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Abstract

Natural gas is distributed through a complex network of pipes, nodes (supply and de-

mand), compressors and control valves covering a large geographical area. To observe

the behaviour of such complex network, typical procedure is to use multiple measure-

ment devices at different nodes/regions and record the flow and pressure of gas at those

points. This procedure is complex, time consuming, requires large number of human

resources and involves human/ measurement device errors. An alternate is to use math-

ematical modelling and simulation of gas distribution network where the mathematical

model involves differential as well as algebraic equations that lead to the so-called de-

scriptor system. It is known in the literature that simulation of such complex systems is

computationally expensive. To resolve this issue, the concept of model order reduction

can be used in which a reduced order model is constructed from the original large scale

model such that the behaviour is approximately same. In this thesis we used a specific

model order reduction technique that is the Loewner framework which is data driven

and interpolating the original system. The Loewner framework constructs reduced order

model without relying on the use of original model; instead, it uses pair of datasets at

given interpolation points. The approach provides trade-off between the accuracy of

fit and size of reduced order model. In this thesis, the applicability of Loewner frame-

work for reduction of gas distribution network has been tested and implemented on

some numerical examples. The expansion to nonlinear (quadratic-bilinear) model of gas

distribution network is also considered using nonlinear projection based interpolatory

model order reduction techniques. Numerical results show that reduced order model is

highly accurate, stable and takes lesser time to simulate as compared to the original

model.

Keywords: Gas distribution network, partial differential equation, data driven model

order reduction

xiii



Chapter 1

Introduction

This chapter starts with introduction of modelling and simulation of gas distribution

network. The advantage of using model order reduction (MOR) in the field of modelling

and simulation is also discussed. The problem statement is discussed afterwards. The

application of MOR in simulation of gas distribution network is also discussed. In the

end of this chapter, thesis overview is given.

1.1 Gas Distribution Network

In the coming decades, natural gas will be one of the most important energy sources.

The known natural gas deposits, using new techniques, such as hydraulic fracturing,

have the potential for at least another century to fuel our world. Natural gas is easy

to transport and store, it is widely used to generate electricity and heat. Pakistan

accounts for about 1.2 percent of world natural gas output while also having the greatest

percentage of domestic energy production at 88.69 percent, with the remaining 11.31

percent consisting of nuclear, hydropower, fossil fuels, and renewable energy [1]. The

high-pressure transport network and the low-pressure distribution network are used

to transport natural gas directly from the source refinery via a network of numerous

pipelines. The transportation of natural gas through pipes help us store extra gas

in the storage tanks. Pipeline systems are widely used for the transmission of gas,

oil, water, and chemicals because they are more resource-efficient than other means

of transportation [2]. pipeline systems can categorised as: high pressure transmission

system and low pressure distribution system. Transmission network usually comprises of

1



Chapter 1: Introduction

pipes with longer lengths and bigger diameters as compared to low pressure distribution

network. The entire transportation network of natural gas is made up of integrated

system of low pressure and high pressure pipes that can be grouped as: upstream,

midstream and downstream. Hydraulic fracturing, horizontal drilling, and acidizing are

all used in the upstream sector to extract gas from gas and oil reservoirs. The raw

gas is delivered to gas refineries via small-diameter, low-pressure collecting pipelines

because it is not fit for consumption. The midstream sector serves as a key connection

between manufacturing facilities and demand centres which consists of gas gathering

and processing plants. It is also responsible for flow of gas in high pressure pipes.

The downstream industries include distribution companies which provide natural gas to

consumers through certain distribution network. The block diagram in Figure 1.1.

Gas production Gas Storage & Gathering Gas Processing Plant

• Products Removed
• Non-Hydrocarbon 

Gas Removed
• Vented and Flared

Gas Distribution
Companies

Consumers

Figure 1.1: Structure of Gas Transportation Network

The components of gas transportation network are:

• Pipes: Gas network consists of high pressure pipes which are used for flow of gas

over the long distances while low pressure pipes are used for shorter distances.

• Compressors: To ensure the flow of gas with certain pressure, compressors are

used in the pipeline structure of gas network.

• Nodes: It can be supply node through which gas enters into the network, demand

node where gas is taken from the network and junction node which are used to

connect two or more pipes.

2



Chapter 1: Introduction

• Control Valves: To control the flow of gas in the network, control valves are used

in the gas network.

• Storage Tank: To meet the sudden growing demand of the gas in a network,

storage tanks are used to ensure the constant flow of gas.

1.2 MOR and its Mathematical Formulation

Most physical phenomena get the shape of the partial differential equations (PDEs)

when modelled. Only simple geometries have an analytical solution for describing PDEs

for each component. But it is possible to evaluate either approximation or numerical

solution of the system when there are complex geometries. Numerical solution assists in

the study of complex physical underlying systems. More detail in the output is required

for precision. To find comprehensive detail in the output, many possible realizations

must be simulated, resulting in a more complex large-scale model. High computational

power is required to simulate such large-scale models.

Originally, MOR was worked out in system analysis and control theory, which focuses on

the properties of dynamic systems in application to reduce their complex structure while

maintaining as much of their input-output behaviour as possible. To understand the

concept of MOR, let us consider a system which can be written in the form of nonlinear

state space model explained in [3]:

ẋ(t) = f(x(t), u(t)),

y(t) = h(x(t), u(t)),
(1.2.1)

where f , h are nonlinear functions i.e. f, h : Rn → Rn, u(t) ∈ Rm represents input of

the model, x(t) ∈ Rn represents the states of the original model and y(t) ∈ Rp is output

of the model.

Now using MOR technique, an approximation of the model in (1.2.1) is required which

can be represented as:
ˆ̇x(t) = f̂(x̂(t), u(t)),

ŷ(t) = ĥ(x̂(t), u(t)),
(1.2.2)

where f̂ and ĥ are nonlinear functions i.e.f̂ , ĥ : Rr → Rr, x̂(t) ∈ Rr denotes the state

and ŷ(t) ∈ Rp represents output of the approximated model given in (1.2.2). This model

is known as reduced order model (ROM) and can be used for simulation purpose which

3



Chapter 1: Introduction

requires lesser computational power as compared to that of original model. Some general

objectives of ROM are set out below:

• The ROM results should be like the original one with a small error.

• Features (i.e observability and controllability) and structure of the model should

be maintained.

• The ROM method itself should be computationally efficient.

Let us consider a case of LTI system which is given as:

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
(1.2.3)

where A ∈ Rn×n , C ∈ Rp×n, B ∈ Rn×m and D ∈ Rp×m. In this case, the ROM will be

represented as:
ˆ̇x(t) = Âx̂(t) + B̂u(t)

ŷ(t) = Ĉx̂(t) + D̂u(t)
(1.2.4)

where Â ∈ Rr×r , B̂ ∈ Rr×m , Ĉ ∈ Rp×r and D ∈ Rp×m . The number of states of ROM

is much less than that of the full order model (i.e. r << n). The output of reduced

model is approximation of the output of the original model (ŷ(t) ≈ y(t)).

Now, let us consider a nonlinear (Quadratic-bilinear) single-input single-output (SISO)

system which can be written as:

Eẋ(t) = Ax(t) +Nx(t)u(t) +Qx(t)⊗ x(t) +Bu(t),

y(t) = Cx(t),
(1.2.5)

where A,E, N ∈ Rn×n, B, CT ∈ Rn and Q ∈ Rn×n2 . u(t) ∈ R is the input, y(t) ∈ R is

the output of the system and x(t) ∈ Rn is the state vector. The matrix E may or may

not be singular but the pencil matrix is supposed to be regular, i.e., λE −A is singular

only for finitely many values of λ ∈ C [4].

The goal of MOR is to construct ROM which has dimension r � n:

Erẋr(t) = Arxr(t) +Nrxr(t)u(t) +Qrxr(t)⊗ xr(t) +Bru(t),

yr(t) = Crxr(t),
(1.2.6)

4



Chapter 1: Introduction

where Ar, Er, Nr ∈ Rr×r, Br, CTr ∈ Rr and Qr ∈ Rr×r2 . xr(t) ∈ Rr is the state vector of

ROM. with the output yr(t) of the ROM approximately equal to output y(t) of original

model.

1.3 Problem Statement

As discussed earlier, models representing flow and pressure of gas distribution network

at different points are large and complex. The problem is to obtain fast simulation

of large scale complex models in both linear and nonlinear form using interpolatory

models order reduction techniques. In particular, the problem is to explore efficient

model order reduction techniques for linear systems as in (1.2.4) and quadratic bilinear

systems (1.2.5) (covering reduction of both linear and nonlinear systems).

1.4 Motivation and Application

Natural gas is considered one of the most commonly utilized sources of energy in the

world. The demand for natural gas has been increasing for years. There are multiple

variables which effect the flow of gas in the pipeline network. The modelling and sim-

ulation of gas distribution network can analyse the effect of every variable on the flow

of gas. Such analysis helps to ensure the continuous flow of gas to the consumer. The

simulation of gas distribution network enable us to check the flow rate and pressure of

gas at every node which help in identification of losses in the network. Flow of gas in a

pipe results in the loss of pressure of gas due to friction factor. The real time simulation

of gas network assist in keeping the value of compression to compensate the losses due

to friction factor.

In addition to modelling and simulation of gas network as well as other energy net-

works(power networks and water networks), MOR has applications in several other

fields such as very large scale integration (VLSI) chip design, semiconductors, conser-

vative systems and fluid flow. Some of the areas of applications of MOR have been

categorised here:

5



Chapter 1: Introduction

1.4.1 Thermal and Electro-Thermal Models

The development of vehicles is progressing towards electric or hybrid vehicles in which

change of temperature plays vital role. The electro thermal design of the electric vehicle

is of great importance [5]. If we want to design the best electrical thermal system to meet

the requirements of an electric vehicle, its model requires simulation. The simulation

of original electro thermal model requires high computational resources which results in

generation of heat. The theory of MOR is applicable to design a model with much lower

dimension known as ROM. The simulation of reduced model will use less computational

resources and yet it will generate faster simulation results.

1.4.2 Convection Diffusion Models

The dynamic model of scanning electrochemical microscope (SECM) is represented by

PDEs. The work in the paper [6] shows that the MOR technique works fine for the

given system of partial differential equations (PDEs) . Parametric model order reduction

(PMOR) technique is used here [7] for time varying system for SECM. The results of

the ROM are as accurate as that of the original model.

1.4.3 Structural Mechanics and Piezoelectrical Models

In this paper [8], second order damped systems is considered. It has been shown the

MOR can be applied to systems where there is linear combination of stiffness and mass

matrix.

The methods of MOR can also be applied to piezoelectric simulation as well [9].

1.5 Thesis Overview

The remaining part of the dissertation is structured as: Chapter 2 presents a review

of the mathematical model of the gas distribution network and the MOR techniques

that can be applied to the model. Chapter 3 presents the interpolatory MOR schemes

for quadratic bilinear systems. Chapter 4 presents the data driven approach of MOR

for gas distribution network. In chapter 5, results and discussions are presented. The

conclusion part is discussed in chapter 6.

6



Chapter 2

Literature Review

In the previous chapter, we discussed linear and nonlinear representation of original

and reduced order model of dynamical systems. Now, we look into the different MOR

techniques. MOR techniques may be categorised into two main groups which are Krylov-

based methods and singular value decomposition based methods. The advantages and

disadvantages of some of the methods are discussed in [10].

The SVD-based model reduction techniques use SVD to compute the ROM. In such

techniques, models are truncated based on singular values in such a way that the opti-

mality conditions in the 2-norm are met. The 2-norm is used to decide the size of ROM

which will provide best approximation of the original model as per our requirement.

There is another set of methods which do not depend on the singular values but instead

these methods are based on moment matching which are known as Krylov based approx-

imation methods. These methods are based on rational interpolation. Some common

techniques of MOR are discussed here.

2.1 Balanced Truncation Technique

The balanced truncation method computes the transformation matrix T by decompos-

ing the controllability and observability gramians, see [11–13]. This approach is based

on the observation that only a system’s greatest singular values matter. The square root

approach [14], which is based on Cholesky factorization of observability and controlla-

bility gramians, is an effective way of implementing the balanced truncation method.

Using SVD, V and W aka basis matrices are built. Consider a dynamical system with

7



Chapter 2: Literature Review

state space representation given Equation (1.2.4). Assuming the dynamical system is

stable, the associated Lyapunov equations for the gramians are given as:

AP + PAT +BBT = 0, (2.1.1)

ATQ+QA+ CTC = 0, . (2.1.2)

where P is controllability gramians and Q is observability gramians of the system. We

need to calculate the transformation matrix T which balances the model i..e. P = Q =

Σ = diag(σi) . The transformed balanced realization along with transformed gramians

are given as:

A′ = T−1AT,B′ = T−1B,C ′ = CT,D′ = D,P ′ = T−1PT−∗, Q′ = T ∗QT.

The transformation matrix can be found using Cholesky factorization of gramians and

then applying SVD [15]. We partition the balanced realization as:

A′ =

 A11 A12

A21 A22

 ,
B′ =

 B1

B2

 ,
C ′ =

(
C1 C2

)
.

The matrices of ROM in Equation (1.2.4) are Â = A11, B̂ = B1, Ĉ = C1 and D̂ = D.

The balance truncation technique works good for model having order of few thousands

due to the fact that the solving Lyapunov equations require O(n3) operations with n

the size of original model. The solution of Lyapunov equation for complex systems gets

very expensive, computationally. Another drawback of the balanced truncation method

is that it does not guaranteed the preservation of passivity.

2.2 Proper Orthogonal Decomposition

Another method of MOR which is based on SVD is proper orthogonal decomposition

(POD). This method is more common in field of Computational Fluid Dynamics (CFD).

The POD is generally used to evaluate effective bases for complex systems.

In this method, the inputs which consist of essential behaviour of the system are given

to a certain model which builds outputs. These outputs are called ‘snapshots’ which

8
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consist of column vector [16]. These snapshots describe the state of model at some

moment. Consider Y is a matrix which contains snapshots of the output and belongs

to Rm×n, then there exist

U = (u1, u2, ..., um), V = (v1, v2, ..., vn), (2.2.1)

where U ∈ Rm×m and V ∈ Rn×n. Using singular value decomposition (SVD)

Y = UΣV ∗ or U∗Y V =

 D 0

0 0

 := Σ ∈ Rm×n. (2.2.2)

The Y can be written as:

Y = (y1, y2, ..., yn) = UdD(V d)T =
d∑

i=1
< ui, yj >Rm ui. (2.2.3)

The columns of snapshots matrix can written in the form of linearly independent columns

of Ud. This methodology of MOR consists of following steps:

1. Solve the original model which consists of nonlinearity.

2. Construct the basis matrices using SVD

3. Use Basis Matrix V to construct the ROM as:

V TEV
dz(t)
dt

= V T f(V z(t)) + V TBu(t) (2.2.4)

Model order reduction using POD generates ROMs with good approximation of the

output. POD has the advantage of being able to solve nonlinear PDEs. This method

works well for the fixed input, but if input keeps changing, there will be need of designing

ROM every time the input changes. The disadvantage of this method is that this method

is structured (input) dependent.

2.3 Interpolation Based Model Order Reduction

A dynamical system can be treated as a problem of rational interpolation in which a

transfer function of a system is considered as n degree rational function H(s) . Hr(s)

represents the approximation of original transfer function with respect toH2 norm and is

known as transfer function of ROM. Hr(s) is obtained by Petrov-Galerkin projection in

which basis matrices(V and W ) are constructed as discussed in [17]. The interpolation

9
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based model reduction gives good approximation of model but the error in output of

original and reduced model depends on the selection of interpolation points and tangen-

tial directions. Apart from this, interpolation based model order reduction is possible

only if there exists original model of a physical system.

In case of linear systems (where Q and N are null matrices in (1.2.5)), there are sev-

eral techniques in the literature to compute ROMs, cf., [3, 18]. Among these methods,

projection-based moment-matching methods [19, 20] are well used and are recently ex-

tended to nonlinear (quadratic-bilinear systems) [21–23]. Using projection matrices

V ∈ Rn×r and W ∈ Rn×r, we approximate x(t) ≈ V xr(t) such that the Petrov-Galerkin

orthogonality condition holds:

W T
(
EV ẋr(t)−

(
AV xr(t) +NV xr(t)u(t) +QV xr(t)⊗ V xr(t) +Bu(t)

))
= 0,

yr(t) = CV xr(t).
(2.3.1)

The projection is called one-sided projection, if W = V . Otherwise it is known as two

sided which gives ROM of the form:

Er = W TEV, Ar =W TAV, Qr = W TQ(V ⊗ V ), Nr = W TNV,

Br = W TB, Cr = CV.
(2.3.2)

In case of linear time invariant systems, a suitable choice of V and W , implicitly ensure

moment-matching, where moments are the coefficients of the Taylor series expansion

of the transfer function at some predefined shift frequencies. Thus for projection-based

moment-matching, the choice of V and W depends on the transfer function of the sys-

tem. However, nonlinear systems have no universal input-output representation though

for some classes of nonlinear systems, including the QBDAE system, it is possible to

generalise the transfer function concept by utilising the Volterra theory [24], where the

input-output relationship is described by a set of high-order transfer functions. This

makes the concept of moment-matching slightly complex in the nonlinear case, since the

structure of the basis matrices V and W in (2.3.2) now depends on multiple high-order

transfer functions. To achieve moment-matching, some simplifications are made in the

literature [21, 22] for computing the ROMs. For example, [22] constructs V and W such

that the moments of ROM matches the moments of the first- and second-order transfer

functions. In [23], simplified forms of high-order transfer functions are derived, which

10
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also enable the projection based techniques to match moments of high-order transfer

functions. In addition, all the existing moment-matching/interpolation approaches [21–

23] are based on the simplification that the interpolation points is the same for each

frequency variable.

Recently a new approach [25] for QBDAEs has been worked out. The approach suggests

the formation of V and W using solution of two complex matrix equations. Another

approach is the extension of the Loewner framework from linear/bilinear systems [26, 27]

to quadratic bilinear systems [28] . Also an indirect approach for MOR of the QBDAE

system is proposed in [29], where the basis matrices are constructed from the bilinear

part of the QB system. In [30], the linear-bilinear part of the system is viewed as a

linear parametric system and a posteriori error bound is used to choose the interpolation

points and construct the basis matrices adaptively. All these techniques are using the

first two or three high-order transfer functions and their structure is different from the

one identified in [22].
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Chapter 3

Interpolation Based Model Order

of Quadratic Bilinear Systems

There are different scenarios where the dynamics of the nonlinear system can be repre-

sented by quadratic-bilinear differential algebraic equations (QBDAEs). These include

simulation of distribution networks [31], fluid flow problems [32] and nonlinear VLSI cir-

cuits [21, 33]. In addition, exact transformations can be used to represent a large set of

nonlinear equations in the form of QB form [21]. Most of these applications involve large

number of equations, which make simulation, control and optimization computationally

inefficient. MOR is used to cater this problem.

In the paper [34], we recognize a selection of interpolation points for the QB system

by applying a greedy type approach based on error bounds for QB systems inspired

by the proposed error bound for linear (parametric) systems in [35]. Here we relax

the restriction of using the same interpolation points for different frequency variables.

The method begins with certain initial interpolation points that are modified repeatedly

to find a collection of interpolation points that correspond to the maximum values of

specified error bounds. We interpolate not only the original transfer function and its

first derivative, but also higher derivatives, guaranteeing that the QB system is well

approximated for each choice of interpolation points. The iterations terminate when

the set tolerance level is achieved. The main difference from the work in [30] is that

the quadratic part of the system is also involved in basis construction in the proposed

framework based on a posteriori error bound for QB systems, whereas only the bilinear

part is considered for the basis matrix computation in [30]. The error estimator used in
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[30] only estimates the error of the linear-bilinear part.

3.1 Multivariate Transfer Functions

The Volterra series expansion of the output y(t) with quantities analogous to the con-

ventional convolution operator can be used to define the input-output representation for

QB systems with single input and single output. That is,

y(t) =
∞∑
k=1

∫ t

0

∫ t1

0
· · ·
∫ tk−1

0
hk(t1, . . . , tk)u(t− t1) · · ·u(t− tk)dtk · · · dt1, (3.1.1)

where we consider the input signal to be one-sided, i.e., u(t) = 0 for t < 0. In addition,

the k-dimensional kernel of the subsystem, hk(t1, . . . , tk), is assumed to be one-sided for

each of the generalised impulse responses. The k-dimensional subsystem in terms of the

multivariate Laplace transform can be written as,

Yk(s1, . . . , sk) = Hk(s1, . . . , sk)U(s1) · · ·U(sk), (3.1.2)

where Hk(s1, . . . , sk) is the multivariate transfer function of the k-dimensional subsys-

tem. The output expression (3.1.2) has generalised transfer functions in the so-called tri-

angular form [24]. We denote k-dimensional triangular form by H [k]
tri(s1, . . . , sk). Other

important types of multivariate transfer functions include the symmetric and regular

forms, which are described in [24]. The relationship is given as:

H [k]
sym(s1, . . . , sk) = 1

n!
∑
π(·)

H
[k]
tri(sπ(1), . . . , sπ(k)), (3.1.3)

where all k! permutations of s1, . . . , sk are included in the summation. Also, the tri-

angular form can be linked to the regular form of the transfer function by following

relation

H
[k]
tri(s1, . . . , sk) = H [k]

reg(s1, s1 + s2, . . . , s1 + s2 + · · ·+ sk). (3.1.4)

The structure of generalised symmetric transfer functions can be determined using the

rising exponential method, according to [24]. For the first two subsystems of the QB

system (1.2.5), the form of these symmetric transfer functions can be defined as

H1(s1) = C(s1E −A)−1B,

H2(s1, s2) = C((s1 + s2)E −A)−1B(s1, s2),
(3.1.5)

here

B(s1, s2) =: 1
2!N(x1(s1) + x1(s2)) +Q(x1(s1)⊗ x1(s2)), (3.1.6)
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in which x1(s) := (sE − A)−1B and Q satisfies Q(u ⊗ v) = Q(v ⊗ u) for all u, v ∈ Rn.

Defining x2(s1, s2) := ((s1 +s2)E−A)−1B(s1, s2), the first symmetric and second-order)

symmetric transfer functions can be written as

H1(s1) = Cx1(s1),

H2(s1, s2) = Cx2(s1, s2).
(3.1.7)

We explain the idea of matricization before discussing partial differentiation of these

multivariate transfer functions. Matricization is the process of transforming a tensor

into a matrix. In [22], the matrix Q ∈ Rn×n2 is known as the mode-1 matricization

of a 3 dimensional tensor Q ∈ Rn×n×n. The n × n components of Q are the frontal

slices Qi ∈ Rn×n of the tensor Q, i.e. Q =
[
Q1 · · · Qn

]
. The mode-2 and mode-3

matricization can be written as

Q(2) =
[
QT1 · · · QTn

]
,

Q(3) =
[
vec(Q1) · · · vec(Qn)

]T
.

It is noticed that the following property holds

wTQ(u⊗ v) = uTQ(2)(v ⊗ w), (3.1.8)

where v, u, w ∈ Rn are arbitrary and Q holds: Q(u ⊗ v) = Q(v ⊗ u), see [36]. Let

G(s) := sE −A, then by using
∂G(s)−1

∂s
= −G(s)−1∂G(s)

∂s
G(s)−1,

and (3.1.8), we have
∂H2(s1, s2)

∂s1
= −y1(s1 + s2)TEx2(s1, s2)

− x1(s1)TET y2(s1, s2)
(3.1.9)

where y1(s) := (sE −A)−TCT and y2(s1, s2) := (s1E −A)−TC(s1, s2)T in which

C(s1, s2) = Q(2)(x1(s2)⊗ y1(s1 + s2)
)

+ 1
2!N

T y1(s1 + s2)

Similarly
∂H2(s1, s2)

∂s2
= −y1(s1 + s2)TEx2(s1, s2)

− x1(s2)TET y2(s2, s1)
(3.1.10)

Notice that when s1 = s2 = σ, the two partial differentiations are the same. This condi-

tion on interpolation points is assumed in [22] to show the moment-matching properties

of the ROM. In the following, we show moment-matching in the multivariate settings

where s1 6= s2 (s1 = σ1i and s2 = σ2i).

14



Chapter 3: Interpolation Based Model Order of Quadratic Bilinear
Systems

3.2 Moment-Matching for QBDAE

The goal of a moment-matching based reduction approach is to ensure that the high-

order transfer functions are well approximated. In case of symmetric transfer functions,

we can represent it as

Hk(s1, . . . , sk) ≈ Ĥk(s1, . . . , sk), for k = 1, . . . ,K, (3.2.1)

with Ĥk(s1, . . . , sk) being the k-th order multivariate transfer function of the reduced

system (1.2.6). With the task in (3.2.1) achieved for some K, we can expect that the

output y(t) is well approximated by ŷ(t). To get recursive relations between vectors for

approximation subspaces, it is assumed in [22] that s1 = s2 = σ. With these settings,

the second-order transfer function becomes

H2(σ, σ) = y(2σ)T
(
Q (x1(σ)⊗ x1(σ)) +Nx1(σ)

)
.

The following Lemma summarizes the result introduced in [22].

Lemma 1. Let the interpolation points be σi ∈ C and σi /∈ {eig(A,E), eig(Ar, Er)},

where Λ(A,E) illustrates the generalized eigenvalues of the matrix pencil (λE−A). Let

us assume that Er = W TEV is nonsingular and Ar, Qr, Nr, Br, Cr are as in (2.3.2)

with full rank matrices V andW ∈ Rn×r such that

span(V ) = span
j=1,...,k

{x1(σj), x2(σj , σj)},

span(W ) = span
j=1,...,k

{y1(2σj), y2(σj , σj)},

then the reduced QBDAE satisfies the following (Hermite) interpolation conditions:

H1(σj) = Ĥ1(σj), H1(2σj) = Ĥ1(2σj),

H2(σj , σj) = Ĥ2(σj , σj),
∂

∂si
H2(σj , σj) = ∂

∂si
Ĥ2(σj , σj), i = 1, 2.

See [22] for a proof. Next, we present moment-matching properties in the multivariable

settings, where s1 6= s2.

Lemma 2. Let σ1i, σ2i ∈ C with σ1i, σ2i /∈ {Λ(A,E),Λ(Ar, Er)}. Assume that Er =

W TEV is nonsingular and Ar, Qr, Nr, Br, Cr are as in (2.3.2) with full rank matrices

V andW ∈ Rn×r such that

span(V ) = span
i=1,...,k

{x1(σ1i), x1(σ2i), x2(σ1i, σ2i)}

span(W ) = span
i=1,...,k

{y1(σ1i + σ2i), y2(σ1i, σ2i), y2(σ2i, σ1i)}.
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Then the reduced QB system holds the following:

H1(σ1i) = Ĥ1(σ1i), H1(σ2i) = Ĥ1(σ2i), H1(σ1i + σ2i) = Ĥ1(σ1i + σ2i),

H2(σ1i, σ2i) = Ĥ2(σ1i, σ2i),
∂

∂s1
H2(σ1i, σ2i) = ∂

∂s1
Ĥ2(σ1i, σ2i),

∂

∂s2
H2(σ2i, σ1i) = ∂

∂s2
Ĥ2(σ2i, σ1i).

The proof of the statement is similar to Lemma 1 and therefore omitted. Note that the

statement in Lemma 2 reduces to Lemma 1, if σ1i = σ2i. In [34], our goal is to point

out a good choice of the interpolation points σ1i and σ2i.

3.3 Error Bound for QBDAE’s

In this section, we show how the error bound expression, derived initially in [35] for

parametric LTI systems, can be extended to the quadratic-bilinear DAEs. We begin

with a brief overview of the error bound for the first subsystem, as in [35] and then

discuss the extension to the second subsystem of QBDAE.

3.3.1 Error bound for H1(s1)

Here the error bound provides an estimate for the error between H1(s1) and Ĥ1(s1). To

this end, we represent systems (the primal and the dual) as:

(s1E −A)x1(s1) = B, (3.3.1)

(s1E −A)Txdu1 (s1) = −CT , (3.3.2)

respectively, where T denotes transpose of the matrix. The error bound is constructed

so that it is based on residuals, which come from MOR of the systems (the primal and

the dual), respectively. The matrix pair V1 and W1 reduce primal system, where

span(V1) = span
i=1,...,k

{x1(σ1i)}, span(W1) = span
i=1,...,k

{xdu1 (σ1i)}. (3.3.3)

Hence, the reduced primal system is,

(s1Ê1 − Â1)z1(s1) = B̂,

where Ê1 = W T
1 EV1, Â1 = W T

1 AV1, B̂1 = W T
1 B and Ĉ1 = CV1. Here x̂1(s1) := V1z1(s1)

is the approximation of x1(s1). Due to the dual relation between (3.3.1) and (3.3.2),
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the dual system can be reduced by using V du
1 = W1 and W du

1 = V1. The reduced dual

system is

(s1Ẽ1 − Ã1)T zdu1 (s1) = −C̃T1 ,

where Ẽ1 = V T
1 EW1, Ã1 = V T

1 AW1, C̃1 = W T
1 C

T . Also x̃du1 (s1) := W1z
du
1 (s1) is the

approximation of xdu1 (s1). The residuals associated with the reduction of systems (the

primal and the dual) can be written as

rpr1 (s1) = B − (s1E −A)V1z1(s1),

rdu1 (s1) = −CT − (s1E −A)TW1z
du
1 (s1).

(3.3.4)

The following conclusion, using these numbers, gives an a posteriori upper bound on the

approximation error, |H1(s1)− Ĥ1(s1)|:

Theorem 1. [35] The upper bound on the approximation of the transfer function H1(s1)

in (3.1.5) can be written as |H1(s1)− Ĥ1(s1)| = ∆1(s1), where

∆1(s1) := ‖r
du
1 (s1)‖2‖rpr1 (s1)‖2

β1(s1) , (3.3.5)

in which β1(s1) = σmin(G(s1)), where σmin denotes the smallest singular value of G(s1).

3.3.2 Error Bound for H2(s1, s2)

Analogous to H1(s1), we write systems (the primal and the dual) as:

G(s1 + s2)x2(s1, s2) = B(s1, s2), (3.3.6)

GT (s1 + s2)xdu2 (s1, s2) = −CT , (3.3.7)

respectively. The interpolation points for H1(s1) can be identified through the error

bound ∆1(s1) by using a greedy framework as presented in [35]. This means that we

can select σ1i for i = 1, . . . , r as the interpolation points corresponding to the maximal

values of the error bound at subsequent iterations of the greedy algorithm in [35].With

these interpolation points fixed for s1, we can also express error bound for the second

subsystem. The error bound is formulated based on two residuals, which result from

MOR of the systems (the primal and the dual) in (3.3.6) (3.3.7), respectively. The

primal system is reduced using the matrix pair V2 and W2, where

span(V2) = span
j=1,...,k

{x2(σ1i, σ2j)}, span(W2) = span
j=1,...,k

{xdu2 (σ1i, σ2j)}. (3.3.8)
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Consequently, the reduced primal system is

((s1 + s2)Ê2 − Â2)z2(s1, s2) = B̂(s1, s2),

where Ê2 = W T
2 EV2, Â2 = W T

2 AV2, B̂(s1, s2) = W T
2 B(s1, s2) and Ĉ2 = CV2. Similarly,

the dual system is reduced using V du
2 and W du

2 ,

span(V du
2 ) = span

i=1,...,k
{xdu2 (σ1i, σ2i)}, span(W du

2 ) = span
i=1,...,k

{x2(σ1i, σ2i)}. (3.3.9)

The reduced dual system is

((s1 + s2)Ẽ2 − Ã2)T zdu2 (s1, s2) = −C̃T2 ,

where Ẽ2 = (W du
2 )TEV du

2 , Ã2 = (W du
2 )TAV du

2 , C̃T2 = (V du
2 )TCT . The residuals associ-

ated with the reduction of the primal and dual systems can be written as

rpr2 (s1, s2) = B(s1, s2)− ((s1 + s2)E −A)V2z2(s1, s2),

rdu2 (s1, s2) = −CT − ((s1 + s2)E −A)TV du
2 zdu2 (s1, s2).

(3.3.10)

With these quantities, the following result provides an a posteriori upper bound on the

approximation error, |H2(s1, s2)− Ĥ2(s1, s2)|:

Theorem 2. The upper bound on the approximation of H2(s1, s2) = C((s1 + s2)E −

A)−1B(s1, s2) can be written as |H2(s1, s2)− Ĥ2(s1, s2)| = ∆2(s1, s2), where

∆2(s1, s2) := ‖r
du
2 (s1, s2)‖2‖rpr2 (s1, s2)‖2

β2(s1, s2) , (3.3.11)

in which β2(s1, s2) = σmin(G(s1 + s2)), where σmin indicates the smallest singular value

of G(s1 + s2) = (s1 + s2)E −A.

The derivation of the proof is identical to Theorem 1 and therefore is omitted.

3.4 Interpolation Points using Error Bounds

As discussed, the projection matrices V andW defined in Lemma 2 require a good choice

of interpolation points σ1i and σ2i which also serve as interpolation points for MOR of

the primal and dual systems in (3.3.1)-(3.3.2) and (3.3.6)-(3.3.7). In this section, we

show the use of the error bound expressions derived previously to select the interpolation

points.
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The idea is to identify interpolation points corresponding to the maximal bound ∆1(s1).

Assuming that σ1i are the selected interpolation points for s1, the remaining interpola-

tion points for s2 correspond to the maximal bound ∆2(σ1i, s2) for each value of σ1i.In

this way, the error bound can be used iteratively to pick a worthy choice of interpo-

lation points in a already defined sample space, starting from certain initial choice of

sigma’s. The selected interpolation points are then used to make and adaptively update

the required basis matrices V and W , by using the multimoment-matching technique

explained before. It is interesting to see that although we need to construct the ROMs

for the primal and the dual systems in (3.3.1)-(3.3.2) and (3.3.6)-(3.3.7), the projection

matrices for those ROMs are obtained without extra computations, since V1,W1 and

V2,W2 are part of V,W by definition. Therefore, V,W can be obtained by orthogo-

nalizing V1 with V2 and W1 with W2 as indicated in Step 9 of Algorithm 1, where a

greedy framework for selecting interpolation points is presented. For an initial pair of

interpolation points, the ROMs of the primal and the dual systems in (3.3.1)-(3.3.2)

and (3.3.6)-(3.3.7) are constructed and the error bounds ∆1,∆2 are computed. A new

pair is selected such that the corresponding error bounds ∆1 and ∆2 are maximized at

these points. With the selected interpolation points, we enrich the projection matrices

V,W for MOR of the original QB system iteratively during the greedy algorithm. Fi-

nally, the reduced quadratic bilinear system is constructed using V,W that are derived

upon convergence of Algorithm 1. Algorithm 1 stops when ∆ := ∆1 + ∆2 is below the

tolerance εtol, where ∆ includes the errors introduced by approximating the first and

second transfer functions. Since the interpolation points are selected according to the

error bounds ∆1 and ∆2, it is important that the error bounds dynamically reflect the

decay of the true error with the iteration of the greedy framework. Ideally, the error

bounds should be very close to the true error. Numerical tests in Chapter 5 show that

the error bounds really control the true error robustly.
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Chapter 4

Application of Model order

Reduction to Gas Distribution

Network

The behaviour of any complex system can be checked by analysing its two responses,

steady state and transient response. The former is the state response other than the

equilibrium position of a system while later is the response which does not change

with time. For gas networks, steady state analysis can be used to estimate pressure

variations, flow rates, and temperature [37]. The work of Abeysekera and Muditha in

[38] is modelling of gas distribution network for analysis of nodal pressure and gas flow.

In [39], the author works on optimization of model of gas distribution network where a

two-stage procedure is proposed. First stage is based on optimization techniques while

the second stage uses control theory to refine the solution. In [40], the equations of gas

flow are used in the form of matrix in two parts which are linear and nonlinear systems.

Each part is given a network topology with same input. The results are then compared

using simulation software such as MATLAB.

4.1 Modelling of Gas Distribution Network

There are certain rules which need to be taken care of while modelling any real world

phenomena, such as model should comply with universal physical laws and should in-

clude components of physical systems. Consider the case of gas distribution network
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which when modelled should have constraints due to pipes, junctions and other pas-

sive equipments. Such models can be used to estimate the behaviour of the network at

different nodes and pipes. One of the prominent research work done in [41], in which

the Euler equations were used to simulate the transient behaviour of the network for

different topologies. The work of Saeid Mokhatab and William A. Poe in [42] considers

Bernoulli’s equation to model the flow equation with assumptions that the tempera-

ture in the network remains constant at every point and “equi-height” which implies

that all the pipes in the network are on same elevation. This model also investigate

the efficiency factor E which shows the impact of the corrosion of pipes. The friction

factor, which is represented by a dimensionless value known as the Reynolds number,

is another element that plays an important role while modelling the dynamics. The

Reynolds number represents whether the gas flow is turbulent or laminar. Gonzales in

[43] models the unidirectional gas flow using 1D isothermal equation which uses the law

conservation of mass and momentum along with elevation of pipes considered as well.

In [44], the complex network is modelled using Euler equation which is set of equations

consist of equation of motion, continuity and energy. Euler equation along with state

equation negating the structural interactions and heterogeneity of velocity distribution

is used in [45] while in [46], compressor equation is used instead of state equation. The

flow velocity in this case is low as compared to speed of sound, so the inertia term is

neglected. In [47], 1D isentropic Euler equation is used which takes into an account the

change in flow due to friction factor as well as the gravitational effect. We observe it

that most of the work carried out in the modelling and simulation of gas distribution

network uses 1D Euler equation and state equation. Graph theory deals with the visu-

alization of networks which consist of points and lines. The knowledge of graph theory

traces back to early 18th century in which the work of Leonhard Euler proved to be the

cornerstone of the graph theory. To assess the flow and pressure of any pipe network

such as gas network, graph theory comes in handy. It uses the properties of the given

network to create a simplified structure of the network. The structure of the network

is a graph comprised of nodes and edges where the former can be demand, supply or

interconnected points and the later represents the pipes of the network. The relation of

nodes’ connections with edges can be represented in the form of matrix which is known

as incidence matrix. In [48], graph theory is applied where nodes and edges denotes the

pressure and mass flow of a pipe, respectively. Similar work has been carried out in [49]
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where graph theory is used for steady state analysis of the pipe network. In the same

way, graph theory can be used in PDE models as well, see [50]. Any network can be

represented in the form of nodes and edges using graph theory which can be divided

into three groups: gun-barrel, non-cyclic, and cyclic topologies. Unlike gun-barrel and

non-cyclic systems, cyclic pipeline architecture is generally complicated and difficult to

simplify. The work in [51] examines recent developments in steady state analysis in

network architecture, finding that linear systems are more amenable to simulate despite

the problem’s complexity. Various optimization techniques have been created to cope

with complexity of cyclic and non-cyclic frameworks. Dynamic programming (DP) is

one of the approaches for tending to complex non-cyclic structure like the gun-barrel

and tree networks, in which the solution of complex systems is determined, recursively.

In [52], DP is applied to predict the parameters of the gas network considering the ideal

gas conditions. The work of Hang and Ai in [53] converts the problem of complex system

into the sequential problem using model predictive control optimization which proved

to be efficient.

4.2 Solution of Partial Differential Equations of Gas Net-

work

when physical world phenomena is modelled, it gets the shape of PDEs which set of

mathematical equations having partial differential with respect to one or more inde-

pendent variables. To find out the solutions of PDEs, it is first converted to ODEs

using discretization. There are several techniques of discretization explained in [54, 55].

In [56], the author uses finite difference method (FDM) for simulation of heat transfer

of diesel powered generator. The work of Peng Wang and Bo Yu in [57] models gas

pipe network using equation of momentum, energy and continuity by applying adaptive

implicit finite difference scheme. This paper [58] discretizes 1D isothermal equations

of gas distribution network for flow and pressure of gas using finite difference method

(FDM) which investigates that the smaller mesh sizes impact the accuracy of model as

compared to actual data; however, computational power increases due to bigger dimen-

sion of matrices. Various schemes of finite volume (FVM) method is explored in [59]

for discretization of high pressure gas distribution network which suggests that FVM is

efficient for discretization of 1D isothermal equation. In [60], implicit FVM is applied
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to Euler equation to predict the transient response of gas network under the assump-

tion that inertia term and gravity term is neglected. The results proves to be efficient

and stable for dynamics of gas network. In [61], Yue Qiu compares results generated

by using FDM and FVM in which FVM outperforms FDM in terms of accuracy and

speed. [60] also compares two discretization techniques for natural convection flow in a

square cavity in which it is observed that FVM performs better than FDM. The liter-

ature suggests that Finite volume techniques work better than other techniques while

discretizing the 1D isothermal Euler equation. Therefore, we carry discretization of gas

network using FVM in this thesis. To represent the law of conservation of mass, mo-

mentum and energy in transportation of gas through pipeline, Euler equation is used.

In this work, [43, 50, 62, 63], some assumptions are made to keep the model simple.

Pipes are considered to be underground which means the temperature does not change

significantly. Therefore, energy equation has been ignored here [44, 46, 64–67].

To construct a model of complex network, Let us look into the flow of gas in a pipe with

cross-sectional area a, diameter d, and length of pipe L. Then, 1D isothermal equation

can be expressed as:

∂

∂t
ρ = − ∂

∂x
ϕ, (4.2.1)

∂

∂t
ϕ = − ∂

∂x
p− ∂

∂x
(ρv2)− gρ ∂

∂x
h− λ(ϕ)

2d ρv|v|, (4.2.2)

p = γ(T )z(p, T )ρ. (4.2.3)

The spatial domain of the given equations is [0, L]. The list of symbols used are given

in the table: 4.1

Table 4.1: List of Symbols

Notation Discription Unit Notation Discription Unit

p Pressure Kg
s2m g Gravitational constant m

s2

h Pipe Elevation m q Mass flow kg
s

ρ Density Kg
m3 λ Friction factor unitless

v Velocity m
s ϕ Flow rate m3

s

L Length m T Temperature K

a Cross sectional area m2 d Diameter m
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Equation (4.2.1) represents the law of conservation of mass while Equation (4.2.2) de-

notes the conservation of momentum. Equation 4.2.3 relates the pressure with density.

Since the variable of interest is mass flow, we use q = aϕ to represent the mass flow in

the given set of equations. The notations of certain variables used in [61] are followed

here. We consider the isothermal case where temperature remains constant throughout

the network. For isothermal process, γ(T ) = γ(T0) and z(p, T ) = z0(p) . The inertia

term can be neglected due to small value which is explained in [43]

∂

∂t

p

z0(p) = −γ0
a

∂

∂x
q, (4.2.4)

∂

∂t
q = −a ∂

∂x
p− λ(q)γ0

2da z0(p)q|q|
p
. (4.2.5)

The treatment of compressibility and friction term as explained in [68] which result in a

nonlinear system. Now to simulate the model, we need to descritize it. In the Chapter 2,

we noticed that FVM is better descritization technique as compared to FDM. To apply

the FVM, we rewrite isothermal equations as [61]:

∂

∂t
p+ c

a

∂

∂x
q = 0, (4.2.6)

∂

∂t
q + a

∂

∂x
p+ cλ

2da
q|q|
p

= 0. (4.2.7)

The initial conditions are the initial pressure at the start of the pipe and initial mass

flow at the end the pipe which are given as:
p = ps, at x = 0,

q = qd, at x = L.

(4.2.8)

Applying FVM, the model becomes

Mp

Mq


︸ ︷︷ ︸

M

∂tp
∂tq

 =

 0 Kpq

Kqp 0


︸ ︷︷ ︸

K

p
q

+

right BC︷ ︸︸ ︷Bq
0


︸ ︷︷ ︸
Bq

qd +

left BC︷ ︸︸ ︷ 0

Bp


︸ ︷︷ ︸
Bp

ps +

 0

g(ps, p, q)

 (4.2.9)
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Mp and Mq are mass matrices which are given as:

Mp =



h1+h2
2

h2+h3
2

. . .
hn−2+hn−1

2
hn−1

8
3hn−1

8


,Mq =



3h1
8

h1
8

h1+h2
2

h2+h3
2
. . .

hn−2+hn−1
2


,

Kpq and Kqp are upper-triangular matrix and lower triangular matrix, respectively

Kpq = − c2



− 1
a1

1
a1
− 1

a2
1
a2

− 1
a2

1
a2
− 1

a3
1
a3

. . . . . . . . .

− 1
an−3

1
an−3

− 1
an−2

1
an−2

− 1
an−2

1
an−2

− 1
an−1

− 1
an−1


,

Kqp = −1
2



a1

a1 − a2 a2

−a2 a2 − a3 a3

−a3 a3 − a4 a4
. . . . . . . . .

−an−2 an−2 − an−1 an−1


,

Bq = − c2



0
...

0
1

an−1

1
an−1


, Bp = 1

2



a1

a1

0
...

0


, (4.2.10)

where the nonlinear term is defined as:

g(ps, p, q) = − c4



h1λ1
a1d1

q1|q1|
ps

(h1λ1
a1d1

+ h2λ2
a2d2

) q2|q2|
p2

(h2λ2
a2d2

+ h3λ3
a3d3

) q3|q3|
p3

...

(hn−2λn−2
an−2dn−2

+ hn−1λn−1
an−1dn−1

) qn−1|qn−1|
pn−1


. (4.2.11)
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The set of equations for single pipe after discretization get the shape of matrices in the

form of state space model as shown in (4.2.9). For more than one pipe, The repre-

sentation remains same but these matrices represent block matrices which is explained

here [61]. The discretized analogue of pressure and mass flow for single pipe can be

represented as:

p =
[
p2 p3 · · · pn

]T
, q =

[
q1 q2 · · · qn−1

]T
.

It is observed in the literature that nonlinear part plays significant role only when there

are several supply sources. In our case, we consider examples of unidirectional networks;

therefore, we ignore the non-linearity in the system at this stage.

4.3 The Loewner Framework

In chapter 3, we explained interpolation based model order reduction of QBDAEs which

requires original model to construct ROM. In most cases, the original model is not

available. Hence, we develop data driven approach for construction of ROM which is

known as Loewner framework. In this method, either input-output data of time domain

or frequency domain is required. This method is also based polynomial interpolation.

4.3.1 Polynomial Interpolation

Let us consider the case of polynomial interpolation problem. The dataset can be

represented in the form of S = {(xi, fi)|xi, fi ∈ R, i = {1, 2, ...n}}, where the xi’s and

fi’s represent the nodes and points, respectively. Assuming a polynomial of degree n,

polynomial coefficients ck, k ∈ {0, 1, ..., n} are to be determined which satisfy following

interpolation conditions

p(xi) = fi, i ∈ 1, 2, ...n+ 1 where. (4.3.1)

where p(x) =
∑n
k=0 ckx

k. Now, we can write (4.3.1) in the matrix form as

1 x1 · · · xn1

1 x2 · · · xn2
...

... . . . ...

1 xn+1 · · · xnn+1


︸ ︷︷ ︸

V



c0

c1
...

cn


=



f1

f2
...

fn+1


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To evaluate the coefficient ck, the inverse of matrix V will have to be calculated. Instead,

we can use Lagrange polynomials. These polynomials form Lagrange basis and have

degree of n. These basis can be written as:

L1(x) =
n+1∏

k=1,k 6=1
(x− xk) = (x− x2)(x− x3) . . . (x− xn+1),

L2(x) =
n+1∏

k=1,k 6=2
(x− xk) = (x− x1)(x− x3) . . . (x− xn+1),

...

Ln+1(x) =
n+1∏

k=1,k 6=n+1
(x− xk) = (x− x1)(x− x3) . . . (x− xn).

From this we can write Li(xk) = 0,∀ k 6= i, k, i,∈ {1, 2, . . . , n+ 1}. Now, polynomial p

can be constructed from this basis which satisfies the (4.3.1).

p(x) =
n+1∑
i=1

fi
Li(xi)

Li(x) =
n+1∑
i=1

biLi(x), (4.3.2)

where

bi = fi
Li(xi)

,

which can be calculated using given datasets. Using different basis can give different

form of polynomial. The use of Lagrange polynomial instead of monomial polynomial

is to avoid the solution of large ill-conditioned linear system as explained here [69]. Let

us define another polynomial g(x) of degree n using the Lagrange polynomial. The g(x)

can be represented as:

g(x) =
n+1∑
i=1

1
Li(xi)

Li(x) (4.3.3)

From (4.3.3), we can write g(xi) = 1, ∀ i ∈ {1, 2, . . . , n+ 1} as represented in [70]. Let

polynomial P (x) = p(x)
g(x) ,∀x ∈ R, then using (4.3.2) and (4.3.3), the baryscentric formula

for rational polynomial is:

P (x) =
∑n+1
i=1

fi

Li(xi)Li(x)∑n+1
i=1

1
Li(xi)Li(x)

(4.3.4)
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4.3.2 Rational Lagrange Interpolation

The rational function is the ratio between two polynomials which can be written as:

r(x) = N(x)
D(x) = βnX

n + βn−1X
n−1 + . . .+ β1X

1 + β0
αnXn + αn−1Xn−1 + . . .+ α1X1 + α0

, (4.3.5)

where βk, αk ∈ R, k ∈ {0, 1, . . . , n} and also βn, αn 6= 0. The polynomial N(x) is said

to be numerator polynomial while the polynomial D(x) is called denominator of the

rational function r(x) . As the roots of numerator and denominator represent zeros

and poles of the function, respectively; hence, the rational function represents transfer

function of the complex dynamical systems. The complex exponential function can also

be written in the form rational function while dealing with it in the frequency domain.

we have seen in (4.3.1) that n + 1 pairs of data set are required to construct nth order

polynomial. So, in order to recover the rational function r(x) with two polynomials,

2(n + 1) pairs of sampling points will be required; however, the coefficient αn of the

rational function in (4.3.5) can be set to 1 by dividing and multiplying the rational

function with αn which will develop new set of coefficients α̂ = αk
αn

and β̂ = βk
αn

. To

compute rational interpolants of order n , 2n+1 coefficients are required so that following

conditions are satisfied

r(xh) = fh h ∈ {1, 2, . . . , 2n+ 1}.

Let’s partition the set of interpolation nodes into disjoint sets:

{x1, x2, . . . , x2n+1} = {µ1, µ2, . . . , µn} ∪ {λ1, λ2, . . . , λn+1},

similarly, partition the set of interpolation points into disjoint sets:

{f1, f2, . . . , f2n+1} = {υ1, υ2, . . . , υn} ∪ {w1, w2, . . . , wn+1}.

We use the Lagrange basis and the barycentric formula to rephrase the rational inter-

polation problem as:

r(xh) = fh, h ∈ {1, 2, . . . , 2n+ 1} where r(x) =
∑n+1
i=1 biLi(x)∑n+1
i=1 aiLi(x)

(4.3.6)

where Li(x) =
∏n+1
k=1,k 6=i(x − λk), i ∈ {1, 2, . . . , n + 1} are Lagrange polynomials . We

need to obtain the coefficients ai and bi to recover the function r(x) such that
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r(µj) = υj , j ∈ {1, 2, . . . , n}, r(λi) = wi, i ∈ {1, 2, . . . , n + 1} Since, Lj(λi) = 0, ∀j 6= i,

evaluating equation (4.3.6) will give us:

r(λi) = bi
ai
⇒ wi = bi

ai
⇒ bi = wiai,∀i ∈ {1, 2, . . . , n+ 1}

r(x) can alternatively be written as:

r(x) =
∑n+1
i=1

wiai
x−λi∑n+1

i=1
ai

x−λi

. (4.3.7)

4.3.3 The Loewner Matrix

Using rational functional r(x) used in equation (4.3.7) for r(µj) = υj , we get:

n∑
j=1

n+1∑
i=1

υj − wi
µj − λi

ai = 0,⇔ La = 0,

The Loewner Matrix can be defined as:

L =



υ1−w1
µ1−λ1

υ1−w2
µ1−λ2

. . . υ1−wn+1
µ1−λn+1

υ2−w1
µ2−λ1

υ2−w2
µ2−λ2

. . . υ2−wn+1
µ2−λn+1

...
... . . . ...

υn−w1
µn−λn

υn−w2
µn−λ2

. . . υn−wn+1
µn−λn+1


∈ Rn×(n+1) (4.3.8)

Null space of L gives us: a = [a1 a2 . . . an+1]T . Next, we find bi = wiai , ∀ i ∈

{1, 2, . . . , n+ 1}

4.3.4 The Loewner Pencil

We consider frequency response data of linear system and divide it into two disjoint sets

represented by left response data and right response data. The left data is represented by

{µj}qj=1 ⊂ C with left input tangential direction {lj}qj=1 ⊂ Cp which gives left responses

{vj}qj=1 ⊂ Cm. Similarly, right data is represented by {λj}ki=1 ⊂ C with right input

tangential direction {rj}ki=1 ⊂ Cm which gives right responses {wi}kj=1 ⊂ Cp which can

be represented as

lTj Ĥ(µj) = vTj , j = 1, . . . , q, and Ĥ(λi)ri = wi, i = 1, . . . , k. (4.3.9)

Now, let R and O be generalised controllability and observability matrices, respectively

for the given linear model ΣL = (C,E,A,B) of order n, then the associated Loewner

29



Chapter 4: Application of Model order Reduction to Gas Distribution
Network

matrix is given as:

L =


υT

1 r1−`T1 w1
µ1−λ1

. . .
υT

1 rk−`T1 wk

µ1−λk

... . . . ...
υT

q r1−`Tq w1
µq−λ1

. . .
υT

q rk−`Tq wk

µq−λk

 = −OER (4.3.10)

The shifted Loewner matrix is:

Ls =


µ1υT

1 r1−`T1 w1λ1
µ1−λ1

. . .
µ1υT

1 rk−`T1 wkλk

µ1−λk

... . . . ...
µqυT

q r1−`Tq w1λ1
µq−λ1

. . .
µqυT

q rk−`Tq wkλk

µq−λk

 = −OAR (4.3.11)

The controllability and observability matrices are explained in [70]. The matrix [L,Ls]

is known as Loewner Pencil and transfer function of raw model will be written as:

H(s) = W(Ls − sL)−1V (4.3.12)

Consider given frequency domain measurments (si, H(si)). Partiition the measurement

into two disjoint sets

frequencies : [s1, . . . , sN ] = [λ1, . . . , λk], [µ1, . . . , µq], k + q = N,

values : [H(s1), . . . ,H(sN )] = [w1, . . . , wk], [υ1, . . . , υq] = W,V T .

Build the Loewner matrix pencil (L,Ls) using (4.3.10) and (4.3.11). Next, compute the

SVDs

[L,Ls] = Y1Σ`X̃
T
1 ,

 L

Ls

 = Ỹ2ΣrX
∗
2 (4.3.13)

If we have the case of redundant data, then Loewner pencil (L,Ls) is singular and

following assumption is made

rank(xL− Ls) = rank[L;Ls] = rank[L,Ls] = r 6 k.

The reduced order model (Ĉ, Ê, Â, B̂) is obtained by projecting the raw model (W,L,Ls, V )

onto subspace of dimension r . By selecting r columns of Y1 and X2 , we get projection

matrices of size Y,X ∈ Cr×k. The following relationship holds in general

Ê = −Y ∗LX, Â = −Y ∗LsX, B̂ = −Y ∗V, Ĉ = WX.

This methodology is used to construct ROM of gas distribution network using the fre-

quency response data of network model on certain interpolation points.
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4.4 Graphical User Interface

In this thesis, we built a classic GUI with MATLAB AppDesigner which is used to

simulate different network. The interface of the design is shown in Figure 4.1

GAS NETWORK ANALYZER

Figure 4.1: Graphical User Interface

The input parameters defined in the GUI is explained here:

• Select Network: This drop down bar is used to choose the desired network. For

gas network, the nodes defined by number can be entered to our model by defining

it in the form of source and target array in which each element represents the pipe

from source to target.

• Cross sectional area: It represents the cross sectional area of each pipe in the

form of row vector. The first element represents the area of first pipe and so on.

• Supply pressure and demand mass flow: These parameters are also used as

boundary conditions in the model. For multiple demand or supply nodes, the data

will be entered in the form of row vector.

• Length of pipes: The length of more than one pipe is entered in the form of row

vector with first element represents length of first pipe and so on.
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• Compressibility factor and gamma: In ideal case, we consider the compress-

ibility factor as one while gamma represents ratio of specific heat.

• Choose node: We choose node to check the pressure and mass flow at the required

node. The graph of mass flow and pressure will be displayed on the given figures

in the GUI.
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Results and Discussion

We consider three benchmark examples for our results on MOR of QBDAE systems. The

results are compared with the one-sided and two-sided projection methods, where the in-

terpolation points are computed by IRKA, implemented on the linear part of the system.

We represented the proposed method by 1s/2s-greedy(One-sided/two-sided projection

with greedy based interpolation points) and the method from literature by 1s/2s-IRKA

(One-sided/two- sided projection with IRKA interpolation points). The Max. True error

in the following tables is defined as max
s1,s2∈Ssample

|H1(s1)−Ĥ1(s1)|+|H2(s1, s2)−Ĥ2(s1, s2)|

and the Max. error bound is max
s1,s2∈Ssample

∆(s1, s2). Next, we try Loewner framework

on linear time invariant dynamical system of gas distribution network. Three different

scheme of gas network is considered to validate our methodology in 4 for various network

schemes.

5.1 Nonlinear RC circuit

The nonlinear RC circuit was first considered in [71] and since then it has been used

in many papers for nonlinear MOR [4]. Consider v be the voltage and g(v) be the

current function then I-V characteristics can be represented as: g(v) = e40v +v−1. The

nonlinearity in the current function results in nonlinear model. All the capacitances are

fixed to C = 1. Figure 5.1 shows the complete circuit.

It is shown in [21] that introducing some auxiliary variables, the nonlinearity in the RC

circuit can be written in the QB form as in (1.2.5). The transformation is exact, but the

dimension of the system increases to n = 2 · l, where l represents the number of nodes
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in Figure 5.1, and it is also the dimension of the original nonlinear system.

v1
g(v) v2 vl−2 g(v) vl−1 g(v) vl

C

i
=
u

(t
)

g
(v

)

C C C C

Figure 5.1: Nonlinear RC circuit diagram

For our results, we set l = 50, so n = 100 and use two-sided projection method to reduce

the system. Table 5.1 shows the results with tolerance εtol = 1e−5 and an initial choice

of interpolation points as σ1 = σ20 = 119.5642.

S.No. Interpolation points Max. True Error Max. Est. Error

{σ1i, σ2i}

1 119.5642, 119.5642 1.8616× 10−2 0.109183

2 0.9875, 0.9875 1.3683× 10−3 8.4421× 10−3

3 4.9567, 0.9875 1.6127× 10−4 4.0341× 10−4

4 18.1107, 5.5319 4.2956× 10−5 7.22× 10−5

5 2.0292, 4.4445 8.239× 10−6 9.6404× 10−6

Table 5.1: Error estimation results for RC circuit

The second column of Table 5.1 shows interpolation points that are identified by the

greedy framework and are based on the error bound. It is clear that the error bound

tightly catches the true error and can be used as a surrogate of the true error to select

the interpolation points. The size of the ROM obtained from both approaches has been

kept the same i.e. r1 = r2 = 12. For the input u(t) = e−t, the output of the original

model and ROMs along with corresponding relative errors are shown in Figure 5.2.
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Figure 5.2: Non-linear RC circuit

Figure 5.2a shows the comparison of transient response of the two approaches, while

Figure 5.2b plots relative errors of the two approaches. It is clearly seen that 1s-greedy

and 2s-greedy outperform 1s-IRKA and 2s-IRKA respectively in terms of accuracy.

5.2 Burgers’ Equation

In nonlinear MOR, 1D burgers’ equation is commonly used [32],[22]. Mathematical

model of 1D burger’s equation with Γ = (0, 1)× (1, T ) is:

υt + υυx = ν · υυxx, in Γ,

αυ(0, t) + βx(0, t) = u(t), υx(1, t) = 0, t ∈ (0, T ),

υ(x, 0) = υ0(x), υ0(x) = 0, x ∈ (0, 1),

(5.2.1)

we use it as an example to test our proposed method. We keep the size of the original

model as n = 1000. Table 5.2 shows our results with tolerance εtol = 1e−4 and an initial

choice of interpolation points as σ10 = σ20 = 5.4124.

35



Chapter 5: Results and Discussion

S.No. Interpolation points Max. True Error Max. Est. Error

{σ1i, σ2i}

1 5.4124, 5.4124 1.1299× 10−3 32.4786

2 31.6141, 1.383 1.0259× 10−3 3.2407

3 2.9603, 1.0818 1.0746× 10−3 4.2125× 10−1

4 9.2633− 11.3351ι, 24.9534 1.416× 10−4 4.3411× 10−4

5 7.4119− 3.622ι, 1.0818 1.785× 10−5 1.7869× 10−5

Table 5.2: Error estimation results for burgers equation

The second column of the table shows interpolation points that are based on the error

bound and identified by the greedy framework. Similarly, the error bound again tightly

bounds the true error and therefore is reliable for choosing the interpolation points in

the greedy algorithm. The sizes of the ROMs obtained from both approaches are kept

same i.e. r1 = r2 = 16. The ROMs constructed from IRKA interpolation points and

the proposed framework are shown in Figure 5.3 for input u(t) = cos(πt).
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Figure 5.3: Burger’s equation

Figure 5.3a shows the transient responses of the burgers equation computed from sim-

ulating the original model and the two different MOR approaches, while Figure 5.3b

compares the absolute response errors of the ROMs derived using two approaches. The

absolute error of ROM constructed using the proposed methodology of choosing interpo-

lation points is less than that of the ROM constructed using IRKA interpolation points,

especially for the two-sided projection.
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5.3 FitzHugh - Nagumo System

We use the FitzHugh - Nagumo system as our third example to check our results. The

FitzHugh - Nagumo system can be represented as[25]:

ευt(x, t) = ε2υxx(x, t) + f(υ(x, t))− w(x, t) + g,

wt(x, t) = hυ(x, t)− γw(x, t) + g,
(5.3.1)

with f(υ) = υ(υ − 0.1)(1− υ) and boundary conditions:

υ(x, 0) = 0, w(x, 0) = 0,

υx(0, t) = −i0(t), υx(1, t) = 0.
(5.3.2)

Here, we choose ε = 0.015, h = 0.5, γ = 0.05 and i0(t) = 5 × 104t3e−15t. When

standard finite difference method is applied to numerically discretize the PDEs in (5.3.1),

a system of ODEs with cubic non-linearities is obtained. We can get a quadratic bilinear

system by introducing new variables. For an original discretized system with size n̄, a

quadratic bilinear system has the size of n = 3n̄. we set n̄ = 100, which gives rise

to quadratic bilinear system of n = 300. We choose interpolation points using the

proposed greedy framework to construct the ROM of size r = 26 and then compare

it with the ROM of the same size, which is constructed from the interpolation points

using IRKA. Table 5.3 shows our results with tolerance εtol = 1e−6 and the interpolation

points σ10 = σ20 = 534.69.

S.No. Interpolation points Max. True Error Max. Est. Error

{σ1i, σ2i}

1 534.69, 534.69 0.282519 1152.4511

2 1.38, 1.08 4.7413× 10−1 8.4587

3 3.91− 5.45ι, 1.38 1.2373× 10−4 4.3284× 10−3

4 39.38, 1.08 2.5379× 10−6 5.9555× 10−5

5 110.46, 1.08 8.2393× 10−6 2.1293× 10−5

6 3.96, 1.08 4.3429× 10−5 7.1251× 10−4

7 17.63, 1.08 7.6047× 10−6 4.6707× 10−5

8 4.83− 4.72ι, 1.08 9.7775× 10−8 1.932× 10−7

Table 5.3: Error estimation results for the FitzHugh - Nagumo model
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The table 5.3 shows interpolation points that are selected by the error bound and the

decay of the true error and the error bound at each iteration of the greedy algorithm.

The error bound once more, estimates the true error accurately, implicating that the

selected interpolation points indeed nearly corresponds to the largest error. The sizes

of ROMs obtained from both approaches have been kept the same i.e. r1 = r2 = 26.

Figure 5.4 shows the transient responses of the FitzHugh - Nagumo system computed

from simulating the original model and two approaches.
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Figure 5.4: FitzHugh - Nagumo equation

The input signal is u(t) = 50000t3e−15t. It is seen that the 1s-greedy performs better

than the 1s-IRKA when the outputs in both cases are compared with that of the original

model; however, 2s-greedy and 2s-IRKA produce unstable responses.

5.4 Simple Fork Network

This section covers two different cases of fork network. The following setting has been

considered for simulation of these networks:

1. Each pipe has length which is measured in meter [m]. The length of pipes may

vary.

2. Each pipe has its own diameter. The cross sectional areas of each pipe is calculated

using the diameter of the pipe.

3. Gamma which represents the specific heat capacity of the gas is taken as constant.

4. The compressibility factor is considered fixed such as unity for ideal gas.
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5.4.1 Fork Network 1

This network consists of three pipes. There are one supply node, two demand nodes and

one junction node. The network is plotted using digraph as shown in the Figure 5.5.

Figure 5.5: Simple Gas Fork Network 1

The pipe connected to supply node is known as supply pipe while the pipe connected

to demand node is called demand pipe which mean that the flow of gas at certain node

represents the flow in the corresponding pipe. The input data of the model is given in

the Table 5.4.

Table 5.4: Given Data of Fork Network 1

Description Symbol Value

Pressure at 1st supply node ps1 30 bar

Flow rate at 1st demand node qd1 30 kg/s

Flow rate at 2nd demand node qd2 30 kg/s

Area of each pipe a 0.7854 m2

Gamma γ 1.46745319

Compressibility Factor c 1

Mesh size h 20

Length of each pipe L 1000 m

With the above input parameters for the simulation of the network in the 5.5, we choose
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the simulation time t = 1000 seconds. We consider frequency response data of original

transfer function at 2n different interpolation points where n represents the size of the

original system. These interpolation points are used to construct ROM. To simulate

the models, we keep the initial condition as zero. The simulation of FOM and ROM

generate results with very small error. The flow rates at demand nodes generated by

original and reduced order model can be seen in Figure 5.6.
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Figure 5.6: Fork Network 1 Flow Rates at Demand Nodes

While Figure 5.7 represents the flow rate at supply node in the network.
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Figure 5.7: Fork Network 1 Flow Rate at Supply Node

Similarly, the pressure at each node can be seen as well. The pressures at demand nodes

are given in Figure 5.8
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Figure 5.8: Fork Network 1 Pressure at Demand Nodes

Next, the pressure at supply node is plotted in Figure 5.9
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Figure 5.9: Fork Network 1 Pressure at Supply Node

Now, we need to check the accuracy of the results generated from reduced order model.

The relative error at every point is given in Figure 5.10
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Figure 5.10: Fork Network 1 Relative Error
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It is observed that our results from ROM closely match the results of FOM with a

small acceptable error in our case. The size of the original system is n = 301 while

the size of the reduced model is r = 18. Therefore, the simulation time of original

model is 0.9304 seconds while that of the ROM is 0.0979 seconds. Simulation of ROM

takes approximately 89.47% less time as compared to original model which save our

computational resources as well. Apart from this, the reduced order model works fine

with variable inputs as well.

5.4.2 Fork Network 2

This network also consists of three pipes. However two sources of gas supply are con-

sidered. The network consists of single demand node. The network is displayed using

directed graph as shown in the Figure 5.11.

Figure 5.11: Simple Gas Fork Network 2

In this case, we have two supply pipes and single demand pipe. The input data of the

model is given in the Table 5.5.
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Table 5.5: Given Data of Fork Network 2

Description Symbol Value

Pressure at 1st supply node ps1 30 bar

Pressure at 2nd supply node ps2 30 bar

Flow rate at 1st demand node qd1 30 kg/s

Area of each pipe a 0.7854 m2

Gamma γ 1.46745319

Compressibility Factor c 1

Mesh size h 20

Length of each pipe L 1000 m

With the above input parameters for the simulation of the network in the 5.11, we choose

the simulation time t = 1000 seconds. We consider frequency response data of original

transfer function at 2n different interpolation points where n represents the size of the

original system. we keep the interpolation points same as in 5.4.2. These interpolation

points along with frequency response at these points are used to construct ROM. We

simulate both the models with zero initial conditions. The simulation of ROM generates

results, closely match with that of FOM. The flow rates at supply nodes generated by

original and reduced order model can be seen in Figure 5.12.
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Figure 5.12: Fork Network 2 Flow Rate at Supply Nodes

While Figure 5.13 represents the flow rate at demand node in the network.
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Figure 5.13: Fork Network 2 Flow Rate at Demand Node

Similarly, the pressure at each node can be seen as well. The pressure at supply nodes

are given in Figure 5.14
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Figure 5.14: Fork Network 2 Pressure at Supply Nodes

Next, the pressure at demand node is plotted in Figure 5.15
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Figure 5.15: Fork Network 2 Pressure at demand Node
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Now, we need to look how accurately constructed ROM generates results as compared

to original model. The relative error at every point is given in Figure 5.16
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Figure 5.16: Fork Network 2 Relative Error

Since we know the network has two supply sources, we see in Figure 5.6 that mass flow in

steady state at each supply node is same. It is because the pressure of both supply nodes

are same. In case the pressure is not same, then supply node with lower pressure act as

demand node. It is also observed that our results from ROM closely matches the results

of original model with a small error. The size of the original is n = 302 while the size of

the ROM is r = 12. Therefore, the simulation time of original model is 1.2359 seconds

while that of the ROM is 0.0635 seconds. Simulation of ROM takes approximately

94.86% less time as compared to original model which save our computational power as

well. Apart from this, the ROM works fine with variable inputs as well.

5.5 Cyclic Network

In this section, a simple gas network with cyclic struture will be used to apply data driven

model reduction and compare results with original model with same length and cross

section area for all pipes. Later on, the MOR technique will be applied to original model

with different length and corss sectional area for each pipe. We will see the effectiveness

of our methodology which works even for different possible cases of a network.
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5.5.1 Simple Cyclic Network

We consider a basic structure of cyclic network and keep same settings defined in Section

5.4. The directed graph of the network is given in Figure 5.17

Figure 5.17: Simple Gas Cyclic Network

There is one source node, one demand node and two junction nodes. Our concern is to

check the pressure and mass flow on supply and demand nodes. For now, we consider

the case of same length and area of each pipe. The input data of the model is shown in

Table 5.6.

Table 5.6: Given Data of Simple Cyclic Network

Description Symbol Value

Pressure at supply node ps1 30 bar

Flow rate at demand node qd1 30 kg/s

Area of each pipe a 0.7854 m2

Gamma γ 1.46745319

Compressibility Factor c 1

Mesh size h 20

Length of each pipe L 1000 m

We choose the t = 1000 seconds simulation time considering the above input parameters

for the simulation of the network in the 5.17. The frequency response data has been
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chosen for given interpolation points within random range. These interpolation points

are used to construct ROM. To simulate the models, we keep the initial condition as

zero. The results obtained from original and ROM have been plotted. Figure 5.18a and

5.18b show the mass flow at demand and supply node.
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Figure 5.18: Cyclic Network 1 Mass Flow

Similarly, we plot the pressure of the gas as well in Figure 5.19a and 5.19b
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Figure 5.19: Cyclic Network 1 Pressure

The comparison of results from original model and ROM can be observed from the error

between both the results. The relative error is shown in Figure 5.20
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Figure 5.20: Cyclic Network 1 Relative Error

It is seen clearly that the ROM generates output with good accuracy while preserving

the stability of original model. The size of the original model is n = 504 while the size

of the reduced model is r = 12. The simulation time taken by ROM is 0.4511 seconds

as compared to that of original model which is 6.6116 seconds. The ROM simulates

easily and quickly with less computational power. Therefore, we can use the ROM for

larger networks as well to make simulation faster.

5.5.2 Cyclic Network with Variable Parameters

We consider same cyclic network in Figure 5.4 but with different length, diameter and

cross sectional area of each pipe. We consider the input of the model defined in Table

5.7

Table 5.7: Given Data of Variable Cyclic Network

Description Symbol Value

Pressure at supply node ps1 30 bar

Flow rate at demand node qd1 20 kg/s

Gamma γ 1.46745319

Compressibility Factor c 1

Mesh size h 10

Next, we take length and area of each pipe as shown in Table 5.8
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Table 5.8: Length and Cross-Sectional Area of Variable Cyclic Network

Pipe Length (m) Area (m2)

Pipe12 2500 0.785

Pipe23 1600 0.685

Pipe24 1300 0.451

Pipe27 600 0.343

Pipe35 800 0.543

Pipe45 750 0.445

Pipe56 2100 0.331

Pipe75 500 0.423

We choose simulation time t = 1000 seconds for the above input parameters. The

frequency response data has been chosen for given interpolation points . These inter-

polation points are used to build ROM. Define initial conditions as zero for simulation

of the original and ROM. Figure 5.21a and 5.21b show the mass flow at demand and

supply node.
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Figure 5.21: Cyclic Network 2 Mass Flow

Next, we look into pressure of the network at input and output node generated from

both, original and reduced model. The pressure with respect to time can be seen in

Figure 5.22a and 5.22b
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Figure 5.22: Cyclic Network 2 Pressure

The relative error in the results of reduced order model can be seen in Figure 5.23
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Figure 5.23: Cyclic Network 2 Relative Error

It is noted that the ROM generates output closely matching that of original model while

reduced model is stable as well. The size of the full order model is n = 1394 while the

size of the reduced mode constructed from l is r = 12. The total time taken by full

order model to simulate is 106.47 seconds while the time taken to simulate the reduced

model is 11.61 seconds. The ROM simulates easily and quickly with less computational

power. Therefore, ROM can be used in modelling of large networks.

5.6 Large Network

In this section , we consider an example of modified part of gas distribution network.

The graph of the network is shown in Figure 5.24.
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Figure 5.24: Large Gas Network

We consider input parameters of the original model as shown in Table 5.9

Table 5.9: Given Data of Large Network

Description Symbol Value

Pressure at supply node ps1 30 bar

Flow rate at each demand node qd 30 kg/s

Gamma γ 1.46745319

Compressibility Factor c 1

Mesh size h 200

Length of each pipe L 1000 m

Cross sectional area of each pipe A 0.785 m2

We choose simulation time t = 8000 seconds for the above input parameters. These

interpolation points chosen randomly but all are unique; are used to construct ROM.

The initial conditions for simulation of both, original and reduced model have been

chosen as zero for the sake of simplicity. The mass flow and pressure at node 1 which is

supply node are shown in Figure 5.25a and Figure 5.25b, respectively.
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Figure 5.25: Large Network Supply Node

Next, we check the pressure and mass flow at different demand nodes to see the graph

converges at required mass flow and pressure in the steady state. The mass flow and

pressure at node 37 can be seen in Figure 5.26a and Figure 5.26b, respectively.
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Figure 5.26: Large Network Demand Node 27

Similarly, we checked the results at one more demand node to verify that original model

as well as ROM generate stable responses. For node 41, the mass flow and pressure are

shown in Figure 5.27a and 5.27b, respectively.
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Figure 5.27: Large Network Demand Node 41

The absolute error between the results of FOM and ROM can be seen in Figure 5.28
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Figure 5.28: Large Network Absolute Error

It has been found that the ROM produces stable output results closely matching that

of original model. The size of the full order model is n = 481 while the size of the

reduced model constructed from data sets is r = 140. Further reduction of the model

may produce unstable response. The issue can be resolved by using different set of

tangential directions. Original model took 22.5913 seconds to simulate while the ROM

took 3.1374 seconds. The accuracy of the ROM can be increases by many ways, one of

which is to increase the size of reduction. Consequently, the simulation time for ROM

will increase.
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Conclusion

6.1 Conclusion

In this thesis, the proposed methodology of choosing interpolation points for construc-

tion of ROM of the first- and second-order transfer functions of quadratic-bilinear sys-

tems has been tested for three different models. The results have also been compared

with ROMs of the same size constructed using the interpolation points chosen by linear

IRKA. In each case, the ROMs constructed using interpolation points from the greedy

framework yield better approximation of the output than the ROMs constructed from

IRKA. We then also develop a data driven model order reduction approach for simula-

tion of gas distribution network modelled using 1D isothermal Euler equations. Firstly,

different schemes of gas distribution network were designed. In the next phase, frequency

response data of each network were collected at certain interpolation points. Using these

datasets, we constructed ROM by applying Loewner framework. In this framework, a

raw model was created at first and were then projected to subspace using SVD. We

pointed out that the ROM constructed using Loewner framework created good approxi-

mation of original system while preserving the stability of the system at each output. It

was also noted that the accuracy of ROM was based on choice of interpolation points as

well as the tangential directions. We also noted that the ROM produced results faster

than that of original model, yet generating the promising results with high accuracy. We

noted that the Loewner framework provided trade-off between the accuracy of fit and

size of the ROM. We also noted that the ROM generated using data driven approach

was not structure dependent; hence proved to be better than POD in case of variable
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input.

6.2 Future Work

The current approach of MOR was applied only to the linear version of the model

in which the nonlinearity due to frictional factor and gravitational term were ignored.

Apart from this, the interpolation points and tangential directions used in Loewner

pencil matrix were chosen at random. The next phase of the research is to extend the

given approach to nonlinear model of the gas network and define a mechanism to choose

the optimal choice of interpolation points and tangential directions for linear as well as

nonlinear model of gas network.
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.1 Greedy Framework Algorithm

Algorithm 1 An adaptive framework for selection of interpolation points
Inputs: σ10, σ20, E, A, N , H, B, C and Ssample: a set of the samples of µ := (s1, s2),

which covers the domain of the two frequency variables.

Outputs: µ, V and W

Initialization: V = [ ]; W = [ ]; V1 = [ ]; W1 = [ ]; V2 = [ ]; W2 = [ ]; ε = 1; i = −1;

j = 0; εtol < 1, µ0 = (σ10, σ20).

WHILE ε > εtol

1 i = i+ 1; j = j + 1;

2 compute V̄i(σ1i) and W̄i(σ1i) using (3.3.3)

3 V1 = orth[V1, V̄i]; W1 = orth[W1, W̄i];

4 σ1j = arg max
σ1∈S1 sample

∆1(σ1);

5 compute Vi(σ1i, σ2i) and Wi(σ1i, σ2i) using (3.3.8)

6 V2 = orth[V2, Vi]; W2 = orth[W2,Wi];

7 σ2j = arg max
σ2∈S2 sample

∆2(σ1i, σ2);

8 µj = [σ1j , σ2j ];

9 V = orth[V1, V2]; W = orth[W1,W2];

10 ∆(µj) := ∆1(µj) + ∆2(µj); ε = ∆(µj);

END WHILE.
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