Ny v -,\‘,: |\']"\..,-\1"/' A &2 (\\\/ !1 :i\f
VOICE MASKERN T

i & li‘ bt |

By
Humera Ayub
(2000-NUST-BIT-241)

Do
\\\l 2 f"_:?,]"". I

A r‘\

il I;ra:i'o?'f:w-n subiittad fn ";L"i- | Gulfiltim ot of
tha requiremants for the dagras of
Bachslors in lnformation Technology

I

NUST lostituts of Informadion Tedimalogy

National University of Sciancas & Tadmology
Rawalpindi Pakistam

(2004

VOICE MASKING SYSTEM

Humera Ayub

(2000-NUST-BIT-241)

A project submitted in partial fulfillment of
the requirements for the degree of
Bachelors in Information Technology

In

NUST Institute of Information Technology
National University of Science and Technology
Rawalpindi, Pakistan

(2004)

Certified that the contents and form of project entitled: “Voice
Masking System” submitted by Ms. Humera Ayub have been found

satisfactory for the requirements of the degree.

T

T Pf? L//

i Call N Hu\};;.i
. | N [2)=]
Supervisor: el Date. .,4.75’9..9& ol /-,

Mr. Nasir Mahmood

Member: /(/ﬁww(\’ ‘...'ﬁﬁ\/(:/ iq
" {31'. Sﬁé\é/l\/[urtaza : / Kf

\\&/ |
Member: Y,

Mr. Kamran Shafi

Member: Mdmwzg ﬂm}(

M1 Mohammad Aéa'zlf

Member: Mﬂ)

Mr. Samran Afzal

Dedication

To my parents and my brother.

Preface

The central theme of this project is to study the different attributes and properties of
sound, to study the methods for modification of voice, to learn advance programming

techniques of Visual C++ and to come up a software which can be used to modify the

sound and transmit it on Public Switched Telephone Network.

The work on this project began in November 2003. Major time was spent on studying
digital audio processing software examples. Different voice masking techniques were
also studied. Various digital sound processing libraries and their usage was also

studied before making a feasible software design.

Voice Making System project can be used in game programming, cartoons and
animated movies. This system can be used to replace voice masking hardware such as
Voice Changer 1I . Enhanced versions of it can be implemented as a full fledged
Enterprise Telephone Security System.

Humera Ayub

February 2004

Acknowledgements

I am greatly indebted to my Mr. Nasir Mahmood, my supervisor for his good guidance
and encouragement throughout this project. I would like to thank him for the
invaluable guidance and encouragement, which he has provided throughout my
research. The calm with which he handled obstacles we faced during the course of
research really helped a lot in keeping my enthusiasm high. This work would not have
been possible but for his support.

Above all I would like to thank my parents for their absolute confidence in me, I
would not have been able to pursue my BIT degree and this project without their
support. - They were, are and will always be the source of inspiration in all my

endeavors.

1

Table of Contents

PRE T ACE oo eeeeveesretteissessase s sereasaesassaesambaeesremesas s s e R R s e s an e e e ann e e s st e e bt s e s e s s 1
ACKNOWLEDGEMENTS vttt see s rrrse st et ssias s sssee s s sassssssnstesissssinsssanes 11
TABLE OF CONTEN T S . ittt ettt aa b eaeee 111
LIST OF ABBREVIATIONS ..oveiviieiteerrreenre et ssane st snnessasss s it s v
LIS T OF FIGURES .ot eeeeetreeiiirtesassaasieeaasreessrmtesressssnatassanrsstneassseensretnabtssssaaes s nrsses VI
ABSTRACT oo ceteeeeereeressessssssssssssssess e seesseses s snssss st s bbbt sinssees VI
CHAPTER 1 - INTRODUCTION. ettt it vt et vttt s teaaaaaneanas 1
1.1 Scope 0f the PIoJECt. ..ouvivnrrie ettt 2

1.2 PrOJect PIAN. . oevunveei ittt ee et 2

1.2.1 Dialup SOMWATe. . ..vvniiniiiii e 2

1.2.2 Voice Capturing from Mike, Recording and Playing of Voice.....3

1.2.3 Masking of VOICC....oviviiiriiie 3

1.3 REQUITEIMEIES. ..o tuerrrnntirseerns e rereeetss st r s ae s et 3

1.4 System Functionality.........ovvrvriiiii e 4
CHAPTER 2 - LITERATURE REVIEW . ..o.oiiiiiiie i 5
2.1 Introduction to digital audio........ooviiiin 6

2.2 Resource Interchange File Format Services (RIFF)...........ooovn. 7

2.3 Wave File FOIMAL. . ov it ittt vttt a et bs i 8

2.4 The Fourier Transform as a mathematical concept..........ooeiiiinn 9

2.4.1 Applications of FFT.. ..o 10

2.5 The Short Time Fourier Transforml. ... il

2.6 Telephony APT OVEIVIEW.....oovii i 12

2.6.1 How TAPI works. ..o 12

it

2.6.2 Why Use TAPI?....iiiri s 13

2.6.3 TAPI Phone DeviCes...ouvr i eeee 14

CHAPTER 3 - SYSTEM DESIGN. ...t 15
3.1 Use €ase DIZIAN. ..ceu et iire s ararnaan e e a s 15

3.1.1 Actors and Use Cases.....veeeiniiririiiiiiiiiiaeaiiereaereeins 16

3.2 Domain Model. ..o 18

3.2.1 Domain Class Diagram...........oooiviiiiiiiiiiiiiiie 19

3.2.2 Class DefIitions. .. ooeveveereriieeeeiiiiiie e 19

CHAPTER 4 - IMPLEMENTATION ...t e 22
4,1 MEC ArchiteCtUI. .. vt eee vt r e sie e e 22

4.2 Implememtation Details..........ooooiiiiii 24

4.2.1 Functionality behind the Dialog..........coooiii i 24

4.2.2 Multimedia and Window MesSages....ocvcervveieiinniiriiaininnnes 27

4.2.3 Multimedia and Window Messages Handlers....................... 29

4.3 The Dialup Module ..ot 32

43,1 CTapiConnection Class.......oveiveiniiniiiiicina 32

4.4 Recording and Playing Module.........ooiiieni 36

4.5 Masking Module.........ooouiiiiiniia 39
CHAPTER 5 - CONCLUSIONS AND FUTURE WORK..........cooiiin 42
T 01414 G S PP PR TR 42

oI 0101313 L3 (63 T PP PRES 43

5.3 FUUIE W OTK e e e 44

10 A & B 8 2 N L) APPSO 45
APPENDIX A : USER MANUAL ..o 47

v

List of Abbreviations

API Application Programming Interface
Ch Compact Disk

DFT Discrete Fourier Transform

DLIL Dynamic Link Library

DSP Digital Signal Processing

FFT Fast Fourier Transform

Hz Hertz

10 Input Output

MSDN Microsoft Development Network
PCM | Pulse Code Modulation

PSTN Public Switched Telephone Network
RIFF Resource Interchange File Format
SP Service Pack

STFT Short Time Fourier Transform

TAD Telephone Answering Device

TAP] Telephony Application Programming Interface
Ul User Interface

VC Visual C

VolP Voice over 1P

VMS Voice Masking System

List of Figures

1.1 WMS BLOCK DEAGRAM 1.vveeerrreriatmesemesssas s rosssesias s s s st 4
9T RIET CHUNK caveevreememsessesssssasesessessesssansasmsasabsbsnassss s £ esshe s 1810 n s ah s s S 8
2.7 TAPT ARCHITECTURLE 1.oevrvesereseesetssisssaseesessssstassasmssssabs s s ssss bt s 12
3.1 USE CASE DIAGRAM OF VOICE MASKING SYSTEM 1.oomimiiimniianinismmnin st 16
39 CLASS DIAGRAM OF VOICE MASKING SYSTEM o.cuiuiiimnmmminir st o se s 19
4.1 MEC BASED WINDOWS PROGRAM EXECUTION .c.ocovvuirirri s srsrn s e 23
4.7 MULTIMEDIA AND WINDOW MESSAGES AND THEIR HANDLERS. .. oovrnomvmetannrnnnmmannsnnanrees 30
vi

Abstract

This project discusses the real-time processing of digital audio. Voice Masking System 1s
a software that allows the real-time modification of waveform audio. Thus, it allows the
user to directly hear the effects of parameter settings. Simultancously, it records the audio
input from the microphone.

The software also has a dialup module which can be used to transmit the masked or
unmasked voice on the telephone. The system works using Telephone Application
Programming Interface TAPI for dial up purposes which is used to make and disconnect
calls from PC to phone.

For voice masking, the system uses Sound’Iouch sound processing library which provides
different functions for sound ma.rillipulation. In addition the software can also record voice
from mike in wave format andcan also play it. Enhanced version of the software can be
used in game prograrmning:,.animated movies, IP based voice chatting systems and
intelligence agencies. By adding voice recognition features it can be used for home and
enterprise telephone security.

We hope Voice Masking System will help the software developers and the IT students,
who are interested in working on voice applications, to get better understanding of the

domain.

vl

|
1
1
é
i

Chapter 1

INTRODUCTION

Voice masking actually means to mask the voice that is to convert the voice into some other
voice by changing its frequency, pitch amplitude ete. The sofiware solution provides a way 1o
modify voices. The main theme of the project is to study voice and different techniques used to

modify the voice.

Voice Masking System will enables digitized voice to be changed from high pitch to low from
female to male or child voices (or vice versa). The opportunity to modify voices in real-time, as
well as pre-recorded speech, provides a range of substantial benefits, allowing people to stay
anonymous during communication, fit the person type they prefer as well as to understand each

other in a more efficient way.

The enhanced version will provide benefits in both world-wide and in-house products, and will
be useful in the wide range of applications such as VoIP based applications, for people to
change their voices while chatting, conferencing, etc., could be perfect for private investigators,
phone systems, and many entertainment applications. An opportunity to change voice rate

provides a range of benefits to education programs, allowing easier and more convenient

material adoption.

Voice masking is used extensively in game programming. Microsoft Xbox muliiplayer games
and Xbox live uses voice masking capabilities for online and multiplayer games. Within game-
play, players arc now able to morph their voices to that of the character they are currently

playing.

{.1 Scope Of The Project

The scope includes study of voice, to learn the advance programming techniques, to study the
voice modification techniques and the development of software that provides,

1. Call dialing facilities.

2. Voice masking facilities.

3. Voice recording facilities.

1.2 Project Plan

The project basically consists of the following modules.
1. Building Dialup Software.
2. Voice Capturing from mike, recording and playing of voice.

3. Masking of voice.

1.2.1 Dialup Software
The first module in our project is building dialup software. For this purpose we will be using
Microsoft Telephone APL. Microsoft provides more than 100 functions as part of TAPI library.

The TAPI version being used is 1.4 supporting PSTN (Public Switched Telephone Network)

Telephony. This dialup software will be capable of making and disconnecting calls only.

1.2.2 Voice Capturing from Mike, Recording and Playing of Voice

The second module of our project will be refated to capturing voice from mike and recording
and playing of voice. For this purpose we will be using multimedia facilities provided by V-,
The voice will be saved in wave format. The input for this module will be the voice that is

received from the Mike and it will be saved and played from our software.

1.2.3 Masking of Voice

The third module of our project will be masking of voice. In this module different techniques for
masking of voice were studied. Different sound processing libraries were also studied to mask
the input voice. The module will change the pitch of the wave file. The wave file can also be

played and sound data can be sent on to the telephone line using the modem.

1.3 Requirements
Here we list the software and hardware requirements of our project.
Software
s A-C/C++ compiler targetting the Win32 platform, preferably Microsoft Visual C++ 6.0
on Windows 98, 2K, ME, XP
s SPS5 for Visunal C++ 6.0
s Processor Pack 5 for Visual C++ 6.0
e SoundTouch Library for processing Sound / Wave files
Hardware

e A microphone and Speakers / Microphone with Headphones

« Voice Modem

e« Sound Card
e Telephone Line

e Audio Cable / TAD Cable

1.4 System Functionality

s Initially the user will speak from mike and can save his voice as well

s The user can modify his voice using the mask voice shider

= Then the user will dial a phone number by entering a phone number and pressing the dial
button

» Lventually user will listen the ringing and then voice of the person he has called.

= The user can start conversation using mike plugged into the sound card. The person
receiving the call on telephone set will be hearing the masked voice.

Users PC

Voice Masking
System

F 3
Masked
Original Voice Recerver
; .) eceiver’s
volee Voice Modem | [Telephoneline | felephone
i Set
A
Voice I/P
through Mic ¥
p Sound Card
Voice O/P on
Speaker
Fig 1.1: VMS Block Diagram

Chapfter 2

LITERATURE REVIEW

A ot of research is being carried out on digilal audio processing and on modifying and
analyzing voice using FFT, STFT, and Wavelet Transform [29] etc. Microsoft has also been
working on developing a real time voice masking algorithm. A lot of research is being carried
out by International Audio Engineering Society {27] and IEEE Signal Processing Society [28].
Work on VMS started off by consulting various mailing lists as o how to go by the topic and
the project. As for programming Microsoft’s Development Network library and various books
on C programming are consulted. The names of the books [17] are given in the reference.

The background study and the literature review have been done in the domains as under:

= Sound / Characteristics of Sound [14]

= PCM / Sampling Sound [19]

= Wave Formats (RIFF etc.) [4]

Multimedia File 10 Functions {18]

Technology Learning [17]

* Windows programming

e Creating DLLs

= Win32 Application

e Multithreading

¥ Message Maps

Masking of voice

s Different techniques for modification of the voice signals like FFT [3], STFT [20], Wavelet
Transforms [29] etc.

Digital Sound Processing Libraries [21]

2.1 Introduction to digital audio

The most common type of digital audio [5] recording is called pulse code modulation (PCM).
Pulse code modulation is what compact discs and most WAV files use. In PCM recording
hardware, a microphone converts a varying air pressure (sound waves) into a varying voltage.
Then an analog-to-digital converter measures (samples) the voltage at regular intervals of time.
For example, in a compact disc audio recording, there are exactly 44,100 samples taken every
second. Each sampled voltage gets converted into a 16-bit integer. A CD contains two channels
of data: one for the left ear and one for the right ear, to produce stereo. The two channels are
independent 1‘ercordings placed "side by side" on the compact disc. (Actually, the data for the left

and right channel alternate...left, right, left, right, ... like marching feet.)

The data that results from a PCM recording is a function of time. It often amazes people that a
sequence of millions of integers on a compact disc recording can yield music and speech. People
tend to wonder, "How can a stream of numbers sound like an entire orchestra?" It seems
magical, and it is! Yet the magic is not in the digital recording; it's in your ear and your brain.
To understand why this is true, imagine that you could place a microscopic movie camera in
your ear to film your ear drum in slow motion. Suppose the movie camera was so fast that it
could take a picture every 1/44,100 of a second. Also, suppose that the images this camera

captured on film were so crisp and sharp that you could discern 65,536 (64K) distinct positions

of the ear drum's surface as it moved back and forth in response to incoming sound waves. If

you used this hypothetical technology to film your car drum while listening to vour best friend
saying your name, then took the resulting movie and wrote down the numeric position of your
ear drum in every frame of the movie, you would have a digital PCM recording. If you could
later make your ear drum move back and forth in accordance with the thousands of numbers you
had written down, you would hear your friend's voice saying your name exactly as it sounded
the first time. It really doesn't matter what the sound is - your friend, a crowded party, a
symphony - the concept still holds. When you hear more than one thing at a time, all the distinct
sounds are physically mixed together in your ears as a single pattern of varying air pressure.
Your ears and your brain work together to analyze this signal back into separate auditory

sensations.

2.2 Resource Ipterchange File Format Services (RIFF)

RIFF [21] 1s a file for_mat for storing many kinds of data, primarily multimedia data like audio
and video. It is based :c;'n chunks and sub-chunks. Each chunk has a type, represented by a four-
character tag. This chunk type comes first in the file, followed by the size of the chunk, then the

contents of the chunk.

The entire RIFF file is a big chunk that contains all the other chunks. The first thing in the
contents of the RIFF chunk is the "form type," which describes the overall type of the file's
contents. So the structure of a RIFF file looks like this:

Offset Contents

(hex)

0000 IR!’ II|, lFI, !FI
0004 Length of the entire file - 8 (32-bit unsigned integer)

0008 form type (4 characters)

000C first chunk type (4 character)
0010 first chunk fength (32-bit unsigned integer)
0014 first chunk’s data

D
Bize -
FormType
r D
Size
Subchunk -
Data
—"RIFF" Chunk Data
¢ [&
Slra
Subchunk
Data
1

Fig 2.1: RIFF Chunk

All integers are stored in the Intel low-high byte ordering (usually referred to as "little-endian").

"RIFF" chunks include an additional field in the first four bytes of the data field. This additional
field provides the form type of the field. The form type is a four-character code identifying the
format of the data stored in the file. For example, Microsoft waveform-audio files have a form

type of "WAVE".

2.3 Wave File Format

The WAVE file format is a subset of Microsoft's RIFF specifications, which can include lots of

different kinds of data. It was originally intended for multimedia files, but the specifications is
open enough to allow pretty much anything to be placed in such a file, and ignored by programs

that read the format correctly.

The WAVE format is a subset of RIFF used for storing digital audio. Its form type is "WAVE",

and it requires two kinds of chunks:

e fmit chunk, which describes the sample rate, sample width, etc., and

000C first chunk type (4 character)
0010 first chunk length (32-bit unsigned integer)
0014 first chunk's data

{3
Bize -
Form Tvpa
r 8]
Size
Subchunk —
Data
- "FIFF" Chunk Data
(D
Size
Subchunk —
Data
B |

Fig 2.1: RIFF Chunk

All integers are stored in the Intel low-high byte ordering (usually referred to as "littie-endian").

“RIFF" chunks inctude an additional ficld in the first four bytes of the data field. This additional
field provides the form type of the field. The form type is a four-character code identifying the
format of the data stored in the file. For example, Microsoft waveform-audio files have a form

type of "WAVE".

2.3 Wave File Format

The WAVE file format is a subset of Microsoft's RIFF specifications, which can include lots of
different kinds of data. It was originally intended for multimedia files, but the specifications 1s
open enough to allow pretty much anything to be placed in such a file, and ignored by programs

that read the format correctly.

The WAVE format is a subset of RIFF used for storing digital audio. Its form type is "WAVE",

and it requires two kinds of chunks:

o fmt chunk, which describes the sample rate, sample width, etc., and

s data chunk, which contains the actual samples.

WAVE can also contain any other chunk type allowed by RIFF, including LIST chunks, which
are used to contain optional kinds of data such as the copyright date, author's name, etc. Chunks

can appear in any order.

2.4 The Fourier Transform as a Mathematical Concept
The Fourier Transform [3] is based on the discovery that it is possible to take any periodic
function of time x(7) and resolve it into an equivalent infinite summation of sine waves and
cosine waves with frequencies that start at 0 and increase in integer multiples of a base
frequency fy = 1/, where T is the period of x(¢). Here is what the expansion looks like:

“ .

x(t)y=a, + Z(a cos(Zfrk;fnt) + b, sin(27rﬂf0t))

k=1
An expression of the form of the right hand side of this equation is called a Fourier Series. The
job of a Fourier Transform is to figure out all the ay and b; values to produce a Fourier Series,
given the base frequency and the function x(f). You can think of the ap term outside the
summation as the cosine coefficient for /0. There is no corresponding zero-frequency sine
coefficient by because the sine of zero is zero, and therefore such a coefficient would have no
effect.
Of course, we cannot do an infinite summation of any kind on a real computer, so we have to
seftle for a finite set of sines and cosines. It turns out that this is easy to do for a digitally
sampled input, when we stipulate that there will be the same number of frequency output
samples as there are time input samples. Also, we are fortunate that all digital audio recordings

have a finite length. We can pretend that the function x(r) is periodic, and that the period is the

same as the length of the recording. In other words, imagine the actual recording repeating over
and over again indefinitely, and call this repeating function x(). The math for the FI'T then
becomes simpler, since it will start with the base frequency fo which spans one wavelength over
the width of the recording. In other words, fo = samplingRate / N, where N is the number of

samples in the recording.

2.4.1 Applications of the FFT

The FFT algorithm tends to be better suited to analyzing digital audio recordings than for
filtering or synthesizing sounds. A common example is when you want to do the software
equivalent of a device known as a spectrum analyzer, which electrical engineers use for
displaying a graph of the frequency content of an electrical signal. You can use the FFT to
determine the frequency of a note played in recorded music, to try to recognize different kinds
of birds or insects, ete. The FFT is also useful for things which have nothing to do with audio,
such as image processing (using a two-dimensional version of the FFT). The FFT also has
scientific/statistical applications, like trying to detect periodic fluctuations in stock prices,
animal populations, etc. FFTs are also used in analyzing seismographic information to take
"sonograms" of the inside of the Earth.

The main problem with using the FFT for processing sounds is that the digital recordings must
be broken up into chunks of n samples, where n always has to be an integer power of 2. One
would first take the FFT of a block, process the FFT output array (i.e. zero out all frequency
samples outside a certain range of frequencies), then perform the inverse FFT 1o get a filtered
time-domain signal back. When the audio is broken up into chunks like this and processed with

the FFT, the fillered result will have discontinuities which cause a clicking sound in the output

10

at each chunk boundary. For example, if the recording has a sampling rate of 44,100 Hz, and the
blocks have a size n = 1024, then there will be an audible click every 1024 / (44,100 Hz) =

0.0232 seconds, which is extremely annoying to say the least.

2.5 The Short Time Fourier Transform

Any sampled signal can be represented by a mixture of sinusoid waves, which is called partials.
Besides the most obvious manipulations that are possible based on this representation, such as
filtering out unwanted frequencies, we will see that the "sum of sinusoids" model can be used to
perform other interesting effects as well. It appears obvious that once we have a representation
of a signal that describes it as a sum of pure frequencies, pitch shifting must be easy to

implement. As we will see very soon, this is almost true.

To understand how to go about implementing pitch shifting in the “frequency domain", we need
to take into account the obvious fact that most signals we encounter in practice, such as speech
or music, are changing over time. Actually, signals that do not change over time sound very
boring and do not provide a means for transmitting meaningful auditory information. However,
when we take a closer look at these signals, we will see that while they appear to be changing
over time in many different ways with regard to their spectrum, they remain almost constant
when we only look at small "excerpts", or "frames" of the signal that are only several
milliseconds long. Thus, we can call these signals "shoxt time stationary", since they are almost

stationary within the time frame of several milliseconds.

Because of this, it is not sensible to take the Fourier transform of our whole signal, since it will

not be very meaningful because all the changes in the signals' spectrum will be averaged
y g 2 p £

11

al each chunk boundary. For example, if the recording has a sampling rate of 44,100 Hz, and the
blocks have a size n = 1024, then there will be an audible click every 1024 / (44,100 Hz) =

0.0232 seconds, which is extremely annoying to say the least.

2.5 The Short Time Fourier Transform

Any sampled signal can be represented by a mixture of sinusoid waves, which is called partials.
Besides the most obvious manipulations that are possible based on this representation, such as
filtering out unwanted frequencies, we will see that the "sum of sinusoids" model can be used to
perform other interesting effects as well. It appears obvious that once we have a representation
of a signal that describes it as a sum of pure frequencies, pitch shifting must be easy to

implement. As we will see very soon, this is almost true.

To understand how to go about implementing pitch shifling in the "frequency domain”, we need
to take into account the obvious fact that most signals we encounter in practice, such as speech
or music, are changing over time. Actually, signals that do not change over time sound very
boring and do not provide a means for transmitting meaningful auditory information. However,
when we take a closer look at these signals, we will see that while they appear to be changing
over time in many different ways with regard to their spectrum, they remain almost constant
when we only look at small "excerpts", or "frames" of the signal that are only several
milliseconds long. Thus, we can call these signals "short time stationary", since they are almost

stationary within the time frame of several milliseconds.

Because of this, it is not sensible to take the Fourier transform of our whole signal, since it will

not be very meaningful because all the changes in the signals' spectrum will be averaged
y g 8 p

11 .

together and thus individual features will not be readily observable. If we, on the other hand,
split our signal into smaller "frames", our analysis will sce a rather constant signal in each
frame. This way of seeing our input signal sliced into short pieces for each of which we take the

DFT is called the "Short Time Fourier Transform" (STFT) of the signal.

2.6 Telephony API Overview
The Telephony Application Programming Interface (TAPI) [23] provides a uniform set of

commands for any supported telephony device that is connected to your computer

2.6.1 How TAPI works

When you use a Windows program to send faxes, connect to a telephone, make a call using 1P,
join a conference, or perform other TAPI-supported activities, there are three layers of software
that enable you to use a telephony device: an application program, TAPI, and a TAP1 service

provider.

TAPI Application Program

TAPI Service

TAPI Service Provider

55 Phone system

Fig 2.2: TAPI Architecture

12

An application program enables you to make phone calls, send and receive data or faxes, or Join
conferences. Microsoft and independent software vendors provide application programs that
incorporate TAPI functionality. Examples include Phone Dialer, HyperTenninal, and IFax
Service included with the Windows 2000 operating system. TAPI provides telephony functions
for application programs, such as dialing. A TAPI service provider translates the commands for
a telephony device or telephony protocol. TAPI service providers for modems and several
telephony protocols are installed with the Windows operating system, and others are provided

by independent hardware vendors.

2.6.2 Why Use TAPI?
Telephony application programming interface is used if we want to use computer for following

purposes.

e Use a computer as an answering machine or voice mailbox.

¢ Use a computer to send and receive faxes.

e Use a microphone and speaker or a speakerphone connected to a multimedia computer as
a phone system.

e Logonto a computer from a remote location.

These solutions are typically supported by a direct connection from a deskiop computer to a

phone line with a modem.

Corporate organizations use TAPI based applications due to following reasons.
e Use a computer either as a multiline phone system or as a multifunction PBX controller.
e Provide a voice-mail system across your entire enterprise.

s Provide a fax system across your entire enterprise.

13

s Provide on~demand audio information services that allows callers to retrieve prerecorded
or computer-generated lext-to-speech information,

s Fax information to customers on demand , based on touch-tone keys or other input.

o Deliver database information related to a call (such as a customer profile or account
information) at the same time it is switched fo a desktop.

e Create a single, easy-to-use client application to manage all communications, such as
voice, pager, e-mail, and conferencing.

e Provide dial-up access to the network.

2.6.3 TAPI Phone Devices
TAPI supports three types of phone devices, that is to say a device that can be taken off the hook
or placed on hook by the users and has a microphone and speaker or earphone. The supported
devices are :

e Handset, something you would recognize as a traditional telephone set

e Speakerphone, a loud speaking telephone set used for hands free calls. Not suitable for

use in shared or noisy environments.
e Headset, used for hands free calls, convenient for people spending long periods of time
communicating by telephone.
All of these features are supported by TAPI but obviously depend upon the telephony hardware
and the TSP capabilities. An application can request from the TSP the capabilities of the
telephony device. Do you support a "Speaker Phone”, do you support a "Headset" cte. this

allows the application to adapt itself depending on the supporied feature set.

14

Chapter 3

SYSTEM DESIGN

System design is the process of developing a plan for an improved system based on the results
of literature review and research. This chapter specifies the high level design of the Voice
Masking System that [intend to develop. I will present here the use case and class diagram of

the system.

3.1 Use Case Diagram

Use case diagrams depict the functional capabilities of the system. They detail the way in which
different types of end users or external software components (actors) interact with the system.
Use cases are an analysis artifact, not a design artifact and as such, do not depict the inner

working of the system.

“A use case is a specific way of using the system by using some part of
its functionality. Fach use case constitutes a complete course of events
initiated by an actor and its specifies the interaction that takes place be-
tween an actor and the system.

;f:l.}(‘) collected use cases specify all the existing ways of using the system”

Jacobson

15

MaskVoice Usecase Specification

Actor action

T

System Response

1) The user will move the slider control to

mask his/her voice.

2) System can send the masked voice on

line and can also play it back.

StartRecording Usecase Specification

Actor action

System Response

1) The user will press the recoxding

button and will speak in mike

2) System will save the voice of the user in

wave format. (masked or unmasked)

StopRecording Usecase Specification

Actor action

System Response

1) The user will press the stop recording

bution.

2) System will stop recording the voice.

PlaySound Usecase Specification

Actor action

System Response

1) The user will press the play button for

playing sound.

2) System will play the recorded sound.

17

OpenSoundFije Usecase Specification

Actor action System Response

1) System will open the sound file for

playing or recording of sound.

CloseSoundFile Usecase Specification

Actor action System Response

1} System will close the sound file.

WriteSoundData Usecase Specification

Actor action System Response

; 1) System will write the sound data in wave

format on hard disk

ReadSoundFile Usecase Specifiction

Actor action System Response

1) System will read sound file for playing.

3.2 Domain Model

A “problem domain” refers to the real world things and concepts pertaining to the problem that
the system being designed, is to solve. Domain modeling is the task of discovering the objects
(classes) that represent those things and concepts. Included in this chapter is a class diagram that

represents the static view of the problem domain,

18

The domain model focuses on what the system will do, not how 1t will do it.

3.2.1 Domain Class Diagram

The diagram below shows the domain level classes needed by the system.

" CVoiceMaskDlg |
/ § : \l_\
; \ T
,’ﬁ' / L <<uses>>
<<has>> / T cwinau |
CTapiConnection <<has>> - o
o < < has > > << has > >

CPlayMMSound CWriteSoundFile

|

<<uses>> |
e %

CPiaySound

Fig 3.2: Class diagram of Voice Masking System

3.2.2 Class Definitions

A brief description of the classes depicted in the Domain Class diagram follows:

(CTapiConnection

CTapiConnection class supports the basic functionality needed to use the Microsoft Windows®

Telephony Application Programming Interface (TAPI) to automatically dial the telephone fora

voice connection. The class provides the most basic TAPI functionality of initialization, ability

19

The domain model focuses on what the system will do, not how 1t will do it.

3.2.1 Domain Class Diagram

The diagram below shows the domain level classes needed by the system.

r

| CVoiceMaskDlg |

i Y <<ysess
CTapiConnection <<has>>
/ <<has>> <<hgas>>
" CPlayMMSound | CWriteSoundFile
<<Uses>>

Fig 3.2: Class diagram of Voice Masking System

3.2.2 Class Definitions

A brief description of the classes depicted in the Domain Class diagram follows:

CTapiConnection y

CTapiConnection class supports the basic functionality needed to use the Microsoft Windows®

Telephony Application Programming Interface (TAPI) to automatically dial the telephone for a

voice connection. The class provides the most basic TAPI functionality of initialization, ability

19

to obtain a line, dial voice calls, drop a line, and shut down. I have made a DLL of this Class and

will use the DLL in our application

CWinAu

It implements and handles Audio API and calls SoundTouch library functions. This class will
provide facility for recording voice from mike. It takes voice input from microphone and sends
sound buffers to the CWriteSoundFile class to write them to a wave(.wav) file.
MMWimData () opens the wave input device, creates header, prepares buffers for input and
invokes the message of the CWriteSoundlile class to creates sound file onto which sound
data will be written. The class also provides other message handlers for Window messages like
MM WIM OPEN, MM WIM CLOSE, MM WOM OPEN, MM WOM_DONE, MM_WOM_CLOSE
etc. The class also provides a method PShiftAudioSignal () for shifting the pitch so as to

mask the sound buffers.

CPlayMMSound

This class will read the wave file and play to the output device. It contains one important user
defined message WM PLAYMMSOUND PLAYFILE along with three other messages.
PlaySoundFile () is the message handler for this message. This function opens the .wav
file and verifies the .wav format of the sound file. After verification new thread is staftcd which
call the PlaySound () funciion. PlaySound() invokes the message of CPlaySound

which opens the wave oulput device and then plays the sound to the output device.

20

CPlaySound

This class will provide functionality for playing the recorded voice file. It works along with
CPlayMMSound class and implements wave output functions. T his class receives messages
from CPlayMMSound and provides implementation for the message handler functions.
Important handlers are OnStartPlaying, OnStopPlaying, OnWriteSoundData,

OnkEndPlaySoundData.

CWriteSoundFile
CHriteSoundFile receives sound buffers from CWinAu and writes them 1o a wave disk
file. It implements four user defined messages. One for creating the sound file. Second for

writing to a sound file and third for properly closing the file.

CVoiceMaskDlg
This class is inherited from CDialog class and provides a user friendly UL It provides

functionalities for masking, recording, playing and dialing.

21

Chapter 4

IMPLEMENTATION

This project is made in Visual Ct++ 6.0, with Microsoft Visual Studio as the development
environment. The application uses MFC framework for creating a dialog based GUI and
Windows and Multimedia messages for dealing and manipulating the wave data. The initial part
of this chapter presents a brief overview of the MFC architecture and also describes the
integration of the various parts of the software, some important Methods (functions) along with
code snippets to explain the software implementation. The later part of this chapter describes the
three main modules i.e the Dialup Module, the Recording and Playing Module and the Masking

module.

4.1 MEC Architecture

MFC is the C-++ class library Microsofi provides to place an object-oriented wrapper around the
Windows API. MFC version contains nearly 200 classes, some of which you will use directly
and others of which will serve primarily base classes for classes of your own. In an MFC
program, you rarely need to call the Windows API directly. Instead, you create objects from
MFC classes and call member functions belonging to those objects. Many of the hundreds of
member functions defined in the class library are thin wrappers around the Windows AP and
even have the same names as the corresponding API functions. MFC is not only a library of
classes. MEC is also an application framework. More than merely a collection of classes, MFC

helps define the structure of an application and handles many routine chores on the application’s

22

)

behalf Starting with CWinApp, the class that represents the application itself, MIC
encapsulates virtually very aspect of a program’s operation. The framework supplies the
WinMain () function, and WinMain () in turn calls the application object’s member
functions to make the program go. One of the CWinApp member functions called by
WinMain () is Run{) that encapsulates the message loop that literally runs the program. The
framework also provides abstractions that go above and beyond what the Windows API has to
offer. For example MFC Document/View architecture builds a powerful infrastructure on top of
the API that separates a program’s data from the graphical representation, or use, of that data.

Such abstractions are totally foreign to the API and don’t exist outside the framework of MFC.

Globa! application object is created

¥

Execution begins with WinMain() which has been linked by MFC into our application

A

AfxGetApp() gets a pointer to an application object

N
AfxWinlnit() copies hlnstance,nCmdShow, etc. to data members of the application

h

InitApplication() is executes

Y

InitInstance() is executed

b
Run() implements the message foop

A
On encountering WM_QUIT the message loop is terminated

\
ExitInstance() performs cleanup operation if any

b
Afx WinTerm{) terminates the

Fig 4.1: MFC based Windows program execution
23

In fact not all of the functions that MFC offers are members of classes. MFC provides a set of
functions whose names begin with Afx. Class member functions can be called only in the

context of the objects of which they belong., but Afx functions are available to everyone.

4.2 Implementation Details

In a dialog based application MFC generates two main classes, the application class
(CVeiceMaskApp) and the dialog class (CVoiceMaskDlg). The application class has a
global application object named theApp which calls the WinMain (}, which in tarn calls the
AfxGetApp () and then all the functions are called as shown in fig 4.1. Since VMS is a dialog
bases application, the CVoiceMaskD]1g object gets instantiated in the InitInstance () of

the CVoiceMaskApp class.

4.2.1 Functionality behind the dialog

VMS is a dialog based application. The main dialog gets instantiated when the
OnInitDialog() function is called from the application class. This function sets the
minimum and maximum ranges of the slider control for masking voice and calls the function to
create PlayMMSound and PlaySound threads.

The details of the message handlers for the dialog controls is as follows:

e Start Recording Button
o Function :OnBnRecord

o Description : Calls save dialog for entering wave file name which is used to used
to create and record. It first calls the user defined dialog and asks for the file

name as follows:

24

resullt = savellg->DoModal ()¢

From here the control is passed onto the CSaveDlg class which gets the file
naine, stores it to an extern variable which is then used by the MMWimData {)

function to create the file

e Play Button
o Function :0nBnPlay
o Description : Gets the file name {0 be played from the open file dialog by the

following call

if (openFileDlg.DoModal () == IDOK)}

{
fName = openFileDlg.GetFileNamel);
f = new TCHAR|[fName.GetLength{)+1};
strcpy (£, fName);

}

fName now has the name of the file to be played and then sends the file
name to WM_PLAYMMSOUND PLAYFILE message of

CPlayMMScund class

e Edit Control

MR,

o Function :OnChangeEphoneno

o Description : As something is written into the edit box the dial button is enabled

as shown in the following code snippet:

GetDlgIltem (IDC BN DIAL) ~>FnableWindow (TRUE) ;

If the edit box is empty then the dial button is disabled as shown below:

25

s

if (m_CSPhoneNo.GetLength () ==0)
GetDlgltem{IDC BN DIAL) ~>EnableWindow (FALSE) ;

‘e)ial Button

o Function :0OnBnbial

o Description : copies the contents (telephone number) of the edit box to the Jocal
variable buf and then passes it onto the DialCall() function by making
use of an object of class CTapiConnection. If the functions fails the “Dialing §
|

Error” message is displayed

strcpy (buf mWCSPhoneNo) 2
bkl !m__connection.DialCall {(buf)) {
MessageBox ("Dialing Error"}; }

¢ Discomnect Button
o Function :OnBnDisconnect
o Description : Calls function to disconnect the telephone call through a

m_connection (object of class CTapiConnection) which is a member

variable of the CVoiceMaskDlg as follows

m_connect ion.HangupCall{)};

e Clear Button

o Function :0OnBnClear

o Description : Clears the contents of the edit box by following code

mm_CSPhoneNo = "";

e Zero to Nine Buttons

o Function : OnBn0 to OnBno9

26

o Description ; These ten buttons append the respective digit to the edit box

variable an example of digit “9” is shown as follows:

m_CSPhoneNo = m CSPhonelNo + "&%;

e Slider Control
o TFunction :0nVScroll
o Description : The framework calls this member function when the user clicks the
window's vertical scroll bar of the slider and sets the value of semitones as

follows:

SemiToneValue = -m PitchSlider.GetPos();

4.2.2 Multimedia and Windows Messages

VoiceMask2.cpp is the helping file which provides the functions to register the class when
constructor of the dialog is called. While registering the window class, it is passed a pointer to

the a CALLBACK window procedure for handling windows and multimedia messages.

The messages and their description is as follows:

WM CREATE

This message is sent when an application requests that a window be created by calling the
CreateWindowEx or CreateWindow function. (The message is sent before the function
returns.) The window procedure of the new window receives this message after the window is

created, but before the window becomes visible.

27

r

WM DESTROY

This message is sent when a window is being destroyed. It is sent to the window procedure of

the window being destroyed afler the window is removed from the screen.
MM WOM CLOSE

The message is sent to a window when a waveform-audio output device is closed. The device

handle is no longer valid afier this message has been sent.
MM_WOM DONE

This message is sent to a window when the given output buffer is being returned to the
application. Buffers are returned to the application when they have been played, or as the result

of a call to the waveOut Reset function.

MM_WOM OPEN

This message is sent (o a window when the given waveform-audio output device is opened.
MM WIM DATA

This message is sent to a window when waveform-audio data is present in the input buffer and
the buffer is being returned to the application. The message can be sent either when the buffer 1s

full or after the waveInReset function is called.
MMMWI M_O PEN

This message is sent to a window when a waveform-audio input device is opened.

28

i

MM WIM CLOSE

This message is sent 10 a window when a waveform-audio input device is closed. The device

handle is no longer valid afler this message has been sent.

As it is known that a callback function uses a switch statement and in our case the above

messages are handled by our code. The message handler’s implementation is provided in the

CWinaAu class.

4.2.3 Multimedia and Windows Message Handlers

The message handlers of the above described messages are summarized in the fig 4.2.

Messages Message Handler Functions

WM CREATE InitCreate (hWnd)
TnitAuln{)

InithAuOut {)

WM DESTROY CloseAll ()

MM WOM CLOSE MMWomClose ()

MM WOM_DONE MMWombDone (wParam, lParam)
MM WOM_OPEN MMWomOpen (wParam, 1Param)
MM WIM DATA MMWimData (wParam, 1Param)

29

MM WIM OPEN MMWimOpen (wParam, 1Param)

MM WIM CLOSE MMWimClose ()

Fig 4.2: Multimedia and Windows Messages and theéir Handlers

The description of some the important message handlers is as follow:

InitAuIn() : Sets format for input and opens the wave input device ie the microphone.
‘pent’ is an object of a structure named WAVEFORMATEX defined in mmsystem.h. The code

snippet shown below shows the setting up of wave format for input

pcm.wFormatTag = WAVE_ FORMAT PCM;

pcm.nChannels = 2

pcm.wBitsPerSample = 16;

pcm.nSamplesPerSec = 44100;

pem.nAvgBytesPerSec = pcm.nSamplesPerSec* (pcm.wBitsPerSample/8);
pcm.nBlockAlign = (pcm.wBitsPerSample/8) *pcm.nChannels;

After this wave input device is opened by calling waveInOpen{) function which takes

handle to the input device and the object of WAVEFORMATEX.

InitAuOut() : Sets format for playback and opens the wave out device. The format for
output must be the same as for the input, The function to open the wave out device is shown

below

waveQutCpen (&§hWaveOut, WAVE MAPPER, (struct tWAVEFORMATEX

*) &pcm, (UINT)hParentWnd, 0L, CALLBACK WINDOW) ;

30

MMWomDone () : Prepares a waveform-audio data block and sends it to the given waveform-

audio output device

waveQutPrepareHeader (hWavelut, pw, sizecf (WAVEHDR)) ;
waveDuiWrite (hWaveOut, pw,sizeof (WAVEHDR)) ;

MMWimOpen () : prepare two buffers for the sound input device

resulit=wavelnPrepareHeader (hWaveln, pWaveHdrl, sizeof (WAVEHDR) };
result=waveInAddBuffer (hWaveln, pWaveHdrl, sizeof (WAVEHDR));

// prepare second data buffer, and add into wavein device
pWaveHdrZ->1pData = {char *)pBuffer2;

pWaveHdr2->dwFlags = 01;

result=waveInPrepareHeader (hWaveIn, pWaveHdr2, sizeof (WAVEHDR));
result=wavelInAddBuffer (hiwaveln, pWaveldr2Z, sizeof{WAVEHDR)):;

MMWimData () : Gets filled sound buffers from microphone and creates and writes to wave file.

Create wave file of specified file name shown in the following code snippet:

iflm_pWrite && btnTxt=="Stop Recording" && fileCreated==FALSE})
{
PWRITESOUNDFILE pwsf= (PWRITESOUNDFILE) new WRITESOGUNDFILE;
ZeroMemory(pwsf,sizeof WRITESOUNDFILE));
char *p = pwsf->IpszFileName;
fname+="wav";
strepy(p,fname);
memepy(&pwstf->waveFormatEx,&pem,sizeof{pem));
m_pWrite->PostThreadMessage(
WM_WRITESOUNDFILE FILENAME,O,(LPARAM)pwsi);
fileCreated = TRUE; }
}

31

MMWimClose {y 1 Frees all buffers

GlobalFreePtr (pBufferl);
GlobalfreePtr (pBuffer?);
GlobalFreePtr (pBuffer3);

MMWomOpen () : Set and prepare wave output headers

pWaveQutHdr~>1pbata = pOutBuffer;

4.3 Dialup Module

I used a class, CTapiConnection, from Microsofl Development Network that supports the
basic functionality needed to use the Microsoft Windows® Telephony Application
Programming Interface (TAPI) [23] to automatically dial the telephone for a voice connection. I
have made a DLL of the CTapiConnection and used it in my project. The class provides the

following functionality:

o Initialize TAPI
e Obtain a phone line
e Place a call

o ©ndacall

4.3.1 CTapiConnection Class

The CTapiConnection class provides the application developer with a simple method of

establishing a TAPI connection, It contains the following simple functions:

32

o (reate
o DialCall
e HangupCall

e fineCallbackFunc

Note: The line callback function is not called directly by the application using the class; rather,

it is called by the system for line notifications.

Initializing TAPI

The first thing an application must do before it uses any telephony services is to initialize TAPL
This means that the application must establish some way to communicate between itself and
TAPI. TAPI uses a callback function to facilitate this communication. The application tells
TAPI the address of this callback function when the application makes a call to

lineInitialize{).

The Create () function creates the TAPI connection with the application. It call the
lineTnitialize () function which fills in two values passed to it: a usage handle

(m_hLineApp) and the number of line devices available to the application.
Obtaining a Line

Now that TAPI has been initialized, the application needs to interact with the user to know what
type of call to make. An Edit box lets the user enter the desired phone number to dial and then

click the Dial button to dial.

33

The application needs to obtain a line handle. This is done by a call to the lineOpen)
function. Before the application can make a call to 1ineOpen () it has to make sure that the

line can support the type of call that the application is trying to make.
Placing the Call

An application uses the 1ineMakeCall () function to place a call. This function takes the

following parameters:

o A handle to the open line obtained from the 1ineOpen () call.

» A pointer to the handle for the call. This will be filled in by LineMakeCall ().

o The destination address (the area code and telephone number).

o The country code (which can be set to zero to use the default value).

e A pointer to line parameters. This allows the application to specify how the call should
be set up (that is, the data rate, dialing parameters, and so on). If this is set to NULL, the

default setup is used.

The lineMakeCall() function returns a positive "request ID" (saved in fthe
m dwRequestID member variable of my class) if the function will be completed
asynchronously, or a negative error number if an error has occurred.

After the 1lineMakeCall () function successfully sets up the call, the application receives a
LINE REPLY message (the asynchronous reply to lineMakeCall). The application gets this
message through its callback function. This means that a call at the local end has been
established (that is, we have a dial tome). The LINE REPLY message also informs the

application that the call handle returned by 1ineMakeCall () is valid.

34

Several other messages or notifications are sent (o the application’s callback function. For
instance, as the call is placed, the call passes through a number of states, each of which results in
a LINE _CALLSTATE message sent to the callback function. Afler the message indicating the
connected state is received, the application can begin sending data. A handler is provided for

LINE CALLSTATE message that prints debug messages indicating the current call status.

Sending Data

The user would specify, through some user interface widget, what file or data to send and then
initiate the data transmission. The TAPI functions continue to manage the opened line and the
call in progress, but the actual transmission is started and controlled by non-TAPI functions (that
is, COMM functions). This is the type of transmission that the TAPICOMM sample

demonstrates.

TAPI continues to monitor the line and call, but if there is anything special we need to do, it is
up 1o us. I used a function that allows us to resynchronize a TAPT line call by waiting for the
LINE REPLY message. In other words, it waits until a LINE_REPLY is received or the line is
shut down. The function is called from the same thread that made the call to
lineinitialize (). If the call was dropped while in a wait state, this function can

potentially be re-entered.

- Ending the Call
When the user finishes the phone call, the application receives a LINE CALLSTATE message
telling it that the state of a line device has changed. At this point the application can disconnect

the call. The application disconnects the call when the user clicks the Disconnect button.

35

Before the application disconnects the call, it checks {o see if a call is already In progress. 1 not,
the application calls the 1ineDrop () function to place the call in the IDLE state. The call
handle must then be released for the finished call. This s done by the
lineDeallocateCall () function. Finally, 1ineClose () is called to close the line. At

this point, there will be no more incoming or outgoing calls using that line handle.

At this point the application is finished using TAPI and can continue to do whatever else it was

designed to do.

4.4 Recording and Playing Module

The following classes, CWinAu and CPlaySound, record sound and play PCM sound. There
are two more classes, CWriteSoundFile and CPlayMMSound. CWriteSoundFile
receives sound buffers from CWinAu and writes them to a WAV disk file. CP1layMMSound
opens these WAV files and plays them to the sound device. All sound files are currently PCM

samples.

With these classes, sound can be both recorded and played. Continuous sound can be monitored
and upon appropriate queues, sound can be played back. The multithreading allows other actions

to take place while sound recording i.c., sound can be saved to WAV files.

CPlaySound is being invoked by the following code:
m_pPlaySound = new CPlaySound() ;
m_pPlaySound->CreateThread();

Similar calls begin playing of sound:

m PlayThread->PostThreadMessage (WM _PLAYSOUND STARTPLAYING,Q,0);

36

CWriteSoundFile has the following messages associated with it:
For creating file of the specified name, the user is provided with an input dialog. The user can
enter the file name and the that file name is then set into PWRITESCUNDEFLLE structure and
then this structure is type casted into LPARAM as showi:
m WriteSoundThread->
PostThreadMessage(WMWWRITESOUNDFELEWFILENAME,O,(LPARAM)
PWRITESOUNDFILE &structWriteSoundFile);
For writing blocks to the wave file the following message 1s used:
m_WriteSoundThread->
POStThreadMessage(WMﬂWRITESOUNDFILE“WRITEBLOCK,O,
(LPARAM) (WAVEHDR) pWaveHdr) ;
For closing sound file the following message is used:
m WriteSoundThread->
PostThreadMessage(WM~WRITESOUNDFILEMCLOSEFILE,O,O);
To write a WAV file you must providle a WRITESOUNDFILE structure. The
WRITESOUNDFILE structure has the following definition:
typedef struct writesoundfile tag {

char lpszFileName{MAX PATH};

WAVEFORMATEX waveFormatEx;

TCHAR buffer[1007;

} WRITESOUNDFILE, *PWRITESOUNDFILE;

37

You must provide the filename, then the WAVEFORMATEX structure that defines the file o be
written. With non PCM formats there are extra style specific information at the end of the

structure, hence the 100 bytes of buffer space.

This class receives WAVEHDR blocks created by CWinau. Pushing the "Start Recording” button

will save it to a filename entered by the user.

cplayMMSound will read a WAV file and play it to the sound device. It uses a pointer to a

CPlaySound thread to acheive this. Its messages are:

The user is again provided with the facility to play the sound file of his/her choice. For that
purpose the filter of .wav extension is used. Then the file name returned by the file open dialog

is sent to the following message.

m pPlayMMSound->
PostThreadMessage(WMWPLAYMMSOUND~PLAYFILE,0,(LPARAM)fileName)
For stop playing the sound the following message is invoked.

m pPlayMMSound->PostThreadMessage (WM_PLAYMMSOUND_ CLOSEFILE, O, 0):
To get the pointer of the CPlaySound class the following message is used.

m pPlayMMSound->

PostThreadMessage (WM _PLAYMMSOUND PLAYSOUNDETR, 0, (LPARAM)

(CPlaySound*)m pPlaySound) ;

The WM PLAYMMSOUND PLAYFILE messages opens a WAV file for processing. It

automatically sends off a worker thread to play the file.

38

CcplaySound thread must be provided for this to work., That is the job of the
WM PLAYMMSOUND_ PLAYSOUNDEIR message. You can stop the play at any time by the

WM PLAYMMSOUND_CLOSEFILE message.

Multimedia file I/O functions [18] provided in the MMSYSTEM.H have been used extensively

to complete the Recording and the playing module.

4.5 Masking Module

Initially different digital audio processing techniques like FFT, STFT and wavelet transforms
were studies for masking of voice. These algorithms or techniques tend to be better suited to
analyzing digital audio recordings than for filtering or synthesizing sounds. In addition to
inefficiency of these algorithms the technique is more inclined towards DSP and requires an in
depth knowledge of DSP [24]. In order to get the work done, different sound processing libraries
like OpenAL [10], SndObj [25], Audiere [26] etc were studies and the one that best meets our
requirements was chosen. The one which was chosen was SoundTouch [9] sound processing

library which seemed to be more suited and works quite efficiently.

SoundTouch is an open-source audio processing library that allows changing the sound tempo,

pitch and playback rate parameters independently from each other, i.e.:

e Sound tempo can be increased or decreased while maintaining the original pitch
« Sound pitch can be increased or decreased while maintaining the original tempo
« Change playback rate that affects both tempo and pitch at the same time

e Choose any combination of tempo/pitch/rate

39

Some important SoundTouch Library procedures used in my project are as follows:

‘e void setTempo (float newlempo):

Sets new tempo control value. Normal tempo = 1.0, smaller values represent slower tempo,

larger faster tempo.

e void setRateChange (float newRate);

Qets new rate control value as a difference in percents compared to the original rate (-50 ..

+100 %)

o void setTempoChange (float newTempo);

Sets new tempo control value as a difference in percents compared to the original tempo (-50

.. +100 %)

e void setPitch(float newPitch);

Sets new pitch control value. Original pitch = 1.0, smaller values represent lower pitches,

larger values higher pitch.

o void setPitchOctaves (float newPitch);

Sets pitch change in octaves compared to the original pitch (-1.00 .. +1.00)

e void setPitchSemiTones (int newPitch);

Sets pitch change in semi-tones compared to the original pitch (-12 .. +12)

40

e void setChannels (uint numChannels);

“Sets the number of channels, 1 = mono, 2 = stereo

e void setSampleRate(uint srate);

Sets sample rate.

Apart from these programming inferfaces, a helper function called PShiftAudioSignal() has
been provided which does special processing on the input sound buffers for changing the voice.

The function takes three arguments an input parameters as shown below:

pPshiftAudioSignal (short *bufferToProcessPtr, int ItsLength, int

SemiToneVal);

The first parameter is the input sound buffer, the second is the length of the input buffer and the
third is the SemiToneValue which is passed to the function from the slider control present on the
Dialog for changing the pitch of the sound. The function returns the masked (changed) sound

buffers to be saved in the WAV files of to be played on the out put devices.

The three modules were integrated keeping in view the various factors like execution efficiency,
memory management and utilization and code compaciness in mind. Object oriented approach
has been followed while coding the software except for one file i.e VoiceMask2.cpp. There are
places where certain C library routines have also been used but wherever they are used it is kept

in mind that it does not effect the overall design and the efficiency of the software.

41

Chapter 5

CONCLUSIONS AND FUTURE WORK

This chapter concludes the project document giving a brief summary followed by conclusion

and the future work.

5.1 Summary

The project was aimed at presenting the basic concepts of digital audio processing and to make a
Voice Masking System, which was one of the main objectives of this project. With few
modifications the software could be used as a full-fledged voice masking system or even as an

Enterprise Telecommunication Security System.

Chapter 1 presents the over all idea of the software along with the goals and uses. During the
initial stages of the project lot of time was spent on studying and analyzing algorithms for digital
audio processing. The basic idea behind using FFT was to get a time domain representation of
digital sound to its frequency domain equivalent and thereby to play with different parameters
that are only available in frequency domain like phase, amplitude and frequency. The algorithm
was more suited for analysis and drawing the sound waves. That is why, after the discussing the
issue with the team, it was decided to make use of the off the shelf sound processing libraries
freely available on the Internet. This is discussed in Chapter 2 of the document. Chapter 3

describes the detailed design of the software. It also presents the in depth details about the Use

42

case and the Class diagrams. Chapter 4 presents the implementation details followed by Chapter

5 with presents the summary and the future prospects.

This our summarized point of view but we feel that there are still lots of Voice Masking
techniques which still have to be explored and lot of applications and uses of Voice Masking

which are still left unexploited.

5.2 Conclusions

Voice processing is a field in which a lot of research and development is being carried out in the
present time. The opportunity to modify voices in real-time, as well as pre-recorded speech
provides a range of substantial benefits, allowing people to stay anonymous during
communication, fit the person type they prefer as well as to understand each other in a more
efficient way. Voice masking could also be used in making animated movies and in game

programming.

The project and its related work can be used to get an overview of voice and its different
characteristics, how to modify voice and the effects of changing the frequency / pitch on voice
data. Tt can also be used to get a better understanding of the future trends in the applications that
use voice like VoIP, voice security systems etc. We have come up with software which can be

used in place of the hardware device known as the Voice Changer 11

Finally this project will help the sofiware developers and the IT students, who are

43

interested in developing Voice applications, to get a better understanding of this domain.

5.3 Future Work

There are many promising opportunities for future work. Firstly, we plan to enhance our
application by adding voice recognition features. Voice Recognition is itself a very vast area
where lot of research can be done. Secondly, future work also includes comparison analysis
amongst the three DSP techniques discussed earlier in chapter 2, for analyzing digital audio. We
also plan to develop a tool for audio content analysis amongst the three algorithms. Besides this
an 1P based software tool can also be made through which people can chat on the Internet as

well as the local area networks.

44

References

[1] “Voice Changer [I” A hardware device for Voice Masking -
http://www.smarthome.com/5128 . htmihttp://www.smarthome.com/5128 html

[2] “An Introduction to Fourier Theory”
http://aurora.phys.utk.edu/~forrest/papers/fourier/index.hitml

[3] “Discrete Fast Fourier Transform” — A tutorial by Don Cross
http://groovit.disjunkt.com/analog/time-domain/fit.himl

[4] “WAVE File Format” - hitp://www.borg.com/~jglatt/tech/wave. htm

[5] “Digital Audio” — An overview by Dave Hillman
http://dhillman.com/theplace/webintro/graphics/webaudio/

[6] “Sound Formats”- hitp://dio.cdlr.strath.ac.uk/standards/fileformats/soundformats.html

[7] “Mastering The Fourier Transform in One Day” by Stephan M. Bernsee
http://www.dspdimension.com/html/dftapied.html

[8] “Free Audio, Sound, Music and Digitized Voice Libraries and Source Code”
http://www.thefreecountry.com/sourcecode/audio.shiml

[9] “SoundTouch Audio Processing Library™
http://sky.prohosting.com/oparviai/soundtouch

[10] “OpenAL, the Open Audio Library”
http://www.gel.ulaval.ca/~dumaisO1/genu/tutorials/ Advance Tutorial2.html

[11] “Speech Recognition 2003 Project Page ChoirFish Tune Identification”
http://www . Hacs.nl/~sgroot/speech/

[12] “ASR-P” - A Speech Recognition Project by Derk Geene & Sander van der Maar
hitp://www liacs.nl/~dgeene/speech/experimentation.htm]

[13] “The Fastest Fourier Transform in the West - 27/11/2003” htip://www.®tw.org
[14] “Characteristics of sound™ http://www.geocities.com/musicallahari/soundchar.htm
[15] “Recording and Playing sound” - http://www.developer.com/tech/print.php/627481

[16] Telephony API - MSDN July2002 Edition

45

{17} Visual C++ Books
Using Visual C++ 6 by Kate Gregory
- Sams Teach Yourself Visual C++ 6 in 21 Days
Practical Visual C++ 6 by Bates Tompkins
Visual C++ Programming by Yashvant Kanetkar

18] Multimedia File 10 Functions -
ms-help://MS.MSDNQTR.2002JUL.1033/multimed/mmfunc_27ar.htm

[19] Pulse Code Modulation - Radio TV and Audio Technical Reference Book by S W.
Amos, pg. 17-30

[20] STFT - http://cnmat.cnmat.berkeley.edu/~alan/MS-himl/MSv2. himl

[21] Digital Audio Libraries - http://www.thefreecountry.com/sourcecode/gui.shtml
{221 RIFF - ms-help://MS MSDNQTR.2002JUL.1033/multimed/mmio_2uyb.him

{23] TAPI Overview - ms-help://MS.MSDNQTR.2002JUL.1033/tapi/tapisdk_87nb.htm
{24] DSP- http://www.dspdimension.com/html/home. html

[25] The SndObj Sound Object Library
http://www.may.ie/academic/music/musictec/SndObj/main. html

[26] Audiere Sound Library - hitp://images.sourceforge.net/prdownloads/sf-stipple.png

[27} Audio Engineering Society
http://www.aes.org/sections/chicago/may0 1reviewa. html

[28] IEEE Signal Processing Society - http://www.dsp2002.gatech.edu
{29} Corey Cheng. Wavelet Signal Processing of Digital Audio with Applications in

Electro-Acoustic Music. Master Thesis, Hanover, New Hampshire.
http://www.eecs.umich.edu/~coreyc/thesis/thesis_html, 1996,

46

Appendix A

User Manual

Hardware Requirements

e Voice Modem
e Telephone Line
e Microphone

e Speakers

o Audio/TAD cable

Other Requirements

e Windows 98, ME, 2K
Voice Masking System Screen Shot

VMS is a dialog based application as shown in the figure below. The sofiware has three
modules which can be seen in the dialog. Brief description of the module and how the software

can be used is given according to the numbers encircled.

47

@ - Dial Pad @ ~ Mask Voice

Phore No |5523563 E
121 3
e
i1 151 s 2|
718l s
9 Semitone 0.
T Start Recording.

1. Dial Pad can be used to enter a telephone number. An edit box is provided for this
purpose.

2. After entering the number in the edit box, the user can press the dial button to make call.
Likewise disconmect button is used to disconnect the call. Clear button can be used to

clear the number from the phone no. edit box.

3. A slider is given on the dialog for the users to change or mask the voice. Level 0 (zero)

represents the original voice 1.e. no change in voice. As you go down towards the

48

F—

negative values of the Semi-fones the voice gets grave. Positive values of the slider
changes the voice to shrill voice.

Y 4. The Start Recording button starts writing a wave (.wav) file on your hard disk by the
name of “sound.wav”. You can save your masked voice in this file and can play it by
pressing Play button.

5. Close button closes the application.

6. By pressing About button you can know about the version and little description of the

software. TN
\/,.f R 2’
Ace. No PR Lf/
Call No. . ..
f llate‘-—)}/‘"%’
e S

