

A SECURE COMMUNICATION FRAMEWORK FOR

ENTERPRISE NETWORKS USING SDN

By

Bilal Rauf

A thesis submitted to the faculty of Department of Information Security,

Military College of Signals, National University of Sciences and Technology,

Islamabad, Pakistan, in partial fulfillment of the requirements for the degree of

PhD in Information Security

Dec 2021

ii

Abstract

In today’s era, large data centers are drawn towards the two popular technologies i.e.,

Enterprise Integration Patterns (EIP) and Software Defined Networking (SDN). The

former is the combination of design patterns that integrates the new and existing busi-

ness applications in an enterprise environment whereas, the latter is a rapidly evolving

networking paradigm that has reshaped the large enterprise network management by

introducing programmable planes and centralized control. The SDN-based design pro-

vides flexibility in network management which spans over multiple applications e.g.,

routing, switching, forwarding, and controlling. It reduces the reliance on vendor-

specific devices and middlebox solutions like firewalls, IDS, IPS, etc. The promising

features of EIP i.e., asynchronous communication, reliability, and that of SDN, namely,

robustness, network programmability, agility, and global visibility can be merged, to

cope with growing network demands and security.

In this research, we introduce a new communication framework for enterprise net-

works that incorporates EIP in SDN for asynchronous and reliable message exchange

among applications. The proposed communication framework integrates multiple tech-

nologies such as Virtual Local Area Networks (VLANs), Address Resolution Protocol

(ARP), context-aware services, and anonymous communication, to provide accurate,

efficient, and secure network services. Moreover, all the above-mentioned technologies

are implemented as application modules of the RYU SDN controller, and communica-

tion is only allowed between any two applications/services through EIP Channel.

To provide communication within the same network, the proposed communication

framework utilizes the functionality of VLANs by offering an adaptive VLAN Manage-

ment module. Using this module, the framework supports reactive VLAN creation and

deletion mechanisms between the communicating hosts. Additionally, VLANs are only

created for the active duration of the communication. Furthermore, to enable com-

munication between applications from different networks in an enterprise environment,

this framework also contains a packet forwarding module where hosts IP addresses are

concealed from each other.

Furthermore, due to the integration of different technologies, privacy is one of the

core issues faced by the enterprise. Host anonymity is one of the techniques to safe-

guard against privacy attacks; however, the existing anonymization solutions provide

better anonymity, but at the cost of higher latency and are most suited for internet

iii

traffic. To tackle this issue in an enterprise network, this research offers anonymous

communication among hosts in an enterprise environment. Unlike the traditional net-

works, SDN can modify the header fields of packets as they traverse the network from

source to destination. Host anonymity is achieved by replacing the real IP address

with the hoax IP address during the transmission of data packets inside the network.

Similarly, we also present a context-aware communication framework by leveraging

the global visibility feature of SDN. In this context-aware communication, services

are discoverable to the clients without disclosing the addresses of actual application

servers. By using these context-aware services, network traffic is routed based on the

application layer information rather than the network layer information.

The evaluation is done using multiple scenarios having different host configurations.

We conducted series of experiments to test the accuracy, efficiency, computational com-

plexity, and security of the communication framework. In addition, we also highlighted

that the proposed framework is more suitable for heterogeneous network environments

such as IoT-based solutions.

iv

Dedication

This thesis is dedicated to

MY BELOVED PARENTS,

MY WIFE,

MY CHILDREN (OMER & HAMZA),

MY COLLEAGUES, FRIENDS AND TEACHERS

for their love, endless support and encouragement

v

Acknowledgements

I am grateful to Allah Almighty who has bestowed me with the strength and the

passion to accomplish this thesis and I am thankful to Him for His mercy and benev-

olence. Without his consent I could not have indulged myself in this task.

With affection and deep appreciation, I would like to express my heartiest gratitude

to my supervisor Dr. Haider Abbas, for his all time guidance, support, and valuable

suggestions that lead to the completion of this dissertation. I am also thankful to

my co-supervisor Dr. Faisal Amjad (MCS, NUST) and my GEC members, Brig Dr.

Imran Rashid (MCS, NUST), Dr. Hammad Afzal (MCS, NUST) and Brig Dr. Abdul

Rauf (MCS, NUST), for being supportive during my PhD studies.

I am also very grateful to Dr. Ahmed Muqueem Sheri for his guidance and thought

provoking discussions held during the course of this dissertation.

Finally but most importantly, I would like to thank my parents for their support

and blessings, My wife for her support, patience, understanding and encouragement

while I was completing my PhD studies.

vi

Contents

Abstract iii

Dedication v

Acknowledgements vi

List of Figures x

List of Tables xii

Acronyms xiii

1 Introduction 1

1.1 Problem Specification . 3

1.2 Contribution . 4

1.3 Prospective Market . 5

1.4 Thesis Outline . 6

2 Background Technologies 8

2.1 Software Defined Networking (SDN) 8

2.1.1 Data Plane . 8

2.1.2 Control Plane . 9

2.1.3 Application Plane . 11

2.1.4 Southbound Interface . 12

2.1.5 Northbound Interface . 14

2.1.6 Eastbound and Westbound Interface 14

2.2 Enterprise Integration Patterns (EIP) 15

2.3 Virtual Local Area Networks (VLANs) 17

2.4 Understanding Simple SDN Topology 19

2.5 Summary . 21

3 Literature Review 22

3.1 Deployment of SDN in Enterprise Networks 23

3.2 VLAN Management in SDN . 24

vii

3.3 Handling of ARP in SDN . 27

3.4 Anonymous Communication in SDN 28

3.5 Context Aware communication in SDN 29

3.6 Summary . 30

4 Proposed Communication Framework 32

4.1 Framework Architecture . 32

4.1.1 Host Registration Module . 33

4.1.2 Service Registry Module . 34

4.1.3 IP Address Mapper Module . 34

4.1.4 Adaptive VLAN Management Module 35

4.1.5 ARP Request Resolution Module 40

4.1.6 Packet Forwarding Module . 42

4.1.7 Network Map . 45

4.2 Summary . 46

5 Integration of EIP in SDN 48

5.1 Integrating EIP in the Proposed Framework 48

5.1.1 Phase I . 50

5.1.1.1 Registration Phase . 51

5.1.1.2 VLAN based communication 51

5.1.1.3 Communication between Hosts on Different Networks . 53

5.1.2 Phase II . 54

5.2 Summary . 55

6 Evaluation 58

6.1 Environment Setup . 58

6.2 Evaluation of VLAN Communication 59

6.2.1 Test Topology and Hosts configuration 61

6.2.2 Results Analysis and Discussions 62

6.2.2.1 Performance w.r.t Flow Rules Installation 63

6.2.2.2 Efficiency . 64

6.3 Evaluation of Inter-Subnets Communication 65

6.3.1 Test Topology and Hosts Configuration 66

6.3.2 Results and Discussions . 67

6.3.2.1 Performance w.r.t Flow Rules Installation 67

viii

6.3.2.2 Security . 68

6.4 Evaluation of Anonymous Communication 71

6.4.1 Test Topology and Hosts Configuration 72

6.4.2 Performance and Results Analysis 74

6.4.2.1 Computational Complexity 75

6.4.2.2 Accuracy w.r.t Anonymous Communication 77

6.4.2.3 Security . 78

6.5 Summary . 81

7 Conclusion and Further Research 82

7.1 Conclusion . 82

7.2 Further Research . 84

APPENDIX A 86

Understanding Simple SDN Topology . 86

BIBLIOGRAPHY 89

ix

List of Figures

2.1 The SDN Architecture . 9

2.2 OpenFlow version 1.5 Flow-Table’s structure in [1]. 40 x match field

exists in OpenFlow 1.3 [2] . 9

2.3 SDN Based Multiple Controllers Layouts. 11

2.4 A generic messaging system . 16

2.5 A simple Messaging System comprising of three core concepts (Message,

Message Channel, and Endpoint) . 17

2.6 IEEE 802.1Q frame format . 19

2.7 A simple example to highlight the communication between two hosts in

SDN environment. 19

2.8 Flow rules installed during the communication of Host-1 and Host-2

illustrated in Fig. 2.7. Here rules mentioned in the blue boxes represents

the forwarding path and rules for reverse path is listed in green boxes. . 20

3.1 Summary of the existing literature pertaining to the deployment of SDN

paradigm in enterprise networks . 22

4.1 The architecture of RYU SDN Controller with added functionality (ap-

plications) depicted in yellow rectangles for the proposed communication

framework . 33

4.2 Information of every host collected by the registration module 34

4.3 Service registration information . 34

4.4 Hoax IP address and last hit timestamp information against actual IP

address . 35

4.5 Flow chart and working of the Adaptive VLAN Management module . 38

4.6 Flow chart and working of Packet Forwarding module 46

5.1 Phase I: A sequence of message flow between Host A and Host B using

Message System (EIP Channel). 50

5.2 Phase-II Integration of EIP in proposed framework. 57

6.1 The network topology used in the Evaluation Part 1 and 2 mentioned

in section 6.2 and section 6.3 respectively. 60

x

6.2 Flow rules deployed on OF switches to support VLAN-based communi-

cation (Host-1 and EIP). 63

6.3 Flow rules deployed on OF switches to provide communication between

Host-3 and EIP. 64

6.4 Creation and deployment of reactive VLAN with respect to time. . . . 65

6.5 Flow rules deployed on OF switches between the source (Host 2) and

destination(EIP Channel). Both the source and destination hosts belong

to different networks. Here Host 2 is publishing its messages for Host 4

on EIP Channel. 69

6.6 Flow rules deployed on OF switches between the source (Host 4) and

destination(EIP Channel). Here Host 4 is consuming its messages, sent

by Host 2, stored on EIP Channel. 70

6.7 A test topology to evaluate anonymous communication of proposed

framework. 73

6.8 OF enabled switches have been configured with rules to facilitate anony-

mous communication between Host-2 and the EIP Channel. Host-2’s

actual IP address is 192.168.1.77 and EIP’s is 192.168.1.101. 75

6.9 Series of actions required when implementing flow rules on switches. . 76

6.10 Snapshot of Wireshark of host with IP address 192.168.1.101 (EIP Chan-

nel). 78

6.11 Snapshot of Wireshark of host with IP address 192.168.1.77 (Host - 2). 79

1 A simple example to highlight the communication between two hosts in

SDN environment. 86

2 Flow rules installed during the communication of Host-1 and Host-2

illustrated in Fig. 1. Here rules mentioned in the blue boxes represents

the forwarding path and rules for reverse path is listed in green boxes. . 87

xi

List of Tables

2.1 Feature based comparison of SDN Controllers 10

3.1 Efforts to Deploy SDN in Enterprise Networks 23

3.2 Literature related to VLAN Management in SDN 25

3.3 literature related to handling ARP messages in SDN 27

3.4 Literature related to securing enterprise networks using anonymous com-

munication . 28

3.5 Literature related to securing enterprise networks using anonymous com-

munication . 30

6.1 Evaluation Part 1: List of all hosts and their network configurations

based on 192.168.10.0 network ID and /24 CIDR prefix. 62

6.2 Evaluation Part 2: List of all hosts and their IP configurations along

with default gateways /30 CIDR prefix. Here each host belongs to an

individual network having its unique network address. 67

6.3 Configuration of each host on topology depicted in Fig. 6.7 74

6.4 Hoax vs actual IP addresses. These addresses are generated during the

simulation and testing of framework. 74

xii

Acronyms

Address Resolution Protocol ARP

Advanced Message Queueing Protocol AMQP

Application APP

Application Programming Interface API

Border Gateway Protocols BGP

Classless Inter Domain Routing CIDR

Database DB

Denial of Service DoS

Destination Address DA

Enterprise Integration Patterns EIP

Identification ID

Internet Protocol IP

Internet Protocol version 4 IPv4

Local Area Network LAN

Man-In-The-Middle MITM

Medium Access Control MAC

Message Queuing MQ

Network Operating System NOS

Northbound Interface NBI

Open Network Operating System ONOS

Open Networking Foundation ONF

Open Service Gateway Initiative OSGi

Open System Interconnection OSI

Open VSwitch OvS

Open vSwitch Database OvSDB

OpenFlow OF

Participatory Networking PANE

xiii

Priority Code Point PCP

Protocol Oblivious Forwarding POF

Representational State Transfer REST

Software Defined Networking SDN

Source Address SA

Southbound Interface SBI

Tag Control Information TCI

Ternary Content Addressable Memory TCAMs

Transmission Control Protocol TCP

Transport Layer Security TLS

Type of Service TOS

User Datagram Protocol UDP

Virtual Local Area Network VLAN

xiv

Chapter 1

Introduction

Computer networks have advanced fast in terms of processing, complexity, and diver-

sity during the last few decades. In typical IP networks, routers and switches transport

data between hosts, with each router knowing about a subset of the network and for-

warding traffic based on its route computations. Due to their vertical integration,

intelligence resides within the device, traditional network topologies are complex and

difficult to operate. Historically, they have made packet forwarding decisions solely

on the basis of the packet’s destination address. Due to the heterogeneity of vendor-

specific network devices and the quick development of new protocols at each layer of

the OSI model, traditional networks are constrained by adaptive configuration and

troubleshooting in large-scale networks.

NFV and SDN are two frameworks that were developed to overcome the limitations

of conventional networks.NFV leverages virtualization to isolate Network Functions

(NFs) such as routing, firewalling, and encryption from their associated hardware

middle boxes [3]. On the contrary, the key characteristic of SDN is the separation of

administration and control logic from traditional networking hardware such as routers

and switches [4]. It reintroduces the centralised network idea, in which the SDN

controller is responsible for the whole network’s operations, including traffic routing,

security, network monitoring, and load balancing. In addition to centralization, SDN

introduces the notion of programming network applications for commercial goals. The

contrast between these two models is that SDN relies on a centralised controller to

interpret application orders into the OpenFlow (OF) language, whereas NFV admin-

isters the network totally through NF (applications) housed on virtual machines. In

this research, we are focusing entirely on the SDN paradigm and its integration into

corporate networks.

1

CHAPTER 1. INTRODUCTION 2

Managing a organizational network has never been easy, especially when numerous

technologies are involved, vendor-specific solutions are used, and complex monitoring

and troubleshooting applications are used. However, in 2008, the introduction of the

OpenFlow protocol enhanced the concept of software-based networking solutions, lay-

ing the groundwork for the Software Defined Networking paradigm [4]. SDN enables

network managers to manage and configure enterprise networks centrally. SDN’s cen-

tral notion is to abstract control logic away from devices on the infrastructure plane

and assign it to a centralized controller on the control plane. By limiting the functions

of complicated routing and switching devices to merely executing the policy specified

by the logically centralized controller, this extraction of control logic reduced them

into simple forwarding devices. Additionally, SDN’s promising characteristic is the

network’s programmability, which enables network managers and software developers

to respond to changing network demands and conditions source [6].

The SDN now makes traffic routing decisions based on the information of packet

header data of multi-layer protocols. This choice on how to forward network data is in

contrast to traditional networks, which operate independently of each layer of the pro-

tocol stack. Additionally, the SDN controller may create flow rules that alter incoming

packet header information, such as IP addresses, port numbers, and MAC addresses.

As seen in Fig. 2.1, the architecture of SDN is built of three planes: the Application

Plane, the Control Plane, and the Infrastructure Plane. There are two communication

channels between these planes: Northbound Interface (NBI) and Southbound Interface

(SBI) [7]. Additionally, dispersed controllers employ the East/Westbound Interfaces

to communicate with one another and with older networks. Section 2.1 discusses SDN

in full.

Apart from the bottom layer communication infrastructure, enterprise networks have

integration challenges due to the fact that the majority of services and applications

are developed independently, using disparate development platforms, languages, and

data formats. These applications provide a range of services to clients and employees

through a corporate network. Numerous methods have been offered to provide com-

munication infrastructure amongst various apps that give services to company users.

CHAPTER 1. INTRODUCTION 3

In [8], the authors identified four primary ways for establishing an inter-application

communication infrastructure: Messaging System, Shared Database, File Transfer,

and Remote Procedure Invocation. Where messaging systems shown to be a superior

implementation when the asynchronous aspect of message exchange is considered.

1.1 Problem Specification

Multiple service (applications) integration is a difficult task in software development.

Integrating the two applications is reasonably trivial if applications are of different en-

vironment. Integrating apps from diverse backgrounds is fairly challenging. However,

in a commercial context, it is essentially difficult for a single application to deliver

all operations in a business. The value of reusing previously developed apps is not

only practical, but also economical. This necessitates the integration of many apps

throughout the company.

Additionally, the SDN paradigm increases the flexibility of the enterprise network’s

packet forwarding mechanism; however, a critical issue with adopting SDN in an en-

terprise network is the network’s overall security. Furthermore, traditional networksse-

curity solutions involves complex and pricey middle-boxes. Numerous encryption tech-

niques, such as IPSec, TLS, and others, are used to protect the data while the travelling

of packet over the network. However, information present in the packet header can

reveal the names of communicating hosts and their traffic patterns. By abusing the

packet header, an attacker can launch multiple attacks on the network.

SDN can assist network managers in tackling issues common in traditional networks,

such as vendor-specific devices and solutions, reliance on middleboxes for security so-

lutions, and manual device setup. To address existing problems and to give network

administrators with fine-grained control in enterprise networks, the usage of EIP pow-

ered by SDN can be beneficial. Where SDN provides the communication infrastructure

and EIP ensures the reliable transmission of messages between applications/services.

Additionally, the robust qualities of SDN, such as global visibility, programmability,

and responsiveness to growing network demands, make SDN an ideal candidate for

integrating with EIP in an enterprise network. To our understanding, combining SDN

with EIP benefits enterprise networks in a variety of ways. As far as we are aware,

CHAPTER 1. INTRODUCTION 4

this is the first attempt, and no comparable contribution has been identified in the

literature.

To address the aforementioned difficulties, we developed a communication framework

for enterprise networks that incorporates SDN and Messaging Systems (EIP). This

framework enables context-aware services, adaptive VLAN management, and anony-

mous and secure communication. Additionally, our platform enables enterprises to

migrate to an SDN-based network in order to benefit from increased efficiency, built-in

security, message reliability, and connection with existing business applications.

1.2 Contribution

In this dissertation, EIP is incorporated in SDN for enterprise networks. The proposed

communication framework is segregated into multiple modules and these modules are:

1) Host Registration: module to register connected hosts; 2) Service Registry : module

to register and maintain the information of all the services offered in the network; 3) IP

Address Mapper : module to generate hoax IP addresses of each hosts and maintain a

map of real IP address against the hoax IP address; 4) Adaptive VLAN Management :

module that support communication using VLANS and is responsible for the creation

and deletion of VLANs reactively; 5) ARP Request Resolution: module to support

the resolution of Ethernet gateway address when two communicating hosts belongs to

different subnets; and finally the last 6) Packet Forwarding : module that facilitates in

path identification between source and destination hosts.

The main contributions of this dissertation are as follows.

1. We incorporated EIP in SDN and proposed a novel communication system for

the organizational networks that support reliable message exchange system.

2. A context-aware communication framework is presented by using global visibility

characteristic of SDN. Clients can discover services through this context-aware

communication without divulging the addresses of the real servers. Network

traffic is routed using the -application layer information as compared to the

legacy network where routing is done using network layer header information.

CHAPTER 1. INTRODUCTION 5

3. To facilitate reactive VLAN formation and deletion across communication hosts,

we present a dynamic VLAN management solution.

4. We offer a secure forwarding technique based on application services that makes

use of SDN’s most important characteristic, global visibility, to deliver secure

communication in a business network.

5. We enhance the security of the network by proposing an anonymous communica-

tion technique among the communicating hosts by replacing the real IP address

with the Hoax address.

6. Implementation of the proposed framework is done in Mininet using a component-

based RYU SDN controller. Moreover, Containernet is used on top of Mininet

to deploy docker containers as hosts in Mininet.

7. Evaluation of the proposed framework is done using three different scenarios

having different host configurations by designing a series of experiments to test

the performance, efficiency, computational complexity, and security of our com-

munication framework. The security evaluation is performed using the NMAP

network scanning tool.

8. The contribution mentioned in serials 1, 3, and 4 are published in [9], whereas

contributions listed in serials 2 and 5 are published in [10]. In addition to the

technical articles, in this Ph.D. research, a review article highlighting the security

requirements of the northbound interface of SDN is also published in [11].

1.3 Prospective Market

The Internet of Things (IoT) is a concept that promotes heterogeneity. Systems based

on the Internet of Things, such as Smart Farming [13], Smart Factory [14], Smart Cities

[15], and Smart Healthcare [16], are just a few instances of heterogeneous networks

where asynchronous communication over EIP can be advantageous. EIP enables the

discovery of services that are utilised by IoT gateways/devices. As a result, a depend-

able communication structure across all networks is required. These communication

pathways generate patterns that may be abstracted primarily as EIP channels. These

CHAPTER 1. INTRODUCTION 6

channels are influenced by properties such as fault tolerance, asynchronous message

exchange, and diverse patterns such as publish and consume, translator, and router

[8]. In smart cities, IoT networks are built on heterogeneous technologies comprised of

a variety of device types [15] that generate data in a variety of forms, necessitating the

adoption of the message translator pattern in EIP. Similarly, the publish and consume

pattern enables message interchange in EIP, which is advantageous for devices operat-

ing on limited power in smart settings. Additionally, for network security in IoT-based

networks, safe routing using a trustworthy SDN controller is suggested [17], [18]. Simi-

larly, asynchronous communication can help alleviate resource allocation issues in IoT

networks, while SDN enables greater flexibility in network traffic management. As

a result, our suggested architecture serves as a viable communication mechanism for

Internet of Things-based applications.

1.4 Thesis Outline

The thesis is organized as follows:

• Chapter 2 presents the brief discussion of technologies used in this research

which includes Software Defined Networking, Enterprise Integration Patterns,

and Virtual Local Area Networks.

• Chapter 3 highlights the related literature which is segregated into multiple

sections. These sections include SDN in enterprise networks, VLAN management

in SDN, handling ARP packets in SDN, anonymous communication using SDN

and context aware services using SDN.

• Chapter 4 provides the detail of all the modules incorporated in the proposed

communication framework.

• Chapter 5 addresses the integration of EIP in the proposed communication

framework.

• Chapter 6 presents the evaluation results and discussions of the proposed com-

munication framework using three different evaluation scenarios.

• Chapter 7 finally conclude the thesis with some future research directions.

CHAPTER 1. INTRODUCTION 7

Chapter 2

Background Technologies

This chapter introduces the technologies that are incorporated in this dissertation. The

technologies used are: 1) Software Defined Network, 2) Enterprise Integration Patterns,

and 3) Virtual Local Area Networks. In the following sections, we elaborate each

technology with respect to our research. In the last section of this chapter, we describe

a simple example to let the reader comprehend how SDN network communicates using

the flow rules.

2.1 Software Defined Networking (SDN)

SDN was introduced as a new networking model in 2008 [4]. The SDN architecture

is divided into three planes: the Data Plane, the Control Plane, and the Applica-

tion Plane. Communication channels exists between the above-mentioned planes: the

Southbound and the Northbound interfaces. Control plane and data planes are con-

nected through SBI, whereas nbusiness applications instructs the controller using the

NBI. The other special interfaces are the East/Westbound Interfaces, which distributed

controllers use to communicate with one another and with legacy networks. The com-

plete SDN architecture is depicted in Fig. 2.1.

2.1.1 Data Plane

The data plane is the most fundamental component of the SDN architecture, con-

sisting of devices like routers and switches. These devices operate as basic forwarding

components without inbuilt vendor-specific software or management control, and are

remotely controllable via open interfaces. These switches have flow tables, which con-

tain many flow rule entries that are placed by the SDN controller. Various fields such

as; the match field, the instructions field, and the counter field are the flow table’s most

significant fields. The flow table’s entire structure is depicted in Fig 2.2. Along with

8

CHAPTER 2. BACKGROUND TECHNOLOGIES 9

FIGURE 2.1: THE SDN ARCHITECTURE

Flow Tables, SDN switches contain Meter Tables, Group Tables, and Flow Buffers [19].

Ingress Port Ethernet

SA DA Type

VLAN

ID Priority

IP

SA DA Protocol TOS

TCP/UDP

Src
Port

Dest
Port

Mandatory Instructions:
 Forward packets to ports
 Encapsulate and forward to controller
 Drop packet
 Send to normal processing pipeline
 Modify fields

Match Fields Priority Counters Instructions Timeout Flags

In_port
In_phy_

port

FIGURE 2.2: OPENFLOW VERSION 1.5 FLOW-TABLE’S STRUCTURE IN [1]. 40 X MATCH

FIELD EXISTS IN OPENFLOW 1.3 [2]

2.1.2 Control Plane

A pivotal pillar of SDN architecture is the control plane. The controller is located

centrally (logically) and connected to various devices (switches) in the data plane;

it also maintains a global view of the entire network [33]. The controller benefits

from having a global view because it enables effective network management and rapid

response to network changes. Additionally, the controller’s security has a direct impact

on the data plane’s data forwarding devices. If a controller is compromised, it affects

the entire SDN network, including multiple switches. As a result, from an attacker’s

CHAPTER 2. BACKGROUND TECHNOLOGIES 10

TABLE 2.1: FEATURE BASED COMPARISON OF SDN CONTROLLERS

SDN Controller Architecture DocumentationLanguage User In-
terface

Platform Support NBI
TLS
Support

ONOS [21] Distributed Good Java Web-
Based

Windows, Linux and MAC OS No

OpenDaylight [22] Distributed Good Java Web-
Based

Windows, Linux and MAC OS Yes

FloodLight [23] Centralized Good Java Web-
Based

Windows, Linux and MAC OS No

RYU [24] Centralized Medium Python Web-
Based

Mostly supported on Linux No

POX [25] Centralized Poor Python GUI Windows, Linux and MAC OS No

NOX [26] Centralized Poor C++ GUI Most supported-on Linux No

Beacon [27] Centralized Medium Java Web-
Based

Windows, Linux and MAC OS No

Trema [28] Centralized Medium C/Ruby CLI Linux No

PANE [29] Distributed Medium Java CLI Linux No

Onix [30] Distributed Poor C++ CLI Linux No

Kandoo [31] Hierarchical
/ Dis-
tributed

Good C++/PythonCLI Linux No

MAESTRO [32] Distributed Medium Java CLI Linux No

perspective, the highest priority is to compromise the OpenFlow controller in order to

conduct malicious activities on the network.

The controller(s) apply flow rules to the data plane devices in response to instructions

from the application plane’s third-party applications. The SDN controller communi-

cates with the devices on the data plane via the SBI interface using the OpenFlow

protocol [4], [34]. ONOS [21], OpenDayLight [22], Floodlight [23], RYU [24], POX

[25], and NOX [26] are just a few of the well-known SDN controllers available. In [35],

[36], [37], and [38], comparative studies of famous controllers are presented. Table 2.1

presents a feature-based comparative evaluation of a few famous controllers gathered

from the aforementioned studies.

Different techniques can be used to deploy controllers in SDN. [39] and [40] have

discussed a variety of topology-related approaches for deploying SDN controllers:

CHAPTER 2. BACKGROUND TECHNOLOGIES 11

(c) Hierarchical Controller Topology (d) Hybrid Controller Topology

(a) Centralized Controller Topology (b) Distributed Controller Topology

FIGURE 2.3: SDN BASED MULTIPLE CONTROLLERS LAYOUTS.

1. Centralised Controller Topology

2. Distributed Controller Topology

3. Hierarchical Controller Topology

4. Hybrid Controller Topology

Fig 2.3 illustrates these SDN-based multiple controller topologies. Each design has

some advantages and disadvantages in terms of control plane scalability. Each con-

troller in a multiple controller design (Distributed or Hierarchical) is accountable for

overseeing a subset of the network’s switches and communicates with the others via

an East / Westbound interface.

2.1.3 Application Plane

The ability of third-party enterprises to develop and deploy network applications is

one of SDN’s core properties. The application plane is where these third-party appli-

cations reside. Typically, these applications perform a specific task and operate at a

higher level of abstraction than the controller. Through the use of NBIs, applications

implement their business logic on data plane devices via controllers. Applications can

CHAPTER 2. BACKGROUND TECHNOLOGIES 12

use the NBIs to collect information from the SDN controller and to send instructions

to the SDN controller. The control plane abstracts the data plane’s physical resources

(routers and switches) from the application plane and applications can only use the

services / APIs of the SDN controller to enforce policies on data plane devices via flow

rules. The controller’s connectivity to applications is two-tiered. The first is the data

plane connection that connects user application traffic to the network, while the sec-

ond is a management-control connection that connects the application to the network.

Both tiers are in charge of data traffic transmission across the network. Authorized ap-

plications establish management-control sessions with the SDN controller via the NBI

in order to invoke services or modify the state of network resources, [41]. Additionally,

applications collect information about the network’s current state from the controller

and make changes in response to the network’s updated conditions. Network virtu-

alization, security applications, network monitoring, and traffic engineering are just a

few examples of third-party applications.

2.1.4 Southbound Interface

The SBI serves as the communication channel between the data and control planes.

By handling flow entries on data plane devices, this interface enables the SDN con-

troller to monitor and manage network behavior. There are numerous southbound

APIs available for SDN controllers to communicate with devices, including OpenFlow

[4], Protocol Oblivious Forwarding (POF) [42], OpenvSwitch Database (OvSDB) [43],

OpFlex [44], OpenState [45], NETCONF [46], and OF-CONFIG [47]. While Open-

Flow is considered as the de facto standard for SBI, having been standardized by the

Open Networking Foundation (ONF) [34].

According to [48], OpenFlow is by far the most extensively used SBI protocol in SDN.

It has evolved, and the most recent version is OpenFlow 1.5, as cited in [1]. It facilitates

communication between the controller and the data plane’s physical devices. The

OpenFlow protocol is designed to be used in conjunction with the Transmission Control

Protocol (TCP). Its specification recommends that its communications be encrypted

using Transport Layer Security (TLS), which is an optional feature. Controllers listen

on TCP port 6653 in order to establish an OpenFlow connection with the switches. The

CHAPTER 2. BACKGROUND TECHNOLOGIES 13

OpenFlow protocol manages communication between SDN switches and controllers via

a variety of messages (s). OpenFlow’s most frequently used messages for managing flow

rules and switches are listed below

1. Features : Controller queries switch features

2. Configure : Controller queries/set switch configuration parameters

3. Modify-state (Flow Mod): Add, delete, modify flow entries in the OpenFlow

tables

4. Packet OUT : Reply of the Packet IN message

5. Packet IN : Transfer packet (and its control) to controller.

6. Flow-removed : To delete Flow table entry at particular switch

7. Port status : Information regarding port status

Flow tables contain flow rules in the form of a match field, a priority column, a

counter, instructions, a timeout column, and flags. Header matching is performed

on incoming packets using the match fields as depicted in Fig 2.2. When all fields

in the flow entry matches all fields in the incoming packet’s header, a match occurs.

Following a successful match, one of the instructions specified against the flow table

entry should be executed, along with the associated action(s) over the packet. If an

incoming packet does not conform to the switch’s flow rules, the switch generates the

Packet IN message and forwards it to the SDNcontroller for more instructions. This

Packet IN message holds details about the packet’s header, the switch’s ID, the switch’s

input port number, and the switch’s buffer ID. In response to the Packet IN message,

the controller generates a Packet OUT message containing the switch ID, the buffer ID,

and the actions that should be performed on the Packet IN message in question (e.g.,

forward to egress port, push VLAN ID, strip VLAN ID or drop etc.,). To manage the

flow of successive packets, the controller generates a Flow Mod message that instructs

all switches engaged in the active data transmission path to install flow rules; this

mechanism helps to reduce communication between the controller and switches by

avoiding unnecessary Packet IN messages being forwarded to the controller [49].

CHAPTER 2. BACKGROUND TECHNOLOGIES 14

2.1.5 Northbound Interface

The NBI serves as the link between the control and application planes. Controllers

enable applications to communicate with network control in order to manage services

and associated resources via NBI. In other words, this interface enables trusted ap-

plications to programme the network and to query the network’s state, services, and

information. In comparison to SBI, there is no standard for NBI. Due to the NBI’s lack

of standardisation, almost every controller provides its own unique set of NBI services

to enable software designers to develop network applications like routing, switching,

firewall, and network monitoring. NBI is primarily a software ecosystem, and it is

implemented using a variety of methodologies, including the following:

• Establishing fine-grained application interfaces.

• Developing ad-hoc Northbound API for specific controllers.

• Offering intent-based NBI that encapsulates network resources and features,and

conveys the application purpose on what to do, but not how to accomplish it.

• Transform application necessities into lower-level service intents.

• SDN programming languages to be used.

With the aforementioned multiple methodologies in mind, various types of NBIs

are now available in SDN, which can be classified as General APIs, Programming

Languages, and Intent-basedNBIs [50], [51]. Due to the lack of a standardised NBI,

many controllers have opted for a REST or RESTful NBI [6]. The Open Service

Gateway Initiative (OSGi) framework is also available for applications and programmes

that run in the same address space as the controller (same physical or virtual machine),

whereas the REST API is used by applications that run in the same address space as

the controller or on a different machine, [52].

2.1.6 Eastbound and Westbound Interface

In the SDN paradigm, the controller is referred to as the ”brain” of the SDN network

due to its central location between network devices and applications. However, a sin-

gle centralised controller is limited in its ability to manage a large number of switches.

CHAPTER 2. BACKGROUND TECHNOLOGIES 15

Distributed controllers are becoming an essential component of today’s large-scale net-

works, owing to the exponential growth of application services and network devices

worldwide. Each controller in a distributed SDN environment is responsible for con-

trolling its own domain via various forwarding devices. These dispersed controllers

must share information about their individual domains in order to maintain a global

perspective of the network. East/westbound APIs are a specific type of interface that

distributed controllers use to communicate with one another and with legacy networks.

To be more exact, Eastbound APIs govern inter-controller communication between

SDN controllers, whereas Westbound interfaces leverage established networking pro-

tocols such as Border Gateway Protocols (BGP) to provide connection between SDN

and older networks. Eastbound interfaces include [70] and [30], whereas westbound

interfaces include [71] and [72].

In the SDN paradigm, the controller is referred to as the ”brain” of the SDN network

due to its central location between network devices and applications. However, a sin-

gle centralised controller is limited in its ability to manage a large number of switches.

Distributed controllers are becoming an essential component of today’s large-scale net-

works, owing to the exponential growth of application services and network devices

worldwide. Each controller in a distributed SDN environment is responsible for con-

trolling its own domain via various forwarding devices. These dispersed controllers

must share information about their individual domains in order to maintain a global

perspective of the network. East/westbound APIs are a specific type of interface that

distributed controllers use to communicate with one another and with legacy networks.

To be more exact, Eastbound APIs govern inter-controller communication between

SDN controllers, whereas Westbound interfaces leverage established networking pro-

tocols such as Border Gateway Protocols (BGP) to provide connection between SDN

and older networks. Eastbound interfaces include [70] and [30], whereas westbound

interfaces include [71] and [72].

2.2 Enterprise Integration Patterns (EIP)

The concept of EIP was introduced in 2004 [8], which develops standard design out-

comes to connect different applications running in enterprise. These patterns are fre-

CHAPTER 2. BACKGROUND TECHNOLOGIES 16

quently used to connect business processes with enterprise systems. The demand for

these patterns arises because there is no single application in a business network that

provides all of the services an organisation want to offer its clients and workers. Fur-

thermore, the vast majority of applications are spread by nature. As a result, multiple

services are offered via a variety of applications written in a different language and plat-

forms (operating systems), which may be distributed across multiple locations. When

one of these application requests a service from another, a formal inter-application

communication protocol must exist.

In the book [8], the authors identified four primary techniques for establishing the

inter-application communication infrastructure: Messaging System, Shared Database,

File Transfer, and Remote Procedure Invocation. Where messaging systems shown to

be a superior implementation when the asynchronous aspect of message exchange is

considered.

Application A Application B Application C

Message Bus

Event

Application A

Application B

Message
 Channel

Application C

Messaging System (EIP)

Sender

Receivers

FIGURE 2.4: A GENERIC MESSAGING SYSTEM

Because message-oriented design is based on asynchronous message exchange, it

promotes loose coupling and increases communication reliability by eliminating the

requirement for two programmes to run concurrently. The messaging system is in

charge of data transmission between applications, which means that the programme

may concentrate entirely on the content of the data being communicated without being

distracted by data transmission functionality. Fig. 2.4 represents a simple messaging

system, where an application (sender) using a messaging system transfers packets to

the other applications (receivers) reliably, frequently, and asynchronously. The com-

municating applications can have different messaging formats and it is the job of a

CHAPTER 2. BACKGROUND TECHNOLOGIES 17

message translator (one of the concepts of the messaging system) to convert the mes-

sage from one format to another so that each application can interpret the message

according to its own format.

Sender
Application

Receiver
Application

Endpoint Message Message Channel Endpoint

FIGURE 2.5: A SIMPLE MESSAGING SYSTEM COMPRISING OF THREE CORE CONCEPTS

(MESSAGE, MESSAGE CHANNEL, AND ENDPOINT)

Messaging systems are composed of a number of fundamental ideas, including mes-

sage channels, message,pipesand filters, message routers, message translators, and mes-

sage endpoints. Each of the main principles is subdivided into various subcategories

based on the demand for message exchange. We used only three fundamental elements

into this research:

• Message; a data packet that must be delivered to the receiver(s).

• Message Channel ; applications exchange messages by sending and receiving data

via a channel that connects the sender and receiver.

• Message Endpoint ; an interface that enables an application to send and receive

messages via the messaging system.

Apart from their asynchronous character, message channels are distinct from appli-

cations and ensure the delivery of reliable packets. Fig. 2.5 illustrates a Messaging

System composed of a Message Endpoint, a Message Channel, and a Message. In this

Fig. 2.5, an application (sender) uses the message endpoint to relay a message on

the message channel. A receiving application consumes a message from the message

channel via its message endpoints on the receiver side.

2.3 Virtual Local Area Networks (VLANs)

Local Area Network (LAN) is a collection of hosts that span over a limited geograph-

ical area to share resources (data, information or hardware) between hosts and are

CHAPTER 2. BACKGROUND TECHNOLOGIES 18

commonly deployed in offices, universities and homes. The network connection be-

tween the hosts is through a data link layer switch having a single broadcast domain

(broadcast frame sent from one host will be received by all other host connected on

LAN). A single large broadcast domain can be partitioned into smaller domains using

a router to route packets between LANs and a switch(es) for each LAN. However, this

partitioning would leads to the requirement of extra financial resources.

Virtual Local Area Networks (VLANs) were created to circumvent the broadcast

domain issue. VLANs enable the grouping of hosts on distinct physical networks into

a single broadcast domain (logically) or the segmentation of a single physical network

into numerous broadcast domains. The obvious advantage of adopting VLAN is that it

provides security for hosts within an organisation. All ports on the switch are required

to be configured either of the following type.

• Access Port A port that is directly linked to the host and to be configured on

a single VLAN..

• Trunk PortA port that connects different switches and must be a member of

every VLANs, and forwards traffic from all VLANs defined among switches. [73].

IEEE 802.1Q standard [74] Specifies the VLAN management. Moreover, VLAN

membership can be obtain using following four different ways

• Port-based classification: Configuration of VLANs based on switch ports.

• MAC-address classification: Configuration of VLAN ID based on MAC ad-
dresses.

• Protocol-based classification: Configuration of VLAN ID based on layer 3 / 4
protocols.

• IP subnet based classification: Configuration of VLAN based on IP address /
subnet.

CHAPTER 2. BACKGROUND TECHNOLOGIES 19

Destination
Address

Source
Address

802.1Q
Tag

Type/
Length

Data CRC

6 bytes 6 bytes 4 bytes 2 bytes 1500 bytes 4 bytes

Tag Protocol ID
Canonical

Format
indicator

Priority VLAN ID

2 bytes 3 bits 1 bit 12 bits

FIGURE 2.6: IEEE 802.1Q FRAME FORMAT

2.4 Understanding Simple SDN Topology

To understand how SDN network communicates, we explain it through a simple SDN

topology illustrated in Fig. 2.7. Here Host-1 having IP address 192.168.10.1/24 ini-

tiates communication with Host-2 with IP address 192.168.10.2/24. Both hosts are

connected to separate switches which support OpenFlow communication. Fig. 2.7

illustrate When Host-1 begins communication with Host-2, a series of activities is per-

formed to install rules on OF switches. The green arrows (1, 4, 7) indicate the data

path message route, the red arrows (2, 5) indicate the Packet IN message, and the blue

arrows (3, 6) indicate the control path’s Flow Mod message, which is used to set flow

rules.. The whole communication is divided into following steps.

Host 1
192.168.10.1/24
1a:f7:56:6c:06:0e

Host 2
192.168.10.2/24
7e:6a:f9:8a:71:f5

1

4

7

OF-Switch 1 OF-Switch 2

SDN Controller
192.168.10.100/24

1
2

1
2

FIGURE 2.7: A SIMPLE EXAMPLE TO HIGHLIGHT THE COMMUNICATION BETWEEN TWO

HOSTS IN SDN ENVIRONMENT.

Step 1: When Host-1 send data packets having Host-2 as destination, these packets

are received at OF-Switch 1 through port 1.

CHAPTER 2. BACKGROUND TECHNOLOGIES 20

Open vSwitch
OF-Switch 1

Open vSwitch
OF-Switch 2

{"1": [{
 "actions": [
 "OUTPUT: 2"],
 "idle_timeout": 0,
 "packet_count": 5,
 "hard_timeout": 0,
 "table_id": 0,
 "match": {
 "dl_dst": "7e:6a:f9:8a:71:f5",
 "dl_src": "1a:f7:56:6c:06:0e",
 "in_port": 1”}
 },

{"2": [{
 "actions": [
 "OUTPUT: 1"],
 "idle_timeout": 0,
 "packet_count": 5,
 "hard_timeout": 0,
 "table_id": 0,
 "match": {
 "dl_dst":"1a:f7:56:6c:06:0e",
 "dl_src":"7e:6a:f9:8a:71:f5",
 "in_port": 2"},
}

 {
 "actions": [
 "OUTPUT: 1"],
 "idle_timeout": 0,
 "packet_count": 5,
 "hard_timeout": 0,
 "table_id": 0,
 "match": {
 "dl_dst":"1a:f7:56:6c:06:0e",
 "dl_src":"7e:6a:f9:8a:71:f5",
 "in_port": 2"}
 },
]}

 {
 "actions": [
 "OUTPUT: 2"],
 "idle_timeout": 0,
 "packet_count": 5,
 "hard_timeout": 0,
 "table_id": 0,
 "match": {
 "dl_dst":"7e:6a:f9:8a:71:f5",
 "dl_src":"1a:f7:56:6c:06:0e",
 "in_port": 1”}
 },
]}

FIGURE 2.8: FLOW RULES INSTALLED DURING THE COMMUNICATION OF HOST-1 AND

HOST-2 ILLUSTRATED IN FIG. 2.7. HERE RULES MENTIONED IN THE BLUE BOXES REP-
RESENTS THE FORWARDING PATH AND RULES FOR REVERSE PATH IS LISTED IN GREEN

BOXES.

Step 2: As OF-Switch 1 has no prior knowledge of Host-2, it generates a control

messages known as Packet IN message to SDN controller that contains the data packet

sent by Host-1.

Step 3: Upon receiving the Packet IN message, the SDN controller through ap-

plication, for example switching application can decide that on which port it has to

forward this packet. After calculating the path, SDN controller installs a flow rule on

OF-Switch 1 using another control message known as Flow Mod message. Rule listed

in Blue Box under OF-Switch 1 of Fig. 2.8.

Step 4: Once the flow rule is installed on OF-Switch 1 regarding the destination

Host-2, all traffic is forwarded to port 2.

Step 5: Upon receiving the data packets from OF-Switch 1, the OF-Switch 2 also

generates Packet IN message containing the data packet sent by Host-1 for Host-2.

CHAPTER 2. BACKGROUND TECHNOLOGIES 21

Step 6: Once again, SDN controller through its application decides the destination

port number and installs a flow rule through Flow Mod message on OF-Switch 2. Rule

listed in Blue Box under OF-Switch 2 of Fig. 2.8.

Step 7: After the installation of flow rule, the OF-Switch 2 now forwards the traffic

of Host-2 coming from port 2 to port 1.

Step 8: When Host-2 receives data packets from Host-1, it then generates a response

packet. This response packet will also follow the same procedure to reach Host-1 using

flow rule installed by SDN controller. Flow Rules installed on both switches for reverse

path between Host-2 and Host-1 are listed in Fig. 2.8 inside green boxes.

2.5 Summary

In this chapter, we have provided the overview of the technologies used in this disser-

tation. We used multiple technologies such as, Software Defined Networks, Enterprise

Integration Patterns, and Virtual Local Area Networks to propose a framework that

has built-in security. In the last sections, we present a basic example to help the reader

understand how an SDN network interacts using flow rules.In this chapter, we have

provided the overview of the technologies used in this dissertation. We used multiple

technologies such as, Software Defined Networks, Enterprise Integration Patterns, and

Virtual Local Area Networks to propose a framework that has built-in security. In the

last sections, we present a basic example to help the reader understand how an SDN

network interacts using flow rules.

Chapter 3

Literature Review

This chapter highlights the existing work related to the adoption of SDN in enterprise

network. The proposed communication framework incorporates multiple technologies

such as VLANs, ARP protocol, service registry, and anonymous communication. We

have organized this literature review into multiple sections where each section presents

the related work concerning to each technology incorporated in the research. The

summary of the existing work pertaining to each technology using in this proposed

framework is depicted in Fig. 3.1.

Proposed Communication
Framework

SDN in Enterprise Networks

Handling of ARP Messages
in SDN

VLAN Management in SDN

Anonymous
Communication in SDN

Context Aware
Communication in SDN

Barakat et al.

S. Huang et al.

D. Levin et al.

D. K. Hong et al.

R. di Lallo et al.

T. Alharbi et al.

J. Chen et al.

P. W. Tsai et al.

J. Chen et al.

T. Zhu et al.

T. Wong et al.

T. Zhu et al.

T. Zeng et al.

Y. Wang et al.

NGSON

B. Martini et al.

S. Luo et al

Y. Yamasaki et al.

NguYen et al.

Varun et al.

M. B. Lehocine et al.

T. Alharbi et al.

FIGURE 3.1: SUMMARY OF THE EXISTING LITERATURE PERTAINING TO THE DEPLOY-
MENT OF SDN PARADIGM IN ENTERPRISE NETWORKS

22

CHAPTER 3. LITERATURE REVIEW 23

TABLE 3.1: EFFORTS TO DEPLOY SDN IN ENTERPRISE NETWORKS

Literature Research Motivation Proposed Solution Cons

Barakat et al.
[75]

Different methodolo-
gies for converting tra-
ditional networks to
SDN-based networks
are compared

Proposed four different
strategies to integrate
SDN with fewer up-
grades. This approach is
extension of on the work
done by [76].

Integration issues be-
tween legacy and SDN
switches

S. Huang et al.
[77]

Migration from a tra-
ditional network to an
SDN network

Proposed a scheme to
integrate traditional Net-
works and SDN

Their plan necessitates
careful integration,
routing, and network
administration.

D. Levin et al.
[76]

Stage wise deploy-
ment of SDN in
enterprise networks
with fewer updates of
switches

Proposed an approach
where transition of net-
work from legacy to SDN
switches only requires
handful of switches to be
replaced so that at least
one SDN switch is placed
between every source and
destination hosts.

No experimentation is
done to support their
approach

D. K. Hong et
al. [78]

Transitional issues in
adopting SDN in en-
terprise and ISP net-
works

In a hybrid SDN network,
gradual deployment of
SDN switches is pro-
posed, with just 20% of
the switches required to
be converted to SDN-
based switches

Requires careful
planning to deploy
SDN switches among
legacy switches

3.1 Deployment of SDN in Enterprise Networks

Recently, researchers and academicians have proposed different solutions to adopt the

SDN paradigm in enterprise networks. One of the most prominent solutions to de-

ploy SDN in existing networks is the hybrid or incremental approach. The hybrid or

incremental approach, where few switches are upgraded to SDN-based switches and

remaining switches are left as traditional switches, poses multiple challenges such as

integration of SDN switches in traditional networks, routing decisions and designs, and

management. This approach is presented by [75, 77, 76] and [78] in their respective

articles.

Barakat et al. [75]did a study in which they compared several ways for converting

CHAPTER 3. LITERATURE REVIEW 24

traditional networks to SDN. They offered a strategy based on the comparison of

techniques in which SDN network processes the traffic of legacy networks with minimal

changes. Likewise, [77] abstracts a hybrid solution to incorporate SDN network and

legacy network. Both SDN and traditional switches are included in the logical SDN

network.

In [76], authors have proposed an approach to integrate SDN and legacy switches.

The main idea behind this approach is that for every communication between any

source and destination, the path of packet flow must include at least one SDN switch.

For that purpose, they introduce cost aware optimization tool for operators to deter-

mine the topological location of SDN switches in enterprise network. This approach of

at least one SDN switch between source and destination path is used to control traffic

forwarding decisions through SDN controller.

Hong et al. [78] proposes a hybrid SDN Network by introducing incremental place-

ment of SDN switches. In their approach, authors have replaced a subset of traditional

switches by OF operated switches without updating the configurations of existing tra-

ditional switches. Their proposed solution comprises of four components, which are

SDN deployment planner, global topology viewer, Traffic Engineering (TE) module,

and fail-over module. The SDN deployment planner component decides which switch

be upgraded from legacy to OpenFlow enabled switch. By Using the global visibil-

ity module, authors maintain the global view of hybrid network which includes both

SDN and legacy switches. Forwarding paths are controlled and monitor by TE module

by minimizing the link utilization to avoid congestion. In their approach, the legacy

switches uses the Link-State protocol to forward traffic and once the traffic reaches

SDN based switch, the SDN controller installs flow rules using the TE module. The

authors claim that using their approach only 20% of the switches are required to be

upgraded on SDN based switches.

3.2 VLAN Management in SDN

VLAN tagging can be advantageous for security and network administration in an

enterprise network. The studies cited in [79], [80], [81], [82], [83], [84], and [85] all

included VLANs in their SDN implementations. [79] researched one of the earliest

CHAPTER 3. LITERATURE REVIEW 25

TABLE 3.2: LITERATURE RELATED TO VLAN MANAGEMENT IN SDN

Literature Research Motivation Proposed Solution Cons

Y. Yamasaki et al.
[79]

VLAN configuration in
Campus Networks is la-
borious

Similar to VLAN IDs they
created group IDs (GIDs)
and assigned every host a
GID. The communication is
only allowed if the GIDs of
both communicating hosts
are matched.

Their approach does not
use the VLAN Tag infor-
mation in packet header.
So their solution is not
purely based on VLANs

NguYen et al.
[80]

VLANs configura-
tion is complex,
time-consuming and
error-prone process

Configuration of Dynamic
and Static VLANs are done
through a GUI based appli-
cation

The focus of their re-
search is more concerned
regarding the user mobil-
ity than to a dynamic in-
stallation of VLANs.

Varun et al. [81] Implementation of
VLANs in SDN

Developed an application
that allows SDN controller
to provide communication
using VLAN Tagging

Their solution only sup-
port static VLANs and
requires prior knowledge
of topology information
like access ports, trunks
ports and VLAN IDs as-
signed to each port.

J. Chen et al.
[82], [83]

Link and switch failure
recovery using VLANs

A unique VLAN ID along
with the backup path is cal-
culated for each link.

Their mechanism is effi-
cient with respect of link
failures only.

M. B. Lehocine et
al. [84]

Segmentation of single
VLAN into multiple iso-
lated VLANs for the pur-
pose of complete iso-
lation among hosts on
same subnets

Used double VLAN tagging
to identify isolated VLAN
ID and Primary VLAN ID

Their study was to
compare flexibility
in deploying network
application in SDN
as compared with
Autonomic Network
Management (ANM)
solutions designed for
traditional networks

CHAPTER 3. LITERATURE REVIEW 26

solutions for VLANs in SDN. They discovered that administering several VLANs in

campus networks is time consuming and has limitations due to the limited number of

VLAN IDs. They presented an open-source management solution called OpenFlow.

They used Group IDs (GIDs) rather than VLANs to analyse incoming traffic and de-

termine whether or not the connection should be allowed. When a packet IN message

is received at the controller for a flow rule request, the source and destination group

IDs are compared against those recorded in the GID database. Communication is per-

mitted only if the GIDs of the communicating hosts match. Their solution circumvents

the limitation on the number of VLANs and simplifies network configuration. Addi-

tionally, their approach does not make advantage of the VLAN information contained

in the packet header.

Nguyen et al. [80] presented an SDN-based architecture for enterprise and cam-

pus networks. Their solution enables communication over VLANs and includes an

application for managing VLANs in an enterprise network. Network administrators

can configure static and dynamic VLANs using their application. Two hosts with

the same VLAN ID can connect with one another regardless of their physical loca-

tion, thanks to their dynamic VLAN configuration approach. However, their dynamic

VLAN configuration is more concerned with the user’s mobility than with the dynamic

configuration of the VLANs. Similarly, [81] built a RYU controller-based application

to handle VLAN tagging in SDN. They validated their technique by running it through

three distinct network topologies.

Chen et al. presented a mechanism for recovering from connection failures based

on VLAN-tag in [82] and then in [83]. Their mechanism determines a backup path

and assigns a unique VLAN ID to each network link. Prior to the link loss, a backup

path is computed. They switched backup paths automatically, without involving the

controller, by employing group tables. Their mechanism is effective only in the case of

link failures.

The authors of [84] exploited the concept of private VLANs to segment a single

VLAN into numerous isolated segments and provided a method for segmenting larger

SDN networks via VLANs. They employed double VLAN tagging in their technique,

CHAPTER 3. LITERATURE REVIEW 27

with the inner VLAN Tag defining the isolated VLAN and the outside VLAN Tag

identifying the principal VLAN.

A dynamic VLAN mapping enables traffic to be sent across OpenFlow networks and

non-OpenFlow networks. VLAN tags on the inside and outside of the network were

used to establish a connection between two OpenFlow networks.

TABLE 3.3: LITERATURE RELATED TO HANDLING ARP MESSAGES IN SDN

Literature Research Motivation Proposed Solution

Di Lallo et al.
[86]

Handling ARP in SDN Fake MAC address is send by con-
troller in ARP reply message to
avoid the ARP broadcast. Later in-
stalls correct flow rule with correct
MAC address

T. Alharbi et
al. [87]

Handling ARP request using OF
switches

Using the payload of ARP request
message, OF switches convert re-
quest message into ARP response
message by rewriting the request
message fields

3.3 Handling of ARP in SDN

To handle the ARP requests in this research, the articles mentioned in Table. 3.3 were

reviewed. The first approach of handing ARP packets was proposed by Di Lallo et al.

[86]. In their approach, to avoid the ARP broadcast storm the SDN controller replies

with the fake MAC address of the destination as soon as it receives the ARP request

message from the SDN switch. After sending the fake MAC address, the SDN controller

then finds the actual MAC address of the destination by requesting the switches. Upon

receiving the actual MAC address, the SDN controller deploys the flow rule between

the source and destination hosts.

In the article [87], authors have presented an efficient approach to resolve ARP re-

quests directly from the SDN switches. In their approach, the SDN switch generates

an ARP response message without contacting the SDN controller. The ARP response

message is generated by examining the payload of the ARP request message and in-

stalling a rule that converts an ARP request to an ARP response message.

CHAPTER 3. LITERATURE REVIEW 28

TABLE 3.4: LITERATURE RELATED TO SECURING ENTERPRISE NETWORKS USING

ANONYMOUS COMMUNICATION

Literature Research Motiva-
tion

Proposed Solution

T. Zhu et al.
[88],[89]

Providing anony-
mous communica-
tion in data centers
using SDN

During the packet
transmission, each
switches replaces the
source and destination
address.

Requires collision
avoidance mecha-
nism to overcome
the flow rules
conflicts.

Y. Wang et al.
[90]

Providing untrace-
able and anonymous
packet forwarding
mechanism

Proposed URI mech-
anism to conceal the
information such as
MAC, network and
transport layer of
network traffic.

-

Wong et al.
[91]

Anonymous com-
munication in SDN

Provide anonymity of
both IP and MAC ad-
dresses between hosts

Their solution re-
quires collision
avoidance mecha-
nism. As collision
between multi-
ple flow rules is
possible.

T. Zeng et al.
[92]

SDN introduces ad-
ditional challenges
of host anonymity
due to global view

Their approach is based
on mixnets in which
clients send data using
multiple mix nodes

Their solution more
suited for internet
traffic and is not suit-
able for enterprise
networks

3.4 Anonymous Communication in SDN

To address the issue of identity or information theft, numerous anonymous commu-

nication methods have been introduced, including TOR [93], I2P [94], and Crowds

[95]. For instance, TOR employs an onion routing method to conceal the sender and

receiver’s identities, with each router knowing only its successor and predecessor. Ad-

ditionally, people are attracted toward identity hiding via cellular communication and

are utilizing smartphone programs that enable anonymity [96]. Sadly, these technolo-

gies were developed for Internet traffic and are therefore ineffective for time-sensitive

applications and organizational networks.

Zhu et al. originally presented their work on anonymous communication in data

CHAPTER 3. LITERATURE REVIEW 29

centres using SDN in [88] and again in [89]. They began by establishing the threat

model, which describes how an attacker affects an SDN switch, a host, or network

traffic. They change the source and destination IP addresses of packet, as packets

travels from source to destination host. Once packet arrives at the target host switch,

the fake address is replaced with the genuine one. Their approach is throughput

efficient ; nonetheless, it necessitates the use of a collision-avoidance system to handle

flow rule conflicts, as two flow rules may use the same fake address to carry packets

from distinct hosts.

The developers of [90] proposed the U-TRI strategy for disguising the network’s

genuine traffic. Not only MAC layer information is obfuscated by U-TRI, but also

network layer information. By substituting unstructured random numbers for MAC

addresses and keeping the mapping between the real address and the fake information,

MAC layer IDs are concealed.

In 2018, Wong et al. [91] published an article describing an anonymous communi-

cation in SDN network. Their technique protects both IP and MAC addresses against

host-to-host disclosure. They verified their method in cases involving both one-way

and two-way anonymity. However, the source host has previous knowledge of the

destination host’s genuine IP and MAC addresses through their technique of anony-

mous communication. Additionally, their technique precludes the use of a collision

prevention device. As a result of the risk of clashing several flow rules.

3.5 Context Aware communication in SDN

Context awareness is helpful in network communication because end users care only

about the information they require but not about who or how they obtained them.

IEEE defined Next Generation Service Overlay Networks (NGSON) for the benefit

of network operators, service and content providers, and end users. For further in-

formation, see [100]. To offer the best possible user experience, NGSON partitions

service-related operations from transport-related tasks and controls application ser-

vices delivered by various networks via an overlay. SDNs, such as NGSON, can abstract

away the distinction between application services (service discovery, registration, and

composition) and transport capabilities. Numerous research, for example, reference

CHAPTER 3. LITERATURE REVIEW 30

TABLE 3.5: LITERATURE RELATED TO SECURING ENTERPRISE NETWORKS USING

ANONYMOUS COMMUNICATION

Literature Research Motivation Proposed Solution

NGSON [97] Context-aware services in
SDN using IEEE NGSON

Proposed the extension of NGSON
that uses service oriented abstrac-
tion and programming at the control
layer to optimize deliver process.

B. Martini et
al. [98]

Context-aware delivery of ap-
plication services in SDN

Proposed a service oriented SDN
controller that allows service chain-
ing of overlay networks to provide
context aware delivery of applica-
tion services and helps operators to
monetize their network in different
way.

S. Luo et al.
[99]

Context-aware traffic for-
warding scheme for SDN

Introduced a service layer between
the application and control layers of
SDN to provide context-aware traf-
fic forwarding scheme.

[98] and [99], have proved the usage of SDN to offer context-aware services.

The authors of [99] presented context-aware traffic forwarding services in SDN to

demonstrate how the SDN paradigm can be used to provide context. They used

NGSON to create a service layer between SDN’s traditional application and control

layers. This service layer was developed to enable the integration of service-oriented

features such as service discovery, service registration, and service orchestration inside

an SDN environment. management.

3.6 Summary

In this chapter, we have highlighted the existing work related to deployment of SDN in

enterprise networks. Moreover, as the proposed framework incorporates multiple tech-

nologies to provide secure communication, we have divided this chapter into multiple

sections where each section highlights existing work concerning to each technology.

we have highlighted the existing work related to deployment of SDN in enterprise

networks. Moreover, as the proposed framework incorporates multiple technologies

to provide secure communication, we have divided this chapter into multiple sections

CHAPTER 3. LITERATURE REVIEW 31

where each section highlights existing work concerning to each technology.

According to the literature review, the majority of the research is geared toward en-

terprise adoption of SDN, with an emphasis on utilising existing infrastructure. How-

ever, our study proposes a method for organisations to migrate to an SDN-based net-

work based on Enterprise Integration Patterns (EIP) for increased efficiency, message

consistency, built-in security, context-aware services, anonymous communication, and

integration of existing business applications.

Chapter 4

Proposed Communication Framework

This chapter presents an overview of the design and implementation of the proposed

communication framework. This communication framework incorporates Enterprise

Integration Patterns (EIP) in an SDN environment to support communication between

applications (services) with different backgrounds such as languages, platforms, data

types, and interfaces. In addition, utilizing the benefits of SDN, this framework also

provides built-in security, services that are context-aware, and host anonymity within

the enterprise network.

The following sections introduce the architecture of the proposed communication

framework in an SDN environment, followed by the technical details of the proposed

modules of the framework that are required to provide necessary communication in an

enterprise environment.

4.1 Framework Architecture

The communication framework’s architecture is comprised of various SDN application

modules developed for the RYU SDN controller [24], one of the most popular SDN

controllers in the SDN world. Fig. 4.1 illustrates the general RYU controller archi-

tecture, as well as the modules depicted in yellow boxes, which are the result of this

research. The framework includes the following modules: Host Registration: for the

purpose of registering all hosts connected to the network; Service Registry : holds list

of all the services available to hosts on the network; IP Address Mapping : compares

hosts’ genuine IP addresses to their hoax IP addresses; Adaptive VLAN Management :

a module that facilitates reactive VLAN creation and deletion; ARP Request Resolu-

tion: a module that enables the resolution of gateway Ethernet addresses; and Packet

Forwarding : a module that enables path identification between source and destination

hosts. The following subsections detail each module.

32

CHAPTER 4. PROPOSED COMMUNICATION FRAMEWORK 33

FIGURE 4.1: THE ARCHITECTURE OF RYU SDN CONTROLLER WITH ADDED FUNC-
TIONALITY (APPLICATIONS) DEPICTED IN YELLOW RECTANGLES FOR THE PROPOSED

COMMUNICATION FRAMEWORK

4.1.1 Host Registration Module

The registration of hosts enables allowed communication in a private network envi-

ronment. To enable legitimate communication, our framework demands all hosts to

register before communicating in the network. During the host registration procedure,

the SDN controller gathers data about each host such as MAC address, IP address,

link-layer switch ID, and switch port number. The switch ID & port number inform

the SDN controller about the physical location of the host within the network. Ad-

ditionally, the registration module receives information about the host’s application

services. Fig. 4.2 summarises the information about each host acquired during the

SDN controller’s registration operation.

The information gathered during the registration phase benefits host communication

in that when sender sends a message to recipient , the SDN controller only configures

flow rules on the switches to facilitate the communication after verifying the registration

of the both sender and receiver.

It is worth noting that for the sake of enterprise network security, all information

CHAPTER 4. PROPOSED COMMUNICATION FRAMEWORK 34

gathered during the registration phase is marked as final; that is, once a host’s regis-

tration is confirmed, the gathered information cannot be amended. Additionally, any

host must be registered with the authorization of an authorized person.

FIGURE 4.2: INFORMATION OF EVERY HOST COLLECTED BY THE REGISTRATION MOD-
ULE

4.1.2 Service Registry Module

The registration of services offered by different hosts are maintained using the service

registry module. Any host supplying a service across the network have to enrol it using

this module. During the process of hosts registration and requests regarding service

discovery, this module is used. Fig. 4.3 illustrates the data acquired during the ser-

vice registration procedure. The request regarding discovery of network services, this

module is answerable for delivering a list of available services on the network. Addi-

tionally, the module provides clients with service-specific information while concealing

the genuine IP address of the service provider. This module supports context-aware

communication, which enables clients to find services without exposing the addresses

of the actual application servers. Through the use of these context-aware services,

network traffic is now routed according to application layer information.

FIGURE 4.3: SERVICE REGISTRATION INFORMATION

4.1.3 IP Address Mapper Module

This framework provides a way for masking host IP address from other hosts in order

to provide secure communication within a corporate network. This module generates a

unique hoax IP address for each host dynamically using the given ”HoaxIPAddressList”

and maintains a mapping of actual IP addresses to the Hoax IP addresses. Along with

the forged IP addresses, this module maintains the timestamp associated with each, as

CHAPTER 4. PROPOSED COMMUNICATION FRAMEWORK 35

demonstrated in Fig. 4.4. When the incoming packet’s source IP address is compared

to any record, the timestamp of each record is updated. The fundamental approach for

creating and mapping the fake IP address to the actual one, including the timestamp

information, is summarised in Algorithm. 1.

Real IP Address : Spoofed IP
address

List Hit
Timestamp

Figure 4.4: Hoax IP address and last hit timestamp information against actual IP address

This framework provides a way for masking host IP address from other hosts in order

to provide secure communication within a corporate network. This module generates a

unique hoax IP address for each host dynamically using the given ”HoaxIPAddressList”

and maintains a mapping of actual IP addresses to the Hoax IP addresses. Along with

the forged IP addresses, this module maintains the timestamp associated with each, as

demonstrated in Fig. 4.4. When the incoming packet’s source IP address is compared

to any record, the timestamp of each record is updated. The fundamental approach for

creating and mapping the fake IP address to the actual one, including the timestamp

information, is summarised in Algorithm. 1.

Once each IP address has reached its maximum lifespan, the date information placed

against each record is used to erase all inactive IP addresses. By deactivating inactive

IP addresses, we ensure that each subsequent communication request from a host is

routed through a new faked IP address. The algorithm 2 explains how to purge the

”MappedIP” dictionary of inactive faked IP addresses. Additionally, when a host

requests a service from the network, this module is activated to replace the requested

host’s IP address with the fake IP address and vice versa.

4.1.4 Adaptive VLAN Management Module

As discussed in Sec. 2.3, VLAN allows hosts on different networks to be grouped

logically into a single broadcast domain or it may also allow a single network (single

broadcast domain) to be partitioned into multiple smaller networks (multiple broadcast

domains). The main benefit that can be obtained from VLAN management is the

CHAPTER 4. PROPOSED COMMUNICATION FRAMEWORK 36

CHAPTER 4. PROPOSED COMMUNICATION FRAMEWORK 37

security of hosts within an enterprise network, where hosts can access each other data

if they are on the same VLAN ID. In the traditional network, VLAN management is a

tough, tedious, and error-prone task since the network administrator has to manually

configure VLANs on all the switches on the network. The job of configuring VLANs

becomes even more difficult for larger enterprise networks.

VLAN benefits were also incorporated in SDN by the OpenFlow protocol [101].

Multiple fields and operations are specified by OpenFlow protocol for VLAN-based

communication. These fields and operations are listed below.

1. Push Tag : Function through which VLAN tag is inserted on the packet header.

2. Pop Tag : Function through which VLAN tag is removed from the packet header.

3. ActionÔSet Field ; Field through which Tag Control Information is modified.

This framework incorporates VLAN management to overcome the challenges faced

during the manual configuration of VLANs. By using the benefits of SDN, an adaptive

VLAN management module is proposed. Our work is the extension of [81] to support

dynamic and adaptive VLAN management. The dynamic feature of this module cre-

ates VLANs reactively between the two registered hosts willing to communicate in

CHAPTER 4. PROPOSED COMMUNICATION FRAMEWORK 38

FIGURE 4.5: FLOW CHART AND WORKING OF THE Adaptive VLAN Management MODULE

an enterprise network. Similarly, the adaptive feature of this module creates differ-

ent VLANs for different communications. Moreover, the VLAN setup between the

two hosts is only established for the duration of the communication. Once the hosts

(sender and receiver) finish their communication, the switches automatically remove

all the flow rule entries from the switches deployed to support VLAN communication

between any communicating hosts. Thus for every new communication between two

hosts, a new VLAN is created with a random VLAN ID till the completion of the

communication.

The flow chart and working of this module are illustrated in Fig. 4.5. Moreover, a

CHAPTER 4. PROPOSED COMMUNICATION FRAMEWORK 39

precise step-by-step procedure of this module is exhibited in the Algorithm. 3. This

module is invoked by the Packet IN message from the OF switch. Upon receiving the

Packet IN, this module performs the series of steps to create reactive VLAN. These

steps are listed below:

Step 1: Extraction of MAC addresses from Packet IN message is performed. Then

registration of participating hosts is verified using Host Registration module.

Step 2(a): If the registration of both hosts is confirmed, then this module inspects

the incoming message for the VLAN tag. If the VLAN tag is missing from

the message, then the incoming message is treated as the first message of new

communication. Upon identifying the new communication, this Adaptive VLAN

Management module creates a random VLAN ID and allocates this VLAN ID

to the switch ports (access ports) through which source and destination hosts

are connected. It is to be noted that source and destination hosts switch port

numbers and switch IDs are retrieved from the Host Registration module. Once

the access ports of both communicating hosts are assigned VLAN ID, this module

also assigns the VLAN ID to the trunk ports of switches if the two communicating

hosts are connected on different switches.

Step 2(b): If the VLAN Tag information is present in the incoming message, then it is

presumed that the VLAN between the communicating host is already configured.

However, the Packet IN message with tagged VLAN ID is received by the SDN

controller because it is generated by that switch that has received this tagged

message from its trunk port and has no information (flow rules) to forward this

tagged message. The Adaptive VLAN Management module matches the desti-

nation host switch ID against the switch that has generated the textitPacket IN

message. If the switch IDs are matched, it means that destination hosts lie on

the same switch that has generated the textitPacket IN message. In the matched

case, the VLAN Tag information is removed from the message and is forwarded

to the access port through which the destination host is connected. For the mis-

matched case, the next trunk port is identified and the message is forwarded to

that trunk port.

CHAPTER 4. PROPOSED COMMUNICATION FRAMEWORK 40

If the VLAN Tag information is present in the incoming message, then it is pre-

sumed that the VLAN between the communicating host is already configured.

However, the Packet IN message with tagged VLAN ID is received by the SDN

controller because it is generated by that switch that has received this tagged

message from its trunk port and has no information (flow rules) to forward this

tagged message. The Adaptive VLAN Management module matches the desti-

nation host switch ID against the switch that has generated the textitPacket IN

message. If the switch IDs are matched, it means that destination hosts lie on

the same switch that has generated the textitPacket IN message. In the matched

case, the VLAN Tag information is removed from the message and is forwarded

to the access port through which the destination host is connected. For the mis-

matched case, the next trunk port is identified and the message is forwarded to

that trunk port.

Step 3: The failure in the verification of both or either of the host registration, men-

tioned in step 1, requires further investigation i.e., the incoming message is further

checked for an ARP broadcast message. If the message is an ARP broadcast then

it is flooded in the network. Otherwise, failure in the registration of any single

host (source and destination) results in denial of communication. The failure in

the verification of both or either of the host registration, mentioned in step 1,

requires further investigation i.e., the incoming message is further checked for an

ARP broadcast message. If the message is an ARP broadcast then it is flooded

in the network. Otherwise, failure in the registration of any single host (source

and destination) results in denial of communication.

4.1.5 ARP Request Resolution Module

Address Resolution Protocol [102], is a protocol that resolves host permanent physical

address (MAC address) against the host changeable IP address (usually IPv4 address)

in a local area network (LAN). All hosts in an ethernet maintain a special kind of table

known as ARP Cache. In this ARP Cache, a list of IP addresses and their associated

MAC addresses are maintained. When any host wants to send a message to another

CHAPTER 4. PROPOSED COMMUNICATION FRAMEWORK 41

CHAPTER 4. PROPOSED COMMUNICATION FRAMEWORK 42

host, it first checks the ARP Cache for the mapping of the intended receivers IP and

MAC addresses. If the mapping is missing in the ARP Cache, then the host broadcasts

a request message known as ARP Request for the resolution of the MAC address of

the intended receiver. Upon receiving the ARP Request message which contains the

receiver IP address, the receiver generates a unicast response message known as ARP

Response revealing the MAC address of itself.

If hosts are attached to separate subnets in SDN environments, the SDN controller

must resolve the MAC addresses of the gateways on every network. This gateway

MAC address resolution is essential because OF switches operate as a router when

two connecting hosts are on different subnets. The proposed framework includes a

ARP Request Resolution module for managing the MAC addresses of all the enterprise

network’s gateways. This module contains the static mapping between each gateway’s

IP address and MAC address. When the OpenFlow enabled switch receives a ARP

Request, it constructs a Packet IN message and sends it to the SDN controller through

the control path. This module answers to the ARP Request message with a APR Reply

message by providing the gateway’s MAC address via the Packet OUT message.

4.1.6 Packet Forwarding Module

Packet Forwarding module is invoked on the reception of Packet IN message in which

destination host is on the different network as compared to the source host. To han-

dle such situations where both communicating hosts belong to different subnets, the

Packet Forwarding module along with ARP Request Resolution module provide the

communication mechanism. For the security of hosts in the network, the configuration

of each host on a different subnet is recommended as it is verified from the results of

security analysis of this module in chapter 6, section 6.3.

The flow chart and working of this module are illustrated in Fig. 4.6. To forward the

packet to the destination host, this module requires services of Host Registration, ARP

Request Resolution and Network Map DB modules. The Host Registration module is

required for the verification of both the source and destination hosts and it is also

used to acquire both communicating hosts’ switch IDs and port numbers based on the

IP address mapping. The ARP Address Resolution module is needed to provide the

CHAPTER 4. PROPOSED COMMUNICATION FRAMEWORK 43

mapping of the gateway MAC address against its IP address. Similarly, the Network

Map DB module is essential to provide information regarding the uplink port of the

switch to forward traffic to the next switch if the destination host is not present on

the same switch. Details of the Network Map DB are presented in sec. 4.1.7.

The algorithm of this Packet Forwarding module is presented in Algo. 4 and is

divided into steps mentioned below:

Step 1: Upon the arrival of the Packet IN message, the packet type is checked whether

the incoming packet is an ARP Request packet or not. If the packet is an ARP

Request packet then it is handled by the ARP Request Resolution module.

Step 2: After ensuring that request is not an ARP Request, the source and destination

CHAPTER 4. PROPOSED COMMUNICATION FRAMEWORK 44

hosts’ IP and MAC addresses are extracted. First, it is ensured that the IP

addresses mentioned in the Packet IN message are not hoaxed IP addresses. If

any of the IP addresses is the hoax address, then it retrieves the real IP address

from the IP address Mapper module.

Step 3: As the destination host belongs to another subnet, the destination MAC ad-

dress mentioned in the Packet IN message would be the gateway MAC Address

of the source host. Therefore, base on the destination IP address, this module

using the services of Host Registration module acquires the destination MAC ad-

dress. After obtaining the real IP and MAC addresses, the registration of both

hosts is verified. As the destination host is of a different subnet as compared

to the source host, the destination MAC address mentioned in the Packet IN

message would be the gateway MAC Address of the source host. Therefore, base

on the destination IP address, this module using the services of Host Registration

module acquires the destination MAC address. After obtaining the real IP and

MAC addresses, the registration of both hosts is verified.

Step 4: After the verification of hosts, based on the destination IP Address, the in-

formation of the destination host is obtained from the Host Registration module

such as its switch ID and port number through which the destination host is con-

nected on the network.After the verification of hosts, based on the destination

IP Address, the information of the destination host is obtained from the Host

Registration module such as its switch ID and port number through which the

destination host is connected on the network.

Step 5: After obtaining the information regarding the switch IDs of both the commu-

nicating hosts, the switch IDs are matched. If the switch IDs are matched, the

action field in the flow rule is set to modify the destination MAC address of the

incoming packet with the actual MAC address of the destination host. Further-

more, if anonymous communication is enabled then the action filed is also set to

modify the source IP address with the hoax IP address. After setting the flow

rule with the match and action fields, the flow rule is added on the switch to han-

dle further packets of the same flow. After obtaining the information regarding

CHAPTER 4. PROPOSED COMMUNICATION FRAMEWORK 45

the switch IDs of both the communicating hosts, the switch IDs are matched. If

the switch IDs are matched, the action field in the flow rule is set to modify the

destination MAC address of the incoming packet with the actual MAC address

of the destination host. Furthermore, if anonymous communication is enabled

then the action filed is also set to modify the source IP address with the hoax

IP address. After setting the flow rule with the match and action fields, the flow

rule is added on the switch to handle further packets of the same flow.

Step 6: Similarly, if the comparison of the switch IDs of both the communicating hosts

is not matched, then it means that the source and destination hosts are not on

the same switch and it can also be a situation in which the Packet IN message

is generated by that switch that has received a packet for whom it does not

have an associated flow rule. In this situation, this module using the services of

the Network Map DB module obtains the information of the next uplink port

where the destination host is connected. Based on the information of the uplink

port, the action field in the flow rule is adjusted with the output port is set as

the uplink port. This forwarding of the packet to the next switch means that

now it is the responsibility of the next switch to forward the packet to either

the destination host or the further switch if the destination is not present in the

next switch. Moreover, if anonymous communication is enabled then the action

filed is also set to modify the source IP address with the hoax IP address. After

setting the flow rule with the match and action fields, the flow rule is added on

the switch to handle further packets of the same flow.

The working of this module is depicted in Fig. 4.6.

4.1.7 Network Map

The Network Map DB module contains information of the physical location of each

switch along with its uplink ports. Through this module, the proposed framework

maintains the global view of the network topology i.e, the location of each switch and

their interconnection among themselves on the network. This database is used by the

Packet Forwarding module to acquire uplink port information if it wants to forward

CHAPTER 4. PROPOSED COMMUNICATION FRAMEWORK 46

FIGURE 4.6: FLOW CHART AND WORKING OF Packet Forwarding MODULE

the packet to another switch by invoking the getUplinkPort() method.

4.2 Summary

In this chapter, we have presented detail discussion of the design and implementation of

the proposed communication framework. This communication framework incorporates

Enterprise Integration Patterns (EIP) in an SDN environment to support communica-

tion between applications (services) with different backgrounds such as languages, plat-

forms, data types, and interfaces. This framework consists of multiple modules of RYU

controller that provide different network services. In addition, utilizing the benefits of

CHAPTER 4. PROPOSED COMMUNICATION FRAMEWORK 47

SDN, this framework also provides built-in security, services that are context-aware,

and host anonymity within the enterprise network.

Chapter 5

Integration of EIP in SDN

In this chapter, the integration of proposed communication framework with Enterprise

Integration Patterns (EIP) is explained. Integration of our framework with EIP is done

to provide fault-tolerant capability, message reliability and asynchronous communica-

tion. The following sections presents the phase wise integration of EIP in the proposed

communication framework.

5.1 Integrating EIP in the Proposed Framework

In an organisational network, several programmes provide a variety of services to cus-

tomers, and the majority of these applications operate independently of one another.

Occasionally, the addition of a new service or the growth of an existing service may ne-

cessitate a complete rewrite of the information system. However, the simplest method

of integrating heterogeneous modules is not to redesign the entire information system,

but to enable them to communicate despite their disparate implementation platforms,

languages, and data types. When one of these applications requests a service from

another, a formal method for communication between them must exist. As detailed

in Chapter 2 section 2.2, Enterprise Integration Patterns (EIP) [8] is one method for

establishing formal communication between applications. The EIP messaging system

is built on the concept of consistent message queuing. Between client applications and

the messaging system, messages are queued asynchronously. The primary advantage

of messaging systems is their loose coupling, which enables asynchronous message ex-

change and consistent communication. By utilising a message system, applications can

focus exclusively on the data’s substance, rather than becoming entangled in the data

transmission process. EIP is integrated with the SDN environment in this research to

enable asynchronous and reliable communication between applications while leverag-

ing the benefits of the SDN paradigm, including programmability, global visibility, low

48

CHAPTER 5. INTEGRATION OF EIP IN SDN 49

operational costs, and the ability to adapt to changing network demands.

Integration of EIP in the proposed communication framework is performed phase

wise. In the initial phase, EIP is incorporated in the preliminary framework design

using only four modules of the proposed framework i.e., Host Registration, Adaptive

VLAN Management, Packet Forwarding, and ARP Request Resolution. Later, two new

modules were included in the proposed communication framework to support context-

aware and anonymous communication. These modules are Service Registry, and IP

address Mapper. Following subsections presents the phase wise integration of EIP.

CHAPTER 5. INTEGRATION OF EIP IN SDN 50

FIGURE 5.1: PHASE I: A SEQUENCE OF MESSAGE FLOW BETWEEN HOST A AND HOST

B USING MESSAGE SYSTEM (EIP CHANNEL).

5.1.1 Phase I

In this phase, EIP is incorporated in the preliminary framework design comprising

of only four modules depicted in Fig. 5.1. With the integration of Messaging Sys-

tem (EIP), any application on the network desires to communicate with the other

application executing on another host must utilize the messaging system to deliver its

CHAPTER 5. INTEGRATION OF EIP IN SDN 51

messages. In this research, three core components of Messaging Systems have been

used which are Message, Message Channel, and Message Endpoint. In this communi-

cation framework, each host has a special interface (Message Endpoint) that allows any

application to transmit or receive messages to / from the messaging channel. When

an application running on one host desires a service from the another application on

the same or different network, it constructs a message (request message) and forwards

that message to its Message Endpoint. It is the job of the Message Endpoint to de-

liver and receive messages into/from the Message Channel. Message Endpoint is also

responsible for converting the message format if different messaging formats are being

used by the communicating applications.

5.1.1.1 Registration Phase

Fig. 5.1 depicts the working of the proposed communication framework and the se-

quence of messages delivered between the communicating hosts after the integration of

EIP in SDN. The first step towards the secure communication environment is always

the registration and verification of hosts present in the network. As it can be observed

from Fig. 5.1 that the first few messages are of the registration of two communicating

hosts i.e., Host A and Host B. Here Host A and Host B are connected to OF switch

1 (OVS-1) and OF switch 2 (OVS-2) respectively. Both hosts through their own OF

switch sends a registration request message that is forwarded to the SDN controller

because of the table-miss flow entry that forwards any message to the SDN Controller.

Upon receiving the registration request the Host Registration module registers hosts by

recording their information such as IP and MAC addresses, OF switch ID, and switch

port number.

5.1.1.2 VLAN based communication

Using this framework, hosts must configured using two different sets of configuration

layouts. In the first layout, all hosts belong to the same subnet and portray the ethernet

topology of a single subnet. If the hosts’ configuration is of a single subnet topology

then communication between hosts is provided by the Adaptive VLAN Management

module of this communication framework. As it can be seen from Fig. 5.1 that

CHAPTER 5. INTEGRATION OF EIP IN SDN 52

Host A wants to acquire the services of Host B, it sends a message for Host B to

its Endpoint. Upon receiving the message, the Endpoint running inside Host A will

send this message to OF switch destined for Message Channel (EIP Channel). Upon

receiving the message from Host A, the OF switch first matches the message header

information against the flow rules deployed on the OF switch. If message header

information is not matched against any rule then OF switch will forward this message

to the SDN controller using the Packet IN message.In our proposed framework, hosts

can be configured using two different sets of configuration layouts. In the first layout, all

hosts belong to the same subnet and portray the ethernet topology of a single subnet.

If the hosts’ configuration is of a single subnet topology then communication between

hosts is provided by the Adaptive VLAN Management module of this communication

framework. As it can be seen from Fig. 5.1 that Host A wants to acquire the services

of Host B, it sends a message for Host B to its Endpoint. Upon receiving the message,

the Endpoint running inside Host A will send this message to OF switch destined for

Message Channel (EIP Channel). Upon receiving the message from Host A, the OF

switch first matches the message header information against the flow rules deployed on

the OF switch. If message header information is not matched against any rule then OF

switch will forward this message to the SDN controller using the Packet IN message.

As both hosts (Host A and EIP Channel) belong to the same network, the VLAN

Management module is invoked which first verifies that if the VLAN ID is already

created between the communicating hosts or not. If it is a new communication then

the VLAN module creates a random VLAN ID for the Host A and EIP Channel, then

it deploys flow rules on the switches to support VLAN based communication between

them. After the installation of flow rules to support communication between Host A

and EIP Channel, now Host A can send messages to EIP Channel destined for Host

B. The EIP Channel maintains a message queue for each host/service and places Host

B messages on the Host B queue.

Likewise, flow rules are installed in the same manner between Host B and the EIP

Channel using a new VLAN ID. Now the application at Host B can retrieve its messages

buffered on the EIP Channel through its own Endpoint. It is worth mentioning that

CHAPTER 5. INTEGRATION OF EIP IN SDN 53

Point-to-Point Channel is being used that ensures that only Host B can successfully

receive its own messages. Moreover, the EIP Channel and the communication frame-

work are fully capable of handling multiple communications simultaneously. Likewise,

flow rules are installed in the same manner between Host B and the EIP Channel using

a new VLAN ID. Now the application at Host B can retrieve its messages buffered on

the EIP Channel through its own Endpoint. It is worth mentioning that Point-to-Point

Channel is being used that ensures that only Host B can successfully receive its own

messages. Moreover, the EIP Channel and the communication framework are fully

capable of handling multiple communications simultaneously.

The results presented in Section 6.2 of Chapter 6 are based on this reactive instal-

lation of VLAN scenario.

5.1.1.3 Communication between Hosts on Different Networks

The second hosts’ configuration layout focuses on the communication between hosts

on different networks. It is recommended for the security purpose that each host be

configured on an individual network having /30 CIDR prefix. When hosts are on differ-

ent networks then communication is mainly managed by the ARP Request Resolution.

The other supported modules are ARP Request Resolution, and Network Map DB. As

each host is configured on an individual subnet then to support communication be-

tween different subnets, each host must be configured with its own gateway IP address.

Address resolution of each gateway MAC address associated with its host is handled

by the ARP Request Resolution module.The second hosts’ configuration layout focuses

on the communication between hosts on different networks. It is recommended for the

security purpose that each host be configured on an individual network having /30

CIDR prefix. When hosts are on different networks then communication is mainly

managed by the ARP Request Resolution. The other supported modules are ARP

Request Resolution, and Network Map DB. As each host is configured on an individual

subnet then to support communication between different subnets, each host must be

configured with its own gateway IP address. Address resolution of each gateway MAC

address associated with its host is handled by the ARP Request Resolution module.

As depicted in Fig. 5.1, all hosts (A, B, and EIP Channel) are connected to different

CHAPTER 5. INTEGRATION OF EIP IN SDN 54

subnets. When Host A desires a service from Host B, it first sends an ARP request

message to acquire the MAC address of its gateway. To send a packet to Host B, Host

A (Endpoint) must first send the packet to its gateway. Once the message reaches Host

As OF switch (intended for Host B) having the EIP Channel as destination address, the

switch forwards this message to the SDN controller using Packet IN message. Upon

identifying the different subnet of destination (EIP Channel) as compared to the sender

(Host A), the Packet Forwarding module deploys flow rules to support communication

between these two hosts.

Similarly, flow rules are installed in the same manner between Host B and the EIP

Channel using the Packet Forwarding module for the consumption of messages buffered

inside the EIP Channel for the application at Host B. The complete sequence of mes-

sages mentioned in this scenario is also illustrated in Fig. 5.1. Similar to the first

layout scenario, the result presented in Section 6.3 of Chapter 6 are based on this

scenario where two communicating hosts are connected to different subnets and are

communicating with each other using the messaging system.

5.1.2 Phase II

This phase extends the previous one by including two more modules, IP Address Map-

per and Service Registry, of our proposed framework to support context-aware com-

munication and provide packet anonymity through asynchronous message exchange.

The Service Registry module offers context-aware communication by allowing hosts

to find services without disclosing the real addresses of the application servers. Our

framework support network traffic using application layer information. It is vital to

emphasis that we created a message-based communication system to ease application

communication. The sequence diagram in Fig. 5.2 illustrates all of the events / message

exchanges between two communicating hosts. Where hosts (A and B) are connected

to the network via their own gateways and are on distinct subnets. The initial phase

of this communication infrastructure is the registration of hosts. As seen in Fig. 5.2,

host B provides a service and registered it during the registration step using the Service

Registry module.

Host-A sends a Packet IN message seeking service discovery following the registration

CHAPTER 5. INTEGRATION OF EIP IN SDN 55

procedure. The Host Registration module transfers the service discovery request to the

Service Registry module, which answers with all the services that network is providing.

After receiving the list of services, host A may pick one and transmit the message to the

OpenFlow enabled switch, which results in a Packet IN message to the SDN controller.

The Packet Forwarding module verifies that both hosts are registered and then makes

a request to the IP Address Mapper module to change the source host’s IP address.

When the Packet Forwarding module gets the bogus IP address, it determines the route

between Host-A and the EIP Channel. The controller will use a Flow Mod message to

apply flow rules to the OF-switch between the sender and the EIP channel. Subsequent

communications from Host-A will be sent straight to the EIP channel, bypassing the

SDN controller completely. When Host-A sends messages to Host-B through the EIP

channel, the OF-switch replaces Host-real A’s IP address with a bogus IP address and

forwards the message to the EIP channel. This replacement of the source IP address

might mask the identity of the transmitting host.

Likewise, when the receiver (Host-B) chooses to consume the messages contained

inside the EIP channel, it sends a request message to the EIP channel, resulting in

the installation of flow rules on the switches linking the EIP channel and the receiver.

Additionally, when the EIP channel answers to a request, it passes the message to

the bogus IP address. The SDN controller will set flow rules between the source EIP

channel and the destination Host-B. In this situation, the flow rules will substitute the

true IP address of Host-B for the fake IP address. Additionally, as illustrated in Fig.

6.8, the results discussed in Section 6.4 of Chapter 6 are based on this phase.

5.2 Summary

In this chapter, we presented the procedure of integrating our novel communication

framework with Enterprise Integration Patterns (EIP). As this novel framework con-

sists of six modules, the integration was done in phases. In the first phase, we integrated

first four modules then two more modules were also integrated with EIP during the

second phase. Integration of our framework with EIP is done to provide fault-tolerant

capability, message reliability and asynchronous communication. Through time-line

/ sequence diagrams, we highlighted the messages sequences to support the network

CHAPTER 5. INTEGRATION OF EIP IN SDN 56

communication.In this chapter, we presented the procedure of integrating our novel

communication framework with Enterprise Integration Patterns (EIP). As this novel

framework consists of six modules, the integration was done in phases. In the first

phase, we integrated first four modules then two more modules were also integrated

with EIP during the second phase. Integration of our framework with EIP is done

to provide fault-tolerant capability, message reliability and asynchronous communica-

tion. Through time-line / sequence diagrams, we highlighted the messages sequences

to support the network communication.

CHAPTER 5. INTEGRATION OF EIP IN SDN 57

FIGURE 5.2: PHASE-II INTEGRATION OF EIP IN PROPOSED FRAMEWORK.

Chapter 6

Evaluation

The primary objective of this research was to include Enterprise Integration Patterns

into SDN by defining the communication mechanisms necessary between communicat-

ing hosts. As a result, this chapter evaluates the suggested communication architecture

in terms of the correctness of the flow rules established and the efficiency of commu-

nication. Additionally, the our framework is assessed in terms of host anonymity and

the overall security of the SDN-based corporate network.

Three sections comprise the assessment process. The first section’s purpose is to

verify communication between hosts utilising responsive VLANs once all participat-

ing hosts are connected to a certain network. It’s worth noting that all conversations

between hosts must take place through the EIP Channel. To accomplish the aforemen-

tioned goal, we examined this framework’s accuracy in terms of installing flow rules

between hosts and its efficiency in terms of the time necessary to build VLANs and

install flow rules. The second section assesses communication between hosts that are

members of distinct networks. The second portion will verify the implementation of

proper flow rules to enable communication between hosts on various networks and to

protect network hosts from various network assaults. The last section of the study

evaluates the proposed communication architecture using context-aware services and

packet anonymity between hosts.

In the following sections, we first introduce the prototype setup environment. Later,

each evaluation phase is discussed in detail which includes the test topology, threat

model, host configurations, and discussion on the generated results.

6.1 Environment Setup

Mininet [103]is being used as a simulator, and an SDN controller is deployed using a

component-based RYU controller. Additionally, Containernet [104] is mounted on top

58

CHAPTER 6. EVALUATION 59

of Mininet to facilitate the deployment of Linux containers in the Mininet as hosts.

All application modules presented in this Chapter are implemented in Python as the

RYU SDN Controller application. Whatever service registry could be deployed to

register network hosts’ application services. We created a new registry service and also

performed an evaluation of PyService-Registry [105].

Similarly, any messaging system that is capable of simulating the EIP Channel may

be employed. In our research, we use RabbitMQ [106] and Apache ActiveMQ [107]to

evaluate this framework. Above-mentioned (RabbitMQ and ActiveMQ)systems use

Advanced Message Queueing Mechanism (AMQP) [108].

6.2 Evaluation of VLAN Communication

This section aims to evaluate the proposed communication framework concerning the

creation and deletion of VLANs among communicating hosts. The objective is to verify

that all communications via EIP Channel are handled efficiently and accurately using

reactive VLANs when communicating hosts belong to the same network. The reactive

VLAN communication among hosts is managed by the Adaptive VLAN module of the

proposed communication framework, where it creates a new VLAN between the com-

municating hosts reactively and abolishes the VLAN when hosts have completed their

communication. Thus, for each communication, a new VLAN with a different VLAN

ID is created between the communicating hosts for the duration of that communication.

It is worth mentioning that communication between any two hosts is only possible

through EIP Channel. All the traffic is directed to EIP Channel by the hosts using

their respective Endpoint. Furthermore, it is made sure by the SDN controller that

communication is only possible between any host and the EIP Channel. All the other

direct communication requests between the hosts are blocked by the SDN Controller

by denying the flow rules installation. Therefore, communication between two hosts

requires the establishment of two VLANs: the first one between the sender and the

EIP Channel, and the second one between the receiver and the EIP Channel.It is worth

mentioning that communication between any two hosts is only possible through EIP

Channel. All the traffic is directed to EIP Channel by the hosts using their respective

Endpoint. Furthermore, it is made sure by the SDN controller that communication

CHAPTER 6. EVALUATION 60

is only possible between any host and the EIP Channel. All the other direct com-

munication requests between the hosts are blocked by the SDN Controller by denying

the flow rules installation. Therefore, communication between two hosts requires the

establishment of two VLANs: the first one between the sender and the EIP Channel,

and the second one between the receiver and the EIP Channel.

It is worth mentioning that communication between any two hosts is only possible

through EIP Channel. All the traffic is directed to EIP Channel by the hosts using

their respective Endpoint. Furthermore, it is made sure by the SDN controller that

communication is only possible between any host and the EIP Channel. All the other

direct communication requests between the hosts are blocked by the SDN Controller

by denying the flow rules installation. Therefore, communication between two hosts

requires the establishment of two VLANs: the first one between the sender and the

EIP Channel, and the second one between the receiver and the EIP Channel.It is worth

mentioning that communication between any two hosts is only possible through EIP

Channel. All the traffic is directed to EIP Channel by the hosts using their respective

Endpoint. Furthermore, it is made sure by the SDN controller that communication

is only possible between any host and the EIP Channel. All the other direct com-

munication requests between the hosts are blocked by the SDN Controller by denying

the flow rules installation. Therefore, communication between two hosts requires the

establishment of two VLANs: the first one between the sender and the EIP Channel,

and the second one between the receiver and the EIP Channel.

FIGURE 6.1: THE NETWORK TOPOLOGY USED IN THE EVALUATION PART 1 AND 2 MEN-
TIONED IN SECTION 6.2 AND SECTION 6.3 RESPECTIVELY.

CHAPTER 6. EVALUATION 61

6.2.1 Test Topology and Hosts configuration

For the evaluation of the proposed framework, a network topology illustrated in Fig.6.1

is designed. In this scenario, all hosts belong to the same network i.e, address of every

host id from the same IP pool and have the same network ID. Hosts’ IP addresses

along with their associated MAC address are listed in Table. 6.1. For the evaluation,

a simple scenario is created where Host 1 wants to acquire the service that host Host 3

is offering via EIP Channel. Based on this scenario, the performance of the framework

is tested with respect to the installation of accurate flow rules and efficiency of the

framework related to the time needed to create reactive VLANs and installation of

flow rules based on the newly created VLAN between the communicating entities.

Following fields are used in flow rules to guide packet flow from source to destination

switches.

1. Match: These fields are used to match the incoming packet header fields. In

this scenario, following fields are used.

(a) Ingress Port

(b) VLAN: VLAN ID is matched.

(c) Destination MAC Address

2. Actions: If the packet header fields are matched then actions are performed e.g.,

Pushing the VLAN tag or popping the VLAN tag etc. In this scenario, following

actions are performed.

(a) Out Port: Output port is identified by controller and Packet is forwarded

to that port.

(b) Set Field: VLAN ID is set.

(c) Push VLAN: VLAN Tag is pushed.

(d) Pop VLAN: VLAN Tag is Popped.

3. Idle Timeout: This filed is used to remove a flow entry from the switch after

the given number of seconds, if no packet has been matched by the flow. In this

scenario, Idle timeout is set to 50 second.

CHAPTER 6. EVALUATION 62

TABLE 6.1: EVALUATION PART 1: LIST OF ALL HOSTS AND THEIR NETWORK CONFIG-
URATIONS BASED ON 192.168.10.0 NETWORK ID AND /24 CIDR PREFIX.

Host Name IP Address MAC Address

Host 1 192.168.10.10 00:00:00:00:10:10
Host 2 192.168.10.20 00:00:00:00:10:20
Host 3 192.168.10.30 00:00:00:00:10:30
Host 4 192.168.10.40 00:00:00:00:10:40
Host 5 192.168.10.50 00:00:00:00:10:50
Host 6 192.168.10.60 00:00:00:00:10:60
Host 7 192.168.10.70 00:00:00:00:10:70

EIP Channel 192.168.10.80 00:00:00:00:10:80

6.2.2 Results Analysis and Discussions

This section summarises the results of the scenario mentioned above, which explains

Host 1 wishes to obtain the service offered by Host-3. The application on Host-1

sends a request packet on the channel. As we can see in Fig. 6.1, there are four OF

switches on the pathway connecting Host 1 and the EIP Channel. Our framework’s

VLAN module generates a VLAN ID to facilitate communication among Host-1 and

channel,and configures OF-switch rules on all OF-switches along the channel. The flow

rules implemented on OF switches connecting Host 1 and EIP Channel are depicted

in Fig. 6.2. It should be noted that only essential fields are included here for the

sake of readability of flow rules. As seen in Fig. 6.2, the VLAN module generates a

random VLAN ID 93 to facilitate communication. The OF-rules are configured in such

a manner that they match the EIP Channel’s MAC address as the destination MAC

address and Actions field is configured to push the VLAN ID 93 tag onto the frame.

The frame is then sent to the output port connecting linking the other OF switch.

The output port (trunk port) of OF switch 1 (OvS 1) is set to 2. The intermediate

switches (OvS-2 and OvS-3) just match the destination MAC address and the VLAN

ID 93 tag; they do not process the frame; they simply send it to their trunk ports.

When the frame reaches the destination switch (the OF switch for the EIP Channel),

the VLAN ID 93 Tag is removed and the frame is sent to the output port (in this

case, the switch port connected to the EIP Channel). Similarly, on the reverse path

between EIP Channel and Host 1, frames with the destination MAC address of Host

CHAPTER 6. EVALUATION 63

1 will be sent to the trunk port tagged with VLAN ID 93. The VLAN tag is popped

upon arrival at the destination switch, and the remainder of the frame is sent to the

switch port associated to Host 1. Additionally, the flow rule’s idle timeout field is set

to 50 secs, allowing the OF-rules to be erased from the OF-switches after 50 secs of

inactivity. Due to the fact that messaging system is being used in our framework, all

messages pertaining to Host-3 are stored on the channel that are send by host-1.

FIGURE 6.2: FLOW RULES DEPLOYED ON OF SWITCHES TO SUPPORT VLAN-BASED

COMMUNICATION (HOST-1 AND EIP).

Likewise, Host 3 (service running on Host 3) can receive its EIP Channel messages

at any moment by contacting the SDN controller to deploy the necessary flow rules.

Refer to Fig. 6.3 to see how the SDN controller, using the proposed VLAN module,

produces a random VLAN ID 21 for connection among Host 3 and EIP and apply the

necessary flow rules on all switches along the path.

6.2.2.1 Performance w.r.t Flow Rules Installation

Our framework was evaluated against a variety of situations involving a variety of

hosts in order to measure the performance of the the VLAN Management module. The

efficiency is measured by the precision of flow rules written on the switches employing

distinct VLAN IDs to ensure exact communication between communicating hosts.

Additionally, it is observed that an access port could be a member of numerous VLAN

CHAPTER 6. EVALUATION 64

FIGURE 6.3: FLOW RULES DEPLOYED ON OF SWITCHES TO PROVIDE COMMUNICATION

BETWEEN HOST-3 AND EIP.

IDs under SDN. This is because VLAN tagging is applied exclusively by switches to

forward traffic and is deleted by OF switches upon arrival at the target port. Without

the VLAN tag, the OF switch passes the packets to the host. This is in contrast

to typical switches, which allocate each access port to a single VLAN ID. As seen

in Figures 6.2and 6.3, the VLAN ID between Host 1 and the EIP Channel is 93,

meanwhile the VLAN ID connecting Host 3 and the EIP Channel is 21. Through two

distinct flow rules, the port through which EIP Channel is linked is allocated both

VLAN IDs (VLAN ID 93 and 21). As a consequence, Host 1 and Host 3 can connect

with EIP Channel concurrently using distinct VLAN IDs.

6.2.2.2 Efficiency

The framework’s suggested VLAN Management module was further evaluated in terms

of the time required to set flow rules on switches along the path to the destination from

source in order to facilitate communication via reactive VLANs. Multiple tests (25 per

location) were run using various locations of the communicating hosts, depending on

CHAPTER 6. EVALUATION 65

FIGURE 6.4: CREATION AND DEPLOYMENT OF REACTIVE VLAN WITH RESPECT TO

TIME.

1 2 3 4 5 6 7 8 9
0

4

8

12

16

20

24

28

5.86
7.09

9.43

12.11

14.9

17.34

20.38

24.13

No. of OF-switches between communicating hosts

Ti
m

e
in

m
ill

is
ec

on
d

their actual positioning on the network, to determine the average time required to ap-

ply flow rules. The time required to configure a reactive VLAN and install necessary

flow rules among source and destination hosts is depicted in Fig. 6.4. The y-axis in

Fig. 6.4 represents the time in milliseconds required to install flow rules on the OF

switches, while the x-axis represents the number of OF switches in between source

and destination. It is obvious that the time required to set flow rules increases as the

distance and number of OF switches between source and destination increases. Addi-

tionally, Fig. 6.4 demonstrates that the framework requires only 3 to 4 milliseconds to

install flow rules on OF switches when the number of OF switches between the source

and destination hosts is increased. The ability of SDN to create reactive VLANs au-

tomatically distinguishes it from conventional networks, which need an administrator

to manually setup VLANs on all switches deployed in a business network.

Additionally, our proposed communication framework’s efficiency claim is reinforced

because redundant flow rule entries are deleted using the idle timeout field when the two

communicating hosts terminate communication, thereby conserving Ternary Content

Addressable Memories (TCAMs) on the OF switches.

6.3 Evaluation of Inter-Subnets Communication

This section evaluates the proposed architecture in terms of communication between

hosts on various subnets. The second part’s purpose is to validate the network hosts’

CHAPTER 6. EVALUATION 66

communication accuracy, security, and anonymity. Notably, networking devices in the

data plane, such as OpenFlow switch, serve as a router if each host in the network

is issued an IP address from a separate subnet than the other hosts. Each host must

be allocated an IP address and a gateway during this examination. By setting hosts

with the /30 CIDR (Classless Inter-Domain Routing) prefix, each subnet comprises a

maximum of one host. As with Part 1, all communications between couple of hosts

must take place through an EIP Channel.

6.3.1 Test Topology and Hosts Configuration

To evaluate the proposed framework, we have used the same network topology men-

tioned in section 6.2 Fig. 6.1. In this scenario, all Hosts are configured on different

subnets with /30 CIDR prefix and their configurations are mentioned in Table. 6.2

which includes IP address, gateway address and MAC address. To evaluate our pro-

posed Packet Forwarding, and ARP Request Resolution modules, we created a scenario

in which Host 2 is desirous to acquire a particular service form Host 4. Following fields

are used in flow rules to guide packet flow from source to destination.

1. Match: These fields are used to match the incoming packet header fields. In

this scenario, following fields are used.

(a) Destination IP Address

2. Actions: If the packet header fields are matched then actions are performed e.g.,

forwarding the packet to output port, etc. In this scenario, following actions are

performed.

(a) Out Port: Output port is identified by controller and Packet is forwarded

to that port

(b) Set Field: Ethernet Destination Address is updated

3. Idle Timeout: This filed is used to remove a flow entry from the switch after

the given number of seconds, if no packet has been matched by the flow. In this

scenario, Idle timeout is set to 50 second.

CHAPTER 6. EVALUATION 67

TABLE 6.2: EVALUATION PART 2: LIST OF ALL HOSTS AND THEIR IP CONFIGURATIONS

ALONG WITH DEFAULT GATEWAYS /30 CIDR PREFIX. HERE EACH HOST BELONGS TO

AN INDIVIDUAL NETWORK HAVING ITS UNIQUE NETWORK ADDRESS.

Host Name IP Address MAC Address Default Gateway

Host 1 192.168.10.5 00:00:00:00:10:05 192.168.10.6
Host 2 192.168.10.9 00:00:00:00:10:09 192.168.10.10
Host 3 192.168.10.13 00:00:00:00:10:13 192.168.10.14
Host 4 192.168.10.17 00:00:00:00:10:17 192.168.10.18
Host 5 192.168.10.21 00:00:00:00:10:21 192.168.10.22
Host 6 192.168.10.25 00:00:00:00:10:25 192.168.10.26
Host 7 192.168.10.29 00:00:00:00:10:29 192.168.10.30

EIP Channel 192.168.10.1 00:00:00:00:10:01 192.168.10.2

6.3.2 Results and Discussions

As discussed before in section 6.3.1, the configuration of hosts is critical for the safety

of every host and computer /network, as hosts are configured on distinct subnets.

The IP address of each communication host is accessible only to EIP Channel and

is concealed from the other hosts in the aforementioned circumstance. During the

host registration phase, hosts that provide applications service have to register their

application services, and these services are available to all hosts enrolled in the network

without exposing their IP addresses. When an application needs to obtain services from

another application, it requests an SDN controller to apply flow rules on switches. The

SDN controller builds a path between the requested application and the EIP by virtue

of the Registration module’s awareness of all hosts and their services. On the EIP

Channel, a service-specific queue is maintained that contains all messages from various

hosts that pertain to a given service. The requested application uses the same approach

to get its messages and creates responses for each message over the EIP Channel. This

method will assist in concealing the IP addresses of other hosts on the same corporate

network, hence supporting/strengthening the communication’s security feature

6.3.2.1 Performance w.r.t Flow Rules Installation

The communication correctness may be checked by examining the flow rules that sup-

port each communication. As previously described, a situation has been developed in

CHAPTER 6. EVALUATION 68

which Host 2 wishes to obtain a service offered by Host 4, but Host 2 is uninformed

of Host 4’s IP address. In this case, Host 2 seeks the needed service from the SDN

Controller. Using the Registration module to get global visibility, the SDN controller

applies flow rules among Host 2 and the EIP channel through the Forwarding module.

The flow rules established between Host 2 and the EIP Channel are depicted in Fig.

6.5. As seen in Fig. 6.5, the EIP Channel’s IP address is compared to the network

destination node in the Match field, and then the Action field is executed by assigning

the EIP Channel’s real MAC address, and the frame is sent to the switch’s uplink port.

Because the arriving message from any host carries the destination MAC address as

the gateway MAC address, the MAC address is replaced. The SDN controller answers

the gateway MAC address by substituting it with the real EIP Channel MAC address

via the flow rule’s ”SET FIELD” action.

Similarly, messages cached for Host 4 can be consumed at any moment by request-

ing that the SDN controller apply flow rules between Host 4 and the EIP Channel.

Fig. 6.6 illustrates all the pertinent flow rules implemented all along path connecting

Host 4 to EIP Channel. The performance of this framework may be validated by the

results shown in Figures 6.5 and 6.6, which demonstrate that the proposed framework

accurately sets rules on SDN switches to enable communication between two hosts on

separate subnets.

6.3.2.2 Security

The hosts’ configuration mentioned in this evaluation i.e., each host must be configured

on different subnets using

30 CIDR prefix, can eradicate the possibility of Port or Network scanning attacks

[109], which are used for reconnaissance and can lead to further harmful attacks such

as Denial of Service (DoS), Man-In-The-Middle (MITM), etc., attacks. For example,

an adversary compromises any host in an enterprise network using our proposed com-

munication framework, the information obtained from the compromised host, such as

IP or MAC addresses, would make it difficult for the adversary to launch an attack or

scan the entire network because IP address of each host is concealed from other hosts.

To verify the above security claim, NMAP network scanner is used to test the security

CHAPTER 6. EVALUATION 69

FIGURE 6.5: FLOW RULES DEPLOYED ON OF SWITCHES BETWEEN THE SOURCE (HOST

2) AND DESTINATION(EIP CHANNEL). BOTH THE SOURCE AND DESTINATION HOSTS

BELONG TO DIFFERENT NETWORKS. HERE HOST 2 IS PUBLISHING ITS MESSAGES FOR

HOST 4 ON EIP CHANNEL.

of the proposed communication framework. The results obtained from the NMAP scans

are listed in Table. 4 . Here it is assumed that an adversary has compromised Host 4

and obtained its IP address i.e., 192.168.10.17. Based on the obtained IP address of

Host 4, it has launched a scan to gain information of other hosts inside the network.

It can be verified from the Table. 4 that the first NMAP scan returns only two active

hosts on the network i.e., host with IP address 192.168.10.18 and 192.168.10.17. These

two hosts are Host-4 (itself) and its gateway. The remaining hosts that are mentioned

in the topology Fig. 6.1 and having the configuration listed in the Table. 6.1 were alive

but were not detected by the NMAP scanner. The reason behind this result is that this

framework only allows hosts to communicate with each other through EIP Channel.

Any direct communication request between hosts is blocked by the SDN controller by

not deploying flow rules to support such communication.

Although the IP address of the SDN Controller (RYU Controller) is hidden from

the hosts, to verify the security of the SDN controller a port scanning attack is also

conducted for the RYU controller. RYU controller uses port # 6633 to communicate

with the switches deployed on the data plane using OpenFlow to install flow rules.

However, the NMAP network scanner was unable to detect this open port. Likewise,

another NMAP scan i.e., TCP SYN port scan was also initiated on all the active hosts

CHAPTER 6. EVALUATION 70

FIGURE 6.6: FLOW RULES DEPLOYED ON OF SWITCHES BETWEEN THE SOURCE (HOST

4) AND DESTINATION(EIP CHANNEL). HERE HOST 4 IS CONSUMING ITS MESSAGES,
SENT BY HOST 2, STORED ON EIP CHANNEL.

mentioned in the Table. 6.1. As it can be noticed that apart from the source node

(Host-4), none of the active hosts were detected. All the NMAP scans results listed in

Table 6.2 further validates our stance of built-in security of enterprise networks using

the proposed communication framework.

Furthermore, the information of each host such as IP address, MAC address, switch

port number, and switch IDs, obtained during the registration phase by the proposed

Host Registration module is not modifiable i.e., once the information is collected by

the SDN controller then it is fixed. This feature of our proposed framework eradicates

the possibility of ARP Spoofing attack [110]. Authors in [111] have also presented a

similar approach to eliminate ARP spoofing attacks.

Based on the security analysis presented in this section the proposed communication

framework offers built-in security from gaining reconnaissance about the network hosts,

preventing ARP spoofing attacks, and eradicating port or network scanning attacks.

CHAPTER 6. EVALUATION 71

6.4 Evaluation of Anonymous Communication

This section evaluates our proposed communication system in terms of hosts anonymity

and the overall security of an SDN-based enterprise network. To do this, we designed

a scenario where Host-2 requests a service from Host-6 via an asynchronous message

exchange over the EIP Channel. The threat model for this article is that any registered

host in an enterprise network can get compromised. Therefore, an adversary may use

the compromised host to reveal the identity of the other hosts on the network by

observing the traffic. Moreover, this framework does not protect against the adversary

CHAPTER 6. EVALUATION 72

who can compromise the switches on the network. We believe that in an enterprise

network, switches are physically secured and it is difficult for an adversary to attach

traffic analysis device on the switch physically.

6.4.1 Test Topology and Hosts Configuration

The framework is evaluated in terms of anonymous communication between various

hosts or application services. To analyze the framework, a tree topology with depth

= 2 and fanout = 3 is utilized, as represented in Fig. 6.7. It’s worth noting that the

proposed architecture facilitates communication between hosts on the same subnet as

well as between hosts on separate subnets. Each host in the architecture depicted in

Fig. 6.7 is configured on a separate subnet for the purpose of evaluating the proposed

framework’s anonymity. The IP configuration of each host, as well as its MAC address

and gateway address, are shown in Table. 6.3.

CHAPTER 6. EVALUATION 73

Figure 6.7: A test topology to evaluate anonymous communication of proposed framework.

1. Match: These fields are used to match the incoming packet header fields. In

this scenario, following fields are used.

(a) Destination IP Address

(b) Source IP Address

2. Actions: If the packet header fields are matched then actions are performed

e.g., forwarding the packet to output port, etc. In this scenario, following actions

are performed.If the packet header fields are matched then actions are performed

e.g., forwarding the packet to output port, etc. In this scenario, following actions

are performed.

(a) Out Port: Output port is identified by controller and Packet is forwarded

to that port

(b) Set Field: Ethernet Destination Address is changed

(c) Set Field: Source IP Address is changed to its corresponding hoax IP address

CHAPTER 6. EVALUATION 74

3. Idle Timeout: This filed is used to remove a flow entry from the switch after

the given number of seconds, if no packet has been matched by the flow. In this

scenario, Idle timeout is set to 100 second.This filed is used to remove a flow

entry from the switch after the given number of seconds, if no packet has been

matched by the flow. In this scenario, Idle timeout is set to 100 second.

TABLE 6.3: CONFIGURATION OF EACH HOST ON TOPOLOGY DEPICTED IN FIG. 6.7

Host Name IP Address MAC Address Default Gateway

EIP Channel 192.168.1.101 00:00:00:01:01:01 192.168.1.102
Host-1 192.168.1.57 00:00:00:01:00:57 192.168.1.58
Host-2 192.168.1.77 00:00:00:01:00:77 192.168.1.78
Host-3 192.168.1.129 00:00:00:01:01:29 192.168.1.130
Host-4 192.168.1.165 00:00:00:01:01:65 192.168.1.166
Host-5 192.168.1.181 00:00:00:01:01:81 192.168.1.182
Host-6 192.168.1.193 00:00:00:01:01:93 192.168.1.194
Host-7 192.168.1.213 00:00:00:01:02:13 192.168.1.214
Host-8 192.168.1.245 00:00:00:01:02:45 192.168.1.246

TABLE 6.4: HOAX VS ACTUAL IP ADDRESSES. THESE ADDRESSES ARE GENERATED

DURING THE SIMULATION AND TESTING OF FRAMEWORK.

Host Name Real IP Address Hoax IP Address

EIP Channel 192.168.1.101 172.23.16.213
Host-1 192.168.1.57 172.23.16.205
Host-2 192.168.1.77 172.23.16.114
Host-3 192.168.1.129 172.23.16.67
Host-4 192.168.1.165 172.23.16.181
Host-5 192.168.1.181 172.23.16.165
Host-6 192.168.1.193 172.23.16.27
Host-7 192.168.1.213 172.23.16.147
Host-8 192.168.1.245 172.23.16.137

6.4.2 Performance and Results Analysis

As explained in Sec. 4.1, the framework’s objective is to facilitate secure communi-

cation across several hosts in an enterprise setting. As a result, the correctness of

anonymous communication between hosts is critical. Additionally, Messaging System

CHAPTER 6. EVALUATION 75

FIGURE 6.8: OF ENABLED SWITCHES HAVE BEEN CONFIGURED WITH RULES TO FA-
CILITATE ANONYMOUS COMMUNICATION BETWEEN HOST-2 AND THE EIP CHANNEL.
HOST-2’S ACTUAL IP ADDRESS IS 192.168.1.77 AND EIP’S IS 192.168.1.101.

(EIP Channel) has the property of providing message dependability and fault-tolerance

behaviour in the event of a hardware failure on any host.

To enable anonymous communication, this framework uses the IP Address Mapper

module to produce bogus IP addresses and compares them to genuine IP addresses.

These bogus IP addresses are produced at random from the system administrator’s

specified IP pool list. The table 6.4 compares bogus IP addresses generated during the

simulation to genuine IP addresses. The administrator inserts the 172.23.16.0/24 net-

work pool here to produce bogus IP addresses. Once the bogus IP address is generated

against the host, every further communication will use the bogus IP address. We dis-

cuss the computational complexity, verify the accuracy of anonymous communication,

and assess the framework’s security in the following subsections.

6.4.2.1 Computational Complexity

As explained earlier in Sec. 5.1.2, this architecture depends significantly on the Map-

per and Forwarding modules to provide packet anonymity. To validate the efficiency of

CHAPTER 6. EVALUATION 76

FIGURE 6.9: SERIES OF ACTIONS REQUIRED WHEN IMPLEMENTING FLOW RULES ON

SWITCHES.

our framework, we employ Asymptotic Notation [112] to evaluate the time complexity

of our Mapper and Forwarding modules. The phrase ”time complexity” represents the

time needed for an algorithm to finish its operation. The most well-known is asymp-

totic analysis, which employs Big-O notation to characterise an algorithm’s worst-case

situation as the input size rises. Following computations, the time complexity of the

Mapper module, as given in Algo. 1, to generate a new false IP address or to obtain

the genuine IP address using Big-O notation is mentioned below. Here, N is the total

number of hosts in the IP address mapper’s list.

IP Address Mapper = O(N)

Additionally, a loop is used to search for inactive spoofed IP addresses in the MappedIP

dictionary. As a result, the time required to delete the stale faked IP addresses is as

follow.

Removal of inactive spoofed IP addresses = O(N)

CHAPTER 6. EVALUATION 77

The communication is supported by our Forwarding module; moreover, it also requires

the verification of each communicating host, as well as the creation of the hoax IP

address or retrieval of the real IP address using the Mapper module; thereby, the

overall time complexity of this anonymous communication to install flow rules for each

Packet IN request is quite high.

Packet Forwarding = O(3N) + O(N)

Applying asymptotic notation rules by ignoring the coefficient of the highest order

term. The entire complexity of time will be as follows.

System time complexity = O(N)

The aforementioned asymptotic analysis considerably enhances the efficiency of our

proposed system. Similarly, by setting a timeout value in the idle timeout field of the

flow rule, this framework discards the flow entry from the switch after a given period

of inactivity (in Fig. 6.8, the idle timeout value is set to 100 seconds). This enables us

to conserve TCAMs, which also supports our proposed framework’s memory footprint

efficiency claim.

6.4.2.2 Accuracy w.r.t Anonymous Communication

To show the proposed framework’s ability to support anonymous communication, we

created a scenario in which Host-2 seeks to request a service from Host-6 through

an asynchronous message exchange over the EIP Channel. Host-2 is assigned the

bogus IP address 172.23.16.114 upon registration. It requires a list of the accessible

application services on the network. When a service request is received, the Service

Registry module reacts by producing a list of all enlisted application services. Host-

2 picks an application service from a list and sends it a message (Host-6). Because

communication between hosts is authorised only via EIP Channel, the SDN controller

must first compute a route connecting Host-2 and EIP Channel and then configure

flow rules to enable communication.

The SDN controller applies flow rules that route traffic through OF-switch-1 to OF-

switch-4. when the packet reaches the EIP Channel (OF-switch-4), the destination

CHAPTER 6. EVALUATION 78

fake IP address is replaced with the true EIP Channel IP address. The flow rules that

have been established between Host-2 and the EIP Channel are depicted in Fig. 6.8.

Likewise, to disguise the source IP address, the SDN controller guarantees that the

flow rule substitutes the transmitting host’s fake IP address for the genuine source IP

address.

When a message between Host-2 and Host-6 reaches the EIP Channel, it is routed

to the EIP Channel’s service-specific queue, i.e., the service offered by Host-6. The

application operating on Host-6 can consume its messages at any point in time by

beginning communication with the EIP Channel, wherein the SDN controller will con-

figure separate flow rules.

Additionally, we use the Wireshark [113] packet analyzer to prove our claim about

anonymous communication. Both Fig. 6.10 and Fig. 6.11 reveal that Host-2 and EIP

Channel are unable to divulge the genuine IP address of the other. It’s worth remem-

bering that the SDN controller will deny any attempt to send a message directly to

another server on the network. Additionally, the SDN controller only supports commu-

nication between EIP Channels that are either senders or receivers. As a result of this

communication topology, the requirement to conceal MAC addresses is eliminated.

FIGURE 6.10: SNAPSHOT OF WIRESHARK OF HOST WITH IP ADDRESS 192.168.1.101
(EIP CHANNEL).

6.4.2.3 Security

As explained in Sec. 6.4, our threat model presupposes that each host in an orga-

nization’s network is vulnerable to compromise. Once a host has been infiltrated,

an adversary can monitor its inbound and outbound traffic by employing any packet

analyzer, such as Wireshark, Metasploit, or others.

CHAPTER 6. EVALUATION 79

FIGURE 6.11: SNAPSHOT OF WIRESHARK OF HOST WITH IP ADDRESS 192.168.1.77
(HOST - 2).

We utilised the identical scenario of Host-2 sending messages to Host-6 through the

EIP Channel to verify the proposed framework’s security. Assume that Host-2 has been

compromised and that an adversary is able to study the details of the incoming packets

utilizing Wireshark, as demonstrated in Fig. 6.11. An attacker can use the source IP

address to scan the whole network in order to find the accessible hosts. In the above

scenario, the Nmap network scanner [115]is used to assess ours framework’s security via

a series of host discovery scans. The below-mentioned table summarises the findings

from a series of Nmap scans: 6.5. By checking the source address of an incoming

packet in Wireshark, for example, 172.23.16.213, the attacker can launch a scan to

find all potential hosts on the network that use the network address 172.23.16.0/24.

As indicated in the Table’s top row. 6.5, the Nmap scan returns only the EIP Channel

as a result. While all hosts are connected to the network and utilise Hoax IP addresses

from the 172.23.16.0/24 network, the Nmap scanning programme did not detect them.

This is because the proposed framework allows communication between two hosts only

through EIP Channels; any explicit inquiry from each host is denied by the SDN

controller.

Similarly, an attacker can do another scan by examining the IP address of the com-

promised host. In this case, Host-2’s true IP address is 192.168.1.77, and a scan is

generated to determine the location of other hosts on the network using that IP ad-

dress. As seen in the second row of Table 6.5, the Nmap scanning programme detects

just two hosts: Host-2 and its gateway with the IP address 192.168.1.78. Additionally,

Nmap was unable to discover the EIP Channel that Host-2 uses to communicate with

other hosts on the network.

CHAPTER 6. EVALUATION 80

The last Nmap scan examines the EIP Channel’s ports. Nmap recognised the EIP

Channel’s existence but was unable to access any of the open ports. These observations,

summarised in Table 6.5, support our assertion that a secure communication system

is necessary. Additionally, the proposed solution eliminates the possibility of ARP

spoofing attacks, as the registration stage permanently stores each host’s information,

including its IP address, MAC address, OF-Switch number, and related switch port

number. As a result, our platform is designed to be more secure than a normal SDN or

traditional network in terms of host anonymity, ARP spoofing protection, and network

or port scanning risks.The last Nmap scan examines the EIP Channel’s ports. Nmap

CHAPTER 6. EVALUATION 81

recognised the EIP Channel’s existence but was unable to access any of the open

ports. These observations, summarised in Table 6.5, support our assertion that a secure

communication system is necessary. Additionally, the proposed solution eliminates the

possibility of ARP spoofing attacks, as the registration stage permanently stores each

host’s information, including its IP address, MAC address, OF-Switch number, and

related switch port number. As a result, our platform is designed to be more secure

than a normal SDN or traditional network in terms of host anonymity, ARP spoofing

protection, and network or port scanning risks.

6.5 Summary

In this chapter, we have evaluated the proposed framework with respect to the creation

of dynamic VLANs between hosts residing on the same network. In addition, we also

evaluated the communication between hosts residing on different subnets. Similarly, we

also evaluated the anonymity of hosts during the communication using our framework.

In all the evaluation tests, the proposed communication framework has performed well

as depicted by the results mentioned in this chapter.we have evaluated the proposed

framework with respect to the creation of dynamic VLANs between hosts residing

on the same network. In addition, we also evaluated the communication between

hosts residing on different subnets. Similarly, we also evaluated the anonymity of

hosts during the communication using our framework. In all the evaluation tests,

the proposed communication framework has performed well as depicted by the results

mentioned in this chapter.

Chapter 7

Conclusion and Further Research

This chapter presents the concluding remarks together with some of the potential future

research directions. Section 7.1 presents the conclusions drawn from the research work

and Section 7.2 discusses the future research areas and improvements.

7.1 Conclusion

The advent of SDN has changed corporate network administration. SDN-based archi-

tecture enables network administration to be flexible across many applications, such

as routing, switching, forwarding, and controlling. Additionally, by implementing the

SDN paradigm, network managers may eliminate labor-intensive hardware setups and

dependency on vendors for security solutions/devices.

Similarly, EIP is a set of patterns for communicating across applications using

message-oriented communication. Enterprise networks have integration challenges due

to the fact that the majority of applications are created separately, using disparate

development platforms, languages, and data formats. EIP is one of the options avail-

able for establishing communication between applications operating on separate hosts.

Due to the messaging system’s asynchronous structure, it enables loose coupling and

reliable communication between applications.

In this research, we merged both of the aforementioned technologies, namely EIP

and SDN, and provided a novel communication framework that enables corporate

networks to communicate in an accurate, efficient, secure, and fault-tolerant manner.

We feel that incorporating EIP into SDN benefits network managers and software

developers alike. To do this, we developed various SDN modules to support our message

communication framework.

This research also evaluates different host configuration layouts using EIP. In the

first hosts’ configuration layout, all communicating hosts belong to the same network

82

CHAPTER 7. CONCLUSION AND FURTHER RESEARCH 83

and communicate with each other by using this proposed framework’s Adaptive VLAN

Management module. It is noteworthy that within the same network, hosts can only

communicate using VLAN tagging and communication between hosts is only possible

through EIP Channel. This Adaptive VLAN Management module provides efficient

deployment of VLANs between two communicating hosts (any host and the EIP Chan-

nel) for the duration of the communication. Moreover, one of the major findings of

this research is that in SDN an access port (OF switch port) can be assigned different

VLAN IDs to communicate with different hosts simultaneously, which is not allowed in

traditional network switches.This research also evaluates different host configuration

layouts using EIP. In the first hosts’ configuration layout, all communicating hosts

belong to the same network and communicate with each other by using this proposed

framework’s Adaptive VLAN Management module. It is noteworthy that within the

same network, hosts can only communicate using VLAN tagging and communication

between hosts is only possible through EIP Channel. This Adaptive VLAN Manage-

ment module provides efficient deployment of VLANs between two communicating

hosts (any host and the EIP Channel) for the duration of the communication. More-

over, one of the major findings of this research is that in SDN an access port (OF

switch port) can be assigned different VLAN IDs to communicate with different hosts

simultaneously, which is not allowed in traditional network switches.

Similarly, the second hosts’ configuration layout is more suitable for enterprises that

are mainly concern about the security of their data and hosts. In this configuration,

each host belongs to an individual network. It is the job of the SDN controller through

our proposed framework’s modules such as Packet Forwarding, ARP Request Reso-

lution and Network Map DB to provide communication between any host and EIP

Channel residing on different networks. The security of this hosts’ configuration lay-

out is tested using the NMAP network scanner. The scan results validate that using

this hosts’ configuration layout, it is difficult for an adversary to gain information about

the other hosts inside the network.

This communication framework is the initial step towards the integration of EIP in

SDN and can be further enhanced and deployed in various enterprise networks where an

CHAPTER 7. CONCLUSION AND FURTHER RESEARCH 84

organization receives multiple services from external sources such as Banking System,

Immigration System, Tax Management System, etc.

7.2 Further Research

In this research, only a handful of modules are proposed to provide basic communica-

tion in an enterprise network. However, for this proposed communication framework

to be deployed on the actual enterprise network and to completely utilize the benefits

of SDN and EIP, few more modules are required. The following list specifies further

research directions to enhance the overall communication and security of this frame-

work so that the SDN-based networks can be deployed in enterprise networks without

any network reliability concerns.

1. Spanning Tree Protocol Application - A loop free logical topology is required by

developing an application using Spanning Tree Protocol (STP). Currently this

framework does not provide loop free logical topology.

2. Routing Protocol Application - Although we have proposed a Packet Forward-

ing module to forward packets from one network to another. However, this

Packet Forwarding module requires static entries of the physical locations (phys-

ical topology) of OF switches deployed on the enterprise network. A standalone

routing application can overcome this limitation and can decided the shortest

path between communicating hosts dynamically.

3. Security Applications - This communication framework provides built-in security

and the evaluation results vindicate our claim of secure and anonymous com-

munication. However, to be deployed on actual network, this communication

framework further requires following security applications.

(a) Access Control List (ACL) application - ACL application is required for

blocking or permitting hosts from certain services in the network.

(b) Firewall application - A centralized firewall application can provide overall

network security.

CHAPTER 7. CONCLUSION AND FURTHER RESEARCH 85

(c) Deep Packet Inspection application - adding this application in this frame-

work can give multiple benefits and through random checking of packet

contents helps making real time decisions.

(d) IPS / IDS application - Including IPS / IDS application in this framework

can help in identifying malicious or suspicious activity and IPS can pro-

actively take measures to neutralize the threat.

4. Load Balancer application - This application can help in balancing the network

traffic load between multiple paths. Moreover, it can also be used balance the

load between multiple servers offering same services.

5. Topology Mapping Application - In the framework, we utilizes a Network Map DB

module that holds information, which is statically saved, regarding the physical

location of each switch. An application is required that automatically build a

topology map of all the switches, their access and uplink ports.

6. Testing the synchronous communicating application using Messaging System -

Although this framework support asynchronous communication. However, few

services in enterprise network still requires synchronous mode of communica-

tion. For those services / applications, this framework may be tested with few

modifications for synchronous communication using Messaging System (EIP).

APPENDIX A

Understanding Simple SDN Topology

To understand how SDN network communicates, we explain it through a simple SDN

topology illustrated in Fig. 1. Here Host-1 having IP address 192.168.10.1/24 initiates

communication with Host-2 with IP address 192.168.10.2/24. Both hosts are connected

to separate switches which support OpenFlow communication. Fig. 1 illustrate a sim-

ple example to highlight the communication between two hosts in SDN environment.

The whole communication is divided into following steps.

Host 1
192.168.10.1/24
1a:f7:56:6c:06:0e

Host 2
192.168.10.2/24
7e:6a:f9:8a:71:f5

1

4

7

OF-Switch 1 OF-Switch 2

SDN Controller
192.168.10.100/24

1
2

1
2

FIGURE 1: A SIMPLE EXAMPLE TO HIGHLIGHT THE COMMUNICATION BETWEEN TWO

HOSTS IN SDN ENVIRONMENT.

Step 1: When Host-1 send data packets having Host-2 as destination, these packets

are received at OF-Switch 1 through port 1.

Step 2: As OF-Switch 1 has no prior knowledge of Host-2, it generates a control

messages known as Packet IN message to SDN controller that contains the data packet

sent by Host-1.

Step 3: Upon receiving the Packet IN message, the SDN controller through ap-

plication, for example switching application can decide that on which port it has to

forward this packet. After calculating the path, SDN controller installs a flow rule on

OF-Switch 1 using another control message known as Flow Mod message. Rule listed

86

APENDIX 87

Open vSwitch
OF-Switch 1

Open vSwitch
OF-Switch 2

{"1": [{
 "actions": [
 "OUTPUT: 2"],
 "idle_timeout": 0,
 "packet_count": 5,
 "hard_timeout": 0,
 "table_id": 0,
 "match": {
 "dl_dst": "7e:6a:f9:8a:71:f5",
 "dl_src": "1a:f7:56:6c:06:0e",
 "in_port": 1”}
 },

{"2": [{
 "actions": [
 "OUTPUT: 1"],
 "idle_timeout": 0,
 "packet_count": 5,
 "hard_timeout": 0,
 "table_id": 0,
 "match": {
 "dl_dst":"1a:f7:56:6c:06:0e",
 "dl_src":"7e:6a:f9:8a:71:f5",
 "in_port": 2"},
}

 {
 "actions": [
 "OUTPUT: 1"],
 "idle_timeout": 0,
 "packet_count": 5,
 "hard_timeout": 0,
 "table_id": 0,
 "match": {
 "dl_dst":"1a:f7:56:6c:06:0e",
 "dl_src":"7e:6a:f9:8a:71:f5",
 "in_port": 2"}
 },
]}

 {
 "actions": [
 "OUTPUT: 2"],
 "idle_timeout": 0,
 "packet_count": 5,
 "hard_timeout": 0,
 "table_id": 0,
 "match": {
 "dl_dst":"7e:6a:f9:8a:71:f5",
 "dl_src":"1a:f7:56:6c:06:0e",
 "in_port": 1”}
 },
]}

FIGURE 2: FLOW RULES INSTALLED DURING THE COMMUNICATION OF HOST-1 AND

HOST-2 ILLUSTRATED IN FIG. 1. HERE RULES MENTIONED IN THE BLUE BOXES REP-
RESENTS THE FORWARDING PATH AND RULES FOR REVERSE PATH IS LISTED IN GREEN

BOXES.

APENDIX 88

in Blue Box under OF-Switch 1 of Fig. 2.

Step 4: Once the flow rule is installed on OF-Switch 1 regarding the destination

Host-2, all traffic is forwarded to port 2.

Step 5: Upon receiving the data packets from OF-Switch 1, the OF-Switch 2 also

generates Packet IN message containing the data packet sent by Host-1 for Host-2.

Step 6: Once again, SDN controller through its application decides the destination

port number and installs a flow rule through Flow Mod message on OF-Switch 2. Rule

listed in Blue Box under OF-Switch 2 of Fig. 2.

Step 7: After the installation of flow rule, the OF-Switch 2 now forwards the traffic

of Host-2 coming from port 2 to port 1.

Step 8: When Host-2 receives data packets from Host-1, it then generates a response

packet. This response packet will also follow the same procedure to reach Host-1 using

flow rule installed by SDN controller. Flow Rules installed on both switches for reverse

path between Host-2 and Host-1 are listed in Fig. 2 inside green boxes.

BIBLIOGRAPHY

[1] A. Nygren, B. Pfaff, B. Lantz, B. Heller, C. Barker, C. Beckmann, D. Cohn,

D. Malek, D. Talayco, D. Erickson et al., “OpenFlow switch specification 1.5.0,”

Open Netw. Found., Tech. Rep. ONF TS-020, 2014.

[2] S. Ryu, “Framework community: Ryu sdn framework,” 2015. [Online].

Available: http://osrg.github.io/ryu

[3] X. Fei, F. Liu, Q. Zhang, H. Jin, and H. Hu, “Paving the way for nfv

acceleration: A taxonomy, survey and future directions,” ACM Comput. Surv.,

vol. 53, no. 4, Aug. 2020. [Online]. Available: https://doi.org/10.1145/3397022

[4] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rex-

ford, S. Shenker, and J. Turner, “Openflow: enabling innovation in campus net-

works,” ACM SIGCOMM Computer Communication Review, vol. 38, no. 2, pp.

69–74, 2008.

[5] N. Omnes, M. Bouillon, G. Fromentoux, and O. Le Grand, “A programmable

and virtualized network & it infrastructure for the internet of things: How can

nfv & sdn help for facing the upcoming challenges,” in 2015 18th International

Conference on Intelligence in Next Generation Networks. IEEE, 2015, pp. 64–69.

[6] D. Kreutz, F. Ramos, P. Verissimo, C. E. Rothenberg, S. Azodolmolky, and

S. Uhlig, “Software-Defined Networking: A Comprehensive Survey,” arXiv

preprint arXiv:1406.0440, 2014.

[7] Open Networking Foundation (ONF), “Software-Defined Networking:

The New Norm for Networks, Technical Reports,” 2012. [On-

line]. Available: https://www.opennetworking.org/images/stories/downloads/

sdn-resources/white-papers/wp-sdn-newnorm.pdf

89

http://osrg. github. io/ryu
https://doi.org/10.1145/3397022
https://www.opennetworking.org/images/stories/ downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
https://www.opennetworking.org/images/stories/ downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf

APENDIX 90

[8] G. Hohpe and B. Woolf, Enterprise integration patterns: Designing, building,

and deploying messaging solutions. Addison-Wesley Professional, 2004.

[9] B. Rauf, H. Abbas, A. M. Sheri, W. Iqbal, and A. W. Khan, “Enterprise inte-

gration patterns in sdn: A reliable, fault-tolerant communication framework,”

IEEE Internet of Things Journal, vol. 8, no. 8, pp. 6359–6371, 2021.

[10] B. Rauf, H. Abbas, A. Muqeem, W. Iqbal, Y. Abbas, M. Daneshmand, and

F. Amjad, “Cacs: A context-aware and anonymous communication framework

for an enterprise network using sdn,” IEEE Internet of Things Journal, pp. 1–1,

2021.

[11] B. Rauf, H. Abbas, M. Usman, T. A. Zia, W. Iqbal, Y. Abbas, and H. Afzal,

“Application threats to exploit northbound interface vulnerabilities in software

defined networks,” ACM Comput. Surv., vol. 54, no. 6, jul 2021. [Online].

Available: https://doi.org/10.1145/3453648

[12] F. Van den Abeele, J. Hoebeke, I. Moerman, and P. Demeester, “Integration

of heterogeneous devices and communication models via the cloud in the con-

strained internet of things,” International Journal of Distributed Sensor Net-

works, vol. 11, no. 10, p. 683425, 2015.

[13] A. Kamilaris, F. Gao, F. X. Prenafeta-Boldu, and M. I. Ali, “Agri-IoT: A se-

mantic framework for Internet of Things-enabled smart farming applications,”

in 2016 IEEE 3rd World Forum on Internet of Things (WF-IoT). IEEE, 2016,

pp. 442–447.

[14] S. Wang, J. Wan, D. Li, and C. Zhang, “Implementing smart factory of industrie

4.0: an outlook,” International journal of distributed sensor networks, vol. 12,

no. 1, p. 3159805, 2016.

[15] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, “Internet of things

for smart cities,” IEEE Internet of Things journal, vol. 1, no. 1, pp. 22–32, 2014.

https://doi.org/10.1145/3453648

APENDIX 91

[16] L. Catarinucci, D. De Donno, L. Mainetti, L. Palano, L. Patrono, M. L. Ste-

fanizzi, and L. Tarricone, “An IoT-aware architecture for smart healthcare sys-

tems,” IEEE internet of things journal, vol. 2, no. 6, pp. 515–526, 2015.

[17] O. Flauzac, C. González, A. Hachani, and F. Nolot, “SDN based architecture for

IoT and improvement of the security,” in 2015 ieee 29th international conference

on advanced information networking and applications workshops. IEEE, 2015,

pp. 688–693.

[18] S. Chakrabarty and D. W. Engels, “A secure IoT architecture for Smart Cities,”

in 2016 13th IEEE annual consumer communications & networking conference

(CCNC). IEEE, 2016, pp. 812–813.

[19] W. Stallings, Foundations of modern networking: SDN, NFV, QoE, IoT, and

Cloud. Addison-Wesley Professional, 2015.

[20] K. Benton, L. J. Camp, and C. Small, “OpenFlow vulnerability assessment,” in

Proceedings of the second ACM SIGCOMM workshop on Hot topics in software

defined networking. ACM, 2013, pp. 151–152.

[21] ONOS PROJECT, “Open networking operating system,” Accessed June 2020.

[Online]. Available: http://onosproject.org/

[22] OPENDAYLIGHT PROJECT, “OpenDaylight Controller,” Accessed August

2020. [Online]. Available: https://www.opendaylight.org/

[23] Floodlight Project, “Floodlight Controller,” Accessed May 2020. [Online].

Available: http://www.projectfloodlight.org/floodlight/

[24] F. Tomonori, “Introduction to ryu sdn framework,” Open Networking Summit,

pp. 1–14, 2013.

[25] M. McCauley, “POX,” 2012. [Online]. Available: http://www.noxrepo.org/

[26] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and

S. Shenker, “NOX: Towards an operating system for networks,” ACM SIGCOMM

Computer Communication Review, vol. 38, no. 3, pp. 105–110, 2008.

http://onosproject.org/
https://www.opendaylight.org/
http://www.projectfloodlight.org/floodlight/
http://www.noxrepo.org/

APENDIX 92

[27] D. Erickson, “The beacon openflow controller,” in Proceedings of the second ACM

SIGCOMM workshop on Hot topics in software defined networking. ACM, 2013,

pp. 13–18.

[28] Trema, “Trema project,” Accessed Sep 2019. [Online]. Available: http:

//trema.github.io/trema

[29] A. D. Ferguson, A. Guha, C. Liang, R. Fonseca, and S. Krishnamurthi, “Par-

ticipatory networking: An API for application control of SDNs,” in ACM SIG-

COMM computer communication review, vol. 43, no. 4. ACM, 2013, pp. 327–338.

[30] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu, R. Ra-

manathan, Y. Iwata, H. Inoue, T. Hama et al., “Onix: A distributed control

platform for large-scale production networks,” in OSDI, vol. 10, 2010, pp. 1–6.

[31] S. Hassas Yeganeh and Y. Ganjali, “Kandoo: a framework for efficient and scal-

able offloading of control applications,” in Proceedings of the first workshop on

Hot topics in software defined networks. ACM, 2012, pp. 19–24.

[32] Z. Cai, A. L. Cox, and T. Ng, “Maestro: A system for scalable openflow control,”

Tech. Rep., 2010.

[33] Naous, Jad and Erickson, David and Covington, G Adam and Appenzeller, Guido

and McKeown, Nick, “Implementing an OpenFlow switch on the NetFPGA plat-

form,” in Proceedings of the 4th ACM/IEEE Symposium on Architectures for

Networking and Communications Systems. ACM, 2008, pp. 1–9.

[34] Open Networking Foundation (ONF) , Accessed August 2020. [Online].

Available: https://www.opennetworking.org/

[35] O. Salman, I. H. Elhajj, A. Kayssi, and A. Chehab, “SDN Controllers: A

Comparative Study,” in 2016 18th Mediterranean Electrotechnical Conference

(MELECON). IEEE, 2016, pp. 1–6.

[36] R. Khondoker, A. Zaalouk, R. Marx, and K. Bayarou, “Feature-Based Compar-

ison and Selection of Software Defined Networking (SDN) Controllers,” in 2014

http://trema.github.io/trema
http://trema.github.io/trema
https://www.opennetworking.org/

APENDIX 93

World Congress on Computer Applications and Information Systems (WCCAIS).

IEEE, 2014, pp. 1–7.

[37] M. Paliwal, D. Shrimankar, and O. Tembhurne, “Controllers in SDN: A review

report,” IEEE Access, vol. 6, pp. 36 256–36 270, 2018.

[38] L. Mamushiane, A. Lysko, and S. Dlamini, “A comparative evaluation of the

performance of popular SDN controllers,” in 2018 Wireless Days (WD). IEEE,

2018, pp. 54–59.

[39] M. Karakus and A. Durresi, “A survey: Control plane scalability issues and

approaches in Software-Defined Networking (SDN),” Computer Networks, vol.

112, pp. 279–293, 2017.

[40] Y. E. Oktian, S. Lee, H. Lee, and J. Lam, “Distributed SDN controller system:

A survey on design choice,” computer networks, vol. 121, pp. 100–111, 2017.

[41] S. Schaller and D. Hood, “Software Defined Networking Architecture Standard-

ization,” Computer Standards & Interfaces, vol. 54, pp. 197–202, 2017.

[42] H. Song, “Protocol-oblivious forwarding: Unleash the power of sdn through a

future-proof forwarding plane,” in Proceedings of the second ACM SIGCOMM

workshop on Hot topics in software defined networking. ACM, 2013, pp. 127–

132.

[43] B. Pfaff and B. Davie, “The Open vSwitch database management protocol,”

2013, Internet Engineering Task Force, RFC 7047 (Informational), Dec. 2013.

[Online]. Available: http://www.ietf.org/rfc/rfc7047.txt

[44] Smith, Mea and Dvorkin, M and Laribi, Y and Pandey, V and Garg, P and

Weidenbacher, N, “OpFlex control protocol,” IETF, Apr, 2014.

[45] G. Bianchi, M. Bonola, A. Capone, and C. Cascone, “OpenState: programming

platform-independent stateful openflow applications inside the switch,” ACM

SIGCOMM Computer Communication Review, vol. 44, no. 2, pp. 44–51, 2014.

http://www.ietf.org/rfc/rfc7047.txt

APENDIX 94

[46] R. Enns, M. Bjorklund, J. Schoenwaelder, and A. Bierman, “Network configura-

tion protocol (netconf),” 2011.

[47] ONF, Open Networking Foundation (ONF), OpenFlow management and

configuration protocol (OF-CONFIG) v1.2, 2014, tech. Rep. [On-

line]. Available: https://www.opennetworking.org/images/stories/downloads/

sdn-resources/onf-specifications/openflow-confi

[48] F. Hu, Q. Hao, and K. Bao, “A survey on software-defined network and openflow:

From Concept to Implementation,” IEEE Communications Surveys & Tutorials,

vol. 16, no. 4, pp. 2181–2206, 2014.

[49] W. Stallings, “Software-defined networks and OpenFlow,” The internet protocol

Journal, vol. 16, no. 1, pp. 2–14, 2013.

[50] Y. Tseng, F. Näıt-Abdesselam, and A. Khokhar, “A comprehensive 3-

dimensional Security Analysis of a Controller in Software-Defined Networking,”

Security and Privacy, vol. 1, no. 2, p. 21, 2018.

[51] Tijare, PV and Vasudevan, D, “The Northbound APIs of Software Defined Net-

works,” International journal of engineering sciences and research technology,

2016.

[52] M. Fakoorrad, “Application Layer of Software Defined Networking: pros and

cons in terms of security,” Master’s thesis, Tallinn University of Technology,

2016.

[53] R. Fielding, “Representational state transfer,” Architectural Styles and the De-

sign of Netowork-based Software Architecture, pp. 76–85, 2000.

[54] W. Zhou, L. Li, M. Luo, and W. Chou, “Rest api design patterns for sdn north-

bound api,” in 2014 28th International Conference on Advanced Information

Networking and Applications Workshops, 2014, pp. 358–365.

[55] A. Bierman, M. Bjorklund, K. Watsen, and R. Fernando, “Restconf protocol,”

in IETF RFC 8040, 2017.

https://www. opennetworking.org/images/stories/ downloads/sdn-resources/onf-specifications/ openflow-confi
https://www. opennetworking.org/images/stories/ downloads/sdn-resources/onf-specifications/ openflow-confi

APENDIX 95

[56] K. Pentikousis, Y. Wang, and W. Hu, “MobileFlow: Toward Software-Defined

Mobile Networks,” IEEE Communications magazine, vol. 51, no. 7, pp. 44–53,

2013.

[57] T. L. Hinrichs, N. S. Gude, M. Casado, J. C. Mitchell, and S. Shenker, “Practical

declarative network management,” in Proceedings of the 1st ACM workshop on

Research on enterprise networking. ACM, 2009, pp. 1–10.

[58] R. Soulé, S. Basu, R. Kleinberg, E. G. Sirer, and N. Foster, “Managing the

network with Merlin,” in Proceedings of the Twelfth ACM Workshop on Hot

Topics in Networks. ACM, 2013, p. 24.

[59] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford, A. Story, and

D. Walker, “Frenetic: A network programming language,” ACM Sigplan Notices,

vol. 46, no. 9, pp. 279–291, 2011.

[60] M. Reitblatt, M. Canini, A. Guha, and N. Foster, “Fattire: Declarative fault

tolerance for software-defined networks,” in Proceedings of the second ACM SIG-

COMM workshop on Hot topics in software defined networking. ACM, 2013,

pp. 109–114.

[61] T. Nelson, A. D. Ferguson, M. J. Scheer, and S. Krishnamurthi, “Tierless pro-

gramming and reasoning for software-defined networks,” in 11th {USENIX} Sym-

posium on Networked Systems Design and Implementation ({NSDI} 14), 2014,

pp. 519–531.

[62] C. Monsanto, N. Foster, R. Harrison, and D. Walker, “A compiler and run-time

system for network programming languages,” ACM SIGPLAN Notices, vol. 47,

no. 1, pp. 217–230, 2012.

[63] C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin, D. Kozen, C. Schlesinger, and

D. Walker, “NetKAT: Semantic foundations for networks,” Acm sigplan notices,

vol. 49, no. 1, pp. 113–126, 2014.

APENDIX 96

[64] J. R. N. P. Katta and D. Walker, “Logic programming for software-defined

networks,” Accessed Sep 2019. [Online]. Available: http://frenetic-lang.org/

publications/logic-programming-xldi12-slides.pdf

[65] J. Reich, C. Monsanto, N. Foster, J. Rexford, and D. Walker, “Modular sdn

programming with pyretic,” Technical Reprot of USENIX, 2013.

[66] P. Pichler, B. Weber, S. Zugal, J. Pinggera, J. Mendling, and H. A. Reijers, “Im-

perative versus declarative process modeling languages: An empirical investiga-

tion,” in International Conference on Business Process Management. Springer,

2011, pp. 383–394.

[67] J. W. Lloyd, Foundations of logic programming. Springer Science & Business

Media, 2012.

[68] N. Intent, “Definition and principles,” Tech. Rec. The Open Networking Foun-

dation (ONF), 2016.

[69] Z. Latif, K. Sharif, F. Li, M. M. Karim, and Y. Wang, “A Comprehensive

Survey of Interface Protocols for Software Defined Networks,” arXiv preprint

arXiv:1902.07913, 2019.

[70] H. Yin, H. Xie, T. Tsou, D. Lopez, P. Aranda, and R. Sidi, “SDNi: A message

exchange protocol for software defined networks (sdns) across multiple domains,”

IETF draft, work in progress, 2012.

[71] P. Lin, J. Hart, U. Krishnaswamy, T. Murakami, M. Kobayashi, A. Al-Shabibi,

K.-C. Wang, and J. Bi, “Seamless Interworking of SDN and IP,” in ACM SIG-

COMM computer communication review, vol. 43, no. 4. ACM, 2013, pp. 475–476.

[72] P. Lin, J. Bi, and H. Hu, “Btsdn: Bgp-based transition for the existing networks

to sdn,” Wireless Personal Communications, vol. 86, no. 4, pp. 1829–1843, 2016.

[73] S. M. David Hucaby, Cisco Field Manual: Catalyst Switch Configuration. Cisco

Press, 2002, ch. VLANs and Trunking.

http://frenetic-lang.org/publications/logic-programming-xldi12-slides.pdf
http://frenetic-lang.org/publications/logic-programming-xldi12-slides.pdf

APENDIX 97

[74] IEEE Standard for Local and Metropolitan Area Networks (802.1Q), IEEE Com-

puter Society Std., 2014.

[75] O. L. Barakat, T. Emadinia, D. Koll, and X. Fu, “Paving the Way towards En-

terprise SDN Adoption: New Selection Strategies for Hybrid Networks,” in 2019

22nd Conference on Innovation in Clouds, Internet and Networks and Workshops

(ICIN). IEEE, feb 2019.

[76] D. Levin, M. Canini, S. Schmid, and A. Feldmann, “Incremental SDN deploy-

ment in enterprise networks,” ACM SIGCOMM Computer Communication Re-

view, vol. 43, no. 4, pp. 473–474, 2013.

[77] S. Huang, J. Zhao, and X. Wang, “HybridFlow: A lightweight control plane

for hybrid SDN in enterprise networks,” in 2016 IEEE/ACM 24th International

Symposium on Quality of Service (IWQoS). IEEE, jun 2016.

[78] D. K. Hong, Y. Ma, S. Banerjee, and Z. M. Mao, “Incremental

Deployment of SDN in Hybrid Enterprise and ISP Networks,” in Proceedings

of the Symposium on SDN Research, ser. SOSR ’16. New York, NY,

USA: Association for Computing Machinery, 2016. [Online]. Available:

https://doi.org/10.1145/2890955.2890959

[79] Y. Yamasaki, Y. Miyamoto, J. Yamato, H. Goto, and H. Sone, “Flexible access

management system for campus VLAN based on OpenFlow,” in 2011 IEEE/IPSJ

International Symposium on Applications and the Internet. IEEE, 2011, pp.

347–351.

[80] V.-G. Nguyen and Y.-H. Kim, “SDN-Based Enterprise and Campus Networks:

A Case of VLAN Management,” Journal of Information Processing Systems,

vol. 12, no. 3, 2016.

[81] V. Nair, “Implementation of IEEE 802.1Q VLAN Tagging using RYU

OpenFlow Controller.” [Online]. Available: https://github.com/VarunDelft/

SDN-RYU-VLAN

https://doi.org/10.1145/2890955.2890959
https://github.com/VarunDelft/SDN-RYU-VLAN
https://github.com/VarunDelft/SDN-RYU-VLAN

APENDIX 98

[82] J. Chen, J. Chen, J. Ling, and W. Zhang, “Failure recovery using vlan-tag in

SDN: High speed with low memory requirement,” in 2016 IEEE 35th Inter-

national Performance Computing and Communications Conference (IPCCC).

IEEE, 2016, pp. 1–9.

[83] J. Chen, J. Chen, J. Ling, J. Zhou, and W. Zhang, “Link failure recovery in sdn:

High efficiency, strong scalability and wide applicability,” Journal of Circuits,

Systems and Computers, vol. 27, no. 06, p. 1850087, 2018.

[84] M. B. Lehocine and M. Batouche, “Flexibility of managing VLAN filtering and

segmentation in SDN networks,” in 2017 International Symposium on Networks,

Computers and Communications (ISNCC). IEEE, 2017, pp. 1–6.

[85] P.-W. Tsai, P.-w. Cheng, C.-S. Yang, M.-Y. Luo, and J. Chen, “Supporting

extensions of VLAN-tagged traffic across OpenFlow networks,” in 2013 Second

GENI Research and Educational Experiment Workshop. IEEE, 2013, pp. 61–65.

[86] R. di Lallo, G. Lospoto, M. Rimondini, and G. Di Battista, “How to handle ARP

in a software-defined network,” in 2016 IEEE NetSoft Conference and Workshops

(NetSoft). IEEE, 2016, pp. 63–67.

[87] T. Alharbi and M. Portmann, “SProxy ARP-efficient ARP handling in SDN,”

in 2016 26th International Telecommunication Networks and Applications Con-

ference (ITNAC). IEEE, 2016, pp. 179–184.

[88] T. Zhu, D. Feng, Y. Hua, F. Wang, Q. Shi, and J. Liu, “Mic: An efficient anony-

mous communication system in data center networks,” in 2016 45th International

Conference on Parallel Processing (ICPP). IEEE, 2016, pp. 11–20.

[89] T. Zhu, D. Feng, F. Wang, Y. Hua, Q. Shi, J. Liu, Y. Cheng, and Y. Wan,

“Efficient anonymous communication in SDN-based data center networks,”

IEEE/ACM Transactions on Networking, vol. 25, no. 6, pp. 3767–3780, 2017.

[90] Y. Wang, J. Yi, J. Guo, Y. Qiao, M. Qi, and Q. Chen, “A Semistructured

Random Identifier Protocol for Anonymous Communication in SDN Network,”

Security and Communication Networks, vol. 2018, 2018.

APENDIX 99

[91] T. Wong, H. Cui, Y. Shen, W. Lin, and T. Yu, “Anonymous network communica-

tion based on SDN,” in 2018 4th International Conference on Universal Village

(UV). IEEE, 2018, pp. 1–5.

[92] T. Zeng, M. Shen, M. Wang, L. Zhu, and F. Li, “Self-adaptive anonymous com-

munication scheme under sdn architecture,” in 2015 IEEE 34th International

Performance Computing and Communications Conference (IPCCC). IEEE,

2015, pp. 1–8.

[93] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The second-generation

onion router,” Tech. Rep., 2004.

[94] B. Zantout, R. Haraty et al., “I2P data communication system,” in Proceedings

of ICN. Citeseer, 2011, pp. 401–409.

[95] M. K. Reiter and A. D. Rubin, “Crowds: Anonymity for web transactions,”

ACM transactions on information and system security (TISSEC), vol. 1, no. 1,

pp. 66–92, 1998.

[96] R. Kang, L. Dabbish, and K. Sutton, “Strangers on your phone: Why people

use anonymous communication applications,” in Proceedings of the 19th ACM

conference on computer-supported cooperative work & social computing, 2016, pp.

359–370.

[97] F. Paganelli, M. Ulema, and B. Martini, “Context-aware service composition

and delivery in NGSONs over SDN,” IEEE Communications Magazine, vol. 52,

no. 8, pp. 97–105, 2014.

[98] B. Martini, F. Paganelli, A. Mohammed, M. Gharbaoui, A. Sgambelluri, and

P. Castoldi, “SDN controller for context-aware data delivery in dynamic service

chaining,” in Proceedings of the 2015 1st IEEE Conference on Network Soft-

warization (NetSoft). IEEE, 2015, pp. 1–5.

[99] S. Luo, J. Wu, J. Li, L. Guo, and B. Pei, “Context-aware traffic forwarding

service for applications in SDN,” in 2015 IEEE International Conference on

Smart City/SocialCom/SustainCom (SmartCity). IEEE, 2015, pp. 557–561.

APENDIX 100

[100] IEEE 1903.2-2017 - IEEE Standard for Service Composition Protocols of Next

Generation Service Overlay Network, IEEE Std., May 2018. [Online]. Available:

https://standards.ieee.org/standard/1903 2-2017.html

[101] OpenFlow Switch Specification (Version 1.3), Open Networking Foundation

Std. [Online]. Available: https://www.opennetworking.org/images/stories/

downloads/sdn-resources/onf-specifications

[102] D. C. Plummer et al., “Ethernet address resolution protocol: Or converting net-

work protocol addresses to 48. bit ethernet address for transmission on ethernet

hardware.” RFC, vol. 826, pp. 1–10, 1982.

[103] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: rapid prototyp-

ing for software-defined networks,” in Proceedings of the 9th ACM SIGCOMM

Workshop on Hot Topics in Networks, 2010, pp. 1–6.

[104] M. Peuster, H. Karl, and S. van Rossem, “Medicine: Rapid prototyping of

production-ready network services in multi-pop environments,” in 2016 IEEE

Conference on Network Function Virtualization and Software Defined Networks

(NFV-SDN), Nov 2016, pp. 148–153.

[105] “PyService-Registry,” https://github.com/cr0hn/pyservice-registry, accessed:

Oct 2020. [Online]. Available: https://github.com/cr0hn/pyservice-registry

[106] RabbitMQ, accessed March 2020. [Online]. Available: https://www.rabbitmq.

com/documentation.html

[107] B. Snyder, D. Bosnanac, and R. Davies, ActiveMQ in action. Manning Green-

wich Conn., 2011, vol. 47.

[108] J. Kramer, “Advanced message queuing protocol (AMQP),” Linux Journal, vol.

2009, no. 187, p. 3, 2009.

[109] Bhuyan, Monowar H and Bhattacharyya, Dhruba Kr and Kalita, Jugal K, “Sur-

veying port scans and their detection methodologies,” The Computer Journal,

vol. 54, no. 10, pp. 1565–1581, 2011.

https://standards.ieee.org/standard/1903_2-2017.html
https://www.opennetworking.org/images/stories/ downloads/sdn-resources/onf-specifications
https://www.opennetworking.org/images/stories/ downloads/sdn-resources/onf-specifications
https://github.com/cr0hn/pyservice-registry
https://www.rabbitmq.com/documentation.html
https://www.rabbitmq.com/documentation.html

[110] T. Kiravuo, M. Sarela, and J. Manner, “A survey of Ethernet LAN security,”

IEEE Communications Surveys & Tutorials, vol. 15, no. 3, pp. 1477–1491, 2013.

[111] M. Z. Masoud, Y. Jaradat, and I. Jannoud, “On preventing ARP poisoning

attack utilizing Software Defined Network (SDN) paradigm,” in 2015 IEEE Jor-

dan Conference on Applied Electrical Engineering and Computing Technologies

(AEECT). IEEE, 2015, pp. 1–5.

[112] M. Sipser, “Introduction to the Theory of Computation,” ACM Sigact News,

vol. 27, no. 1, pp. 27–29, 1996.

[113] A. Orebaugh, G. Ramirez, and J. Beale, Wireshark & Ethereal network protocol

analyzer toolkit. Elsevier, 2006.

[114] D. Kennedy, J. O’gorman, D. Kearns, and M. Aharoni, Metasploit: the penetra-

tion tester’s guide. No Starch Press, 2011.

[115] G. F. Lyon, Nmap network scanning: The official Nmap project guide to network

discovery and security scanning. Insecure, 2009.

101

