

A Multi-Layered Technique for Fileless Malware
Detection and Mitigation

By

Osama Usmani

A thesis submitted to the faculty of Information Security Department, Military College

of Signals, National University of Sciences and Technology, Rawalpindi in partial

fulfilment of the requirements for the degree of MS in Information Security

 January 2022

THESIS ACCEPTANCE CERTIFICATE

 Certified that final copy of MS/MPhil thesis written by MrOsama

Usmani,Registration No. 000000317936, of Military College of Signals has been vetted

by undersigned, found complete in all respect as per NUST Statutes/Regulations, is free of

plagiarism, errors and mistakes and is accepted as partial, fulfillment for award of

MS/MPhil degree. It is further certified that necessary amendments as pointed out by GEC

members of the student have been also incorporated in the said thesis.

 Signature: ____________________________________

Name of Supervisor Assoc Porf Dr M Faisal Amjad

Date: __

Signature (HoD): ______________________________

Date: _______________________________________

Signature (Dean/Principal): ________________________

Date: ___

Declaration

I hereby declare that no portion of work presented in this thesis has been submitted in

support of another award or qualification either at this institution or elsewhere

i

Dedication

“In the name of Allah, the most Beneficent, the most Merciful"

I dedicate this thesis to my mother, sister, and teachers who supported me each step of

the way.

ii

Acknowledgements

I am extremely thankful to ALLAH Almighty for his bountiful blessings throughout

this work. Indeed, this would not have been possible without his substantial guidance

through every step, and for putting me across people who could drive me though this

works in a superlative manner. Indeed, none be worthy of praise but the Almighty. In

addition, my admirations be upon Prophet Hazrat Muhammad (PBUH) and his Holy

Household for being source of guidance for people.

I would like to express my special thanks to my supervisor Assoc. Prof Dr. Muhammad

Faisal Amjadfor hisgenerous help throughout my thesis, for being available even for the

pettiest of issues. The sense of belief that he instilled in me has helped me sail through

this journey. My thanks for a meticulous evaluation of the thesis, and guidance on how

to improve it in the best way.

Last, but not the least, I am highly thankful to my parents. They have always stood by

my dreams and aspirations and have been a great source of inspiration for me. I would

like to thank them for all their care, love, and support through my times of stress and

excitement.

iii

Abstract

Anti-Viruses are programmed to detect and mitigate any suspicious program from the

computer system by effective scanning of files system. Attackers are also using

specially crafted techniques to breach a computer system. In fileless attack, the attacker

load and execute malicious code directly into the system memory without effecting any

file on the computer system. By this they also gain persistence within the computer

system. Fileless malware are deadliest in nature as their detection is not quite easy.

Fileless malware can be of multiple components or part. Even the first part cannot be

malicious, but the reaming’s can be. Traditionally signature-based analysis techniques

are employed by different anti viruses to counter such threats. Fileless malware can

evade antiviruses techniques this poses a serious threat to individual or organization.

Thus, to detect and mitigate the fileless malware a three-layered based technique is

proposed in this research along with the experiment, result, and evaluation.

iv

Table of Content

Dedication .. i

Acknowledgements .. ii

Abstract ... iii

List of Figure .. vii

List of Tables .. viii

Acronyms ... ix

Introduction .. 1

1.1 Background ... 1

1.2 Types of Windows Malwares ... 2

1.2.1 Virus .. 2

1.2.2 Worm .. 3

1.2.3 Trojan Horse ... 3

1.2.4 Bot ... 3

1.2.5 RootKit .. 3

1.2.6 Scareware .. 4

1.2.7 Spyware... 4

1.2.8 Ransomware .. 4

1.2.9 Backdoor ... 4

1.2.10 Keyloggers .. 5

1.2.11 Rogue Security Software .. 5

1.2.12 Browser Hijackers ... 5

1.3 Malware Creators ... 5

1.4 Malware Propagation ... 6

1.4.1. Code Obfuscation .. 6

1.4.2. Code Encryption ... 7

1.4.3. Oligomorphic Strategy .. 7

v

1.4.4. Polymorphic Strategy .. 7

1.4.5. Metamorphic Strategy ... 8

1.5 Malware Symptoms/Sign.. 8

1.6 Preliminaries of Fileless Malware ... 9

1.6.1 PowerShell .. 9

1.6.2 Fileless Malware and its Working .. 9

1.6.3 Fileless vs File-Based Malware .. 12

1.6.4 Fileless Malware Detection ... 14

1.6.5 Static Analysis Vs Dynamic Analysis of Fileless Malware .. 14

1.7 Problem Statement.. 15

1.8 Objectives... 16

1.9 Thesis Outline .. 16

Literature Review .. 18

2.1 Literature Review ... 18

2.2 Critical Review .. 22

2.2.1 Used Analysis Type .. 23

2.2.2 Used Analysis Technique.. 23

2.2.3 Proposed Technique Results ... 23

2.2.4 Layered Wise Technique .. 23

Proposed Methodology .. 28

3.1 Three Layered Architecture of Proposed Technique .. 28

3.1.1 Layer I – Running Process’s Analysis .. 28

3.1.2 Layer II – PowerShell Analysis .. 31

3.1.3 Layer III – Run Time Processes API Analysis ... 33

3.2 Interconnected Layered Wise Behavior Analysis ... 35

Proposed Technique Design and Implementation .. 37

4.1 Overview .. 37

4.2 Architecture ... 39

vi

4.2.1 Layer I (Processes Watcher) ... 40

4.2.2 Layer II (PowerShell Analyzer) .. 47

4.2.3 Layer III (Memory Hooking/APIs Calls Monitoring) .. 55

4.2.4 Interconnected Layer Automation .. 60

4.2.5 GUI Presentation ... 60

5.1 Experiment Design .. 63

5.2 False Positive Result Analysis .. 65

5.3 False Negative Result Analysis .. 66

5.4 Detected Samples Classification .. 66

Conclusion and Future Directions .. 67

Bibliography ... 69

vii

List of Figure

FIGURE 1.1: EXAMPLE OF FILELESS MALWARE ATTACK ... 11
FIGURE 1.2: SODINOKIBI FILELESS MALWARE PROCESS CHAIN BEFORE ACTUAL PAYLOAD 12
FIGURE 1.3: FIRST PAYLOAD DOWNLOAD AND EXECUTION OF RAMNIT BANKING TROJAN 12
FIGURE 1.4: SECOND PAYLOAD DOWNLOAD AND EXECUTION OF RAMNIT BANKING TROJAN 13
FIGURE 3.1: ARCHITECTURAL DIAGRAM OF PROPOSED MULTILAYERED FILELESS MALWARE DETECTION

SYSTEM .. 29
FIGURE 4.1: PROCESS PARENT CHILD RELATION AND NEW PROCESS CREATION 42
FIGURE 4.2: PERIODIC FUNCTION TO USE TO TAKE SNAPSHOT OF MEMORY.. 43
FIGURE 4.4: FUNCTION TO LOOKUP FOR THE PARENT PROCESS AND FIND OUT THE RELATIONSHIP BETWEEN

THEM. ... 44
FIGURE 4.5: ALERT FUNCTION TO ALERT THE OTHER LAYERS THAT A SUSPICIOUS CHAIN IS FOUND 45
FIGURE 4.6: NOTPETYA RANSOMWARE NOTE WHICH DISPLAYED ON VICTIM MACHINE 50
FIGURE 4.7: POWERSHELL COMMAND TO INVOKE (DOWNLOAD) MIMIKATZ TO DUMP OS CREDENTIALS 50
FIGURE 4.8: FUNCTION TO GENERATE LOGS FILE OF EACH RUNNING POWERSHELL PROCESS 52
FIGURE 4.10: REGEX EXAMPLE OF MALICIOUS POWERSHELL COMMANDS ... 54
FIGURE 4.11: FILTERCOMMANDS FUNCTION TO PARSE AND LOCATE ANY MALICIOUS COMMANDS IF

EXECUTED BY ANY OF THE POWERSHELL PROCESS .. 55
FIGURE 4.12: HOOKING API CALLS USING DLL INJECTION ... 57
FIGURE 4.12: SIMPLE DLL INJECTION INTO MEMORY OF ANOTHER PROCESS ... 58
FIGURE 4.13: HOOKING PROCESS INTO SUSPECTED RUNNING PROCESS ON WINDOWS 59
FIGURE 4.14: LIST OF POSSIBLE API CALLS IN XML FORMAT WHICH CAN BE ABUSED BY ANY MALICIOUS

PROGRAM ... 60
FIGURE 4.15: AUTHENTICATION SCREEN BEFORE LOGGING INTO THE DASHBOARD 61
FIGURE 4.16: OPTIONS AVAILABLE IN DASHBOARD MENU.. 61
FIGURE 4.17: STATISTICS FOR DASHBOARD ... 62
FIGURE 5.1: CLASSIFICATION OF SAMPLES DATASET INTO MALWARE CATEGORIES 66

viii

List of Tables

TABLE 1.1: COMPARISON BETWEEN FILELESS MALWARE AND FILE BASED MALWARE 13
TABLE 1.2 : STATIC AND DYNAMIC ANALYSIS OF FILELESS MALWARE ... 13
TABLE 3.1: NOTATIONS LIST USED IN ALGORITHMS .. 31
TABLE 3.2: POWERSHELL EXAMPLE COMMANDS ABUSED BY MALWARE FOR FILELESS ATTACKS 33
TABLE 3.3: EXAMPLE OF WINDOWS BUILT-IN FUNCTIONS OR API CALLS ABUSED BY MALWARE FOR

FILELESS ATTACK .. 34
TABLE 5.1: DATASET OF EXPERIMENTAL EVALUATION ... 63
TABLE 5.2: PERFORMANCE EVALUATION AND RESOURCE UTILIZATION ON TEST MACHINE 64
TABLE 5.3: RESULTS OF TESTED DATASETS .. 65

ix

Acronyms

Extensible Markup Language XML

JavaScript Object Notation JSON

Application Program Interface API

Dynamic Link Library DLL

Operating System OS

Windows Sub Subsystem WOW64

Monero XMR

Uniform Resource Locator URL

Antivirus AV

Hypertext Markup Language HTML

Windows Management Instrumentation WMI

1

Chapter 1

Introduction

1.1 Background

Malware is any malicious program written on purpose to cause damage to the digital

devices or its users. With the wide usage of internet and its expansion in terms of

utilization, it begins to provide more options to adversaries with ease to propagate their

malicious intentions around globe. The first malware “Creeper Worm” was created for

experimental purpose that replicate itself to remotely connected systems running on

TENEX Operating System [1]. Later the development of modern operating system

brings more opportunities for adversaries to utilize vulnerabilities and available options

to gain commercial, political, and self-merriment gains. So, to overcome the effects of

malware, Anti Malware solutions are developed to detect and remove malware from

compute systems.

Modern programming languages and feature-rich libraries helps in growth of more

sophisticated malwares. As technologies evolve to counter malware problem,

adversaries keep improving their lethal techniques from file-based malware to

diversified fileless malware. Fileless technique don’t use files system to store any

malicious executable on system instead they completely reside on system’s volatile

memory to perform malicious execution [2]. As no file is stored by malware on the

system, signature-based technique will eventually fail to detect these malwares. When

there is no detection, the impact will be fatal for business and sensitive organizations

[3].

When a system gets compromised with any type of malware the first thing the anti-

malware solution does is to analyze the file to check the suspected file either it is

marked as malicious in its signatures databases or not. A hash of file is stored in

database, which is maintained by anti-malware solutions to quickly identify the

malware and block them immediately before malware perform its execution.

Furthermore, the forensic expert can look up the file systems for any unknown

2

suspected file and analyze it and mark it as malicious program for future automated

detection. However, this is not the case of fileless malware as they abuse the operating

system trusted software/tools aka LOLBins (Living of the Land Binaries) to perform the

malicious execution. Adversaries can also use the known and known vulnerabilities

within the trusted software, including Microsoft Macros and PowerShell. These

software/tools help malware to directly load itself into memory without touching the

system drives [4]. Fileless malware have no limitation to what type of specific attack

they can perform. The attack can be of multiple type like reconnaissance, persistent and

theft of data. PowerShell is used for wide number of fileless attack due to number of

reasons like it is installed by default on every system, trusted by system administrators,

easy to obfuscate the script, and attackers can easily exploit it to use it remotely. [5]

The usage of fileless attack is increasing day by day as its detection is not easy for

standard anti-malware solution. According to WatchGuard’s Security report there has

been 900% increase in usage of fileless malware in 2020 as compared to 2019 [6]. This

is due to the sophisticated working of fileless malware and easily to harden the generic

malware detection. Adversaries leverage the fileless behavior of malware and targeting

users and organization’s assets behind ordinary network defenses. The fileless threats

are very dangerous because of their ability to evade antimalware protection systems.

The fileless attack can be crafted by using the freely available tools like Metasploit

Framework that can help to easily inject the malicious code into any legitimate running

process [7].

1.2 Types of Windows Malwares

Malware is classified into several forms, including viruses, worms, Trojan horses,

spammers, rootkits, bloatware, scareware, spyware, ransomware, backdoors, key

loggers, rogue antivirus software, and browser hijackers. Each type of malware has its

own purpose and intentions which can be used for fun purposes to serious threats like

leakage of private data, personal data or destruction of data or some ransom payment.

Some of the types are defined below.

1.2.1 Virus

3

Viruses are a sort of computer programme that, when executed, reproduce itself by

altering the code of other computer programmes and inserting its own code. The

afflicted regions are referred to as being "infected" with a computer virus if the

reproduction process is successful, a term that is taken from the term "infected" with a

biological virus.

1.2.2 Worm

A computer worm is a solitary malicious computer software that copies itself in order to

propagate to other systems. It often spreads over a computer network, depending on

security flaws on the target machine to gain access to the network. It will utilize this

computer as a host in order to scan and infect other machines.

1.2.3 Trojan Horse

A Trojan horse, often known as a Trojan, is a sort of malicious malware or software that

seems to be genuine but has the capability of taking ownership of your computer

network. A Trojan horse is a computer programme that is meant to injure, disturb, steal,

or otherwise cause harm to your data or network in some way. Once a Trojan has been

deployed, it is capable of doing the activity for which it was created.

1.2.4 Bot

Bots are computer programs that are meant to conduct specified actions autonomously

and may be managed from a distance. Botnets are a unique kind of bot that may be

deployed in channels to launch denial - of - service. Bots may very well be employed as

spambots, which can generate adverts on websites and harm server data, as web

crawlers, and in other ways. In order to prevent bots from accessing the website,

CAPTCHA tests are used to confirm that the visitors are human.

1.2.5 RootKit

An example of malicious computer software is a rootkit, which is a set of computer

programs built to grant unauthorized access to computer systems or a portion of its

software that is not otherwise accessible. Rootkits are also used to conceal their own

4

presence and the presence of other application. It is a combination of the words "root"

and "kit" that is used to refer to a computer virus.

1.2.6 Scareware

A kind of software scam method known as scareware use pop-up warning messages and

other social engineering techniques to terrify you towards subscribing for bogus

cybersecurity protection that is masquerading as legitimate cybersecurity protection.

Fearware may be ineffective bloatware that is generally innocuous, or it may be

malicious spyware in the worst situations.

1.2.7 Spyware

A computer program that Spies on users' activities and collects private information such

as frequently visited URLs, account records (bank details), e - mail address, customer

data (including fingerprints), as well as many other pieces of data. It infiltrates a

computer when inexpensive and possibly hazardous software is downloaded and

installed without the individual's consent or authorization.

1.2.8 Ransomware

Malicious software known as ransomware is meant to encrypt and make data and the

systems that depend on them useless once they have been encrypting and making them

useless Then, in return for decryption, malicious actors demand a ransom payment.

When a computer is infected with ransomware, users will be unable to access their data

unless a ransom is paid to the perpetrators. The existence of ransomware versions has

been detected for many years, and they often seek to squeeze every penny from

individuals by showing an on-screen warning.

1.2.9 Backdoor

A backdoor is a means of circumventing regular security or protection in a system,

commodity, attached to a surface, and its incarnation that is generally clandestine in its

operation. For the most part, backdoors are employed to protect unauthorized computer

access or to get access to unencrypted in cryptosystems.

5

1.2.10 Keyloggers

Typically performed secretly, keystroke logging (also known as stealing personal

information or keyboard recording) is the act of collecting the buttons hit on a keypad

in such a way that a person that use the computer is uninformed knowing their activities

are indeed being recorded. The information may then be obtained by the person in

charge of the monitoring software.

1.2.11 Rogue Security Software

When users are misled into believing they have a virus on their computer, malicious

code and internet scams are used to trick people into paying for a bogus antimalware

tool that truly installs computer viruses on their desktop. Nefarious security software is

a category of malicious programs and internet scams that is used to trick consumers into

believing they have a viral infection on their computer and persuade people to charge

for a bogus malware protection tool that installs malicious files on their own computer.

1.2.12 Browser Hijackers

Another example of harmful software is web hijacker, which alters the behavior,

configuration, and look of a browser without any of the customer's knowledge or

permission. When a compromised browser is used to generate money from advertisers

for something like the hijacker, all of that may also be used to assist additional harmful

actions including such information gathering and keyboard recording.

1.3 Malware Creators

Individuals or groups that generate viruses are referred to as vandals, extortionists, scam

artists, computer hackers, and scammers, among other terms. In order to generate

income in an unlawful way, the majority of harmful programmes are created. To keep

from being bored and to get more notoriety, vigilantes in the past used to write

malicious software. In subsequent years, virus was used for illicit objectives such as

stealing financial data, personally identifiable information, eavesdropping, damaging

secret data, and a wide range of other criminal actions, among other things. Malware

authors may be found both inside and outside of companies. Employee or a trustworthy

6

programmer from the inside of a company who can incorporate harmful malware inside

programs prior to launch to the public is referred to as an insider attack. An existential

threat refers to any other individuals or organizations who may attempt to introduce

harmful code into a product after it has been made available.

1.4 Malware Propagation

Malware may infiltrate a computer or smartphone in some kind of a variety of methods,

including malicious e - mail attachments, document sharing, text messaging, through

use of third-party applications while networking sites, through use of pirated software,

as well as the usage of USB and certain other removable media. Virus may cause

significant damage towards the system's system partition, application program, file

systems, as well as the systems BIOS once it has gained access to the network. This

results in the scheme behaving abnormally. Everyone involved in the creation of virus

has one primary goal: to get their infection onto as numerous computers or mobile

phones as they possibly can. Both media manipulation and attacking a computer

without the patient's awareness are methods of accomplishing this goal. These

techniques are frequently used in conjunction with one another, and they frequently

contain operations designed to circumvent antivirus applications that have been placed

just on machine being compromised.

Malware authors use camouflage tactics to prevent getting identified by anti-malware

solutions. As nothing more than a consequence of such camouflage tactics, some virus

changes its behavior for each dissemination and transmissions cycle. Some virus

encrypts themself as well as their harmful operations, making it harder to recover

unique signatures to be used in malware management and mitigation. A couple of

hiding tactics are described in further detail hereunder.

1.4.1. Code Obfuscation

Obfuscation is the purposeful process of writing code or machine code that is hard to

decipher for people in the field of software development. It may utilize excessively

convoluted phrases to create statements, similar to how obfuscate is used in human

language.Programmers are using this methodology to conceal their ransomware from

fingerprint detection methods by taking certain actions such as adding extra jumps,

7

resurrected implantation, use of garbage commands, register gender transition, guidance

replacement, subprogram reshuffling, code assimilation, and code interoperability.

1.4.2. Code Encryption

General terms, encryption refers to the process of transforming information into

something like a hidden message that conceals the real meaning of the material being

encrypted. When it comes to computers, plaintext refers to unencrypted data, whereas

ciphertext refers to encrypted information. Security mechanisms, often known as

cyphers, are formulae that are used to encrypt and decrypt communications. Essentially,

this is a protective system that encodes viruses or their destructive operations by

utilising an encryption method and a unique encryption key combination. It duplicates

on its own and makes and builds a new encrypted connection of the virus, which

contains a data encryption as well as a new password, while it is in the process of being

executed. As a result, even though the encrypted key as well as the encoded code are

constantly changing, they may still be recognized due to the inflexible deciphering

technique.

1.4.3. Oligomorphic Strategy

Typically, a piece of malware will employ an oligomorphic program to produce a

decrypt or for itself within manner very similar to the generation of a basic parametric

code on its own. As little more than a protective measure, this technique encrypts virus,

but it utilizes a different hacking tool for each iteration of ransomware in order to

distinguish between the two. Each virus programme maintains a collection of

decryptors, from which a spontaneous decryptor is picked for use in decrypting the

virus's messages.

1.4.4. Polymorphic Strategy

Polymorphic malware is a computer virus which alters the distinguishing characteristics

on something like a constant basis to evade suspicion. Compared to other systems

approaches entail altering identifying properties such as config files and classifications,

as well as encryption keys, on a regular basis to render virus unidentifiable to several

different scanning tools. This method allows for the generation of millions of

8

decryptors by modifying the instruction in the next edition of the virus to circumvent

handwriting detection. Every time the virus is executed, a new decryptor is constructed

and combined with the encoded virus payload to establish a new variation of the virus

that is unique to that execution. A vast number of different decryptors may be

developed, however signature-based techniques still can detect infection by recognizing

the initial version using an emulated version of the virus.

1.4.5. Metamorphic Strategy

Metamorphic malware and parametric malware are 2 kinds of harmful software

applications (viruses) that will have the capacity to modify their programming as they

spread through a computer network or the Internet. Metamorphic malware is virus that

is rebuilt with each repetition, resulting for each subsequent copy of the code being

distinct from of the previous one. Metamorphic virus transforms itself into a whole

different entity from the initial version it was based on. Rather than establishing a new

code in this case, a new sample or bodies is produced without affecting the activities of

the existing one. As a result, the virus does not include a programming engine, and

updates to the virus code are made on a consistent basis with each delivery.

1.5 Malware Symptoms/Sign

These methods by which virus spreads and infects a computer can change, however the

indications that it causes seem to be the same. Any of the symptoms listed may appear

on a computer that has been infected with malware are following

• The program's capabilities have been turned off.

• The user's computing power is too sluggish.

• Issues with the web browser's performance.

• Broadband connection issues.

• Everything seems to be entirely normal.

• Pop-up advertisements begin to appear indiscriminately.

9

• Your browser is constantly being diverted.

• Articles from an unknown source appear on your social media pages.

• Your will be subjected to extortion requests.

• Processor use has risen.

• A frightening message is sent by an unidentified application.

• Manifestation of unusual applications, files, or symbol appearances.

• Programmes that are now executing, quitting, or configuring themself System

freezing or crashing is a common problem.

• Files are automatically modified or deleted without the user's knowledge.

• Emails and messages are delivered regularly without user's knowledge.

1.6 Preliminaries of Fileless Malware

In this section, detailed concepts related to malware and fileless based malware are

presented.

1.6.1 PowerShell

Powershell An object-oriented, strongly typed scripting language is used by

PowerShell, which is an organizational computing tool. As a consequence of

Microsoft's open source strategy, it is becoming more popular. As a result of the fact

that PowerShell is pre-installed on the majority of operating systems [8], attackers have

discovered the benefits of using it as an attack vector. In addition, since it can run/inject

the process's DLL(Dynamic Link library) straight in memory, it has full access to

sensitive system functions and may be managed completely by fileless malware

PowerShell, on the other hand, is designed to be dynamic, and it is capable of creating

script components at several degrees of sophistication. It is most likely because

PowerShell is pre-installed on each and every Windows-based device that fileless

10

malware uses it the majority of the time. Understanding, writing, encoding, and

encrypting PowerShell scripts is straightforward, but detecting and decrypting them is

more challenging.

• PowerShell is a command-line tool that is mostly used for administrative tasks

[9]hence it is not often utilised for everyday tasks.

• For this reason, malware attackers like PowerShell since it allows them to grant

remote access to their victims

1.6.2 Fileless Malware and its Working

Fileless malware works completely in stealth mode due to which its detection is quite

impossible. The malware completely residue in the memory component and perform its

task from there by avoiding the AV detection. There can be various steps before fileless

malware infect the system [10].

• Case 1: Fileless malware can be initialized into a system via spear phishing

technique, then a highly encoded/encrypted file (.js, .zip etc.) can start the

PowerShell process in the background without user’s knowledge, which later

download the actual malware form the remote address or decode any malicious

code from the previous stage and then load directly into system memory without

touching the file system [11].

• Case 2: An encoded script can be embedded along with the trusted Windows OS

Software files, like .pdf, .pptx, .doc, .docx. The files do not contain any malicious

code at this point thus they can bypass any AV detection. Upon opening these

legitimate looks alike files, a background process of PowerShell is run in stealth

mode. This PowerShell process will then download the actual malware from any

remoteaddress and load the actual malware directly into the system memory

where the malware executes it malicious task [12].

• Case 3: PowerShell can be run from chrome.exe by using one of its exploits,

when a user visits a website, an exploit is called by the attacker, which then open

11

a PowerShell process on user machine in stealth mode, which then execute any

malicious activity into the target system [13][14].

• Case 4: A PowerShell script file (.ps1) can be used directly for malicious

purposes. A .ps1 file shared spear phishing technique. Upon opening it will be

executed within a minute and perform its malicious activity e.g., ransomware

attack, reverse TCP attack. In this case there might be no other child process as all

activity is done using PowerShell process [15].

Fileless malware attacks are mostly employed for large scale attack for bigger

organization. Though it can target single device or single user too [16]. The persistence

mechanism can also be performed by attacker by combing other techniques of

persistence using windows registry system. The example attack kill chain for fileless

malware attack is shown in Figure 1.1.

Figure 1.1: Example of Fileless Malware Attack

The process’s chain for one of the known fileless malware attack (Sodinokibi: The

Crown Prince of Ransomware:) is shown in Figure 1.2. This is a ransomware attack that

hides its actual malicious infection using different techniques and deliver the actual

malicious payload after executing the power shell process. One another Fileless malware

attack known as Ramnit Banking Trojan, which is used to mine banking credential from

12

different resources by paring with many other file-based malware technique. Both stages

of this malware are illustrated in Figure 1.3 and Figure 1.4.

Figure 1.2: Sodinokibi Fileless Malware Process Chain Before Actual Payload

One another Fileless malware attack known as Ramnit Banking Trojan, which is used to

mine banking credential from different resources by paring with many other file-based

malware technique. Both stages of this malware are illustrated in Figure III and Figure

IV.

Figure 1.3: First Payload Download and Execution of Ramnit Banking Trojan

1.6.3 Fileless vs File-Based Malware

File based malware mostly lay their fingerprints on the system’s storage device thus the

corresponding file hash can easily find by any antivirus system (AV). If similar hash is

considered as a malware on the AV signature database, it can be easily detected thus

removed completely from system by AV. But on the other hand, the fileless malware

utilizes the pre-installed non-malicious apps/executables to infect the system, it

13

becomes hard for AV to detect such malware as AV considered the malware as

legitimate software running on the system [17].

Figure 1.4: Second Payload Download and Execution of Ramnit Banking Trojan

Table 1.1: Comparison Between Fileless malware and File based Malware

Factors Fileless File-Based

Executeable Not Available Available

Malicious File No Yes

Complexity Very High Moderate

Detection Rate Very Low Moderate

Infection Loder’s
Trusted windows OS

executeables
All available executable files

Persistence Yes
Possible by paring with other non-

fileless technique

Signature Analysis Not Possible Yes (As .exe is available)

14

AV Detection Not Possible Yes

Footprints Very Low High

Detection Method Dynamic Only Hybrid (Static and Dynamic)

Category
All (Ransomware,

Trojans, Keyloggers)

All (Ransomware, Trojans,

Keyloggers)

1.6.4 Fileless Malware Detection

As fileless malware are memory resident malware it nearly impossible to detect them.

To detect fileless malware the anti-solutions need to dive deep into the system resources.

The static malware analysis is not going to work in case for files malware as it has very

minimum interaction with file system thus dynamic analysis is required along with

behaviors-based analysis to detect the fileless malware from its root [18]. The detailed

analysis of available literature along with their critical analysis and why there is still

need of some improvements to detect a fileless malware completely are discussed in

Section III.

1.6.5 Static Analysis Vs Dynamic Analysis of Fileless Malware

The static analysis is analyzing any possible malware executable without running it. This

may include examining of the file using different tools. These tools can perform static

analysis like string analysis of the executable or any other pattern recognition of

malicious code samples [19].

The Dynamic analysis is done after running the malware on the system then looking up

for the possible signature to consider it as malware.[20] The dynamic malware analysis

can be risky as it can immediately affect any computer system after execution. Thus,

most of the dynamic analysis is performed in virtual environment so malware cannot

spread to network through any slip space [21].

15

The fileless malware can be of multiple components, it one part will be look alike a

legitimate code but other components which are not yet available on the system can be

malicious [22]. For example, AV scan the available part of the fileless malware which is

not malicious then after some time the first non-malicious part can down the actual

payload from remote address. This behavior of fileless malware can be avoided from

static analysis even dynamic analysis can be bypassed, after using literal execution

mechanism using timers. Therefore, a need of dynamically behavioral analysis of system

and its resources is necessary to detect fileless malware.

Table 1.2: Static and Dynamic Analysis of Fileless Malware

Factors Static Dynamic

Time Minimum More (More Clock)

Resources Consumption Less Medium

Detection Rate Very Low Moderate

Obfuscation Detection True False

Code Execution Yes No

Detection Accuracy Least to Zero
High Detection by Deep

Behavioral Analysis

1.7 Problem Statement

Fileless malware attack are increasing day by day and their detection is very limited.

The previous proposed techniques lack the ability to detect and mitigate the multistage

16

fileless malware. Most of the previous proposed research’s only work via single layered

solution, which can be easily evaded via latest malware. With the digital transformation

businesses, organizations and critical infrastructure are at huge risk of becoming target

of such attacks, which standard solutions failed to detect and mitigate. Thus, to make

defensive against such attacks it requires an evolving solution which can use a multi

layered and integrated techniques that monitors entire life cycle of malwares to and

behaviors of system and to detect, correlate and mitigate them.

There has been huge increase in fileless attack over the past decade. According to

Trend Micro report malware attacks using fileless techniques has been increase by

265% in 2019 only. There is also significant increase in ransomware attacks by 42.98%

along with data theft attacks by 319%, these all attacks use fileless techniques. Now a

day’s attacker performs intentional, specially crafted and targeted attacks that take

advantages of the targeted system resources. With the digital transformation businesses,

organizations and critical infrastructure are at huge risk of becoming target of such

attacks, which standard antiviruses failed to detect and mitigate. Thus, to defend such

attacks it requires an evolving solution which can use advance multi layered and

integrated techniques that monitors entire life cycle of malwares to detect, correlate and

mitigate them.

1.8 Objectives

Following are the objectives of this research.

1. To design a monitoring system capable of detecting malicious

behaviour of running processes on machine.

2. To monitor any process suspicious behavior or activity that matches

the fileless attack’s techniques.

3. To design a fileless attack detection and mitigation technique.

1.9 Thesis Outline

17

• Chapter 1: Chapter 1 focusesonFileless malware basic knowledge, their stages

and related issue and background study.

• Chapter 2: Chapter 2 focuses on detailed analysis of fileless malware and related

concepts, its malicious architectures, differences with traditional malware and

challenges are presented in Section II.

• Chapter 3: Chapter 3 focuses on the extensive study of literature review and

critical analysis of available proposed techniques in the study is presented.

• Chapter 4: Chapter 4 focuses on proposed methodology which is an end to end

and a multilayered technique and detailed modular approach for fileless malware

detection and mitigation.

• Chapter 5: Chapter 5 focuses on the results and effectiveness of the proposed

techniques which is calculated via testing the technique with various malware

samples and datasets.

• Chapter 6: Chapter 6 focuses on the Conclusion, Limitations and Future Work

18

Chapter 2

Literature Review

2.1 Literature Review

Fileless Malware leaves no traces for antivirus software to detect so that making it very

hard for antivirus software to detect such attacks, so discovering fileless malware

attacks is a very challenging task for security analysts. Authors in [23] primarily

discusses malware kinds and detection methods, as well as contemporary malware

analysis methodologies. Malware detection approaches, such as signature-based and

heuristic-based. It provided a comprehensive picture of malware detection. To prevent

the effect of fileless malware, several detection approaches are theoretically proposed.

PSDEM is a PowerShell de-obfuscation technique proposed by the authors in [24]. To

obtain original PowerShell scripts, the PSDEM technique uses two levels of de-

obfuscation. Extracting PowerShell scripts from obfuscated document code is the initial

stage. De-obfuscation scripts, which include encoding, text manipulation, and code

logic obfuscation, make up the second layer. It also explains that PSDEM improves the

speed and accuracy of detecting malicious PowerShell scripts included in word

documents.

Fileless Ransomware is a new type of malware that primarily uses both ransomware

and fileless malware mechanisms. Detecting and defending against these types of

cyberattacks is becoming a significant challenge for IT companies. Protection against

such ransomware using current security approaches is very difficult. Security

professionals are currently putting a lot of effort to guard against these types of

ransomware by developing various proactive and reactive procedures. Authors in [25]

explains how ransomware and fileless malware act, how fileless ransomware works,

what attack vectors fileless ransomware can use.He define different types of fileless

ransomware and their uses, prevention measures, and recommendations for defending

against fileless ransomware.

19

Fileless malware can also spread by making copies of itself to a place specified in the

malicious code and employing persistence techniques such as setting up an auto start

function to guarantee that they continue to execute.As we know, Fileless malware only

resides in memory and is written to RAM rather than being installed on the hard drive

of the target machine. It is hard to identify and delete malware that does not have a file.

The virus's placement, like rootkits, makesdetection and removal more difficult than

aconventional malware infection. As attackers become more adept at using LOLBins, it

is critical for defenders, incident responders, and forensic analysts to understand.

However, authors in [26] describes that fileless malware provides a model opportunity

for an attacker to sketch out a system before dumping and running the core payload on

disc. Inappropriately file-based detection techniques, like as antivirus software, have

become more ineffective, detecting fewer than half of the malware that is critical to

long-term system stability.

Furthermore, authors in [27] create the deobfuscation method for PowerShell scripts

that is both effective and lightweight. The design is a unique subtree-based

deobfuscation approach that performs obfuscation detection and emulation-based

recovery at the level of subtrees to meet the key difficulty of precisely identifying the

recoverable script. They develop the first semantic-aware PowerShell threat detection

system and use the conventional objective-oriented association mining approach to

enable semantic-based detection. They used deobfuscation on 2342 benign samples and

4141 malicious samples. On the that samples semantic-aware attack detection engine

outperforms both Windows Defender and VirusTotal which result 92.3 percent true

positive rate and a 0% false positive rate on average.

The rise of fileless malware and its defensive strategies can be used to mitigate it.

Fileless malware may be a class of malware that runs entirely in memory and leave as

small of a footprint on the target host as possible. It attacks windows applications and

system administration tools such as Windows Management Instrumentation (WMI) and

PowerShell to execute and spread fileless malware [28].

Fileless malware does not use traditional executables to carry-out its activities. The

malware leverages the power of operating systems, trusted tools to accomplish its

20

malicious intent. To analyze such malware, security professionals use forensic tools to

trace the attacker, whereas the attacker might use anti-forensics tools to erase their

traces. Authors in [29] presented a theoretical model to detect fileless malware attacks

in the incident response process. However, it lacks any practical implementation and

results verifications.

Malware Analysis has always been an important topic of security threat research ever

since the early days of computers. Fileless malware is purposed to be memory resident

only rather than writing artifacts to the filesystem. This makes it nearly impossible for

antivirus signatures to trigger a detection. Authors in [30] developed a YARA rules to

detect fileless malware using the binary executable. However, it lacks any model and

results verification. Also, it is quite difficult to get an executable for fileless malware to

utilize the proposed system.

Authors in [31] proposed a system, which utilizes process generation mechanism to

perform host-based malware detection mechanism. The proposed system collects the

running processes on the system then developed a child parent relationship between

them. Then they use pattern recognition for processes uniqueness to detect an anomaly.

The proposed system run on multiple hosts for multiples days for total numbers of

2403203 processes from which they have only found 38 abnormal processes and 1

malicious fileless malware based upon PowerShell. The proposed system lacks any

proper validation through numbers of malicious fileless datasets. Also, it doesn’t have

any mechanism to detect PowerShell commands.

TrustSign is a novel, trusted automatic malware signature generation method based on

high-level deep features transferred from a VGG-19 neural network model pre-trained

on the ImageNet dataset. The system is proposed by authors in [32], which leverages

the cloud's virtualization technology. Trust Sign analyzes the malicious process in a

trusted manner since the malware is unaware and cannot interfere with the inspection

procedure. By removing the dependency on the malware's executable, author’s method

is capable of signing fileless malware. Authors research is focus research on crypto

jacking attacks, which current antivirus solutions have difficulty to detect. The main

limitation of the proposed solution is lack of run time memory analysis and PowerShell

process detection.

21

Authors in [33], demonstrate how an attacker can leverage a feature reach programming

language like JavaScript to craft an fileless attack. The authors run proposed malware

through different AV solutions to validate its effectiveness. The solution to mitigate

such malware is to disable JavaScript or HTML5 which is not feasible option.

Authors in [34] proposed a new method of writing and rewriting memory section to

detect the exact end time of unpacking routine and extract original code from packed

binary executable. The proposed method has been successfully extracted hidden code

from recent malware family samples. At least 97% of the original code could be

extracted from the various binary executable packed with different software packers.

The main limitation for the proposed method is that the system dynamic and auto

detection and mitigation. Also, the proposed solution is not validated on any runtime

environment.

Monero (XMR) is by far the highest popular cryptocurrency among threat actor

installing mining malware because it comes with full anonymity and resistance to an

application-specific circuit mining. Authors in [35] proposes a better method for

classifying conventional malware and cryptocurrency mining malware by using

supervised machine learning method. The proposed approach is defining a better

algorithm for enhancing accuracy and efficiency for cryptocurrency mining malware

detection. However, it lacks any runtime malware detection and it still need executable

images to run and process through the proposed system. In real time fileless malware

takes only few minutes to halt computer operations e.g., ransomware attack.

Cybercriminals are becoming skillful day by day and crafting more sophisticated and

conducting advanced malware attacks on critical infrastructures, both in the private and

public sector. They leverage advanced malware techniques to bypass anti-virus

software and being stealth while conducting malicious tasks. Authors in [36] proposed a

technique which focuses on defining rules to monitor the binaries used by threat actors

to identify malicious behaviors. The solution starts from picking a set of APIs which are

considered as malicious then hooking into the any running process. Then matching the

selected set of APIs with running process APIs. However, this system lacks the ability

to dynamically hook into any running process and there is no way to dynamically

update the collections of APIs.

22

Authors in [37], proposed a fileless malware detection (FMD) tool for static memory

forensics. For the input authors requires an image of memory snapshot at any time,

which is then passed to the proposed tool, which then utilizes the APIs of another open-

source tool called as Volatility (a memory forensic tool). At the end of analysis, the tool

will show up the result if there is any malicious api get called by process it will be

shown to the analyst. The main drawback of the proposed tool is that it completely

resides on human interaction. An analyst is required to dump the memory to create a

snapshot which is then manually input to the proposed system and the analysis process

in completed.

Authors in [38], developed a host-based malware detection system for Supervisory

Control and Data Acquisition System (SCADA). As most of the malware detection

technique developed for SCADA system rely on the network packets. They won’t

inspect any abnormal behavior of the running processes on the system. The authors

proposed solution hook into the memory of the running process using DLL injection.

After hooking it employ the pattern base decision algorithm to make output related to a

specific process that it is doing some malicious activity. The author’s method lacks the

ability to dynamically hook the runtime process.

Authors in [39], proposed a technique to mine the api from run time process. A

collection data set is provided to lookup for any malicious api call. Then making the

cluster for randomly called api by any running process. Finally, the collected data from

process is passed to the machine learning algorithm which remove redundancy and

extract malicious api only. There is no solution provide to dynamically link any process

with the proposed solution so that whole process will get analyzed.

Authors in [40], proposed a hardware base AV detector and accelerator to detect fileless

malware. Th proposed technique is implemented in memory controller of the system.

The authors claim to have 100% accuracy as utilizes a sperate hardware accelerator for

memory to complete the detection mechanism in no time. This technique is not feasible

to every system around the world.

2.2 Critical Review

23

Fileless Malware leaves no traces for antivirus software to detect so that making it very

hard for antivirus software. This section presents the critical review of existing

approaches. Different techniques related to fileless malware detection are presented.

The classification of these techniques is based upon the utilization of analysis type,

technique, results, and layered wise employment.

2.2.1 Used Analysis Type

Many types of fileless malware analysis are proposed to detect the malware in real time

or for forensic analysis. Three types of analysis types are utilized by different authors

for malware detection.

Technique based upon static malware analysis are [24] [27] [35] [37]. Technique which

uses dynamic analysis are [34] [36]. Finally, the proposed techniques which utilizes

both static and dynamic analysis techniques are [25] [36] [28] [29] [31]

2.2.2 Used Analysis Technique

Malware analysis technique is how the detection process in run. Either it is automated

completely or required user inputs manually. Two types of malware detection

techniques are employed by different researcher.

The automatic malware detection techniques are employed by [31] [32] [35] [36] while

the manual methods are used by [23] [24] [25] [26] [27] [28] [30] [33] [34]

2.2.3 Proposed Technique Results

Malware This shows how many of the proposed techniques verified their model by

verification and validation of the results by utilizing any samples datasets.

Techniques which verify and validated their results based upon any sample data sets are

[24] [31] [32] [34] [36] [37] [38] [39] while the techniques which didn’t verified their

result and only provide theoretical model are [23] [25] [26] [29] [30] [33] [35]

2.2.4 Layered Wise Technique

24

Different authors use multiple layered techniques to detect fileless malware. Layer I is

used where only process analysis is performed [25] [29] [31]. Layer II is employed

when PowerShell and its commands detections is performed. [23] [24] [25] [27] [29]

[30] [38]. Layer III is used by techniques when API hooking, and calls detections are

monitored and analyzed to detect fileless malware [34] [36] [38].

Table 2.1: Comparison Between Existing Techniques and Reviewed Papers

Reffe
rence

 Type Analysis
Type Results Limitations Layered Wise

Approaches

 Layer
I

Layer
II

Layer
III

[23] Hybrid Manual No -NA- ✖ ✔ ✖

[24] Static Manual Yes

• Lack of automation

• Analyst input is required

• Signatures are not
Dynamically Linked

✖ ✔ ✖

[25] Hybrid Manual No -NA- ✔ ✔ ✖

[26] Hybrid Manual No -NA- ✖ ✖ ✖

[27] Static Manual Yes

• No way to dynamically
analyze the running
process

• Lack of Runtime
analysis

✖ ✔ ✖

25

[28] Hybrid Manual No

• No result validation

• Lack of single
architecture

✖ ✖ ✖

[29] Hybrid -NA- No

• No result validation

• Lack of single
architecture

✔ ✔ ✖

[30] Hybrid Manual No • No way to execute the
analysis during runtime

✖ ✔ ✖

[31] Hybrid
Automati
c

Yes

• Single layered detection
can lead to high false
positive

• Lack of result validation
to actual fileless
malware

✔ ✖ ✖

[32] Static
Automati
c

Yes

• Can detect specific set
of malware categories
only

• Lack of three-layered
malware detection
architecture

✖ ✖ ✖

[33] Static Manual No • Applicable to JavaScript
web-based malware only

✖ ✖ ✖

[34] Dynamic Manual Yes
• No ability to automate

the process selection for
analysis

✖ ✖ ✔

26

[35] Static
Automati
c

No

• Only single set of
malware category in
targeted for analysis and
detection

✖ ✖ ✖

[36] Dynamic
Automati
c

Yes

• Lack of result validation
with large number of
malware dataset.

• Lack of the ability to
select the running
process automatically

✖ ✖ ✔

[37] Static Manual Yes

• Not applicable with any
real fileless malware

• Can detect PowerShell
command only

• No dynamic way to
automate the process

✖ ✔ ✖

[38] Dynamic
Automati
c

Yes

• Can analyze with pre-
defined api signatures
only.

• No dynamic signature
update feature is
provided

✖ ✖ ✔

[39] Dynamic Manual Yes

• Can mine api calls of
running process only.

• No way to dynamically
select the running
process.

✖ ✖ ✔

27

28

Chapter 3

Proposed Methodology

A three-layered technique is proposed in this research which starts from monitoring the

running process on the system, along with malicious PowerShell commands detection,

and then move towards the run-time process’s memory inspection to find out any

malicious api calls. The whole process is dynamic and perform behaviors analysis on

running process. Behavioral analysis is used minimize the limitations of static signature

analysis. However, we have proposed the technique with the combination of behavior

and static signature analysis. The final solution is completely automatic and requires no

user interaction or input during run time.

3.1 Three Layered Architecture of Proposed Technique

The complete architecture of proposed technique in illustrated in Figure VI and the

details and working of each layer along with their functions is presented in upcoming

paragraphs along with their respective algorithm. The notations for symbols used in

algorithm are described in Table IV. All layers are dynamically connected with each

other and with an online database where all behaviors are pre stored.

3.1.1 Layer I – Running Process’s Analysis

The Layer I deal with capturing the details of running process on the system. The

snapshot of running process is taken every second and the solution starts analyzing each

process one by one. In the meantime, if a new process is created suddenly the solution

will also capture it and starts monitoring and analyzing it. This layer will make a

complete list of processes then build the child parent relationship to understand which

process is parent or child of another process. After getting the relationship of processes

with each other the layer will look up for any possible malicious processes chain.

The LOLBin’s processes are the actual target of this layer if any of such process found

running on system then it’s child and parent process will be analyzed. There are

29

multiple cases how the malicious process can be detected in this layer. The complete

steps of the Layer I are shown in Algorithm I.

Figure 3.1:Architectural Diagram of Proposed Multilayered Fileless Malware

Detection System

30

Case:1 A PowerShell (powershell.exe) process is found running/started on the system.

Layer I will look up for its parent if any of LOLBin (wscript.exe) is its parent the

process will be considered as specious and will alert the second layer for further

analysis.

Case:2 A PowerShell process is a child of other processes like (Microsoft Word, Excel,

PowerPoint, and Outlook etc.).

Case:3 PowerShell Process is child to any of other process in any processes chain like

explorer.exe => cmd.exe => powershell.exe

Algorithm 1 Runtime Process’s Analysis

START

Log PLIST

Lookup P in PLIST

 if {PN == PSHELL}

 then PS = P, and Add PS in XLIST

 again, Lookup PS inPLIST

 If PSPID == PID

 then PS = P

 again, Lookup PS in MPLIST

 if PSN == MPN

 then, PM = P, and SET PFLAG = True

 else return

 else return

 again, Lookup PS inPLIST

 If PSID == PPID

 then Add PPID in YLIST

 else return

else return

END

31

Table 3.1: Notations List Used in Algorithms

Notation Description

PLIST List of running processes

P a process from running Processes List PLIST

N Nis process name

ID ID process identifier

PID is process parent identifier

SHELL is a PowerShell process

PS PS is suspected process

PM is possible malicious process

MPLIST is malicious parent process list

MPN is name of suspected malicious parent process

XLIST is a list of PSHELL processes running on system

PFLAG PFLAG is the output of each layer

MCSIG is a list of all malicious commands to be used by PSHELL

PMCLIST is list of malicious commands used by P.

MC is malicious command

C C is any command run by PSHELL

MCSET set of malicious commands.

YLIST YLIST is list of processes child to a specific PSHELL

HLIST collections of various hooks

H is a hook called by process

PHLIST is collection of hooks called by P

MHSET is set of malicious hooks

3.1.2 Layer II – PowerShell Analysis

The Layer II deals with analyzing the PowerShell process only. When PowerShell is

detected by Layer I, its alert layer 2 along with process id (PID). Now Layer II will

keep monitoring the PowerShell until the process is exited. The logging system is used

to record all commands run or executed by PowerShell process. After logging of the

32

commands, each command is being analyzed using some pattern recognition technique.

If any malicious command is found it will be recorded and further operations are taken.

The PowerShell commands are not actually malicious in nature but are abused by

adversaries to craft their attacks. The list of such commands can be up to hundreds in

numbers but here are few commands, shown in Table V.

The attackers combine multiple PowerShell commands to create a special attack which

is not easy to detect. However, our technique analyzes each command executed on

PowerShell even after some time. Some anti virus’s solution looks for a specific process

for a specific time. A malware can be sleep for some time even for a day using timer.

After some time, they can download a malicious payload and execute it directly into

memory. But our technique can analyze all commands whenever it is executed on any

PowerShell process. The working steps of the layer II are shown in algorithm II.

Algorithm II PowerShell Commands Analysis

START

For all, P in XLIST

lookup MCin MCSIG

 if PC == MC

 then, Add PC in PMCLIST

 else return

 lookup PMCLIST for P

 if PMCLIST ==MCSET

 then SET PFLAG = True

 else return

END

33

Table 3.2: PowerShell Example Commands Abused by Malware For fileless Attacks

Commands Description

• Invoke-WebRequest

• Invoke-RestMethod

• Start-BitsTransfer

to download from remote address

• Start-Process to start a new process

• OpenProcess to open any running process

• WriteProcessMemory to write into process memory

• Get-ProcAddress to look for specific process address

• LoadLibrary to load a module into memory address

• AdjustTokenPrivileges to enable/disable privileges token

• Invoke-ConPtyShell to start reverse tcp shell for windows

• mimikatz to start post exploitation framework

• net.webclient to send/receive data via http using .Net

• stringtobase64 to convert string to base64

• port-scan to start port scanning on network

• reflectivepeinjection to load .exe reflectively to process

• invoke-psinject to load decode code logic into process

• invoke-decode to decode the encode PowerShell script

• gzipstream to compress/decompress exe to gzip stream

• http-backdoor to download more PowerShell scripts

• add-persistence to add windows script to run auto via registry

3.1.3 Layer III – Run Time Processes API Analysis

The layer III deals with the run time analysis of processes. Any process which is listed

in possible suspectable malicious chain it will be auto analyzed via Layered III. APIs

are built in function of windows system whose actual purposes was to build non-

malicious application. But adversaries abuse the power of such api and used them for

34

malicious purpose. This layer starts with hooking of the target process. Hooking is a

technique to introspect the api called by the target process. It will start by injecting an

Inspector DLL hooking engine into the target process. The hooking engine will now

handle all api calls through itself. All malicious api calls are loaded into the engine. If

any similar api is get called by the process the engine will alert the system that the

similar api call is found.

There are thousands of windows api which are used by begin programs as well as

malicious programs. All popular malicious api are being stored in live database and

then downloaded by our proposed solution. Some popular malicious api which can be

used by malware for malicious purposes are shown in table VI. The step wise working

of layer three is defined in Algorithm III.

Table 3.3: Example of Windows Built-in Functions or API Calls abused by malware

for Fileless Attack

Commands Description

• CreateToolhelp32Snapshot used to create snapshot of running processes, thread

etc on system

• CryptAcquireContext used to start encryption system on windows mostly

used by ransomware

• EnableExecuteProtectionSu

pport

used for modification of Data execution protection

setting

• EnumProcessModules to lookup modules loaded by process

• FindFirstFile/FindNextFile to iterate through directory and file systems

• GetAsyncKeyState to capture keystrokes of keyboard widely used by

keyloggers

• InternetOpenUrl to open up http, ftp based internet connection

• IsWoW64Process to detect whether the process is running on windows

64 or not

• LdrLoadDll low level api to perform dll injection

• MapVirtualKey for translation of key-code into respective key value

35

• NetScheduleJobAdd to add a request to run program automatically on

specific condition

• OpenMutex used by malware to make sure only one instance of its

is running

• SamIGetPrivateData to get private information of user from security

account manager of windows

• ShellExecute to execute another program

• Toolhelp32ReadProcessMe

mory

to read memory of any other running process

• VirtualProtectEx to change read only portion of memory into writeable

Algorithm III Layer 3

START

Load HLIST

For all, P in YLIST

HOOK P

 if PH is called

 Then add PH is PHLIST

 else return

 Lookup, PHLIST for P

 if MCSET ==PHLIST

 then SET PFLAG = True

else return

END

3.2 Interconnected Layered Wise Behavior Analysis

All three layers which we have discussed previously are interconnected with each other.

Each layer has its own unique functions, which are performed completely automatic. In

behavior analysis some actions are monitor accordingly to detect a suspected behavior.

Behavior analysis can help to detect any abnormality in the target system.

36

Traditional antiviruses use the signature-based detection technique, for which they have

some specific hash generated and store in a database. Whenever they are analyzing a

new object on system, they calculate the sample hash or signature and then match it

with the stored database. If positive signature hash found the sample will be consider as

malicious. While behavioral analysis keeps analyzing different aspects of the target

object. In the proposed approached all three layers are working on behavioral analysis.

The proposed solution is divided into two components.

1. Client: This component will be a pc or any windows-based device where the

proposed solution will be run in order detect fileless malware.

2. Cloud: This component is server based online solution from where a malware

analyst add/edit/delete behavior for the client component.

The approach begins with the download of Indicators of Behavior (IOBs) from the

cloud server and the subsequent monitoring of the currently operating process. If any of

the suspicions raised by Layer I are confirmed, Layer II will be invoked, and layer II

procedures will be carried out with the goal of analyzing the PowerShell processes.

Following the completion of the layer I and II operations, the layer III operations will

be performed. Finally, the output of all three layers will be used to decide as to whether

or not the target sample is malicious. If malicious behavior is discovered, the malicious

process chains are terminated as soon as they are discovered. Each of these three levels

is linked, and they all make use of a behavior-based detection approach for malware

identification and mitigation.

37

Chapter 4

Proposed Technique Design and Implementation

Here we will go over all the preconditions, for both hardware and software components,

malware sets of data, and what we will implement the new fileless malware detection

method. We will also go over how effectively our true to its mission and how effective

it is for the malware sample datasets that we have provided.

4.1 Overview

An antimalware approach is presented in this chapter, along with its formulation and

construction, to limit the danger of new and atypical malicious programs. Constant

behavior monitoring and the determination of both the rightness among those behaviors

at program execution is among the possible approach to overcome the constraints of

state-of-the-art malware detection methods when dealing with non - conventional

malicious programs, so it is currently under investigation. The reference

implementation methodology is used in conjunction with current malware detection

systems to improve the efficiency of the detection method, which is necessary due to

the limitations in known malware detection approaches. That's why we offer a

technique based on the continuous behavior analysis, which would be validated against

application specifications or policies, to detect future attacks that do use advanced

obfuscation methods to conceal from conventional anti-malware capabilities. We

believe that this approach will be effective in this situation. Based solely on the fact

that advanced malware employs fileless attack techniques and makes use of legal

technologies for malevolent objectives, this detecting strategy makes it hard for current

antimalware methodologies to identify such assaults. There are two types of malware

detection techniques included in the proposed method: reference implementation

malware identification and behavior patterns for malware detection.

To begin, we must write application specs that may be stated in a document to explain

the intended behavior of that application. This is the first stage in our strategy. It is this

new technique that makes use of specs that explain the anticipated performance that the

38

application is supposed to achieve. These pre-defined requirements are then compared

to the actual behavior of the programmer as it occurs throughout the run-time process.

A behavior violation occurs when any one of the action events does not correspond.

This causes the action to be flagged as malicious activity and alerting system

administrators.

Application functionality or actions are monitored by comparing their behavior to the

behavior requirements that have been created to capture the right behavior of the

actions. This is known as specification-based monitoring. It is common practice to

create specifications by hand, taking into consideration security policy, object

functionality, and anticipated use. It is thus feasible to identify malicious changes that

may modify or change the intended behaviour of a programme if the intended

behaviour of the program has been clearly pre-determined. The new technique consists

of a series of processes that must be followed, and significant occurrences must be

studied and reviewed to ensure that they have not been tainted by evil intent. The

suggested malware detection approach reaps the advantages of executing the detection

process in real time and monitoring the actions of the programme while it is running.

Techniques that detect anomalies in the running behaviour of an application also

perform operations by creating profiles of the application's normal behaviour, which is

typically formed through automated training, and then comparing them to the actual

movement of the system to detect any significant changes in the running behaviour. In

certain cases, anomaly detection may identify unknown threats, but it has a significant

false alarm rate, which makes it difficult to use. Furthermore, this method is not a good

choice in the case of unconventional cyberattacks because of their specific

characteristics, which include the ability to utilize the already current non-malicious

tools and applications and the possibility of being marked as routine usage by anti-

malware tools that employ anomaly-based detection techniques.

A further approach, called specification-based detection, involves manually abstracting

and crafting the right behaviors of essential objects into behavior specifications, which

are then compared to the actual behaviour of those objects. Reference implementation

surveillance is the most effective anti-malware strategy for providing the best possible

protection. When compared to anomaly-based detection methods, it offers many

39

benefits, including the ability to create policies with more flexibility and the ability to

produce a lower number of false positives.

Table 4.1:Tools and Software Used for Development of Proposed Three Layered

Fileless Malware Detection Technique

4.2 Architecture

Sr No. Name

1 OS Used for Development and Experiment:

• Windows 7
• Windows 8
• Windows 10

2 Virtual Environment for Development and Experiment:

• VMWare Fusion
• Virtual Box

3 Programming Languages:

• C++ 17
• JavaScript

4 Code Editors:

• Visual Studio Community 2020
• Visual Studio Code

5 Other Framework/Libraries Utilized:

• ReactJS
• NodeJS
• NektraDeviare Hooking Engine

40

Because we were attempting a novel malware detection method, we constructed two

antimalware strategies in such a manner that they could be viewed as an efficient and

productive detection mechanism. The structure of the suggested approach, seen in

Figure I, is composed of two modules: a behaviour monitors component and a

specifications processing component, respectively. The behavior watching module

analyses the activity carried out by the application, and the specification matching

module compares those actions to the anticipated behavior that has been stated before in

the specification. Detailed descriptions of the layered wise component are of the

suggested system are given below.

4.2.1 Layer I (Processes Watcher)

Layer I is the detection and identification of PowerShell process running within the

windows-based computer and finding out relationship between child and possible

malicious parent process. The first step in layer I is to take snapshot of the running

process on the system, and which is done via using CreateToolhelp32Snapshot built-in

function of Tool Help library of windows system.

The memory snapshot is taken every second automatically in order to actively

monitored any new created process. A periodic function is created that will keep active

the ProcessWatcher Function to effectively monitor and observer the processes relations

ships with other process on time.

4.2.1.1. Process

It is a programme that is now in continuous running, often known as a process. More

than just the programme code, it also contains the sequence number, processes stacks,

caches, and other data structures that are used by the programme code. In comparison,

the computer code consists simply of the text component.

During the course of its execution, a process undergoes changes in status. Depending on

the present activity of a process, its condition may be influenced to some extent. New,

ready, operating, blocked, and terminated are the many states that a program might be

in throughout its execution.

41

Every one of the activities is controlled by a central processing unit (PCBC). This file

includes critical information on the matter with which it is connected, such as the

process status, the process number, the programme counter, a list of folders and

variables, CPU data, and RAM information, among other things.

4.2.1.2. Parent Process

A process that runs the fork() system call, with the exception of the initial process, will

generate all of the processes in the operating system. Typically, the process that called

the forks() callback is referred to as the parent process. In other terms, a parental

process is a process that initiates the creation of a child procedure. Unlike a child

process, which may have many parent processes, a parent process can only have one

parent process. On successful completion of a fork() function call, a PID of both the

child process is passed to the parent process, and the value 0 is provided to the parent

process. When the fork() system call fails, the result is sent towards the parent process

as -1, and no child process is generated as a result.

4.2.1.3. Child Process

During the course of an operating system's operation, a child process is defined as a

process generated by only a parent process using the fork() system function. A child

process is also referred to as a subsystem or a sub - tasks in certain cases.

The child process is generated as a clone of its parent process, and it retains the

majority of the properties of its parent process. The kernel produced a child process if

there's no parent process for the child process to belong to.After a departure or

interruption of a child process has been detected, the SIGCHLD signal is being sent to

the parent process.

42

Figure 4.1:Process Parent Child Relation and New Process Creation

A memory snapshot is taken every second and from which a collection of running

process is taken and transferred to other function for child parent relation identification.

The metadata of processes are

• Process ID

• Process Name

• Process Parent ID

• Process Parent Name

• Process Chain ID

The parent ID is used to identify the malicious parent process which are suspectable.

First PowerShell process are located, and their parent IDs are noted if any of the parent

is suspectable for suspicious activity the parent ID is noted and added to a new chain.

The chain will contain all the child and parent processes of PowerShell. This chain ID

will be then used for furthers layers. The periodic function definition is present below.

43

Figure 4.2:Periodic Function to use to take snapshot of memory

Figure 4.3:Function to Get Process List of the Running Process on the test system

44

After getting the processes list of running process on windows system, each process is

analyzed for its parent process if the parent process is one of the pre-defined suspicious

process the process chain is recorded and alerted by system to other layers.

For example, a powerhsell.exe process is located with PID 121 the next step which is

performed is to locate it parent process with PID 114. If parent process is matched with

the defined signatures of malicious processes. All their parent and child processes are

added to single chain which will be then used for further analysis and identification of

future child processes. The utilization of periodic function will help the layer I to

actively monitor the new list of running process on windows system. The periodic

functions run every seconds thus every new process is get caught by the layered system.

If any process gets exited of killed intentionally by the user the process list get update

automatically when the periodic functions keeps running on the system.

Figure 4.4:Function to Lookup for the Parent Process and find out the relationship

between parent and child process.

The parent processes which are to be monitored by the layered will be downloaded in

first initialization of the proposed program and then stored within the program so that it

can be easy for the program to search and find for a match of suspected parent process.

The downloading of signatures will be discussed with details in upcoming section.

45

ProcessAlerter function will alert other layers that some processes are suspected of

further investigation and analysis. Other layers will check the chain and if PowerShell

process is located the layer II function started working automatically and if other

processes are located the layer II functions get started too for further memory analysis.

Figure 4.5:Alert Function to Alert the other layers that a suspicious chain is found

4.2.1.4. CreateToolhelp32Snapshot

To deliver their findings, some other tool assist methods evaluate the snapshot obtained

by this method and compare it from their own. The snapshot can only be accessed in

read-only mode. It behaves similarly to an item handling and is subject to restrictions as

an object handle in terms of which tasks and threads it may be associated with. In order

to iterate the stack or module contents for all activities, use the TH32CS SNAPALL

option and set the th32ProcessID parameter to zero.

For each subsequent process in the snapshot, run CreateToolhelp32Snapshot again, this

time supplying the process identification as well as the TH32CS SNAPHEAPLIST or

TH32 SNAPMODULE value for the process.There are a multitude of reasons why the

CreateToolhelp32Snapshot method may fail or produce inaccurate information when

taking snapshots that contain heaps and modules for just a process besides the current

process.

A function call may fail with ERROR BAD LENGTH or another error code if indeed

the loader data structure inside the target database has been damaged or has not been

initialized, or if the package list alters as a consequence of DLLs being imported or

unloaded while the function is being called. Examine if the target program was

46

launched in a sort of limbo, and then attempt to invoke the function a second time. It

may be necessary to call the method several times before it succeeds. If the function

returns an error with the ERROR BAD LENGTH when contacted with TH32CS

SNAPMODULE or TH32CS SNAPMODULE32, it may be necessary to call the

method again until it fails.

Interfaces for module that have been loaded with the LOAD LIBRARY AS

DATAFILE or equivalent flags are not returned by the TH32CS SNAPMODULE and

TH32CS SNAPMODULE32 flags. More information may be found at LoadLibraryEx.

CloseHandle is a function that may be used to destroy a snapshot.

To acquire a list of currently running programs, the following basic console programme

is used: After creating a snapshot of the currently running processes in the scheme using

CreateToolhelp32Snapshot, and afterwards walking through the list of processes

documented in the single image using Process32First and Process32Next, the

GetProcessList function returns a list of all the processes currently running in the

system. GetProcessList invokes the ListProcessModules function, which is explained in

more detail in Transiting the Modules Collection, and the ListProcessThreads function,

which is discussed in more detail in Traversing the Thread List, for every activity in the

list that is returned. Any failures, which are often caused by security limitations, may be

identified by using a simple mistake function such as printError. In the case of the Idle

and CSRSS processes, for instance, OpenProcess refuses to open them because their

access limitations prohibit user-level code from doing so.

4.2.1.5. Process32First

In a system snapshot, this function returns information on the first process that was

encountered. If the first element in the process table has been transferred to the buffers,

this function returns TRUE; otherwise, it returns FALSE. The ERROR NO MORE

FILES error result is provided either by GetLastError method if there are no processes

running or if the snap does not include process information for running processes. The

dwSize element of PROCESSENTRY32 must be set by the caller programme to the

length, in bytes, of the object being processed. The Process32Next method may be used

47

to get details about some of the other processes that were captured in much the same

snap as the current one.

4.2.1.6. Process32Next

This function returns metadata about for the next process that was captured in a

computer snapshot. Unless the next entry in the process table has been transferred to the

buffer, this function returns TRUE, otherwise it returns FALSE. If no process exists or

if the snap does not include process information, the GetLastError method returns the

error value ERROR NO MORE FILES. Process32First is a function that may be used to

get metadata about first process that was captured in a snapshot.

4.2.2 Layer II (PowerShell Analyzer)

Layer II deals with steps and function utilized to log and monitors the PowerShell

commands executed on any of the PowerShell process running on the system. If there

are multiples PowerShell process running on system at a time the layer II can still work

simultaneously and keep an eye on each PowerShell process logs their commands

which are executed and further perform analysis to detect any suspicious or malicious

commands.

4.2.2.1. PowerShell

PowerShell is a cross-platform task automation solution made up of a command-line

shell, a scripting language, and a configuration management framework. PowerShell

runs on Windows, Linux, and macOS. As a scripting language, PowerShell is

commonly used for automating the management of systems. It is also used to build, test,

and deploy solutions, often in CI/CD environments. PowerShell is built on the .NET

Common Language Runtime (CLR). All inputs and outputs are .NET objects. No need

to parse text output to extract information from output. The PowerShell scripting

language includes the following features:

• Extensible through functions, classes, scripts, and modules

48

• Extensible formatting system for easy output

• Extensible type system for creating dynamic types

• Built-in support for common data formats like CSV, JSON, and XML

A management program in PowerShell known as Desired State Configuration (DSC)

allows you to manage your company infrastructure by writing configuration as code.

You can do the following using DSC:

• Create declarative setups and bespoke scripts for repeated deployments using

the Scripting Language.

• Configuration settings should be enforced, and configuration drift should be

reported.

• Configuration may be deployed using either the push or pull models.

4.2.2.2. PowerShell For Malicious Purposes

PowerShell is a sophisticated Windows scripting language that is utilised by both IT

professionals and their opponents, according to a recent study. PowerShell is favoured

by attackers for a variety of reasons:

• It is a command-line utility that comes pre-installed.

• It has the ability to download and run code from another system.

• In the case of Windows systems, it gives unrivalled access.

• Sys admins utilize PowerShell to manage a variety of operations (for example,

shutting down your PCs regularly at Twelve a.m.—do this by using task

scheduler).

• PowerShell is enabled on the majority of systems.

49

Its malicious usage is often undetected or undetected even by typical endpoint defenses

since files and instructions are not saved to disc when they are executed. As a result,

there will be fewer artefacts to retrieve for forensic examination.

Numerous malicious applications that are based on or utilize PowerShell are available,

including the following:

• Metasploit

• Mimikatz

• Empire

• PowerSploit

4.2.2.3. Mimikatz

Mimikatz, which the author describes as "a small tool to experiment with Windows

security," is a highly successful offensive security tool created by Benjamin Delpy that

is characterised as "a little tool to toy with Windows security." Both ethical hackers and

malware producers make use of this tool on a regular basis. The devastating NotPetya

virus of 2017 combined revealed NSA vulnerabilities such as EternalBlue with

Mimikatz to do the most amount of harm possible.

Mimikatz, which was originally developed by Delpy as a research project to better

understand Microsoft security, now contains a component that dumps Minecraft from

memory and shows you where all the mines are hidden.

Mimikatz is a simple tool of using, and Mimikatz v1 is included as a meterpreter

program as part of the Metasploit security framework. As of this writing, the latest

Mimikatz v2 update has still not been included into Metasploit's core framework.

The term "mimikatz" is derived from a French slang term "mimi," which means "cute,"

and so "cute cats." The author (Delpy), who is French, writes in his own tongue for the

Mimikatz site.Among the most well-known Mimikatz assaults were the Petya and

NotPetya attacks, which infected thousands of computers throughout the globe in 2016

and 2017. A virus called NotPetya, which is similar to the Petya virus, infects a

computer system, encodes any data stored on the device, and shows a message to the

50

victim instructing him or her on how to transfer bitcoins in attempt to restore the

encrypted information.

Figure 4.6:NotPetya Ransomware note which displayed on victim machine

Check out this PowerShell script that was written to get access to a fileless network and

to run malicious code from the command line. Through the commandline, this

command sends the received data located at the following URL to PowerShell, which

then executes the file "in ram" on the target computer: This command passes all file

located at the following URL to PowerShell:

Figure 4.7:PowerShell Command to Invoke (Download) Mimikatz to Dump OS

credentials

• The IEX or Invoke-Expression function is responsible for running the function

specified on the local computer.

51

• A new object of a.NET Framework download string is created by using the

New-Object cmdlet. download the contents of GitHub into a program memory,

which will be used by IEX to execute the code.

• The DumpCreds option informs Mimikatz to extract passwords from the LSASS

database.

In order to detect similar type of attacks the layer II will take runtime actions during

malicious PowerShell commands executions. The process starts from logging of each

command executed on all running process. For each PowerShell process running on the

system a log files are created automatically where the commands are logs that are

executed on the PowerShell process. Even if the process is under sleep mode to avoid

early detection and woke up after few times and start executing malicious commands

the proposed technique will still logs the new commands in the similar file where if any

old commands executed by same PowerShell process. The FileWatcher function will

keep an eye on all created logs file of PowerShell process and then pass the individual

process log’s one by one to FiltersCommands function.

52

Figure 4.8:Function to Generate Logs file of each running PowerShell process

An example of created logs file of individual process with ID 3944 is show in fig

belowthe meta data of logs file

• StartTime

• Windows User Account

• PowerShell Version

• Process ID

• PowerShell Version

• PowerShell Build Version

• PowerShell Edition Name

• All Commands Executed

53

Figure 4.9: Preview of Generated Logs File of Individual PowerShell Process

The malicious PowerShell commands are early recorded into the system upon which the

string analysis is performed using regex. The logs files are compared line by line and

string by string and character by characters with the malicious regex.

The string iterator function will iterate into the logs file and compared all commands

executed by the processes with the malicious regex If any of similar or suspected

malicious commands found in the logs file the system will be alerted.

54

Figure 4.10:Regex Example of Malicious PowerShell Commands

Regular expression pattern matching is performed on an input string by using the

Regex.Match method, which returns the very first appearance of the matching substring

in the form of a single Match object.This function returns the first substring in an input

string that fits a regular expression profile specified by the RegexOptions and

TimeSpan parameters.

When a Regex object is constructed using the Regex (String, RegexOptions, TimeSpan)

function Object () { [native code] } and the instance Match(String) method is used, it is

identical to calling the public Match(String, String, RegexOptions, TimeSpan).

Using regular expression language components, the pattern parameter describes the

string to match in a symbolically descriptive manner. The.NET Framework Regular

Phrases and Frequent Expression Language-Quick Reference documents include further

information on regular expressions.

By inspecting the Success property of the returned Match object, you can verify if the

regular expression match included in the input string has been detected. The Value

property of the return Match object holds the substring from the input that fits the

55

standard expression pattern. If a match is detected, the value of the returned Match

object is returned. String is returned as the value if no match was found. Empty.

This function returns the first substring discovered in the input that fits the regular

expression pattern specified in the input parameter list. You may get further matches by

periodically using the NextMatch method on the Match object that has been returned to

you. In addition, by invoking the Regex.Matches(String, String, RegexOptions)

function, you may receive all the matches in a single call.

Figure 4.11:FilterCommands Function to Parse and Locate any malicious Commands if

executed by any of the PowerShell process

4.2.3 Layer III (Memory Hooking/APIs Calls Monitoring)

56

Layer III will be activated if any new process is get created in the process chain created

during layer I. All process is get hooked by the proposed technique one by one and

monitor will be activated by using hooking into the main process.

4.2.3.1. API Hooking

API hooking is indeed a method that allows us to instrument and manipulate the

behaviour and execution of API requests in a controlled manner. API hooking may be

accomplished on Windows using a variety of approaches. Memory cutoff point and

other techniques are examples of this. Instructions for DEP and JMP insertion were

included. We shall cover the trampoline insertion procedures in a short manner. It is

possible to utilize hooking to pause and reflect calls inside a Windows programme, or it

is possible to collect certain information related to API calls.For most Windows

developers, monitoring Win32 API calls was always a difficult subject to master;

nonetheless, it has always been one of my personal favorites. Gaining command over a

specific section of code execution is represented by the word Hooking, which is a basic

method. While it does not give access to the source code of third-party programs, it

does provide a basic interface for altering the behaviour of the operating system and its

components. Spying methods are used by many current systems to call attention to the

fact that they are able to make use of already-existing Windows apps. Hooking is used

not just to add to enhanced functionality, but also to introduce consumer code for

debugging reasons, which is a major motivator for using hooks in programming.

Windows Hooks are certainly a highly common way for inserting DLL into a specific

process. This technique depends on the functionality given by Windows Hooks.

According to the Microsoft Developer Network, a hook is a pitfall in the system's

message-handling mechanism. A customized filtering function may be installed by a

program to watch the message flow in the network and filter certain sorts of messages

as they reach its target window procedure, if one is available. To address the

fundamental need for system-wide hooks, a hook is often implemented in a dynamic

link library (DLL). That kind of hooks operate on the fundamental principle that the

hook return method is run in the memory addresses of every program that has been

hooked up to them in the system. You must use SetWindowsHookEx() with the right

arguments in order to install a hook. Whenever an application installs a scheme hook,

57

the os translates the DLL into to the namespace of each of the client processes running

on the system. The global variables included inside the DLL will be "each" as a result

and will thus not be shareable across programs which have loaded same hook DLL. The

shared data section must include all parameters that contain data that is shared with

other variables. Example of a hooks registered by Hook Servers and inserted into to the

memory addresses "App one" and "Implementation two" as seen in the following

figure.

Figure 4.12:Hooking API calls using DLL Injection

The injection of a DLL through into main memory of an independent process is a

critical component of a monitoring system. It gives a fantastic chance to exert control

on the thread activities of a process. If you wish to monitor API call calls inside the

process, it is not enough to just have the DLL injected.It is the goal of this section of the

paper to provide a quick overview of a number of real-world hooking characteristics

that are now accessible. It concentrates on the fundamental framework of each of them,

outlining their merits and downsides in detail as well.Throughout relation to the level at

which the hook is deployed, there are two types of API spying mechanisms: kernel

58

level espionage and user surveillance. In order to have a better grasp of these two

levels, one should be aware of the link between both the Win32 component API and the

Local API.

4.2.3.2. DLL Injection

DLL injection is a method in computer science that allows you to execute code into the

main memory of some other process by compelling the process to acquire a dynamic-

link library (or DLL). When external programs attempt to alter the behaviour of another

programme in a manner that the creators did not expect or plan, DLL injection is

frequently utilized. An example of DLL Injection is illustrated below in which Process

B will inject a .dll binary into the private memory space of the process A.

Figure 4.12:Simple DLL Injection into Memory of Another Process

59

In layer III a hooking engine called as Deviare is used to inject a monitoring DLL into

the suspected process and by using the prerecorded Windows based API calls. After a

successful DLL injection into the target process a loaded code will be activated and will

actively monitored for the possible api calls.The hooked is called on main function of

the running process and whenever any malicious api is called from the target process

the hooking engine will inform the main solution via COM object that the specific api

function is being called at suspected process. Hooking Process function is defined as

below figure.

Figure 4.13:Hooking Process into Suspected Running Process on Windows

One of these approaches is to examine API calls, which are directives in the program

that instruct computers to conduct certain actions. Rather than attempting to decipher

the contents of a tenderly packed file, we undertake a dynamic assessment based on the

API calls that have been made to determine what a particular file is intended to achieve.

Using the API calls made by a file, we can tell whether or not it is harmful. Some API

calls are indicative of malware of a particular sort. For example, URLDownloadToFile

is a common downloader API that may be used. The Method GetWindowDC is often

used by screen-grabbers, which may be found in malware and keyloggers on a regular

basis. The collections of hook file are illustrated presented below. The hooks are the

60

API functions that can be possibly executed by malicious process. The API calls are

built-in for windows and not malicious in nature but can be used by adversaries for

malicious purposes. There can be multiple API functions calls at a time executed by a

malicious program.

Figure 4.14:List of Possible API calls in XML format which can be abused by any

malicious Program

4.2.4 Interconnected Layer Automation

All the three layers are interconnected with each other via central communication

system. The whole process starts from layer I and follow up to the layer III. The whole

process is automated and doesn’t require any user input during or before start of

analysis. All three layers are active all the time when ever they receive any input, they

start their operations and generate the output upon which the final decision is made,

either to kill the processes chain or not. The output of all three layers is recorded in

central database in cloud for further analysis if required.

4.2.5 GUI Presentation

A GUI based solution is created to add/edit/delete records of behavioral signatures for

the proposed solution. The proposed solution will download the data from cloud and

61

then utilize the downloaded data for all there layered wise analysis. Furthermore, the

output of all three layers is also obtained from the client-side application and uploaded

to the cloud server.

Figure 4.15:Authentication Screen Before Logging into the Dashboard

The GUI system have authentication system as illustrated in figure above before going

to the dashboard area where the statistic of the solution is shown. Furthermore, in the

GUI panel the user has to add all behaviors which is wanting to be analyzed on the

client-side application on windows-based systems.

Figure 4.16:Options Available in Dashboard Menu

62

The view of the dashboard is illustrated below where user can see the statistic of the

malware samples detection and other data related to the process analysis and

PowerShell detection.

Figure 4.17:Statistics for Dashboard

63

Chapter 5

Results Analysisand Finding

5.1 Experiment Design

To test the proposed technique, we have run various experiments on multiples malware

dataset obtain from virustotal.com and other source. The test environment is set up on

virtual machine with following specifications:

• OS: Windows 7 and Windows 10

• Software: VMware Virtual Machine

• RAM: 8GB

• Storage: 200GB

The solution of the proposed technique is installed on the selected system and malwares

are run one by one. There is also non malicious program in each dataset, which use

same processes chain, to test the false positive rate of the proposed technique.

Table 5.1: Dataset of Experimental Evaluation

Name

Malicious
Samples Non-Malicious Samples

Dataset I
20

5

Dataset II 20 5

Dataset III 20 5

Dataset IV 20 5

64

Each of the malware dataset used for the evaluation contain twenty malware sample and

five non-malicious programs. The database of results and report are cleaned before

starting the evaluation. Each sample program is run on the experimental machine on

different time one by one.

The output of the experiment stores the reports related to each sample on the cloud from

where we can evaluate effectiveness of our proposed technique. The resources

utilization of the machine and the proposed technique on machine are also calculated to

make sure that, the technique is lightweight and don’t cause an overhead to system

resources. Whenever a sample is run, the technique performs analysis layer by layer and

usage system resource according to it. Once layer I job completed it will free its

resource and vice versa for layer II and III. The resource utilization of the experimental

machine is shown in Table 5.2.

Table 5.2: Performance Evaluation and Resource Utilization on Test Machine

Factor Layer I Layer II Layer III Total

RAM 5 MB 20-30 MB 80-100 MB 130-150 MB

Storage 5 MB 5 MB 40 MB 50 MB

CPU 1-5% 5-20% 20-30% 1-30%

65

Table 5.3: Results of Tested Datasets

Dataset

No

Total

Samples
Samples

Detected
Effectiveness

False

Positive
False Negative

I
25

20 0.8 0.04 0.16

II 25 17 0.68 0.16 0.16

III 25 19 0.76 0.04 0.20

IV 25 21 0.84 0.12 0.04

Total 100 77 0.77 0.09 0.14

The effectiveness of the proposed technique for each sample date set are shown in

Table 5.3 on the scale of 0 to 1. The technique shows most effectiveness for dataset no

IV with 84% accuracy along with least no false negative alerts. The least detected

sample dataset is no II with 68% detection rate with 52% accuracy.

5.2 False Positive Result Analysis

There are quite few false positive alerts for each of the sample datasets as presented in

Table IX. The reason behind this is the non-malicious app are not completely are three

layered their behavior looks like malicious app on first layer or second layered only.

For such samples the detection is done most of the time from first layer only along with

second layer. Like the non-malicious program word.exe can also open a powershell.exe

process and download something. But in real world a user will not download anything

from word.exe => powershell.exe => download file. A user can directly download a file

using browser.

66

5.3 False Negative Result Analysis

The experimental result indicates from the Table IX that there are also some false

negative results produced by the proposed technique. Which mean some samples are

not marked as malicious by proposed solution. The reasons behind this are multiple like

it can be the missing behaviors of specific malware from the database. If any of Layer I

behavior is missing for a specific malware sample, then layer II and III will be not

alerted for further analysis thus missed by the proposed solution. This issue can be done

by adding the missing behaviors in the database using cloud server component.

5.4 Detected Samples Classification

From the experimental data set we have tried to classify the malware samples into

different classifications. This classification is based upon the numbers of various APIs

calls and malicious PowerShell commands executed by different processes on the test

environment.

Figure 5.1:Classification of Samples Dataset into Malware Categories

67

Chapter 6

Conclusion and Future Directions

Although there are numbers of research performed for malware detection, fileless

malware remains a serious threat and challenging task for anti-software solutions. are

at huge risk of becoming target of such attacks, which standard antiviruses failed to

detect and mitigate. The general malware detection techniques mostly relay on

signatures for malware. If new malware spread and their signatures are not yet recorded

by anti-solution software, the effects can be catastrophic for individuals or

organizations. Thus, a new evolving solution is required to counter such fileless attack

which not only perform signature analysis but also deeply observe and monitor the

whole process chains for identification of malicious behaviors to thwart the effect in

real time and quickly.

In this thesis, a three-layered base technique for detection of fileless malware, not only

it will detect the malware but also try to mitigate its effects from the victim machine.

The technique is based on the behavioral analysis of different aspects of system. The

proposed system will use indicators of behaviors for each layer to make decision again

a specific sample. Each layer relates to each other thus making a plus point in deciding

to make as earliest as possible. The complete analysis is done on any machine with very

minimum resource utilization. The complete three-layered analysis is done via single

program, and everything is automatic without a user input.

There is a need of few improvements in the proposed solution. Firstly, before starting

an analysis on any malware sample the behaviors databases should be up to date. All

possible malicious behaviors should be recorded and stored in database. Whenever a

new malware starts using similar behaviors the solution can easily detect them. Another

suggestion for future work is employment of some machine learning or artificial

intelligence techniques for each layer to increase the effectiveness of the proposed

technique and to lower down the false negative and false positive results.

68

69

Bibliography

[1] Skoudis, E., & Zeltser, L. (2004). Malware: Fighting malicious code. Prentice Hall

Professional.

[2] Mansfield-Devine, S. (2017). Fileless attacks: compromising targets without

malware. Network Security, 2017(4), 7-11.

[3] Sanjay, B. N., Rakshith, D. C., Akash, R. B., & Hegde, V. V. (2018, December). An

approach to detect fileless malware and defend its evasive mechanisms. In 2018 3rd

International Conference on Computational Systems and Information Technology for

Sustainable Solutions (CSITSS) (pp. 234-239). IEEE.

[4] Tian, Z., Shi, W., Wang, Y., Zhu, C., Du, X., Su, S., ... & Guizani, N. (2019). Real-time

lateral movement detection based on evidence reasoning network for edge computing

environment. IEEE Transactions on Industrial Informatics, 15(7), 4285-4294.

[5] Bulazel, A., & Yener, B. (2017, November). A survey on automated dynamic malware

analysis evasion and counter-evasion: Pc, mobile, and web. In Proceedings of the 1st

Reversing and Offensive-oriented Trends Symposium (pp. 1-21).

[6] WatchGuard Internet Security Report for Q4 2020. Available from:

https://www.watchguard.com/wgrd-resource-center/security-report-q4-2020

[7] Tian, Z., Cui, Y., An, L., Su, S., Yin, X., Yin, L., & Cui, X. (2018). A real-time correlation

of host-level events in cyber range service for smart campus. IEEE Access, 6, 35355-35364.

[8] Hendler, D., Kels, S., & Rubin, A. (2018, May). Detecting malicious PowerShell

commands using deep neural networks. In Proceedings of the 2018 on Asia Conference on

Computer and Communications Security (pp. 187-197).

[9] Fang, Y., Zhou, X., & Huang, C. (2021). Effective method for detecting malicious

PowerShell scripts based on hybrid features☆. Neurocomputing, 448, 30-39.

[10] Ucci, D., Aniello, L., & Baldoni, R. (2019). Survey of machine learning techniques for

malware analysis. Computers & Security, 81, 123-147.

[11] Sihwail, R., Omar, K., & Ariffin, K. A. Z. (2018). A survey on malware analysis

techniques: Static, dynamic, hybrid and memory analysis. International Journal on

Advanced Science, Engineering and Information Technology, 8(4-2), 1662.

[12] O,Murchu L, Gutierrez FP. “The evolution of the fileless click-fraud malware poweliks”.

Symantec Corp Report. (2015) Avialable:https://www.slideshare.net/symantec/the-

evolution-of-the-fileless-clickfraud-malware-poweliks

https://www.watchguard.com/wgrd-resource-center/security-report-q4-2020
https://www.slideshare.net/symantec/the-evolution-of-the-fileless-clickfraud-malware-poweliks
https://www.slideshare.net/symantec/the-evolution-of-the-fileless-clickfraud-malware-poweliks

70

[13] Adas, H., Shetty, S., & Tayib, W. (2015, May). Scalable detection of web malware on

smartphones. In 2015 international conference on information and communication

technology research (ICTRC) (pp. 198-201). IEEE.

[14] Al-Taharwa, I. A., Lee, H. M., Jeng, A. B., Wu, K. P., Mao, C. H., Wei, T. E., & Chen, S.

M. (2012, June). Redjsod: A readable javascript obfuscation detector using semantic-based

analysis. In 2012 IEEE 11th International Conference on Trust, Security and Privacy in

Computing and Communications (pp. 1370-1375). IEEE.

[15] Zeltser L., “The history of Fileless malware-looking beyond the buzzword”, Available :

https://zeltser.com/fileless-malware-beyond-buzzword/ , 2018

[16] Ajay Ohri, “Fileless Malware: A Comprehensive Guide In 2021”, Jigsaw Academy, From:

https://www.jigsawacademy.com/blogs/cyber-security/fileless-malware/,

[17] Fred O’Conner, “Fileless Malware 101: Understanding Non-Malware Attacks”, Avialable:

https://www.cybereason.com/blog/fileless-malware, 2019

[18] Nick Ismail, “Defending against fileless malware” https://www.information-

age.com/defending-fileless-malware-123466835/, 2017

[19] Moser, A., Kruegel, C., & Kirda, E. (2007, December). Limits of static analysis for

malware detection. In Twenty-Third Annual Computer Security Applications Conference

(ACSAC 2007) (pp. 421-430). IEEE.

[20] Egele, M., Scholte, T., Kirda, E., & Kruegel, C. (2008). A survey on automated dynamic

malware-analysis techniques and tools. ACM computing surveys (CSUR), 44(2), 1-42

[21] Afianian, A., Niksefat, S., Sadeghiyan, B., & Baptiste, D. (2019). Malware dynamic

analysis evasion techniques: A survey. ACM Computing Surveys (CSUR), 52(6), 1-28.

[22] Lee, G., Shim, S., Cho, B., Kim, T., & Kim, K. (2021). Fileless cyberattacks: Analysis and

classification. ETRI Journal, 43(2), 332-343.

[23] Shalaginov, A., Banin, S., Dehghantanha, A., & Franke, K. (2018). Machine learning aided

static malware analysis: A survey and tutorial. In Cyber threat intelligence (pp. 7-45).

Springer, Cham.

[24] Liu, C., Xia, B., Yu, M., & Liu, Y. (2018, June). PSDEM: A Feasible De-Obfuscation

Method for Malicious PowerShell Detection. In 2018 IEEE Symposium on Computers and

Communications (ISCC) (pp. 825-831). IEEE

[25] Krishna, B. L. (2020). Comparative Study of Fileless Ransomware. In International Journal

of Trend in Scientific Research and Development (IJTSRD), Vol. 4

https://zeltser.com/fileless-malware-beyond-buzzword/
https://www.jigsawacademy.com/blogs/cyber-security/fileless-malware/
https://www.cybereason.com/blog/fileless-malware
https://www.information-age.com/defending-fileless-malware-123466835/
https://www.information-age.com/defending-fileless-malware-123466835/

71

[26] M. Amin, P. Sharma, "A Survey on Fileless Malware Attacks: Malware Hiding in

Memory", IJSRD - International Journal for Scientific Research & Development|,Vol. 5,

Issue 03, 2017

[27] Li, Z., Chen, Q. A., Xiong, C., Chen, Y., Zhu, T., & Yang, H. (2019, November). Effective

and light-weight deobfuscation and semantic-aware attack detection for powershell scripts.

In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications

Security (pp. 1831-1847).

[28] Vala Khushali, “A Review on Fileless Malware Analysis Techniques”, International

Journal of Engineering Research & Technology Vol. 9 Issue 05, 2020

[29] Kumar,Sushil (2020). An emerging threat Fileless malware: a survey and research

challenges. Cybersecurity, 3(1), 1-12.

[30] Sanjay, B. N., Rakshith, D. C., Akash, R. B., & Hegde, V. V. (2018, December). An

approach to detect fileless malware and defend its evasive mechanisms. In 2018 3rd

International Conference on Computational Systems and Information Technology for

Sustainable Solutions (CSITSS) (pp. 234-239). IEEE.

[31] Tsuda, Y., Nakazato, J., Takagi, Y., Inoue, D., Nakao, K., & Terada, K. (2018, August). A

lightweight host-based intrusion detection based on process generation patterns. In 2018

13th Asia Joint Conference on Information Security (AsiaJCIS) (pp. 102-108). IEEE.

[32] Nahmias, D., Cohen, A., Nissim, N., & Elovici, Y. (2019, July). Trustsign: Trusted

malware signature generation in private clouds using deep feature transfer learning. In 2019

International Joint Conference on Neural Networks (IJCNN) (pp. 1-8). IEEE.

[33] Saad, S., Mahmood, F., Briguglio, W., & Elmiligi, H. (2019, November). Jsless: A tale of a

fileless javascript memory-resident malware. In International Conference on Information

Security Practice and Experience (pp. 113-131). Springer, Cham.

[34] Lim, C., Kotualubun, Y. S., & Ramli, K. (2017). Mal-Xtract: Hidden Code Extraction using

Memory Analysis. In Journal of Physics: Conference Series (Vol. 801, No. 1, p. 012058).

IOP Publishing.

[35] Handaya, W. B. T., Yusoff, M. N., & Jantan, A. (2020, February). Machine learning

approach for detection of fileless cryptocurrency mining malware. In Journal of Physics:

Conference Series (Vol. 1450, No. 1, p. 012075). IOP Publishing.

[36] Tarek, R., Chaimae, S., & Habiba, C. (2020, March). Runtime api signature for fileless

malware detection. In Future of information and communication conference (pp. 645-654).

Springer, Cham.

72

[37] Gadgil, P., & Nagpure, S. (2019, March). Analysis Of Advanced Volatile Threats Using

Memory Forensics. In Proceedings 2019: Conference on Technologies for Future Cities

(CTFC).

[38] Lee, J. M., & Hong, S. (2021, June). Host-Oriented Approach to Cyber Security for the

SCADA Systems. In 2020 6th IEEE Congress on Information Science and Technology

(CiSt) (pp. 151-155). IEEE.

[39] Obeis, N. T., & Bhaya, W. (2018). Malware analysis using APIs pattern

mining. International Journal of Engineering & Technology, 7(3.20), 502-506.

[40] Botacin, M., Grégio, A., & Alves, M. A. Z. (2020, September). Near-Memory & In-

Memory Detection of Fileless Malware. In The International Symposium on Memory

Systems (pp. 23-38).

	Dedication
	Acknowledgements
	Abstract
	List of Figure
	List of Tables
	Acronyms
	Introduction
	Background
	Types of Windows Malwares
	Virus
	Worm
	Trojan Horse
	Bot
	RootKit
	Scareware
	Spyware
	Ransomware
	Backdoor
	Keyloggers
	Rogue Security Software
	Browser Hijackers

	Malware Creators
	Malware Propagation
	Code Obfuscation
	Code Encryption
	Oligomorphic Strategy
	Polymorphic Strategy
	Metamorphic Strategy

	Malware Symptoms/Sign
	Preliminaries of Fileless Malware
	PowerShell
	Powershell An object-oriented, strongly typed scripting language is used by PowerShell, which is an organizational computing tool. As a consequence of Microsoft's open source strategy, it is becoming more popular. As a result of the fact that PowerShe...
	PowerShell is a command-line tool that is mostly used for administrative tasks [9]hence it is not often utilised for everyday tasks.
	For this reason, malware attackers like PowerShell since it allows them to grant remote access to their victims
	Fileless Malware and its Working
	Fileless vs File-Based Malware
	Fileless Malware Detection
	Static Analysis Vs Dynamic Analysis of Fileless Malware

	Problem Statement
	Objectives
	Thesis Outline
	Literature Review
	Literature Review
	Critical Review
	Used Analysis Type
	Used Analysis Technique
	Proposed Technique Results
	Layered Wise Technique

	Proposed Methodology
	Three Layered Architecture of Proposed Technique
	Layer I – Running Process’s Analysis
	Layer II – PowerShell Analysis
	Layer III – Run Time Processes API Analysis
	Interconnected Layered Wise Behavior Analysis

	Proposed Technique Design and Implementation
	Overview
	An antimalware approach is presented in this chapter, along with its formulation and construction, to limit the danger of new and atypical malicious programs. Constant behavior monitoring and the determination of both the rightness among those behavio...
	To begin, we must write application specs that may be stated in a document to explain the intended behavior of that application. This is the first stage in our strategy. It is this new technique that makes use of specs that explain the anticipated per...
	Application functionality or actions are monitored by comparing their behavior to the behavior requirements that have been created to capture the right behavior of the actions. This is known as specification-based monitoring. It is common practice to ...
	Techniques that detect anomalies in the running behaviour of an application also perform operations by creating profiles of the application's normal behaviour, which is typically formed through automated training, and then comparing them to the actual...
	A further approach, called specification-based detection, involves manually abstracting and crafting the right behaviors of essential objects into behavior specifications, which are then compared to the actual behaviour of those objects. Reference imp...
	Architecture
	Layer I (Processes Watcher)
	Layer II (PowerShell Analyzer)
	Layer III (Memory Hooking/APIs Calls Monitoring)
	Layer III will be activated if any new process is get created in the process chain created during layer I. All process is get hooked by the proposed technique one by one and monitor will be activated by using hooking into the main process.

	API hooking is indeed a method that allows us to instrument and manipulate the behaviour and execution of API requests in a controlled manner. API hooking may be accomplished on Windows using a variety of approaches. Memory cutoff point and other tech...
	Windows Hooks are certainly a highly common way for inserting DLL into a specific process. This technique depends on the functionality given by Windows Hooks. According to the Microsoft Developer Network, a hook is a pitfall in the system's message-ha...
	The injection of a DLL through into main memory of an independent process is a critical component of a monitoring system. It gives a fantastic chance to exert control on the thread activities of a process. If you wish to monitor API call calls inside ...
	DLL injection is a method in computer science that allows you to execute code into the main memory of some other process by compelling the process to acquire a dynamic-link library (or DLL). When external programs attempt to alter the behaviour of ano...
	Interconnected Layer Automation
	All the three layers are interconnected with each other via central communication system. The whole process starts from layer I and follow up to the layer III. The whole process is automated and doesn’t require any user input during or before start of...
	GUI Presentation
	A GUI based solution is created to add/edit/delete records of behavioral signatures for the proposed solution. The proposed solution will download the data from cloud and then utilize the downloaded data for all there layered wise analysis. Furthermor...

	/
	The GUI system have authentication system as illustrated in figure above before going to the dashboard area where the statistic of the solution is shown. Furthermore, in the GUI panel the user has to add all behaviors which is wanting to be analyzed o...
	/
	The view of the dashboard is illustrated below where user can see the statistic of the malware samples detection and other data related to the process analysis and PowerShell detection.
	Results Analysisand Finding
	Experiment Design
	False Positive Result Analysis
	False Negative Result Analysis
	Detected Samples Classification
	Conclusion and Future Directions
	Bibliography

