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Abstract

This study pertains to an investigative analysis of the Ruffini-Argüelles-Rueda (RAR) model
of a self-gravitating gas of about 48 to 345 keV degenerate fermions that form a fully de-
generate core, with and without considering the cutoff effects. These fermions are taken
to provide the non-baryonic dark matter which lie outside the standard model of Particle
Physics and are known as "sterile neutrinos" or "neutralinos". It assumes a degenerate Fermi
core surrounded by a partially degenerate Fermi halo. We see if we get the cores collapsing
into black holes in such a system enhancing the potential well of the degenerate fermions. In
order to conduct an analysis, we use fermions of masses 48 keV , 56 keV , 100 keV , 200 keV ,
and 348 keV for the calculations. The density profiles and rotation curves show three re-
markably different regimes: the quantum core, transition region from quantum to classical
effects, and classical halo. We also check the results for masses below 48 keV . Latest re-
search shows that at fermion mass 56 keV a compact core with mass and size close enough
to that of Sgr A* is obtained, this gives an excellent explanation to the idea of considering
a fermionic core as an alternative to Sgr A*.
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Chapter1
Introduction

The problem of existence of dark matter (DM) in galaxies and searching for the dark matter
particles, their masses, and other properties is one of the most discussed issues in Physics
today. The distribution of dark matter in terms of collisionless massive particles was as-
sumed considering different distribution functions like Maxwellian, Fermi-Dirac (FD), and,
Bose-Einstein (BE) distribution functions. From the ’80s till the present, the dark mat-
ter distribution in galaxies has been considered, with a system consisting of self-gravitating
massive fermions from fully degenerate regime to semi-degenerate regime [11,12]. The Fermi-
Dirac statistics for the fermion masses going from a few eV to keV and the Bose-Einstein
condensate from 10−25 eV to a few eV were taken into account [12].

In this dissertation, firstly, the mass of dark matter particles is constrained. After that
the system is solved at selected values of the degeneracy parameter θ0 and the temperature
parameter β0, considering the Ruffini-Argüelles-Rueda model known as the RAR model
[5, 13], which explains the dark matter distribution for fermion masses ranging from 10 to
65 KeV at a finite temperature. The core density and pressure are obtained for each fermion
mass and the corresponding degeneracy and temperature parameters, using the fermionic
equations of state. Then the variables like density, mass, and velocity varying with distance
for core and halo are found by solving the equilibrium equations, considering the system to
be spherically symmetric. The density profiles show three physical regimes: the inner dense
core which obeys quantum statistics, the intermediate regime with some quantum corrections
implied, and the classical Boltzmann regime. Then different density profiles are considered
like the Navarro-Frenk-White (NFW) profile which gives a cuspy core behavior [6] and the
Einasto density profile which shows a cored behavior [7], compared with the RAR density
profile to see the difference.

A gravitational potential is assumed for the core of a dark matter halo, which could possibly
be an alternative to the central black hole, if it would explain all the dynamics of the
surroundings, and for these observations a fermionic mass range is assumed. Then the
rotation curves for different ino masses are obtained with the corresponding degeneracy and
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temperature parameters. The first maximum of the rotation curve gives the core size rc and
the second one gives the halo size rh. Just like the density profiles, the rotation curves also
show different regimes.

The fermion masses ranging from 48 to 345 KeV are then considered, where the mass
345 keV is the critical mass limit, beyond which the gravitational collapse is expected. For
the finite size of galaxies, a cutoff is introduced in the fermionic phase space distribution,
as already explained in [14] along with a cutoff parameter W just like the degeneracy and
temperature parameters. This gives new solutions with the central compact core being an
alternative to the black hole case of Sgr A*. For the RAR paper [5], the possibility of a
fermion core at the galactic center to be an alternative to the central black hole did not
reach the accurate compactness because the cutoff energy was not considered [15]. In the
recent work presented in the sixteenth Marcel-Grossmann meeting (MG16), it was pointed
out that at fermion mass 56 keV , a compact degenerate quantum core as an alternative to
a black hole was obtained with a core mass ∼ 3.6 × 106 M� [10]. This narrows the range
from 56 keV to 345 keV . This will be discussed in detail in the last chapter.

So we will see how matter in distributed in a galaxy from the core to halo looking at the
density profiles and the rotation curves. We will also see the distribution of baryonic matter
in the bulge and disk of a galaxy. The model gives a good explanation for the problem of
the formation of supermassive black holes shortly after the Big Bang and the missing black
holes in the intermediate mass range. Other than the dark matter, baryonic matter is also
present in the core of a galaxy, so this baryonic matter will tend to fall into the degenerate
cores and may even form black holes inside. So we will see how much of the baryonic matter
falls into the cores so that they collapse.

I will organize my thesis as follows:

In the first chapter, I will explain the background of Einstein’s General Relativity Theory
and then give an introduction to the elementary concepts of General Relativity. Before
Einstein came up with his revolutionary ideas, only Newtonian Physics was known, in which
gravity was just a force, General Relativity modified the concept of gravity and the Universe
itself. For understanding General Relativity, differential geometry is a key, so I will discuss
a few concepts of geometry which led to the development of Einstein’s General Theory
and his famous Einstein field equations. Then the most general solution of Einstein’s field
equations, known as the Schwarzschild solution is given, that led to the existence of black
holes. Einstein’s jaw dropping theories opened a whole new world of research for the future.

In the second chapter, I will discuss Cosmology, different models of the Universe, its evolution
from the Big Bang till the present, and how it would possibly evolve in future. Then a
little bit of Particle Physics will be explained to better understand different particles which
might solve today’s major research mysteries. Other than the normal matter, that is the
baryonic matter, scientists have hypothesized the existence of dark matter as an entity of
this Universe in recent times. Its imprints in the Universe and proposed constituents still
stand as a mystery.
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In the third chapter, I will discuss Astrophysics leading to the current understanding of
black holes as astronomical objects, how the laws of Physics would behave near and inside
a black hole, types of black holes, the problem of the formation of supermassive black holes,
and their presence at the centers of different galaxies. Then galaxies and their types are
explained along with different components of galaxies like bulge, disk, and halo to study the
distribution of matter in different components of galaxies.

In the fourth chapter, I will explain the work of Ruffini, Argüelles, and Rueda. In the
fifth and final chapter, I will explain my work and conclude the thesis with discussions and
findings.

1.1 Background of General Relativity

In 1905, Einstein presented the Special Theory of Relativity [16] which deals with the study
of uniform linear motion in an inertial frame of reference. With this theory, Einstein was able
to change the concept of space and time from Newtonian absolute space and time, where
the space was assumed to be continuously spread in all the directions and the time ticking
at an even pace. Space and time are relative, according to Einstein, depending on the point
of view of an observer. Special Relativity has two basic principles, stated as:
1. In all the inertial frames, the laws of Physics are all the same.
2. The speed of light is constant for all the observers.

Special Relativity deals with uniform motion. Einstein wanted to expand his concept by
dealing with non-uniform motion, that is the accelerated motion. It took him a decade
before he succeeded in presenting his new theory of General Relativity in 1915 that deals
with the accelerated motion.

1.2 General Relativity

General Relativity is a theory not only about gravity but also about geometry [17, 18]. In
General Relativity, space and time are a single 4-dimensional manifold called spacetime. It
explains that the fabric of spacetime is not flat but gets distorted due to the presence of
massive and compact objects. It produces a curvature in the spacetime, that is responsible
for the gravitational force. It replaced Newton’s universal law of gravitation.

The principles of General Relativity are:

1.2.1 The Equivalence Principle

The equivalence principle states that the gravity is in some sense the same as the acceleration.
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The effects due to a uniformly accelerated frame of reference having an acceleration "a",
cannot be distinguished from an unaccelerated reference frame in a gravitational field with
gravity g = −a. Consider a man inside an elevator who drops an object which he was
holding. It falls down the way it would on the Earth. The elevator may not necessarily be in
an Earth-like gravitational field. It could be in a space far from the gravitational effects, say
in a rocket, accelerating at 9.8 m/s2. So inside an elevator, the man cannot decide whether
he is in a gravitational field or in space with no gravitational field. Einstein thought of it
back in 1907 [18]. For the inertial and gravitational masses to be equal, Eötvos performed
an experiment. The expected result from the experiment was null. It was the only evidence
on which General Relativity bases.

1.2.2 The General Covariance Principle

The general covariance principle states that all the physical laws can be simply expressed
tensorially.

It means that in a gravitational field, the laws of Physics are given by the equations which
are invariant under any set of transformations [17]. General Relativity deals with arbitrary
motion. It gives a better explanation for the macroscopic objects in a gravitational field and
faces some limitations when it comes to microscopic objects. In 1913, Einstein proposed the
idea that the gravitational field can be incorporated by a metric tensor that gives the line
element and the surface element as

ds2 = gab(x
c)dxadxb, (1.1)

where gab is a symmetric tensor. The coefficients of the metric are arbitrary functions of
the spacetime position. Ignoring all the gravitational effects, the line element reduces to the
Minkowski line element. The components of the metric tensor for this case are:

In Cartesian coordinates

g00 = 1, g11 = −1, g22 = −1, g33 = −1, gab = 0 if a 6= b. (1.2)

In Polar coordinates

g00 = 1, g11 = −1, g22 = −r2, g33 = −r2 sin2 θ, gab = 0 if a 6= b, (1.3)

which gives

ds2 = dr2 − r2dθ2 − r2 sin2 θdφ2. (1.4)
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Maxwell’s theory of the electromagnetic field is a field theory that is one of the most powerful
theories. Maxwell wanted to incorporate gravity in his theory but he said it was not possible.
Einstein succeeded in constructing and giving a physical interpretation to the field theory.
Later on, symmetries were taken into account which led to the supergravity theory and the
superstring theory.

1.3 The Curvature Tensor

An invariant geometry is required to explain General Relativity, for which tensors serve the
purpose. Earlier the differential geometry was for a 3-dimensional plane, curve, and surface.
In Relativity and Cosmology, we deal with the 4-dimensional tensors in curved space. For
the unification of gravity with the other forces, we need to go beyond 4-dimensions.

The Gauss invariant intrinsic curvature of a surface is generalized to a high dimensional
space when a basis vector is carried along two opposite directions and in the opposite order.
Then the difference of the two results using covariant derivative will give

Xa
;c;d −Xa

;d;c = (Xa
, c + Γab cX

b);d − (Xa
, d + Γad bX

b);c, (1.5)

where Γab c is called the Christoffel symbol, given as

Γab c =
1

2
gad(gbd,c + gcd,b − gbc,d), (1.6)

Xa
;c;d −Xa

;d;c = (Γab c,d − Γad b,c)X
b + (Γad fΓ

f
c b − Γac fΓfd b)X

b, (1.7)

Xa
;c;d −Xa

;d;c = (Γab c,d − Γad b,c + Γad fΓ
f
c b − Γac fΓfd b)X

b, (1.8)

Xa
;c;d −Xa

;d;c = Ra
bcdX

b, (1.9)

and Ra
bcd is given as

Ra
bcd = Γab c,d − Γad b,c + Γad fΓ

f
c b − Γac fΓ

f
d b. (1.10)

This is known as the Riemann curvature tensor that measures the curvature of spacetime.
If Ra

bcd = 0 then it is locally flat in certain regions representing the Minkowski spacetime.
Contracting the first and third indices of Riemann curvature tensor gives the Ricci tensor.
By Contracting the Ricci tensor gives the Ricci scalar, we have
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Rbd = Ra
bad, (1.11)

R = gbdRbd. (1.12)

The properties of Riemann curvature tensor are:

1. If the two pairs of indices interchange, then Rabcd is symmetric

Rabcd = Rcdab. (1.13)

2. If the first two or last two indices interchange, it is skew-symmetric

Rabcd = −Rbacd = −Rabdc. (1.14)

3. The first Bianchi identity is given as

Rabcd +Racdb +Radcb = 0. (1.15)

4. The second Bianchi identity is given as

Ra
bcd;e +Ra

bec;d +Ra
bde;c = 0. (1.16)

1.4 The Geodesic Equation

Geodesic is the shortest available path on a curved space. The shortest path is the straightest
path, but the straightest path is not necessarily the shortest path globally, locally it can be.
We can see this by looking at the equation of geodesic [19]. The shortest path between two
points is given by

SAB =

∫ B

A

ds, (1.17)

SAB =

∫ B

A

1.ds, (1.18)

SAB =

∫ B

A

gab(x
c)ẋaẋbds, (1.19)

15



where ’S’ is the arc length between two points. Take L[xc, ẋc] = gab(x
c)ẋaẋb, we have

SAB =

∫ B

A

L[xc, ẋc]ds. (1.20)

From the Euler-Lagrange equations

∂gab
∂xc

= gab,c,
∂gab

∂ẋc
= 0, (1.21)

∂L

∂xc
= gab,cẋ

aẋb, (1.22)

∂L

∂ẋc
= gbcẋ

b + gacẋ
a, (1.23)

d

ds

(
∂L

∂ẋc

)
= gbcẍ

b + gacẍ
a + gbc,dẋ

bẋd + gac,dẋ
aẋd. (1.24)

The equation will be

gbcẍ
b + gacẍ

a + gbc,dẋ
bẋd + gac,dẋ

aẋd − gab,cẋaẋb = 0. (1.25)

Replacing the dummy indices we get

gcdẍ
d +

1

2
(gac,b + gbc,a − gab,c)ẋaẋb = 0. (1.26)

This is the geodesic equation.

1.5 Parallel and Lie Transport

Parallel transport displaces a tensor parallelly in a coordinate system, it shifts along par-
allelly. We get the parallel transport by Taylor’s theorem using an intrinsic derivative.
Consider a vector p to be transported parallelly as

p‖ = eDtp, (1.27)
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where Dt = t.∇ and t is a unit tangent vector. Working on the manifolds is different, Lie
transport displaces a tensor along a curve on the manifold. It is obtained by Taylor’s theorem
but we take the Lie derivative instead of the intrinsic derivative

pLt = eLtp. (1.28)

Lie derivative is a method of taking the derivative of a tensor along a curve. A tensor is
Lie transported along a curve if its Lie derivative is zero. Consider a vector p to be Lie
transported along a vector field say t, Lie derivative on a manifold at point a is given as

Ltpa = ∂pt(a)∂tp(a). (1.29)

1.6 Geodesic Deviation

If two objects move in a gravitational field that change spatially, then the geodesic deviation
explains their ability to proceed or retreat from one another. Consider two observers A and
B both moving on a geodesic with unit tangent vector t, B looks at A moving on the geodesic
and defines his position vector p. He has velocity as the first derivative of position vector
with respect to proper time, and acceleration as the second derivative. Both the observers
are moving with a constant velocity but suppose B thinks A is accelerating. The reason
is, going along the geodesic, the rate of change of position does not remain constant, so
acceleration comes from there. If the position vector is Lie transported along the geodesic
it will join the geodesics. Lie transport displaces a tensor along a curve in the manifold and
a tensor is Lie transported along a curve if its Lie derivative is zero. The geodesic deviation
Aa is given as

Ltpa = 0, (1.30)

tdpa ;d − pd ta;d = 0, (1.31)

td pa;d = pd ta;d, (1.32)

Aa =
d2pa

ds2
, (1.33)

Aa = tc [td pa;d];c, (1.34)
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Aa = tc [pd ta;d];c, (1.35)

Aa = tcpd ;ct
a
;d + tc pd ta;d;c, (1.36)

Aa = pc td;c t
a
;d + tc pd ta;d;c, (1.37)

Aa = pc(td;ct
a);d − pc td ta;d;c + tc pd ta;d;c, (1.38)

Aa = −pctdta;d;c + tcpdta;d;c, (1.39)

Aa = tcpdta;d;c + pctdta;d;c, (1.40)

interchange "c" and "d"

Aa = td pc ta;c;d + pc td ta;d;c, (1.41)

Aa = Ra
bcd t

b pc td. (1.42)

We see that the acceleration is because of spacetime curvature. This is called the geodesic
deviation [19].

1.7 The Stress-Energy-Momentum Tensor

The presence of matter causes a gravitational field and if this field provides acceleration, then
it must provide the curvature. So the curvature tensor needs to be related to matter. The
gravitational field depends on the distribution of matter in space and its evolution with time.
Special Relativity tells that matter and energy are linked together, so the energy distribution
is required as well. Relativistically, a tensor of rank 2 is required which incorporates kinetic
and potential energy. Leaving out the stresses in the potential, we have

T ab = ρuaub, (1.43)

where ua and ub are the velocity 4-vectors. This is the energy-momentum tensor [20]. In a
rest frame
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T 00 = ρc2. (1.44)

Energy can be carried by matter or contained by the stress in a medium. For incorporating
potential part, stresses are added. Stress is a generalized form of pressure in which the direc-
tions of vectors matter, along with their magnitudes. Such a medium is called anisotropic.
To incorporate stresses, define

δab = σijδai δ
b
j . (1.45)

So in the rest frame, the stress-energy-momentum tensor is represented as

T ab = ρc2(δa0 δ
b
0) + (σijδai δ

b
j), (1.46)

where ρc2 is the energy density and σij is the stress tensor, given as

σij =
dF i

dSj
. (1.47)

It has a skew part which gives rotation but here rotation part is not considered. dF i is the
force and dsj is the area element such that

dsj = εjkl dxkdxl. (1.48)

For an arbitrary frame, the stress-energy-momentum tensor is represented as

T ab = ρuaub + σijδai δ
b
j . (1.49)

This is also called the matter-stress-energy tensor [20].

1.8 The Einstein Field Equations

Einstein’s equations are ten partial differential equations which are the second order non-
linear equations published in 1915. The equations have been used to predict the expanding
Universe, black holes, and gravitational waves. Einstein’s field equations represent a rela-
tionship between spacetime and geometry and the distribution of matter in the Universe
by relating the spacetime curvature with stress, energy, and momentum in spacetime. The
acceleration we get from the geodesic deviation is related to the curvature of space and

19



time. From the classical interpretation, we understand that the acceleration is caused by
gravitation, and gravitation is caused by matter. So, the relationship between the matter
(or energy) and curvature is given by [18]

εab[gcd, R
c
drs] = κT ab, (1.50)

where κ is the proportionality constant called the Einstein gravitational constant and εab

is the tensor function of metric and curvature tensor. Using the second Bianchi identity
Ra
bcd;e +Ra

bec;d +Ra
bde;c = 0, from "a" and "c" contraction

Rbd;e −Rbe;d +Ra
bde;c = 0. (1.51)

From "b" and "d" contraction

R;e −Rd
e;d + (−Ra

e;a) = 0, (1.52)

Rd
e;d +Ra

e;a −R;e = 0. (1.53)

Interchange "d" with "a"

2(Rae − 1

2
R δae );a = 0. (1.54)

Integrating this will give

εae = Rae − 1

2
R δae . (1.55)

This is called the Einstein tensor.

εae = Rae − 1

2
Rgae, (1.56)

substitute it in eqn.1.50, we get

Rab − 1

2
Rgab = κT ab, (1.57)

where κ = 8πG
c4

. These are the Einstein field equations that were stated by Einstein himself.
He later modified these equations when General Relativity included Cosmology which will
be discussed in the second chapter.

20



1.9 The Schwarzschild Solution

The Einstein field equations are way too complicated to solve by using general solutions.
The reason is a large number of functions (10), four independent variables which are reduced
by choosing a proper coordinate frame and coordinate system, and by making different
assumptions regarding the spacetime symmetries of the solution and matter tensor which is
relevant enough.

The simplest case was considered by Karl Schwarzschild in 1916 [18]. He considered vacuum
that is T ab = 0 and spherical symmetry. T ab = 0 means that there is no matter, stress,
or energy in the area under discussion but there is matter present everywhere else. Only
the gravitational effects are considered, without providing energy. Consider a point mass
m at the origin with spherical symmetry and static spacetime. The charge and angular
momentum are zero. A general metric that is spherically symmetric can be written as given
in ref. [17]

In spherical polar coordinates, the non-static metric will be

ds2 = eν(t,r)c2dt2 − eλ(t,r)dr2 −R2(t, r)dΩ2, (1.58)

where R, ν, and λ are the arbitrary functions. If the metric is static then

ds2 = eν(r)c2dt2 − eλ(r)dr2 −R2(r)dΩ2, (1.59)

where dΩ2 = dθ2 + sin2 θdφ2. If R2 is a varying function, the metric will be

ds2 = eν(r)c2dt2 − eλ(r)dr2 − r2dΩ2, (1.60)

where dΩ2 is the solid angle and R2(r)dΩ2 is the area subtending solid angle at the center.
The christoffel symbols are given as

Γ0
0 1 =

1

2
ν ′, Γ1

0 0 =
1

2
ν ′eν−λ, Γ2

1 2 =
1

r
= Γ3

1 3, Γ2
3 3 = − sin θ cos θ, (1.61)

Γ1
1 1 =

1

2
λ′, Γ1

2 2 = −re−λ, Γ1
3 3 = −r sin2 θe−λ, Γ3

2 3 = cot θ. (1.62)

The vacuum solution of the Einstein field equations give

Rab = 0. (1.63)
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So we have

R00 = ν ′′ +
1

2ν ′
(ν ′ − λ′ + 2ν ′

r
) = 0, (1.64)

R11 = −ν ′′ − 1

2ν ′
(ν ′ − λ′ − 2λ′

r
) = 0, (1.65)

R22 = 1− e−λ +
1

2r
(λ′ − ν ′)e−λ′ = 0, (1.66)

R33 = R22 sin2 θ = 0. (1.67)

Add R00 and R11

ν ′ + λ′ = 0. (1.68)

Integrating the above equation

ν(r) + λ(r) = constant. (1.69)

Absorb the constant in units of measurement of time as

ν(r) = −λ(r). (1.70)

Put the value of ν(r) in R22

(−re−λ)′ + 1 = 0. (1.71)

Integrate the above equation and divide by "r"

e−λ(r) = eν(r) = 1 +
α

r
, (1.72)

ds2 = c2(1 +
α

r
)dt2 − dr2(1 +

α

r
)−1 − r2dΩ2, (1.73)

with α = −2GM
c2

.
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eν(r) = 1− 2GM

c2r
, eλ(r) = (1− 2GM

c2r
)−1, (1.74)

ds2 = c2(1− 2GM

c2r
)dt2 − (1− 2GM

c2r
)−1dr2 − r2dΩ2. (1.75)

This is the Schwarzschild solution of the Einstein field equations.

1.9.1 Schwarzschild Interior Solution

After the exterior solution, Karl Schwarzschild presented the interior solution of the field
equations. Consider a non-rotating sphere of isotropic perfect fluid at the center, with
zero pressure at the surface and p(r) otherwise, density ρ(r), and radius a. The metric is
spherically symmetric and static from equation 1.60 as given in ref. [18]. For r > a also
applied for r = a, we have

p = ρ = 0. (1.76)

The stress energy tensor will be

T ba = [ρ(r) +
p(r)

c2
]ubua − δba

p(r)

c2
, (1.77)

where σij = δij
p(r)
c2

is the stress tensor. From the energy conservation

T ba;b = 0. (1.78)

Solving this we get

1

2

[
ρ(r)c2 + p(r)

]
ν ′(r) + p′(r) = 0. (1.79)

The Schwarzschild interior solution is written as [18]

ds2 =

[√
1− 2GM

c2a
(1 + A)−

√
1− 2GMr2

c2a3

]2
c2dt2 − dr2

1− r2

p2

− r2dΩ2, (1.80)

where
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eν(r) =

[√
1− 2GM

c2a
(1 + A)−

√
1− 2GMr2

c2a3

]2
, (1.81)

eλ(r) = 1− 8πGρ0a
2

3c2
. (1.82)

A is determined by certain physical considerations.

1.10 Black Holes

The General Theory of Relativity tells about the existence of black holes [21,22]. They were
first proposed by John Michell in 1783 calling them "dark stars". The word black hole was
first used by John Wheeler. Classically, an object whose escape velocity is greater than
or equal to the speed of light at the surface is called a black hole. Such objects are dark,
invisible, and due to gravitational attraction they pull things inside. The escape velocity is

νesc =

√
2GM

r
. (1.83)

The boundary of a black hole is called the event horizon. To escape the event horizon, velocity
must be greater than the speed of light which means it is impossible to escape a black hole,
trapped in forever. There is a singularity at the center of a black hole, it is infinitely dense
with zero volume which means that all of its mass is concentrated in space with infinite
gravity. All the laws of Physics including General Relativity fail there. Whatever gets too
close, gets rip into its elementary particles. Light being the fastest of all cannot escape
from this, that is why they are all dark. The distance from the center of a black hole to its
boundary that is the event horizon is called the Schwarzschild radius which is given by

rs =
2GM

c2
, (1.84)

where G is the gravitational constant, M is the mass of a black hole, and c is the speed of
light. Black holes are discussed in detail in chapter 3.
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Chapter2
Cosmology and Dark Matter

Cosmology is the study of the Universe which includes how it came into being, its structure,
changes occurring with time after the Big Bang, evolution with time, and future, with every
phase full of mysteries yet to be unveiled. A commonly accepted idea is that the Universe
came into being with the Big Bang, about ∼13.8 billion years ago from a single point where
everything was concentrated. The Universe for scientists, many years ago, included the Sun
and a few planets including our Earth. With time, our knowledge of the Cosmos expanded
to the other stars, galaxies, and clusters of galaxies full of mysterious objects. We will start
looking into Cosmology when Einstein applied General Relativity to it in 1917 in his paper.

2.1 Cosmological Principle

The principle of Cosmology can be stated as:
"The Universe looks the same to the observers everywhere".

The Universe is said to be isotropic, this observation may not be exactly correct but is
approximately correct. Isotropic means that looking far away as a whole, the Universe looks
almost the same in every direction. If it is isotropic then we can say, it is homogeneous.
Homogeneous means moving away to the farther galaxies and looking back, we will see the
same Universe as we see from here. There are about 1012 galaxies in the observable Universe
and each galaxy has about 1011 stars. If these galaxies are uniformly distributed then we
see the same Universe in every direction we look, also it looks the same from place to place.
This is what we call the cosmological principle [23].
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2.2 Einstein’s Static Universe

Einstein applied his Theory of General Relativity to Cosmology [24] in 1917. When he
applied his equations to the Universe, he found that it was stretching and contracting but
assumed that it was static. He also assumed that the Universe has a uniform distribution
of matter everywhere and the density is constant. As a result, the Einstein field equations
reduced to two equations: the first one says that the curvature of spacetime is proportional
to density which means, the more the density the more will be the curvature, the other one
shows that the density is zero which is not possible. So to overcome this problem, Einstein
modified his field equations by adding a constant of integration "Λ" which is called the
cosmological constant, it gave an outward push to the effects of gravity. Now the density
became proportional to Λ and the result was a Static Universe [25, 26], we have

εµν − Λgµν = κT µν , (2.1)

Rµν − 1

2
Rgµν − Λgµν = κT µν . (2.2)

The Einstein equations can also be written as

Rµν = κ

[
T µν − 1

2
Tgµν

]
− Λgµν . (2.3)

The cosmological constant then becomes

Λ ∝
1

R2
. (2.4)

So the general Einstein Universe model is given as

ds2 = c2dt2 − dr2

1− r2/R2
− r2dΩ2, (2.5)

where e−λ = C − Λr2. For the Einstein Universe model r = 0 and C = 1. Galaxies are
electrically neutral, so the only force acting is the gravitational force which is essential at
large enough scales. If a galaxy is considered somewhere in the Universe, an equal amount
of matter is present in every direction, if there was an excess of matter in one direction, it
would accelerate towards that direction. This shows that the Universe might be static but
this is not true.
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2.3 Hubble’s Law

In 1929, Edwin Hubble observed at the Mount Wilson observatory that the Universe is
expanding [23]. He found the red-shift of galaxies, which means that they are moving away
from us. To better understand this, consider a grid as a coordinate system. The distance
between two lattice points on the grid is considered to be proportional to dχ, such that the
grid points pass through the same galaxies. In other words, if the galaxies move away or
closer to each other the grid moves along with them. So the distance will be

dr = a(t)dχ, (2.6)

where ’a’ is the scale factor, it may or may not be a constant. Consider that it is time-
dependent. If it is a constant then the distance between two galaxies will remain constant
with time. The relative velocity between two galaxies will be a time derivative of the distance.

dv = ȧ(t)dχ, (2.7)

where ȧ = da(t)
dt

and dχ remains the same because galaxies are frozen in the grid. The
velocity-distance ratio is given as

dv

dr
=
ȧ(t)dχ

a(t)dχ
, (2.8)

v =
ȧ(t)

a(t)
r. (2.9)

This shows that the ratio does not depend on the fact that which galaxies are considered.
It could be any pair of galaxies regardless of how far or close they are.

ȧ(t)

a(t)
= H(t), (2.10)

where ’H(t)’ is Hubble’s constant.

v = Hr. (2.11)

This is called Hubble’s law.

27



2.4 The Friedmann Equations

In 1922 Alexander Friedmann gave a solution to the Einstein field equations showing that the
expanding Universe, homogeneity, and isotropy are the basic assumptions of the Friedmann
Universe model. The following equation gives the model, given in ref. [23]

ds2 = c2dt2 − a2(t) [dχ2 + f 2(χ)dΩ2], (2.12)

where dΩ2 = dθ2 + sin2 θdφ2. κ stands for the curvature, if κ = 1, f(χ) = sin(χ) it is the
positively curved space or spherical space, if κ = 0, f(χ) = χ this is called the flat space,
and if κ = −1, f(χ) = sinh(χ) it represents the negatively curved space or hyperbolic space.
The metric is called the Friedmann-Lemaitre-Robertson-Walker or FLRW metric which is
an exact solution of the Einstein field equations [17,23].

If Einstein’s field equations are linked to Cosmology, all the matter and energy in the Uni-
verse become way too complicated to solve the equations. So a possibility is considered to
assume the density to be constant everywhere and in every direction. Consider that a(t) is
a separation between two galaxies, the equations reduce to two equations, one is called the
Friedmann acceleration equation, given as

ä

a
= −4πG

3

(
ρ+

3P

c2

)
+

Λc2

3
, (2.13)

where G is the gravitational constant, c is the speed of light, ρ is the energy density of
matter and if the Universe has matter it is non zero, P is the pressure of that matter and
is considered to be zero, a(t) is the scale factor which gives the rate at which the spacetime
evolves, ä(t) is the acceleration term, this shows that the equation depends on density that
is why it holds for every galaxy no matter where it is. The equation is a differential equation
telling how a changes with time. So it can be seen that it is impossible to have a static
Universe unless the Universe has no matter that is ρ = 0, if so ȧ = ä = 0. The static
Einstein Universe is shown in fig. 2.1

So this shows that the Universe is not static. The other equation is

(
ȧ

a

)2

=
8πGρ

3
− κc2

a2
+

Λc2

3
, (2.14)

where
(
ȧ
a

)2 is the Hubble parameter. This is the Friedmann equation. In Cosmology, the
relation between pressure and density is known as the equation of state which is given as

P = wρc2, (2.15)
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Figure 2.1: A spacetime plot of the static Einstein Universe model along with the other
types of the Universe models are shown, with time along the x-axis and scale factor along
y-axis. According to the static Einstein Universe theory, ȧ = ä = 0 which means that the
scale factor must be constant [1].

where ’w’ is a constant. This gives the solution for scale factor as

a(t) ∝ t
2

3(w+1) . (2.16)

To understand the expansion rate with respect to time, various models were studied like the
matter dominated model for which w = 0, the expansion of the Universe is given as

a(t) ∝ t2/3. (2.17)

For radiation dominated model w = 1/3, so the rate of expansion of the Universe will be

a(t) ∝ t1/2. (2.18)

2.5 Friedmann Universe Models

Consider time t = t(η) such that the cosmic time is converted into the conformal time

cdt = a(η)dη. (2.19)

Integrating this, gives the proper time elapsed since the start of expansion of the Universe.
The metric then becomes
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ds2 = a2(η)[dη2 − dχ2 − f 2(χ)dΩ2]. (2.20)

This gives the three Friedmann models of the Universe [23] depending on the values of κ.
All the three models have a starting point but not necessarily an endpoint.

2.5.1 Open Friedmann Universe Model

The open Friedmann Universe model [23] starts from the Big Bang at η = 0, such that
a(0) = 0 and goes on expanding, has no end. It has a curvature κ = −1 as shown in fig. 2.2,
the metric for the open Universe will be

ds2 = a2(η)[dη2 − dχ2 − sinh2(χ)dΩ2]. (2.21)

It corresponds to a 3-hyperboloid.

2.5.2 Flat Friedmann Universe Model

The flat Friedmann Universe model from η = 0, such that a(0) = 0, represents the Universe
expanding forever with no end [23]. It has a curvature κ = 0 shown in fig. 2.2, the metric
for this Universe is given as

ds2 = a2(η)[dη2 − dχ2 − χ2dΩ2]. (2.22)

It represents the geometry of a 3-cone.

2.5.3 Closed Friedmann Universe Model

The closed Friedmann Universe model [23] has a starting time η = 0 and a(0) = 0 like the
two other models at which the Big Bang happened. It has a curvature κ = +1 and then
expands to a certain maximum size, then starts to shrink and finally collapses at η = 2π that
is the spacetime curves back into itself as shown in fig. 2.2. Such a model of the Universe
has a finite lifetime unlike the two others given by the metric

ds2 = a2(η)[dη2 − dχ2 − sin2(χ)dΩ2]. (2.23)

Its geometry corresponds to a 3-sphere.
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Figure 2.2: The first plot is for κ = −1, it is seen to expand continuously, representing the
open Friedmann Universe model. The second plot is for κ = 0, expanding continuously,
representing the flat Friedmann Universe model. The third plot is for κ = +1, initially
expanding and then collapsing, it represents the open Friedmann Universe model [2]

.

2.6 The Big Bang

The Big Bang is a model of the Universe that describes how it began, expanded from
a singularity of extremely high density and temperature at which the laws of Physics no
longer hold, and inflated for about 13.8 billion years which is considered as the age of the
Universe [23]. The Big Bang was not an explosion it was just the space expanding with
time. The theory is in favor of Hubble’s law that is the greater the distance of a galaxy, the
faster it moves away from the Earth. There is absolutely no instrument to look back at the
birth time of the Universe, the only sources of information are Mathematics, models, and the
cosmic microwave background. After the very beginning when the Universe cooled a little,
subatomic particles were formed, resulting in the formation of atoms and then hydrogen,
helium, and traces of lithium were formed. Then gravity resulted in the formation of stars
and galaxies. After the Big Bang, there were different stages in which the Universe evolved.
Initially, the radiation density was greater than the matter density which means that it was
a radiation-dominated era but with the expansion, many years after, the Universe became
matter-dominated. Astronomers observed some gravitational effects of the dark matter and
they found out that the accelerating expansion of the Universe is probably due to the dark
energy [27,28].
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2.7 Chronology of the Universe

The chronology of the Universe consists of 5 stages in which the Universe expanded and
evolved over about 13.8 billion years and is still evolving.

1. The very early Universe (all the epochs took place)
2. The early Universe, a period from 1 second after the Big Bang
3. The dark ages
4. The present Universe
5. The future Universe

2.7.1 The Radiation Era

In the time from 0 to 10−43 seconds of the expansion, the temperature of the Universe was
approximately 1040 K, the four forces namely the gravitational force, strong nuclear force,
weak nuclear force, and electromagnetic force, all were unified as a super force. There was
no matter present at that time, only energy was there, this was the Planck epoch [23]. At
the end of this epoch, the gravitational force separated from the other forces. At about
10−43 seconds, the grand unification epoch took place, now the three forces were left unified
excluding gravity, and the temperature was about 1036 K, too hot that no particles were
created. At the end of this epoch, the strong nuclear force separated, leaving behind the two
forces unified. At about 10−37 seconds, when the temperature was about 1033 K, the Universe
expanded exponentially, and then the temperature fell rapidly, this is called the inflationary
epoch, this epoch ended at about 10−32 seconds. At approximately 10−36 seconds, when the
temperature was approximately 1020 K, the electroweak epoch occurred, in which the weak
nuclear force separated from the electromagnetic force. When the temperature was suitable
enough, the quark-gluon plasma formed along with the other elementary particles. The next
stage is the quark epoch at approximately 10−12 seconds, and the temperature was about
1015 K, still too dense and hot for the quarks to combine, there was the quark-gluon plasma.
It is assumed that the baryogenesis may have taken place at about 10−11 seconds of the Big
Bang making the baryons dominant to the anti-baryons. At about 10−5 seconds was the
hadron epoch, and the temperature was approximately 1010 K, cold enough to combine the
quarks to make hadrons that are protons and neutrons. By the end of the hadron epoch,
majority of the hadrons and anti-hadrons annihilated with each other [23].

At about 1 second of the Big Bang was the lepton epoch, the Universe cooled down to
109 K but still not cool enough to make the electron-positron pairs. Neutrinos decoupled
and stopped interacting with the baryonic matter forming the cosmic neutrino background.
Before decoupling these neutrinos were in thermal equilibrium with protons, electrons, and
neutrons. After about 10 seconds of the Big Bang was the photon epoch, the temperature was
favorable for the electron-positron pairs to annihilate, and the Universe became dominated
by photons. At about 100 seconds, atomic nuclei were created in the process of the Big
Bang. These were the last stages of the radiation era in which after about 3 minutes of the
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Big Bang, protons and neutrons fused to make different nuclei, creating helium, lithium, and
deuterium. At about 20 minutes, nuclear fusion stopped because the Universe was not hot
enough for this process [23].

2.7.2 The Matter Era

After about 47,000 years of the Big Bang, the Universe became matter dominated and
after about 370,000 years, the dark ages started. Neutral atoms, mostly hydrogen and
helium were formed by combining nuclei with electrons in the process of recombination, the
Universe became transparent because photons were not in thermal equilibrium with the
matter anymore, and the temperature was dropped to 3000 K. Atoms which were newly
formed, released the photons by reaching their ground state, this is the photon decoupling [23].
These are the photons that are detected today as the cosmic microwave background. From
about 10 to 17 million years, the temperature became 273 K−373 K, suitable for the liquid
water. After about 200 million years, stars and galaxies started forming and with the years
passing, they evolved into the clusters of galaxies and superclusters. The elements present
today were formed in the cores of those stars. The reionization process started after about
250-500 million years till 1 billion years [23].

After about 1 billion years, the dark ages ended and from that until now the Universe has
looked almost the same. After approximately 9.8 billion years, the slowly expanding Universe
started to accelerate.

In the future, a time will come when there will be no new stars born and local galaxies will
be left only in the observable Universe. There are different theories regarding the future
prediction of the Universe and how it would end.

2.8 Cosmic Neutrino Background Radiation

The Cosmic neutrino background is a background radiation of the Universe which is com-
posed of neutrinos. These radiations were produced after about 1 second of the Big Bang
when they decoupled from the matter and the temperature was about 1010 K. Initially, they
were in thermal equilibrium with the electrons, protons, and neutrons. Today the approxi-
mate temperature of the cosmic neutrino background is 1.95 K. Neutrinos have a very low
energy that is why it is very hard to detect them and the cosmic neutrino background has
an energy about 1010 times smaller than the ordinary neutrinos, so practically it is hardly
possible to detect them. The weakly interacting neutrinos are a source of information from
the earlier Universe [23,29].
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2.9 Cosmic Microwave Background Radiation

The cosmic microwave background is a background electromagnetic radiation of the Universe
which comes from the very early stage of the Universe after the Big Bang. It is an important
data source leading back to the initial phase of the Universe. It was discovered by Arno
Penzias and Robert Wilson in 1964 [23]. The radiation strictly followed Planck’s black body
radiation law which is

ε(f)df =
8πh

c3
f 3df

exp(hf/kBT0)− 1
, (2.24)

where kB is the Boltzmann constant, h is Planck’s constant. In the recombination process,
when the neutral atoms were formed, electrons transitioned to the ground state by emitting
photons, called the photon decoupling. These photons after decoupling from the matter freely
moved through the space not interacting with matter, are a source of the cosmic microwave
background radiation. Today they have an estimated temperature of about 2.7 K. These
photons have been traveling through the space since decoupling, losing the energy with an
increase in wavelength due to the expansion of space.

2.10 High Energy Physics

While studying Cosmology and Astrophysics, many phenomena could only be explained
in terms of Particle Physics. Currently, out of many unsolved problems of Astrophysics, a
major problem is the characterization of the dark matter and dark energy which relates High
Energy Physics (HEP) to Astrophysics and Cosmology. High Energy Physics explores what
the world is made of and how it works. So, we briefly discuss the fundamental constituents
of matter of the Standard Model which is a well tested model so far. Furthermore, we study
various candidates of dark matter which relate to beyond the Standard Model particles such
as the sterile neutrinos, Weakly Interacting Massive Particles (WIMPs), Gravitationally
Interacting Massive Particles (GIMPs), supersymmetric particles, etc. Matter consists of
atoms, atoms have electrons and nuclei which consist of protons and neutrons. Each proton
and neutron is made up of three quarks which are the up and down quarks (labeled as u and
d). Quarks are never seen existing freely, they are seen in a group of three quarks together
or in a pair of quark and anti-quark.

Particles can be of two types: elementary particles and composite particles. Elementary
particles are further categorized as: elementary fermions and elementary bosons.
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2.10.1 Fermions

Fermions can be of two types: elementary fermions and composite fermions [30]. Fermions
are the particles following the Fermi-Dirac statistics and obeying Pauli’s exclusion principle
which means only one fermion can occupy a quantum state at one time. These particles are
the spin half particles. Quarks, anti-quarks, leptons, and anti-leptons are the elementary
fermions which are matter and anti-matter particles. Quarks have six flavors: up, down,
top, bottom, strange, and charm quarks, interacting via strong interaction. Up, charm, and
top quarks have a charge "2/3" and down, strange, and bottom quarks carry a charge "-1/3",
their respective anti-particles have the same properties as the original particles except for
the charge which is opposite. Electron, muon, tau, electron neutrino, muon neutrino, and
tau neutrino are the leptons and they do not interact via strong interaction. Electron, muon,
and tau have a charge "-1"and their anti-particles have a charge "+1". Electron neutrino,
muon neutrino, tau neutrino, and their anti-neutrinos have a charge "0", they are neutral.
Each fermion has an anti-particle making the total fundamental fermions "24". Quarks and
leptons with the same electric charge have different masses.

2.10.2 Bosons

Bosons are categorized as: elementary bosons and composite bosons [30]. Bosons follow
the Bose-Einstein statistics and do not obey Pauli’s exclusion principle which means one or
more bosons can occupy a quantum state at one time. These particles have an integer spin.
Elementary bosons are further divided into gauge bosons or vector bosons whose spin is "1"
and scalar bosons with a spin "0". Photons, Z bosons, and gluons with a charge "0" and
W bosons with a charge "±1" are the gauge bosons. Higgs boson is a scalar boson with
spin/charge "0". Bosons are the force carriers. Mesons are the composite bosons which are
made up from a quark and anti-quark pair.

2.10.3 Hadrons

The composite particles based on quarks, forming heavier particles are called the hadrons.
They interact via strong interaction. This includes mesons and baryons excluding the lep-
tons, which do not interact via strong force. Hadrons are composed of quarks either as the
quark-antiquark pairs called mesons or as three quarks called the baryons. Baryons are the
composite fermions made up of three quarks and mesons are the composite bosons made
of a quark and anti-quark pair. The two up quarks in a proton are not the same because
fermions obey Pauli’s exclusion principle, the six flavors of quarks are further divided into
three colors each.
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2.10.4 Baryons

Baryons are the composite fermions that are made of three quarks and experience the strong
nuclear force. The most common baryons are protons and neutrons. Protons are made up of
two up quarks and one down quark (uud) and neutron is made up of two down quarks and
one up quark (ddu). Baryons make most of the visible matter of the Universe. For example
when two down quarks and one up quark combine they make a neutron which is a baryon.
There is another type of baryons which have pentaquarks called the exotic baryons with four
quarks and one anti-quark. But this type of baryons has not yet been observed.

2.10.5 Neutrinos

Neutrinos were postulated by Pauli in the 1930s, when the astronomers were unable to figure
out what was causing the violation of energy and momentum conservation in β-decay? It
was hypothesized to be a ghostly particle that barely interacts with matter. Many years
later Cowan and Reines set up a detector to detect neutrinos and they were able to catch a
few, confirming the existence of neutrinos [30]. Neutrinos are the leptons that interact via
weak force and gravity. They were first formed after just 1 second of the Big Bang and are
also being produced during the nuclear fusion reactions inside the cores of stars, just like
our Sun. They are electrically neutral and have a very small rest mass which was earlier
considered as zero. Neutrinos pass through the normal matter without being detected.

Neutrinos are of three types: electron neutrino, tau neutrino, and muon neutrino. All the
three neutrinos are left-handed and every neutrino has an anti-neutrino. Neutrinos can be
detected by looking for their interactions with atomic nuclei in enormous amount of matter
but still, it is very rare to catch a neutrino in the detector. When neutrinos travel through
a distance they oscillate between their flavors, like electron neutrino becomes tau neutrino
or muon neutrino, since anything cannot oscillate without having a mass so the astronomers
came to a conclusion that the neutrinos have a mass. Their masses are not known exactly.

2.10.6 Sterile Neutrinos

Sterile neutrinos [31–34] are the hypothetical spin "1/2", electrically neutral particles that
only interact via gravity. They do not interact via any of the interactions of the Standard
Model, that is why they are called sterile neutrinos and this is how they are different from
the other neutrinos. The other neutrinos are left-handed particles while sterile neutrinos
are assumed to be right-handed particles. Their mass is still unknown and there is no
direct evidence of the existence of such neutrinos. Massive sterile neutrinos are a possible
candidate for the dark matter. Neutrinos have a property called the helicity, if the spin of
moving particles is along their direction of motion then they have a right-handed helicity
and if they have an opposite spin to the direction of motion then they have a left-handed
helicity. The helicity of the observed neutrinos is always left-handed. It is predicted that
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the right-handed neutrinos which have not been observed yet, would only interact with the
matter gravitationally known as sterile neutrinos.

Sterile neutrinos are produced at a temperature higher than the decoupling temperature
of the active neutrinos, Tdec ∼ 1 MeV . Therefore, for the masses in keV range, sterile
neutrinos are born relativistic [35]. The dark matter having candidates with such properties
is the warm dark matter. Heavy sterile neutrinos could be discovered by the radioactive decay
because heavier particles decay into lighter particles over time, similarly, sterile neutrinos
can decay into their lighter particles and emit x-ray photons. Data from the Chandra X-Ray
Observatory was studied to discover these x-ray photons but no evidence was found.

2.11 Dark Energy

Dark energy [27,28] is a form of energy assumed to fill most of the space. It is considered to
be responsible for the accelerated expansion of the Universe. Approximately 68 percent of
the Universe is dark energy, 27 percent is the dark matter, and both are invisible, the rest is
all normal matter. During the early 1990s, there were many views regarding the expansion
of the Universe, like the Universe might stop expanding one day and recollapse because of
the enough energy density, or it might always expand without stopping with so little energy
density but gravity would definitely slow down the expansion. Contrary to this, the Universe
was seen expanding at an accelerated rate in 1998 by the Hubble Space Telescope, observing
a distant supernova, it was from a dying giant star. So, it was thought that there must be
something causing the expansion. Different explanations were made, it was thought to be
a result of Einstein’s equations with a cosmological constant, or some kind of energy fluid
filling the space was causing it, or the theory itself was wrong which was not explaining the
expansion. Astronomers gave it the name ’dark energy’ which was causing the expansion.

Dark energy cannot be seen, no one knows what it is and what is it composed of, just the
effects have been observed on the other bodies. It acts as a counter gravity force which
does not allow gravity to squeeze the Universe with all the matter it has. That is why it is
considered that dark energy has characteristics similar to Einstein’s cosmological constant.
If the energy is a property of space then this means empty space has its own energy, now with
the expansion, more energy appears, and this would result in the expansion. For the space
having energy, the astronomers came up with another idea that according to the quantum
theory of matter, space is full of virtual particles that are constantly being produced and
then disappear. They calculated the value of energy but the results were so wrong.

It is also assumed that dark energy may be the fifth fundamental force called the quintessence,
filling the space as a fluid. Whose effects are opposite to those of gravity. But still, nothing
is known about it.
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2.12 Baryonic Matter

Ordinary matter made of electrically charged particles radiate when it is accelerating or
something collides with it and it can be seen and observed. It is called the baryonic matter
or luminous matter, made up of baryons, like protons and neutrons but it also has electrons
which are leptons. Baryonic matter is studied by the Fermi-Dirac statistics and obeys Pauli’s
exclusion principle. The stars, planets, humans, and all the things seen or touched are made
up of baryonic matter, we observe it through the direct telescopic observations. Whatever
we see or touch is about ∼ 5 percent of the matter of this entire known Universe and the rest
is just a mystery. Earlier, it was thought that the whole Universe was made up of ordinary
matter, but later when different galaxies were studied, observations were made which showed
that there were the other forms of matter that actually dominate the Universe with about
∼ 95 percent which are the dark matter and dark energy.

2.13 Dark Matter

One of the most intriguing problems these days that has taken the attention of most of
the astronomers is the existence of dark matter. It is not visible on the electromagnetic
spectrum that is why called "dark matter". It does not radiate like the normal baryonic
matter, that is why also known as non-luminous matter. Its nature and composition is not
known yet. Dark matter does not interact with normal matter via any of the interactions
of the Standard Model, its effects can be seen only through gravity on the visible matter.
The idea of dark matter hit the astronomers when the standard Newtonian gravity was
applied to the known baryonic components in different galaxies, and discrepancies were seen
between the observations and predictions. More evidence came in with the observations on
the formation and structure of the Universe, formation and rotation of galaxies and clusters
of galaxies, cosmic microwave background, gravitational lensing, and the other phenomena.

Many attempts have been made to describe dark matter by presenting different cosmological
models, like the cold dark matter (CDM) model and ΛCDM model. The ΛCDM model
successfully explained the Universe at large scales, but it seemed to fail at small scales.
Problems such as the lost satellites problem and the core-cusp discrepancy were seen. So,
the warm dark matter (WDM) model was proposed that predicts a lower bound in the keV
regime for the dark matter particles. According to the ΛCDM model, baryonic matter is just
about 5 percent of the matter this Universe has. The rest is assumed to be dark matter and
dark energy which are collectively about 95 percent for the large and diluted galaxies, and
about 99.99 percent for the dwarf galaxies [36]. Most of the matter in galaxies is considered
to be dark, present in large halos around the galaxies, there is also a component of it in the
galactic disk. Different assumptions were made for the existence of dark matter. Initially, it
was assumed that there is matter that is too faint to be detected, so baryonic matter was the
only dark matter candidate at that time. This idea was changed in the 1980s, when Particle
Physics was applied to Astrophysics, the outcome was that the dark matter was made up
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of a subatomic particle which is not known yet. Many experiments are being conducted to
detect these particles but are unsuccessful till date.

We will discuss baryonic and non-baryonic dark matter along with the evidence for dark
matter in the following sections.

2.13.1 Baryonic Dark Matter

Dark matter is considered to be baryonic or non-baryonic [37–41]. The baryonic dark matter
is composed of baryons, with many different suggestions regarding its existence. One idea
is that it is an ordinary baryonic matter which was unable to form the large clouds that
collapse to make stars and not enough mass for the fusion reaction, hence stayed dark. Such
objects are called the Massive Compact Halo Objects or MACHOs like the neutron stars,
brown dwarfs, black holes, and some planets but it only accounts for a small percentage of
the dark matter. Observations show that the mean mass of MACHOs lies between 0.15M� <
M < 0.9M�, which means that it only gives 20 percent of the dark matter in a halo.

There is another suggestion by Asghar Qadir and Francesco De Paolis of cold diffuse clouds
that are propped up by the cosmic microwave background, calling them virial clouds. These
are the interstellar gas clouds at the cosmic microwave background temperature, stabilized
by the radiation coming from the cosmic microwave background balancing the radiation it
would emit due to the virial theorem. The prediction to test that has been confirmed.

2.13.2 Non-Baryonic Dark Matter

Dark matter is generally assumed to be non-baryonic, the possible candidates are axions,
sterile neutrinos, WIMPs, GIMPs, and supersymmetric particles [37, 38, 42]. The Standard
Model being the most authentic model does not give a particle that can describe its nature.
It gives a stable, weakly interacting, and electrically neutral particle that is neutrino but
it was observed to be not responsible for the dark matter. An assumption for finding the
dark matter particles includes the extension of the Standard Model which is called the
supersymmetry (SUSY) that is beyond the Standard Model. In the supersymmetry theory,
there are the supersymmetric partners of particles from one of the two groups of particles:
fermions and bosons. Every particle from one group has a superpartner from the other group
like electron, graviton, and neutrino might have supersymmetric partners called selectron,
gravitino, and sneutrino from the bosonic group, there is no evidence of such particles yet.
Sterile neutrinos and neutralinos which have not yet been observed are also considered to be
the dark matter candidates. Neutralinos are the lightest supersymmetric particles, assumed
to be stable, and least massive among the family of supersymmetric partners. If neutralinos
are neutral, they make a good dark matter candidate. To determine the nature of dark
matter particles, many experiments are being performed, just like those at the Large Hadron
Collider.
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2.13.3 Evidence of Dark Matter

Galaxies in our Universe rotate with such high speeds that the gravity generated by their
observable matter could not possibly hold them together or they would not have formed at
the first place. Scientists think that something is giving these galaxies extra mass which
generates the extra gravity that they needed for their formation process, or to stay together
without drifting apart. This unusual and unknown matter was called the dark matter.

In 1932, Jan Oort predicted the dark matter when he was studying the motion of stars in the
nearby galaxies, but his estimates for this matter were not reliable. In 1933, Fritz Zwicky
studied the clusters of galaxies and he obtained the evidence of an unknown matter, while
applying the virial theorem to the Coma Cluster. He estimated the mass of this unknown
matter, it came out to be about 400 times more than the mass visually observed. Zwicky
found out that the effects of gravity for such galaxies were small as compared to the faster
orbits, so he concluded that there must be some invisible mass holding the clusters together.
Though his calculations were not exactly correct but the observations were right.

In the 1970s, Vera Rubin and Kent Ford studied the rotation curves of the Andromeda galaxy.
They extended their work to the other spiral galaxies and concluded that most of the galaxies
should have about six times more mass than the visible mass. They studied the optical
rotation curves using the radio telescopes, the HI rotation curves showed a different behavior
than the normal expected Keplerian behavior. Further, when more sensitive instruments were
used, the rotation curves were observed to be flat in the outer regions of galaxies. The arms
of spiral galaxies rotate around their centers. Going from the center to the outer regions
of these galaxies, mass density decreases. From Kepler’s law, the rotation velocity must
decrease with distance but the rotation curve is observed to be flat with increasing the
distance. So it is concluded that a lot of invisible matter is present in the outer regions of
galaxies.

Equating gravitational and centripetal force, we have

GM

r2
=
v2

r
, (2.25)

v2 =
GM

r
. (2.26)

So, the velocity is proportional to 1/
√
r, which is Kepler’s law. It means that an object away

from the center should move slower because of less gravitational pull and the rotation curve
should decline. But the observations show that the linear velocity is pretty much constant.
The flat rotation curves were obtained with almost a constant circular velocity in the dark
matter halo which indicated the existence of dark matter in galaxies. To account for this,
it was assumed that there was more mass in the outer regions. So mass as a function of
distance was considered, given as
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Figure 2.3: Rotational velocities of M31 [3] as a function of distance from the center showing
flat behavior at large radii (r > 20 kpc).

v2 =
GM(r)

r
, (2.27)

where M(r) is the total mass within the distance r. If v is constant then

M(r) ∝ r, (2.28)

which tells thatM(r) increases almost linearly as we move away from the center to the outer
boundary of the galaxy or beyond that.

Initially, it was thought that galaxies were made up of luminous matter and the mass of a
galaxy gave the mass of luminous matter. In galaxies, large velocity dispersion was observed
which indicated the presence of dark matter. Stars in the systems like elliptical galaxies, obey
the virial theorem. The velocity distribution and virial theorem give the mass distribution
in galaxies. The observed velocity dispersion in the elliptical galaxies does not match the
predicted velocity dispersion. So it was seen that galaxies and clusters of galaxies do not
behave gravitationally correct according to Newton’s laws or the laws of Relativity [23].
Another way to predict dark matter was the gravitational lensing, which is the bending of
light around a high concentration of dark matter. It was found that most of the luminous
matter was present at the center of a galaxy [40], its outer parts moving under the influence
of a central force was due to the central mass.

We do not know what the dark matter could be but we know that it cannot be baryonic
beyond a very small amount because we know how much the total matter is and it is much
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Figure 2.4: The galaxy rotation curves showing discrepancy between the observed and pre-
dicted curves, (1) shows the rotation curve of stars, which was obtained from the observations
and (2) shows the predicted Keplerian rotation curve [4].

more than is allowed by the nucleosynthesis. One way to avoid it is by having a change
in the law of gravity. The earliest attempt was with modified Newtonian dynamics, but
we know that Newtonian dynamics does not work. So it was modified relativistically, Dr.
Asghar Qadir worked on the modified relativistic dynamics. Otherwise, people normally
look for supersymmetric particles and all evidence seem to be there are no supersymmetric
particles and no supersymmetry. LHC does not show any supersymmetry, any signature of
supersymmetric particle is missing. Expectations were that they should have already been
observed at about 1 TeV , but they are now at about 14 TeV , still nothing observed. That
is why Remo Ruffini, Carlos Argüelles, and Jorge Rueda went for degenerate fermionic cores
which will be providing halo as well, that would be dark matter. They say that the core with
mass above a certain scale gives a black hole. But there is no evidence of this. There must
be some predictions made to check this, we will discuss that while concluding the thesis in
future prospects.

Dark matter is divided into three categories based on the velocity of its particles rather than
temperature as the names show:
1. Hot Dark Matter
2. Cold Dark Matter
3. Warm Dark Matter

2.13.4 Hot Dark Matter

Hot dark matter is assumed to be made up of light particles, like massive neutrinos with
mass . 1 eV and speed close to the speed of light. They decouple very early in a relativistic
environment. In the hot dark matter theory, it is considered that the largest structures were
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made in the first place, and from them smaller structures emerged because of the relativistic
velocities. Like from the superclusters our Milky Way was made, this structure is called the
top-down structure. If this mystery gets solved, it would give the information of how the
superclusters were formed after the Big Bang. Many solid arguments rule out the theory of
hot dark matter [43].

2.13.5 Cold Dark Matter

Cold dark matter [44, 45] is hypothesized to be composed of heavy particles whose speed is
less than the speed of light and masses & 2 GeV , they decouple non-relativistically. The
possible candidates are axions, primordial black holes, and WIMPs [42]. The theory of cold
dark matter was first presented in 1982, in which it is assumed that the smaller objects or
structures collapse under their own gravity due to the non-relativistic velocities and then
merge to make bigger structures, this structure is called the bottom-up structure. Predictions
made by this theory almost agree with the Cosmology of structure formation in the Universe.
There are issues with the predictions made by the cold dark matter theory and the observed
data of galaxies like the cusp halo problem, missing satellites problem, and a few others.
Many models have been presented to overcome the discrepancies.

2.13.6 Warm Dark Matter

Warm dark matter [46, 47] has characteristics of both, the hot dark matter and cold dark
matter. Commonly accepted candidates for warm dark matter are the sterile neutrinos and
gravitino, or the candidates with masses in the keV range. Predictions made for this type
of dark matter are almost similar to those made for cold dark matter with lesser small-scale
perturbations in the density. So, the predicted large number of dwarf galaxies is reduced
and it leads to a very low dark matter density at the centers of large galaxies. The standard
electroweak theory is the simplest model with a possible non-baryonic dark matter candidate,
the right-handed or sterile neutrinos.

2.14 Degeneracy of Matter

If two or more eigenstates have the same energy eigenvalue, the system is said to be de-
generate and if they have different energy eigenvalues then it is a non-degenerate system.
The degenerate matter [48] is a fermionic matter in its extremely dense state and particles
satisfy Pauli’s exclusion principle. Like the dense stellar objects, where due to an extreme
gravitational pressure the quantum mechanical effects become dominant. It is found in stars
which are in the final evolution stages, like the white dwarfs and neutron stars where thermal
pressure alone cannot avoid the gravitational collapse.
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In the degenerate matter, from quantum mechanical view, particles in a finite volume may
have discrete quantum states and Pauli’s exclusion principle does not allow two fermions to
occupy the same quantum state. When thermal energy is negligible, the lowest quantum
states are filled. This is called a state of full degeneracy. If more particles are added,
the volume is reduced, it will force the particles to move to higher quantum states even
at low temperatures. Matter experiences thermal pressure and degenerate pressure. In
degenerate matter, the degeneracy pressure is significant and the thermal pressure becomes
negligible where the densities are extremely high and temperature has a negligible effect on
the total pressure. Matter can become non-degenerate if there is an enormous increase in
the temperature even without a decrease in density.

In a degenerate gas, quantum states are completely filled up to the Fermi energy. A fermion
gas is called a fully degenerate fermion gas if all the quantum states below a given energy
level are filled. The difference between this energy level and the lowest energy level is
called the Fermi energy. Thermal pressure holds gravity from compressing the core of a
star, if thermal pressure is not enough, atoms and electrons start getting closer and closer
to each other but electrons cannot get closer than the quantum laws allow. If matter is
compressed further, Pauli’s exclusion principle generates the degeneracy pressure which is
a counter pressure preventing the further compression of a star. Degeneracy pressure is
not temperature dependent, like for normal matter, increasing the temperature increases
the pressure. Further increase of pressure on the degenerate matter increases the speed of
electrons but increasing the pressure to a certain point, electrons will approach the speed of
light, at this point the degeneracy pressure no longer supports the pressure of matter and
the core collapses. If the matter is dominant with electrons like in white dwarfs, the pressure
comes from the electron degeneracy.
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Chapter3
Black Holes

Out of many bizarre objects floating around in the Universe, black holes are the incomparable
ones, breaking down most of the laws of nature. They crush a huge amount of matter in a
very small space making them extremely dense and compact objects. When a star reaches
the end of its evolutionary life, it finally meets one of the three possible fates depending on
its mass: if it is a very massive star, it ends up as a black hole, a mysterious yet fascinating
object; if it is a less massive star then it ends up as a neutron star, and if it is a medium
sized star like our Sun or still less massive, it becomes a white dwarf or brown dwarf. Before
explaining what the black holes actually are, we look into the stars that black holes were
once, not dark and dense as they are now. We will discuss different types of stars and the
other two types of fates a star could possibly have if not ending up as a black hole [49–54].

3.1 Stars

From the Earth, many stars are seen twinkling in the sky at night. But looking closer, these
stars are massive bodies with different colors, some are bright and some are faint. How bright
a star is, depends mostly on its mass and age. Stars are born inside the nebulae, which are
vast clouds of dust, hydrogen, and helium spread out everywhere. Nebula is either formed
from the gas present in the interstellar medium, for example, the giant molecular cloud often
called the star nursery which is a region of the new stars that are being born, or from the
supernova explosion when a star dies, for example, the planetary nebula. With an increase in
the size of a cloud, by feeding on the dust and gas from the surroundings, gravity increases
and under the influence of this gravity, a cloud breaks into different clumps which flatten to
form a disk.

There was no angular momentum at the time of the Big Bang. When the Universe became
transparent the electrons were floating freely, the photons were then interacting with elec-
trons, and the light was scattering back and forth. At that stage the electrons got pulled
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into the hydrogen atoms, after which the Universe was mostly empty. The electrons got
associated with the nuclei, got separated off, and there were large empty spaces, so the
photons streamed through. This is the cosmic microwave background (CMB) radiation that
we see. When this happened, the Universe was cool enough and there were sudden phase
transitions. We are now able to get the photons coming through and they do not show any
net angular momentum, so we say there was no angular momentum at that time. But where
did it come from, if it was at the subatomic scales then there was no way to build it up into
sizeable angular momentum. We can say that at the time when the Universe with uniformly
distributed hydrogen and helium expanded, due to slight random density fluctuations in
gravity, they caused extra density at some places and that caused gravitational collapse over
there. With an increasing collapse, virial energy first gave out a temperature. After that,
there were the stars which were about a thousand solar masses, when they started collapsing
they became blue, burnt as blue giant stars, and then they exploded. This was a very fast
process. If they would explode in a spherically symmetric form, then there would be just
uniformly exploding all over. Now consider two such stars exploded, the ejectas from the
two stars hit each other with one hitting the other from the above. For their common center
of mass there would be a net impact parameter and an angular momentum, and the cloud
would start rotating. The effects of gravity on the cloud would contract it, resulting in a
decrease in the moment of inertia. So as to conserve the angular momentum, it would spin
faster giving observable angular velocities. The rotating cloud has a very high temperature
such that it collapses into a hot core forming a protostar. After this, when the temperature
reaches about 107 K, the fusion reaction starts in the core fusing hydrogen into helium, and
a young star is born. The leftover material from the disk forms planets, asteroids, etc. It
takes millions of years for a star to form.

In less massive stars the fusion stops, not being able to fuse heavier elements. But in very
massive stars, the fusion continues until it reaches iron, and then energy generation stops.
When the fusion reaction stops, there is no energy left to inflate the star against gravity and
its balanced state is disturbed. Gravity keeps on pushing the star inwards and compresses
it.

Stars can be classified into different spectral classes based on the characteristics like fre-
quency or the surface temperature. According to this, stars are divided into seven groups
"OBAFGKM", ranging from the coolest stars to the hottest ones. Also the coolest stars are
categorized as low mass stars and the hottest ones as high mass stars:

1. O group (the hottest normal stars), surface temperature > 30, 000 K
2. B group, surface temperature ≈ 10, 000 K − 30, 000 K
3. A group, surface temperature ≈ 7500 K − 10, 000 K
4. F group, surface temperature ≈ 6000 K − 7500 K
5. G group, surface temperature ≈ 6000 K
6. K group, surface temperature ≈ 5000 K
7. M group (the coolest stars), surface temperature < 3500 K

These groups are subdivided into the groups with digits from 0 to 9, from the hottest to the
coolest stars. Stars are also classified on the basis of light they emit, known as luminosity.
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Figure 3.1: The Hertzsprung Russell diagram shows the detailed classification of stars on
the basis of temperature, spectral classes, luminosity, and absolute magnitude.

These are called the luminosity classes represented by Roman numbers. Stars are also sorted
out by colors from red to blue, the hotter stars are blue and the cooler stars are red, in between
there are stars with orange and yellow colors. White stars are the hottest, like white dwarfs
are the hottest stars with temperature about 100, 000 K but they are degenerate stars.

3.1.1 Stellar Structure

The stellar structure describes the internal structure of a star with the help of different
models. Stars belonging to different classes have different internal structures, described
by a set of equations. If the stellar structure is spherically symmetric and the star is in a
steady state, we have a set of four first order differential equations which give mass, pressure,
temperature, and luminosity that vary with radius, given by

dM

dr
= 4πr2ρ, (3.1)

where ρ is the density. This is known as the equation of mass conservation.

dP

dr
= −GMρ

r2
. (3.2)
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This is known as the equation of hydrostatic equilibrium. For a star in hydrostatic equilib-
rium, its gravity is balanced by pressure.

dL

dr
= 4πr2ρε, (3.3)

where ε is the rate of energy generation per unit mass. Luminosity gives the energy that
leaves the surface of a star. This is the stellar structure equation for luminosity.

dT

dr
= − 3κρL

16πacr2T 3
, (3.4)

where κ is the coefficient of radiative opacity, a is the radiation constant whose value is
a = 4σ/c = 7.56× 10−16 Jm−3K−4, and σ is the Stefan-Boltzmann constant whose value is
σ = 5.67×10−8 Wm−2K−4. This is the equation of energy transport through radiation which
describes how energy is transported through different layers of a star. Heat is transported
in three different ways: conduction, convection, and radiation. In stars energy is mostly
transported through convection and radiation.

In order to solve these differential equations, the boundary conditions are given as: M(r =
0) = 0 and L(r = 0) = 0 and the surface boundary conditions are approximated as: ρ(r =
rs) = 0 and T (r = rs) = 0. This set of equations has the space component at fixed time.
To make the equations more convenient, we use mass as the space-like independent variable
instead of r because in the lifetime of a star there is a significant change in its radius but
the mass is relatively constant, we have

dr

dM
=

1

4πr2ρ(r)
, (3.5)

dP

dM
=
GM

4πr4
− 1

4πr2
d2r

dt2
. (3.6)

For pulsating stars, the force of gravity does not balance the pressure and we get an accel-
eration term. If the time derivative vanishes, we get the hydrostatic equilibrium equation.

dL

dM
= ε, (3.7)

dT

dM
= − 3κL

64π2acr4T 3
. (3.8)

If the time derivative vanishes, the star is in thermal equilibrium. These equations explain
the evolution of a spherically symmetric star. The boundary conditions are: r(M = 0) = 0

48



and L(M = 0) = 0, at surface, ρ = 0 and T = 0. The energy of a star is due to the fusion
reaction taking place inside it, depending on the mass of the star [55].

3.1.2 Main Sequence Stars

A star that does not have enough mass and temperature after its birth to start the fusion
reaction to become a main sequence star is called the brown dwarf. The electron degeneracy
pressure and gravity are in a balanced state, not letting hydrogen to start burning. Brown
dwarf is a very faint star having mass less than about 8 percent of the mass of the Sun.
It is quite difficult to spot the brown dwarfs because they are left with a very low residual
luminosity, after the energy loss in about 108 years. Today they are being searched in the
clusters of young stars but it is hard to differentiate between the young brown dwarf stars
and very low mass stars. The stars with mass greater than 0.015 M� burn deuterium and
those with mass greater than 0.065 M� burn lithium, the presence of deuterium and lithium
identifies them as stars [56,57].

The stars having enough mass and temperature more than 107 K start to fuse hydrogen into
helium which takes place inside their cores. In the fusion reaction, hydrogen atoms fuse into
helium and the other heavier elements releasing an enormous amount of energy. Gravity
which pushes a core inwards to shrink is balanced by the energy released as a result of the
fusion reaction, this is why a star shines. As long as the fusion continues, a star remains
in its stable state. Most of the stars in the Universe like our Sun are main-sequence stars.
These stars are of colors: blue, white, yellow, and red.

Blue stars are hot, very bright, and big with mass about 200 solar masses, known as the
blue dwarfs. Red dwarfs have low luminosity, less than about one tenth of our Sun. They
are cooler as compared to the blue dwarfs and have a small mass of about 0.1 M� with
an extremely high density. These stars burn their fuel slowly, live for trillions of years and
finally, become blue dwarfs. Then their cores collapse into white dwarfs without turning into
the red giants. Most of the stars in our Galaxy are red dwarfs. Yellow stars are in between
the red and blue stars, their size is about 80 − 100 percent the size of our Sun, which is a
yellow star. Their surface temperature is in between 5300− 6000 K. Nuclear fusion in such
stars continues for about 10 billion years [58].

3.1.3 Red Giants and Red Supergiants

A star remains a main sequence star until all of its hydrogen is fused into helium. When it is
left with just a small amount of hydrogen, the process of fusion speeds up, releasing a large
amount of energy which results in expanding the outer layers of the star and shrinking its
core. After that, the core is left with helium with no energy to balance the force of gravity,
so gravity starts compressing the core and it heats up, if the star is big enough, helium starts
fusing into carbon and oxygen. Outside the core, hydrogen is still available so it starts fusing
in the shell outside the core. As a result the extremely hot core pushes the outer layers of the
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star outwards, expanding the outer layers forming the star to be a red giant by increasing
its size 100 times its original diameter. A main sequence star takes billions of years to fuse
hydrogen into helium. Stars with mass 0.6−10 M� become red giants. On the HR diagram,
they are seen at the right edge [58–60].

If a star is massive, it takes just a few million years to fuse hydrogen into helium and it
becomes a red supergiant with a helium core. After this, helium starts fusing into carbon, it
keeps on fusing into heavier elements until it reaches iron. The star cannot further fuse into
heavier elements and the fusion stops.

3.1.4 Hypergiants and Supergiants

Hypergiant is a very rare star with an enormous mass of about more than 100 times the
mass of our Sun. It has a surface temperature of more than about 30, 000 K with luminosity
class Ia0 or Ia+, at the top of the HR diagram. Hypergiants emit thousands of times more
energy than our Sun and that is why they have short lifetimes.

Supergiant is also a star with huge mass but less than the mass of a hypergiant. It lies at
the top of the HR diagram, just below the hypergiant. Supergiants belong to the class Ia
and Ib with temperature up to 20, 000 K. Similarly, there are bright giants with luminosity
class II, they are in between the normal giants and supergiants [59,60].

3.1.5 White Dwarfs

The fate of a star depends on its mass and majority of the stars in the observable Universe
will become white dwarfs eventually. Very small stars, like the red dwarfs burn their fuel in
trillions of years and finally turn into white dwarfs. Medium sized stars, like our Sun become
red giants after the hydrogen fusion ends. During their red giant phase, they fuse helium
into carbon and oxygen in their cores. If a star has not enough mass to carry on the fusion
reaction, carbon and oxygen start building up in the core and the fusion stops. After this,
the star sheds all of its outer layers in a planetary nebula and gravity shrinks the core to a
size of our Earth. This is called a white dwarf [61–63]. Some white dwarfs are made up of
carbon and oxygen, with masses in between about 8 and 10 M�, the core temperature will
be enough to fuse carbon, now the white dwarfs will be made up of oxygen and neon.

When there is no energy left to balance gravity after the fusion stopped, the electron degen-
eracy pressure comes in, not allowing gravity to further compress the core because of Pauli’s
exclusion principle. It makes the star extremely dense and the electron degeneracy pressure
holds the core against gravity from further compressing it. The temperature reaches about
100, 000 K, due to extreme heat inside it trapped, it glows. After billions of years, it cools
down and stops glowing, hence becomes a black dwarf [51].
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3.1.6 Neutron Stars

Massive stars which are about 8 to 20 times the mass of our Sun, things are different for
them after the fusion stops. When a massive star becomes a red supergiant, it explodes
in a supernova explosion, leaving behind a dense core. Since there is no fusion going on,
gravity keeps on pressing the core so tightly that the electrons and protons combine, forming
neutrons and neutrinos in the reaction, given by

p+ e− −→ n+ ν, (3.9)

where the neutrinos scatter out in the space. The core is left with 90 percent neutrons packed
together, there is a limit after which gravity cannot further squeeze the core. Neutron stars
are the stars with mass about 1.4 times the mass of our Sun, squeezed to the size of a city,
being such dense objects. In a neutron star, the core collapse is stopped by the neutron
degeneracy pressure or by the repulsive nuclear forces, if the object is greater than about
0.7 M�. If the mass of a star is about 1 M�, it becomes a white dwarf. If the mass is increased
to approximately 1.4 M�, it becomes a neutron star. This limit is called the Chandrasekhar
limit. The surface temperature of neutron stars is more than about 600, 000 K.

Gravity on the surface of a neutron star is so strong which is approximately 2 billion times
stronger than that on the Earth. Some neutron stars have extreme magnetic field, thousands
of times more than the magnetic field of ordinary neutron stars which is about a trillion times
that of the Earth’s. Such objects are called the magnetars. A neutron star rotates in the
space after it is formed, as the core is compressed its spinning speeds up to conserve the
angular momentum. The spinning neutron star has pulses of radiations at regular intervals.
That is why it is known as a pulsar. After many years, the pulsars stop spinning and become
normal neutron stars after draining all the energy [64–66].

A neutron star is divided into the inner core, outer core, crust, envelope, and atmosphere.
The envelope and atmosphere have a negligible mass but the former takes an essential part
in the release and transportation of the thermal energy. The outermost layers are made up
from the left over iron from the supernova explosion. These layers are squeezed together
to form a crystal lattice, with electrons flowing through them. In the crust, neutrons start
getting out of the nuclei at certain densities where the neutron chemical potential becomes
zero making neutron fluid. Gravity squeezes nuclei closer with very few protons, as most
merged to form neutrons. Reaching the lowest part of the crust, nuclei are tightly squeezed
together such that they start touching and the dimensionality of matter changes. Neutrons
rearrange from 3-dimensional structures to 2-dimensional long cylinders shaped like spaghetti
and 1-dimensional lasagna, then to 2 and 3-dimensional structures known as nuclear pasta,
beneath this is the core which is assumed to have the exotic particles in abundance.

Neutron stars may exist alone or in binary systems, they radiate energy as the gravitational
waves. They come closer while orbiting and finally crash into each other in a kilonova
explosion. This creates heavier nuclei than iron.
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3.2 Black Holes

Black holes are such strange objects where the laws of Physics are seen violated inside
them. The gravity of a black hole is so intense that anything including light once getting
inside its boundary that is the event horizon, there is no way of escape. According to the
General Theory of Relativity, when a star with mass M shrinks to a size less than 2GM/c2,
it becomes a black hole. If a star is massive enough, it undergoes gravitational collapse
forming a stellar-mass black hole. A stellar-mass black hole has a mass range of roughly 10-
100 solar masses. Different compact objects are identified as black holes on the basis of their
mass and on a limit, that is the maximum mass a neutron star can have before undergoing
a gravitational collapse. If the mass of a neutron star is increased between 1.5 to 3 solar
masses, it collapses into a black hole. This is known as the Tolman-Oppenheimer-Volkoff
limit. There is a Christodoulou-Fang-Ruffini mass limit of 3.2 solar masses for a neutron
star to become a black hole.

Black holes can be big called the supermassive black holes with weaker gravity or they can
be small with stronger gravity, mostly found at the center of galaxies. Latest studies show
that the mass of supermassive black holes ranges from a few million to a few billion solar
masses. The most massive black hole known is ESO 444-46 with a mass of ∼ 7.8× 1010 M�.
No matter what size a black hole is, it keeps growing by feeding on gas, dust, and other
objects that lurk in its vicinity [51]. Some of the supermassive black holes are thought to
have formed about 600 million years after the Big Bang, when the Universe was at its very
early stage of formation. The oldest known black hole is in the quasar J0313-1806, with a
mass of about 1.6 × 109 M�, formed about 670 million years after the Big Bang. There is
no good explanation available for such black holes forming so soon via the normal channel
of solar mass black holes coalescence, as there was not enough time. They are thought to
have formed from the intermediate-mass black holes. The mass of intermediate-mass black
holes is roughly between 100 and 100000 solar masses that is in between the stellar-mass
black holes and the supermassive black holes. That is why they are known as the missing
links between the supermassive and stellar-mass black holes. But many years of research
has given a few evidence on such black holes, so a problem of the missing black holes in
the intermediate mass range exists. This would explain the formation of supermassive black
holes, formed shortly after the Big Bang.

Since the black holes do not reflect any light, they are completely dark, and cannot be
seen directly. Their presence can be determined by seeing their interactions with the other
matter or light present in their vicinity. The matter in the vicinity of a black hole falls into
it, forming an accretion disk which can be observed. Their masses can be determined by
looking into the orbits of the other stars orbiting the black holes. Also, when a black hole is
in a binary system with some other star or a black hole, they merge and emit gravitational
waves. Recently, LIGO (LASER Interferometer Gravitational Wave Observatory) directly
detected the first ever gravitational waves produced by a black hole merger with two black
holes of masses 36 M� and 29 M�.
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3.2.1 Outside a Black Hole

The gravitational field warps the space as well as time. In the vicinity of a black hole, gravity
is so strong that an observer A who is watching a person B going inside a black hole from
far away, would not see him fall into it quickly, A would see B approach the black hole,
slow down until he reaches the event horizon, if this is crossed then there is no coming back.
To observer A this is the point where the journey of B ended, he would seem frozen in the
space, redder due to the gravitational red-shift, and then fade away. A would never see B
crossing the event horizon but B would continue and pass the event horizon. When he hits
the singularity no one knows what would happen, either he would completely disappear or
may reappear somewhere else in the Universe through a wormhole. It is thought that a
wormhole might be formed from a moving or spinning black hole.

The area, volume, and density of a black hole are given as

A =
16πG2M2

c4
, (3.10)

V =
32πG3M3

3c6
, (3.11)

ρ =
3c6

32πG3M2
. (3.12)

At the surface of a black hole, the maximum tidal acceleration of an object is given as

A =
2GMx

r3s
, (3.13)

where x is the length of the object and rs is the Schwarzschild radius given in equation 1.84.

There is no way to directly measure the mass of a black hole but if a black hole has a
company of another star both orbiting each other, then using the formula for the universal
gravitation, their masses can be determined. It is computed by finding the distance between
both the objects and orbital velocity using mathematics and instruments [51].

3.2.2 Inside a Black Hole

No one can tell what is inside a black hole because once getting in, there is no turning back.
But there are a few ideas about what would happen there. If a person continues falling freely
inside a black hole, he would feel being torn apart due to the tidal forces. Gravity becomes
greater at his feet than his head, so the feet start falling faster than the head does. The tidal
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forces become greater than the intermolecular forces that bind the body and a point comes
when he is snapped into two pieces, which further feel the tidal forces, and the bifurcation
keeps going on until he becomes a stream of atoms. It does not end here, the space that
he occupied earlier was larger, while falling it gets narrower. So along with stretch, he gets
squeezed, this is called the Spaghettification. Further, if there is any angular momentum
involved, either in the black hole or the incoming object, it will get twisted up [51].

Theoretical black holes like the Schwarzschild black hole, Reissner-Nordstrom black hole,
Kerr, and charged Kerr black hole are given next.

3.3 The Schwarzschild Black Hole

The Schwarzschild solution to the Einstein field equations has been already discussed which
gave a vacuum solution to the field equations by explaining the gravitational field outside
a sphere given by the equation 1.75. So the Schwarzschild black hole is a spherically sym-
metric and static black hole with a mass and no angular momentum and charge. Two
Schwarzschild black holes can only be differentiated by mass. Such black holes are explained
by the Schwarzschild metric given in equation 1.60. r = rs = 2GM

c2
is the radius of a black

hole called the Schwarzschild radius. It is called the event horizon of the Schwarzschild black
hole [17].

The metric reduces to the Minkowski spacetime in the limit as r →∞. At r = rs there is a
coordinate singularity, we have

g00 = 1− 2GM

c2r
→ 0, (3.14)

g11 =
1

1− 2GM/c2r
→∞, (3.15)

and we check the curvature invariance to see whether there is a curvature singularity or not.
Also, we look for a genuine singularity, this singularity is where the curvature is infinite and
where the curvature is infinite, acceleration becomes infinite. This is also called a crushing
singularity. We consider the following invariants

R1 = 0, (3.16)

R2 =
48G2M2

c4r6
, (3.17)
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R3 =
64G3M3

c6r6
. (3.18)

At r = rs we have a coordinate singularity but no curvature singularity. At r = 0 there is a
genuine singularity. Consider a radial geodesic

να = (νt, νr, 0, 0), (3.19)

νανβ = 0 = eν(νt)2 − e−ν(νr)2, (3.20)

dr

dt
=

dr
dτ
dt
dτ

=
νr

νt
= eν = 1− rs

r
. (3.21)

At r = rs,
dr
dt

= 0. This is anull hypersurface, infinite red shift horizon, infinite time delay
horizon, and a trapped surface. To remove the singularities different coordinate systems are
introduced for instance, Eddington-Finkelstein coordinates, Kruskal coordinates, Kruskal-
Szekeres coordinates, and the others.

3.3.1 Carter-Penrose Diagram for Schwarzschild Black Hole

To avoid the singularity at r = rs, consider a new space coordinate dr′ = dr
1−rs/r , we get the

following metrices

ds2 = 2(1− rs/r)du2 + 2
√

2dudr − r2dΩ2, (3.22)

ds2 = 2(1− rs/r)dv2 − 2
√

2dvdr − r2dΩ2, (3.23)

where u = 1√
2
(ct − r) is the retarded time and v = 1√

2
(ct + r) is the advanced time. u =

1√
2
(ct− dr

1−rs/r ) and v = 1√
2
(ct+ dr

1−rs/r ) are the Eddington-Finkelstein coordinates. The metric
shows that g00 = 0 but the determinant is non zero. Writing them simultaneously, we have

ds2 = 2(1− rs/r)dudv − r2dΩ2. (3.24)

This gives a singularity at r = rs. To fix this, we have the following metric

ds2 =
4r3s
α2r

e−r/rsdudv − r2dΩ2, (3.25)
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Figure 3.2: The Carter-Penrose diagram for compactified Schwarzschild black hole. The
boundaries above and below are at r = 0. There is a past time-like and future time-like
infinity on the top and bottom vertices, and the side vertex is space-like infinity. Compactified
coordinates change the range to −π/2 to +π/2 and 0 to π.

where U = −αe−u/β, V = αev/β, and α = 2rs, β =
√

2rs. These are the Kruskal coordinates.
At r = rs there is no singularity and the determinant is non zero. We have another coordinate
system whose metric is given by

ds2 =
2rs
r
e−r/rs(dT 2 − dR2)− r2dΩ2, (3.26)

where T = V−U√
2
, R = V+U√

2
, and T =

√
2| r
rs
−1|1/2er/2rs sinh( t

2rs
), R =

√
2| r
rs
−1|1/2er/2rs cosh( t

2rs
).

These are the Kruskal-Szekeres coordinates for which T goes from −∞ to +∞ and R from
0 to ∞. For more convenience, compactified coordinates are used in which −∞ and +∞ are
mapped to −π/2 and +π/2 respectively, the metric will be

ds2 =
4r3s

r cos2 v̄ cos2 ū
e−r/rs(dūdv̄)− r2dΩ2, (3.27)

where ū = tan−1 U and v̄ = tan−1 V . The metric is singular at r=0 [17].

3.4 Reissner-Nordstrom Black Hole

The Reissner-Nordstrom metric is a simple solution to the Einstein field equations determined
by Reissner and Nordstrom, if a charge is there on the mass. Reissner-Nordstrom black hole
is spherically symmetric and static, with massM and a charge Q but no angular momentum.
The Reissner-Nordstrom metric is given by

56



ds2 = (1 +
α

r
+
GQ2

c4r2
)c2dt2 − (1 +

α

r
+
GQ2

c4r2
)−1dr2 − r2dΩ2, (3.28)

where

eν(r) = 1 +
α

r
+
GQ2

c4r2
, eλ(r) = (1 +

α

r
+
GQ2

c4r2
)−1, (3.29)

where α = −2GM
c2

. This metric has a singularity when

eν(r) = 1 +
α

r
+
GQ2

c4r2
→∞, (3.30)

or

eν(r) = 1 +
α

r
+
GQ2

c4r2
→ 0. (3.31)

This occurs at r = 0.

eν(r) = (r2 − 2GMr

c2
+
GQ2

c4
)/r2, (3.32)

r = r± =
GM

c2
±
√
G2M2

c4
− GQ2

c4
. (3.33)

At Q2 = GM2 and 0 < Q2 < GM2, there are singularities. If Q = 0, the metric reduces to
the Schwarzschild metric. r = r± are the coordinate singularities and r = 0 is an essential
singularity [53].

Compactified coordinates for Reissner-Nordstrom black hole are (ū, v̄), U = tan ū, and V =
tan v̄. Here we need two coordinates patches with −π/2 < ū1, v̄1 < π/2 for (r− < r < ∞)
and −π/2 < ū2, v̄2 < π/2 for (0 < r < r+). The Carter-Penrose diagram is given as

In equation 3.32, if Q2 > GM2 then

1− 2GM

c2r
+
GQ2

c4r2
> 0. (3.34)

No event horizon, hence there is a naked singularity. In General Relativity, any singularity
occurring naturally must possess an event horizon around it. This is known as the cosmic
censorship conjecture. It is also assumed that the naked singularities might exist, that are the
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Figure 3.3: The Carter-Penrose diagram for compactified Reissner-Nordstrom black hole.
There is a past time-like infinity, future time-like infinity, and space-like infinity. The singu-
larity is time-like.

58



Figure 3.4: The Carter-Penrose diagram for Reissner-Nordstrom naked singularity for Q2 >
GM . There is a time-like singularity.

singularities without an event horizon, or in an alternative case both would be present [49].
The Carter-Penrose diagram for the naked singularity is given in fig. 3.4

3.5 The Kerr and Charged Kerr Black Hole

The Kerr metric is a solution obtained by Roy Patrick Kerr for a rotating and an uncharged
Kerr black hole with mass M and angular momentum, given by the metric [17]

ds2 =

(
1− 2GMr

ρ2c2

)
c2dt2 − ρ2

∆
dr2 − ρ2dθ2 (3.35)

−

[
(r2 +

a2

c2
) sin2 θ +

2GMra2 sin4 θ

ρ2c2

]
dφ2 +

2GMra sin2 θ

ρ2c2
dtdφ,

where a = L
m

and L is the angular momentum.

ρ2 = r2 +
a2 cos2 θ

c2
, (3.36)
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∆ = r2 − 2GMr

c2
+
a2

c2
. (3.37)

The charged Kerr black hole or Kerr-Newmann black hole is given by the metric

ds2 =

1−

(
2GMr
c2
− GQ2

c4

)
ρ2

 c2dt2 − ρ2

∆
dr2 − ρ2dθ2 (3.38)

−

(r2 +
a2

c2

)
sin2 θ +

2GMra2 sin2 θ

ρ2c4

 dφ2 +
2GMra sin2 θ

ρc2
dtdφ,

where ρ2 is the same as in equation 3.36 and ∆ is given as

∆ = r2 − 2GMr

c2
+
a2

c2
+
GQ2

c4
. (3.39)

This metric explains that due to the angular momentum of a rotating body, inertial frames
are dragged along with the rotation. The objects start rotating with the rotating mass,
when they come closer due to the curvature of spacetime. For such black holes anything
at a distance close enough, starts rotating with them, even light. Such a region is called
an ergosphere. Roger Penrose and Roger Floyd showed that by sending a particle inside an
ergosphere, the energy can be extracted from it. A particle breaks into two particles, one
falls into the black hole and the other escapes. The one that escapes has a greater energy
than the original particle, but classically energy cannot be extracted from the event horizon.
So the rotational energy can be extracted from the ergosphere [17].

The charged Kerr metric gives the rotating and charged black holes 3.38. It is considered
to be the most general and axisymmetric solution of the Einstein field equations which tells
that a black hole can be completely described by mass, charge, and angular momentum. If
two black holes have the same values for these properties, they are indistinguishable from
one another. This is known as the "no-hair theorem" [51].

3.6 Types of Black Holes

With respect to mass, black holes are of three types:

1. Primordial black hole
2. Stellar-mass black hole
3. Intermediate-mass black hole
4. Supermassive black hole
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3.6.1 Primordial Black Hole

Primordial black holes are hypothesized to have formed at the time of the Big Bang at the
regions of high densities undergoing gravitational collapse, they have not yet been observed.
The mass of primordial black holes is very less than the stellar-mass black holes, so they
are not formed from the dying stars. They are also thought to be the candidates for dark
matter belonging to a class of MACHOs. It is assumed that there might be millions of such
black holes in the Universe, may be sooner or later one of them would come in the spotlight
of observations by the astronomers [51].

3.6.2 Stellar-Mass Black Hole

Stellar-mass black holes are the most common of all the black holes, formed when the stars
die due to the gravitational collapse. In the final evolutionary era of a red supergiant star,
when all of the fuel of a star is fused into iron, and cannot be further fused into heavier
elements, the fusion stops. Iron keeps on building up in the core and the balance between
gravity and fusion energy is broken. Due to the increased pressure of gravity inwards, the
star collapses in a supernova explosion. The result is a stellar-mass black hole.

A star with the size of our Sun ends as a white dwarf, if the mass of a white dwarf is
increased, gravity gets stronger and the size gets smaller with an increased spin. At 1.39 solar
masses, gravity becomes stronger, combining the electrons and protons making neutrons and
neutrinos. This value is called the Chandrasekhar limit. Now the star ends as a neutron star.
Further increasing the mass between 1.5 to 3 solar masses, gravity becomes even stronger and
the star collapses into a black hole. This limit of mass is called the Tolman-Oppenheimer-
Volkoff limit. Many stars observed in our Galaxy have mass greater than 1.5 solar masses,
so many stars have ended up as black holes because the evolution time of massive stars is
less than the age of the Universe. Their mass ranges from roughly 10-100 solar masses. Such
black holes are small as compared to the other types, but very dense. The more a black hole
is less in mass, the more deadly it is.

Black holes emit no light that is why they are not visible, so the stellar black holes are
observed in close binary systems. In a closed binary system, when the matter from a star
of such system transfers to the black hole, an enormous amount of energy is released which
heats up the matter producing an accretion disk and X-rays are produced. The mass of the
black hole can be observed by looking for the gravitational effects of that black hole on the
companion star. Recently LIGO has detected the gravitational waves produced from a black
hole merger [51].
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3.6.3 Intermediate-Mass Black Hole

Intermediate-mass black holes have mass range in between the stellar and supermassive
black holes, they are about 100-100000 solar masses. Such black holes are not formed by
the gravitational collapse of stars because of being way more massive than the stellar black
holes. The reason how they are formed is unknown. Two stellar black hole mergers could
form an intermediate black hole or maybe it was formed at the time of the Big Bang, giving
the problem of the missing black holes in the intermediate mass range. Another possibility is,
smaller black holes feeding on gas and dust might grow into intermediate-mass black holes.
It was considered that such black holes would be formed in a region where stars and gas are
dense.

3.6.4 Supermassive Black Hole

The velocity dispersion of different stars in the areas near the centers of galaxies show that
the expected characteristic velocity would vary as [50]

v2 ∼ GM

r
. (3.40)

If the central region of a galaxy has a mass domination due to a supermassive black hole,
then it is assumed that going near to the center would increase the velocities of stars. This
was found to be happening in many of the galaxies. So, by using the rate of increase of
the velocity with radius, mass of the central part can be approximated with the mass of the
bulge correlated. This shows that at the time of galaxy formation, half of the bulge mass
might have collapsed at the center of the galaxy creating a supermassive black hole.

These monstrous black holes have masses equal to several millions even billions of Suns.
Recent studies have shown that these black holes most likely reside at the centers of galaxies.
Our Galaxy also has a supermassive black hole at its center. In the first place how were these
giants formed is still not known because they are thought to have formed about 600 millions
years after the Big Bang which is a very short time for the formation of such gigantic black
holes. Maybe they were formed from the intermediate black holes right after the Big Bang
or small black holes once formed, consuming gas and dust from the surroundings grew into
bigger black holes. Another idea is the smaller black holes would have merged with the other
black holes resulting in the bigger ones. Also, they might have formed when several stars
collapsed all at once or the merger of galaxies may have formed such massive black holes,
but nothing is known for certain. Some of the theoretical considerations include that these
supermassive black holes might be a result of the gravitational collapse of fermion balls of
massive neutrinos in the keV range which are supported by the degeneracy pressure. Tidal
forces for supermassive black holes near the event horizon are weaker as compared to the
smaller mass black holes. In a galaxy hosting a supermassive black hole, it plays a basic role
in the distribution of stars, dust, and gas, playing a vital role in shaping a galaxy.
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3.7 Galaxies

In the early Universe, huge clouds of gas and dust began to collect because of gravity, formed
billions of stars which were gravitationally bound to one another making different galaxies.
Other than stars, planets, dust, and gas, dark matter is also present in the galaxies. There
are about 1012 galaxies in the observable Universe, these galaxies are further parts of clusters
and superclusters. Our Galaxy Milky Way is in the Local Group cluster which is a part of
the Virgo supercluster, it has about 100 billion stars. It has been observed that these galaxies
have supermassive black holes at their centers. Some of these galaxies are surrounded by
the accretion disks of gas and matter which fall into the black holes swirling around, making
them the quasars. Galaxies have different sizes and shapes, some galaxies are dwarf galaxies
with just 100 million or more stars and some are giant galaxies with billions of stars and
even more.

While Vera Rubin was studying the galaxies, she discovered that our neighboring galaxy
Andromeda was behaving strangely while rotating. She saw that the matter present at the
outer edges of Andromeda, which was less concentrated as compared to the matter near the
center, was moving as fast as the matter present at the center and there was a violation of
Newton’s and Kepler’s laws. So she discovered that there is a huge dark matter halo.

Astronomers now know that the galaxies can change in the appearance over time which is
because of the collisions, interactions, or mergers between the galaxies. In 1924, astronomer
Edwin Hubble proved that the galaxies are distant objects with several billion stars bound
together by gravity. So after a few years, he classified these galaxies into three categories:
[67–69]

1. Elliptical galaxies
2. Spiral galaxies
3. Irregular galaxies
4. Lenticular galaxies

3.7.1 Elliptical Galaxies

Elliptical galaxies are spherical galaxies represented by the letter ’E’. They mostly contain
the old population of stars formed in the very early Universe with very little gas and dust
between these stars which are responsible for the star formation, so elliptical galaxies lack
these ingredients of star formation. The formation of most of these galaxies is considered to
be due to mergers of smaller galaxies or when the non-rotating gas collapses. These galaxies
are further divided into different types depending on how spherical they are. For that, a
number is added after E from 0 to 7, a completely spherical galaxy is E0 [68].
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3.7.2 Spiral Galaxies

Spiral galaxy has a flat disk-like shape with its arms spiraling out from the center. It has a
bulge at the galactic center with older stars that appear to be redder. It has a mixed ratio
of the old and young stars with a lot of interstellar gas and dust in the disk, so new stars
are created there. About 77 percent of the observed galaxies are spirals. Spiral galaxies are
further divided into two types:

Regular spiral is denoted by the letter ’S’ with arms that spiral inwards towards its center.
Such galaxies are further divided into different types, depending on how tightly the spiral
arms are wounded, like SA, SB, and SC. SA is the galaxy whose arms are very tightly
wounded around the central bulge, SC with loose arms wounded around.

Barred spiral is denoted by ’SB’, having a bar-like shape at the center, with the arms
extending out. About 2/3 of all the spiral galaxies are barred, even our galaxy Milky Way is
supposed to be a barred galaxy. Barred spirals are subdivided into SBA, SBB, SBC galaxies.
These are the same as the types of regular spirals but with bar structure at the centers.

Both regular and barred spirals are defined by the spherical bulge of stars at their centers
which is then surrounded by a thin rotating disk of stars containing spiral arms [68].

3.7.3 Irregular Galaxies

Any other galaxy that does not fit in the category of an elliptical or a spiral galaxy, is known
as an irregular galaxy. Irregular galaxies lack a proper structure and are often very bright
having young stars. When an elliptical or a spiral galaxy collides with another galaxy, both
merge into a bigger galaxy with an irregular shape, becoming an irregular galaxy. It has no
further subdivisions [68].

3.7.4 Lenticular Galaxies

Lenticular galaxy has a disc-like structure with a prominent bulge and disc but no spiral
arms and very little dust, gas, and active star formation which are usually seen in the other
types of galaxies. Because of the nearby spirals, it is assumed that these galaxies with time
originated from them due to various reasons. Lenticular galaxies are represented by ’S0’ and
if they have bar then ’SB0’ [68].

3.8 Components of a Galaxy

A galaxy is divided into many different components which are: a nucleus, central bulge, disc,
spiral arms, and a massive halo. At the center of almost every galaxy is a supermassive black
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hole. Our Milky Way has a supermassive black hole called Sgr A*, its mass is estimated to
be about 4×106 M�. A central bulge surrounds the black hole which consists of many stars,
mostly the old ones that are tightly packed, also the bulge has less amount of gas and dust.
Disc is a region around the bulge, it is a flattened region with mostly young stars along
with some old stars, and more gas and dust is present as compared to the bulge. Halo is
the largest part of a galaxy which contains a few stars and mostly the dark matter. Things
are unclear about this component and its presence is understood by looking at the rotation
curves of a galaxy.

Milky Way is a disk spiral galaxy with about 1011 stars, most of these stars are present in the
thin disc moving in nearly circular orbits, disc is the most massive baryonic component of the
Galaxy. Radius of the disc is about 104 pc and its mass is about 5× 1010 M�. Dust and gas
clouds are also present there which are signs for the star formation, gas is mainly atomic and
molecular hydrogen. Then there is a bar shaped bulge that contains old stars, it is smaller
in size than the disc with radius about 1−2 kpc, its mass is about 1.5−3×1010 M�. At the
center lies a supermassive black hole called the Sgr A* with mass approximately 4×106 M�.
Then there is another component called the dark halo, it is the largest component whose
composition is not known yet [68].
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Chapter4
The RAR Model

The structure of galaxies, their formation, components, especially the dark matter halos
have always been a subject of curiosity for many astronomers. Problems regarding the
nature, masses, and interactions of the dark matter particles are studied with deep interest
these days. Initially, Newtonian gravity was applied to the baryonic components in different
galaxies which showed a difference in the observations and predictions. These differences
were understood when the rotation curves of different galaxies gave the idea of the existence
of dark matter, abundantly present in the galactic halos. Thus a model named after the
three scientists proposing it, the Ruffini-Argüelles-Rueda (RAR) model [5,13] was proposed
with a set of equilibrium equations to explain the dark matter distribution in galaxies and
the dark matter halos with central compact quantum cores by considering a self-gravitating
system of massive fermions with certain fixed parameters.

4.1 Collisionless and Collisional Dynamics

When a physical process attains equilibrium after disturbances, erasing all the previous infor-
mation of the initial conditions. This is known as the relaxation process. For a galactic halo,
before it enters the steady state, the process of relaxation takes place. In the RAR paper [5]},
ignoring the previous relaxation process, quasi-relaxed state of a galactic halo is considered.
The Collisionless relaxation (violent relaxation) is considered because it would give non-
interacting dark matter in the halos [70], described by the Vlasov-Poisson equation for space
and time variations in the gravitational potential. A collisionless system quasi-relaxes into
a quasi-stationary state which can be explained in terms of the Fermi-Dirac distribution.
In the dilute regime, the Fermi-Dirac distribution reduces to the Boltzmann distribution.
There is another type of relaxation known as the collisional relaxation which gives sta-
tionary solutions, described by the Fokker-Planck equation, explained by the Maxwellian
distribution [71,72]. The phase space distribution given in the AKRR paper [13] is obtained
by considering the violent relaxation and evaporation (for cutoff).
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4.2 The RAR Model

The dark matter distribution problem taken into account here is studied in terms of the RAR
model [5]. This model is based on a system of self-gravitating massive fermions that include
bare massive fermions known as "inos", the possible dark matter constituents. Initially, the
fermions are assumed to be non-interacting (that is we do not assume weakly interacting
particles), obeying quantum statistics. The model starts with specifying the phase space
density and pressure of dark matter given by the Fermi-Dirac statistics. Then a set of
equilibrium equations is given, these equations are to be solved numerically within the general
relativistic limits with certain initial conditions for the core and boundary conditions for
different types of galaxies for the halo. Also, in the model anti-fermions are not considered
that is the temperature is considered to be T � mc2/kB. The phase space density and
pressure of the fermion system with integration carried over the momentum space is given
by [5]

ρ =
gm

h3

∫ ∞
0

f(p)

[
1 +

ε(p)

mc2

]
d3p, (4.1)

P =
g

3h3

∫ ∞
0

f(p)

[
1 +

ε(p)

mc2

]−1 [
1 +

ε(p)

2mc2

]
εd3p, (4.2)

where g = 2s + 1 is the spin multiplicity of quantum states and for fermions s = 1/2,
m is the mass of inos, h is the Planck constant, c is the speed of light, and f(p) is the
distribution function f(p) = 1

exp[(ε−µ)/kBT ]+1
, ε is the kinetic energy of a particle which is ε =√

c2p2 +m2c4−mc2. µ is the chemical potential with the rest energy of particle subtracted
off, kB is the Boltzmann constant, T is the temperature. For a spherically symmetric metric

gµν = diag(eν ,−eλ,−r2,−r2 sin2 Θ), (4.3)

where ν and λ depend on the radial component r and Θ is the azimuthal angle, the equilibrium
equations of the RAR model are

dM̂

dr̂
= 4πr̂2ρ̂, (4.4)

dP

dr
=

(−G
c4

)(p+ ρ)(M + 4πpr3)

r(r − 2GM/c2)
, (4.5)

dθ̂

dr̂
= −1− β0(θ − θ0)

β0

M̂ + 4πP̂ r̂3

r̂2(1− 2M̂/r̂)
, (4.6)
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dν̂

dr̂
=

2(M̂ + 4πP̂ r̂3)

r̂2(1− 2M̂/r̂)
, (4.7)

β(r) = β0e
ν0−ν(r)

2 . (4.8)

For making the equations dimensionless, some dimensionless quantities are introduced, given
as

ρ̂ =
Gχ2ρ

c2
, P̂ =

Gχ2P

c4
, M̂ =

GM

c2χ
, r̂ =

r

χ
, (4.9)

where χ = 2π3/2(~/mc)(mp/m) and mp the Planck mass is given as

mp =

√
~c
G
. (4.10)

The thermodynamic equilibrium conditions of Tolman and Klein are given as [73] [74]

eν/2T = constant, (4.11)

eν/2(µ+mc2) = constant. (4.12)

The two free RAR model parameters, the temperature parameter β and the degeneracy
parameter θ are

β =
kBT

mc2
, θ =

µ

kBT
. (4.13)

By integrating this system of equilibrium equations for different values of m, θ0, and β0,
variables like M(r), θ(r), ν(r), β(r) are obtained with the given initial conditions at r = 0
such that M(0) = 0, ν(0) = 0, θ(0) = θ0, β(0) = β0 for core. The halo boundary conditions
are given for different types of galaxies. The boundary conditions for spiral galaxies are

rh = 25 kpc, Mh = 1.6× 1011 M�, vh = 168 km s−1. (4.14)

For big spiral galaxies, the boundary conditions are given as

rh = 75 kpc, Mh = 2× 1012 M�, vh = 345 km s−1. (4.15)
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For dwarf spheroidal galaxies the boundary conditions are

rh = 0.6 kpc, Mh = 2× 107 M�, vh = 13 km s−1. (4.16)

The galactic structures considered as a system of self-gravitating fermions in the classical
regime and explained in terms of the Boltzmann distribution are not stable. The central
degeneracy gives stabilization against the gravitational collapse and Pauli’s exclusion prin-
ciple stops the core from collapse just like the electron degeneracy in the white dwarfs and
neutron degeneracy in the neutron stars [5].

4.2.1 Density Profiles

The density profiles and degeneracy profiles of the fermionic dark matter, plotted for different
values of ino mass m, the degeneracy parameter θ0, and the temperature parameter β0 are
shown in Fig.4.1a and 4.1b. The profiles show three different regimes: core, plateau, and
halo. The first region is a degenerate quantum core of fermions with a constant density
and positive degeneracy parameter such that θ0 > 0. The second region is the transition
region for r > rc, with a sharp decrease in the density followed by an extended plateau, the
degeneracy parameter transitions from positive to negative values. The third region is the
classical Boltzmann regime with ρ ∝ r−2 which gives the Newtonian isothermal sphere and
the degeneracy parameter has negative values that is θ0 � −1 [5].

Some other models to describe the dark matter halos are: Navarro-Frenk-White (NFW),
Einasto, Burkert, and non-singular isothermal sphere (NSIS). The NFW model describes
the dark matter halos providing satisfactory results at large scales of the Universe but there
are problems at the galactic scales. The NFW dark matter density profile shows a cuspy
behavior through the center whereas the RAR model shows central cored structure, this
would help in understanding the core-cusp discrepancy. In the inner region, density goes as
ρ ∝ r−1 while in the halo part, density scales as ρ ∝ r−3. The density expression of this
model is given as [6]

ρNFW (r) =
ρ0

r/r0(1 + r/r0)2
, (4.17)

where ρ0 is the central density and r0 is the scale radius, both are the free parameters, such
that ρ(r0) = ρ0/4. Another model to understand the distribution of matter in galaxies is
the Einasto model, its density is given by

ρE(r) = ρ−2 exp

−2

n

[(
r

r−2

)n
− 1

] , (4.18)
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where ρ−2 is the density and r−2 is the radius at which ρ(r) ∝ r−2, and n is the Einasto index
which determines the shape of the profile. It provides both cored and cusped distributions
for different values of model parameters [7]. Another model is Burkert model whose density
is defined as

ρBur(r) =
ρ0

[1 + (r/r0)][1 + r/r0]2
, (4.19)

where ρ0 is the central density and r0 is the scale radius. A dark matter density profile which
gives the flatness of the rotation curves is represented by the NSIS profile

ρ(r) =
ρ0

1 + (r/r0)2
, (4.20)

where ρ0 is the central density and r0 is the scale radius.

In Fig.4.2 different profiles of density are plotted and combined together to see a visible
difference between them. The RAR model density profile shows a cored behavior. The NFW
dark matter density profile shows a cuspy core with an increasing density at small distances.
The Einasto dark matter halo model shows both cusped and cored distributions [5].

4.2.2 Rotation Curves

The circular velocity is given by [5]

v =

√
GM(r)

r − 2GM(r)/c2
. (4.21)

It is plotted as a function of r in fig. 4.3 for different values of m, θ0, and β0, giving the
rotation curve. The core radius rc is at the first maximum of the rotation curve. The second
maximum of the rotation curve gives the halo radius rh. The halo radius and mass here
represent one-halo scalelength and mass. Just like the different regimes in density profiles
and the degeneracy parameter profiles, there are also different regions in the rotation curves:

1. The first region is linearly increasing with the circular velocity v ∝ r, it reaches the
maximum when r = rc, giving a degenerate core of almost constant density.

2. The second region is Keplerian where v ∝ r−1/2 and shows a transition from quantum
degenerate to dilute region.

3. It then starts increasing with the circular velocity v ∝ r reaching a second maximum rh,
the halo size. This is also called one-halo scale length.
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(a) Mass density

(b) Degeneracy parameter

Figure 4.1: Mass density and degeneracy parameter for different ino masses m, central
degeneracy parameter θ0, and temperature parameter β0 from 10−4 pc to 106 pc. The plots
clearly show three regimes: core, transition region, and halo. The density solutions for the
RAR model are compared with the Boltzmannian profile. All the plots converge for r & rh
to the Boltzmannian distribution for any value of m and the model parameters. [5].

4. In the last regime, the solution becomes a Newtonian isothermal sphere with ρ ∼ r−2

which gives a flat rotation curve. For real systems, the flat area of the velocity curve cannot
continue indefinitely, a cutoff in the momentum space is added which will be discussed
later. For any value of θ0, β0, and corresponding m, the plots converge to the Boltzmannian
isothermal distribution for r & rh.
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Figure 4.2: The RAR model density profile which shows cored behavior is compared with
the cuspy NFW density profile [6] and cored Einasto profile showing a visible difference [7,8].

Figure 4.3: Rotation curves for different ino massesm and the model parameters from 10−4 pc
to 106 pc. The rotation curves for the RAR model are compared with the Boltzmannian
profile [5].

4.2.3 The Central Core

Observations show that the galaxies have a massive compact object at their centers which
is thought to be a black hole. The RAR model predicts that the central core could be
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compact enough to be a black hole, so for m ∼ 10 keV/c2 a degenerate core with mass
Mc ∼ 2.7× 106 M� is obtained as an alternative to the black hole Sgr A*, but rc is greater
by a factor of about ∼ 102 than the radius obtained with the S2 star, it is the closest observed
star to Sgr A*. It can also be seen that the core mass is strongly dependent on the ino mass
whereas in the classical region, the Boltzmannian distribution is independent of m.

In spiral galaxies, for m ∼ 10 keV/c2, the compactness of the quantum core is ∼ 10−6, so
here Newtonian gravity can be used instead of the general relativistic approach because the
solution of equilibrium equations in the former case gives the same results as the latter one.
The critical mass value for the gravitational collapse is Mcr ∼ m3

Planck/m
2. Core masses of

about ∼ 109 M� are observed in the active galactic nuclei. This value overcomes the critical
mass value for the fermions in keV range and these cores have to be necessarily black holes.
Then general relativistic effects are necessary with different boundary conditions as used
here.

The central cores predicted in the RAR model are valid if the inter-particle mean distance
is less than or equal to the thermal de-Broglie wavelength of the inos, that is λB & 3lc,
λB = h/

√
2πmkT , and lc ∼ n

−1/3
c where nc is the core particle density. This shows that the

less degenerate quantum cores have larger sizes.

In the model, phase space density is maximum at the center of the core, Qc
max ∼ ρc0m

−4σ−3c
given by the Fermi-Dirac statistics and the maximum phase space density at the center of
halo, Qh

max ∼ ρh0m
−4σ−3h , where σh =

√
2/5vh is given by the Maxwellian distribution. Here

all the quantum solutions satisfy the condition, Qc
max > Qh

max. For less degenerate quantum
cores (θ0 ≈ 10), the two limits become comparable

The RAR model, for the first time was able to link the dark central cores with the dark
matter halos. For m = 10 keV/c2, the Mc −Mh correlation law is

Mc

106 M�
= 2.35

(
Mh

1011 M�

)0.52

, (4.22)

valid for the core masses ∼ [104, 107] M� (corresponding to the dark matter halo masses
∼ [107, 1012] M�) [5].

4.3 The RAR Model with Energy Cutoff

In the AKRR paper [13], a cutoff is added in the RAR model by introducing an energy cutoff
parameter in the phase space distribution. This parameter gives a finite galaxy size and more
compact solutions which give a core alternative to the central black hole. A Fermi-Dirac
distribution function including an energy cutoff εc is considered here which is obtained by
considering the effects of violent relaxation and evaporation as a quasi-stationary solution
of the generalized Fokker-Planck equation for fermions. The fermionic equations of state are
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given as

ρ =
2m

h3

∫ εc

0

fc(p)

[
1 +

ε(p)

mc2

]
d3p, (4.23)

P =
2

3h3

∫ εc

0

fc(p)

[
1 +

ε(p)

mc2

]−1 [
1 +

ε(p)

2mc2

]
εd3p, (4.24)

where fc(ε ≤ εc) = 1−e(ε−εc)/kBT
e(ε−µ)/kBT+1

and fc(ε > εc) = 0 is the distribution function with ε ≤ εc.
Along with the thermodynamic equilibrium conditions of Tolman and Klein we have another
condition which is obtained from the energy conservation along a geodesic

eν/2(ε+mc2) = constant. (4.25)

This gives the cutoff condition as

(1 +Wβ) = e(νb−ν)/2, (4.26)

where νb = ν(rb) is the metric function at the boundary and rb is the tidal radius. Also
εc(rb) = 0, so W (rb) = 0. In the classical limit c → ∞, eν/2 ≈ 1 + φ/c2, then the cutoff
condition reduces to the escape velocity condition, where V = mφ such that V (rb) = 0 and
φ is the Newtonian gravitational potential. Along with the other equilibrium equations, an
equation for the cutoff parameter is introduced with an initial conditionW (0) = W0 for core,
given by [13]

W (r) = W0 + θ(r)− θ0. (4.27)

The same dimensionless quantities are also introduced here as the original RAR model. In
this paper a third parameter is introduced that is the cutoff parameter given by

W =
εc
kBT

. (4.28)

In the limit W → ∞, the system reduces to the original RAR model. The boundary
conditions for the halo are

M = 2× 1011 M�, r = 40 kpc, (4.29)

M = 5× 1010 M�, r = 12 kpc, (4.30)
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Figure 4.4: The upper graph shows the temperature parameter β(r) changing with the
radial distance and the lower graph shows the gravitational potential eν/2. Comparing both
the graphs, we see that the temperature is higher where the potential is deeper. Also, the
gravitational red-shift temperature is plotted given in the black solid line.

M = 4× 106 M�, r = 6× 10−4 pc. (4.31)

In this paper, first the three RAR model parameters are plotted as a function of r for
mc2 = 48 keV in fig. 4.4 and 4.5, for the three parameters three different regimes are seen.

4.3.1 Density Profiles

The density profiles for the RAR model with the cutoff effects are plotted as a function of
radial distance r, for different values of m along with the NFW density profile shown in
fig.4.6. Three regimes are obtained: the degenerate quantum core with constant density
and for which the degeneracy parameter has positive value, the transition region followed by
an extended plateau in which the density decreases sharply and the degeneracy parameter
transitions from positive to negative values, and the Boltzmannian regime with ρ ∝ r−n

where n > 2 because of including the energy cutoff. The cutoff conditions are applied to
the outer halo by taking boundary radius rb = 50 kpc such that ρ(rb) = 10−5 M�pc

−3, then
W (rb) ≈ 0. For r & rb the exact condition W (r) = 0 is fulfilled giving ρ(r) = 0 [13].

Recently in the sixteenth Marcel-Grossmann meeting, it was discussed that the fermions
of mass 56 keV , calling them the darkinos, give a compact quantum core with mass ∼
3.6× 106 M� giving a good approximation as an alternative to Sgr A* [75].
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Figure 4.5: The upper graph is for the degeneracy parameter θ(r) changing with radial
distance and the lower graph is for the cutoff parameter W (r) changing with the radial
distance.

Figure 4.6: Density profiles for ino masses: 0.6 keV , 48 keV , and 345 keV with the corre-
sponding model parameters, along with the NFW density profile in the given range. The
dashed blue lines indicate the position of the S-cluster stars. [9]
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Figure 4.7: Density profile for ino mass 56 keV and the corresponding free model parameters
in a given range. [10]

4.3.2 Rotation Curves

The rotation curves for different values of m are given in fig. 4.8. The three rotation curves
show the dark matter contribution showing different regimes: the first region shows the
velocity increasing linearly with distance as v ∝ r till it reaches the first maximum at r = rc
which gives the core size, by further increasing the distance r > rc is the second region in
which the velocity decreases as v ∝ r−1/2, after a certain distance it again starts linearly
increasing as v ∝ r reaching the second maximum at r = rh which gives the halo size, for
r > rh the rotation curve becomes flat. By introducing the cutoff effects it would not continue
indefinitely. The curve in red shows both the baryonic and dark matter contributions. This
shows that the data of the RAR model is consistent with that of the Milky Way in range
mc2 = 48 keV − 345 keV . This provides an alternative case for the Sgr A* black hole [13].
The matter components of the Galaxy are divided in four mass distribution laws:

1. From distance (r ∼ 10−3 − 2 pc) is the central region which has young S-stars and gas.
Then the central region is seen to obey Keplerian law v ∝ r−1/2 under the influence of an
object with mass Mc = 4× 106 M�.

2. Then comes the intermediate region from (r ∼ 3− 103 pc) with spheroidal bulge, having
the older stars in majority. The exponential spheroid model explains the inner and main
components, the density is
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ρ(r) = ρce
−r/ab , (4.32)

where ρc is the central density and ab is the scale length for bulge.

3. The other region from (r ∼ 103− 104 pc) is a flat disk. Disk is a star forming region with
dust and gas, whose surface mass density is described by an exponential law

Σ(R) = Σ0e
−R/ad , Σ0 = Md/(2πa

2
d), (4.33)

where Md is the disk mass, Σ0 is the central density, and ad is the scale length for disk.

4. From (r ∼ 104 − 105 pc) is the halo region, it has dark matter in abundance. The outer
halo shows the density decreasing as r−2. The dark matter circular velocity is given by
equation 4.21.

It is assumed in the papers that baryonic and dark matter interact only gravitationally, so
the rotation curve is obtained by adding square of circular velocities of nucleus, bulge, disk
which is the baryonic part, and of halo which is the dark matter part, given as

v2tot(r) = v2b (r) + v2d(r) + v2DM(r). (4.34)

From this the total gravitational potential can be obtained

v2rot = r
dΦtot

dr
, (4.35)

where Φtot = Φb + Φd + ΦDM .

4.3.3 Ino Mass Ranges

The range of ino masses is analyzed as:

1. For m . 10 keV/c2, the dark matter rotation curve exceeds from the observed velocity
in the region with baryon domination that is the bulge where r ≈ 2 − 100 pc, as shown in
fig. 4.8 for m = 0.6 keV/c2. So this limit is discarded as it should hold for accurate inner
baryonic models and does not provide an alternative to the black hole scenario in Sgr A*.

2. For mc2 = 10 keV − 48 keV , the rotation curve agrees with the observations but it does
not explain the alternative to the central black hole case with a less dense core.

3. Formc2 = 48 keV −345 keV , the rotation curve agrees with the observations and explains
an alternative to the central black hole scenario with a dense core 4× 106 M�.
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Figure 4.8: Rotation curves for fermion masses: 0.6 keV , 48 keV , and 345 keV with the
corresponding model parameters in a given range. These solutions are in agreement with
all the Milky Way observables within a certain range from v 10−3 pc to v 105 pc. For
mc2 = 48 keV , the total rotation curve is included (red thick curve) that includes the total
baryonic (bulge + disk) component. The stars show the eight best resolved S-cluster stars. [9]

mc2 = 345 keV is the last stable value beyond which gravitational collapse occurs. The
critical core mass formula is given as M cr

c ∝ m3
p/m

2 with core radius rc ≈ 4rSch where rSch
is the Schwarzschild radius of the black hole with mass 4× 106 M� [13].
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Figure 4.9: Rotation curve for fermion mass 56 keV with the corresponding model parameters
within the given range. The total rotation curve (red thick curve) is also included that
includes bulge + disk components. [10]
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Chapter5
Massive Sterile Neutrinos for Dark
Matter Halos

In this final chapter, I will explain my work on the RAR model with and without including
the energy cutoff. The problem I will work on is how dark matter is distributed in a galaxy
from core to halo and how the degenerate fermions in keV range fall into the degenerate core
and whether it would form a black hole. These fermions are to provide the non-baryonic dark
matter. Such fermions lie outside the standard model of Particle Physics and are talked of as
sterile neutrinos or neutralinos which are supposedly the heavy versions of neutrinos that are
not associated with any generation of quarks and leptons. Other than dark matter, baryonic
matter is also present in the core of a galaxy, so I will find out how much baryonic matter
falls into the degenerate core so that it would collapse to form a black hole. The RAR model
provides a good explanation of the distribution of dark matter in different galaxies than any
other model. It explains the matter distribution in each component of a galaxy separately,
giving a very good explanation of the dark matter halos, and predicting a compact dense
quantum core at the galactic center. We will see a Fermi degenerate core surrounded by a
partially degenerate halo.

In the previous chapter, we discussed about the problem of the missing black holes in inter-
mediate mass range and the formation of supermassive black holes soon after the Big Bang.
The problem is that normally, we cannot see how we could get black holes such massive. We
do not know how were they formed so early when the Universe was still an infant. The only
way we know how large black holes can be formed is by coalescence of stellar-mass black
holes. But the time was not enough for the stars to collapse into black holes, then collide,
and coalesce into supermassive black holes. The first generation of stars, the Population III
stars were formed about 200 million years after the Big Bang, then over millions of years
they evolved, and eventually in supernovae they became black holes with masses say about
100 M� and the supermassive black holes are thought to have formed about 600 million
years after the Big Bang. So how could a black hole with mass from a few million to a few
billion solar masses have formed in such short time? For a stellar-mass black hole even 13
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billion years are not enough to become supermassive by just accreting the mass. We also
know that every galaxy hosts a supermassive black hole at its center, so we consider that to
be a dense compact quantum core here, made up of the degenerate fermions. In this way, we
can try explaining the formation of the central supermassive black holes. We say that there
is a large gravitational potential well, matter is falling into it, and produce central black
holes. Other than this, astronomers are looking for the intermediate-mass black holes which
are known as the missing links between the stellar-mass black holes and the supermassive
black holes.

The RAR model, as discussed in the previous chapter consists of a system of self-gravitating
massive fermions in thermodynamic equilibrium and spherical symmetry. To find the mat-
ter distribution in galaxies, we will solve the equations of equilibrium for a system of self-
gravitating fermions with free parameters of the model that is the temperature parameter
and the degeneracy parameter within General Relativity. Firstly, the simplest case of self-
gravitating bare massive fermions obeying the Fermi-Dirac statistics is considered and ne-
glecting any additional interactions. It proposes the fermion masses to be above keV . We
consider the mass range from 4 keV to 345 keV . The particles considered are not weakly
interacting, called the inos. Then we consider the RAR model that consists of a system of
self-gravitating massive fermions with introducing the energy cutoff effects in the fermionic
phase space distribution, in order to be consistent with the observations in Sgr A*. By intro-
ducing the cutoff effects we get the finite galaxy size and more compact cores as compared
to the RAR model without the cutoff effects. An interesting prediction of this model is a
dense quantum core at the center, by adding the cutoff effects we get a solution for the core
which is an alternative to the central black hole. The fermionic mass range from 48 keV to
345 keV considered here, below the Fermi temperature, gives the dark matter halo distribu-
tion forming a fully degenerate core which agrees with the data obtained from the rotation
curves of the Milky Way galaxy.

A system of self-gravitating fermions following the Boltzmann distribution, giving a classical
dilute regime overall, if applied to the galaxies, undergoes a core collapse. But a system of
self-gravitating collisionless particles with central degeneracy does not give a classical regime
and the system is stable because of Pauli’s exclusion principle. With the thermodynamical
considerations, the effects of violent relaxation which are important for the virialization in
galaxies are considered. An extension of this includes the violent relaxation with evaporation.

We are interested in the fermionic dark matter, these fermions lie outside the Standard
Model. Particle Physics beyond the standard model suggests sterile neutrino or neutralino
which could be the possible candidates for dark matter.

5.1 Central Density and Pressure

We now consider a system of self-gravitating massive fermions and neglect all the interactions
other than the gravitational interaction, fulfilling the Fermi-Dirac distribution due to the
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collisionless relaxation process, predicting a degenerate core at the center. The fermionic
equations of state for phase space density and pressure, without the energy cutoff are given
in equations 4.1 and 4.2, respectively. From the first equation, we compute the central
density of a galaxy at r = 0. Substituting the Fermi-Dirac distribution function in both the
equations, we get

ρ =
2m

h3

∫ ∞
0

[
e(ε−µ)/kBT + 1

]−1 [
1 +

ε(p)

mc2

]
d3p. (5.1)

Due to the spherical symmetry, d3p = 4πp2dp. Substituting the value of kinetic energy, the
above equation becomes

ρ =
8πm

h3

∫ ∞
0

[
e(
√
c2p2+m2c4−mc2−µ)/kBT + 1

]−1 [
1 +

√
c2p2 +m2c4 −mc2

mc2

]
p2dp. (5.2)

Using the approximation p� mc, the kinetic energy reduces to cp which gives the relativistic
degenerate cores, and the equation becomes

ρ =
8πm

h3

∫ ∞
0

[
e(cp−µ)/kBT + 1

]−1 [
1 +

cp

mc2

]
p2dp, (5.3)

ρ =
8πm

h3

∫ ∞
0

[
1 + cp

mc2

][
e(cp−µ)/kBT + 1

]p2dp. (5.4)

Further simplifying the above equation, we have

ρ =
8π

c2h3

∫ ∞
0

(mc2 + cp)

e(cp−µ)/kBT
p2dp, (5.5)

ρ =
8π

c2h3

∫ ∞
0

mc2

e(cp−µ)/kBT
p2dp+

8π

c2h3

∫ ∞
0

cp

e(cp−µ)/kBT
p2dp, (5.6)

ρ =
8πm

c2h3

∫ ∞
0

c2p2

ecp/kBT e−µ/kBT
dp+

8π

c4h3

∫ ∞
0

c3p3

ecp/kBT e−µ/kBT
dp. (5.7)

Put cp = z, such that dp = dz/c, we get

ρ =
8πm

c3h3

∫ ∞
0

z2

ez/kBT e−µ/kBT
dz +

8π

c5h3

∫ ∞
0

z3

ez/kBT e−µ/kBT
dz. (5.8)
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Consider the degeneracy and temperature parameters from the equation 4.13 and substitute
in the above equation, which gives

ρ =
8πm

c3h3

∫ ∞
0

z2

ez/β0mc2e−θ0
dz +

8π

c5h3

∫ ∞
0

z3

ez/β0mc2e−θ0
dz. (5.9)

To solve the above equation, we find the values of the two free parameters β0 and θ0 for
different values of the ino mass m. The central degeneracy parameter θ0 is obtained by

θ(m) = θ∗0 + 12.52 log

[
m

10 keV/c2

]
, (5.10)

where the value of θ∗0 varies for different types of galaxies, we here consider θ∗0 ≈ 29.6. If we
know the value of the central degeneracy parameter, we can find the value of m.

During the early stages of the Universe, when the fermions had just been produced, the
temperature at that stage of the Universe was approximately 100 keV or ∼ 109 K, the
fermions decoupled and froze out. Then the Universe cooled as it expanded and reached
the Fermi degeneracy temperature. At that time, the gas of fermions became a degenerate
Fermi gas and the degenerate cores collected at the centers of galaxies and grew. The Fermi
temperature is given by

TF =
mc2

kB
. (5.11)

Substituting the value of mc2 and kB, we get the Fermi temperature. We can find the
Fermi temperature for any value of the ino mass by equation5.11. The central temperature
parameter β0 is obtained by a trial and error procedure until the values of vh and Mh are
obtained at rh. We have now the constants, central degeneracy parameter, and central
temperature parameter, substitute them in the equation 4.23. Numerically integrate the
resulting equation and get the central density for any value of the ino mass.

Similarly, we can work for the central pressure of a galaxy at r = 0 using the equation 4.2,
substituting the Fermi-Dirac function, we have

P =
2

3h3

∫ ∞
0

[
e(ε−µ)/kBT + 1

]−1 [
1 +

ε(p)

mc2

]−1 [
1 +

ε(p)

2mc2

]
εd3p. (5.12)

We simplify the equation for pressure same as we did for the equation of density, this will
give the central pressure. In the table 5.1, different values of θ0, β0, and central density for
different values of m are given. To find different variables we will move on to a set of Einstein
equations.
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Table 5.1: Core properties including the central degeneracy parameter, temperature param-
eter, and central density for different ino masses fulfilling the halo boundary conditions given
in equation 4.14.

m(keV/c2) θ0 β0 ρc(M�/pc
3)

4.323 25 3.32× 10−7 6.3× 108

10.54 29.8 7.4× 10−8 3× 1010

48 38.12 5.13× 10−9 1.76× 1013

64.45 39.72 3.1× 10−9 6.25× 1013

100 42.1 1.44× 10−9 3.92× 1014

200 45.88 4.34× 10−10 7.53× 1015

300 48.1 2.14× 10−10 4.2× 1016

345 48.85 1.68× 10−10 7.61× 1016

5.2 Einstein Equations

A finite mass distribution is obtained by solving the Einstein equations for a thermal and
semi-degenerate fermionic gas, described by a perfect fluid in the hydrostatic equilibrium. In
the previous chapter, Einstein equations 4.4 - 4.8 for a spherically symmetric metric along
with the thermodynamic equilibrium conditions were given. Those equations can be solved
to find certain parameters varying with distance which give variables like M(r), θ(r), ν(r),
β(r) with initial conditions M(0) = 0, θ(0) = θ0, ν(0) = 0, β(0) = β0.

5.3 Core Mass

The equation 4.4 gives the core mass by solving it numerically for a constant value of the
central density obtained from the equation 4.23. Place the dimensionless quantities from
equation 4.9 in equation 4.4. We plug in the value of central density and solve the equation
numerically. At M(rc), we get Mc that is the core mass and rc is the core size which will
be discussed later. We see that the core mass is strongly dependent on the ino mass. For
different values of m, the corresponding core masses are given in the table 5.2. Using the
core mass and the core radius we will see in the coming sections, whether it forms a black
hole or not.

5.4 Density Profiles

The phase space density distribution shows both, the quantum and classical regimes. Density
profiles show density varying with distance at the fixed parameters of the model that is the
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Table 5.2: Core masses for different values of ino mass, the corresponding central degeneracy,
and temperature parameters.

m(keV/c2) Mc(M�)

4.323 1.43× 107

10.54 2.74× 106

48 1.56× 105

64.45 9× 104

100 3.91× 104

200 1.07× 104

300 5× 103

345 3.84× 103

degeneracy and temperature parameters. Earlier, we obtained the central density ρc from
the Fermi-Dirac phase space distribution using the fermionic equation of state, now we need
the density varying with distance that is ρ(r). We start with the standard fermionic equation
of state given by

ρ(r) =
2m

h3

∫ ∞
0

[
e(ε−µ(r))/kBT + 1

]−1
d3p. (5.13)

For the spherically symmetric solutions, we have

ρ(r) =
8πm

h3

∫ ∞
0

p2

eε/kBT−θ(r) + 1
dp, (5.14)

where θ(r) = µ(r)
kBT

is the degeneracy parameter and µ(r) is the chemical potential. Using the
approximation p� mc, the kinetic energy reduces to p2/2m, so the equation becomes

ρ(r) =
8πm

h3

∫ ∞
0

p2

ep2/2mkBT−θ(r) + 1
dp. (5.15)

To find density as a function of distance, we use the following substitution

y2 =
p2

2mkBT
. (5.16)

We have
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ρ =
8πm(2mkBT )3/2

h3

∫ ∞
0

y2

ey2−θ(r) + 1
dy, (5.17)

ρ =
2m(2πmkBT )3/2

h3
4√
π

∫ ∞
0

y2

ey2−θ(r) + 1
dy, (5.18)

where λB = h√
2πmkBT

is the thermal de Broglie wavelength of inos, so

ρ =
2m

λ3B

4√
π

∫ ∞
0

y2

ey2−θ(r) + 1
dy, (5.19)

where ρB = 2m
λ3B

, the equation becomes

ρ(r)

ρB
=

4√
π

∫ ∞
0

y2

ey2−θ(r) + 1
dy. (5.20)

Solving the standard fermionic equation of state for pressure using the similar substitutions,
the equation of pressure is given by

P (r)

PB
=

8

3
√
π

∫ ∞
0

y4

ey2−θ(r) + 1
dy, (5.21)

where PB = ρBσ
2 and σ2 = kBT/2m is the velocity dispersion.

Now to solve such Fermi integrals, polylogarithms are used given by

∫ ∞
0

y2n

ey2−θ(r) + 1
dy = −(2n)!

n!4n

√
π

2
Li 1

2
+n(−eθ(r)), (5.22)

where n ∈ N. For density n=1 and for pressure n=2, we have

∫ ∞
0

y2

ey2−θ(r) + 1
dy = −

√
π

4
Li 3

2
(−eθ(r)), (5.23)

so the density and pressure will be

ρ(r)

ρB
= −Li 3

2
(−eθ(r)), (5.24)

P (r)

PB
= −Li 5

2
(−eθ(r)). (5.25)
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We need density in terms of ρ0, so we re-scale the above equation for density. Starting at
r = 0, equation 5.24 reduces to

ρ0
ρB

= −Li 3
2
(−eθ0), (5.26)

ρ(r)

ρB
=
ρ(r)

ρ0

[
−Li 3

2
(−eθ0)

]
. (5.27)

From equation 5.24, we have

ρ(r) = ρ0
−Li 3

2
(−eθ(r))

−Li 3
2
(−eθ0)

. (5.28)

To solve this equation, the degeneracy parameter θ(r) is required which will be discussed
in detail in the coming sections. So, by using the values of θ(r) and θ0, we can find the
density variable. Now we can easily find out the values of density at any distance and hence
the density profiles for different ino masses with the corresponding central degeneracy and
temperature parameters are obtained.

By fixing the fermion mass m, we construct different solutions depending on the degeneracy
and temperature parameters at the center. The mass density profiles clearly show in fig.
5.1a and 5.1b different regimes: the first regime is the central degenerate compact core
which obeys the quantum statistics, then is the transition region where density is seen
sharply decreasing followed by an extended plateau, then is the classical Boltzmann regime
representing the halo ending in a power law behavior r2. The density of such a system at
large radii scales as r2, independent of the values of the central density, providing the flat
rotation curve.

For θ0 � −1, the central degeneracy is very low. Now the Fermi-Dirac distribution does not
apply, we instead use the Boltzmann approximation (see fig. 5.2), from equation 5.29 which
reduces to

ρ(r)

ρB
=

∫ ∞
0

y2

ey2−θ(r)
dy, (5.29)

ρ(r)

ρB
=

∫ ∞
0

y2ey
2−θ(r)dy. (5.30)

Integrating the above equation we have

ρ(r)

ρB
=

√
π

4
eθ(r), (5.31)
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(a)

(b)

Figure 5.1: Density profiles for ino masses 345 keV and 48 keV given in fig. 5.1a and
300 keV , 200 keV , 100 keV , and 48 keV given in fig. 5.1b with the corresponding central
degeneracy parameters θ0 and temperature parameters β0 , showing three different regimes
from quantum to classical. The density profiles fulfill the boundary conditions given in
equation 4.14.

where ρ0
ρB

= eθ0 .

ρ(r) =

√
π

4
ρ0e

θ(r)−θ0 . (5.32)
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Figure 5.2: The RAR model density profile for m = 48 keV/c2 is compared with the Boltz-
mann density profile. The comparison shows that the RAR density profile eventually reduces
to the Boltzmann classical regime.

5.5 Mass Profiles

Mass profiles show how the mass in a galaxy is distributed over large distances from the
core to halo for different ino masses and the corresponding degeneracy and temperature
parameters. The Einstein equation for mass given by equation 4.4 in its dimensionless form
is given by

dM(r)

dr
= 4πr2ρ(r), (5.33)

M(r) =

∫ r

0

4πr2ρ(r)dr. (5.34)

Substitute the value of ρ(r) from equation 5.28, we have

M(r) =

∫ r

0

4πr2ρ0
−Li 3

2
(−eθ(r))

−Li 3
2
(−eθ0)

dr. (5.35)

The mass distribution M(r) is obtained by numerically integrating the above equation with
the initial condition M(0) = 0. Now we can simply find the value of M at any distance.
The plots of mass distribution for different values of ino mass m with the corresponding free
parameters of the model are given in fig. 5.3a and 5.3b.
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(a)

(b)

Figure 5.3: Mass profiles for ino masses 345 keV and 48 keV given in fig. 5.3a and 300 keV ,
200 keV , and 100 keV given in fig. 5.3b with the corresponding central degeneracy and
temperature parameters.

For a less central degeneracy, mass will reduce to the Boltzmann distribution(see fig. 5.4),
we have

M(r) =

∫ r

0

π3/2r2ρ0e
θ(r)−θ0dr. (5.36)
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Figure 5.4: The RAR model mass profile for m = 48 keV/c2 is compared with the Boltz-
mann mass profile. The comparison shows the RAR mass profile eventually reduces to the
Boltzmann classical regime.

5.6 The Degeneracy Parameter

The degeneracy parameter in our model determines the degeneracy of a galaxy from the core
to halo, varying with the distance. To find the degeneracy parameter θ(r), we start with
considering Keplerian

dφ

dr
=
GM(r)

r2
, (5.37)

where φ(r) is the potential. Equations 5.34 and 5.37 give the Poisson equation as

1

r2
d

dr

[
r2
dφ

dr

]
= 4πGρ(r). (5.38)

The equilibrium of galaxies is explained by the classical hydrostatic equation given by

dφ

dr
= − 1

ρ(r)

dP

dr
. (5.39)

Using the following Polylogarithm formula
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d

dx
Lin(x) =

1

x
Lin−1(x), (5.40)

and then comparing with the equation 5.39, we get a relation between φ(r) and θ(r)

φ(r)− φ0 = −σ2[θ(r)− θ0], (5.41)

where

σ2 = φR/2, (5.42)

and φR is the scaling factor given by

φR = 4πGR2ρ0. (5.43)

Comparing both the relations we get the scaling radius

R2 =
σ2

2πGρ0
. (5.44)

From equation 5.41, put φ(r) = −σ2θ(r) in the Poisson equation 5.38, we get

−σ2

r2
d

dr

[
r2
dθ

dr

]
= 4πGρ(r). (5.45)

Substituting the value of σ2 from equation 5.44, we have

R2

r2
d

dr

[
r2
dθ

dr

]
= −2

ρ(r)

ρ0
. (5.46)

From equation 5.28, we get

R2

r2
d

dr

[
r2
dθ

dr

]
= −2

−Li 3
2
(−eθ(r))

−Li 3
2
(−eθ0)

. (5.47)

So the final equation will be of the form

R2d
2θ

dr2
+

2R2

r

dθ

dr
= −2

−Li 3
2
(−eθ(r))

−Li 3
2
(−eθ0)

. (5.48)

93



A relation between the intrinsic parameters of the model that is the ino mass m, central
degeneracy parameter θ0, and observables that is σ and ρ0 is given by

m4
[
−Li 3

2
(−eθ0)

]
=

(2π)3/2}3ρ0
2σ3

, (5.49)

σ2 =
(2π)}2ρ2/30

m8/3
[
−Li 3

2
(−eθ0)

]2/3 . (5.50)

Substituting this value in equation 5.44, we get the value for R2, now we can solve the
equation for the degeneracy parameter. We can find the value of degeneracy parameter for
any value of r. The plots for the degeneracy parameter for different values of m and the
corresponding free parameters of the model are given in the fig. 5.5a and 5.5b. It clearly
shows three regimes: the first one where θ(r) > 0 is the degenerate quantum core at r = rc,
in the second regime θ(r) transitions from positive to negative values at r > rc and in this
regime the quantum corrections are still applicable upto the classical regime, the third regime
is the classical one described by the Boltzmann statistics where the quantum corrections are
no longer applicable and θ(r)� −1 at r & rh.

For the classical regime, Poissonian becomes

R2

r2
d

dr

[
r2
dθ

dr

]
= −2eθ(r)−θ0 , (5.51)

R2d
2θ

dr2
+

2R2

r

dθ

dr
= −2(−eθ(r)−θ0). (5.52)

The value of R is given by equation 5.44 and for the value of σ, we use the relation

σ2 =
(2π)}2ρ2/30

m8/3(eθ0)2/3
. (5.53)

5.7 Rotation Curves

The circular velocity is given by

v2c = r
dφ

dr
, (5.54)
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(a)

(b)

Figure 5.5: Degeneracy parameters varying with distance for ino masses 345 keV , 300 keV ,
and 200 keV in fig. 5.5a, and 100 keV and 48 keV given in fig. 5.5b with the corresponding
central degeneracy parameters θ0 and temperature parameters β0, profiles fulfill the boundary
conditions given in equation 4.14.

where φ is the potential.

vDM(r) =

√
GM(r)

r − 2GM(r)/c2
. (5.55)

We plug in the value of M(r) from equation 5.36. Also v(r = rc) = vc and v(r = rh) = vh.
We then plot this velocity as a function of distance which gives the rotation curves for
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Figure 5.6: The RAR model degeneracy parameter for m = 48 keV/c2 is compared with
the degeneracy parameter for the Boltzmann classical distribution which applies when the
central degeneracy is very low, that is θ0 � −1. The comparison shows the RAR degeneracy
parameter reduces to the classical regime.

different ino masses and the free parameters of the model. We consider the fixed boundary
conditions for the spiral galaxies like our galaxy Milky Way as given in equation 4.14, to
obtain the same flat rotation curves for any value of ino mass.

We see four regions in the rotation curves given in fig. 5.7a - 5.7e, each with a characteristic
slope. Region I shows a degenerate core in which the velocity goes as vc ∝ r, then it
reaches its first maximum at r = rc which gives the core size. Increasing the values of radial
coordinate r > rc is region II, this is the Keplerian region in which the velocity varies as
vc ∝ r−1/2. Further, increasing the values of radial coordinate we have region III where the
velocity again behaves as vc ∝ r, it reaches r = rh which is the second maximum giving
the halo size. Finally, reaching region IV when r > rh, after some oscillations the circular
velocity tends to a constant value, corresponding to a pure classical Boltzmannian regime.
The solution leads to the isothermal sphere with ρ ∝ r−2 density profile, leading the dark
matter halo to a flat rotation curve. A cutoff in the momentum space is introduced so that
the flat region of the rotation curves does not seem to continue indefinitely. The flatness of
the rotation curves verify the existence of dark matter in galaxies.

As discussed in the previous chapter, the matter components of a galaxy can be divided into
three parts: nucleus, baryonic matter, and dark matter. Baryonic matter further includes
the matter in bulge and disk. So the total rotation curve can be calculated by equations
4.34 and 4.35. We will here plot the rotation curves for baryonic matter in the bulge and
disk using the observational data from the Milky Way galaxy. So the circular velocities for
the inner bulge, the main bulge, and the disk parts of the Galaxy are given by
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(a) (b)

(c) (d)

(e)

Figure 5.7: Rotation curves for different ino masses m with the corresponding central de-
generacy parameters θ0 and temperature parameters β0 are given. The plots show different
regions.

v2b =
2GMib

r
+

2GMob

r
+

2GMd

r
, (5.56)

whereMib andMob are the masses of the inner bulge and the outer bulge andMd is the mass
of the disk. These masses are obtained by

M(r) = M0(1− e−r/a − (r/a)e−r/a), (5.57)
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Figure 5.8: The RAR model rotation curve for m = 48 keV/c2 is compared with the rotation
curve for Boltzmannian classical distribution which applies when the central degeneracy is
very low that is θ0 � −1. The comparison shows the RAR degeneracy parameter reduces
to the Boltzmann classical regime.

Table 5.3: Core properties including the core radius for different ino masses.

m(keV/c2) rc(pc)

4.323 2.5× 10−1

10.54 4× 10−2

48 1.83× 10−3

64.45 1× 10−3

100 4.1× 10−4

200 1× 10−4

300 4.35× 10−5

345 3.27× 10−5
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Figure 5.9: The graph shows the velocity varying with distance for the bulge of the Milky
Way galaxy which is the baryonic part of a galaxy. The bulge consists of an inner bulge and
the outer bulge.

where for the inner bulge M0 ≈ 4.2 × 106 M� and r ≈ 1.15 pc, for the outer bulge M0 ≈
1× 1010 M� and r ≈ 400 pc, and for the disk M0 ≈ 4.4× 1010 M� and r ≈ 3.5 kpc.

5.8 Black Hole Formation

Using the values of the core mass and core size we will check whether the core is compact
enough to collapse into a black hole or not. The condition is given as

If
2GMc

rcc2
< 1, The core is not a black hole; (5.58)

if
2GMc

rcc2
> 1, The core is a black hole. (5.59)

The compactness of cores with the corresponding masses and sizes mentioned in the above
tables, is given in the table 5.4.

At m = 10.54 keV/c2, we get a core mass of 2.7 × 106 M� which is approximately equal
to the mass of Sgr A* black hole. Its observed mass is about 4 × 106 M�, so the core of
the RAR model can be considered as an alternative to the Sgr A* black hole. But the core
radius we obtained is about 1.2× 1012 km and the one obtained when S2 star (which is the
closest star to Sgr A*) came closest to Sgr A* is 1 × 1010 km. We need to introduce the
cutoff effects in order to get more compact cores.
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Figure 5.10: The graph shows the velocity varying with distance for the disk of the Milky
Way galaxy which is the baryonic part of a galaxy other than the bulge.

Table 5.4: Core compactness values for different core masses and core sizes at different ino
masses.

m(keV/c2) 2GMc/rcc
2

4.323 5.5× 10−6

10.54 6.58× 10−6

48 8.2× 10−6

64.45 8.64× 10−6

100 9.16× 10−6

200 1.03× 10−5

300 1.1× 10−5

345 1.13× 10−5
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5.9 The RAR Model with Cutoff Effects

We now discuss the RAR model by including the energy cutoff in the fermion phase space
distribution. This gives the finite size of galaxies and the profiles will not go on indefinitely.
Also, we get more compact cores than the cores obtained from the RAR model without the
cutoff effects. In the ino mass range 48 − 345 keV , it gives a new solution with a compact
quantum core as an alternative to the central black hole scenario for Sgr A*.

5.9.1 Central Density and Pressure

The fermionic equations of state for the phase space density and pressure with an energy
cutoff are given in the previous chapter in equations 4.23 and 4.24. The limits now go
from 0 to εc instead of infinity, that is the upper limit is at ε ≤ εc, and the phase space
distribution function is also different from the standard Fermi-Dirac distribution function
given by fc(ε ≤ εc) = 1−e(ε−εc)/kBT

e(ε−µ)/kBT+1
and fc(ε > εc) = 0. Particles with energy ε > εc are

too fast and considered as lost, this is what causes a cutoff in the phase space distribution.
We solve these equations to obtain central density and pressure at r = 0 in the same way
as we did previously without the cutoff. So the equation for density after substituting the
distribution function becomes

ρ =
2m

h3

∫ εc

0

[
1− e(ε−εc)/kBT

e(ε−µ)/kBT + 1

][
1 +

ε(p)

mc2

]
d3p. (5.60)

Also, we consider the system to be spherically symmetric

ρ =
8πm

h3

∫ εc

0

[
1− e(ε−εc)/kBT

e(ε−µ)/kBT + 1

][
1 +

ε(p)

mc2

]
p2dp. (5.61)

Using the same approximation p � mc, reduces the kinetic energy to cp and substituting
this value in the above equation, we have

ρ =
8π

h3c2

∫ εc

0

[
1− e(cp−εc)/kBT

e(cp−µ)/kBT + 1

]
(mc2 + cp)p2dp. (5.62)

Further simplifying the equation, we get
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ρ =
8πm

h3c2

∫ εc

0

c2p2

e(cp−µ)/kBT
dp+

8π

h3c4

∫ εc

0

c3p3

e(cp−µ)/kBT
dp (5.63)

− 8πm

h3c2

∫ εc

0

c2p2

eεc/kBT e−µ/kBT
dp− 8π

h3c4

∫ εc

0

c3p3

eεc/kBT e−µ/kBT
dp.

To account for the value of energy cutoff εc, we introduce a cutoff parameter W as given in
equation 4.28 other than the previously introduced temperature and degeneracy parameters
from equation 4.13. Also, using the same substitutions for cp as we did for computing the
density and pressure without cutoff, so

ρ =
8πm

h3c3

∫ εc

0

z2

ez/βmc2e−θ
dz +

8π

h3c5

∫ εc

0

z3

ez/βmc2e−θ
dz (5.64)

− 8πm

h3c3

∫ εc

0

z2

eW e−θ
dz − 8π

h3c5

∫ εc

0

z3

eW e−θ
dz.

To solve this equation, we find the values of the model parameters β0, θ0, and W0 for
different values of m. The central degeneracy parameter is obtained by equation 5.10 with
θ∗0 ≈ 28.684. The central temperature parameter is obtained by the eigen value problem
until we get the fixed halo observables of the model for spiral galaxies in our case.

First making the core mass dimensionless by using the values from equation 4.9 and then
solving it for β0. Using all the above discussed constants, we can now numerically integrate
the resulting equation and get the central density for any value of the ino mass. The central
cutoff parameter W0 is obtained by

W0 = (1 + α)θ0, (5.65)

where α ≈ 0.7564 for spiral galaxies, α ≈ 0.6324 for dwarf galaxies, and α ≈ 0.951 for
elliptical galaxies. Similarly, we can work for the central pressure of a galaxy at r = 0 with
cutoff, using the equation 4.24, substituting the Fermi-Dirac function, we have

P =
2

3h3

∫ εc

0

1− e(ε−εc)/kBT

e(ε−µ)/kBT + 1

[
1 +

ε(p)

mc2

]−1 [
1 +

ε(p)

2mc2

]
εd3p. (5.66)

The equation for pressure is simplified the same way as the equation for density, this will
give the central pressure. In the following table different values for the central degeneracy
parameter, central temperature parameter, and central density for different values of the ino
mass are given. To find different variables we will move on to a set of Einstein equations.
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Table 5.5: Core properties including the central degeneracy parameter, temperature parame-
ter, cutoff parameter, and central density for different ino masses fulfilling the halo boundary
conditions given in equation 4.14.

m(keV/c2) θ0 β0 W0 ρcc(M�/pc
3)

48 36.93 1× 10−5 65 9.7× 1015

54 37.57 1.13× 10−5 66 2.95× 1016

56 37.76 1.21× 10−5 66.32 4.12× 1016

58 37.96 1.3× 10−5 66.7 5.8× 1016

100 40.92 1.8× 10−5 71.8 9.88× 1018

200 44.69 2× 10−4 73 6.86× 1021

250 45.9 2.2× 10−3 75.1 5.6× 1022

300 46.89 3.7× 10−3 76.5 3.13× 1023

320 47.24 4.3× 10−3 77.1 5.76× 1023

340 47.57 4.7× 10−3 77.6 1.02× 1024

345 47.65 5× 10−3 77.7 1.17× 1024

5.9.2 Core Mass

The Einstein equations in the RAR model are given in equations 4.4 4.8. In order to account
for the cutoff in momentum space, an additional equation is included given by

W (r̂) = W0 + θ(r̂)− θ0. (5.67)

The equations can be solved to find the parameters varying with distance like M(r), θ(r),
ν(r), β(r) with initial conditions M(0) = 0, θ(0) = θ0, ν(0) = 0, β(0) = β0, W (0) = W0. We
solve these equations after making them dimensionless by using the dimensionless quantities
from equation 4.9. The first equation gives the core mass by solving it numerically with a
constant central density, obtained from the equation 5.64, we have

dM

dr
= 4πr2ρcc, (5.68)

where ρcc is the central density obtained from the fermionic equations of state with energy
cutoff. We plug in the value of central density and solve it numerically. At M(rcc), we get
M c

c that is the core mass and rcc is the core size which will be discussed later. For different
values of m, the corresponding core masses are given in the following table.
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Table 5.6: Core masses for different ino masses and the corresponding central degeneracy
and temperature parameters.

m(keV/c2) M c
c (M�)

48 3.18× 106

54 3.46× 106

56 3.54× 106

58 3.65× 106

100 5.4× 106

200 8.86× 106

250 1.04× 107

300 1.18× 107

320 1.24× 107

340 1.29× 107

345 1.31× 107

5.9.3 Density Profiles and Rotation Curves

The phase space density distribution as we have previously seen, shows a quantum regime
which transitions into a classical one. Now we will see the density profiles for different
ino masses with the effects of cutoff. The density is studied varying with the distance at
certain fixed parameters that is the central degeneracy parameter, temperature parameter,
and cutoff parameter. The central density ρcc was calculated from the Fermi-Dirac phase
space distribution using the fermionic equation of state with energy cutoff, now we need the
density varying with distance that is ρ(r). We start with the standard fermionic equation of
state with the distribution function including the cutoff given by

ρ(r) =
2m

h3

∫ εc

0

[
1− e(ε−εc(r))/kBT

e(ε−µ(r))/kBT + 1

]
d3p. (5.69)

For the spherically symmetric solutions, we have

ρ(r) =
8πm

h3

∫ εc

0

[
1− e(ε/kBT−εc/kBT )

e(ε/kBT−θ(r)) + 1

]
p2dp, (5.70)

where θ(r) = µ(r)/kBT is the degeneracy parameter and µ(r) is the chemical potential,
W (r) = εc(r)/kBT is the cutoff parameter, and εc is the energy cutoff. The distribution
function is considered as the fermionic King model. To account for different regimes, we use
the approximation p� mc, the kinetic energy reduces to p2/2m, so the equation becomes
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ρ(r) =
8πm(2mkBT )

h3

∫ εc

0

[
1− e(p2/2mkBT−εc/kBT )

e(p2/2mkBT−µ/kBT ) + 1

]
p2

2mkBT
dp. (5.71)

To find density as a function of distance, we use the following substitution

y2 =
p2

2mkBT
. (5.72)

The equation becomes

ρ(r) =
2m(2πmkBT )3/2

h3
4√
π

∫ εc

0

[
1− e(y2−W (r))

e(y2−θ(r)) + 1

]
y2dy, (5.73)

ρ(r) =
2m

λ3B

4√
π

∫ εc

0

[
1− e(y2−W (r))

e(y2−θ(r)) + 1

]
y2dy, (5.74)

where λB = h√
2πmkBT

is the thermal de Broglie wavelength of inos. In the limitW0 −→∞, we
get the Fermi-Dirac distribution without cutoff. This gives the density profiles as we obtained
earlier with a compact quantum core of constant density, a transition region with a sharp
decrease in density, and a classical halo after the sharp decrease, for high mass particles
it obeys a power law ρ ∝ r−n where n>2. We saw earlier that for low mass particles, it
obeys a power law ρ ∝ r−2 which is an isothermal sphere. The halo is now not continuing
indefinitely, it is finite with a cutoff at certain value. Using the density given above we can
get finite mass profiles given by the equation

M(r) = 4πr2
2m

λ3B

4√
π

∫ εc

0

[
1− e(y2−W (r))

e(y2−θ(r)) + 1

]
y2dy. (5.75)

Using the above mass we get the rotation curves by the circular velocity formula given in
equation 5.55. The curves show a similar increasing behavior at the beginning, v ∝ r,
reaching the core radius rc at the first maximum, core sizes for different ino masses are given
in the table 5.7, then a Keplerian decrease v ∝ r−1/2 to a minimum showing a transition
from the quantum to dilute regime and again increasing to a second maximum that gives
the halo radius rh. But this time the flat rotation curve going infinite is finite due to the
cutoff effects.
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Table 5.7: Core properties including the core radii for different ino masses.

m(keV/c2) rcc(pc)

48 6.4× 10−4

54 4.56× 10−4

56 4.1× 10−4

58 3.7× 10−4

100 7.65× 10−5

200 1.02× 10−5

250 5.33× 10−6

300 3.14× 10−6

320 2.6× 10−6

340 2.18× 10−6

345 2.07× 10−6

5.10 Black Hole Formation

The values of core mass and core size obtained by the RAR model with cutoff can be used
to check whether the core is compact enough to collapse into a black hole or not, as we did
earlier in the RAR model without cutoff. The conditions are given as

If
2GMc

rcc2
< 1, The core is not a black hole; (5.76)

if
2GMc

rcc2
> 1, The core is a black hole. (5.77)

The values of the core compactness with the corresponding masses and sizes mentioned in
the above tables are given in the table 5.8.

At mc2 = 56 keV , we get a core mass 3.6 × 106 M� which is approximately equal to the
mass of Sgr A* black hole. Its observed mass is about 4× 106 M�, so the core of the RAR
model can be considered as an alternative to Sgr A* black hole, with the core radius about
4.1 × 10−4 pc which is almost equal to the one obtained when S2 star came closest to Sgr
A*.

5.11 Baryonic Matter in Galaxies

Along with the dark matter, baryonic matter is also present in the galaxies. The dark matter
cores for different ino masses in the given range do not form black holes. We consider the
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Table 5.8: Core compactness values for different core masses and core sizes at different ino
masses.

m(keV/c2) 2GM c
c/r

c
cc

2

48 4.77× 10−4

54 7.3× 10−4

56 8.3× 10−4

58 9.48× 10−4

100 6.78× 10−3

200 8.34× 10−2

250 1.87× 10−1

300 3.61× 10−1

320 4.58× 10−1

340 5.68× 10−1

345 6.08× 10−1

core to be a gravitational potential well, so as yet there is no matter that has fallen in. There
are the partially degenerate fermions outside the core, so for it to collapse into a black hole,
it must have baryonic matter falling in. Some of the baryonic matter in the core of a galaxy
will tend to fall into the degenerate core and may form black hole inside. But they all come
from a time after nucleosynthesis, so the number of baryons that must fall in may provide a
sharper constraint on the fermion masses. So with expecting the fermions, what will be the
amount of mass of baryons that must come in to make it into a black hole?

We already worked out the dark matter core masses for different ino masses, so now we can
find out the critical masses for cores for different ino masses by using following equation

M cr
c =

3
√
π

16

m3
p

m2

(
1 +

2π2

θ20

)3/2

, (5.78)

where m is the ino mass, mp is the Planck mass, and θ0 is the central degeneracy parameter.
So, the values for critical core mass for different ino masses is given in table 5.10. For high
central degeneracy, θ0 � 2

√
π, so the critical core mass becomes independent of θ0 and it

becomes proportional to m3
p/m

2.

We have the values for the dark matter core mass and the values for the critical core mass,
we will add a certain amount of baryonic matter in the dark matter cores such that the cores
reach the critical mass and collapse into black holes.
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Table 5.9: Critical Core masses for different values of the ino mass and the central degeneracy
parameter.

m(keV/c2) M cr
c (M�)

10.54 5.053× 109

48 2.409× 108

64.45 1.332× 108

100 5.528× 107

200 1.378× 107

300 6.116× 106

345 4.623× 106

Table 5.10: Baryonic matter masses for different values of the ino mass and the central
degeneracy parameter.

m(keV/c2) Mb(M�)

10.54 5.05× 109

48 2.407× 108

64.45 1.331× 108

100 5.524× 107

200 1.377× 107

300 6.111× 106

345 4.62× 106
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5.12 Conclusion

One of the aims of modern Astrophysics now is to know the nature of dark matter after
various pieces of evidence on its existence. It is assumed that the particle composing it,
would be beyond the Standard Model of Particle Physics. Basically, we assumed that the
supermassive object at the center of a galaxy is made up of the degenerate fermions, the
halo is made up of the same fermions but non-degenerate, and that the same fermions are
responsible for the dark matter at the center and in the halo. In the Milky Way galaxy, a
continuous distribution of dark matter was observed.

We considered the RAR model in the framework of General Relativity which includes a
spherically symmetric self-gravitating system of massive fermions with masses in the range
10 − 345 keV and 48 − 345 keV . Also, the system has certain free parameters like the
degeneracy parameter θ0, the temperature parameter β0, and the cutoff parameter W0. We
found the core masses using the fermionic equations of state with and without the cutoff
effects. Then for the thermal and semi-degenerate fermion gas, considering a perfect fluid in
the hydrostatic equilibrium, we found the mass distributions both infinite and finite, using
Einstein’s equation. Firstly, we considered the Fermi-Dirac phase space distribution and the
fermions obeying the quantum statistics with no additional interactions. This gave us the
density profiles for different fermion masses at fixed dark matter halo constraints for spiral
galaxies. The density profiles showed different regimes: the degenerate quantum core, a
transition region from quantum to classical, and the classical Boltzmann regime. We also
considered the Boltzmann distribution, compared it with different RAR profiles, and we
concluded that the different profiles eventually reach the classical regime in halo region. The
rotation curves were then obtained giving different regions: first an increasing behavior was
seen till it reached the first maximum which gave the core size, after this the curve deceased
and then increased to a second maximum which was the halo size. We saw a flat rotation
curve in the outer regions due to the constant circular velocities at the halo scales, this
indicated the presence of dark matter. So, the flat rotation curves are the classical pieces of
evidence of dark matter.

We first used the model and proceeded with the calculations without the cutoff effects,
which resulted in not so compact cores. At about 10 keV fermionic mass, the core mass was
∼ 3× 106 M� and the core size of the order ∼ 10−2 pc which is greater of the order 102 from
the size of the core observed due to S2 star.

We then considered the fermionic dark matter RAR model with cutoff effects in the phase
space distribution. This gave a degenerate quantum core and a diluted halo with cutoff
effects, providing with sufficient compactness of the quantum core. It can now be considered
as an alternative to the central black hole scenario. We observed that at fermion mass
56 keV , the core mass is ∼ 3.6×106 M� with the core size ∼ 4.1×10−4 pc. The calculations
in this thesis were performed on spiral galaxies, we can also use the constraints for dwarf
spheroidal galaxies or the elliptical galaxies to extend this work.

The model predicts a particle as a possible candidate for dark matter. The density profiles
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and the rotation curves show the distribution of matter from the degenerate compact cores
to the dark matter halos. Flat rotation curves are seen at large distances which indicate
the presence of dark matter. The model gives a degenerate fermionic compact core which
provides an alternatives to the central black hole scenario. It is a consistent proposal for the
explanation of the problem of the formation of supermassive black holes shortly after the Big
Bang and the missing intermediate-mass black holes. Other than the dark matter, baryonic
matter is also present in the cores of galaxies, it will tend to fall into the degenerate cores
and may even form black holes inside. We have the dark matter core masses and the critical
core masses for different ino masses, so we worked out the respective baryonic matter masses
by adding them into the dark matter cores and get the cores to collapse. We also saw the
distribution of baryonic matter in the bulge and disk parts of the Milky Way galaxy.

What the RAR model gives is an explanation but we need evidence for such fermions, the
model needs to be tested. This would be done by considering the effect of such structures as
they form on the cosmic microwave background as an imprint of the formation of the cores.
We should trace back early times, when the cosmic microwave background was coming
out, then these fermions should leave an imprint on the cosmic microwave background.
Due to the formation process there will be the inhomogeneities, then we should be able to
make a prediction of what to see. We can then compare the spectrum of cosmic microwave
background with the actual spectrum with the prediction. Then we shall be able to see the
degenerate fermion core. Then we say how do they form into one central core? So in the start
these fermions will be presumably uniformly distributed, there will be fluctuations, and they
will collapse. They will collapse in various spaces. Over time, these collapsed things will go
on coalescing more and more. It forms degeneratly not at one place but at one momentum,
they can be on different places and correlated. Finally, the gravitational force will pull it all
together and there will be a central black hole. How do these form can make a difference to
what could be predicted. This is left as an open problem for the present.
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