/Gould
model of evolutionary punctuated equilibrium [28, 29, 42].

The model is easily extended to any number of interacting information sources,
Y1, Y2, ..., Ys conditional on an external context Z in terms of a splitting criterion
defined by

I(Y1, ..., Ys|Z) = H(Z) +

s
∑

j=1

H(Yj |Z) − H(Y1, ..., Ys, Z), (15)

where the conditional Shannon uncertainties H(Yj |Z) are determined by the
appropriate direct and conditional probabilities.

If we assume interacting information sources can be partitioned into three
different sets, perhaps fast, Xi, medium, Yj and slow Zk relative transmission
rates, then mathematical induction on this equation produces a complicated
expression of the form

I(X1, ..., Xi|Y1, ..., Yj |Z1, ..., Zk). (16)

In general, then, it seems fruitful to characterize the mutual interpenetration
of cognitive biopsychosocial and non-cognitive ecosystem and genetic structures
within the context a single, unifying, formal perspective summarized by a ‘larger’
information source, more precisely, invoking a mutual information between cog-
nitive, genetic, and ecosystem information sources.

6 Dynamic Manifolds

A fundamental homology between the information source uncertainty dual to a
cognitive process and the free energy density of a physical system arises, in
part, from the formal similarity between their definitions in the asymptotic
limit. Information source uncertainty can be defined as in equation (4). This
is, as noted, quite analogous to the free energy density of a physical system,
equation (12).

Feynman [34] provides a series of physical examples, based on Bennett’s work,
where this homology is, in fact, an identity, at least for very simple systems. Ben-
nett argues, in terms of idealized irreducibly elementary computing machines,
that the information contained in a message can be viewed as the work saved
by not needing to recompute what has been transmitted.

Feynman explores in some detail Bennett’s ideal microscopic machine designed
to extract useful work from a transmitted message. The essential argument is
that computing, in any form, takes work. Thus the more complicated a cog-
nitive process, measured by its information source uncertainty, the greater its
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energy consumption, and the ability to provide energy is limited. Inattentional
blindness, Wallace [84] argues, emerges as a thermodynamic limit on process-
ing capacity in a topologically-fixed global workspace, i.e. one which has been
strongly configured about a particular task.

Understanding the time dynamics of cognitive systems away from the kind of
phase transition critical points described above requires a phenomenology similar
to the Onsager relations of nonequilibrium thermodynamics. This will lead to
a more general phase transition theory involving large-scale topological changes
in the sense of Morse theory, summarized in the Mathematical Appendix.

If the dual source uncertainty of a cognitive process is parametized by some
vector of quantities K ≡ (K1, ..., Km), then, in analogy with nonequilibrium
thermodynamics, gradients in the Kj of the disorder, defined as

S ≡ H(K) −
m

∑

j=1

Kj∂H/∂Kj (17)

become of central interest.
Equation (17) is similar to the definition of entropy in terms of the free energy

density of a physical system, as suggested by the homology between free energy
density and information source uncertainty described above.

Pursuing the homology further, the generalized Onsager relations defining
temporal dynamics become

dKj/dt =
∑

i

Lj,i∂S/∂Ki, (18)

where the Lj,i are, in first order, constants reflecting the nature of the underlying
cognitive phenomena. The L-matrix is to be viewed empirically, in the same
spirit as the slope and intercept of a regression model, and may have structure
far different than familiar from more simple chemical or physical processes. The
∂S/∂K are analogous to thermodynamic forces in a chemical system, and may
be subject to override by external physiological driving mechanisms.

An essential contrast with simple physical systems driven by (say) entropy
maximization is that cognitive systems make decisions about resource allocation,
to the extent resources are available. That is, resource availability is a context
for cognitive function, in the sense of Baars, not a determinant.

Equations (17) and (18) can be derived in a simple parameter-free covari-
ant manner which relies on the underlying topology of the information source
space implicit to the development. Cognitive, genetic, and ecosystem phenomena
are, according to our development, to be associated with particular information
sources, and we are interested in the local properties of the system near a par-
ticular reference state. We impose a topology on the system, so that, near a
particular ‘language’ A, dual to an underlying cognitive process, there is (in
some sense) an open set U of closely similar languages Â, such that A, Â ⊂ U .
Note that it may be necessary to coarse-grain the system’s responses to de-
fine these information sources. The problem is to proceed in such a way as to
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preserve the underlying essential topology, while eliminating ‘high frequency
noise’. The formal tools for this can be found, e.g., in Chapter 8 of [14].

Since the information sources dual to the cognitive processes are similar, for
all pairs of languages A, Â in U , it is possible to:

[1] Create an embedding alphabet which includes all symbols allowed to both
of them.

[2] Define an information-theoretic distortion measure in that extended, joint
alphabet between any high probability (i.e. grammatical and syntactical) paths
in A and Â, which we write as d(Ax, Âx) [21]. Note that these languages do not
interact, in this approximation.

[3] Define a metric on U , for example,

M(A, Â) = | lim
∫

A,Â
d(Ax, Âx)

∫

A,A
d(Ax, Ax̂)

− 1|, (19)

using an appropriate integration limit argument over the high probability paths.
Note that the integration in the denominator is over different paths within A
itself, while in the numerator it is between different paths in A and Â.

Consideration suggests M is a formal metric, having

M(A, B) ≥ 0, M(A, A) = 0, M(A, B) = M(B, A),

M(A, C) ≤ M(A, B) + M(B, C).

Other approaches to metric construction on U seem possible.
Structures weaker than a conventional metric would be of more general utility,

but the mathematical complications are formidable [39].
Note that these conditions can be used to define equivalence classes of lan-

guages, where previously, in cognitive process, we could define equivalence classes
of states which could be linked by high probability, grammatical and syntacti-
cal, paths to some base point. This led to the characterization of different in-
formation sources. Here we construct an entity, formally a topological manifold,
which is an equivalence class of information sources. This is, provided M is a
conventional metric, a classic differentiable manifold. We shall be interested in
topological states within such manifolds, and in the possibilities of transition
between manifolds.

Since H and M are both scalars, a ‘covariant’ derivative can be defined di-
rectly as

dH/dM = lim
Â→A

H(A) − H(Â)

M(A, Â)
, (20)

where H(A) is the source uncertainty of language A.
Suppose the system to be set in some reference configuration A0.
To obtain the unperturbed dynamics of that state, impose a Legendre trans-

form using this derivative, defining another scalar

S ≡ H − MdH/dM. (21)
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The simplest possible Onsager relation – here seen as an empirical, fitted,
equation like a regression model – in this case becomes

dM/dt = LdS/dM, (22)

where t is the time and dS/dM represents an analog to the thermodynamic force
in a chemical system. This is seen as acting on the reference state A0. For

dS/dM|A0 = 0, (23)

d2S/dM2|A0 > 0

the system is quasistable, a Black hole, if you will, and externally imposed forcing
mechanisms will be needed to effect a transition to a different state. We shall
explore this circumstance below in terms of topological considerations analogous
to the concept of ecosystem resilience.

Conversely, changing the direction of the second condition, so that

dS2/dM2|A0 < 0,

leads to a repulsive peak, a White hole, representing a possibly unattainable
realm of states.

Explicit parametization of M introduces standard – and quite considerable –
notational complications (e.g., [7, 14]): Imposing a metric for different cognitive
dual languages parametized by K leads to Riemannian, or even Finsler, geome-
tries, including the usual geodesics. See the Mathematical Appendix for details.

The dynamics, as we have presented them so far, have been noiseless, while
neural systems, from which we are abducting theory, are well known to be very
noisy, and indeed may be subject to mechanisms of stochastic resonance. Equa-
tion (22) might be rewritten as

dM/dt = LdS/dM + σW (t)

where σ is a constant and W (t) represents white noise. Again, S is seen as a
function of the parameter M. This leads directly to a family of classic stochastic
differential equations having the form

dMt = L(t, dS/dM)dt + σ(t, dS/dM)dBt, (24)

where L and σ are appropriately regular functions of t and M, and dBt represents
the noise structure.

In the sense of Emery [30], this leads into deep realms of stochastic differential
geometry and related topics. The obvious inference is that noise, which need not
be ‘white’, can serve as a tool to shift the system between various equivalence
classes, i.e. as a kind of crosstalk and the source of a generalized stochastic
resonance.

Deeply hidden in equation (24) is a very complicated pattern of equivalence
class dynamics, since flows are defined on a manifold of languages having par-
ticular relations between H, S, and M. Many possible information sources may,
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in fact, correspond to any particular ‘point’ on this manifold. Although we can-
not pursue this in detail, as it involves subtle matters of ‘topological groupoids’
and the like, some implications are clear. In particular, setting equation (24) to
zero and solving for ‘stationary points’ find a set of stable attractors, since the
noise terms will perturb the structure from unstable equilibria. Second, what is
converged to is not some ‘stable state’ in any sense, but rather is an equivalence
class of highly dynamic information sources. We will have more to say on this
below.

Convergence to more complicated structures, for example limit cycles or frac-
tal ‘strange attractors’, is also possible in this model.

We have defined a particular set of equivalence classes of information sources
dual to cognitive processes, ecosystems, and genetic heritage. That set parsi-
moniously characterizes the available dynamical manifolds, and, breaking of the
associated groupoid symmetry creates more complex objects of considerable in-
terest. This leads to the possibility, indeed, the necessity, of Deus ex Machina
mechanisms to force transitions between the different possible modes within and
across dynamic manifolds.

Equivalence classes of states gave dual information sources to cognitive
systems. Equivalence classes of information sources give different characteristic
system dynamics. Below we will examine equivalence classes of paths, which will
produce different directed homotopy topologies characterizing those dynamical
manifolds. This introduces the possibility of having different quasi-stable re-
silience modes within individual dynamic manifolds. Pink or white noise might
provide a tunable means of creating crosstalk between different topological states
within a dynamical manifold, or between different dynamical manifolds alto-
gether.

Effectively, topological shifts between and within dynamic manifolds consti-
tute a theory of phase transitions for information systems. Indeed, similar consid-
erations have become central in the study of phase changes for physical systems.
Franzosi and Pettini [37] and Pettini [68, 69] argue that the standard way of
studying phase transition in physical systems is to consider how the values of
thermodynamic observables, obtained in laboratory experiments, vary with tem-
perature, volume, or an external field, and then to associate the experimentally
observed discontinuities at a phase transition to the appearance of some kind
of singularity entailing a loss of analyticity. However, they wonder whether this
is the ultimate level of mathematical understanding of phase transition phe-
nomena, or if some reduction to a more basic level is possible. Their theorem
says that nonanalyticity is the ‘shadow’ of a more fundamental phenomenon
occurring in configuration space: a topology change. Their theorem means that
a topology change in a particular energy manifold is a necessary condition for
a phase transition to take place. The topology changes implied here are those
described within the framework of Morse theory through Morse-theoretic at-
tachment handles. The converse of their theorem is not true. There is not a
one-to-one correspondence between phase transitions and topology changes, and
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an open problem is that of sufficiency conditions, that is to determine which
kinds of topology changes can entail the appearance of a phase transition.

The phenomenological Onsager treatment would also be enriched by adoption
of a Morse theory perspective on topological transitions, following Michel and
Mozrzymas [61].

The next section introduces a further topological complication.

7 Directed Homotopy

To reiterate, we can define equivalence classes of states according to whether they
can be linked by grammatical/syntactical high probability ‘meaningful’ paths,
generating ‘languages’. Above we developed equivalence classes of languages con-
stituting dynamic manifolds. Next we ask the precisely complementary question
regarding paths on dynamical manifolds: For any two particular given states,
is there some sense in which we can define equivalence classes across the set of
meaningful paths linking them?

This is of particular interest to second order hierarchical models which, in
effect, describe a universality class tuning of the renormalization parameters
characterizing the dancing, flowing, tunably punctuated accession to high order
cognitive function.

A closely similar question is central to recent algebraic geometry approaches
to concurrent, i.e. highly parallel, computing (e.g., [40, 41, 72]), which we adapt.

For the moment we restrict the analysis to a system characterized by two
Morse-theoretic parameters, say w1 and w2, and consider the set of meaningful
paths connecting two particular points, say a and b, in the two dimensional w-
space plane of figure 1. The arguments surrounding equations (17), (18) and (23)
suggests that there may be regions of fatal attraction and strong repulsion, Black
holes and White holes, which can either trap or deflect the path of institutional
or multitasking machine cognition.

Figures 1 and 2 show two possible configurations for a Black and a White
hole, diagonal and cross-diagonal. If one requires path monotonicity – always
increasing or remaining the same – then, following, e.g., [40], figs. 6,7, there are,
intuitively, two direct ways, without switchbacks, that one can get from a to b in
the diagonal geometry of figure 1, without crossing a Black or White hole, but
there are three in the cross-diagonal structure of figure 2.

Elements of each ‘way’ can be transformed into each other by continuous
deformation without crossing either the Black or White hole. Figure 1 has two
additional possible monotonic ways, involving over/under switchbacks, which are
not drawn. Relaxing the monotonicity requirement generates a plethora of other
possibilities, e.g., loopings and backwards switchbacks. It is not clear under what
circumstances such complex paths can be meaningful, a matter for further study.

These ways are the equivalence classes defining the topological structure of the
two different w-spaces, analogs to the fundamental homotopy groups in spaces
which admit of loops (e.g., [53]). The closed loops needed for classical homo-
topy theory are impossible for this kind of system because of the ‘flow of time’
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Fig. 1. Diagonal Black and White holes in the two dimensional w-plane. Only two
direct paths can link points a and b which are continuously deformable into one another
without crossing either hole. There are two additional monotonic switchback paths
which are not drawn.

Fig. 2. Cross-diagonal Black and White holes. Three direct equivalence classes of con-
tinuously deformable paths can link a and b. Thus the two spaces are topologically
distinct. Here monotonic switchbacks are not possible, although relaxation of that con-
dition can lead to ‘backwards’ switchbacks and intermediate loopings.

defining the output of an information source – one goes from a to b, although,
for nonmonotonic paths, intermediate looping would seem possible. The the-
ory is thus one of directed homotopy, dihomotopy, and the central question re-
volves around the continuous deformation of paths in w-space into one another,



46 R. Wallace and D. Wallace

without crossing Black or White holes. Goubault and Rausssen [41] provide an-
other introduction to the formalism.

It seems likely that cultural heritage or developmental history can define quite
different dihomotopies in natural ecosystems, cognitive process, and genetic her-
itage. That is, the topology will be developmentally modulated.

Such considerations, and indeed the Black Hole development of equation (23),
suggest that a system which becomes trapped in a particular pattern of behavior
cannot, in general, expect to emerge from it in the absence of external forcing
mechanisms or the stochastic resonance/mutational action of ‘noise’. Emerging
from such a trap involves large-scale topological changes, and this is the func-
tional equivalent of a phase transition in a physical system.

This sort of behavior is central to ecosystem resilience theory [44, 47, 48]. The
essential idea is that equivalence classes of dynamic manifolds, and the directed
homotopy classes within those manifolds, each and together create domains of
quasi-stability requiring action of some external factor for change.

Apparently the set of dynamic manifolds, and its subsets of directed homo-
topy equivalence classes, formally classifies quasi-equilibrium states, and thus
characterizes the different possible resilience modes.

Transitions between markedly different topological modes appear to be neces-
sary effects of phase transitions, involving analogs to phase changes in physical
systems.

Equivalence classes of quasi-languages generated dynamical manifolds, which
[39, 84] use to construct a groupoid structure, and equivalence classes of paths
on those manifolds constitute dihomotopy topological states. Shifts between di-
homotopy modes represent transitions within manifolds, but larger scale shifts,
between manifolds, are also possible, in this model.

Next we consider a particular canonical form of interaction between rapid,
mesoscale, and slow information sources, which will produce the principal results.

8 Red Queen Coevolution

8.1 The Basic Idea

Natural systems subject to coevolutionary interaction may become enmeshed
in the Red Queen dilemma of Alice in Wonderland, in that they must undergo
constant evolutionary change in order to avoid extinction – they must constantly
run just to stay in the same place. An example would be a competitive arms
race between predator and prey: Each evolutionary advance in predation must
be met with a coevolutionary adaptation which allows the prey to avoid the
more efficient predator. Otherwise the system will become extinct, since a highly
specialized predator can literally eat itself to extinction. Similarly, each prey
defense must be matched by a predator adaptation for the system to persist.

Here we present a fairly elaborate model of coevolution, in terms of interact-
ing information sources. Interaction events, we will argue, can be highly punctu-
ated. These may be between Darwinian genetic, broadly cognitive, or embedding
ecosystem structures.
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We begin by examining ergodic information sources and their dynamics under
the self-similarity of a renormalization transformation near a punctuated phase
transition. We then study the linked interaction of two information sources in
which the richness of the quasi-language of each affects the other, that is, when
two information sources have become one another’s primary environments. This
leads directly and naturally to a coevolutionary Red Queen. We will generalize
the development to a ‘block diagonal’ structure of several interacting sources,
and extend the model to second order, producing a ‘farming’ metaphor.

The structures of interest to us here can be most weakly, and hence univer-
sally, described in terms of an adiabatically, piecewise stationary, ergodic infor-
mation source involving a stochastic variate X which, in some general sense,
sends symbols α in correlated sequences α0, α1...αn−1 of length n (which may
vary), according to a joint probability distribution, and its associated conditional
probability distribution,

P [X0 = α0, X1 = α1, ...Xn−1 = αn−1],

P [Xn−1 = αn−1|X0 = α0, ...Xn−2 = αn−2].

If the conditional probability distribution depends only on m previous values
of X , then the information source is said to be of order m [5].

By ‘ergodic’ we mean that, in the long term, correlated sequences of sym-
bols are generated at an average rate equal to their (joint) probabilities. ‘Adia-
batic’ means that changes are slow enough to allow the necessary limit theorems
to function, ‘stationary’ means that, between pieces, probabilities don’t change
(much), and ‘piecewise’ means that these properties hold between phase transi-
tions, which are described using renormalization methods.

As the length of the (correlated) sequences increases without limit, the
Shannon-McMillan Theorem permits division of all possible streams of symbols
into two groups, a relatively small number characterized as meaningful, whose
long-time behavior matches the underlying probability distribution, and an in-
creasingly large set of gibberish with vanishingly small probability. Let N(n) be
the number of possible meaningful sequences of length n emitted by the source
X. Again, uncertainty of the source, H [X], can be defined by the subadditive
relation

H [X] = lim
n→∞

log[N(n)]

n
.

The Shannon-McMillan Theorem shows how to characterize H [X] directly in
terms of the joint probability distribution of the source X: H [X] is observable
and can be calculated from the inferred pattern of joint probabilities.

Let P [xi|yj] be the conditional probability that stochastic variate X = xi

given that stochastic variate Y = yj and let P [xi, yj ] be the joint probability
that X = xi and Y = yj. Then the joint and conditional uncertainties of X and
Y , H(X, Y ), and H(X |Y ) are given by expressions like those of equation (4).
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And again, the Shannon-McMillan Theorem of states that the subadditive
function for H [X] is given by the limits of equation (5).

Estimating the probabilities of the sequences α0, ...αn−1 from observation, the
ergodic property allows us to use them to estimate the uncertainty of the source,
i.e. of the behavioral language X. That is, H [X] is directly measurable.

Some elementary consideration (e.g., [5, 21]) shows that source uncertainty
has a least upper bound, a supremum, defined by the capacity of the channel
along which information is transmitted. That is, there exists a number C defined
by externalities such that H [X] ≤ C.

C is the maximum rate at which the external world can transmit information
originating with the information source, or that internal workspaces can commu-
nicate. Much of the subsequent development could, in fact, be expressed using
this relation.

Again recall the relation between the subadditive expression for source uncer-
tainty and the free energy density of a physical system, as expressed by equation
(12), which undergoes a phase transition depending on an inverse temperature
parameter K = 1/T at a critical temperature TC .

Imposition of a renormalization symmetry on F (K) in equation (12) describes,
in the infinite volume limit, the behavior of the system at the phase transition
in terms of scaling laws [95]. After some development, taking the limit n → ∞
as an analog to the infinite volume limit of a physical system, we will apply
this approach to a parametized source uncertainty. We will examine changes in
structure as a fundamental ‘inverse temperature’ changes across the underlying
system.

We use three parameters to describe the relations between an information
source and its environment or between different interacting sources.

The first, J ≥ 0, measures the degree to which acquired characteristics are
transmitted. For systems without memory J = 0. J ≈ 0 thus represents a high
degree of genetic as opposed to cultural inheritance.

J will always remain distinguished, a kind of inherent direction or external
field strength in the sense of [95].

The second parameter, Q = 1/C ≥ 0, represents the inverse availability of re-
sources. Q ≈ 0 thus represents a high ability to renew and maintain an particular
enterprise, in a large sense.

The third parameter, K = 1/T , is an inverse index of a generalized temper-
ature T , which we will more directly specify below in terms of the richness of
interacting information sources.

We suppose further that the structure of interest is implicitly embedded in,
and operates within the context of, a larger manifold stratified by metric dis-
tances.

Take these as multidimensional vector quantities A, B, C.... A may represent
location in space, time delay, or the like, and B may be determined through
multivariate analysis of a spectrum of observed behavioral or other factors, in
the largest sense, etc.
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It may be possible to reduce the effects of these vectors to a function of their
magnitudes a = |A|, b = |B| and c = |C|, etc. Define the generalized distance r as

r2 = a2 + b2 + c2 + .... (25)

To be more explicit, we assume an ergodic information source X is associated
with the reproduction and/or persistence of a population, ecosystem, cognitive
dual language or other structure. The source X, its uncertainty H [J, K, Q,X]
and its parameters J, K, Q all are assumed to depend implicitly on the embedding
manifold, in particular on the metric r of equation (25).

A particularly elegant and natural formalism for generating such punctuation
in our context involves application of Wilson’s [95] program of renormalization
symmetry – invariance under the renormalization transform – to source uncer-
tainty defined on the r-manifold. The results predict that language in the most
general sense, which includes the transfer of information within a a cognitive
enterprise, or between an enterprise and an embedding context, will undergo
sudden changes in structure analogous to phase transitions in physical systems.
The view is complementary to recent analyses of sudden fragmentation in social
networks, seen from the perspective of percolation theory.

We must, however, emphasize that this approach is argument by abduction
from physical theory: Much current development surrounding self-organizing
physical phenomena is based on the assumption that at phase transition a system
looks the same under renormalization. That is, phase transition represents a sta-
tionary point for a renormalization transform in the sense that the transformed
quantities are related by simple scaling laws to the original values.

Renormalization is a clustering semigroup transformation in which individual
components of a system are combined according to a particular set of rules into
a ‘clumped’ system whose behavior is a simplified average of those components.
Since such clumping is a many-to-one condensation, there can be no unique
inverse renormalization, and, as the Appendix shows, many possible forms of
condensation.

Assume it possible to redefine characteristics of the information source X and
J, K, Q as functions of averages across the manifold having metric r, which we
write as R. That is, ‘renormalize’ by clustering the entire system in terms of
blocks of different sized R.

Let N(K, J, Q, n) be the number of high probability meaningful correlated
sequences of length n across the entire community in the r-manifold of equation
(25), given parameter values K, J, Q. We study changes in

H [K, J, Q,X] ≡ lim
n→∞

log[N(K, J, Q, n)]

n

as K → KC and/or Q → QC for critical values KC , QC at which the system be-
gins to undergo a marked transformation from one kind of structure to another.

Given the metric of equation (25), a correlation length, χ(K, J, Q), can be de-
fined as the average length in r-space over which structures involving a particular
phase dominate.
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Now clump the ‘community’ into blocks of average size R in the multivariate
r-manifold, the ‘space’ in which the system of interest is implicitly embedded.

Following the classic argument of [95], reproduced and expanded in the Ap-
pendix, it is possible to impose renormalization symmetry on the source uncer-
tainty on H and χ by assuming at transition the relations

H [KR, JR, QR,X] = RDH [K, J, Q,X] (26)

and

χ(KR, JR, QR) =
χ(K, J, Q)

R
(27)

hold, where KR, JR and QR are the transformed values of K, J and Q after the
clumping of renormalization. We take K1, J1, Q1 ≡ K, J, Q and permit the char-
acteristic exponent D to be nonintegral. The Mathematical Appendix provides
examples of other possible relations.

Equations (26) and (27) are assumed to hold in a neighborhood of the tran-
sition values KC and QC .

Differentiating these with respect to R gives complicated expressions for
dKR/dR, dJR/dR and dQR/dR depending simply on R which we write as

dKR/dR =
u(KR, JR, QR)

R
(28)

dQR/dR =
w(KR, JR, QR)

R

dJR/dR =
v(KR, JR, QR)

R
JR.

Solving these differential equations gives KR, JR and QR as functions of
J, K, Q and R.

Substituting back into equations (26) and (27) and expanding in a first order
Taylor series near the critical values KC and QC gives power laws much like
the Widom-Kadanoff relations for physical systems [95]. For example, letting
J = Q = 0 and taking κ ≡ (KC − K)/KC gives, in first order near KC ,

H = κD/yH0 (29)

χ = κ−1/yχ0

where y is a constant arising from the series expansion.
Note that there are only two fundamental equations – (26) and (27) – in

n > 2 unknowns: The critical ‘point’ is, in this formulation, most likely to be a
complicated implicitly defined critical surface in J, K, Q, ...-space. The ‘external
field strength’ J remains distinguished in this treatment, i.e. the inverse of the
degree to which acquired characteristics are inherited, but neither K, Q nor
other parameters are, by themselves, fundamental, rather their joint interaction
defines critical behavior along this surface.

That surface is a fundamental object, not the particular set of parameters
(except for J) used to define it, which may be subject to any set of transfor-
mations which leave the surface invariant. Thus inverse generalized temperature
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resource availability or whatever other parameters may be identified as affecting
the richness of cognition, are inextricably intertwined and mutually interacting,
according to the form of this critical evolutionary transition surface. That sur-
face, in turn, is unlikely to remain fixed, and should vary with time or other
extrinsic parameters, including, but not likely limited to, J .

At the critical surface a Taylor expansion of the renormalization equations (26)
and (27) gives a first order matrix of derivatives whose eigenstructure defines
fundamental system behavior. For physical systems the surface is a saddle point
[95], but more complicated behavior seems likely in what we study. See Binney
et al., [12] for some details of this differential geometry.

Taking, for the moment, the simplest formulation, (J = Q = 0), that is, a well-
capitalized structure with memory, as K increases toward a threshold value KC ,
the source uncertainty of the reproductive, behavioral or other language common
across the community declines and, at KC , the average regime dominated by
the ‘other phase’ grows. That is, the system begins to freeze into one having a
large correlation length for the second phase. The two phenomena are linked at
criticality in physical systems by the scaling exponent y.

Assume the rate of change of κ = (KC − K)/KC remains constant, |dκ/dt| =
1/τK . Analogs with physical theory suggest there is a characteristic time constant
for the phase transition, τ ≡ τ0/κ, such that if changes in κ take place on a
timescale longer than τ for any given κ, we may expect the correlation length
χ = χ0κ

−s, s = 1/y, will be in equilibrium with internal changes and result in
a very large fragment in r-space. Following Zurek [98, 99], the ‘critical’ freezout
time, t̂, will occur at a ‘system time’ t̂ = χ/|dχ/dt| such that t̂ = τ . Taking the
derivative dχ/dt, remembering that by definition dκ/dt = 1/τK , gives

χ

|dχ/dt| =
κτK

s
=

τ0

κ

so that

κ =
√

sτ0/τK .

Substituting this value of κ into the equation for correlation length, the ex-
pected size of fragments in r-space, d(t̂), becomes

d ≈ χ0(
τK

sτ0
)s/2

with s = 1/y > 0. The more rapidly K approaches KC the smaller is τK and
the smaller and more numerous are the resulting r-space fragments. Thus rapid
change produces small fragments more likely to risk extinction in a system dom-
inated by economies of scale.

8.2 Recursive Interaction

Extending the theory above involves envisioning reciprocally interacting genetic,
cognitive or ecosystem information sources as subject to a coevolutionary Red
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Queen by treating their respective source uncertainties as recursively parame-
tized by each other. That is, assume the information sources are each other’s pri-
mary environments. These are, respectively, characterized by information sources
X and Y, whose uncertainties are parametized

[1] by measures of both inheritance and inverse resources – J Q as above –
and, most critically,

[2] by each others inverse uncertainties, HX ≡ 1/H [X] and HY ≡ 1/H [Y],
i.e.

H [X] = H [Q, J,HY ,X] (30)

H [Y] = H [Q, J,HX ,Y].

This is a recursive system having complex behaviors.
Assume a strongly heritable genetic system, i.e. J = 0, with fixed inverse

resource base, Q, for which H [X] follows something like the lower graph in
figure 3, a reverse S-shaped curve with K ≡ HY = 1/H [Y], and similarly H [Y]
depends on HX . That is, increase or decline in the source uncertainty of one
system leads to increase or decline in the source uncertainty of the other, and
vice versa. The richness of the two information sources is closely linked.

Start at the right of the lower graph for H [X] in figure 3, the source uncer-
tainty of the first system, but to the left of the critical point KC . Assume H [Y]
increases so HY decreases, and thus H [X] increases, walking up the lower curve
of figure 3 from the right: the richness of the first system’s internal language
increases – or the interaction between internal structures increases the richness
of their dual cognitive information sources – they get smarter or faster or more
poisonous, or their herd behavior becomes more sophisticated in the presence of
a predator.

The increase of H [X] leads, in turn, to a decline in HX and triggers an increase
of H [Y], whose increase leads to a further increase of H [X] and vice versa: The
Red Queen, taking the system from the right of figure 3 to the left, up the lower
curve as the two systems mutually interact.

Now enlarge the scale of the argument, and consider the possibility of other
interactions.

The upper graph of figure 3 represents the disorder

S = H [K,X] − KdH [K,X]/dK, K ≡ 1/H [Y].

According to the dynamical manifold analysis, the peak in S represents a
repulsive barrier for transition between high and low values of H [X]. This leads
to the expectation of hysteresis. That is, the two realms, to the left and right of
the peak in S for figure 3, thus represent quasi-stable resilience modes, in this
model.

8.3 Extending the Model

The model directly generalizes to multiple interacting information sources.
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Fig. 3. A reverse-S-shaped curve for source uncertainty H [X] – measuring language
richness – as a function of an inverse temperature parameter K = 1/H [Y]. To the
right of the critical point KC the system breaks into fragments in r-space whose size
is determined by the rate at which K approaches KC . A collection of fragments al-
ready to the right of KC , however, would be seen as condensing into a single unit
as K declined below the critical point. If K is an inverse source uncertainty itself,
i.e. K = 1/H [Y] for some information source Y, then under such conditions a Red
Queen dynamic can become enabled, driving the system strongly to the left. No inter-
mediate points are asymptotically stable, given a genetic heritage in this development,
although generalized Onsager/dynamical arguments suggest that the repulsive peak in
S = H − K/dH/dK can serve to create quasi-stable resilience realms. To the right of
the critical point KC the system is locked into disjoint fragments.

First consider a matrix of crosstalk measures between a set of information
sources. Assume the matrix can be block diagonalized into two major compo-
nents, characterized by network information source measures like equation (16),

Im(X1...Xi|Y1...Yj |Z1...Zk), m = 1, 2.
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Then apply the two-component theory above.
Extending the development to multiple, recursively interacting information

sources resulting from a more general block diagonalization seems direct. First
use inverse measures Ij ≡ 1/Ij, j �= m as parameters for each of the other blocks,
writing

Im = Im(K1...Ks, ...Ij ...), j �= m

where the Ks represent other relevant parameters.
Next segregate the Ij according to their relative rates of change, as in equation

(16). Cognitive gene expression would be among the most rapid, followed by
ecosystem dynamics and selection.

The dynamics of such a system, following the pattern of equations (18) and
(24), becomes a recursive network of stochastic differential equations, similar to
those used to study many other highly parallel dynamic structures (e.g., [96]).

Letting the Kj and Im all be represented as parameters Qj , (with the caveat
that Im not depend on Im), one can define

Sm
I ≡ Im −

∑

i

Qi∂Im/∂Qi

to obtain a complicated recursive system of phenomenological ‘Onsager relations’
stochastic differential equations like (24),

dQj
t =

∑

i

[Lj,i(t, ...∂Sm
I /∂Qi...)dt + σj,i(t, ...∂Sm

I /∂Qi...)dBi
t], (31)

where, again, for notational simplicity only, we have expressed both the recipro-
cal I’s and the external K’s in terms of the same Qj.

m ranges over the Im and we could allow different kinds of ‘noise’ dBi
t, having

particular forms of quadratic variation which may, in fact, represent a projection
of environmental factors under something like a rate distortion manifold [83].

Indeed, the Im and/or the derived Sm might, in some circumstances, be com-
bined into a Morse function, permitting application of Pettini’s Topological Hy-
pothesis.

The model rapidly becomes unwieldy, probably requiring some clever combi-
natorial or groupoid convolution algebra and related diagrams for concise ex-
pression, much as in the usual field theoretic perturbation expansions (Hopf
algebras, for example). The virtual reaction method of [97] is another possible
approach.

As in the simple model above, there will be, first, multiple quasi-stable points
within a given system’s Im, representing a class of generalized resilience modes
accessible via punctuation and enmeshing gene selection, gene expression, and
ecological resilience – analogous to the simple model of figure 3.

Second, however, will be analogs to the fragmentation of figure 3 when the
system exceeds the critical value Kc. That is, the K-parameter structure will rep-
resent full-scale fragmentation of the entire structure, and not just punctuation
within it.
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We thus infer two classes of punctuation possible for this kind of structure,
both of which could entrain ecosystem resilience shifts, gene expression, and gene
selection, although the latter kind would seem to be the far more dramatic.

There are other possible patterns: [1] Setting equation (31) equal to zero and
solving for stationary points again gives attractor states since the noise terms
preclude unstable equilibria. [2] Unlike equation (24), however, this system may
converge to limit cycle or ‘strange attractor’ behaviors in which the system
seems to chase its tail endlessly. [3] What is converged to in both cases is not
a simple state or limit cycle of states. Rather it is an equivalence class, or set
of them, of highly dynamic information sources coupled by mutual interaction
through crosstalk. Thus ‘stability’ in this structure represents particular patterns
of ongoing dynamics rather than some identifiable ‘state’.

Here we are, at last and indeed, deeply enmeshed in a highly recursive phe-
nomenological stochastic differential equations, but at a deeper level than Zhu
et al. [97] envisioned for gene expression alone, and in a dynamic rather than
static manner: the objects of this dynamical system are equivalence classes of in-
formation sources and their crosstalk, rather than simple ‘states’ of a dynamical
or reactive chemical system.

Imposition of necessary conditions from the asymptotic limit theorems of
communication theory has, at least in theory, beaten the thicket back one full
layer.

Other formulations may well be possible, but our work here serves to illustrate
the method.

It is, however, interesting to compare our results to those of Dieckmann and
Law [24], who invoke evolutionary game dynamics to obtain a first order canon-
ical equation having the form

dsi/dt = Ki(s)∂Wi(s
′
i, s)|s′

i
=si

. (32)

The si, with i = 1, ..., N denote adaptive trait values in a community com-
prising N species. The Wi(s

′
i, s) are measures of fitness of individuals with trait

values s′i in the environment determined by the resident trait values s, and the
Ki(s) are non-negative coefficients, possibly distinct for each species, that scale
the rate of evolutionary change. Adaptive dynamics of this kind have frequently
been postulated, based either on the notion of a hill-climbing process on an
adaptive landscape or some other sort of plausibility argument.

When this equation is set equal to zero, so there is no time dependence,
one obtains what are characterized as ‘evolutionary singularities’, i.e. stationary
points.

Dieckmann and Law contend that their formal derivation of this equation sat-
isfies four critical requirements: [1] The evolutionary process needs to be consid-
ered in a coevolutionary context. [2] A proper mathematical theory of evolution
should be dynamical. [3] The coevolutionary dynamics ought to be underpinned
by a microscopic theory. [4] The evolutionary process has important stochastic
elements.

Our equation (31) seems clearly within this same ballpark, although we have
taken a much different route, one which indeed produces elaborate patterns of
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phase transition punctuation in a highly natural manner. Champagnat et al. [16],
in fact, derive a higher order canonical approximation extending equation (32)
which is very much closer equation to (31), that is, a stochastic differential equa-
tion describing evolutionary dynamics. Champagnat et al. [16] go even further,
using a large deviations argument to analyze dynamical coevolutionary paths,
not merely evolutionary singularities. They contend that in general, the issue of
evolutionary dynamics drifting away from trajectories predicted by the canonical
equation can be investigated by considering the asymptotic of the probability of
‘rare events’ for the sample paths of the diffusion. By ‘rare events’ they mean
diffusion paths drifting far away from the canonical equation. The probability
of such rare events is governed by a large deviation principle: when a critical
parameter (designated ǫ) goes to zero, the probability that the sample path of
the diffusion is close to a given rare path φ decreases exponentially to 0 with rate
I(φ), where the ‘rate function’ I can be expressed in terms of the parameters of
the diffusion. This result, in their view, can be used to study long-time behavior
of the diffusion process when there are multiple attractive evolutionary singu-
larities. Under proper conditions the most likely path followed by the diffusion
when exiting a basin of attraction is the one minimizing the rate function I over
all the appropriate trajectories. The time needed to exit the basin is of the order
exp(H/ǫ) where H is a quasi-potential representing the minimum of the rate
function I over all possible trajectories.

An essential fact of large deviations theory is that the rate function I which
Champagnat et al. [16] invoke can almost always be expressed as a kind of
entropy, that is, in the form I =

∑

j Pj log(Pj) for some probability distribution.
This result goes under a number of names; Sanov’s Theorem, Cramer’s Theorem,
the Gartner-Ellis Theorem, the Shannon-McMillan Theorem, and so forth (e.g.,
[22]). Here we will use it, in combination with the cognitive paradigm for gene
expression, to suggest the possibility of second order effects in coevolutionary
process. That is, gene expression, because of its underlying cognitive nature,
may be an even more central aspect of coevolutionary process than is currently
understood: The fluctuational paths defined by the system of equations in (31)
may, under some conditions, become serially correlated outputs of an information
source driven by cognitive gene expression. In particular, the coevolutionary
pressures inherent to equation (31) may in fact strongly select for significant
cognition in gene expression.

8.4 Second Order Theory: Farming a Coevolutionary System

We begin with a recapitulation of large deviations and fluctuation formalism.
Information source uncertainty, according to the Shannon-McMillan Theorem,

serves as a splitting criterion between high and low probability sequences (or
pairs of them) and displays the fundamental characteristic of a growing body of
work in applied probability often termed the Large Deviations Program, (LDP)
which seeks to unite information theory, statistical mechanics and the theory of
fluctuations under a single umbrella.
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Following [22], (p.2),
Let X1, X2, ...Xn be a sequence of independent, standard Normal, real-valued

random variables and let

Sn =
1

n

n
∑

j=1

Xj . (33)

Since Sn is again a Normal random variable with zero mean and variance 1/n,
for all δ > 0

lim
n→∞

P (|Sn| ≥ δ) = 0, (34)

where P is the probability that the absolute value of Sn is greater or equal to δ.
Some manipulation, however, gives

P (|Sn| ≥ δ) = 1 − 1√
2π

∫ δ
√

n

−δ
√

n

exp(−x2/2)dx, (35)

so that

lim
n→∞

log P (|Sn| ≥ δ)

n
= −δ2/2. (36)

This can be rewritten for large n as

P (|Sn| ≥ δ) ≈ exp(−nδ2/2). (37)

That is, for large n, the probability of a large deviation in Sn follows some-
thing much like the asymptotic equipartition relation of the Shannon-McMillan
Theorem, i.e. that meaningful paths of length n all have approximately the same
probability P (n) ∝ exp(−nH [X]).

Questions about meaningful paths appear suddenly as formally isomorphic
to the central argument of the LDP which encompasses statistical mechanics,
fluctuation theory, and information theory into a single structure [22].

Perhaps the cardinal tenet of large deviation theory is that the rate function
−δ2/2 can, under proper circumstances, be expressed as a mathematical entropy
having the standard form

−
∑

k

pk log pk, (38)

for some set of probabilities pk. Again, this striking result goes under various
names at various levels of approximation – Sanov’s Theorem, Cramer’s Theorem,
the Gartner-Ellis Theorem, the Shannon-McMillan Theorem, and so on [22].

Next we briefly recapitulate part of the standard treatment of large fluctua-
tions [38, 66].

The macroscopic behavior of a complicated physical system in time is assumed
to be described by the phenomenological Onsager relations giving large-scale
fluxes as

∑

i

Ri,jdKj/dt = ∂S/∂Ki, (39)

where the Ri,j are appropriate constants, S is the system entropy and the Ki

are the generalized coordinates which parametize the system’s free energy.
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Entropy is defined from free energy F by a Legendre transform – more of
which follows below:

S ≡ F −
∑

j

Kj∂F/∂Kj,

where the Kj are appropriate system parameters.
Neglecting volume problems for the moment, free energy can be defined from

the system’s partition function Z as

F (K) = log[Z(K)].

The partition function Z, in turn, is defined from the system Hamiltonian –
defining the energy states – as

Z(K) =
∑

j

exp[−KEj],

where K is an inverse temperature or other parameter and the Ej are the energy
states.

Inverting the Onsager relations gives

dKi/dt =
∑

j

Li,j∂S/∂Kj = Li(K1, ..., Km, t) ≡ Li(K, t). (40)

The terms ∂S/∂Ki are macroscopic driving forces dependent on the entropy
gradient.

Let a white Brownian noise ǫ(t) perturb the system, so that

dKi/dt =
∑

j

Li,j∂S/∂Kj + ǫ(t) (41)

= Li(K, t) + ǫ(t),

where the time averages of ǫ are < ǫ(t) >= 0 and < ǫ(t)ǫ(0) >= Dδ(t). δ(t) is
the Dirac delta function, and we take K as a vector in the Ki.

Following Luchinsky [59], if the probability that the system starts at some
initial macroscopic parameter state K0 at time t = 0 and gets to the state K(t)
at time t is P (K, t), then a somewhat subtle development (e.g., [33]) gives the
forward Fokker-Planck equation for P :

∂P (K, t)/∂t = −∇ · (L(K, t)P (K, t)) + (D/2)∇2P (K, t). (42)

In the limit of weak noise intensity this can be solved using the WKB, i.e. the
eikonal, approximation, as follows: take

P (K, t) = z(K, t) exp(−s(K, t)/D). (43)

z(K, t) is a prefactor and s(K, t) is a classical action satisfying the Hamilton-
Jacobi equation, which can be solved by integrating the Hamiltonian equations
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of motion. The equation reexpresses P (K, t) in the usual parametized negative
exponential format.

Let p ≡ ∇s. Substituting and collecting terms of similar order in D gives

dK/dt = p + L, dp/dt = −∂L/∂Kp (44)

and

−∂s/∂t ≡ h(K, p, t) = pL(K, t) +
p2

2
, (45)

with h(K, t) the Hamiltonian for appropriate boundary conditions.
Again following Luchinsky [59], these Hamiltonian equations have two dif-

ferent types of solution, depending on p. For p = 0, dK/dt = L(K, t) which
describes the system in the absence of noise. We expect that with finite noise
intensity the system will give rise to a distribution about this deterministic path.
Solutions for which p �= 0 correspond to optimal paths along which the system
will move with overwhelming probability.

These results can, however, again be directly derived as a special case of a
Large Deviation Principle based on generalized entropies mathematically similar
to Shannon’s uncertainty from information theory, bypassing the Hamiltonian
formulation entirely [22].

For a cognitive system characterized by a dual information source, of course,
there is no Hamiltonian, but the generalized entropy or splitting criterion treat-
ment still works. The trick is to do with information source uncertainty what is
done here with a Hamiltonians.

Here we are concerned, not with a random Brownian distortion of simple phys-
ical systems, but, invoking cognitive gene expression, with a possibly complex
behavioral structure, in the largest sense, composed of quasi-independent actors
for which meaningful/optimal paths have extremely structured serial correlation,
amounting to a grammar and syntax, precisely the fact which allows definition
of an information source and enables the use of the very sparse equipartition of
the Shannon-McMillan and Rate Distortion Theorems.

In sum, to again paraphrase [59], large fluctuations, although infrequent, are
fundamental in a broad range of processes, and it was recognized by Onsager and
Machlup [66] that insight into the problem could be gained from studying the
distribution of fluctuational paths along which the system moves to a given state.
This distribution is a fundamental characteristic of the fluctuational dynamics,
and its understanding leads toward control of fluctuations. Fluctuational motion
from the vicinity of a stable state may occur along different paths. For large
fluctuations, the distribution of these paths peaks sharply along an optimal,
most probable, path. In the theory of large fluctuations, the pattern of optimal
paths plays a role similar to that of the phase portrait in nonlinear dynamics.

In this development meaningful paths driven by cognitive gene expression can
play something of the role of optimal paths in the theory of large fluctuations
which Champagnat et al. [16] have invoked, but without benefit of a Hamiltonian.

The spread of the possible spectrum of cognitive gene expression within a
species, affecting the ability to adapt to changing ecological niches, then becomes



60 R. Wallace and D. Wallace

central to the mitigation of selection pressures generated by coevolutionary dy-
namics: too limited a response repertoire will cause a species to become fully
entrained into high probability dynamical fluctuational paths leading to punc-
tuated extinction events. A broad spectrum allows a species to ride out much
more of the coevolutionary selection pressure.

A sufficiently broad repertoire of cognitive gene expression responses leads,
however, to the necessity of a second order coevolution model in which the high
probability fluctuational paths defined by the system of equations (31) are, in
fact, themselves the output of some information source. This is a model closely
analogous to the second order cognitive structures needed to explain animal
consciousness (e.g., [83, 93]). Intuitively, this transition to ‘cognitive coevolution’
would be particularly likely under the influence of a strong system of epigenetic
inheritance, that is, an animal culture extending the niche spectrum offered
by cognitive gene expression alone. Thus we could expand this development
to one encompassing biocultural coevolution, in particular the development of
agriculture, matters to be pursued in subsequent work.

9 Generalized Stochastic Resonance: Many Baldwin

Effects

These arguments can be significantly extended using a tuning theorem variant
of the Shannon Coding Theorem which leads to a generalized form of stochas-
tic resonance applicable to a spectrum of phenomena similar to the Baldwin
effect. Ancel [4] has presented what is perhaps the clearest mathematical model
of the basic idea. She argues that organisms that make non-hereditary physical
or behavioral modifications to survive environmental stresses will have better
representation in future generations than less versatile organisms. Through nat-
ural selection then, the capacity for such adaptation along with the beneficial
acquired traits will become universal. Calculation shows that the distribution
of phenotypes in a population depends largely on the extent of environmental
stochasticity. When the environment undergoes intermediate rates of fluctua-
tion, the Simpson-Baldwin effect arises through the interaction of natural se-
lection and mutation on norms of reaction. In a highly volatile environment by
contrast, organisms benefit from plasticity, and consequently do not experience
a Simpson-Baldwin channeling of phenotype possibility.

The essential point, from our perspective, is the importance of intermedi-
ate rates of environmental fluctuation, which mirrors the generalized stochastic
resonance arguments we ultimately invoke.

In this section we reconsider such phenomena from a purely information the-
oretic perspective, recovering in the process something much like the ‘no free
lunch’ theorem of computational optimization theory (e.g., English [31]).

Messages from an information source, seen as symbols xj from some alphabet,
each having probabilities Pj associated with a random variable X , are ‘encoded’
into the language of a ‘transmission channel’, a random variable Y with symbols
yk, having probabilities Pk, possibly with error. Someone receiving the symbol
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yk then retranslates it (without error) into some xk, which may or may not be
the same as the xj that was sent.

More formally, the message sent along the channel is characterized by a ran-
dom variable X having the distribution

P (X = xj) = Pj , j = 1, ..., M.

The channel through which the message is sent is characterized by a second
random variable Y having the distribution

P (Y = yk) = Pk, k = 1, ..., L.

Let the joint probability distribution of X and Y be defined as

P (X = xj , Y = yk) = P (xj , yk) = Pj,k

and the conditional probability of Y given X as

P (Y = yk|X = xj) = P (yk|xj).

Again the Shannon uncertainty of X and Y independently and the joint un-
certainty of X and Y together are defined respectively as

H(X) = −
M
∑

j=1

Pj log(Pj)

H(Y ) = −
L

∑

k=1

Pk log(Pk)

H(X, Y ) = −
M
∑

j=1

L
∑

k=1

Pj,k log(Pj,k).

The conditional uncertainty of Y given X is

H(Y |X) = −
M
∑

j=1

L
∑

k=1

Pj,k log[P (yk|xj)]

For any two stochastic variates X and Y , H(Y ) ≥ H(Y |X), as knowledge
of X generally gives some knowledge of Y . Equality occurs only in the case of
stochastic independence.

Since P (xj , yk) = P (xj)P (yk|xj), we have H(X |Y ) = H(X, Y ) − H(Y ).
The information transmitted by translating the variable X into the channel

transmission variable Y – possibly with error – and then retranslating without
error the transmitted Y back into X is defined as I(X |Y ) ≡ H(X)−H(X |Y ) =
H(X) + H(Y ) − H(X, Y ).

See, for example, [5, 21, 51] for details. The essential point is that if there is
no uncertainty in X given the channel Y , then there is no loss of information
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through transmission. In general this will not be true, and herein lies the essence
of the theory.

Given a fixed vocabulary for the transmitted variable X , and a fixed vocabu-
lary and probability distribution for the channel Y , we may vary the probability
distribution of X in such a way as to maximize the information sent. The ca-
pacity of the channel is defined as

C ≡ max
P (X)

I(X |Y ) (46)

subject to the subsidiary condition that
∑

P (X) = 1.
The critical trick of the Shannon Coding Theorem for sending a message with

arbitrarily small error along the channel Y at any rate R < C is to encode it in
longer and longer ‘typical’ sequences of the variable X ; that is, those sequences
whose distribution of symbols approximates the probability distribution P (X)
above which maximizes C.

If S(n) is the number of such ‘typical’ sequences of length n, then

log[S(n)] ≈ nH(X) (47)

where H(X) is the uncertainty of the stochastic variable defined above. Some
consideration shows that S(n) is much less than the total number of possible
messages of length n. Thus, as n → ∞, only a vanishingly small fraction of
all possible messages is meaningful in this sense. This observation, after some
considerable development, is what allows the Coding Theorem to work so well.
In sum, the prescription is to encode messages in typical sequences, which are
sent at very nearly the capacity of the channel. As the encoded messages become
longer and longer, their maximum possible rate of transmission without error
approaches channel capacity as a limit. Again, [5, 21, 51] provide details.

This approach can be, in a sense, inverted to give a tuning theorem which
parsimoniously describes the essence of the Rate Distortion Manifold.

Telephone lines, optical wave guides and the tenuous plasma through which
a planetary probe transmits data to earth may all be viewed in traditional
information-theoretic terms as a noisy channel around which we must struc-
ture a message so as to attain an optimal error-free transmission rate.

Telephone lines, wave guides and interplanetary plasmas are, relatively speak-
ing, fixed on the timescale of most messages, as are most sociogeographic net-
works. Indeed, the capacity of a channel, is defined by varying the probability
distribution of the ‘message’ process X so as to maximize I(X |Y ).

Suppose there is some message X so critical that its probability distribution
must remain fixed. The trick is to fix the distribution P (x) but modify the channel
– i.e. tune it – so as to maximize I(X |Y ). The dual channel capacity C∗ can be
defined as

C∗ ≡ max
P (Y ),P (Y |X)

I(X |Y ) (48)

But
C∗ = max

P (Y ),P (Y |X)
I(Y |X) (49)
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since
I(X |Y ) = H(X) + H(Y ) − H(X, Y ) = I(Y |X).

Thus, in a purely formal mathematical sense, the message transmits the chan-
nel, and there will indeed be, according to the Coding Theorem, a channel dis-
tribution P (Y ) which maximizes C∗.

One may do better than this, however, by modifying the channel matrix
P (Y |X). Since

P (yj) =
M
∑

i=1

P (xi)P (yj |xi),

P (Y ) is entirely defined by the channel matrix P (Y |X) for fixed P (X) and

C∗ = max
P (Y ),P (Y |X)

I(Y |X) = max
P (Y |X)

I(Y |X).

Calculating C∗ requires maximizing the complicated expression

I(X |Y ) = H(X) + H(Y ) − H(X, Y )

which contains products of terms and their logs, subject to constraints that
the sums of probabilities are 1 and each probability is itself between 0 and 1.
Maximization is done by varying the channel matrix terms P (yj |xi) within the
constraints. This is a difficult problem in nonlinear optimization. However, for
the special case M = L, C∗ may be found by inspection:

If M = L, then choose
P (yj |xi) = δj,i (50)

where δi,j is 1 if i = j and 0 otherwise. For this special case

C∗ ≡ H(X)

with P (yk) = P (xk) for all k. Information is thus transmitted without error
when the channel becomes ‘typical’ with respect to the fixed message distribution
P (X).

If M < L matters reduce to this case, but for L < M information must be
lost, leading to Rate Distortion limitations.

Thus modifying the channel may be a far more efficient means of ensuring
transmission of an important message than encoding that message in a ‘natural’
language which maximizes the rate of transmission of information on a fixed
channel.

We have examined the two limits in which either the distributions of P (Y ) or
of P (X) are kept fixed. The first provides the usual Shannon Coding Theorem,
and the second a tuning theorem variant, i.e., a tunable, retina-like object we
can call a Rate Distortion Manifold [39, 84]. It seems likely, however, than for
many important systems P (X) and P (Y ) will interpenetrate, to use Richard
Lewontin’s terminology. That is, P (X) and P (Y ) will affect each other in char-
acteristic ways, so that some form of mutual tuning may be the most effective
strategy.
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Classic stochastic resonance (SR) emerges from these arguments quite directly.
The only coding possible under the conditions of SR is to add random noise to
the amplitude of a structured signal which, by itself, is below threshold for
triggering some powerful, highly nonlinear device. The only ‘tuning’ possible to
random noise is to vary its amplitude. By the arguments above, there will be
some optimum noise amplitude which will maximize the dual channel capacity,
and hence the transmission rate of the signal via the powerful, threshold-driven,
oscillator.

Similarly, in Ancel’s model of the Simpson-Baldwin effect, the only ‘tun-
ing’ possible the system, as she has presented it, is the extent of environmen-
tal stochasticity. By these arguments, then, there will be an ‘optimal’ level of
stochasticity which drives the effect.

Clearly more complicated natural phenomena can be subject to analogous
tuning, with particular sensitivity to ‘intermediate’ level processes. And there-
upon hangs our tale.

10 Discussion and Conclusions

The basic point is the inevitability of punctuation in generalized coevolutionary
interactions, representing fundamental structural changes in underlying mani-
folds, roughly analogous to the topological hypothesis of Pettini [68, 69]. Thus
evolution, resilience, and cognitive phenomena, which can all be (at least crudely)
represented by information sources, are inherently subject to punctuated equi-
librium phenomena essentially similar to ecosystem resilience. This pattern will
involve each individually, as well as their interactions, a consequence of the
fundamental homology between information source uncertainty and free energy
density.

Holling [48] finds, for ecosystems, an extended keystone hypothesis, that all
ecosystems are controlled and organized by a small number of key plant, animal,
and abiotic processes that structure the landscape at different scales. Similarly,
he invokes an entrainment hypothesis, that within any one ecosystem, the pe-
riodicities and architectural attributes of the critical structuring processes will
establish a nested set of periodicities and spatial features that become attrac-
tors for other variables. He argues that the degree to which small, fast events
influence larger, slower ones is critically dependent upon mesoscale disturbance
processes.

Our lowest common denominator information theoretic approach to coevolu-
tionary interaction between genes, embedding ecosystem, and cognitive process
identifies ecosystem phenomena as the driving mesoscale: cognitive phenomena
are much faster, and (for large animals) genetic change much slower. The gener-
alized stochastic resonance argument of the previous section provides a formal
basis for these assertions.

That is, punctuated changes in ecosystem structure, the traditional purview
of ecological resilience, appear able to entrain both Darwinian genetic and cog-
nitive phenomena – including gene expression, triggering similarly punctuated
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outcomes, on top of the punctuation naturally inherent to these information
systems.

Thus, while discontinuous phase transitions are ‘natural’ at all scales of bi-
ological information process, we argue here that punctuated changes in em-
bedding ecosystem resilience regime will be particularly effective at entraining
faster cognitive and slower Darwinian genetic structural phenomena. In partic-
ular, punctuated changes in ecosystem structure can write images of themselves
onto genetic sequence structure in a punctuated manner, resulting in punctu-
ated population extinction and/or speciation events on geologic timescales, and
in sudden changes in gene expression and other cognitive phenomena on more
rapid timescales.

This is not an entirely new idea. Laland et al. [52] have used a different
methodology to reach similar conclusions. In their view there is increasing recog-
nition that all organisms modify their environments through a process they char-
acterize as ‘niche construction’. Such modifications can have profound effects on
the distribution and abundance of organisms, the influence of keystone species,
the control of energy and material flows, residence and return times, ecosystem
resilience, and specific trophic relationships. The consequences of environment
modification by organisms, however, are not restricted to ecology, and organisms
can affect both their own and each other’s evolution by modifying sources of nat-
ural selection in their environments. They cite Lewontin’s work, which points out
that many of the activities of organisms, such as migration, hoarding of food re-
sources, habitat selection, or thermoregulatory behavior, are adaptive precisely
because they dampen statistical variation in the availability of environmental
resources.

Laland et al. [52] argue that, hitherto, it has not been possible to apply evo-
lutionary theory to ecosystems, because of the presence of nonevolving abiota
in ecosystems. They suspect this obstacle has been largely responsible for pre-
venting the full integration of ecosystem ecology with population-community
ecology. However, in their view, adding the new process of niche construction to
the established process of natural selection enables the incorporation of both abi-
otic environmental components and interactions among populations and abiota
in ecosystems into evolutionary models an approach equally applicable to both
population-community ecology and ecosystem-level ecology.

Somewhat earlier, Odling-Smee et al. [64] discussed these matters from the
perspective of Lewontin, who has argued that the ‘metaphor of adaptation’
should be replaced by a ‘metaphor of construction’. However, the acceptance
of Lewontin’s position, they state, demands more than just semantic adjust-
ments to evolutionary theory. Niche construction changes the dynamic of the
evolutionary process in fundamental ways because it precludes a description of
evolutionary change relative only to autonomous environments. Instead, evolu-
tion now consists of endless cycles of natural selection and niche construction.
Equally, it is no longer tenable from their perspective to assume that the only
way organisms can contribute to evolutionary descent is by passing on fit or unfit
genes to their descendants relative to their environments, because they can also
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pass on modifications in those environments that are better or worse suited to
their genes. Adaptation becomes a two-way street in this theory.

More recently Dercole et al. [23] have addressed the problem using their ver-
sion of equation (32) to produce very complex dynamical patterns, focusing on
eco-evolutionary dynamics in communities contaiing ‘slow’ and ‘fast’ popula-
tions, which allows relaxation of the ecological equilibrium assumption.

Whitham [94], in parallel with our approach, takes a genetic framework as-
sociated with ecologically-dominant keystone species to examine what they call
community and ecosystem phenotypes. They ask whether heritable traits in a
single species can affect an entire ecosystem. Recent studies, they claim, show
that such traits have predictable effects on community structure and ecosystem
processes. Because these community and ecosystem phenotypes have a genetic
basis and are heritable, they claim it is possible to apply the principles of popu-
lation and quantitative genetics to place the study of complex communities and
ecosystems within an evolutionary framework. This could, they assert, allow us
to understand, for the first time, the genetic basis of ecosystem processes, and
the effect of such phenomena as climate change and introduced transgenetic
organisms on entire communities.

Whitham [94] goes on to define community evolution as a genetically based
change in the ecological interactions that occur between species over time.

Here, by contrast, although we too focus on keystone scales, our particular
innovation has been to reduce the dynamics of genetic inheritance, ecosystem
persistence, and gene expression to a least common denominator as information
sources operating at markedly different rates, but coupled by crosstalk into a
broadly coevolutionary phenomenon marked at all scales by emergent ‘phase
transition’ phenomena generating patterns of punctuated equilibrium.

We have, at times, grossly simplified the mathematical analysis. Invocation of
equivalence class arguments leads naturally into deep groupoid structures and
related topological generalizations, including Morse theory [84]. Taking a ‘mean
number’ rather than the mean field approach of the Mathematical Appendix
generates a qualitatively different class of exactly solvable models, based on giant
component phase transitions in networks. Hybrids of the two are possible, and
evolutionary process is unlikely to be at all constrained by formal mathematical
tractability. In addition higher cognitive phenomena like individual or group
consciousness require second order models analogous to hierarchical regression.
Much of this is described in [84].

We conclude with E.C. Pielou’s [70] important warning regarding ecological
modeling:

“...[Mathematical models] are easy to devise; even though the as-
sumptions of which they are constructed may be hard to justify, the
magic phrase ‘let us assume that...’ overrides objections temporarily.
One is then confronted with a much harder task: How is such a model
to be tested? The correspondence between a model’s predictions and ob-
served events is sometimes gratifyingly close but this cannot be taken to
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imply the model’s simplifying assumptions are reasonable in the sense
that neglected complications are indeed negligible in their effects...

In my opinion the usefulness of models is great... [however] it consists
not in answer questions but in raising them. Models can be used to
inspire new field investigations and these are the only source of new
knowledge as opposed to new speculation.”

The principal model-based speculation of this work is that, via the mechanisms
of Section 9, mesoscale ecosystem resilience shifts can entrain punctuated events
of gene expression and other cognitive phenomena on more rapid time scales,
and, in large part through such mechanisms of phenotype expression, slower
genetic selection-induced changes, triggering punctuated equilibrium Darwinian
evolutionary transitions on geologic time scales. The model we have invoked,
unlike most related work, is a statistical one in which the asymptotic limit the-
orems of information theory impose necessary conditions on the behavior of
ecosystems, Darwinian genetic selection, and gene expression. These necessary
conditions, as the Central Limit Theorem does for regression theory, permit the
construction of empirical models which can be fitted to data. Scientific inference
is not in the model fitting itself, but rather, in the comparison of similar systems
under different conditions, and the comparison of different systems under similar
conditions. This semi-empirical approach is, perhaps, what most differentiates
our developments from other attempts to model biological processes. We can,
at best, impose necessary conditions through our formal development. The real
science must then be done by real experiment.

It is worth noting that, for human populations in particular, several other
layers of information sources, those of (Lamarckian) culture, and of individual
and group consciousness and learning, become manifest, producing a rich stew
of complicated and interesting phenomena [84, 91, 92].

11 Mathematical Appendix

11.1 The Shannon-McMillan Theorem

According to the structure of the underlying language of which a message is a
particular expression, some messages are more ‘meaningful’ than others, that
is, are in accord with the grammar and syntax of the language. The Shannon-
McMillan or Asymptotic Equipartition Theorem, describes how messages them-
selves are to be classified.

Suppose a long sequence of symbols is chosen, using the output of the random
variable X above, so that an output sequence of length n, with the form

xn = (α0, α1, ..., αn−1)

has joint and conditional probabilities

P (X0 = α0, X1 = α1, ..., Xn−1 = αn−1)
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P (Xn = αn|X0 = α0, ..., Xn−1 = αn−1).

Using these probabilities we may calculate the conditional uncertainty

H(Xn|X0, X1, ..., Xn−1).

The uncertainty of the information source, H [X], is defined as

H [X] ≡ lim
n→∞

H(Xn|X0, X1, ..., Xn−1). (51)

In general
H(Xn|X0, X1, ..., Xn−1) ≤ H(Xn).

Only if the random variables Xj are all stochastically independent does equal-
ity hold. If there is a maximum n such that, for all m > 0

H(Xn+m|X0, ..., Xn+m−1) = H(Xn|X0, ..., Xn−1),

then the source is said to be of order n. It is easy to show that

H [X] = lim
n→∞

H(X0, ...Xn)

n + 1
.

In general the outputs of the Xj , j = 0, 1, ..., n are dependent. That is, the
output of the communication process at step n depends on previous steps. Such
serial correlation, in fact, is the very structure which enables most of what is
done in this paper.

Here, however, the processes are all assumed stationary in time, that is, the
serial correlations do not change in time, and the system is stationary.

A very broad class of such self-correlated, stationary, information sources, the
so-called ergodic sources for which the long-run relative frequency of a sequence
converges stochastically to the probability assigned to it, have a particularly
interesting property:

It is possible, in the limit of large n, to divide all sequences of outputs of an
ergodic information source into two distinct sets, S1 and S2, having, respectively,
very high and very low probabilities of occurrence, with the source uncertainty
providing the splitting criterion. In particular the Shannon-McMillan Theorem
states that, for a (long) sequence having n (serially correlated) elements, the
number of ‘meaningful’ sequences, N(n) – those belonging to set S1 – will satisfy
the relation

log[N(n)]

n
≈ H [X]. (52)

More formally,

lim
n→∞

log[N(n)]

n
= H [X] (53)

= lim
n→∞

H(Xn|X0, ..., Xn−1)

= lim
n→∞

H(X0, ..., Xn)

n + 1
.
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Using the internal structures of the information source permits limiting at-
tention only to high probability ‘meaningful’ sequences of symbols.

11.2 The Rate Distortion Theorem

The Shannon-McMillan Theorem can be expressed as the ‘zero error limit’ of
the Rate Distortion Theorem [21, 22] which defines a splitting criterion that
identifies high probability pairs of sequences. We follow closely the treatment
of [21].

The origin of the problem is the question of representing one information
source by a simpler one in such a way that the least information is lost. For
example we might have a continuous variate between 0 and 100, and wish to
represent it in terms of a small set of integers in a way that minimizes the
inevitable distortion that process creates. Typically, for example, an analog audio
signal will be replaced by a ‘digital’ one. The problem is to do this in a way which
least distorts the reconstructed audio waveform.

Suppose the original stationary, ergodic information source Y with output
from a particular alphabet generates sequences of the form

yn = y1, ..., yn.

These are ‘digitized,’ in some sense, producing a chain of ‘digitized values’

bn = b1, ..., bn,

where the b-alphabet is much more restricted than the y-alphabet.
bn is, in turn, deterministically retranslated into a reproduction of the original

signal yn. That is, each bm is mapped on to a unique n-length y-sequence in the
alphabet of the information source Y :

bm → ŷn = ŷ1, ..., ŷn.

Note, however, that many yn sequences may be mapped onto the same re-
translation sequence ŷn, so that information will, in general, be lost.

The central problem is to explicitly minimize that loss.
The retranslation process defines a new stationary, ergodic information

source, Ŷ .
The next step is to define a distortion measure, d(y, ŷ), which compares the

original to the retranslated path. For example the Hamming distortion is

d(y, ŷ) = 1, y �= ŷ (54)

d(y, ŷ) = 0, y = ŷ.

For continuous variates the Squared error distortion is

d(y, ŷ) = (y − ŷ)2. (55)
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There are many possibilities.
The distortion between paths yn and ŷn is defined as

d(yn, ŷn) =
1

n

n
∑

j=1

d(yj , ŷj). (56)

Suppose that with each path yn and bn-path retranslation into the y-language
and denoted yn, there are associated individual, joint, and conditional probabil-
ity distributions

p(yn), p(ŷn), p(yn|ŷn).

The average distortion is defined as

D =
∑

yn

p(yn)d(yn, ŷn). (57)

It is possible, using the distributions given above, to define the information
transmitted from the incoming Y to the outgoing Ŷ process in the usual manner,
using the Shannon source uncertainty of the strings:

I(Y, Ŷ ) ≡ H(Y ) − H(Y |Ŷ ) = H(Y ) + H(Ŷ ) − H(Y, Ŷ ).

If there is no uncertainty in Y given the retranslation Ŷ , then no information
is lost.

In general, this will not be true.
The information rate distortion function R(D) for a source Y with a distortion

measure d(y, ŷ) is defined as

R(D) = min
p(y,ŷ);

∑

(y,ŷ) p(y)p(y|ŷ)d(y,ŷ)≤D
I(Y, Ŷ ). (58)

The minimization is over all conditional distributions p(y|ŷ) for which the
joint distribution p(y, ŷ) = p(y)p(y|ŷ) satisfies the average distortion constraint
(i.e., average distortion ≤ D).

The Rate Distortion Theorem states that R(D) is the maximum achievable
rate of information transmission which does not exceed the distortion D. Cover
and Thomas [21] or Dembo and Zeitouni [22] provide details.

More to the point, however, is the following: Pairs of sequences (yn, ŷn) can
be defined as distortion typical ; that is, for a given average distortion D, defined
in terms of a particular measure, pairs of sequences can be divided into two sets,
a high probability one containing a relatively small number of (matched) pairs
with d(yn, ŷn) ≤ D, and a low probability one containing most pairs. As n → ∞,
the smaller set approaches unit probability, and, for those pairs,

p(yn) ≥ p(ŷn|yn) exp[−nI(Y, Ŷ )]. (59)

Thus, roughly speaking, I(Y, Ŷ ) embodies the splitting criterion between high
and low probability pairs of paths.
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For the theory of interacting information sources, then, I(Y, Ŷ ) can play the
role of H in the dynamic treatment above.

The rate distortion function can actually be calculated in many cases by using
a Lagrange multiplier method – see Section 13.7 of [21].

11.3 Morse Theory

Morse theory examines relations between analytic behavior of a function – the
location and character of its critical points – and the underlying topology of
the manifold on which the function is defined. We are interested in a number
of such functions, for example information source uncertainty on a parameter
space and ‘second order’ iterations involving parameter manifolds determining
critical behavior, for example sudden onset of a giant component in the mean
number model, and universality class tuning in the mean field model. These can
be reformulated from a Morse theory perspective. Here we follow closely the
elegant treatments of [50, 68, 69].

The essential idea of Morse theory is to examine an n-dimensional manifold
M as decomposed into level sets of some function f : M → R where R is the
set of real numbers. The a-level set of f is defined as

f−1(a) = {x ∈ M : f(x) = a},

the set of all points in M with f(x) = a. If M is compact, then the whole
manifold can be decomposed into such slices in a canonical fashion between two
limits, defined by the minimum and maximum of f on M . Let the part of M
below a be defined as

Ma = f−1(−∞, a] = {x ∈ M : f(x) ≤ a}.

These sets describe the whole manifold as a varies between the minimum and
maximum of f .

Morse functions are defined as a particular set of smooth functions f : M → R
as follows. Suppose a function f has a critical point xc, so that the derivative
df(xc) = 0, with critical value f(xc). Then f is a Morse function if its crit-
ical points are nondegenerate in the sense that the Hessian matrix of second
derivatives at xc, whose elements, in terms of local coordinates are

Hi,j = ∂2f/∂xi∂xj ,

has rank n, which means that it has only nonzero eigenvalues, so that there are
no lines or surfaces of critical points and, ultimately, critical points are isolated.

The index of the critical point is the number of negative eigenvalues of H
at xc.

A level set f−1(a) of f is called a critical level if a is a critical value of f , that
is, if there is at least one critical point xc ∈ f−1(a).
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Again following [68], the essential results of Morse theory are:
[1] If an interval [a, b] contains no critical values of f , then the topology of

f−1[a, v] does not change for any v ∈ (a, b]. Importantly, the result is valid even
if f is not a Morse function, but only a smooth function.

[2] If the interval [a, b] contains critical values, the topology of f−1[a, v]
changes in a manner determined by the properties of the matrix H at the critical
points.

[3] If f : M → R is a Morse function, the set of all the critical points of f is
a discrete subset of M , i.e. critical points are isolated. This is Sard’s Theorem.

[4] If f : M → R is a Morse function, with M compact, then on a finite
interval [a, b] ⊂ R, there is only a finite number of critical points p of f such
that f(p) ∈ [a, b]. The set of critical values of f is a discrete set of R.

[5] For any differentiable manifold M , the set of Morse functions on M is an
open dense set in the set of real functions of M of differentiability class r for
0 ≤ r ≤ ∞.

[6] Some topological invariants of M , that is, quantities that are the same
for all the manifolds that have the same topology as M , can be estimated and
sometimes computed exactly once all the critical points of f are known: Let
the Morse numbers μi(i = 1, ..., m) of a function f on M be the number of
critical points of f of index i, (the number of negative eigenvalues of H). The
Euler characteristic of the complicated manifold M can be expressed as the
alternating sum of the Morse numbers of any Morse function on M ,

χ =
m

∑

i=0

(−1)iμi.

The Euler characteristic reduces, in the case of a simple polyhedron, to

χ = V − E + F

where V, E, and F are the numbers of vertices, edges, and faces in the polyhe-
dron.

[7] Another important theorem states that, if the interval [a, b] contains a
critical value of f with a single critical point xc, then the topology of the set
Mb defined above differs from that of Ma in a way which is determined by the
index, i, of the critical point. Then Mb is homeomorphic to the manifold obtained
from attaching to Ma an i-handle, i.e. the direct product of an i-disk and an
(m − i)-disk.

Again, Pettini [68] contains both mathematical details and further references.
See, for example, Matusmoto [60] or the classic by Milnor [62].

11.4 The Mean Field Model

Wallace and Wallace [85, 86] have addressed how a language, in a large sense,
‘spoken’ on a network structure, responds as properties of the network change.
The language might be speech, pattern recognition, or cognition. The network
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might be social, chemical, or neural. The properties of interest were the mag-
nitude of ‘strong’ or ‘weak’ ties which, respectively, either disjointly partitioned
the network or linked it across such partitioning. These would be analogous to
local and mean-field couplings in physical systems.

Fix the magnitude of strong ties – again, those which disjointly partition the
underlying network into cognitive or other submodules – but vary the index of
nondisjunctive weak ties, P , between components, taking K = 1/P .

Assume the piecewise, adiabatically stationary ergodic information source (or
sources) dual to cognitive process depends on three parameters, two explicit
and one implicit. The explicit are K as above and, as a calculational device, an
‘external field strength’ analog J , which gives a ‘direction’ to the system. We will,
in the limit, set J = 0. Note that many other approaches may well be possible,
since renormalization techniques are more philosophy than prescription.

The implicit parameter, r, is an inherent generalized ‘length’ characteristic of
the phenomenon, on which J and K are defined. That is, J and K are written
as functions of averages of the parameter r, which may be quite complex, having
nothing at all to do with conventional ideas of space. For example r may be
defined by the degree of niche partitioning in ecosystems or separation in social
structures.

For a given generalized language of interest having a well defined (adiabati-
cally, piecewise stationary) ergodic source uncertainty, H = H [K, J,X].

To summarize a long train of standard argument [12, 95], imposition of in-
variance of H under a renormalization transform in the implicit parameter r
leads to expectation of both a critical point in K, written KC , reflecting a phase
transition to or from collective behavior across the entire array, and of power
laws for system behavior near KC . Addition of other parameters to the system
results in a ‘critical line’ or surface.

Let κ ≡ (KC − K)/KC and take χ as the ‘correlation length’ defining the av-
erage domain in r-space for which the information source is primarily dominated
by ‘strong’ ties. The first step is to average across r-space in terms of ‘clumps’
of length R =< r >. Then H [J, K,X] → H [JR, KR,X].

Taking Wilson’s [95] analysis as a starting point – not the only way to proceed
– the ‘renormalization relations’ used here are:

H [KR, JR,X] = f(R)H [K, J,X] (60)

χ(KR, JR) =
χ(K, J)

R
,

with f(1) = 1 and J1 = J, K1 = K. The first equation significantly extends
Wilson’s treatment. It states that ‘processing capacity,’ as indexed by the source
uncertainty of the system, representing the ‘richness’ of the generalized language,
grows monotonically as f(R), which must itself be a dimensionless function in R,
since both H [KR, JR] and H [K, J ] are themselves dimensionless. Most simply,
this requires replacing R by R/R0, where R0 is the ‘characteristic length’ for
the system over which renormalization procedures are reasonable, then setting
R0 ≡ 1, hence measuring length in units of R0.
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Wilson’s original analysis focused on free energy density. Under ‘clumping,’
densities must remain the same, so that if F [KR, JR] is the free energy of the
clumped system, and F [K, J ] is the free energy density before clumping, then
Wilson’s equation (4) is F [K, J ] = R−3F [KR, JR],

F [KR, JR] = R3F [K, J ].

Remarkably, the renormalization equations are solvable for a broad class of
functions f(R), or more precisely, f(R/R0), R0 ≡ 1.

The second equation just states that the correlation length simply scales
as R.

Again, the central feature of renormalization in this context is the assumption
that, at criticality, the system looks the same at all scales, that is, it is invariant
under renormalization at the critical point. All else flows from this.

There is no unique renormalization procedure for information sources: other,
very subtle, symmetry relations – not necessarily based on the elementary physi-
cal analog we use here – may well be possible. This is important, since biological
or social systems may well alter their renormalization properties – equivalent to
tuning their phase transition dynamics – in response to external signals. We will
make much use of a simple version of this possibility, termed ‘universality class
tuning,’ below.

To begin, following Wilson, take f(R) = Rd, d some real number d > 0, and
restrict K to near the ‘critical value’ KC . If J → 0, a simple series expansion
and some clever algebra [12, 95] gives

H = H0κ
α (61)

χ =
χ0

κs
,

where α, s are positive constants. More biologically relevant examples appear
below.

Further from the critical point, matters are more complicated, appearing to
involve Generalized Onsager Relations, ‘dynamical groupoids’, and a kind of
thermodynamics associated with a Legendre transform of H : S ≡ H−KdH/dK.
Although this extension is quite important to describing behaviors away from
criticality, the mathematical detail is cumbersome. A more detailed discussion
appears at the end of this appendix.

An essential insight is that regardless of the particular renormalization prop-
erties, sudden critical point transition is possible in the opposite direction for this
model. That is, going from a number of independent, isolated and fragmented
systems operating individually and more or less at random, into a single large,
interlocked, coherent structure, once the parameter K, the inverse strength of
weak ties, falls below threshold, or, conversely, once the strength of weak ties
parameter P = 1/K becomes large enough.

Thus, increasing nondisjunctive weak ties between them can bind several dif-
ferent cognitive ‘language’ functions into a single, embedding hierarchical met-
alanguage containing each as a linked subdialect, and do so in an inherently
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punctuated manner. This could be a dynamic process, creating a shifting, ever-
changing pattern of linked cognitive submodules, according to the challenges or
opportunities faced by the organism.

This heuristic insight can be made more exact using a rate distortion argu-
ment (or, more generally, using the Joint Asymptotic Equipartition Theorem)
as follows:

Suppose that two ergodic information sources Y and B begin to interact, to
‘talk’ to each other, to influence each other in some way so that it is possible, for
example, to look at the output of B – strings b – and infer something about the
behavior of Y from it – strings y. We suppose it possible to define a retranslation
from the B-language into the Y-language through a deterministic code book, and
call Ŷ the translated information source, as mirrored by B.

Define some distortion measure comparing paths y to paths ŷ, d(y, ŷ). Invoke
the Rate Distortion Theorem’s mutual information I(Y, Ŷ ), which is the split-
ting criterion between high and low probability pairs of paths. Impose, now, a
parametization by an inverse coupling strength K, and a renormalization repre-
senting the global structure of the system coupling. This may be much different
from the renormalization behavior of the individual components. If K < KC ,
where KC is a critical point (or surface), the two information sources will be
closely coupled enough to be characterized as condensed.

In the absence of a distortion measure, the Joint Asymptotic Equipartition
Theorem gives a similar result.

Detailed coupling mechanisms will be sharply constrained through regulari-
ties of grammar and syntax imposed by limit theorems associated with phase
transition.

Biological renormalization. Next the mathematical detail concealed by the
invocation of the asymptotic limit theorems emerges with a vengeance. Equation
(60) states that the information source and the correlation length, the degree of
coherence on the underlying network, scale under renormalization clustering in
chunks of size R as

H [KR, JR]/f(R) = H [J, K]

χ[KR, JR]R = χ(K, J),

with f(1) = 1, K1 = K, J1 = J , where we have slightly rearranged terms.
Differentiating these two equations with respect to R, so that the right hand

sides are zero, and solving for dKR/dR and dJR/dR gives, after some consoli-
dation, expressions of the form

dKR/dR = u1d log(f)/dR + u2/R (62)

dJR/dR = v1JRd log(f)/dR +
v2

R
JR.

The ui, vi, i = 1, 2 are functions of KR, JR, but not explicitly of R itself.
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We expand these equations about the critical value KR = KC and about
JR = 0, obtaining

dKR/dR = (KR − KC)yd log(f)/dR + (KR − KC)z/R (63)

dJR/dR = wJRd log(f)/dR + xJR/R.

The terms y = du1/dKR|KR=KC
, z = du2/dKR|KR=KC

, w = v1(KC , 0), x =
v2(KC , 0) are constants.

Solving the first of these equations gives

KR = KC + (K − KC)Rzf(R)y, (64)

again remembering that K1 = K, J1 = J, f(1) = 1.
Wilson’s essential trick is to iterate on this relation, which is supposed to

converge rapidly near the critical point [12], assuming that for KR near KC , we
have

KC/2 ≈ KC + (K − KC)Rzf(R)y. (65)

We iterate in two steps, first solving this for f(R) in terms of known values,
and then solving for R, finding a value RC that we then substitute into the first
of equations (60) to obtain an expression for H [K, 0] in terms of known functions
and parameter values.

The first step gives the general result

f(RC) ≈ [KC/(KC − K)]1/y

21/yR
z/y
C

. (66)

Solving this for RC and substituting into the first expression of equation (55)
gives, as a first iteration of a far more general procedure [78], the result

H [K, 0] ≈ H [KC/2, 0]

f(RC)
=

H0

f(RC)
(67)

χ(K, 0) ≈ χ(KC/2, 0)RC = χ0RC ,

which are the essential relationships.
Note that a power law of the form f(R) = Rm, m = 3, which is the direct

physical analog, may not be biologically reasonable, since it says that ‘language
richness’ can grow very rapidly as a function of increased network size. Such
rapid growth is simply not observed.

Taking the biologically realistic example of non-integral ‘fractal’ exponential
growth,

f(R) = Rδ, (68)

where δ > 0 is a real number which may be quite small, equation (66) can be
solved for RC , obtaining

RC =
[KC/(KC − K)][1/(δy+z)]

21/(δy+z)
(69)
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for K near KC . Note that, for a given value of y, one might characterize the
relation α ≡ δy + z = constant as a ‘tunable universality class relation’ in the
sense of Albert and Barabasi [3].

Substituting this value for RC back into equation (66) gives a complex ex-
pression for H , having three parameters: δ, y, z.

A more biologically interesting choice for f(R) is a logarithmic curve that
‘tops out’, for example

f(R) = m log(R) + 1. (70)

Again f(1) = 1.
Using Mathematica 4.2 or above to solve equation (66) for RC gives

RC = [
Q

LambertW [Q exp(z/my)]
]y/z, (71)

where

Q ≡ (z/my)2−1/y[KC/(KC − K)]1/y.

The transcendental function LambertW(x) is defined by the relation

LambertW (x) exp(LambertW (x)) = x.

It arises in the theory of random networks and in renormalization strategies
for quantum field theories.

An asymptotic relation for f(R) would be of particular biological interest,
implying that ‘language richness’ increases to a limiting value with population
growth. Such a pattern is broadly consistent with calculations of the degree of
allelic heterozygosity as a function of population size under a balance between
genetic drift and neutral mutation [46, 75]. Taking

f(R) = exp[m(R − 1)/R] (72)

gives a system which begins at 1 when R = 1, and approaches the asymptotic
limit exp(m) as R → ∞. Mathematica 4.2 finds

RC =
my/z

LambertW [A]
, (73)

where

A ≡ (my/z) exp(my/z)[21/y[KC/(KC − K)]−1/y]y/z.

These developments indicate the possibility of taking the theory significantly
beyond arguments by abduction from simple physical models, although the no-
torious difficulty of implementing information theory existence arguments will
undoubtedly persist.
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Universality class distribution. Physical systems undergoing phase transi-
tion usually have relatively pure renormalization properties, with quite different
systems clumped into the same ‘universality class,’ having fixed exponents at
transition [12]. Biological and social phenomena may be far more complicated:

If the system of interest is a mix of subgroups with different values of some sig-
nificant renormalization parameter m in the expression for f(R, m), according to
a distribution ρ(m), then the first expression in equation (60) should generalize,
at least to first order, as

H [KR, JR] =< f(R, m) > H [K, J ] (74)

≡ H [K, J ]

∫

f(R, m)ρ(m)dm.

If f(R) = 1 + m log(R) then, given any distribution for m,

< f(R) >= 1+ < m > log(R) (75)

where < m > is simply the mean of m over that distribution.
Other forms of f(R) having more complicated dependencies on the distributed

parameter or parameters, like the power law Rδ, do not produce such a simple
result. Taking ρ(δ) as a normal distribution, for example, gives

< Rδ >= R<δ> exp[(1/2)(log(Rσ))2], (76)

where σ2 is the distribution variance. The renormalization properties of this
function can be determined from equation (66), and the calculation is left to the
reader as an exercise, best done in Mathematica 4.2 or above.

Thus the information dynamic phase transition properties of mixed systems
will not in general be simply related to those of a single subcomponent, a matter
of possible empirical importance: If sets of relevant parameters defining renor-
malization universality classes are indeed distributed, experiments observing
pure phase changes may be very difficult. Tuning among different possible renor-
malization strategies in response to external signals would result in even greater
ambiguity in recognizing and classifying information dynamic phase transitions.

Important aspects of mechanism may be reflected in the combination of renor-
malization properties and the details of their distribution across subsystems.

In sum, real biological, social, or interacting biopsychosocial systems are likely
to have very rich patterns of phase transition which may not display the simplis-
tic, indeed, literally elemental, purity familiar to physicists. Overall mechanisms
will, however, still remain significantly constrained by the theory, in the general
sense of probability limit theorems.

Punctuated universality class tuning. The next step is to iterate the gen-
eral argument onto the process of phase transition itself, producing a model
of consciousness as a tunable neural workspace subject to inherent punctuated
detection of external events.

As described above, an essential character of physical systems subject to phase
transition is that they belong to particular ‘universality classes’. Again, this



Punctuated Equilibrium in Statistical Models 79

means that the exponents of power laws describing behavior at phase transition
will be the same for large groups of markedly different systems, with ‘natural’
aggregations representing fundamental class properties [12].

It appears that biological or social systems undergoing phase transition
analogs need not be constrained to such classes, and that ‘universality class
tuning’, meaning the strategic alteration of parameters characterizing the renor-
malization properties of punctuation, might well be possible. Here we focus on
the tuning of parameters within a single, given, renormalization relation. Clearly,
however, wholesale shifts of renormalization properties must ultimately be con-
sidered as well, a matter for future work.

Universality class tuning has been observed in models of ‘real world’ networks.
As Albert and Barabasi [3] put it,

“The inseparability of the topology and dynamics of evolving net-
works is shown by the fact that [the exponents defining universality
class] are related by [a] scaling relation..., underlying the fact that a net-
work’s assembly uniquely determines its topology. However, in no case
are these exponents unique. They can be tuned continuously...”

Suppose that a structured external environment, itself an appropriately regu-
lar information source Y, ‘engages’ a modifiable cognitive system. The environ-
ment begins to write an image of itself on the cognitive system in a distorted
manner permitting definition of a mutual information I[K] splitting criterion ac-
cording to the Rate Distortion or Joint Asymptotic Equipartition Theorems. K
is an inverse coupling parameter between system and environment. At punctua-
tion – near some critical point KC – the systems begin to interact very strongly
indeed, and, near KC , using the simple physical model of equation (61),

I[K] ≈ I0[
KC − K

KC
]α.

For a physical system α is fixed, determined by the underlying ‘universality
class.’ Here we will allow α to vary, and, in the section below, to itself respond
explicitly to signals.

Normalizing KC and I0 to 1,

I[K] ≈ (1 − K)α. (77)

The horizontal line I[K] = 1 corresponds to α = 0, while α = 1 gives a
declining straight line with unit slope which passes through 0 at K = 1. Consid-
eration shows there are progressively sharper transitions between the necessary
zero value at K = 1 and the values defined by this relation for 0 < K, α < 1. The
rapidly rising slope of transition with declining α is of considerable significance:

The instability associated with the splitting criterion I[K] is defined by

Q[K] ≡ −KdI[K]/dK = αK(1 − K)α−1, (78)

and is singular at K = KC = 1 for 0 < α < 1. We interpret this to mean that
values of 0 < α ≪ 1 are highly unlikely for real systems, since Q[K], in this
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model, represents a kind of barrier for ‘social’ information systems, in particular
interacting neural network modules, a matter explored further below.

On the other hand, smaller values of α mean that the system is far more effi-
cient at responding to the adaptive demands imposed by the embedding struc-
tured environment, since the mutual information which tracks the matching of
internal response to external demands, I[K], rises more and more quickly toward
the maximum for smaller and smaller α as the inverse coupling parameter K
declines below KC = 1. That is, systems able to attain smaller α are more respon-
sive to external signals than those characterized by larger values, in this model,
but smaller values will be harder to reach, probably only at some considerable
physiological or opportunity cost. Focused conscious action takes resources, of
one form or another.

Wallace [92] makes these considerations explicit, modeling the role of contex-
tual and energy constraints on the relations between Q, I, and other system
properties.

The more biologically realistic renormalization strategies given above produce
sets of several parameters defining the universality class, whose tuning gives
behavior much like that of α in this simple example.

Formal iteration of the phase transition argument on this calculation gives
tunable consciousness, focusing on paths of universality class parameters.

Suppose the renormalization properties of a language-on-a network system at
some ‘time’ k are characterized by a set of parameters Ak ≡ αk

1 , ..., αk
m. Fixed

parameter values define a particular universality class for the renormalization.
We suppose that, over a sequence of ‘times,’ the universality class properties can
be characterized by a path xn = A0, A1, ..., An−1 having significant serial corre-
lations which, in fact, permit definition of an adiabatically piecewise stationary
ergodic information source associated with the paths xn. We call that source X.

Suppose also, in the now-usual manner, that the set of external (or internal,
systemic) signals impinging on consciousness is also highly structured and forms
another information source Y which interacts not only with the system of interest
globally, but specifically with its universality class properties as characterized by
X. Y is necessarily associated with a set of paths yn.

Pair the two sets of paths into a joint path, zn ≡ (xn, yy) and invoke an
inverse coupling parameter, K, between the information sources and their paths.
This leads, by the arguments above, to phase transition punctuation of I[K],
the mutual information between X and Y, under either the Joint Asymptotic
Equipartition Theorem or under limitation by a distortion measure, through the
Rate Distortion Theorem. The essential point is that I[K] is a splitting criterion
under these theorems, and thus partakes of the homology with free energy density
which we have invoked above.

Activation of universality class tuning, the mean field model’s version of atten-
tional focusing, then becomes itself a punctuated event in response to increasing
linkage between the organism and an external structured signal or some partic-
ular system of internal events.
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This iterated argument exactly parallels the extension of the General Linear
Model to the Hierarchical Linear Model in regression theory [15].

Another path to the fluctuating dynamic threshold might be through a second
order iteration similar to that just above, but focused on the parameters defining
the universality class distributions given above.

A network of dynamic manifolds and its tuning. The set of universality
class tuning parameters, Ak, defines a manifold whose topology could also be
more fully analyzed using Morse theory. That is an equivalence class of dynamic
manifolds is determined, not by universality class, which is tunable, but by the
underlying form of the renormalization relation, in the sense of the many dif-
ferent possible renormalization symmetries described above. Thus the possible
higher level dynamic manifolds in this model are characterized by fixed renormal-
ization relations, but tunable universality class parameters. One can then invoke
a crosstalk coupling within a groupoid network of different dynamic manifolds
defined by these renormalization relations, leading to the same kind of Morse
theoretic analysis of the higher level topological structure.
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Abstract. The paper presents the Stochastic Calculus of Looping Se-
quences (SCLS) suitable to describe microbiological systems, such as cel-
lular pathways, and their evolution. Systems are represented by terms.
The terms of the calculus are constructed by basic constituent elements
and operators of sequencing, looping, containment and parallel compo-
sition. The looping operator allows tying up the ends of a sequence, thus
creating a circular sequence which can represent a membrane.

The evolution of a term is modelled by a set of rewrite rules enriched
with stochastic rates representing the speed of the activities described
by the rules, and can be simulated automatically.

As applications, we give SCLS representations of the regulation pro-
cess of the lactose operon in Escherichia coli and of the quorum sensing
in Pseudomonas aeruginosa.

A prototype simulator (SCLSm) has been implemented in F# and
used to run the experiments. A public version of the tool is available at
the url: http://www.di.unipi.it/∼milazzo/biosims/.

1 Introduction

Biologists usually describe biological systems by mathematical means, such as
differential equations. This allows them to reason on the behaviour of the de-
scribed systems and to perform simulations. Mathematical modelling becomes
more difficult both in specification and in analysis when the complexity of the
system increases. This is one of the main motivations for the application of Com-
puter Science formalisms to the description of biological systems [27]. Another
motivation is that the use of formal means of Computer Science permits the
application of analysis methods that are practically unknown to biologists, such
as model checking.

Among the formalisms that either have been applied to or have been inspired
by biological systems there are automata-based models [1,19], rewrite systems
[12,21], and process calculi [27,25,7]. Automata have the advantage of allowing
the direct use of many verification tools such as model checkers. Rewrite systems
usually allow describing biological systems with a notation that can be easily
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understood by biologists. On the other hand, automata-like models and rewrite
systems present, in general, problems from the point of view of compositionality.
Compositionality allows studying the behaviour of a system componentwise,
and is in general ensured by process calculi, included those commonly used to
describe biological systems.

In [4,5,20] we developed a new formalism, called Calculus of Looping Se-
quences (CLS for short), for describing biological systems and their evolution.
CLS is based on term rewriting with some features, such as a commutative paral-
lel composition operator, and some semantic means, such as bisimulations [5,6],
which are common in process calculi. This permits to combine the simplicity of
notation of rewrite systems with the advantage of a form of compositionality.

In this paper we focus on quantitative aspects of our formalism, in particular,
to model speed of activities, we develop a stochastic extension of CLS (called
SCLS). Rates are associated with rewrite rules in order to model the speed of
the described activities. Therefore, transitions derived in SCLS are driven by a
rate that models the parameter of an exponential distribution and characterizes
the stochastic behaviour of the transition. The choice of the next rule to be
applied and of the time of its application is based on the classical Gillespie’s
algorithm [14].

We have developed a prototype simulator for SCLS. To show the expressive-
ness of our formalism, we model and simulate two examples: the regulation of
the lactose operon in Escherichia coli and the quorum sensing in Pseudomonas
aeruginosa. The first example shows all the features of SCLS used to describe a
classical model. The second one shows the merit of the computational approach
with respect to mathematical modelling when the complexity of the system in-
creases.

We remark that the contribution of this paper is not in the simulation al-
gorithm, inspired by the standard Gillespie’s algorithm, but in the language
proposed to describe systems: it allows describing cellular structures and com-
partments, and this simplifies the modelling of a cell as a system whose compo-
nents are described individually.

1.1 Summary

The remainder of this paper is organized as follows. In Section 2 we formally
recall the Calculus of Looping Sequence and we give some guidelines for the mod-
elling of biological systems. In Section 3 we introduce our stochastic extension.
In Sections 4 and 5 we use the stochastic framework to model and analyse two
different applications; namely, we model the lactose operon of Escherichia Coli
and a quorum sensing process in Pseudomonas aeruginosa. Finally, in Section 6
we draw our conclusions and we present some related work.

2 The Calculus of Looping Sequences

In this section we recall the Calculus of Looping Sequences (CLS). It is based on
term rewriting, and hence a CLS model consists of a term and a set of rewrite
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rules. The term represents the structure of the modelled system, and the rewrite
rules represent its evolution.

We start with defining the syntax of terms. We assume a possibly infinite
alphabet E of symbols ranged over by a, b, c, . . ..

Definition 1 (Terms). Terms T and Sequences S of CLS are given by the
grammars:

T ::= S
∣∣ (S)

L
⌋ T

∣∣ T | T

S ::= ǫ
∣∣ a

∣∣ S ·S

where a is any element of E and ǫ is the empty sequence. We denote the infinite
sets of terms and sequences with T and S, respectively.

In CLS we have a sequencing operator · , a looping operator ( )
L
, a parallel

composition operator | , and a containment operator ⌋ . Sequencing can be
used to concatenate elements of the alphabet E . The empty sequence ǫ denotes
the concatenation of zero symbols. A term can be either a sequence, or a looping
sequence (that is the application of the looping operator to a sequence) contain-
ing another term, or the parallel composition of two terms. By the definition
of terms, we have that looping and containment are always applied together,
hence we can consider them as a single binary operator ( )L ⌋ that applies to
one sequence and one term.

The biological interpretation of the operators is the following: the main enti-
ties which occur in cells are DNA and RNA strands, proteins, membranes, and
other macro-molecules. DNA strands (and similarly RNA strands) are sequences
of nucleic acids, but they can be seen also at a higher level of abstraction as se-
quences of genes. Proteins are sequences of amino acids which usually have a
very complex three-dimensional structure. In a protein there are usually (rel-
atively) few subsequences, called domains, which actually are able to interact
with other entities by means of chemical reactions. CLS sequences can model
DNA/RNA strands and proteins by describing each gene or each domain with a
symbol of the alphabet. Membranes are closed surfaces often interspersed with
proteins, and may have a content. A closed surface can be modelled by a loop-
ing sequence. The elements (or the subsequences) of the looping sequence may
represent the proteins on the membrane, and by the containment operator it
is possible to specify what the membrane contains. Other macro-molecules can
be modelled as single alphabet symbols, or as sequences of their components.
Finally, juxtaposition of entities can be described by the parallel composition
operator of their representations. A deeper description of the biological interpre-
tation of CLS operators together with some modelling guidelines will be given
in Section 2.1.

Brackets can be used to indicate the order of application of the operators, and
( )L ⌋ has the precedence over | . An example of CLS term is a | b | (m · n)L ⌋ (c·
d | e). It represents a membrane with two molecules m and n (for instance, two
proteins) on its surface, and containing a sequence c · d (for instance, a DNA
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Fig. 1. (i) represents (a·b·c)L ⌋ ǫ; (ii) represents (a·b·c)L ⌋ (d·e)L ⌋ ǫ; (iii) represents
(a·b·c)L ⌋ (((d·e)L ⌋ ǫ) | f ·g)

strand) and a molecule e. Molecules a and b are outside the membrane. See
Figure 1 for some graphical representations.

In CLS we may have syntactically different terms representing the same struc-
ture. We introduce structural congruence relations to identify such terms.

Definition 2 (Structural Congruence). The structural congruence relations
≡S and ≡T are the least congruence relations on sequences and on terms, re-
spectively, satisfying the following rules:

S1 ·(S2 ·S3) ≡S (S1 ·S2)·S3 S ·ǫ ≡S ǫ·S ≡S S

S1 ≡S S2 implies S1 ≡T S2 and (S1)
L

⌋ T ≡T (S2)
L

⌋ T

T1 | T2 ≡T T2 | T1 T1 | (T2 | T3) ≡T (T1 | T2) | T3 T | ǫ ≡T T

(ǫ)
L

⌋ ǫ ≡T ǫ (S1 ·S2)
L

⌋ T ≡T (S2 ·S1)
L

⌋ T

Rules of the structural congruence state the associativity of · and | , the commu-

tativity of the latter and the neutral role of ǫ. Moreover, axiom (S1 ·S2)
L

⌋ T ≡T

(S2 ·S1)
L ⌋ T says that looping sequences can rotate. In the following we will use

≡ in place of ≡T .
Rewrite rules are defined essentially as pairs of terms, in which the first term

describes the portion of the system in which the event modelled by the rule may
occur, and the second term describes how that portion of the system changes
when the event occurs. In the terms of a rewrite rule we allow the use of variables.
As a consequence, a rule will be applicable to all terms which can be obtained
by properly instantiating its variables. Variables can be of three kinds: two are
associated with the two different syntactic categories of terms and sequences,
and one is associated with single alphabet elements. We assume a set of term
variables TV ranged over by X, Y, Z, . . ., a set of sequence variables SV ranged
over by x̃, ỹ, z̃, . . ., and a set of element variables X ranged over by x, y, z, . . ..
All these sets are pairwise disjoint and possibly infinite. We denote by V the set
of all variables TV ∪ SV ∪ X , and with ρ any variable in V . A pattern is a term
which may include variables.

Definition 3 (Patterns). Patterns P and sequence patterns SP of CLS are
given by the following grammar:

P ::= SP
∣∣ (SP )

L
⌋ P

∣∣ P | P
∣∣ X
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SP ::= ǫ
∣∣ a

∣∣ SP ·SP
∣∣ x̃

∣∣ x

where a is an element of E, and X, x̃ and x are elements of TV, SV and X ,
respectively. We denote with P the infinite set of patterns.

We assume the structural congruence relation to be trivially extended to pat-
terns. An instantiation is a partial function σ : V → T . An instantiation must
preserve the type of variables, thus for X ∈ TV, x̃ ∈ SV and x ∈ X we have
σ(X) ∈ T , σ(x̃) ∈ S, and σ(x) ∈ E , respectively. Given P ∈ P , with Pσ we
denote the term obtained by replacing each occurrence of each variable ρ ∈ V
appearing in P with the corresponding term σ(ρ). With Σ we denote the set of
all the possible instantiations, and, given P ∈ P , with V ar(P ) we denote the set
of variables appearing in P . Now we can define rewrite rules.

Definition 4 (Rewrite Rules). A rewrite rule is a pair of patterns (P1, P2),
denoted with P1 �→ P2, where P1, P2 ∈ P, P1 �≡ ǫ and such that V ar(P2) ⊆
V ar(P1).

A rewrite rule P1 �→P2 states that a term P1σ, obtained by instantiating variables
in P1 by some instantiation function σ, can be transformed into the term P2σ. We
define the semantics of CLS as a transition system, in which states correspond
to terms, and transitions correspond to rule applications. The semantics of CLS
is defined by resorting to the notion of contexts.

Definition 5 (Contexts). Contexts C are defined as:

C ::= �
∣∣ C | T

∣∣ T | C
∣∣ (S)

L
⌋ C

where T ∈ T and S ∈ S. The context � is called the empty context. We denote
with C the infinite set of contexts.

By definition, every context contains a single �. Let us assume C, C′ ∈ C. With
C[T ] we denote the term obtained by replacing � with T in C; with C[C′] we
denote context composition, whose result is the context obtained by replacing
� with C′ in C. The structural congruence relation can be easily extended to
contexts, namely C ≡ C′ if and only if C[ǫ] ≡ C′[ǫ].

Rewrite rules can be applied to terms only if they occur in a legal context.
Note that the general form of rewrite rules does not permit to have sequences
as contexts. A rewrite rule introducing a parallel composition on the right hand
side (as a �→ b | c) applied to an element of a sequence (e.g., m ·a ·m) would
result into a syntactically incorrect term (in this case m · (b | c) ·m). To modify a
sequence, a pattern representing the whole sequence must appear in the rule. For
example, rule a·x̃ �→ a | x̃ can be applied to any sequence starting with element
a, and, hence, the term a·b can be rewritten as a | b, and the term a·b·c can be
rewritten as a | b·c.

The semantics of CLS is defined as follows.
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Table 1. Guidelines for the abstraction of biomolecular entities into CLS

Biomolecular Entity CLS Term

Elementary object Alphabet symbol
(genes, domains,
other molecules, etc...)

DNA strand Sequence of elements repr. genes

RNA strand Sequence of elements repr. transcribed genes

Protein Sequence of elements repr. domains
or single alphabet symbol

Molecular population Parallel composition of molecules

Membrane Looping sequence

Definition 6 (Semantics). Given a finite set of rewrite rules R, the semantics
of CLS is the least relation closed with respect to ≡ and satisfying the following
inference rule:

P1 �→ P2 ∈ R P1σ �≡ ǫ σ ∈ Σ C ∈ C

C[P1σ] → C[P2σ]

2.1 Modelling Guidelines

We describe how CLS can be used to model biomolecular systems analogously to
what done by Regev and Shapiro in [28] for the π-calculus. An abstraction is a
mapping from a real-world domain to a mathematical domain, which may allow
highlighting some essential properties of a system while ignoring other, com-
plicating, ones. In [28], Regev and Shapiro show how to abstract biomolecular
systems as concurrent computations by identifying the biomolecular entities and
events of interest and by associating them with concepts of concurrent computa-
tions such as concurrent processes and communications. In particular, they give
some guidelines for the abstraction of biomolecular systems to the π-calculus,
and give some simple examples.

The use of rewrite systems, such as CLS, to describe biological systems is
founded on a different abstraction. Usually, entities (and their structures) are
abstracted by terms of the rewrite system, and events by rewrite rules. We have
already introduced the biological interpretation of CLS operators in the previous
section. Here we want to give more general guidelines.

First of all, we should select the biomolecular entities of interest. Since we want
to describe cells, we consider molecular populations and membranes. Molecular
populations are groups of molecules that are in the same compartment of the cell.
As we have said before, molecules can be of many types: we classify them as DNA
and RNA strands, proteins, and other molecules. Membranes are considered as
elementary objects, in the sense that we do not describe them at the level of
the lipids they are made of. The only interesting properties of a membrane are
that it may have a content (hence, create a compartment) and that it may have
molecules on its surface.
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Table 2. Guidelines for the abstraction of biomolecular events into CLS

Biomolecular Event Examples of CLS Rewrite Rule

State change a �→ b
x̃ · a · ỹ �→ x̃ · b · ỹ

Complexation a | b �→ c
x̃ · a · ỹ | b �→ x̃ · c · ỹ

Decomplexation c �→ a | b
x̃ · c · ỹ �→ x̃ · a · ỹ | b

Catalysis c | P1 �→ c | P2

where P1 �→ P2 is the catalyzed event

State change (a · x̃)L ⌋ X �→ (b · x̃)L ⌋ X
on membrane

Complexation (a · x̃ · b · ỹ)L ⌋ X �→ (c · x̃ · ỹ)L ⌋ X

on membrane a | (b · x̃)L ⌋ X �→ (c · x̃)L ⌋ X

(b · x̃)L ⌋ (a | X) �→ (c · x̃)L ⌋ X

Decomplexation (c · x̃)L ⌋ X �→ (a · b · x̃)L ⌋ X

on membrane (c · x̃)L ⌋ X �→ a | (b · x̃)L ⌋ X

(c · x̃)L ⌋ X �→ (b · x̃)L ⌋ (a | X)

Catalysis (c · x̃ · SP1 · ỹ)L ⌋ X �→ (c · x̃ · SP2 · ỹ)L ⌋ X
on membrane where SP1 �→ SP2 is the catalyzed event

Membrane crossing a | (x̃)L ⌋ X �→ (x̃)L ⌋ (a | X)

(x̃)L ⌋ (a | X) �→ a | (x̃)L ⌋ X

x̃ · a · ỹ | (z̃)L ⌋ X �→ (z̃)L ⌋ (x̃ · a · ỹ | X)

(z̃)L ⌋ (x̃ · a · ỹ | X) �→ x̃ · a · ỹ | (z̃)L ⌋ X

Catalyzed a | (b · x̃)L ⌋ X �→ (b · x̃)L ⌋ (a | X)

membrane crossing (b · x̃)L ⌋ (a | X) �→ a | (b · x̃)L ⌋ X

x̃ · a · ỹ | (b · z̃)L ⌋ X �→ (b · z̃)L ⌋ (x̃ · a · ỹ | X)

(b · z̃)L ⌋ (x̃ · a · ỹ | X) �→ x̃ · a · ỹ | (b · z̃)L ⌋ X

Membrane joining (x̃)L ⌋ (a | X) �→ (a · x̃)L ⌋ X

(x̃)L ⌋ (ỹ · a · z̃ | X) �→ (ỹ · a · z̃ · x̃)L ⌋ X

Catalyzed (b · x̃)L ⌋ (a | X) �→ (a · b · x̃)L ⌋ X

membrane joining (x̃)L ⌋ (a | b | X) �→ (a · x̃)L ⌋ (b | X)

(b · x̃)L ⌋ (ỹ · a · z̃ | X) �→ (ỹ · a · z̃ · x̃)L ⌋ X

(x̃)L ⌋ (ỹ · a · z̃ | b | X) �→ (ỹ · a · z̃ · x̃)L ⌋ (b | X)

Membrane fusion (x̃)L ⌋ (X) | (ỹ)L ⌋ (Y ) �→ (x̃ · ỹ)L ⌋ (X | Y )

Catalyzed (a · x̃)L ⌋ (X) | (b · ỹ)L ⌋ (Y ) �→

membrane fusion (a · x̃ · b · ỹ)L ⌋ (X | Y )

Membrane division (x̃ · ỹ)L ⌋ (X | Y ) �→ (x̃)L ⌋ (X) | (ỹ)L ⌋ (Y )

Catalyzed (a · x̃ · b · ỹ)L ⌋ (X | Y ) �→

membrane division (a · x̃)L ⌋ (X) | (b · ỹ)L ⌋ (Y )

Now, we select the biomolecular events of interest. The simplest kind of event
is the change of state of an elementary object. Then, we may have interac-
tions between molecules: in particular complexation, decomplexation and catal-
ysis. These interactions may involve single elements of non-elementary molecules
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(DNA and RNA strands, and proteins). Moreover, we may have interactions be-
tween membranes and molecules: in particular a molecule may cross or join a
membrane. Finally, we may have interactions between membranes: in this case
there may be many kinds of interactions (fusion, division, etc. . . ).

The guidelines for the abstraction of biomolecular entities and events into CLS
are given in Table 1 and Table 2, respectively. Entities are associated with CLS
terms: elementary objects are modelled as alphabet symbols, non-elementary
objects as CLS sequences and membranes as looping sequences. Biomolecu-
lar events are associated with CLS rewrite rules. In the table we give some
examples of rewrite rules for each type of event. The list of examples is not
complete: one could imagine also rewrite rules for the description of complex-
ation/decomplexation events involving more than two molecules, or catalysis
events in which the catalyzing molecule is on a membrane and the catalyzed
event occurs in its content, or more complex interactions between membranes.
We remark that in the second example of rewrite rule associated with the com-
plexation event we have that one of the two molecules which are involved should
be either an elementary object or a protein modelled as a single alphabet sym-
bol. As before, this is caused by the problem of modelling protein interaction at
the domain level. This problem is solved by an extension of CLS where links are
considered. Such a model, called LCLS, is formalized in [3].

3 The Stochastic Calculus of Looping Sequences

The standard way of extending a formalism to model quantitative aspects of
biological systems is by incorporating a collision-based stochastic framework on
the lines of the one presented by Gillespie in [14]. Following the law of mass
action, we need to count the number of reactants that are present in a system in
order to compute the exact rate of a reaction. This has been done, for instance,
for the π-calculus [23,25]. The idea of Gillespie’s algorithm is that a rate constant
is associated with each considered chemical reaction. Such a constant is obtained
by multiplying the kinetic constant of the reaction by the number of possible
combinations of reactants that may occur in the system. The resulting rate is
then used as the parameter of an exponential distribution modelling the time
spent between two occurrences of the considered chemical reaction.

The use of exponential distributions to represent the (stochastic) time spent
between two occurrences of chemical reactions allows describing the system as
a Continuous Time Markov Chain (CTMC), and consequently allows verifying
properties of the described system analytically and by means of stochastic model
checkers.

We start by adding rates to rewrite rules.

Definition 7 (Stochastic Rewrite Rule). A stochastic rewrite rule is a triple

(P1, P2, k), denoted with P1
k
�→ P2, where P1, P2 ∈ P, P1 �≡ ǫ and such that

V ar(P2) ⊆ V ar(P1); k ∈ IR≥0 is the rewrite rate.

To describe the evolution of a term, the stochastic semantics must consider,
besides the rate of a rule, also the number of occurrences of subterms to which
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the rule can be applied and the terms produced. Subterms to which the rule
can be applied correspond to reactants in a biological system. In what follows,
a subterm of a term T will be a term T ′ �≡ ǫ for which a context C exists such
that T ≡ C[T ′], and a reactant will be an occurrence in T of a subterm.

Example 1. If T = a | a | b | b, then the set of subterms of T is

{a , b , a | a , a | b , b | b , a | a | b , a | b | b , T }

while

{a , a , b , b , a | a , a | b , a | b , a | b , a | b , b | b , a | a | b , a | a | b , a | b | b , a | b | b , T }

is the multiset of reactants in T . ⊓⊔

Now, defining the stochastic semantics would be easy if rules would contain no

variables. For instance, if we have the rewrite rule a | b
k
�→ c, where k is the

kinetic constant of the modelled chemical reaction, then its application rate is k

multiplied by the number of possible combinations of occurrences of a and b in
the term, namely the number of occurrences of a | b in the multiset of reactants of
the term. For example, given the term T in Example 1, we have two occurrences
of a and two of b, hence the number of possible combinations of reactants is
2 × 2 = 4, and this holds also in the multiset of reactants of T , which contains
four instances of a | b.

As we have variables, we have to take into account how they can be instanti-
ated in order to compute the application rate of the rewrite rule. Variables allow
a rewrite rule to stand for a family of ground rules, which represents a family
of chemical reactions. Moreover, it often happens that the application rate of a
rewrite rule depends on how many molecules of some kind are contained in the
part of the system represented by a variable. For instance, consider a rule such

as a | (b·x̃)L ⌋ X
k
�→ (c·x̃)L ⌋ X , representing the binding of molecule a with an

instance of b (resulting into the product molecule c) placed on the membrane
represented by the looping sequence. We should have that the application rate
of the derived reactions is proportional to the number of b which are present
on the membrane, that is the number of b in the instantiation of the variable x̃

plus one.
We remark that this problem has not been faced during the development of

the stochastic extension of other formalisms such as the π-calculus, as those
formalisms are not able to model chemical reactions with variables (as CLS
patterns are). Also Gillespie’s work does not deal with variables in the simulated
chemical reactions. As a consequence, we have to give a reasonable interpretation
to rewrite rules with variables.

We follow an approach on the lines of the one used by Krivine et al. in [17] for
defining a stochastic semantics for Bigraphical Reactive Systems. The technique
they have developed to count the occurrences of a reactant is based on the
definition of abstract and concrete bigraphs. Here we consider as abstract the
CLS terms and patterns defined as in Definitions 1 and 3. In the remainder of
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this section, we denote abstract terms and patterns using a tilde, as in T̃ and P̃ .
Now, we give the definition of concrete CLS patterns. Since a term is a ground
pattern, the analogous definition for concrete terms can be inherited from the
one for patterns.

Definition 8 (Concrete patterns and terms). If P̃ is an abstract pattern,
then a concrete pattern P , called a concretion of P̃ , is obtained by assigning
to each alphabet symbol syntactically appearing in P̃ a unique identifier v ∈ Id,
where Id is a finite set of identifiers. With P̀ and T̀ we denote the sets of
concrete patterns and terms, respectively.

Intuitively, each symbol of the alphabet E appearing in patterns and terms,
becomes unique in the concretion by labelling it with a fresh identifier. Moreover,
we equip concrete patterns and terms with a notion of support.

Definition 9 (Support). Given a concrete pattern P , we call support the set
of identifiers used to label its alphabet symbols and we denote it with Supp(P ).

Two concrete patterns P and P ′ are support-equivalent, written P ≏ P ′, if
they differ only by a bijection between their supports which preserves structure.

Namely, P ≏ P ′ if and only if P̃ ≡ P̃ ′ and there exists a bijection between

Supp(P ) and Supp(P ′). We denote the ≏-equivalence class of P by [[P ]].

As before, the analogous definitions of support and support-equivalence for con-
crete terms is inherited.

Given an abstract pattern P̃ = a·x̃ | (a·b)L ⌋ X ∈ P concretions of P̃ are P1 =

av1 ·x̃ | (av2 ·bv3)
L

⌋ X or P2 = au1 ·x̃ | (au2 ·bu3)
L

⌋ X with supports Supp(P1) =
{v1, v2, v3} and Supp(P2) = {u1, u2, u3}. Note that for an abstract pattern P̃
and a set of identifiers Id there exist many different concretions. For the case
above we have, however, P1 ≏ P2.

We can extend the definition of concrete patterns to stochastic rewrite rules.

Definition 10. If R = (P̃1, P̃2, k) is a stochastic rewrite rule, then (P1, P2, k)
is called a concretion of R.

The definition of contexts is extended to deal with concrete terms in the natural
way, with C̀ we denote the set of concrete contexts. Without loss of generality,
we assume instantiations to return abstract or concrete terms when applied to
abstract or concrete patterns respectively. Namely, given P̃ ∈ P , P̃ σ ∈ T , while
given P ∈ P̀ , Pσ ∈ T̀ .

Since we would like to define rewrite rules in an abstract way, we should define
a notion of occurrence of abstract patterns within a term.

Definition 11 (Occurrences). If P̃ ∈ P is an abstract pattern and T ∈ T̀
a concrete term, an occurrence of P̃ in T is a pair (C, P ), where P ∈ P̀ is

a concretion of P̃ and C ∈ C̀ is a context such that T ≡ C[Pσ] for some

instantiation σ.

An occurrence of a rule R = (P̃1, P̃2, k) in a concrete term T is a pair (C, P1),
where (P1, P2, k) is a concretion of R and T ≡ C[P1σ] for some instantiation σ.
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If also T ′
≏ C[P2σ] we say that the occurrence of rule R in T results into a term

support-equivalent to T ′. With O(R, T, [[T ′]]) we define the set of occurrences of
rule R in the term T resulting in a concrete term support-equivalent to T ′.

Example 2. Consider a concretion T = av1 | av2 | bv3 | bv4 of the term in Exam-

ple 1 and the abstract stochastic rewrite rule R = a | b
k
�→ c. The occurrences of

R in T are:

– (av1 | bv3 | � , av2 | bv4);
– (av1 | bv4 | � , av2 | bv3);
– (av2 | bv3 | � , av1 | bv4);
– (av2 | bv4 | � , av1 | bv3).

Moreover, all these occurrences result into a concrete term which is support-
equivalent to T ′ = av1 | ct1 | bv3 . Thus, O(R, T, [[T ′]]) contains exactly the four
occurrences listed above.

If we consider a term To = au0 | au1 | (bu2 ·cu3 ·bu4 ·au5)
L ⌋ ǫ and the abstract

rule R′ = a | (b·x̃)
L

⌋ X
k′

�→ (c·x̃)
L

⌋ X (which contains variables), then the oc-
currences of R′ in To are:

– o1 = (au1 | � , au0 | (bu2 ·x̃)
L

⌋ X), for σ(x̃) = cu3 ·bu4 ·au5 and σ(X) = ǫ;

– o2 = (au1 | � , au0 | (bu4 ·x̃)
L

⌋ X), for σ(x̃) = au5 ·bu2 ·cu3 and σ(X) = ǫ;

– o3 = (au0 | � , au1 | (bu2 ·x̃)
L

⌋ X), for σ(x̃) = cu3 ·bu4 ·au5 and σ(X) = ǫ;

– o4 = (au0 | � , au1 | (bu4 ·x̃)
L

⌋ X), for σ(x̃) = au5 ·bu2 ·cu3 and σ(X) = ǫ.

Note that these occurrences take into account all the possible combinations of
any molecule a (outside the looping sequence) with any molecule b (in the looping
sequence).

In this case, the different occurrences of the rule produce terms which are
also structurally different. For example, by applying the first occurrence with
the concretion of the right hand side of R′ given by P2 = (ct1 ·x̃)L ⌋ X , we

get T ′
o1

= au1 | (ct1 ·cu3 ·bu4 ·au5)
L

⌋ ǫ. Differently, if we apply the second oc-

currence, again with the same concretion P2 = (ct1 ·x̃)
L

⌋ X , we get T ′
o2

=

au1 | (ct1 ·au5 ·bu2 ·cu3)
L

⌋ ǫ. Note that T ′
o1

and T ′
o2

are structurally different: in
T ′

o1
, the a-molecule remaining in the looping sequence is followed by a c-molecule;

in T ′
o2

, the a-molecule in the looping sequence is followed by a b-molecule. Thus
T ′

o1
�≏ T ′

o2
. However, if we compute the terms T ′

o3
and T ′

o4
, by applying the third

and fourth occurrence respectively, with the same P2, then we get T ′
o1

≏ T ′
o3

and
T ′

o2
≏ T ′

o4
. Thus, we obtain the following sets: O(R′, To, [[T

′
o1

]]) = {o1, o3} and
O(R′, To, [[T

′
o2

]]) = {o2, o4}.
The use of support-equivalence in the definition of O(R, T, [[T ′]]) allows us to

consider as a single occurrence the occurrences which differ only for the support
in P2 (thus producing different, but support-equivalent, T ′). As an example, in

the case of To, the first occurrence (au1 | � , au0 | (bu2 ·x̃)L ⌋ X) can be produced
by several concretions of the rule R′ differing in their P2 parts. In particular,
admissible concretions for P̃2 could be P 1

2 = (ct1 ·x̃)
L

⌋ X , P 2
2 = (ct2 ·x̃)

L
⌋ X ,
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. . .. However, all of them produce a single occurrence in O(R, To, [[T
′
o1

]]) since, in

this case, C[P i
2σ] ≏ C[P j

2 σ] for any i and j. ⊓⊔

The following proposition holds.

Proposition 1. Given an abstract rule R = (P̃1, P̃2, k) and a concrete term
T , let (C, P1) be an occurrence of R in T , where (P1, P2, k) is a concrete rule
generated by R. Then:

(a) C is determined uniquely by P1;
(b) P2 is determined uniquely by P1 up to support-equivalence.

With T
R
−→ T ′ we denote a transition, driven by the rule R = (P̃1, P̃2, k), from

the concrete term T to the concrete term T ′. We now associate a rate with
transitions between concrete terms. The rate is obtained as the product of the
rate k of the stochastic rewrite rule and the number of distinct occurrences of
the rule within the term T resulting in T ′.

Definition 12 (Rate of concrete transitions). Given T, T ′ concrete, and
an abstract reaction rule R = (P̃1, P̃2, k), then |O(R, T, [[T ′]])| is the number of
distinct occurrences (C, P1) of R in T resulting in T ′. Each such occurrence is

also called a contribution of R to the rate of T
R
−→ T ′. The transition rate for

T
R
−→ T ′ is defined formally by

rateR[T, T ′]
def
= k · |O(R, T, [[T ′]])| .

To compute the rate of an abstract transition T̃
R
−→ T̃ ′, we can just compute

the rate for arbitrary concretions T
R
−→ T ′ of that transition, because the rate is

independent of the chosen concretions, i.e.:

Proposition 2. If T1 ≏ T2 and T ′
1 ≏ T ′

2, all concrete, then, for any stochastic
rewrite rule R:

rateR[T1, T
′
1] = rateR[T2, T

′
2] .

This justifies the following definition of the abstract reaction rate.

Definition 13 (Rate of abstract transitions). Given a stochastic rewrite

rule R, the rate of an abstract transition T̃
R
−→ T̃ ′ is defined by

rateR[T̃ , T̃ ′]
def
= rateR[T, T ′]

where T and T ′ are arbitrary concretions of T̃ and T̃ ′, respectively.

Again, an example will be helpful.

Example 3. Consider again the abstract term T̃ = a | a | b | b, its concretion T =

av1 | av2 | bv3 | bv4 and the rule R = a | b
k
�→ c. In Example 2 we have defined

the set of occurrences O(R, T, [[T ′]]) which contains exactly four elements, thus
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rateR[T, T ′] = k · 4. As a consequence, for the abstract term T̃ ′ = a | c | b we
obtain rateR[T̃ , T̃ ′] = k · 4.

Similarly, for the abstract term T̃o = a | a | (b·c·b·a)
L

⌋ ǫ, given its concretion
To and the stochastic rewrite rule R′ defined in Example 2, we get the following:

– T̃ ′
o1

= a | (c·c·b·a)
L

⌋ ǫ is the abstraction of T ′
o1

;

– T̃ ′
o2

= a | (c·a·b·c)
L

⌋ ǫ is the abstraction of T ′
o2

.

We can then derive the following rates: rateR′ [T̃o, T̃
′
o1

] = rateR′ [T̃o, T̃
′
o2

] = k′ · 2
since |O(R′, To, [[T

′
o1

]])| = |O(R′, To, [[T
′
o2

]])| = 2. ⊓⊔

We can now unroll the definitions of occurrences and transition rates to get the
semantics of SCLS. The stochastic transition system for abstract terms is defined
as follows.

Definition 14 (Semantics). Given a finite set R of stochastic rewrite rules,
the semantics of SCLS is the least labelled transition relation satisfying the fol-
lowing rule:

R = P̃1
k
�→ P̃2 ∈ R (C, P1) ∈ O(R, T, [[T ′]]) T ≡ C[P1σ] T ′

≏ C[P2σ]

T̃
R,k·|O(R,T,[[T ′]])|
−−−−−−−−−−−→ T̃ ′

The stochastic reduction semantics associates with each transition a rate which
is the parameter of an exponential distribution that characterizes the stochastic
behaviour of the activity corresponding to the applied rewrite rule. As we have
already noticed, the rate is obtained as the product of the rewrite rate constant
and the number of occurrences of the rule within the starting term (thus counting
the exact number of reactants to which the rule can be applied and which produce
the same result).

Our stochastic semantics is essentially a Continuous Time Markov Chain
(CTMC). We can follow a standard simulation procedure that corresponds to
Gillespie’s simulation algorithm [14]. We have developed a prototype simulator
(called SCLSm) for SCLS in the language F#.

In the next two sections we report some experimental results. We used con-
crete terms and patterns just for defining a consistent methodology for counting
the occurrences of a rule within a term. When modelling, however, we would like
to reason in an abstract way and we are not interested in concrete patterns or
terms anymore. Thus, to lighten the notation in the next two sections, we resort
again to the plain convention (without the tilde) to denote abstract patterns and
terms.

4 Modelling the Lactose Operon

To show that SCLS can be easily used to model and simulate cellular pathways,
we give a SCLS model of the well-known regulation process of the lactose operon
in Escherichia coli and we use our prototype simulator to analyze the process in
different situations.
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Fig. 2. The regulation process in the Lac Operon

E. coli is a bacterium often present in the intestine of many animals. It is one
of the most completely studied of all living things and it is a favorite organism
for genetic engineering. Cultures of E. coli can be made to produce unlimited
quantities of the product of an introduced gene. As most bacteria, E.coli is often
exposed to a constantly changing physical and chemical environment, and reacts
to changes in its environment through changes in the kinds of enzymes it pro-
duces. In order to save energy, bacteria do not synthesize degradative enzymes
unless the substrates for these enzymes are present in the environment. For ex-
ample, E. coli does not synthesize the enzymes that degrade lactose unless lactose
is in the environment. This result is obtained by controlling the transcription of
some genes into the corresponding enzymes.

Two enzymes are involved in lactose degradation: the lactose permease, which
is incorporated in the membrane of the bacterium and actively transports the
sugar into the cell, and the beta galactosidase, which splits lactose into glucose
and galactose. The bacterium produces also the transacetylase enzyme, whose
role in the lactose degradation is marginal.

The sequence of genes in the DNA of E. coli which produces the described
enzymes, is known as the lactose operon.

The first three genes of the operon (i, p and o) regulate the production of the
enzymes, and the last three (z, y and a), called structural genes, are transcribed
(when allowed) into the mRNA for beta galactosidase, lactose permease and
transacetylase, respectively.

The regulation process is as follows (see Figure 2): gene i encodes the lac Re-
pressor, which, in the absence of lactose, binds to gene o (the operator). Tran-
scription of structural genes into mRNA is performed by the RNA polymerase
enzyme, which usually binds to gene p (the promoter) and scans the operon from
left to right by transcribing the three structural genes z, y and a into a single
mRNA fragment. When the lac Repressor is bound to gene o, it becomes an ob-
stacle for the RNA polymerase, and the transcription of the structural genes is
not performed. On the other hand, when lactose is present inside the bacterium,
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it binds to the Repressor and this cannot stop anymore the activity of the RNA
polymerase. In this case the transcription is performed and the three enzymes
for lactose degradation are synthesized.

4.1 Stochastic CLS Model

A detailed mathematical model of the regulation process can be found in [34].
It includes information on the influence of lactose degradation on the growth of
the bacterium.

We give a SCLS model of the gene regulation process, with stochastic rates
taken from [33]. We model the membrane of the bacterium as the looping se-

quence (m)
L
, where the alphabet symbol m generically denotes the whole mem-

brane surface in normal conditions. Moreover, we model the lactose operon as
the sequence lacI · lacP · lacO · lacZ · lacY · lacA (lacI−A for short), in which each
symbol corresponds to a gene. We replace lacO with RO in the sequence when
the lac Repressor is bound to gene o, and lacP with PP when the RNA poly-
merase is bound to gene p. When the lac Repressor and the RNA polymerase are
unbound, they are modelled by the symbols repr and polym, respectively. We
model the mRNA of the lac Repressor as the symbol Irna, a molecule of lactose
as the symbol LACT , and beta galactosidase, lactose permease and transacety-
lase enzymes as symbols betagal, perm and transac, respectively. Finally, since
the three structural genes are transcribed into a single mRNA fragment, we
model such mRNA as a single symbol Rna.

The initial state of the bacterium when no lactose is present in the environ-
ment and when 100 molecules of lactose are present are modelled, respectively,
by the following terms (where n × T stands for a parallel composition T | . . . | T
of length n):

Ecoli ::= (m)
L

⌋ (lacI−A | 30 × polym | 100 × repr) (1)

EcoliLact ::= Ecoli | 100 × LACT (2)

The transcription of the DNA, the binding of the lac Repressor to gene o,
and the interaction between lactose and the lac Repressor are modelled by the
following set of stochastic rewrite rules:

lacI ·x̃
0.02
�−→ lacI ·x̃ | Irna Irna

0.1
�−→ Irna | repr (R1-R2)

polym | x̃·lacP ·ỹ
0.1
�−→ x̃·PP ·ỹ (R3)

x̃·PP ·ỹ
0.01
�−→ polym | x̃·lacP ·ỹ (R4)

x̃·PP ·lacO·ỹ
20.0
�−→ polym | Rna | x̃·lacP ·lacO·ỹ (R5)

Rna
0.1
�−→ Rna | betagal | perm | transac (R6)

repr | x̃·lacO·ỹ
1.0
�→ x̃·RO·ỹ x̃·RO·ỹ

0.01
�→ repr | x̃·lacO · ỹ (R7-R8)

repr | LACT
0.005
�→ RLACT RLACT

0.1
�→ repr | LACT (R9-R10)

Rules (R1) and (R2) describe the transcription and translation of gene i into
the lac Repressor (assumed for simplicity to be performed without the inter-
vention of the RNA polymerase). Rules (R3) and (R4) describe binding and
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unbinding of the RNA polymerase to gene p. Rules (R5) and (R6) describe the
transcription and translation of the three structural genes. Transcription of such
genes can be performed only when the sequence contains lacO instead of RO,
that is when the lac Repressor is not bound to gene o. Rules (R7) and (R8) de-
scribe binding and unbinding of the lac Repressor to gene o. Finally, rules (R9)
and (R10) describe the binding and unbinding, respectively, of the lactose to the
lac Repressor. The following rules describe the behaviour of the three enzymes
for lactose degradation:

(x̃)
L

⌋ (perm | X)
0.1
�→ (perm·x̃)

L
⌋ X (R11)

LACT | (perm·x̃)L ⌋ X
0.001
�→ (perm·x̃)L ⌋ (LACT |X) (R12)

betagal | LACT
0.001
�→ betagal | GLU | GAL (R13)

Rule (R11) describes the incorporation of the lactose permease in the mem-
brane of the bacterium, rule (R12) the transportation of lactose from the envi-
ronment to the interior performed by the lactose permease, and rule (R13) the
decomposition of the lactose into glucose (denoted GLU) and galactose (denoted
GAL) performed by the beta galactosidase.

The following rules describe the degradation of all the proteins and pieces of
mRNA involved in the process:

perm
0.001
�→ ǫ Irna

0.001
�→ ǫ transac

0.001
�→ ǫ (R14-R16)

repr
0.002
�→ ǫ betagal

0.01
�→ ǫ Rna

0.01
�→ ǫ (R17-R19)

RLACT
0.002
�→ LACT (perm·x̃)

L
⌋ X

0.001
�→ (x̃)

L
⌋ X (R20-R21)

We recall that sequences are not allowed as context of application of rules,
hence rule (R14) cannot be applied to perm when this is an element of the
looping sequence representing the membrane of the bacterium. This motivates
the presence of the rule (R21).

4.2 Simulation Results

We simulated the evolution of the bacterium in the absence of lactose (modelled
by the term Ecoli of Equation (1)) and in the presence of 100 molecules of lactose
in the environment (modelled by the term EcoliLact of Equation (2)).

In Figure 3 we show the results of the two simulations. The first graph shows
that in the absence of lactose the production of the beta galactosidase and lactose
permease enzymes starts after more than 750 seconds, and that the number of
such enzymes is always smaller than 20. Moreover, this graph shows that the
lactose permeases, once produced, become immediately part of the membrane
of the bacterium, because the number of such enzymes not on the membrane
remains always small.

The second and the third graphs show the results of the simulation when
the lactose is present in the environment. In this case the production of the
enzymes starts almost immediately (as shown by the second graph), but we
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Fig. 3. Simulation results: production of enzymes in the absence (top) and presence
(middle) of lactose, and degradation of lactose into glucose (bottom)
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remark that the fact that the starting times in the production of enzymes in
the two simulations are different is not relevant. The amount of time elapsed
before the production of these enzymes does not depend on the presence of the
lactose in the environment, as the lactose cannot enter the bacterium until some
molecules of permease have joint the membrane.

Finally, the third graph shows that if lactose is present in the environment, it
starts entering the bacterium after some molecules of lactose permease join the
membrane and it is decomposed into glucose and galactose. Once some molecules
of lactose permease join the membrane, the lactose starts entering the bacterium
(see the third graph). In fact, the third graph shows that the number of molecules
in the environment rapidly decreases.

Once entered the bacterium, the lactose interacts with the lac Repressor, and
this favors the production of more enzymes.

Once all the molecules of lactose have been decomposed, the number of lac Re-
pressors increases, reaching the same values of the first simulation. The number
of beta galactosidase and lactose permease enzymes, instead, does not decrease,
and hence does not reach the values of the first simulation. This happens be-
cause the degradation of such enzymes, and of the mRNA from which they are
translated, is a very slow process, which would take much more time than the
time of the simulations we performed.

Notice that the curves proposed in the figures (and the ones in the next sec-
tion) result from a single experiment chosen among several we have performed
with the same initial conditions. Even though the outputs of probabilistic sim-
ulations are inherently approximations of the overall behaviour of a system, in
our cases the experiments gave always the same results, apart for negligible
fluctuations. In tens of simulations no rare events manifested. Thus, instead of
computing an average of the different simulations we decided to choose just one
of them as a good representative of the standard behaviour of the system. Thus,
we are confident that the proposed simulations reflect a realistic behaviour of
the overall system.

5 Modelling Quorum Sensing

Traditionally, bacteria have been studied as independent individuals. Now, it is
recognised that many bacteria have the ability of monitoring their population
density and modulating their gene expressions according to this density. This
process is called quorum sensing.

The process of quorum sensing consists in two activities, one involving one
or more diffusible small molecules (called autoinducers) and the other involving
one or more transcriptional activator proteins (R-proteins) located within the
cell. The autoinducer can cross the cellular membrane, and thus it can diffuse
either out or in bacteria.

The production of the autoinducer is regulated by the R-protein. The R-
protein by itself is not active without the corresponding autoinducer. The au-
toinducer molecule can bind to the R-protein to form an autoinducer/R-protein
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complex, which binds to a target of the DNA sequence enhancing the tran-
scription of specific genes. Usually, these genes regulate both the production of
specific behavioural traits (as we will show in the following) and the production
of the autoinducer and of the R-protein.

At low cell density, the autoinducer is synthesized at basal levels and dif-
fuse in the environment where it is diluted. With high cell density both the
extracellular and intracellular concentrations of the autoinducer increase until
they reach thresholds beyond which the autoinducer is produced autocatalyt-
ically. The autocatalytic production results in a dramatic increase of product
concentration.

Quorum sensing behaviour is very widespread in bacteria. An example is the
regulation of the bioluminescence in the symbiotic marine bacterium Vibrio fis-
cheri, which colonizes the light organs of marine fishes and squids. The bacteria
only luminesce when they are found in high concentrations in the light organs,
while they do not emit light when they are free swimming [30]. Another ex-
ample is given by the bacterium Pseudomonas aeruginosa, a prevalent human
pathogen [31]. The ability of P. aeruginosa to infect a host mainly is based
on controlling its virulence by quorum sensing. The level of virulence expressed
by isolated bacteria is very low, thus avoiding host response. When a colony
has reached a certain density, the production of virulence factors is autoinduced
by quorum sensing, and it is generally sufficient to overcome the defenses of
the host.

The quorum sensing system of P. aeruginosa has two regulatory systems reg-
ulating the expression of elastase LasA and elastase LasB, respectively. The two
enzymes are responsible for pulmonary hemorrhages associated with P. aerug-
inosa infections. In this paper we are interested in the regulatory system of
elastase LasB, named the las system.

A schematic description of the las system is as follows (arrows from an element
to another one represent the production of the second element starting form the
first one, arrows with the ++ label represent catalysed faster productions):

dna

++++
LasR LasI

3-oxo-C12-HSLLasR

LasB
++

The autoinducer 3-oxo-C12-HSL and the transcriptional activator protein
LasR are produced at basal rates starting from the dna and LasI, respectively.
The LasR/3-oxo-C12-HSL dimer, which is the activated form of LasR, promotes
the production of itself, of the autoinducer and of the LasB enzyme. The forma-
tion of the dimer is controlled mainly by the concentration of the autoinducer,
which is influenced by the number of bacteria.
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5.1 Stochastic CLS Model

We now give the SCLS model of the quorum sensing process. We do not model
the production of the LasB as it has not an active role in the regulation process.
The initial state of each bacterium is:

Bact ::= (m)
L

⌋ (lasO · lasR · lasI)

where the looping sequence (m)
L

represents the bacterium membrane, lasO the
target of the DNA sequence where LasR/3-oxo-C12-HSL complex binds to for
promoting DNA transcription, and lasR and lasI the genes that encode LasR
and the autoinducer.

This model shows one of the advantages of using terms for describing the
structure of biological systems in SCLS. In fact, in order to model a population
of n bacteria we have to describe only one bacterium, and then compose n copies
of such a description by using the parallel composition operator. In other words,
we model a population of n bacteria simply as n × Bact.

We now give the stochastic rewrite rules describing the protein/protein and
protein/DNA interactions in the described systems. Again, we have only to give
the rules for one bacterium, and they will be applicable in all the n bacteria of
the considered population.

lasO · lasR · lasI
20

�−→ lasO · lasR · lasI | LasR (R1)

lasO · lasR · lasI
5

�−→ lasO · lasR · lasI | LasI (R2)

LasI
8

�−→ LasI | 3oxo (R3)

3oxo | LasR
0.25
�−→ 3R 3R

400
�−→ 3oxo | LasR (R4-R5)

3R | lasO · lasR · lasI
0.25
�−→ 3RO · lasR · lasI (R6)

3RO · lasR · lasI
10

�−→ 3R | lasO · lasR · lasI (R7)

3RO · lasR · lasI
1200
�−→ 3RO · lasR · lasI | LasR (R8)

3RO · lasR · lasI
300
�−→ 3RO · lasR · lasI | LasI (R9)

(m)
L

⌋ (3oxo | X)
30

�−→ 3oxo | (m)
L

⌋ X (R10)

3oxo | (m)L ⌋ X
1

�−→ (m)L ⌋ (3oxo | X) (R11)

LasI
1

�−→ ǫ LasR
1

�−→ ǫ 3oxo
1

�−→ ǫ (R12-S14)

Rules (R1) and (R2) describe the production from the DNA of proteins LasR
and LasI, respectively. For the sake of simplicity we do not model the transcrip-
tion of the DNA into mRNA. Rule (R3) describes the production of the autoin-
ducer 3-oxo-C12-HSL, denoted 3oxo, performed by the LasI enzyme. Rules (R4)
and (R5) describe the complexation and decomplexation of the autoinducer and
the LasR protein, where the complex is denoted 3R. Rules from (R7) to (R9)
describe the binding of the activated autoinducer to the DNA and its influence
in the production of LasR and LasI. Rules (R10) and (R11) describe the autoin-
ducer exiting and entering the bacterium. The kinetic constants associated with
these two rules give a measure of the autoinducer dilution. Finally, rules from
(R12) to (R14) describe the degradation of proteins.
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Fig. 4. Simulation results: quantity of autoinducer inside one bacterium in a population
of one (top), five (middle) and twenty (bottom) bacteria
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5.2 Experimental Results

We simulated the behaviour of a population of P. aeruginosa by varying the
number of individuals. In Figure 4 we show how the concentration of the autoin-
ducer varies inside bacteria when the population is composed by one, five and
twenty individuals. In the last two cases we show the autoinducer concentration
inside one only bacterium (the concentrations inside the others are analogous).

When the number of bacteria increases also the concentration of the autoin-
ducer in the extracellular space increases. As a consequence the concentration
of the autoinducer in the intracellular spaces increases as well and the quorum
sensing process starts. Note that the kinetic constants of rules (R10) and (R11),
regulating the autoinducer exiting and entering the membrane, cause the bac-
teria to maintain the autoinducer production mostly at a basal rate when the
population size is one or five. When the population size is twenty the quorum
sensing starts after a few seconds thus causing a very high autocatalytic autoin-
ducer production. Increasing the ratio between the kinetic constants of (R10)
and (R11) would cause the quorum sensing to be triggered when the number of
individuals is bigger.

6 Conclusions

As we have seen, SCLS allows representing membranes and operations on them.
Other formalisms were developed to describe membrane systems. Among them
we cite Brane Calculi [7] and P-Systems [21].

SCLS can describe situations that cannot be easily captured by the above
mentioned formalisms, which consider membranes as atomic objects. An ex-
ample of this is given by the representation of the membrane of Escherichia
coli, shown in Section 4. Representing the membrane as a sequence of elements
permits the definition of different functionalities depending on the type and
the number of elements on the membrane itself. In the example, the presence
and the number of lactose permeases on the bacterium membrane regulates the
transportation of lactose inside the bacterium. Moreover, as no restrictions are
imposed on the format of rewrite rules, SCLS seems to be suitable for the descrip-
tion of a wider class of systems than the one the formalisms mentioned above
easily handle.

Quorum sensing is a complex biological process, which is not based on signals
and receptors but only on the concentration of a protein freely crossing bacte-
ria membranes. Many mathematical models have been developed for describing
this challenging phenomenon [13,16,32]. These models consider various aspects
of the problem: the diffusion of the autoinducer, its degradation, the percentage
of “up-regulated” bacteria (the ones with an enhanced production of the autoin-
ducer), the density of bacteria, their size, etc. However, all these models describe
the process at a very abstract level. They consider that the intracellular concen-
tration of the autoinducer is a function of the density of the bacteria, although
modulated by other factors. Thus they start from this assumption to study the
behaviour of the system with different values of the parameters.
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The SCLS model is based on a different approach. A single bacterium is
described by means of a set of rewrite rules modelling its internal processes.
These rules also model the autoinducer crossing (in both directions) the cellular
membranes and the autoinducer degrading at the same rate both inside and
outside cells.

Differently from the mathematical models mentioned above, the SCLS model
describes the elementary processes each bacterium performs, and the quorum
sensing results from the activity of a sufficient number of bacteria. The stochas-
tic nature of SCLS allows observing fluctuations of the autoinducer concentration
which in the first two cases considered are not sufficient to trigger quorum sens-
ing. Moreover, our model shows the discrete behaviour of the binding between
the autoinducer/R-protein complex and DNA. In Figures 5 and 6 we show the
dynamics of the binding between the autoinducer/R-protein complex and the
DNA in one of the bacteria of the populations of five and twenty bacteria, re-
spectively. In Figure 5, since the autoinducer and the R protein are produced
at basal levels, the concentration of the autoinducer/R-protein complex inside
the bacterium is low. As a consequence, the complex does not bind to DNA,
except in the few cases of stochastic peaks in the autoinducer concentration. In
Figure 6, when the quorum sensing process starts (in this case approximately
after 30 seconds), the concentration of the autoinducer/R-protein complex in-
creases sharply causing the complex to be constantly bound to the DNA. As a
consequence, the autoinducer is produced autocatalitically.
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Fig. 5. The binding of the autoinducer/R-protein complex inside a bacterium in the
population of five

6.1 Related Work

Cell biology, the study of the morphological and functional organization of cells,
is now an established field in biochemical research. Computer Science can help
the research in cell biology in several ways. For instance, it can provide biologists
with models and formalisms capable of describing and analyzing complex systems
such as cells.
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Fig. 6. The binding of the autoinducer/R-protein complex inside a bacterium in the
population of twenty

Qualitative Models. In the last few yearsmany formalisms originally developed
by computer scientists to model systems of interacting components have been ap-
plied to Biology. Among these, there are Petri Nets [19], Hybrid Systems [1], and
the π-calculus [10,29]. Moreover, new formalisms have been defined for describ-
ing biomolecular and membrane interactions [4,7,8,12,24,26]. Others, such as P-
Systems [21], have been proposed as biologically inspired computational models
and have been later applied to the description of biological systems.

The π-calculus and new calculi based on it [24,26] have been particularly suc-
cessful in the description of biological systems, as they allow describing systems
in a compositional manner. Interactions of biological components are modelled
as communications on channels whose names can be passed; sharing names of
private channels allows describing biological compartments.

These calculi offer very low-level interaction primitives, but may cause the
description models to become very large and difficult to read. Calculi such as
those proposed in [7,8,12] give a more abstract description of systems and of-
fer special biologically motivated operators. However, they are often specialized
to the description of some particular kinds of phenomena such as membrane
interactions or protein interactions.

P-Systems [21] have a simple notation and are not specialized to the descrip-
tion of a particular class of systems, but they are still not completely general.
For instance, it is possible to describe biological membranes and the movement
of molecules across membranes, and there are some variants able to describe also
more complex membrane activities. However, the formalism is not so flexible to
allow describing easily new activities observed on membranes without extending
the formalism to model such activities.

Danos and Laneve [12] proposed the κ-calculus. This formalism is based on
graph rewriting where the behaviour of processes (compounds) and of set of
processes (solutions) is given by a set of rewrite rules which account for, e.g.,
activation, synthesis and complexation by explicitly modelling the binding sites
of a protein.
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The Calculus of Looping Sequences presented in the present paper, has no
explicit way to model protein domains (however they can be encoded, and a
variant with explicit binding has been defined in [3]), but accounts for an explicit
mechanism (the looping sequences) to deal with compartments and membranes.
Thus, while the κ-calculus seems more suitable to model protein interactions,
CLS allows for a more natural description of membrane interactions.

Another feature lacking in other formalisms is the capacity to express ordered
sequences of elements. To the best of our knowledge, CLS is the first formalism
offering such a feature in an explicit way, thus allowing to naturally operate
over proteins or DNA fragments which should be frequently defined as ordered
sequences of elements.

Stochastic Models. Among stochastic process algebras we would like to men-
tion the stochastic extension of the π-calculus, given by Priami et al. in [25], and
the PEPA framework proposed by Hillston in [15].

The stochastic engine behind PEPA and the Stochastic π-calculus is con-
structed on the intuition of cooperating agents under different bandwidth lim-
its. If two agents are interacting, the time spent for a communication is given
by the slowest of the agents involved. Differently, our stochastic semantics is
defined in terms of the collision-based paradigm introduced by Gillespie. A sim-
ilar approach is taken in the quantitative variant of the κ-calculus ([11]) and in
BioSPi ([25]). Motivated by the law of mass action, here we need to count the
number of the reactants present in a system in order to compute the exact rate
of a reaction. We already mentioned the work by Krivine et al. [17], in which a
stochastic semantics for bigraphs has been developed. The intuitive and natural
methodology they have developed to count rule occurrences has been adapted,
in the present paper, to count the number of occurrences of stochastic rewrite
rules within CLS terms.

An alternative stochastic semantics for CLS has been defined in [2]. Such a
semantics computes the transition rates in a compositional way and it is rather
complicated. Moreover, in [20] and in preliminary versions of the present paper
we defined the stochastic extension of CLS (upon which the current version of
our simulator is based) by enriching rewrite rules with rate functions rather
than rate constants. Such functions allow the definition of kinetics that are more
complex than the standard mass-action ones, but are rather difficult to be used
when modelling systems. By following the approach of [17], in this paper we have
been able to give a natural and simpler definition of SCLS.

We would also like to mention that a computational model describing the
quorum sensing process in Vibrio fischeri [30] by modelling single bacteria is
presented in [22]. The model is defined with a variant of P-Systems.

Tools and Applications. Among the simulation tools based on other stochas-
tic formalisms we mention the following ones:

– SPiM (http://research.microsoft.com/∼aphillip/spim/) and Cytosim
(http://www.cosbi.eu/Rpty Soft CytoSim.php) are constructed on the
Stochastic π-calculus;
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– the Beta Workbench (http://www.cosbi.eu/Rpty Soft BetaWB.php) pro-
vides a collection of tools based on Beta-binders [24];

– Bio-PEPA (http://www.dcs.ed.ac.uk/home/stg/software/biopepa) is a
biologically inspired extension of PEPA;

– PSym (http://psystems.disco.unimib.it/) is a simulation tool devel-
oped for P-Systems.

These tools, as our prototype simulator for SCLS, can be used to perform
stochastic simulations. Other tools often used to study biological systems, such
as GEPASI (http://www.gepasi.org/), simulate systems by solving differen-
tial equations. This kind of simulation is well-suited for chemical solutions with
big quantities of reactants, and becomes less precise when the number of reac-
tants decreases (as in cells) as it is based on a continuous representation of the
quantities of reactants.

In conclusion, we also point out that the translation of SBML descriptions of
cellular pathways (http://sbml.org) into SCLS is trivial, provided the reactions
in the pathways are based on standard mass action kinetics.
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The BlenX Language with Biological Transactions
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Abstract. An extension of the BlenX language with biological transactions,

called TBlenX, is presented. The aim of this extension is to model a sequence

of elementary actions as if it were atomic. This extension is useful when we need

to specify multi-reactant multi-product reactions or when we use a sequence of

actions to represent a biological interaction. Some properties of these transactions

are discussed and some examples are reported to illustrate our extension.

Keywords: Systems biology, process algebras, biological transactions, multiple-

reactant multiple-product reactions.

1 Introduction

In the last years process algebras have been used to model and analyse biological sys-

tems [38,34,15,9,4,12]. These techniques have been originally defined in computer sci-

ence for the analysis of complex concurrent systems and they seem to be appropriate for

representing biological systems as well. One example is the �-calculus with its stochas-

tic version [30,29,26]. Moreover, there have been some e�orts to define specific calculi

for biology [37,33,31].

Recently, BlenX, a language based on Beta-binders [33], has been defined and im-

plemented [17,19,18]. The language is based on the concept of boxes, equipped with

some sites (binders) and with �-like processes (processes) inside. The boxes abstract

biological entities, whereas the binders express their interaction capabilities and pro-

cesses handle the manipulation of the binders and drive the internal behaviour of the

boxes in which processes are. BlenX allows us to represent some biological phenom-

ena, such as the join between two bio-processes, the split of one bio-process into two,

the change of the bio-process interface by hiding, unhiding and exposing a site. The

interaction between two boxes can happen if they have compatible interaction sites and

not identical channel names as it happens in classical process calculi. The definition of

compatibility is expressed by an aÆnity function applied to the types of the sites in-

volved in the communication. This new form of communication is relevant in biology,

where interactions happen on the basis of sensitivity between active sites of entities

rather than on the basis of exact complementarity.

Further notions of BlenX with respect to Beta-binders are the creation, the deletion,

the complexation and the decomplexation of boxes. The notion of complex, resulted

from the complexation action, is introduced to describe a set of boxes physically bound

together. BlenX o�ers a formal and eÆcient definition of joins and splits by means

of the event construct. A single event is defined by a condition with some associated

C. Priami (Ed.): Trans. on Comput. Syst. Biol. IX, LNBI 5121, pp. 114–152, 2008.
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actions. Conditions are global and whenever they become true the associated actions are

enabled. The two levels of control in the language (interactions and events) represent

the same two levels available in cells where the same machinery implements both the

applications (interactions) and the operating system (events).

A critical task in the translation of biological models into our language and gener-

ally into process algebras, is the specification of multi-reactant multi-product reactions.

These reactions, rare in nature [21], are quite frequent in biological models (see for ex-

ample [23]) as abstractions of sequences of elementary steps whose details are unknown

or not of interest. Since actions in the BlenX language involve at most two processes, a

possible way to translate multi-reactant multi-product reactions is to decompose them

into a sequence of one-reactant or two-reactant reactions. Consider for instance the

a system composed of four species, R1, R2, R3 and P, that can interact through the

reaction:

R1 � R2 � R3

k
��P

where R1, R2, and R3 are the reactants, P the product and k is the reaction rate constant1.

Furthermore, we can assume that the species R3 can be degradeted with reaction con-

stant rate kd. If we have no biological information about the former reaction we can try

to decompose it in the following two reactions with rates k1 and k2 respectively:

R1 � R2

k1

�� R1 : R2

R1 : R2 � R3

k2

�� P

where R1 : R2 is the intermediate complex of the first two reactants. If this approach is

adopted, some problems arise, as described below.

– Given n reactants, there are n!
2

possible ways to decompose a multi-reactant multi-

product reaction.

– A reaction may block at intermediate steps leading to a deadlock. This may happen

for instance if the reactant R3 misses or it is consumed in the degradation reaction.

If we put the first reaction reversible, it is possible to come back to the original situ-

ation, but also in this case we may model behaviours as a sequence of complexation

and decomplexation that consumes resources and produce no useful outcome.

– Quantitatively, we have to assign the two constant rates k1 and k2 and see what is

the relation between them and the rate k.

We will consider this simple example to illustrate our approach in the rest of the paper.

In order to overcome the drawbacks highlighted above we proposed the TBlenX

language, an extension of BlenX with transactions.

Transactions are mechanisms originally used in web services and databases to ex-

ecute distributed computations as if they were a single atomic action. Recently there

have been di�erent attempts to model web-service transactions by using process alge-

bras [3,6,27,28,5,7,8]. These previous works will be discussed in Section 2. Here we

do not consider neither compensation and rollback mechanisms nor nested transactions

1 This is the constant rate used in the deterministic formulation of chemical reactions. Specifi-

cally the associated kinetics is given by the mass-action law and it is given by k � R1 � R2 � R3.
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nor time as these features are not necessary to describe biological reactions. We focus

on simple transactions that have to satisfy the properties of atomicity and serializabil-

ity, suitable for modeling biology. Atomicity is summarized as ”all or nothing”: either a

transaction is executed and finally commits or it does nothing. Serializability expresses

that di�erent activities have the same e�ect whether they are executed in sequence or in

parallel. Hereafter these transactions are called biological transactions.

The paper is organized in the following way. Section 2 reports some related works. In

Section 3 an introduction to the BlenX language is reported. In Section 4 the extended

calculus is described in detail. Some properties are introduced in the following section.

Some examples are shown in Section 6. Finally, the last section reports discussion and

some final remarks.

2 Related Works

There are various works concerning the application of process algebras and formal

methods for the modelling of biological systems [15,9,4,20,12]. In PEPA [22,9] it is

possible to express multi-reactant multi-product reactions by means of multi synchro-

nization along a common action. However, the level of abstraction proposed by this

language is high and some biological details, such as the kind of interaction or the sites

of biological elements, cannot be expressed in an explicit way. The same approach has

been considered in Bio-PEPA [11,12], an extension of PEPA for the modelling and

analysis of biochemical networks. BIOCHAM [20] is a programming environment for

modeling biochemical systems, making simulations and querying the model in tem-

poral logic. By using this language it is possible to represent multi-molecular com-

plexes, the sites of the proteins and the locations (compartments) where species are.

BIOCHAM formal objects represent chemical or biochemical species, ranging from

small molecules to macromolecules and genes, and reaction rules represent biological

interactions. Both BIOCHAM and BlenX can represent a large quantity of biological

interactions and structures (for instance the interaction sites), but they are based on two

di�erent approaches: BIOCHAM evolves from rewriting rule languages whereas the

BlenX evolves from process algebras. A main peculiarity of the latter with respect to

the former language is the communication and, specifically, the definition of aÆnity be-

tween interaction sites. This feature allows us to represent some biological processes

based on the compatibility for the interaction: the same substance can interact with

more elements in the context, although with di�erent levels of aÆnity.

Previous works concerning the application of web-service transactions to process al-

gebras have been studied in [3,6,27,28,5,7,8]. In [3] the �t-calculus is presented: it is an

extension of the asynchronous �-calculus extended to deal with long time transactions

and o�ers failure handlers when interruptions are met. Another extension of the asyn-

chronous �-calculus with long-time transactions, called web-�, is introduced in [27]. In

this case the main aspects are the interruptible processes, the failure handlers and the

concept of time. A web-� transaction may terminate successfully or may fail, either as

an error occurs or the time deadline is reached. CSP is the process algebras adopted in

[8] to model long-running transactions with traces. The authors of [7] introduced a new

calculus, StAC (Structural Activity Compensation), inspired by both CCS and CSP, to
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model long-running business transactions. It gives a precise interpretation of compen-

sation, including the combination of compensation with parallel execution, hierarchy

and exceptions. Finally, in [6] a formal study of the serializability of transactions in

JavaSpaces is undertaken. For this purpose the authors abstract away from the concrete

language and embed the primitives in a process calculus. None of these works are in

the context of systems biology. An extension of the �-calculus with transactions in the

context of biological systems has been presented in [13].

3 The BlenX Language

This section recalls the syntax and the semantics of the BlenX language, as presented

in [17,19,18]. It is based on the concept of boxes, abstracting biological entities, with

some sites (binders) to express the interaction capabilities of the element, in which �-

like processes (processes) are encapsulated.

A BlenX program, also called �-system, is a tuple Z��B� E� �� which is a composition

of a set boxes B, a list of events E and an environment �. The element B intuitively

represents the structure of the system, E represents the list of possible events enabled on

the system and the environment � contains information like the set Types of considered

types (ranged over by �, �0, ��, � � � ).

3.1 The Syntax

We briefly describe here the syntax of BlenX, for more details see [17,19,18]. The boxes

and the list of events E are defined according to the following context-free grammar:

B ::� Nil � B[P] � B��B

B ::���(x� r� �) � ��(x� r� �)B�� ::� � � �h � �c

P ::� nil � P�P � !��P � M M ::� ��P � M � M

� ::� x(y) � x�y� � (	� r) � (die� r) � (ch(x� �)� r) �
(hide(x)� r) � (unhide(x)� r) � (expose(x� s� �)� r)

cond ::� B[P]; r � �B[P]� � n � B[P]� B[P]; r

verb ::� new(B[P]� n) � split(B[P]� B[P]) � join(B[P]) � delete

event ::� (cond) verb

E ::� event � event :: E

where we assume a countably infinite set � of names (ranged over by the lower-case

letters x, y, ...) and n � N. Furthemore, the special name 	 � � expresses internal

activities of processes or delays and r � R� 	 
�� is the rate parameter. The rate �

denotes immediate actions whereas r stands for the stochastic (or basal) rate, for details

about this see Section 3.3.

Boxes generated by the non terminal symbol B can be either elementary or a parallel

composition of elementary boxes. The special process Nil is the deadlock. The box

B[P] is a process prefixed by a specialized binder B that represents the interaction

capabilities of the box. A binder B is made up of a non empty list of elementary binders

of the form �(x� r� �) (active), �h(x� r� �) (hidden) or �c(x� r� �) (complexed) (�� stands
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for a binder in any of the previous forms), where the name x is the subject of the binder

and acts as a binder for the free occurrences of x in the internal processes, r is a rate

parameter and � represents the type of x. The letters 
, � and � denote the set of all

the possible processes,boxes and binders, respectively. The functions sub : � � 2� ,

types : � � 2Types and bc : � � 2Types return the subject, the types and the set of

complexed elements of a box. The definition of well-formed boxes is reported below

(the operator � � � denotes the cardinality of the argument).

Definition 1. Let B � B1[P1] �� � � � �� Bn[Pn]. We say that B is well-formed if �i �


1� ���� n�� Bi is well-formed.

A binder is well-formed if �Bi� � �sub(Bi)� � �types(Bi)� 
 0.

A binder is well-formed if it is a non-empty string of elementary binders where subjects

and types are all distinct.

Processes generated by the non terminal symbol P are referred as processes. In ad-

dition to the usual action proposed in pi-calculus (except for restriction that is removed

here), there are actions peculiar to the BlenX language. The action (die� r) destroys the

box enclosing the process that executes the prefix. The action (ch(x� �)� r) changes the

type of the binder with subject x to �. The actions (hide(x)� r) and (unhide(x)� r) are

complementary and they change the state of an active binder to hidden and vice versa.

Finally, the action (expose(x� s� �)� r) creates a new binder for the current box with

subject x, rate s and type �.

The term E generates a list of events. Each single event occurs only if its condition is

satisfied on a set of one or more boxes composing B. A single event is the composition

of a condition cond and an action verb. Events replace the f join and fsplit axioms of the

original Beta-binders definition [33] for the sake of implementation.

The syntactic category verb denotes the actions that are associated with conditions.

The action new(B[P]� n) creates n new instances of the box specified as argument. Here-

after when the created box coincides with the one specified in the condition the notation

new(n) is used for short. The action split(B[P]� B[P]) removes a copy of the box in the

condition and introduces the two processes arguments of the split operation. The action

join(B[P]) removes a copy of each of the boxes in the condition and introduces a copy

of its argument. Finally, the action delete removes a copy of the box reported in the

condition.

Biologically speaking, the action new can be used to model the translation of new

proteins in the cell at a given rate, the actions split and join can represent classical

bind�unbind reactions in molecular environments and, finally, delete is useful to model

the decay or degradation of molecules and proteins.

The definition of well-formed events is reported below. First we need to define the

structural congruence for BlenX.

Definition 2. The structural congruence over processes, denoted �p, is the smallest

congruence relation which satisfies the laws in Fig. 1 (group a), the structural con-

gruence over boxes, denoted �b, is the smallest congruence relation which satisfies the

laws in Fig. 1 (group b) and the structural congruence over events, denoted �e, is the

smallest congruence relation which satisfies the laws in Fig. 1 (group c).
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group a

1- P1 �p P2 if P1 and P2 �-equivalent

2- P1 � (P2 � P3) �p (P1 � P2) � P3

3- P1 � P2 �p P2 � P1

4- P � nil �p P

5- M1 � (M2 � M3) �p (M1 � M2) � M3

6- M1 � M2 �p M2 � M1

7- !��P �p ��(P � !��P)

group b

8- B[P1] �b B[P2] if P1 �p P2

9- B1 �� (B2 �� B3) �b (B1 �� B2) �� B3

10- B1 �� B2 �b B2 �� B1

11- B �� Nil �b B

12- B1 B2[P] �b B2 B1[P]

13- B�
��(x� r� �)[P] �b B�

��(y� r� �)[P�y�x�]

with y fresh in P and y � sub(B�)

group c

14- (B0; r) split(B1� B2) �e (B�

0
; r) split(B�

1
� B�

2
)

if B0 �b B�

0, B1 �b B�

1 and B2 �b B�

2

15- (B; r) delete �e (B�; r) delete, if B �b B�

16- (B; r) new(B1� n) �e (B�; r) new(B�

1
� n)

if B �b B� and B1 �b B�

1

17- (�B� � m) new(B1� n) �e (�B�� � m) new(B�

1
� n)

if B �b B� and B1 �b B�

1

18- (B0� B1; r) join(B2) �e (B�

0
� B�

1
; r) join(B�

2
)

if B0 �b B�

0
, B1 �b B�

1
and B2 �b B�

2

19- E0::E1 �e E1::E0

Fig. 1. Structural laws for BlenX

Definition 3. Let (cond) verb be an event. We say that the event is well-formed if it sat-

isfies one of the following forms and conditions:

- (B1[P1]; r) split(B2[P2]� B3[P3])

with (bc(B2) � bc(B3) � �) and (bc(B2) 	 bc(B3) � bc(B1));

- (B1[P1]� B2[P2]; r) join(B3[P3])

with ((bc(B1) � bc(B2) � �) and (bc(B1) 	 bc(B2) � bc(B3));

- (B[P]; r) new(B�[P�]� n) with bc(B) � �;

- (�B[P]� � m) new(B�[P�]� n) with bc(B) � � and B�[P�] �b B[P];

- (B[P]; r) delete with bc(B) � �.

A list E of events is well-formed if all its events are well-formed.
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The intuition underlying the above definition is that manipulation of boxes must take

care of complexes. In particular, it is forbidden to create new copies or to destroy boxes

that are part of complexes (last three items).

The environment � contains the following components:

– the set Types of types, that determines the interaction capabilities;

– the aÆnity function � : Types2 � R3, that determines the interaction rate;

– the function � : � � R, that returns the rates associated with channel names;

– the symmetric binary relation �, called complexation relation.

Given two types � and �, the application �(�� �) returns (r� s� t) where the value r

is the complexation stochastic rate, s is the decomplexation stochastic rate and t is the

inter-communication stochastic rate. The auxiliary functions �c(�� �) � r, �d(�� �) �

s and �i(�� �) � t project the components of the result of �(�� �). The function �

associates stochastic rates to names in � and drives the stochastic behaviour of the

communications enabled on the channel passed as argument. Note that the environment

is defined by the user.

In order to define the complexation relation, we need to introduce the following

definition:

Definition 4. Let � � 
�0� �1� and 
 � ��. The set of labels H (with metavariable �)

is defined as � ::� 
�, where � � Types.

Labels 
 are also called localities [16] and provide a linear encoding of the syntactical

location of the interaction sites in the syntax tree of the whole initial system. Indeed the

tags �0 and �1 denote the left and the right branch in the tree and � provides interaction

sites of boxes with unique names.

Intuitively, the complexation relation � � H � H states that two interaction sites are

joined in a complex. We say that the relation � is well-formed if for each pair (�� ��) � �

there does not exist another pair in � that contains � or ��.

Definition 5. Let � be a complexation relation. The relation � is well-formed if �����

� � ��� � �� � ���.

Two labels are connected if there exists a path of relations built by � that relates the two

labels, i.e., the corresponding interaction sites are part of the same complex.

Definition 6. Let � be a well-formed complexation relation and let �� �� � �. Then �

and �� are connected, denoted with ����, if there exists labels �1 � 
1�1� � � � � �n �


n�n such that

(� � �1) � (�� � �n) � (�i � 
1� ���� n�2��2i�1 � �2i)�

(�i � 
1� ���� (n�2)� 1�(
2i � 
2i�1 � �2i � �2i�1))

3.2 The Operational Semantics

Each box B[P] is replaced with a labeled box 
B[P]. The definition of structural con-

gruence for the BlenX language has been reported above in Fig. 1. This congruence is

decidable and eÆciently solvable (see [35]). Moreover, we have:
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Definition 7. Two �-systems Z � �B� E� �� and Z� � �B�� E�� ��� are structurally con-

gruent, indicated with Z � Z�, only if B �b B�, E �e E� and � � ��.

Formally, assuming B and B�, we have that:


B �b 

�B� � 
 � 
� � B �b B�

The operational semantics of the language is defined using a reduction relation
r
��s ,

based on a labeled reduction relation
�
�� .

Definition 8. The set of labels �, with metavariable �, is defined in the following way:

� ::� r� kind� data

where r � R 	 
��, kind � 
die� new� and data is a generic string. The function rate :

�� R returns the value r of the triple.

In the semantics rules, we use the symbol � for action kinds di�erent from die and new

and the symbol � for the empty string. It is possible to distinguish between three types

of operations: monomolecular, bimolecular and events. A brief description of these

actions is reported in the following paragraphs.

Monomolecular operations. The formal semantics of monomolecular operations is re-

ported in Table 1. Hereafter substitutions are typed as 
���� : � � � . The first rule de-

scribes the intra-box communication, i.e. how components within the same box interact.

If the channel x appears in the binders the rate associated with the intra-communication

is s, otherwise, if x is a free name in the box the rate associated with the communica-

tion is �(x). The expose action adds a new site of interaction to the interface, the change

action modifies the type of an interaction site, the hide and unhide actions make respec-

tively invisible and visible an interaction site. The die action eliminates the box that per-

forms the action and, by propagating the proper information with the label � � r� die� 


through the derivation tree, allows the elimination of all the boxes directly or indirectly

complexed with the one performing the action. In the rule die the notation �[��] is used

to indicate the substitution of the complexation relation with a new one that records the

modifications.

Bimolecular operations. The formal semantics of bimolecular operations is reported in

Table 2. Inter-communication represents the notion of communication between boxes.

In particular, the communication is enabled only if the aÆnity of the types of the in-

volved elementary binders �(�� �) � (0� 0� n) with n 
 0. This means that the complex-

ation and decomplexation feature is not enabled and hence only a notion of commu-

nication is permitted. Complex and decomplex operations create and delete dedicated

communication binding between boxes. If we consider �(�� �) � (r� s� t) with r� s� t 
 0

we have that the complex operation creates a communication binding with rate �c(�� �)

and the decomplex operation deletes an already existing binding with rate �d(�� �).

Finally, the inter-complex communication, described by the rule (inter c), enables a

communication between complexed boxes through the complexed sites.
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Table 1. Monomolecular reduction rules for BlenX

(intra c) ��B[x�z��P1 � M1 � x(w)�P2 � M2 �P3]� E� ��
r����
������B[P1 � P2	z�w
 �P3]� E� ��

where r � s if B � B�

0 �(x� s� �) B�

1 while r � 	(x) otherwise

(tau) ��B[(
� r)� P1 � M1 �P2]� E� ��
r����
������B[P1 � P2]�E� ��

(expose) ��B[(expose(x� s� �)� r)�R � M �Q]�E� ��
r����
������B �(y� s� �)[R	y�x
 �Q]�E� ��

y � sub(B) and � � types(B)

(change) ��B� �(x� s� �)[(ch(x� �)� r)�R � M �Q]�E� ��
r����
������B� �(x� s� �)[R � Q]� E� �[��]�

where ��
� (�� � 	(�� �

�) 
 �� : � � �� � � � ��
) � (� � ��1)

with � � 	(��� �) 
 �� : �� �� �
)

(hide) ��B� �(x� s� �)[(hide(x)� r)�R � M � Q]� E� ��
r����
������B� �h(x� s� �)[R � Q]� E� ��

(unhide) ��B� �h(x� s� �)[(unhide(x)� r)�R � M �Q]� E� ��
r����
������B� �(x� s� �)[R �Q]� E� ��

(die) ��B[(die� r)�R � M �Q]�E� ��
r�die��
�������Nil�E� �[��]�

where ��
� �� � 	(�0�� �1�) : �0 � � � �1 � �


Table 2. Bimolecular reduction rules for BlenX

(inter)

P1 � p x�z��R1 � M1 �Q1 P2 � py(w)�R2 � M2 � Q2

��1 B1[P1] � �2 B2[P2]�E� ��
�i(���)����
�����������1 B1[R1 �Q1] � �2 B2[R2	z�w
 � Q2]� E� ��

provided 
c(�� �) � 0 and where B1 � �(x� r� �) B�

1, B2 � �(y� s� �) B�

2 and z � sub(B2)

(comp) ��1 �(x� r� �) B�

1[P1] � �2 �(y� s� �) B�

2[P2]� E� ��
r����
������1 B1[P1] � �2 B2[P2]� E� �[�]�

where B1 � �c(x� r� �) B�

1, B2 � �c(y� s� �) B�

2 , r � 
c(�� �)

and � � �� � 	(�1�� �2�)� (�2�� �1�)


(dcomp) ��1 �
c(x� r� �) B�

1[P1] � �2 �
c(y� s� �) B�

2[P2]� E� ��
r����
������1 B1[P1] � �2 B2[P2]� E� �[�]�

where B1 � �(x� r� �) B�

1, B2 � �(y� s� �) B�

2 , r � 
d(�� �)

and � � �� � 	(�1�� �2�)� (�2�� �1�)


(inter c)

P1 � p x�z��R1 � M1 �Q1 P2 � py(w)�R2 � M2 � Q2

��1 B1[P1] � �2 B2[P2]�E� ��
�i(���)����
�����������1 B1[R1 �Q1] � �2 B2[R2	z�w
 � Q2]� E� ��

where B1 � �c(x� r� �) B�

1 and B2 � �c(y� s� �) B�

2, �1� �� �2� and z � sub(B2)

Events. Events can be considered as global rules of the environment, triggered only

when the conditions associated with them are satisfied.

The formal semantics of events is reported in Table 3. The meaning of the event

conditions is the following:

– (B[P]; r)verb: The action verb is enabled, with rate r, only if the element B of the

�-system Z is structurally congruent to 
B[P] � B�;
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– (B[P]� B�[P�]; r)verb: The action verb is enabled, with rate r, only if B in the �-

system Z is structurally congruent to 
B[P] � 
�B�[P�] � B�;

– (�B[P]� � m)verb: The action verb is enabled, with rate �, only B in the �-system Z

is structurally congruent to the 
0B[P] � � � � � 
mB[P]��������������������������������������������������
m

� B� and B� ��b 
B[P] � B��.

The verb component can be a split, a join, a new and a delete action. The split action

can occur in a well-formed event of the form

(B[P]; r) split (B1[P1]� B2[P2])

The meaning of this action is that, if the condition is satisfied, the split action sub-

stitutes an occurrence of a box structurally congruent to B[P] in B with the parallel

composition of the boxes B1[P1] and B2[P2], with rate r. The join action can occur in

a well-formed event of the form

(B1[P1]� B2[P2]; r) join (B[P])

If the condition is satisfied in the �-system Z, the execution of the join action, en-

abled with rate r, substitutes an occurrence of boxes structurally congruent to B1[P1]

and B2[P2] in B with the box B[P]. Both split and join actions produce modifications

in the environment �. The delete action can occur in a well-formed event of the form

(B[P]; r) delete

The execution of the delete action consumes one instance of a box structurally con-

gruent to B[P] in B, with rate r. Finally, the new action is described by the well-formed

events

(B[P]; r) new (B�[P�]� n) and (�B[P]� � m) new (B�[P�]� n)

These events are enabled (the first with rate r and the second with rate infinite), only if

B contains at least a box for the first event and exactly m boxes for the second event that

are structurally congruent to B�[P�]. The execution of the event, in both cases, creates n

copies of the box B�[P�].

In the present semantics the actual number of boxes B[P] in the whole system can-

not be derived only from the new axiom. This problem is solved by using a labeled

semantics: the new axiom propagate a label � � r� new� (B�[P�]�m� n) which contains

the information about the new action.

The stochastic transition system. Before explaining the behaviour of the last rules,

some definitions are needed.

Definition 9. Let Z � �B� E� �� be a �-system with � � (T� �� ���). Then Z is well-

formed only if B is well-formed, E is well-formed, � is well-formed and

(
�� 
��) � � � (B �b 
 �c(x� r� �) B�
1[P1] � 
� �c(y� s� �) B�

2[P2] � B�)
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Table 3. Events reduction rules for BlenX

(split) ��B[P]� E� ��
r����
������((�0 B0[P0]) � (�1 B1[P1]))� E� �[��]�

where E � (B[P]; r) split(B0[P0],B1[P1]) :: E� and

��
� (�� � �0) � (�1 � ��1

1
� �2 � ��1

2
) with

�0 � 	(�0�0� �1�1) 
 �� : � � �0 � � � �1
�

�1 � 	(�0�0� � �0 �) : �0�0 �� ��
�

�2 � 	(�1�1� � �1 �) : �1�1 �� ��


(join) ��0 B0[P0] � �1 B1[P1]�E� ��
r����
������0 B[P] � Nil�E� �[��]�

where E � (B0[P0]� B1[P1]; r) join(B[P]) :: E� and

��
� (�� � �0) � (�1 � ��1

1
) with

�0 � 	(��� ����) 
 �� : �1 � � � �1 � ��
�

�1 � 	(��� �0�
�) : �� �� �1�

�


(delete) ��B[P]� (B[P]; r) delete() :: E� ��
r����
�����Nil� (B[P] : r) delete :: E� ��

(new) ��B[P]� (�B[P]� � m) new(B�[P�]� n) :: E� ��
�
����B[P]� (�B[P]� � m) new(B�[P�]� n) :: E� ��

where � � �� new� (B�[P�]�m� n)

(new c) ��B[P]� (B[P]; r) new(B�[P�]� n) :: E� ��
r����
������B� (B[P]; r) new(B�[P�]� n) :: E� ��

where B � (�0 B[P]) � (�1�0 B�[P�]) � (�1 (� � � � (�1 B�[P�]))������������������������������������������������������������������������������������������
n

It can be useful to give a formal notion of complex.

Definition 10. Let � be a well-formed complexation relation and let 
B[P] and


�B�[P�] be well-formed boxes. The box 
B[P] is connected with the box 
�B�[P�],

denoted with 
B[P]�
�B�[P�], if

� � � bc(B)� � � bc(B�) such that 
��
��

A set of boxes completely connected together can be considered a complex. Note that

the notion of complex is not explicit in the language, but it is a consequence of the

presence of complex and decomplex operations.

Definition 11. Let Z � �B� E� �� be a well formed �-system and let B �b B� � B�� where

B� � 
1B1[P1] � � � � � 
nBn[Pn]. The element B� is a complex in B only if,

�i � 
1� ���� n�((� j � 
1� ���� n�(i � j � 
iBi[Pi]�
 jB j[P j]))�

(∄ 
B[P] in B�� : (
iBi[Pi]�
B[P])))

The last three reduction rules are reported in Table 11. The struct rule, which is

standard in reduction semantics, equates the behaviours of structurally congruent �-

systems.

The redex rule is used to collect the context and uses a function C : � � 
 � � � �

to update complexes as a consequence of a die operation. It is defined on the structure

of labeled boxes in the following way:
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C(
�B[P]� 
��) �

��������	
(Nil���) if � �� � � T : 
��
�� and

�� � 
(
0�� 
1�) � � : 
0 � 
� � 
1 � 
��

(
�B[P]��) otherwise

C(
�B[P] � B� 
��) � C(
�B[P]� 
��) @ C(B� 
��)

with the function @ defined as:

(
B��)@(
�B����) � (
B � 
�B��� 	 ��)�

The redex s rule is used for constructing the actual transition relation. We intro-

duce this additional level of derivation because of the presence of a particular type of

new event. This rule uses the function Num (Table 5) that counts the number of boxes

structurally congruent to B[P] that are present in B.

A final reduction rule performs the check for the global condition and represents the

transition relation of the stochastic reduction system. Formally,

Definition 12. The BlenX Stochastic Transition System (STS) is referred as

� � ( �
r
��s � Z0), where  is the set of well-formed �-systems, Z0 �  is the initial �-

system and
r
��s �  �R� is the stochastic reduction relation, where r is a stochastic

rate.

Table 4. The reduction rules for BlenX

(struct)
Z1 � Z�

1 Z1

�
��Z2

Z�

1

�
�� Z2

(redex)
�B�E� ��

�
���B�� E� ���

�B � B1� E� ��
�
���B� � B2� E� ��[��]�

where (B2��) � C(B1� ���� ) and ��
� ��� � � if � � (r� die� �)� while

B2 � B1 and ��
� ��� otherwise

(redex s)
�B�E� ��

�
���B�� E� ���

�B�E� ��
r
��s �B

� � B1� E� ���

where B1 �

n����������������������������������������������������������������������������
(�0 B[P]) � (�1 (� � � � (�1 B[P]))

if � � (r� new� (B[P]� m� n)) and Num(B[P]� B) � m� while

B1 � Nil otherwise

Table 5. Auxiliary function Num used in the stochastic reduction relation

Num(B[P]� Nil) � 0

Num(B[P]� B�[P�]��B) � 1 � Num(B[P]� B) if B[P] �b B�[P�]

Num(B[P]� B�[P�]��B) � Num(B[P]� B) if B[P] �b B�[P�]
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The definition of STS is built upon the set of well-formed �-systems . Finally note that

the structural congruence and
r
��s reduction preserve the well-formedness of �-systems

(see [39].

3.3 The Stochastic Algorithm

BlenX refers to the stochastic Gillespie’s algorithm [21] for the simulation. Specifically,

the algorithm proposed is an eÆcient variant of the original algorithm. The interested

reader can refer to [39] for the details.

The Gillespie’s algorithm is a widely-used method for the simulation of biochemical

reactions. It finds an exact solution2 of the Chemical Master Equation (CME), that de-

scribes the transition of a biological system from one state to another through changes

of the probability of the system being in a certain state. Finding a solution of this equa-

tion directly is unfeasible (with very few exceptions).

This algorithm deals with homogenous, well-stirred systems in thermal equilibrium

and constant volume, composed of N di�erent species that interact through M reac-

tions. Broadly speaking, the goal is to describe, starting from an initial state, the evo-

lution of the system X(t) � (X1(t)� X2(t)� ���� XN(t)), where Xi(t) stands for the number

of molecules of the species i. Note that the original version of the algorithm refers to

elementary reactions3.

Every reaction is characterized by a stochastic rate constant c j, called basal rate.

This is derived from the reaction constant rate k by means of some simple relations

proposed in [21,40]. With the basal rate, it is possible to calculate the actual rate of the

reaction, that is the probability of R j happening in time (t� t � �t) given the system in a

specific state. The actual rate for the reaction R j is calculated as

a j � c j � h(X(t))

where h(X(t)) is a function that calculates the number of possible combinations of re-

actants in the system. In the case of a monomolecular reaction A����� the number of

possible combination is simply �A� (where � � � gives the amount of A), whereas in the

case of the bimolecular reaction A � B����� we have that the number of combination of

the reactants is �A� � �B�, if A and B are di�erent, or (�A� � �A � 1�)�2 if they are the same

species.

The algorithm is based essentially on the following two steps:

– calculation of the next reaction that occurs in the system;
– calculation of the time when the next reaction occurs.

We derive the information above from two conditional density functions: p( j�X(t)) �

a j(X(t))�a0, that is the probability that the next reaction is R j and p(	�X(t)) � a0ea0X(t)
,

the probability that the next reaction occurs in [t�	� t�	�d	], where a0 �
M


v�1

av(X(t)).

2 In the sense that the algorithm produces possible time-evolution trajectories that are consistent

with CME governing the physical process.
3 Elementary reactions are interactions involving at most two reactants. So they include zeroth-

order interactions, monomolecular and bimolecular reactions. In the context of reaction rate

equations their dynamics is described by the mass-action law and a constant rate.



The BlenX Language with Biological Transactions 127

We observe that from the semantics rules we can infer the basal rate r associated

with the transition and from this the actual rate. Given a �-system, the derivation of the

actual rate associated with the transition is obtained by deriving the number of boxes in

the system that are congruent to the boxes involved in the interaction. This information

is kept implicit in the model and then calculated at the moment of the simulation.

As observed above, the original Gillespie’s algorithm refers to elementary reactions

and this is the case that is considered in the current release of the simulator tool [39]

because the BlenX language considers only elementary interactions. However the ex-

tension to multi-reactant multi-product reactions is widely-used in di�erent simulation

tools based on Gillespie’s method and is presented formally in [40].

3.4 Example: Three-Reactant One-Product Reaction

Consider the biological system introduced in Section 1. It is composed of four species

and two reactions.

In BlenX each species corresponds to a box. We have that the species R1, R2, R3

and P are represented by the boxes B1 � �(x1��� �1)B1[nil], B2 � �(x2��� �2)B2[nil],

B3 � �(x3��� �3)B3[nil] and BP � BP[nil], respectively.

As discussed before, the three-reactant one-product reaction must be decomposed

into two join events: the former represents the merge of the first two reactants R1 and

R2 and the latter the merge of the resulting intermediate complex R1 : R2 and R3. These

events are:

(BR1
� BR2

; r1) join (BR1:R2
);

(BR1:R2
� BR3

; r2) join (BP)�

The intermediate complex is represented by the box BR1:R2
[nil], with

BR1:R2
� �(xR1:R2

��� �R1:R2
). The rates r1 and r2 are the basal rates associated with the

two elementary reactions and here are assumed known.

The degradation of the species R3 with basal rate rd is defined in BlenX by means of

a delete event:

(BR3
; rd) delete

A possible reduction of the system S � B1 � B2 � B3 � S � is:

B1 � B2 � B3 � S � r1

��s BR1:R2
[nil] � B3 � S �

rd

��s BR1:R2
[nil] � Nil � S �

The former reaction has started but it stops at an intermediate step as the third reactant

has been consumed in the second transition.

4 The BlenX Language with Biological Transactions

In this section we report the extension to the syntax and the semantics of the lan-

guage needed to implement biological transactions. We call this extension the TBlenX

language.
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4.1 Biological Transactions

Transactions are the basic mechanism for modeling database transactions and for com-

posing web-services in orchestration and choreography languages. Di�erent properties

and features must be considered according to the field of application. In the literature

transactions generally have some complex features such as compensation processes or

nesting or timeout mechanisms [3,6,27,28,5,7,8].

Modeling biological interactions require transactions that satisfy simpler proper-

ties. In particular, transactions should end successfully as the sequence of actions were

atomic (atomicity). Furthermore, reaction results should be visible only after transac-

tions have ended (serializability).

We refer to the transactions described here as ”biological transactions”, to distin-

guish them from database and web service ones. These transactions are considered in

[13], where both the �-calculus and the biochemical stochastic �-calculus are enriched

with biological transactions.

4.2 General Ideas

Our extension is based on the following ideas:

– the transaction names t, t�, t��, ...� ! are introduced to identify transactions. These

names are added to the syntax of the BlenX language to indicate in which trans-

actions the boxes and the processes are involved. Given a transaction t, a box

can be either blocked (it is part of) or unblocked (it is not part of) with respect

to t.

– An action characterized by a set of names ! can be executed only if the respective

box is blocked by t � ! . If a box is unblocked, only the actions with T � � can be

executed.

– We need to introduce two new events to represent the start and the end of the trans-

action. The event start describes the block of the boxes involved in a transaction

t � ! . The event end describes the unblock of the final box and the consequent end

of the transaction.

– The standard reduction relation for BlenX is extended in order to consider transac-

tions. Two new axioms start t and end t are added.

– We define a TBlenX program, called also �T-system as a tuple Z � �B� E� ��, where

the components are modified with respect to the original definition in order to take

into account transactions. It is worth noting that we use the same names to indicate

the system and the components in both BlenX and its extended version: the context

will disambiguate the names.

4.3 Syntax

The syntax of the TBlenX language is defined by the following grammar.
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B ::� Nil � (B[P])t� � B��B

B ::���(x� r� �) � ��(x� r� �)B�� ::� � � �h � �c

P ::� nil � P�P � !�T �

�P � M M ::� �T �

�P � M � M

� ::� x(y) � x�y� � (	� r) � (die� r) � (ch(x� �)� r) �
(hide(x)� r) � (unhide(x)� r) � (expose(x� s� �)� r)

v ::� [] � [n " (B[P])t�] :: v

cond ::� v � v; r � v : t; r

verb ::� new(v) � split(v) � join(v) � delete � start(v) � end(v)

event ::� (cond) verb

E ::� event � event :: E

We assume a countable set of transaction names ! (ranged over by lower-case letters t,

t’, t”, ...), with ��! � �. We use t� to denote a transaction name in ! or the null string

(denoted by �). Furthermore, T denotes a non-empty subset of transaction names in ! .

The set T � may be either T or the empty set. If T � � � we can omit it and we have the

usual actions. With 
! , �! and
���
�! we denote the set of all the possible processes,

boxes and binders for TBlenX, respectively.

Elementary boxes are enriched with the name t�. If t� � �, we have an unblocked

box (corresponding to the standard box in BlenX), otherwise we have a box blocked by

t � ! .

In the case of processes, we add the set T � to the prefixes for identifying the trans-

actions in which the associated prefix�action can be involved. It is worth noting that

the transactions are associated with the prefixes, not with the channel names. As a

consequence, a channel name could be used in di�erent actions involved in di�erent

transactions.

We add two events describing the start and the end of the transaction. Furthermore

we modify the term cond to take the case of more than two boxes into account.

In order to consider stoichiometric coeÆcients (i.e. number of molecules of a species

involved in a reaction), we follow the idea introduced in [32] and we consider the def-

inition of a multi box n " B, where n � N is the multiplicity�stoichiometry of the box B.

The multi box stands for the parallel composition of n boxes congruent to B. A list v

of multi boxes is introduced in the syntax in order to collect the boxes involved in the

event. The notation for v, even though more complex than the previous list of boxes,

is useful to collect the information about the stoichiometry of the elements involved in

the reaction and to have a more compact definition in the case of the events start and

end. Note that the number of processes involved in the events join, split, new and delete

is as usual, we extend the use of v to all of them to have a homogeneous description

for events. The conditions on the number of boxes and on the list v is reported in the

definition of well-formdeness (see below).

The list v has the form ”[n1 " B1� n2 " B2� ���� nm " Bm]”, with m # 1. The symbol

:: stands for the concatenation of elements in the list. The list v is used both in the

condition and in the verb of events. In the case of conditions, we have three possible

cases. First of all, the expression v means than the condition is satisfied if we have n1

boxes congruent to B1, n2 processes congruent to B2 and so on. The action associated

to the event is immediate. The expression v; r has a similar meaning, but in this case
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the rate is r. Finally, the term v : t; r is used in the events that describe the start and

the end of a transaction t. The definition of v and r is as before. Note that the condition

�B[P]� � m for the event new in the BlenX language is replaced with [m " (B[P])t�],

with the same identical meaning. If v is in the verb of the event, we have that n1 boxes

congruent to B1, n2 processes congruent to B2, ... replace (or are added to, in the case

of the event new) the processes in the condition.

Now we need to give the definition of structural congruence over processes, over

boxes and over events. Here we only report the di�erent rules with respect to Table 1.

Definition 13. The structural congruence over processes, denoted �p, is the smallest

congruence relation which satisfies the laws in Fig. 1 (group a, with the exception of the

law 7) and the laws in Fig. 2 (group a), the structural congruence over boxes, denoted

�b, is the smallest congruence relation which satisfies the laws in Fig. 1 (group b, with

the exception of the laws 8, 12, 13) and the laws in Fig. 2 (group b) and the structural

congruence over events, denoted �e, is the smallest congruence relation which satisfies

the laws in Fig. 2 (group c).

The law 20 claims that the process ���P is congruent to the process ��P. A similar law

(21) is defined for boxes as well. The law 22 concerns the congruence for the list v of

boxes. The other laws are adaptations of the previous laws in the case of transactions.

In the last group (c), the first six laws are similar to the ones for BlenX. The last two

rules report the congruence definitions for the events describing the start and the end of

a transaction.

The definition of a "-standard form based on multi boxes follows. It is used in the

semantics rules to express the fact that the action can be fired only if the boxes of the

list v in the event conditions are congruent to the boxes involved in the action.

Definition 14. B is in "-standard form if it is Nil or B� b

n�
i�1

ni " Bi, with n # 1 and

– ni # 1, �i � 1� ���� n;

– B1,...,Bn are elementary boxes;

– Bi �b B j, �i � j.

In the Definition 14,

n�
i�1

Bi is the parallel composition of n boxes and the symbol �b

stands for the structural equivalence for boxes in the TBlenX language as defined above.

We have the following result:

Proposition 1. Every B is structural congruent to an element B� in a "-standard form.

Proof. The proof is by structural induction over boxes. Three cases are possible.

– Case B � Nil. B is in a "-standard form by definition and hence B � B�.

– Case B � (B[P])t� . In this case B� b1 " (B[P])t� � B� that is in "- standard form.

– Case B � B1 � B2. By inductive hypothesis on B1 and B2 we have that

B1 � b

n1�
i�1

ki " B1i and B2 � b

n2�
j�1

l j " B2 j with B1i and B2 j elementary boxes for
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group a

7�- !�T �

�P �p �T �

�(P � !�T �

�P)

20- ���P �p ��P

group b

8�- (B[P1])t�
1 �b (B[P2])t�

2 if P1 �p P2 and t�
1
� t�

2

12�- (B1 B2[P])t�
1 �b (B2 B1[P])t�

2 if t�
1
� t�

2

13�- (B�
��(x� r� �)[P])t� �b (B�

��(y� r� �)[P�y�x�])t�

with y fresh in P and y � sub(B�)

21- (B)� �b B

22- v �b v� if v, v� are well-formed, �v� � �v� � and �(ni � (Bi[Pi])
t� ) in v

there exists (n j � (B�
j[P

�
j])

t�
) in v� such that (Bi[Pi])

t� �b (B�
j[P

�
j])

t�

group c

14�- (v0; r) split(v1) �e (v�

0
; r) split(v�

1
)

if v0 �b v�

0
, v1 �b v�

1

15�- (v; r) delete �e (v�; r) delete, if v �b v�

16�- (v0; r) new(v1) �e (v�

0
; r) new(v�

1
)

if v0 �b v�

0
and v1 �b v�

1

17�- (v0) new(v1) �e (v�

0
) new(v�

1
)

if v0 �b v�

0
and v1 �b v�

1

18�- (v0; r) join(v1) �e (v�

0
; r) join(v�

1
)

if v0 �b v�

0
and v1 �b v�

1

19�- E0::E1 �e E1::E0

23- (v1 : t; r) start(v�

1
) �e (v2 : t; r) start(v�

2
) if v1 �b v2 and v�

1
�b v�

2

24- (v1 : t; r) end(v�

1
) �e (v2 : t; r) end(v�

2
) if v1 �b v2 and v�

1
�b v�

2

Fig. 2. Structural laws for TBlenX

any i and j. For any B1i such that � j�B1i � bB2 j, remove B2 j and the corresponding

index from B2 and replace ki " B1i with (ki � l j) " B1i in B1. Repeat the procedure

above as long as replacements are possible. The result are two new boxes B�
1

and

B�
2

such that B�
1
� B�

2
� B�.

In order to express that a box is blocked or unblocked by a transaction we need

to define the auxiliary function Act, that finds the active transactions. Similarly, it is

possible to define the function act, that returns the set of transaction names that are in

the prefixes of the sub-terms of a given process P. The definition of these two functions

is reported in Table 6 (the symbol 	 stands for the usual union of sets).

In addition to the usual components, the environment � contains the set of transac-

tions ! .

Now we report the definitions of well-formdness for the language. First of all, we

consider the definition of well-formdeness for the list v.

Definition 15. A list of boxes v � [n1 " B1� n2 " B2� ���� nm " Bm] is well-formed if the

following conditions hold:
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– �v� � m # 1;

– either Act(v) � � or Act(ni " Bi) � 
t� for some t � ! and �i � 1� ���� m;

– Bi �b B j, �i � j.

Similarly to BlenX, we can say that a TBlenX program �B� E� �� is well-formed if all its

components are well-formed. The definition of well-formdness for all the components

is unchanged with the exception of events.

Definition 16. Let (cond) verb be an event. We say that the event is well-formed if it

satisfies one of the following forms and conditions:

-(v; r) split(v�)

where either (v � [1 " (B1[P1])t�
1] and v� � [1 " (B2[P2])t�

2 � 1 " (B3[P3])t�
3 ]

with (bc(B2) � bc(B3) � �) and (bc(B2) 	 bc(B3) � bc(B1)) and t�
1
� t�

2
� t�

3
) or

(v � [1 " (B1[P1])t�
1] and v� � [2 " (B2[P2])t�

2] with (bc(B2) � bc(B1)) and

t�
1
� t�

2
);

- (v; r) join(v�)

with either (v � [1 " (B1[P1])t�
1 ; 1 " (B2[P2])t�

2 ] and v� � [1 " (B3[P3])t�
3 ] with

((bc(B1) � bc(B2) � �) and (bc(B1) 	 bc(B2) � bc(B3)) and t�
1
� t�

2
� t�

3
)

or (v � [2 " (B1[P1])t�
1 ] and v� � [1 " (B3[P3])t�

3] with(bc(B1) � bc(B3)) and

t�
1
� t�

3
)

- (v; r) new(v�) where

v � [1 " (B[P])t�] with bc(B) � � and v� � [m " (B�[P�])t�];

- (v) new(v�) where v � [n " (B[P])t�] with bc(B) � �

and v� � [m " (B�[P�])t�];

- (v) delete where v � [1 " (B[P])t�] with bc(B) � �.

- (v : t; r) start(v�)

with Act(v) � � and Act(v�) � 
t�,

v � [�1 " (B1[P1])� �2 " (B2[P2])� ���� �nr
" (Bnr

[Pnr
])]� where nr # 1 and

v� � [�1 " (B1[P1])t� �2 " (B2[P2])t� ���� �nr
" (Bnr

[Pnr
])t]

- (v : t; r) end(v�)

with v � [�1 " (B1[P1])t� �2 " (B2[P2])t� ���� �np
" (Bnp

[Pnp
])t] where np # 1

and v� � [�1 " (B1[P1])� �2 " (B2[P2])� ���� �np
" (Bnp

[Pnp
])]

A list E of events is well-formed if all its events are well-formed.

Table 6. Auxiliary functions Act and act

Act(Nil) � �

Act(B1 	 B2) � Act(B1) 
 Act(B2)

Act((B[P])t�) � � if t� � �� �t�� otherwise

Act(n � B) � Act(B)

Act(v) � 
m
i�1

Act(ni � Bi) with v � [n1 � B1� ����nm � Bm]

act(nil) � �

act((�T �

�P) � � if T �
� �� T � otherwise

act(P1�P2) � act(P1) 
 act(P2)

act(!P) � act(P)

act(M1 � M2) � act(M1) 
 act(M2)
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The first five forms describe the case of join, split, new and delete events. The def-

initions are reformulated by considering the list v and by adding the conditions over

transactions. We add conditions over the list to make the multiplicity of boxes involved

correspond to the events in BlenX. Specifically, a well-formed split must have one box

in the condition and two in the verb, whereas the join must have two boxes in the con-

dition and one in the verb. The event delete must have only one box in the condition,

whereas the event new can have either one box (with rate r) or m boxes (in this case

the rate must be �). As far as the transactions are concerned, it is requested that all the

boxes involved in an event are either unblocked or blocked by the same transaction. The

last two rules describe the events start and end. The event start requires the boxes in the

condition being unblocked. Viceversa, the event end requires the boxes in the condition

being blocked by a transaction.

Notation. Hereafter we use the following notation:

– (B1[P1] � B2[P2]��� � Bn[Pn])t� stands for (B1[P1])t� � (B2[P2])t� ��� � (Bn[Pn])t�

– (B)t denotes one box or a set of boxes whose sub-terms are all blocked by t (and by

no other transaction).

– 1 " B[P] can be written as B[P].

Example. A graphical representation of an example of a box blocked by t1 in the

TBlenXlanguage is:

(hide(x)� r)	t1
� P�(unhide(y)� r)	t2
� Q�y(w)�R

(x : �) (y : �) t1

Only the first process, (hide(x)� r)	t1
� P, is active as the prefix is blocked by t1. The

process (unhide(y)� r)	t2
�Q may be executed only when the box is blocked by t2 (the

box is labelled by t2) and finally y(w)�R refers to the case in which the box is unblocked.

4.4 Semantics

The operational reduction semantics is based on a structural congruence and a reduction

relation. The structural congruence has been defined in Fig. 2. We have the following

definition for congruence in the case of �T-systems.

Definition 17. Two �T-systems Z � �B� E� �� and Z� � �B�� E�� ��� are structurally con-

gruent, written Z � Z�, only if B �b B�, E �e E� and � � ��.

We extend the second component of the label � in the BlenX language. This modifica-

tion is necessary to study the properties of the transactions.

Definition 18. The set of transition labels � (ranged over by �1, �2, ...) is defined as:

� � r� l� data
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where r and data are as defined for the label � in the reduction system for the BlenX

language and l � $ describes the action type. The set $ (ranged over by l1, l2, ...) is

defined as:

$1 	 $2 	 $3 	 
t : start� t : end� 	 
t : ��� � $1 	 $2 	 $3�

with:

– $1 � 
i� tau� e� c� h� u� die� is the set of molecular actions;

– $2 � 
I� Ic�C� D� is the set of bimolecular actions;

– $3 � 
S � J� D� newc� new� is the set of the event actions di�erent from start and

end;

– The label t : � (where � is end, start or any other action in $1 	$2 	$3) indicates

that the transition of kind � regards boxes blocked by t.

The following definition introduces the stochastic transition system for TBlenX.

Definition 19. The TBlenX Stochastic Transition System (TSTS) is referred as � �

( �
�
��� Z0), where  is the set of well-formed �T-systems, Z0 �  is the initial �T-

system and
�
�� �  � R �  is the smallest relation over boxes obtained by applying

the axioms and rules in Tables 8, 9, 10 and 11.

The main di�erences with the reduction rules proposed in Section 3 are the addition of

the names t � ! , the set T of transaction names, the axioms start t and end t. The rate

associated to the transition is handled as in BlenX.

Table 8 reports the reduction rules for monomolecular reactions. The rule intra t

represents the communication inside a box. A condition about transactions is added: a

communication along a channel x is possible only if the box is blocked by t� � T �
1
� T �

2

or t� � � and T �
1
� T �

2
� �, where T �

1
and T �

2
are the set of transaction names in which

the input and the output prefixes may be involved. All the other rules in Table 8 have the

set T � associated to the prefix and the action is possible if the respective box is blocked

by a transaction t� � T � or (t� � � and T � � �).

Table 9 reports the rules for bimolecular reactions, modified to consider transactions.

The rules inter t and inter c t are enriched by the condition that a communication is

possible only if the boxes are either blocked by t� � T �
1
�T �

2
or (t� � � and T �

1
� T �

2
� �),

where T �
1

and T �
2

are the set of transaction names in which the input and the output

prefixes may be involved. Similar conditions are added to the other rules in this table.

Table 10 reports the rules for events. The boxes involved in the events must be either

unblocked or all blocked by the same transaction. The first five rules are adaptations of

the ones presented for BlenX to the case of transactions. The last two rules concern the

start and the end of the transaction. The rule start t describes the start of a transaction t

by allowing the block of the boxes involved in the transaction via t. The side condition

“Act(B) � �” guarantees that the initial box is unblocked. The rule end t is used to

define what happens when a transaction t ends successfully: the boxes blocked by t are

unblocked.

The last two rules are reported in Table 11. The modifications concern the rule re-

dex t. The idea is to add some side conditions concerning the transactions active in

the system to guarantee that the actions involved in the transactions have the priority
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Table 7. Auxiliary function Num used in the reduction relation for TBlenX

Num((B[P])t� � Nil) � 0

Num((B[P])t�
1 � (B�[P�])t�

2 ��B) � 1 � Num((B[P])t�
1 � B) if (B[P])t�

1 �b (B�[P�])t�
2

Num((B[P])t�
1 � (B�[P�])t�

2 ��B) � Num((B[P])t�
1 � B) if (B[P])t�

1 �b (B�[P�])t�
2

over the other actions. In the case of the start of a transaction no other transactions

must be currently executed in the system. This is obtained by considering the condition

Act(B1) � �. In the case the action is involved in a transaction, we have the condition

that Act(B1) � Act(B), i.e. the rest of the system is blocked by the same transaction of

B or it is unblocked. The other conditions reported in the cases of the die and the new

actions are the same as those of BlenX. The auxiliary function Num has been modified

in order to consider transactions. The definition is reported in Table 7.

4.5 Rates

Following [17], we consider Gillespie’s method as the reference algorithm, but other

ones could be considered as well. Since transactions represent reactions with more than

two reactants, an extended version of Gillespie’s approach is necessary [40].

Table 8. Monomolecular reduction rules for TBlenX

(intra t) ��(B[(x�z�)
T�

1 �z��P1 � M1 � (x(w))
T�

2 �P2 � M2 � P3])t� � E� ��
r�l��
�����(B[P1 �P2	z�w
 � P3])t� � E� ��

where r � s if B � B�

0 �(x� s� �) B�

1 while r � 	(x) otherwise, and

either ( t� 
 T �

1 � T �

2 and l � t : i with t� � t) or (l � i and t� � � and T �

1 � T �

2 � �)

(tau t) ��(B[(
� r)T�

�P1 � M1 � P2])t� � E� ��
r�l��
�����(B[P1 �P2])t� �E� ��

provided that either (t� 
 T � and l � t : tau with t� � t) or (t� � � and T � � and l � tau)

(expose t) ��(B[((expose(x� s� �)� r))T�

�R � M �Q])t� �E� ��
r�l��
�����(B �(y� s� �)[R	y�x
 �Q])t� �E� ��

where y � sub(B) and � � types(B)

and provided that either (t � t� 
 T � and l � t : e with t � t�) or (l � e and t� � � and T � �)

(change t) ��(B� �(x� s� �)[(ch(x� �)� r)T�

�R � M �Q])t� �E� ��
r�l��
�����(B� �(x� s� �)[R �Q])t� � E� ��

where ��
� (�� � 	(�� �

�) 
 �� : � � �� � � � ��
) � (� � ��1)

provided that either (t� 
 T � and l � t : c with t � t�) or (t� � � and T � � and l � c)

(hide t) ��(B� �(x� s� �)[((hide(x)� r))T�

�R � M �Q])t� �E� ��
r�l��
�����(B� �h(x� s� �)[R �Q])t� �E� ��

provided that either (t� 
 T � and l � t : h with t � t�) or (t� � � and T � � and l � h )

(unhide t) ��(B� �h(x� s� �)[(unhide(x)� r))T�

�R � M �Q])t� �E� ��
r�l��
�����(B� �(x� s� �)[R �Q])t� �E� ��

provided that either (t� 
 T � and l � t : u with t � t�) or (t� � �, T � � and l � u)

(die t) ��(B[(die� r)T�

�R � M �Q])t� �E� ��
r�l��
����Nil�E� �[��]�

where ��
� �� � 	(�0�� �1�) : �0 � � � �1 � �
�with either (t� 
 T � and l � t : die with t � t�) or

(t� � � and T � � and l � die)
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We define the rates for each action in such a way that the actual rate associated with

the start action represents the actual rate of the whole reaction. Therefore, we assume

that:

– the global actual rate of the reaction is associated with the start prefix of the trans-

action;

– � is assigned to all the other prefixes in the processes in the transaction.

It is worth noting that the simulation algorithm for BlenX must be extended in order

to consider transactions. Since actions internal to a transaction are immediate, it is pos-

sible to neglect them and to simplify the algorithm. These aspects are not considered

here as out of the scope of this work.

4.6 Observation

Here we comment on the relation between the BlenX language and its extension with

transactions. We recover the standard formulation of the language by letting T � � �

and t� � �. This follows from the structural congruence in TBlenX and by noting that

any TBlenX rule�axiom (with the exception of start t and end t not present in BlenX)

when T � � � and t� � �, describes the same behaviour than the respective rule�axiom

in the standard calculus. The side conditions describing the transactions that are active

reported in the rule redex t may be neglected, as they are always satisfied. Finally, the

axioms start t and end t are not considered, as they are applied only when a transaction

t is introduced. As a consequence, the TBlenX language without transactions coincides

with the BlenX language. If we use transactions, the transitions following the start action

Table 9. Bimolecular reduction rules for TBlenX

(inter t)

P1 � p(x�z�)
T�

1 �z��R1 � M1 �Q1 P2 � p(y(w))
T�

2 �R2 � M2 �Q2

��1(B1[P1])t� � �2(B2[P2])t� �E� ��
�i(���)�l��

����������1(B1[R1 � Q1])t� � �2(B2[R2	z�w
 �Q2])t� �E� ��

where 
c(�� �) � 0� 
i(�� �) � 0, B1 � �(x� r� �)B�

1, B2 � �(y� s� �)B�

2 and z � sub(B2) and

provided that either (t� 
 T �

1 � T �

2 and l � t : I with t � t� ) or (t� � �, T �

1 � T �

2 � � and l � I)

(comp t) ��1(�(x� r� �)B�

1[P1])
t�
1 � �2(�(y� s� �)B�

2[P2]))
t�
2 �E� ��

�c(���)�l��
����������1(B1[P1]))

t�
1 � �2(B2[P2]))

t�
2 �E� �[�]�

where B1 � �c(x� r� �)B�

1, B2 � �c(y� s� �)B�

2 and � � �� � 	(�1�� �2�)� (�2�� �1�)



c(���) � 0� and provided that either t�
1
� t�

2
and (l � t : C or l � C)

(dcomp t) ��1(�c(x� r� �)B�

1[P1])
t�
1 � �2(�c(y� s� �)B�

2[P2])
t�
2 �E� ��

�d (���)�l��

����������1(B1[P1])
t�
1 � �2(B2[P2])

t�
1 �E� �[�]�

where B1 � �(x� r� �)B�

1, B2 � �(y� s� �)B�

2 and � � �� � 	(�1�� �2�)� (�2�� �1�)
�


d (�� �) � 0 and provided that either t�
1
� t�

2
and (l � t : D or l � D)

(inter c t)

P1 � p(x�z�)
T�

1 �z��R1 � M1 �Q1 P2 � p(y(w))
T�

2 �R2 � M2 �Q2

��1(B1[P1])t� � �2(B2[P2])t� �E� ��
�i(���)�l��

����������1(B1[R1 � Q1])t� � �2(B2[R2	z�w
 �Q2])t� �E� ��

where B1 � �(x� r� �)B�

1, B2 � �(y� s� �)B�

2, �1� �� �2�, 
i(�� �) � 0 and z � sub(B2)

and provided that either (t� 
 T �

1 � T �

2 and l � t : Ic with t� � t ) or

(t� � � and T �

1 � T �

2 � � and l � Ic)
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Table 10. Events reduction rules for the TBlenX language

(split t) ��(B[P])t� � E� ��
r�l��
�����((�0 (B0[P0])t� ) � (�1 (B1[P1])t� ))� E� �[��]�

where E � (v; r) split(v�) :: E� , v � [1 � (B[P])t� ]�

either (v� � [1 � (B0[P0])t� ; 1 � (B1[P1])t� ]) or

(v� � [2 � (B0[P0])t� ] with (B0[P0])t� � b(B1[P1])t� ) and

��
� (�� � �0) � (�1 � ��1

1
� �2 � ��1

2
) with

�0 � 	(�0�0� �1�1) 
 �� : � � �0 � � � �1
�

�1 � 	(�0�0� � �0 �) : � 
 types(B0) � �0�0 �� ��
�

�2 � 	(�1�1� � �1 �) : � 
 types(B1) � �1�1 �� ��


(join t) ��0(B0[P0])t� � �1(B1[P1])t� � E� ��
r�l��
�����0(B[P]))t� � Nil� E� �[��]�

where E � (v; r) join(v�) :: E� ,

either (v � [1 � (B0[P0])t� ; 1 � (B1[P1])t� ]) or

(v � [2 � (B0[P0])t� ] with (B0[P0])t� � b(B1[P1])t� ) and v� � [1 � (B[P])t� ] and

��
� (�� � �0) � (�1 � ��1

1
) with

�0 � 	(��� ����) 
 �� : �1 � � � �1 � ��
�

�1 � 	(��� �0 �0 ��) : �� 
 types(B1) � �� �� �1�
�


(delete t) ��(B[P])t� � (v;r) delete :: E� ��
r�l��
����Nil� (v;r) delete :: E� ��

where v � [1 � (B[P])t� ]

(new t) ��(B[P])t� � (v) new(v�) :: E� ��
	
����B[P]� (v) new(v’) :: E� ��

where v � [m � (B[P])t� ] and v� � [n � (B�[P�])t� ]�

either (� � (new��� (B�[P�]� m� n)) and t� � �) or (� � (t : new��� ((B�[P�])t �m� n)) and t� � t)

(new c t) ��(B[P])t� � ((v; r)) new((v�)) :: E� ��
r�l��
�����B� ((v; r)) new((v�)) :: E� ��

where v � [1 � (B[P])t� ] and v� � [n � (B�[P�])t� ] and

B � (�0 (B[P]))t� � (�1 (� � � � (�1 (B�[P�]))t� )��������������������������������������������������������
n

(start t) ��B�E� ��
r�t:start��
���������(B)t� E� �[��]�

with Act(B) � � and E � (v; t : r) start(v�) :: E� where

v � [�1 � B1[P1]� ���� �n � Bn[Pn]] and v� � [�1 � (B1[P1])t � ���� �n � (Bn[Pn])t] and

B �b

n�
i�1

�i � Bi[Pi] with n � 1

(end t) ��(B)t� E� ��
r�t:end��
��������B� E� �[��]�

with E � (v : t; r) end(v�) :: E� where

v � [�1 � (B1[P1])t � ���� �n � (Bn[Pn])t] and v� � [�1 � B1[P1]� ���� �n � Bn[Pn]] and

B �b

n�
i�1

�i � Bi[Pi] with n � 1

are only internal and have the precedence over all the other external actions. They are

executed one after the other and may not be interleaved with other actions. In general

transactions limit the interleaving of concurrent transitions.
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Table 11. The reduction rules for the TBlenX language

(struct t)
Z1 � Z�

1 Z1

	
��Z2

Z�

1

	
��Z2

(redex t)
�B�E� ��

	
���B�� E� ���

�B � B1� E� ��
	
���B� � B2�E� �

�[��]�

where we have the following cases:

if � � (�� new� (B�[P�]�m� n)) and Num(B[P]� B) � m� then B2 � B1 � B3 where

B3 �

n����������������������������������������������������������������������������
(�0 B[P]) � (�1 (� � � � (�1 B[P])) and Act(B1) � Act(B2) � Act(B) � �

if � � (�� t : new� ((B�[P�])t �m� n)) and Num(B[P]� B) � m� then B2 � B1 � B3 where

B3 �

n����������������������������������������������������������������������������������������
(�0 (B[P])t ) � (�1 (� � � � (�1 (B[P])t)) ,

Act(B1) � Act(B) and Act(B3) � Act(B) � 	t


if faction(�) � die then (B2��) � C(B1� ����) and ��
� ��� � (�� � �) and

Act(B1) � Act(B2) � Act(B) � �

if faction(�) � t : die then (B2��) � C(B1� ���� ) and ��
� ��� � (�� � �) and Act(B1) � Act(B)

if ( faction(�) � 
 and 
 � new� die) then B1 � B2��
�
� ��� and Act(B1) � Act(B) � �

if faction(�) � t : start then B1 � B2��
�
� ��� and Act(B1) � Act(B) � �

else B1 � B2��
�
� ��� and Act(B1) � Act(B)

4.7 Example: System with a Three-Reactant One-Product Reaction (Continued)

Consider the example presented in Section 1. In Section 3.4 it was shown how to trans-

late this simple system into BlenX. Furthermore, we illustrated some drawbacks of this

translation. In the following we show how this system can be modelled into TBlenX.

The three-reactant one-product reaction is translated by considering two join events

with the addition of the events start and end. The start and the end of the transaction are

described by the following events:

([1 " B1� 1 " B2� 1 " B3] : tR; r) start ([1 " (B1)tR � 1 " (B2)tR � 1 " (B3)tR])

([1 " (BP)tR ] : tR;�) end ([1 " BP])

where B1 � �(x1��� �1)B1[P1], B2 � �(x2��� �2)B2[P2], B3 � �(x3��� �3)B3[P3]

and BP � BP[PP] are the boxes representing the three reactants and the product. Their

definition is as in BlenX. The rate r is the basal rate corresponding to the reaction

constant k4.

Two join events are defined to model the reaction and they both refer to elements

blocked by the transaction tR. The first join event represents the formation of the element

R1 : R2 composed of the first two reactants R1 and R2. The complex is represented

4 Following the definition given in [21,40] the basal rate r is derived as k�(Na � V)2, where Na

is the Avogadro’s number, i.e. the number of molecules in a mole of substance, and V is the

volume of the compartment where species are. The number 2 is given by 3 � 1 where 3 is the

total number of reactants.
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by the box BR1:R2
[PR1:R2

], where BR1:R2
� �(xR1:R2

��� �R1:R2
). The second join event

represents the merge between the third reactant R3 and the R1 : R2. The result is the box

representing the product of the reaction. These events are respectively:

([1 " (BR1
)	tR
� 1 " (BR2

)	tR
];�) join ([1 " (BR1:R2
)	tR
]);

([1 " (BR1:R2
)	tR
� 1 " (BR3

)	tR
];�) join ([1 " (BP)	tR
])�

The degradation reaction is translated as before.

A possible reduction of the system S � B1 � B2 � B3 � S �, with Act(S �) � �, is:

B1 � B2 � B3 � S �
r�tR:start��
�������� (B1 � B2 � B3)tR � S �

��tR:J��
������ (R1 : R2 � R3)tR � S �

��tR:J��
������ (BP)tR � S �

��tR:end��
�������� BP � S �

Note that in this case the degradation of the species R3 cannot happen after the start of

the transaction. The complex reaction is completed.

4.8 Some Definitions

In the following we report some auxiliary definitions.

– We define two functions to extract some information from the label �. The function

rate : � � R� returns the first component of the transition label (i.e. the rate)

whereas the function faction : � � $ extracts the second component (i.e. the action

type associated with the transition).

– We may distinguish two kinds of actions with respect to a transaction t:

1. internal transition w.r.t. t, whose first component of the transition label is t : �

or t : end;

2. external transition w.r.t. t, whose first component of the transition label is t :

start or �.

– A function ft is introduced to return the possible transaction in which a transition

is involved. It is defined as:

ft(�) �

������	

t� if faction(�) � t : �

� otherwise

– B0

�̃
��Bn denotes the transition sequence B0

�1

��B1

�2

��B2���
�n

��Bn, with

�̃ � �1�2� ����n. The length of the transition sequence characterized by �̃ is defined

as:

��̃� �

������	
1 if �̃ � �

n if �̃ � �1�2�����n
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We can now define well-formed transactions. In the context of biological reactions

we can focus on simple transactions and suppose that after starting they end with suc-

cess and errors never occur. This allows us to avoid the definition of abort actions and

of an abort axiom. Furthermore no compensation mechanisms are necessary. The stop

of a transaction at intermediate steps could happen when it is not possible to execute

some of the actions that lead to the final boxes. As a consequence, the associate end

event cannot be applied. We use the term well-formed to identify transactions that when

they start, then they end successfully.

Definition 20. A transaction t is well-formed in a �T-system Z � �B� E� �� if and only

if the following conditions hold:

– t � ! ;

– if Bi

r�t:start��
�������B1 with Act(Bi) � � then there exist �̃, B2 and B f such that

1. ��̃� � � and ft(�i) � 
t� for each �i in �̃;

2. Act(B f ) � �;

3. Bi

r�t:start��
�������B1

�̃
��B2

��t:end��
�������B f .

– For each complex in B, either all its components or none of them are present in Bi.

It is worth noting that according to the definition above a well-formed transaction al-

ways terminates with an end event. The possible case that the transaction ends in dif-

ferent ways (for instance with a die action) is not allowed.

Hereafter, we consider only well-formed transactions and well-formed �T-systems.

5 Properties

In this section we report some properties of the TBlenX language. Specifically, we focus

on the atomicity and serializability properties. These two properties guarantee that our

transactions are appropriate for describing biological reactions.

The definitions of serialized and serializable transition sequences proposed in [6]

are modified in order to consider bio-processes:

Definition 21. The transition sequence B
�̃
��B�, with Act(B) � Act(B�) � �, is serialized

i� faction(�i) � t : � or faction(�i) � t : start implies faction(�i�1) � t : � or faction(�i�1) �

t : end for i � 1� ���(n � 1). The transition sequence B
�̃
��B� is serializable, if there exists

a permutation �̃� of �̃ such that B
�̃�

��B� is serialized.

A final definition concerns the finite derivative of a bio-process.

Definition 22. Given a bio-process B, a finite derivative of B is either B itself or any

bio-process B� obtained by a finite transition sequence B
�̃
��B�.

Now some properties are reported.

Proposition 2. Given the bio-process B with Act(B) � �, for any finite derivative B�

of B,
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– there is at most one transaction active in B�;

– there are no nested transactions in B�.

Proof. The proof of each item follows.

– We have to show that Act(B�) � � or Act(B�) � 
t� for a given t � ! . By hypothesis,

B� is a finite derivative of B and then, by definition, either B� � B or there exists �̃

s.t. B
�̃
��B�.

If B� � B then Act(B�) � Act(B) � � and the first item is satisfied.

If B�
� B we prove it by induction on the length of the derivative transition se-

quence. Let �̃ be �1�2� ����n and B
�1

��B1

�2

�����
�(n�1)

����B(n�1)

�n

��B�. There are two cases:

� length(�̃) � 1. In this case B
�1

��B� and faction(�1) is either � or t : start, for a

given t. In the former case Act(B�) � � and in the latter Act(B�) � 
t�.

� lenght(�̃) � n 
 1. By inductive hypothesis on the sequence �̃ � �1�2� ����(n�1),

we have that either Act(B(n�1)) � � or Act(B(n�1)) � 
t�. In the former case

faction(�(n)) may be either t : start or �, in the latter case faction(�(n) may be

either t : � or t : end. For any combination it is either Act(B�) � � or Act(B�) �


t�.

– It suÆcies to note that no bio-processes can have sub-terms of the form (B)t with

Act(B) � � because it is not possible to block an already blocked bio-process.

Indeed the axiom start t can be applied only if the bio-process is unblocked.

%&

Proposition 3 reports some properties that immediately follow from the previous

definitions.

Proposition 3.

Consider B
�
��B� with Act(B) � 
t�. If faction(�) � t : end then Act(B�) � � otherwise

if faction(�) � t : � then Act(B�) � 
t�.

–– If B
�
��B� with Act(B) � � and faction(�) � t : start then Act(B�) � 
t�.

– If B
�
��B� with Act(B) � � and ft(�) � � then Act(B�) � �.

– Given a bio-process B such that Act(B) � � and given the transaction sequence

B
�1

��B1

�2

��B2���
�n

��Bn with faction(�1) � t : start, faction(�n) � t : end and faction(�i) �

t : end for all i � 2� ���� (n�1) then faction(�i) � t : � for i � 2� ���(n�1), Actt(Bi) � 
t�

for i � 1� ���(n � 1) and Act(Bn) � �.

The next theorems concern some properties of biological transactions.

Theorem 1. Consider the bio-process (B1)t, where t is a well-formed transaction and

Act(B1) � �. Let Bn be the bio-process obtained by the finite transition sequence

(B1)t
�̃
��Bn where ft(�i) � 
t� for each �i � �̃ and Act(Bn) � �. Then (B1)t � S

�̃
��Bn � S ,

for each S with Act(S ) � �.
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Proof. Let consider (B1)t � S . By hypothesis Act(S ) � � and Act((B1)t) � 
t�. Then,

from the rule redex t, the actions involving (B1)t have the precedence over all the other

actions. In particular, as all the actions in �̃ are involved in the transaction t and S is

unblocked, the actions in �̃ have the precedence over all the others. As a consequence,

(B1)t
�̃
��Bn implies that (B1)t � S

�̃
��Bn � S . %&

Theorem 2. (Atomicity) Consider the bio-process B1, with Act(B1) � �. If there exists

a well-defined transaction t such that (B1)
�1

��B2 � b(B1)t with faction(�1) � t : start then

there exists a finite transition sequence B1

�1

��B2

�2

��B3

�3

��� � �
�(n�1)

����Bn, with faction(�n) � t :

end and ft(�i) � 
t� for each i � 1� ���� (n� 1).

Proof. The result follows directly from the definition of well-defined transactions and

from the operational semantics. %&

Theorem 3. (Serializability) Consider the transition sequence B
�̃
��B� with Act(B) �

Act(B�) � �. It is serialized.

Proof. The proof is by induction on the length n of the transition sequence B
�̃
��B�. There

are two cases.

1. If n � 1 then B
�
��B� and the theorem is vacuously satisfied.

2. If n 
 1 then B
�1

��B1

�2

��B2���B(n�1)

�n

��B�. If ft(�i) � � for i � 1� ���� n then the

condition is vacuously satisfied. Otherwise, let k be the first index for which

ft(�k) � �. If k 
 1 then by inductive hypothesis, the transition sequence B(k�1)

�̃�

��B�

with �̃� � �k�(k�1)����n is serialized. Also the transition sequence B
�̃��

��B(k�1) with

�̃�� � �1�2����(k�1) is serialized. Therefore B
�̃
��B� is serialized. Finally, if k � 1

then faction(�1) � t : start. Let k� be the first index greater than 1 such that

faction(�k�) � t : end. From item (iv) of Prop. 3, faction(�i) � t : � for i � 2� ���(k��1)

and therefore B
�̃
��B� is serialized. Similarly, the transition sequence �k��(k��1)����n is

serialized. Therefore B
�̃
��B� is serialized. %&

Note that the side conditions concerning transactions in the rule redex t are suÆcient

conditions to guarantee the properties above. If these conditions are not considered,

weaker properties are satisfied. In particular serializability is still valid, but Theorems 1

and 2 are not guaranteed any more.

6 Examples

In this section some examples are reported. They concern:

– a generic multiple-reactant multiple-product reaction;

– the phosphorylation of p53 by a protein kinase;
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– the citric acid cycle model, extracted from the KEGG (Kyoto Encyclopedia of

Genes and Genomes) database [24].

In the following examples we use the notation x and x̄ to indicate respectively the

input and the output of an empty message along the channel x.

6.1 Multiple-Reactant Multiple-Product Reactions

Consider a generic reaction R composed of Nr reactants, Np products and Nm modi-

fiers5, described by a basal rate r:

�1A1 � ��� � �nr
Anr

� M1 � ��� � Mnm

r
����

1B1 � ��� � ��
np

Bnp
� M1 � ��� � Mnm

The elements �i, ��
j

stand for the stoichiometric coeÆcients of the reactants and the

products, respectively. The total number of reactants is Nr �

nr

i�1
�i and the total num-

ber of products is Np �

np

i�1
��

i
, where nr and np are the number of distinct reactants

and products in the reaction, respectively. If we have Nr � Nm 
 2 or�and Np � Nm 
 2

the use of the TBlenX language allows us to overcome the problems we can meet if the

standard language is used (see Section 1). The following approach is suggested.

– If there is some further biological information about the reaction, we may decom-

pose it into elementary steps as it happens in reality.

– If further information is not available and elementary steps are unknown, we can

translate the reaction in the following way:

� 1 start event to block the bio-processes involved. The associated rate is the one

of the reaction.

� (Nr � Nm � 1) join events to merge the reactants and (Np � Nm � 1) split events

to get the products;

� 1 end event to unblock the product-bio-processes.

Globally we need (Nr � 2Nm � Np) events.

6.2 Phosphorylation of p53 at Serine 15 by Two Enzymes

The second example concerns a simple reaction from Kohn’s interaction map [25]. It

concerns the phosphorylation of the protein p53 at a given site, Ser15 (serine 15), by

one protein kinase, either DNA pk or ATM. We refer to the translation reported in [14],

based on the standard Beta-binders and we show how to represent it into TBlenX. In

[14] the phosphorylation is represented by the inter communication between the protein

p53 and one of the two kinases and the following hide of the site representing Ser15

un-phosphorylated (modeled by a beta binder with subject x) and the unhiding of the

site, representing Ser15 phosphorylated (modeled by a beta binder with subject x�). The

elementary biological reaction of phsphorylating a protein, is represented by a sequence

of three elementary actions. It would be desirable that these three actions were executed

5 With this term we indicate the species that remain constant in a reaction. For instance, enzymes

and inhibitors are modifiers.
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atomically to avoid the stop at intermediate steps. For this purpose we translate these

reactions into biological transactions. The three proteins may be specified as:

Bp53 � �(x��� 
UnPS 15�)�h(x���� 
PS 15�)B1[R�Q1]

BAT M � �(y��� �1)B2[!(ȳ)T2 �Q2]

BDNApk � �(z��� �2)B3[!(z̄)T3 �Q3]

where R � (x)T1 �(hide(x)��)T1�(unhide(x�)��)T1�Q4, T1 � 
tph1� tph2�, T2 � 
tph1� and

T3 � 
tph2� and Bi for i � 1� 2� 3, Qi for i � 1� 2� 3� 4 represent respectively the other

beta binders and pi-processes not involved in the reaction. The aÆnities between the

interaction types of the bio-processes representing the p53 and the two kinases are:

�(
UnPS 15�� �1) � (0� 0��) �(
UnPS 15�� �2) � (0� 0��)

therefore the inter-communications between the protein p53 and each of the kinase are

immediate.

Two start events are defined to specify the start of the two phosphorylations.

([1 " Bp53� 1 " BAT M] : tph1; rph1) start ([1 " (Bp53)tph1 � 1 " (BAT M)tph1])

([1 " Bp53� 1 " BDNApk] : tph2; rph2) start ([1 " (Bp53)tph2 � 1 " (BDNApk)tph2 ])

where rph1 and rph2 are the basal rates associated with the two biological interactions.

The end events to terminate the transactions are defined as:

([1 " (BP)tph1 : tph1];�) end ([1 " BP])

with BP � b�
h(x��� 
UnPS 15�)�(x���� 
PS 15�) B1[Q4�Q1] � BAT M and similarly for

the second end event, where BDNApk replaces BAT M.

A reduction of the system S � Bp53 � BAT M � BDNApk � S � is:

S
rph1�tph1:start��

����������� (Bp53 � BAT M)tph1 � BDNApk � S �

��tph1:I��

������� (�(x��� 
UnPS 15�)�h(x���� 
PS 15�)B1[(hide(x)��)T1�

(unhide(x�)��)T1�Q4�Q1] � BAT M)tph1 � BDNApk � S �

��tph1:h��

������� (�h(x��� 
UnPS 15�)�h(x���� 
PS 15�)B1[(hide(x�)��))T1 �Q4�Q1]

� BAT M)tph1 � BDNApk � S �

��tph1:u��

������� (�h(x��� 
UnPS 15�)�(x���� 
PS 15�)B1[Q4�Q1] � BAT M)tph1 �

BDNApk � S �

��tph1:end��

��������� BP � BDNApk � S �

Note that in TBlenX it is possible to represent the phosphorylation in an alternative

way. A unique beta binder can be used to represent the site involved in the phosphoryla-

tion (in our example Ser15) and the phosphorylation is abstracted by the action change.
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Initially the type of the site Ser15 is 
UnPS 15� (i.e. unphosphorylated). The e�ect of

the action is to replace the type 
UnPS 15� with the type 
PS 15�, representing the site

phosphorylated. The interaction capabilities of the bio-process are modified.

The new definition of the bio-process representing the protein p53 is:

B�
p53 � �(x��� 
UnPS 15�)B1[(x)T1 �(ch(x� 
PS 15�)��)T1�Q4�Q1]

The product of the phosphorylation is defined as:

B�
P � �(x��� 
PS 15�)B1[Q4�Q1]

The start and end events are modified in order to consider these new definitions of the

bio-processes representing p53.

A reduction of the system S 1 � B�
p53

� BAT M � BDNApk � S � is:

S 1

rph1�tph1:start��

����������� (B�
p53 � BAT M)tph1 � BDNApk � S �

��tph1:I��

������� (�(x��� 
UnPS 15�)B1[(ch(x� 
PS 15�)��)T1�Q4�Q1] � BAT M)tph1 �

BDNApk � S �

��tph1:c��

������� (�(x��� 
PS 15�)B1[Q4�Q1] � BAT M)tph1 � BDNApk � S �

��tph1:end��

��������� B�
P � BDNApk � S �

This approach is more intuitive than the previous one: a unique beta-binder is used to

represent the site Ser15 of the protein p53 and the phosphorylation is abstracted by the

change of the type (and therefore the interaction capabilities) of the beta-binder. Note

that the action change is peculiar of BlenX and it is not present in the original definition

of Beta-binders.

6.3 The Citric Acid Cycle

This model is taken from the KEGG metabolic pathway database [24,1]. It regards the

citric acid cycle, also known as the Krebs cycle or tricarboxylic acid cycle. This cycle

is a fundamental metabolic pathway involving enzymes essential for energy produc-

tion through aerobic respiration and is also an important source of biosynthetic build-

ing blocks used in other processes as for instance the amino acid and the fatty acid

biosyntheses.

The biological model. The model consists of a series of chemical reactions of central

importance in all living cells that involves a lot of proteins, molecules and enzymes.

The citric acid cycle takes place in mitochondria where it oxidizes Acetyl-CoA, derived

not only from glycolysis but also from the oxidation of fatty acids. An Acetyl-CoA

molecule enters the cycle interacting with Oxaloacetate to create Citrate, for which the

subsequent cycle of reactions is named. Acetyl-CoA is oxidized gradually by a chain of

reactions. Citrate serves as a substrate for a series of distinct enzyme-catalyzed reactions
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2−OXO−GLUTERATE

SUCCINATE

FUMERATE

S−MALATE

OXALOACETATE CITRATE

CoA

CIS−ACONITATE

ISOCITRATE

OXALOSUCCINATE

[aconitase]

[succinyl−dehydrogenase]

[2−Oxo−dehydrogenase]

[fumerase]

[succinyl−dehydrogenase]

[cytrate−synthase]

[aconitase]

[isocitrate dehydrogenase]

[isocitrate dehydrogenase]

SUCCINYL−CoA

   CoA

Acetyl−CoA

[succinyl−CoA−synthase]

Fig. 3. Schematic view of the Citric Acid Cycle

that occur in sequence and proceed with the formation of intermediate compounds,

including Succinate, Fumarate, and S-Malate. S-Malate is converted to Oxaloacetate,

which in turn reacts with yet another molecule of Acetyl-CoA, thus producing citric

acid and the cycle begins again.

As the cycle proceeds the intermediates are oxidized, transferring their energy to

create high-energy electrons in the form of NADH (reduced nicotinamide adenine din-

ucleotide) or FADH2 (reduced flavin adenine dinucleotide) and one molecule of ribonu-

cleotide GTP (guanosine triphosphate). NADH and FADH2 are coenzymes (molecules

that enable or enhance enzymes) that store energy and are passed to a membrane-bound

electron-transport chain to produce H20. The oxidation of the metabolic intermediates

of the pathway also releases two carbon dioxide molecules for each Acetyl-CoA that

enters the cycle, leaving the net carbons the same with each turn of the cycle. This car-

bon dioxide is the one of the sources of CO2 released into the atmosphere when you

breathe.

A schematic representation of the citric acid cycle is reported in Figure 3. Here only

the main reactions and species are reported. The species inside the square brackets are

the enzymes involved in the reactions, the others are the reactants and products of the

reactions in the cycle.

The translation of the model into TBlenX

Initial System. Each species is described by a bio-process with one beta binder repre-

senting the interaction capabilities of the element. For instance, the element citrate

is represented by the following bio-process:

BCitrate � �(xCitrate��� 
rCitrate�)[nil]



The BlenX Language with Biological Transactions 147

The only pi-process used is nil. Indeed the model gives a high level of abstraction

and for representing the reactions of the model we use only join and split events.

The other species are translated similarly. The initial system may be given by the

bio-processes representing the enzymes, Acetyl-CoA and Oxaloacetate:

S � BOxaloacetate � BAcetyl�Coa � BCS � BID � BA � BS D � B2HD � BS CS � BF

The enzymes are denoted by the initial of the names in capital letters. So, for in-

stance, the bio-process BCS represents the enzyme Citrate Synthase. For simplicity

we consider only an element for each species.

Reactions. Each reaction is rendered by a set of suitable join and split events. We con-

sider here biological transactions to represent each reaction atomically. The trans-

lation of the main reactions follows.

– The first kind of reaction is the enzymatic reaction with one reactant, one mod-

ifier and one product. It is translated by using a start event to block the bio-

process involved, followed by a join event and a split event. Finally, an end

event unblocks the bio-processes returning the final products. All the reactions

with the exception of two cases are of this kind. We show how to translate one,

the others are dealt with in the same way. We consider the reaction:

Fumerate � Fumerase
r1

��S-Malate � Fumerase

where r1 is the basal rate associated with the reaction. Fumarate undergoes a

hydration catalyzed by Fumarase to produce S-Malate. Let BFumerate, BF and

BS�Malate be the bio-processes representing Fumerate, Fumerase and S-Malate,

respectively. The start of the reaction blocks the element BFumerate and BF and

it is described by the event:

([1 " BFumerate� 1 " BF] : t1; r1) start ([1 " (BFumerate)
t1 � 1 " (BF)t1])

The name t1 indicates the transaction. One join event is used to represent the

formation of the intermediate element complex(Fumerate� F) described by the

bio-process Bc(Fumerate�F):

([1 " (BFumerate)t1 � 1 " (BF)t1 ];�) join ([1 " (Bc(Fumerate�F))
	t1
])

A split is used to get the products and it is described by:

([1 " (Bc(Fumerate�F))
	t1
];�) split ([1 " (BS�Malate)	t1
� 1 " (BF)	t1
])

Finally, the event end to unblock the elements is:

([1 " (BS�Malate)
	t1
� 1 " (BF)	t1
] : t1;�) end ([1 " BS�Malate� 1 " BF])�

– The second kind of reaction is described by two reactants, two products and

one modifier. In the model there is only one reaction of this kind and it is:

acetyl-CoA � Oxoloacitate �CS
r2

��CoA � Citrate �CS



148 F. Ciocchetta

where CS stands for for Citrate Synthase. Acetyl-CoA interacts with Oxaloac-

etate to form Citrate and CoA. The reaction is translated by using one start to

block the bio-processes representing the reactants and the modifier, two join

events to form the intermediate complexes, two split events to get the products

and one end to unblock the elements.

– The last kind of reaction is represented by:

Oxolossucinate � ID
r3

��2-Oxo-glutarate�CO2 � ID

where ID stands for Isocitrate Dehydrogenase. This enzyme catalyzes the re-

action from Oxalosuccinate to CO2 and 2-Oxo-glutarate. In this case it is nec-

essary to define a start event, followed by a join and two split events and finally

one end event.

Alternative approach. The translation of a biochemical network at a high level of

abstraction by using join and split events is intuitive, but it is not always the more

convenient approach. A major drawback is that a lot of events must be defined. In the

case of the citric acid cycle, we globally need 47 events: 11 start, 11 end, 12 join and

13 split events. An alternative way to represent biochemical reactions is to consider the

actions complex and decomplex instead of the events join and split. This possibility has

been introduced in the BlenX language. A discussion about the advantages of the use of

complex and decomplex actions is reported in [39].

In the following we report the main ideas about the translation of the citric acid

cycle by using this approach. Each biological element is represented by a bio-process.

Each bio-process is characterized by a beta binder, whose type indicates the interaction

capabilities of the element and, di�erently from before, pi-processes instead of events

describe the interactions between biological species. The events considered are only the

ones describing the start and the end of the transactions and one split for describing the

last kind of reaction.

We describe briefly how to translate each reaction of the citric acid cycle. The trans-

lation of the first kind of reactions is based on the following idea: the reactant forms a

complex with the enzyme and after that the reactant changes its interaction capabilities

(i.e. the type associated with the interaction site) and is transformed into the product.

Then we have the decomplexation of the product from the enzyme. A biological trans-

action is used to make the sequence atomic.

Consider in detail the reaction Fumerate � Fumerase
r1

��S-Malate � Fumerase. We

can specify the reactant (Fumerate) and the enzyme (Fumerase) in the following way:

B�
Fumerate � �(x��� �Fumerate)[(x̄)	t1
�(ch(x� �S-Malate)��)	t1
�PS-Malate]

B�
F � �(xF ��� �F)[PF]

where PS-Malate is the pi-process associated with the product S-Malate and

PF � PF1�!( f )	t1
�PF1 with PF1 � (xF � f̄ �nil)	t1
. We must define the aÆnities between

the interaction types in an appropriate way. Specifically we have:

�(�Fumerate� �F) � (�� 0��) �(�F � �S-Malate) � (0��� 0)
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In the first case the rates associated with the complexation and the inter-communication

are immediate and decomplexation is not possible, while in the latter case we have

that only decomplexation is possible and it is immediate. The start and the end of the

transaction t1 are defined as in the previous approach, but here we consider the new

definitions for the elements involved in the reaction. The reduction of the system S �

B�
Fumerate

� B�
F

is the following:

S
r1�t1:start��
�������� (B�

Fumerate � B�
F)t1

��t1:C��
������ (�(x��� �Fumerate)c[(x̄)	t1
�(ch(x� �S-Malate)��)	t1
�PS-Malate] �

�(xF ��� �F)c[PF])t1

��t1:Ic ��
������ (�(x��� �Fumerate)c[(ch(x� �S-Malate)��)	t1
�PS-Malate] �

�(xF ��� �F)c[( f̄ �nil)	t1
�!( f )	t1
�PF1])t1

��t1:c��
������ (�(x��� �S-Malate)

c[PS-Malate] � �(xF ��� �F)c[( f̄ �nil)	t1
�!( f )	t1
�PF1])t1

��t1:Dc��
������� (�(x��� �S-Malate)[PS-Malate] � �(xF ��� �F)[( f̄ �nil)	t1
�!( f )	t1
�PF1])t1

��t1:i��
������ (�(x��� �S-Malate)[PS-Malate] � �(xF ��� �F)[!( f )	t1
�PF1�PF1])t1

��t1:end��
�������� B�

S-Malate � B�
F

where B�
S-Malate

� (�(x��� �S-Malate)[PS-Malate] is the bio-process representing the S-

Malate.

With regards to the second kind of reaction, we follow a similar approach: we have a

first complex action between the two reactants (Acetyl-CoA and Oxoloacitate) and then

another complex action between one reactant and the enzyme (CS). After complexation,

the two reactants change the interaction capabilities and become products (CoA and

Citrate). A start event is used to block the elements involved in the reaction and one end

is used to unblock them after the execution of the intermediate steps.

The last kind of reaction is translated similarly. We have one complex action between

the reactant and the enzyme followed by a decomplexation to obtain the enzyme and the

complex of the two products. Finally, a split event is necessary to get the two products.

7 Discussion and Conclusion

The BlenX language is a formalism recently defined for the modelling and analysis of

biological systems. One drawback of this language is the modelling of multiple-reactant

multiple-product reactions. Indeed, in order to describe this kind of reactions into this

language we should decompose them into binary elementary reactions. Generally, there

are di�erent ways to decompose a reaction and it is not possible to say what is the

most appropriate solution. Furthermore, by considering this approach the reaction could

stop at intermediate steps leading to a deadlock. This may happen for instance when a

reactant involved in the reaction is missing. Last but not least, the dynamics of the

reaction is given in terms of a global rate and, therefore, there is the problem of how to

find the rates for the elementary steps in which the reaction may be decomposed.
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The aim of this work is to extend BlenX in order to model a sequence of actions

representing complex reactions as if it were atomic and therefore to represent complex

reactions with more than two reactants or more than two products in a suitable way

with binary interactions. At this purpose we extended BlenX with biological transac-

tions. The extension with biological transactions presented in this paper matches these

specifications, as explained in the following items.

– In this extension reactions are decomposed into elementary steps. However in this

case the order is not important, as the interactions involving the elementary reac-

tions are internal to the transactions. The relevant actions are the start and the end

of the transactions, the other ones are only auxiliary.

– From the definition of biological transactions given in this paper, it follows that

when the transaction starts it completes. Therefore it is not possible that a reaction

stops at intermediate steps.

– The global rate of the reaction is associated to the start action. In this way the actual

rate of the reactions depends on all the reactants involved.The other actions follow

as immediate and it is not necessary to find a rate for each elementary step.

From the observations above it is clear that TBlenX is useful to deal with complex

reactions whose details are unknown.

Some final observations concern the use of Gillespie’s algorithm and the kind of rate.

Firstly, in this work we used the Gillespie’s method as the reference stochastic algo-

rithm. We referred to the extended version that considers reactions with more than two

reactants, widely used in the simulation tools. Obviously, other stochastic algorithms

could be considered as well.

Secondly, we assumed for simplicity that the kinetics associated with a reaction is

always expressed through the mass-action law and we can associated each action with

a constant basal rate. However, when complex reactions are considered the dynamics of

the reaction may be described by more complex laws than the well-know mass-action.

The application of the Gillespie’s algorithm to these complex kinetic laws has been

recently discussed and formalized [36,10]. These approaches are approximations and

are based on some assumptions. The BlenX language supports the definition of general

kinetic laws in terms of rate functions (see [19]). These are used to calculate the actual

rate of the associated reaction. The addition of general kinetic laws to our extension is

straightforward and it is similar to the case of mass-action proposed here. Specifically

we can associate the rate function with the start action and consider it in the derivation

of the actual rate.

Finally, we recall that this transaction mechanism is under implementation in the

Beta Workbench [2].
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