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Abstract 

In this thesis, rotational flow over a permeable surface with a variable free stream angular velocity 

is considered in this thesis. Main interest is to solve the associated heat/mass transport equations 

under different situations. Firstly, heat transport phenomena occurring in generalized vortex flow 

is analyzed under two different heating processes, namely, the (i) prescribed surface temperature 

(PST) and (ii) prescribed heat flux (PHF). The vortex motion imposed at infinity is assumed to 

follow a power-law form (𝑟/𝑟0) 
𝑚, where 𝑟 denotes the radial coordinate, 𝑟0 the disk radius and 

𝑚 = (2𝑛 − 1) is a non-dimensional constant. Assuming a similarity solution, the governing 

Navier-Stokes equations transform into a set of coupled ordinary differential equations which are 

treated numerically for the aforementioned thermal conditions. Secondly, mass transport 

phenomena accompanied with activation energy is incorporated for the generalized vortex flow 

situation. After finding self-similar equations, a numerical solution is furnished by using 

MATLAB built-in function bvp4c. 
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Chapter 1 

Introduction 

This chapter enlightens important concepts involved in the boundary layer flows with heat/mass 

transfer effects. A detailed background of the research problems attempted in subsequent chapters 

is included. Furthermore, dimensionless number used in the thesis and their significance are 

explained briefly. 

1.1 Incompressible and Compressible Flows 

Fluid flow which exhibit density variations with respect to space variables or time are treated as 

compressible. Whereas, in incompressible flows, density remains constant by changing space 

variables or time in the incompressible flows. Liquids are treated as incompressible fluids while 

gases are considered as compressible fluids. 

Classification of compressible and incompressible flows can be made on the basis of Mach number 

(which is defined as the ratio of flow velocity to the velocity of sound). If Mach number is less 

than 0.3, while the fluid flow is treated as compressible if“Mach number is larger than”0.3. 

1.2 Steady and Unsteady Flows 

In steady flows, all the physical quantities (such as density, velocity, acceleration etc.) do not vary 

with time. Mathematically, for any quantity 𝜒, one has: 

𝜕𝜒

𝜕𝑡
= 0, (1.1) 
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For unsteady flow, physical quantities functions of time. Therefore, we have 

𝜕𝜒

𝜕𝑡
≠ 0, (1.2) 

for any physical quantity 𝜒. 

1.3 Laminar and Turbulent Flows 

Laminar“flow is a kind of flow in which each fluid particle follows a definite path and”streamlines 

do not cross each other. Turbulent flow, on the other hand, does not exhibit a regular pattern of 

flow that leads to the rapid changes in physical properties of the fluid. For example, the flows in a 

pipe at low speeds and flow of water along the edges of river/lake describe laminar flows. When 

a dye drop is injected in water, it spreads in all possible directions without following any proper 

pattern, thereby making the flow turbulent. 

Reynolds number determines whether the flow is turbulent/laminar. It is laminar for 𝑅𝑒 < 2000 

and turbulent for 𝑅𝑒 > 4000. The laminar and turbulent flow situations for flow past a circular 

cylinder are illustrated in Fig. 1.1. 

 

Fig. 1.1: Laminar and turbulent flow situations for flow around a circular cylinder (Source: Internet). 
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1.4 Continuity Equation 

According“to the law of conservation of mass, mass can neither be created nor be demolished but, 

can be transformed from one form to another. It suggests that if we consider the differential control 

volume system enclosed by a surface fixed in a space, then the mass inside a fixed control system 

will remain constant. De facto, the accumulation of mass”within a control volume solely relies 

upon net mass inflow (by assuming zero internal forces). Mathematically, it can be translated as: 

𝜕𝜌

𝜕𝑡
+ 𝛁. (𝜌𝐯) = 𝟎, (1.3) 

where 𝝆 designates fluid density, 𝐯 shows velocity vector and 𝛁 is Nabla-operator. For an 

incompressible fluid, Eq. (1.6) gets assumes a simpler form: 

𝛁. 𝐯 = 𝟎. (1.4) 

1.5 Momentum Equation 

According to the Newton’s second law of motion the net force 𝐅 acting on a fluid particle equals 

to“the time rate of change of linear momentum. Consider a control volume”with dimensions 𝑑𝑥 by 

𝑑𝑦 by 𝑑𝑧. For such control volume, Newton’s second law is translated into the following form: 

𝑚
𝐷𝐯

𝐷𝑡
= 𝐅, (1.5) 

in which 𝐷/𝐷𝑡 is the material derivative. The“law of conservation of momentum for fluid flow is 

given as: 

𝜌
𝐷𝐯

𝐷𝑡
= 𝛁. 𝜏 +  𝜌𝒃, (1.6) 

where 𝜏 is the Cauchy stress tensor, 𝛁. 𝜏 = (−𝛁𝑃 + 𝜇∇𝟐𝐕 ) represents surface forces”in which 𝜇 

denotes the dynamic viscosity and 𝜌𝒃 gives the net body force. 
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1.6 Energy Equation 

The“energy equation is given by the total change in energy as a result of net heat conduction and 

the work done by the”stresses. Mathematically, the law of conservation of energy translates into 

the following equation: 

𝐷e

𝐷𝑡
= − 𝛁. 𝒒 +  𝐻, (1.7) 

where 𝑒 = 𝜌𝐶𝑝𝑇 defines enthalpy, which is the“amount of heat added per unit volume and 𝑞 =

 −𝜅𝛁𝑇 is the heat flux”given by Fourier heat conduction law. The governing equation for 

conservation of energy can be written: 

𝜌𝐶𝑝 (
𝜕𝑇

𝜕𝑡
+ (𝐕. 𝛁)𝑇) = 𝛁. (𝜅𝛁𝑇) + 𝐻. (1.8) 

1.7 Non Dimensionalization 

The removal of dimensions from system via rescaling of variables basically is a technique to 

reduce the complexity and number of variables (governing the dynamics of a problem) and then 

grouping them into dimensionless, unit-less forms. The solution of a dimensionless equation 

obtained by reducing the number of independent variables of a governing equation using 

coordinate transformations in called a similarity solution. 

It is a well-known face that the governing equations of fluid flow are extremely difficult to analyze, 

so we divert our attention towards transforming them in the most efficient form possible in order 

to increase the usefulness of the obtained solutions. This task is accomplished by non-

dimensionalization of governing equation as well as boundary conditions, thereby providing lesser 

number of flow parameters. 

Out of many, one benefit of this technique is the provision of scaling laws for the problem which 

helps in conversion of data from a small model to a large prototype. The non-dimensionalization 
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of the governing equations not only provides information about the underlying physical 

phenomena but also indicates the dominating force. For instance, the two differently scaled flows 

having similar geometry (a model and a prototype) satisfying the basic equations of fluid motion 

would only produce the same results if these flows had same values for all of the dimensionless 

parameter (i.e. the relative importance of the force is same). 

1.8 Heat Transfer 

Flow of thermal energy between physical systems is defined as heat transfer. Heat transmission is 

required“whenever there is a temperature difference between physical systems. Heat can be 

transferred across systems in three ways: conduction, convection”and radiation. These are defined 

in turn below. 

1.8.1 Conduction 

Conduction“is the process of heat transfer due to molecular collisions. The word ‘conduction’ is 

repeatedly used for three different kinds of behavior: Heat conduction, electrical conduction and 

sound conduction. Fourier proposed that heat transfer rate per unit area varies directly with 

temperature gradient, i.e., 

𝑄

𝐴
=  −𝑘

𝑑𝑇

𝑑𝑥
 , (1.9) 

In the above equation, 𝑘 is the constant of proportionality known as thermal conductivity with 

dimension [𝑀𝐿𝑇−3𝐾−1], 𝑄 is the heat transfer rate, 𝐴 is the area and 𝑑𝑇 𝑑𝑥⁄  is the temperature 

gradient. The equation (1.9) is known as Fourier’s Law.  

1.8.2 Convection 

Convection refers to the movement of fluid particles from the region of high thermal energy to the 

region of low thermal energy. In fluid dynamics, convection is the energy transfer due to bulk fluid 
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motion. Convective heat transfer arises between a fluid in a motion and a bounding surface. 

Convective heat transfer depends upon the nature of the flow. Therefore, convection has three 

forms: Forced convection, Natural (free) convection, Mixed convection. Heat transfer mechanism 

given by Newton’s law of cooling as: 

𝑄

𝐴
= ℎ(𝑇𝑠 − 𝑇𝑓) , (1.10) 

where, ℎ is the heat transfer coefficient with dimension [𝑀𝑇−3𝐾−1], 𝑇𝑠 and 𝑇𝑓 represent the 

temperature of the object’s surface and that of the environment, respectively. 

1.8.3 Radiation 

Radiation is the transfer of heat energy when it is carried by photons of light in the infrared and 

visible portion of electromagnetic spectrum. All bodies constantly emit thermal energy by the 

process of radiation. It does not require any medium for its”transmission. 

1.9 Mass Transfer 

Mass transfer refers to the movement of chemical species from one location to another as a result 

of a concentration gradient. Diffusion is the same as conduction when it comes to mass transfer. 

Heat and mass transport are both kinetic processes that can be investigated independently or 

together. It is more efficient to couple heat and mass transfer equations in the case of diffusion-

convection phenomena. Depending“on the conditions, the nature, and the forces responsible for 

mass transfer, four basic types are distinguished: 

• Diffusion in a quiescent medium. 

• Mass transfer in laminar flow.  

• Mass transfer in the turbulent flow 

• Mass exchange between phases. 
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Mass transfer”by diffusion and convection is revealed by the concentration isosurfaces. The flux 

through diffusion occurs perpendicular to the concentration isosurfaces, i.e., reactions may 

produce a flux of species consumed in the reaction to the reaction site. Because convection seeks 

to minimize concentration gradients along its main direction, it creates a greater separation 

between the concentration isosurfaces and occurs along the streamlines of the fluid flow. 

In the transition to a turbulent flow, mass transfer fundamentally changes. Its vortex flow attributes 

result in large-scale fluid transfer. This transport usually has orders of magnitude larger rates than 

molecular transport, allowing for faster equalization of the concentration field and, in the case of 

a drug source, rapid propagation of the substance over the flow cross section. 

1.10 Arrhenius Activation Energy 

Arrhenius argued that for reactions to transform“into products, they must first acquire a minimum 

amount of energy, called the activation energy. The concept of activation energy explains the 

exponential nature of the relationship, and in one way or another, it is present in all kinetic theories. 

In light of new information on the”microscopic characteristics of collisional reactions, the nature 

of the Arrhenius activation energy and frequency factor is visited by Menzinger and Wolfgang [1]. 

The Arrhenius equation is a straightforward yet amazingly precise“formula for determining the 

temperature dependence of the reaction rate constant 𝑘 and hence the rate of a chemical reaction. 

Mathematically, the”Arrhenius equation [1] is: 

𝑘 = 𝐴𝑒−
𝐸𝑎
𝑅𝑇, (1.11) 
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In above equation, 𝑇 represents the absolute temperature, 𝑅 is the universal gas constant, 𝐸𝑎 

denotes the activation energy, 𝐴 signifies the pre-exponential factor and 𝑘 indicates the rate 

constant. 

The significance of this quality that 𝑅𝑇 designates the average kinetic energy, the“exponent is 

simply the ratio of the activation energy 𝐸𝑎 to the average kinetic energy. The lower the rate, the 

higher the ratio, which is why the negative sign gets involved. This means low activation energies 

and high”temperatures prefer a greater rate constant. As a result, these circumstances will 

accelerate a reaction. Because these terms occur in an exponent, their impact on the rate is 

significant. 

1.11 Boundary Layer and Boundary Layer Thickness 

When a fluid having non-zero viscosity flows past a stationary wall, the layer of the fluid that is in 

immediate contact with the boundary assumes the velocity of the wall. Indeed, the fluid layers are  

 

Fig. 1.2: Boundary Layer Flow. 
 

in relative motion with the neighboring layers. Therefore, the farther we move from the wall, the 

lesser we feel this effect. The region of the fluid where the effect is dominant is called boundary layer. 
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1.12 Prandtl Number (𝑷𝒓) 

The Prandtl number (𝑃𝑟) is used to study the relative dominance of hydrodynamic and thermal 

boundary layers. Mathematically, it is defined as: 

𝑃𝑟 =  
𝜈

𝛼
 , (1.12) 

where 𝛼 is the thermal diffusivity and 𝜈 stands for kinematic viscosity. 

1.13 Nusselt Number (𝑵𝒖) 

The Nusselt number 𝑁𝑢 is a quantitative measure of convective to conductive heat transfer and it 

is gives to non-dimensional temperature gradient at the surface. The effect of Nusselt number to 

temperature boundary layer is analogous to the effect of skin friction coefficient for the velocity 

boundary layer. Mathematically: 

𝑁𝑢 =
ℎ𝐿

𝑘
, (1.13) 

where 𝐿 shows“the characteristic length, 𝑘 gives the thermal conductivity and ℎ represents 

convective heat transfer coefficient of the”fluid. 

1.14 Schmidt Number (𝑺𝒄) 

The Schmidt number (𝑆𝑐) is a dimensionless number that defines the ratio of the momentum 

diffusivity (kinematic viscosity) to the“mass diffusivity. It is used to characterize fluid flows in 

which momentum and mass diffusion convection processes”are occurring simultaneously. 

Mathematically: 

𝑆𝑐 =
ν 

𝐷
 . (1.14) 
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1.15 Bödewadt flow 

Bödewadt flow refers to the flow situation involving axisymmetric rotating flow over a plane 

surface. In this type of flow, fluid“at infinity exhibits rigid body rotation about the vertical”axis. 

Centrifugal force within the Bödewadt's boundary layer decreases gradually near the wall. 

Consequently, radial pressure gradient becomes higher than the centrifugal force thereby 

prompting an inward radial flow directed towards the axis of rotation. This inward radial motion 

triggers an upward vertical motion. This set up shows a three-dimensional flow situation described 

decades ago by Bödewadt [3]. 

Suppose that, in the cylindrical coordinate system (𝑟, 𝜙, 𝑧), disk is placed in the plane 𝑧 = 0 while 

fluid occupies the region 𝑧 > 0. Due to axisymmetric nature of the problem, variations with respect 

to coordinate 𝜙 are absent. Fluid at infinity rotates about vertical axis with constant angular 

velocity 𝜔. 

Keeping in view such assumptions, following set of equations describe the Bödewadt flow 

situation: 

𝜕𝑢 

𝜕𝑟
+
𝑢

𝑟
+
𝜕𝑤 

𝜕𝑧
= 0, (1.15) 

𝑢
𝜕𝑢 

𝜕𝑟
+ 𝑤

𝜕𝑢 

𝜕𝑧 
−
𝑣2

𝑟
= −

1

𝜌

𝜕𝑝

𝜕𝑟
+ 𝜈 {

𝜕2𝑢

𝜕𝑟2
+
𝜕

𝜕𝑟
(
𝑢 

𝑟
) +

𝜕2𝑢 

𝜕𝑧2
}, (1.16) 

𝑢
𝜕𝑣 

𝜕𝑟
+ 𝑤

𝜕𝑣 

𝜕𝑧 
+
𝑢𝑣

𝑟
= 𝜈 {

𝜕2𝑣

𝜕𝑟2
+
𝜕

𝜕𝑟
(
𝑣 

𝑟
) +

𝜕2𝑣 

𝜕𝑧2
}, (1.17) 

𝑢
𝜕𝑤 

𝜕𝑟
+ 𝑤

𝜕𝑤 

𝜕𝑧
= −

1

𝜌

𝜕𝑝

𝜕𝑧
+ 𝜈 {

𝜕2𝑤

𝜕𝑟2
+
1

𝑟

𝜕𝑤

𝜕𝑟
+
𝜕2𝑤 

𝜕𝑧2
}. (1.18) 

The system of boundary conditions reads: 
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𝑢 = 0,    𝑣 = 0,    𝑤 = 0     at     𝑧 = 0, 
(1.19) 

𝑢 → 0,    𝑣 = 𝑟𝜔     as     𝑧 → ∞, 

At the far field, radial pressure gradient equal to centripetal force is induced and hence one can 

write: 𝜕𝑝/𝜕𝑟 = 𝜌𝑟𝜔2. With the similarity transformations as follows: 

𝑢 = 𝑟𝜔𝐹(𝜂), 

(1.20) 

𝑣 = 𝑟𝜔𝐺(𝜂), 

𝑤 = √𝜈𝜔𝐻(𝜂), 

𝑝 =
1

2
𝜌𝑟2𝜔2 − 𝜌𝜈𝜔𝑃(𝜂), 

 

where 𝜂 = 𝑧(𝜔 𝜈⁄ )1/2, is a similarity variable. 

With the aid of transformations (1.20), Eqs. (1.15) − (1.17) take the following form: 

𝐻′ + 2𝐹 = 0, (1.21) 

𝐹′′ − 𝐻𝐹′ − 𝐹2 + 𝐺2 − 1 = 0, (1.22) 

𝐺′′ − 𝐻𝐺′ + 2𝐹𝐺 = 0, (1.23) 

Eqs. (1.21) – (1.23) are subjected to the following conditions: 

𝐹 = 0,    𝐺 = 0,    𝐻 = 0     at     𝜂 = 0, 
(1.24) 

𝐹 → 0,    𝐺 → 0     as     𝜂 → ∞, 

The velocity profiles of above governing Eqs. (1.21) – (1.23) are shown in Fig. 1.3. 
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Fig. 1.3: Velocity profiles for Bödewadt flow. 

 

1.16 Vortex Flow 

For this kind of rotationally symmetric motion, the tangential velocity is assumed to satisfy a power 

law form, that is 𝑣~𝑟𝑚, where 𝑟 is radial coordinate and 𝑚 is power law index. There are two 

special cases of vortex flow i.e. potential vortex (𝑚 = −1) and rigid body rotation (𝑚 = 1). In 

potential vortex, also known as irrotational flow, there is an inverse relation between velocity of 

the fluid and distance 𝑟 from the vortex axis. Whereas in rigid body rotation there is direct relation 

of velocity and distance 𝑟 from the axis of rotation. Rahman and Andersson [12] generalized the 

vortex flow with the heat transfer. Boundary conditions for this flow are expressed as follows: 

𝑢 = 0,   𝑣 = 0,   𝑤 = 𝑣0 (
𝜈

𝑣0𝑟0
)
1/2

(
𝑟

𝑟0
)
𝑛−1

(𝑛 + 1)   at   𝑧 = 0, 

(1.25) 

𝑢 → 0,   𝑣 → 𝑣∞ = 𝑣0 (
𝑟

𝑟0
)
2𝑛−1

     as    𝑧 → ∞. 

 

Using the similarity transformations: 
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𝑢 = −𝑣0 (
𝑟

𝑟0
)
2𝑛−1

𝐹(𝜂),   𝑣 = 𝑣0 (
𝑟

𝑟0
)
2𝑛−1

 𝐺(𝜂), 

(1.26)    𝑤(𝑟, 𝑧) = 𝑣0 (
𝜈

𝑣0𝑟0
)
1/2

(
𝑟

𝑟0
)

𝑛−1

[(𝑛 + 1)𝐻(𝜂) + (𝑛 − 1)𝜂𝐹(𝜂)] , 

𝑝 =
𝜌𝑣0

2

4𝑛 − 2
(
𝑟

𝑟0
)
4𝑛−2

    with    𝜂 = (
𝑧

𝑟0
) (
𝑟

𝑟0
)
𝑛−1

(
𝑣0𝑟0
𝜈
)
1/2

. 

 

The governing Eqs. (1.5) – (1.7) are transformed into the following ODE’s: 

𝐻′ − 𝐹 = 0, (1.27) 

𝐹′′ − (𝑛 + 1)𝐻𝐹′ − (1 − 2𝑛)𝐹2 − 𝐺2 + 1 = 0, (1.28) 

𝐺′′ − (𝑛 + 1)𝐻𝐺′ + 2𝑛𝐹𝐺 = 0. (1.29) 

And the transformed boundary conditions are: 

𝐹 = 0,   𝐺 = 0,   𝐻 = 𝐴   at    𝜂 = 0, 
(1.30) 

𝐹 → 0,   𝐺 → 1     as    𝜂 → ∞. 

The results of vortex flow of velocity profiles are shown in Chapter 2 (Figs. 2.1 − 2.6). 

1.17 Literature Review 

Decades ago, Von-Karman [2] studied boundary layer formation above a large disk rotating with 

uniform angular velocity. The author demonstrated that such a problem can be dealt by using a 

similarity transformation. Its twin problem was later introduced by Bödewadt [3], which involves 

a flow situation where fluid far from an infinite plane exhibits rigid body rotation about the vertical 

axis (see section 1.15). Such physical phenomenon is met in a number of practical scenarios such 

as flow between a rotor and a stator, centrifugal pumps, viscometers, air cleaners etc. Bödewadt’s 

work is a member of family of flows in which both ambient fluid and the disk rotate with different 

angular velocities. Such family of flows was introduced by Batchelor [4], where another family of 

flows arising between parallel plane surfaces rotating with different angular velocities is discussed. 
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The above referred articles led to morel findings associated with heat transfer in Bödewadt flows. 

Articles by Sahoo [5,6] revisited Bödewadt’s analysis when a non-Newtonian fluid model was 

incorporated. In these papers, the associated heat transfer problem was also solved in the presence 

of viscos dissipation term. Turkyilmazoglu [7] came up with a concept of radial boundary 

stretching for Bödewadt flow and found important implications of radial wall stretching 

phenomena on the accompanying heat transfer. A comparative analysis of generalized non-

Newtonian fluids experiencing Bödewadt flow situation, was performed by Griffiths [8], while 

Joshi et al. [9] employed variable viscosity assumption to analyze Bödewadt’s framework under 

heat transfer effects. However, solution profiles computed by Joshi et al. [9] did not adhere to the 

asymptotic decay character, prevalent in boundary layer type flows. Later, Nath and Venkatachala 

[10] considered Bödewadt’s work with suction and magnetic force effects. 

Heat transport phenomena occurring in Bödewadt flow situation was carefully scrutinized by 

Rahman and Andersson [11] with the help of a closed-form solution, they figured out the 

importance of suction for having a meaning full solution of associated energy equation. This study 

also raised concerns about the reliability of numerical solutions derived by Sahoo [5], [6]. 

Moreover, physically acceptable solutions in Turkyilmazoglu’s work [7] can be attributed to the 

radial stretching feature of the infinite plane surface. Later, Rahman and Andersson [12] 

investigated“boundary layer development under a generalized vortex flow”with heat transfer and 

elaborated the findings in“terms of two different ways namely (a) variation of the effective Prandtl 

number that affected the thermal diffusion, and (b) an indirect variation of the axial velocity 

component affected the thermal”convection. Heat and mass transfer, when combined with 

chemical reactions, has a significant impact on a variety of applications, including combustion 

systems, clothing dyeing, metallurgy, atomic reactor safety and chemical engineering. Almost all 
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chemical industries use a relatively low-cost raw material that is then processed using specially 

designed chemical processes to produce high-value products. In most cases, these chemical 

processes are based on chemical reactions that occur in the presence of heat transfer. The minimum 

amount of energy required to activate molecules or particles to a state where they can develop 

physical transportation or chemical reaction is called activation energy. The Arrhenius equation, 

which specifies how the rate constant changes with temperature, may be used to estimate the 

activation energy for a reaction. A chemical conversion and one or more products with different 

effects from the reactants are used to classify them. 

Most living-matter operations, such as breathing, feeding, and sweating, rely on mass transfer. The 

mass“transfer process accompanied by chemical reaction has been widely reported in the past (see 

[13–19] and reference therein). Because of its consequence in geothermal reservoirs, chemical 

engineering, nuclear reactor cooling and thermal oil retrieval, It is important to formulate a reaction 

that's efficient, with minimal input energy and a high yield by using sustainable methods. Bestman 

[20] studied the boundary layer flow involving the binary”chemical reaction. Using a perturbation 

technique, he investigated“the effects of activation energy on natural convection flow in a porous 

surface. Soundalgekar [21] presented an exact solution to viscous flow initiated by an impulsively 

started plate”from rest subjected to constant heat flux and chemical reaction. Das et al. [22] 

elaborated mass transfer near a vertical infinite plate surface with chemical reaction. Dhlamini et 

al. [23] studied the combined effects of activation energy and binary chemical reaction in an 

unsteady mixed convective flow over a boundary of infinite length. Khan et al. [24] discussed the 

heat and mass transfer of an Oldroyd-B fluid flow over a rotating disk. On the energy and mass 

species fields, some stimulating properties such as nonlinear radiations, heat 

absorption/generation, and Arrhenius chemical reactions with activation energy are investigated. 
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Heat transport aspects were examined via Joule heating, thermal radiation and dissipation over a 

stretchable surface of disk along with chemical reaction subject to activation energy by Abbas et 

al. [25].  

The focus of current thesis is twofold. Firstly, to solve heat transfer problem for vortex flow using 

two assumptions namely prescribed surface temperature (PST) and prescribed heat flux (PHF). 

Secondly, to address the mass transport phenomena associated with the vortex flow with flow field 

is equipped with chemically reactive species. In both the cases, numerical solutions are furnished 

to predict the contributions of embedded parameters on the underlying physical aspects. 

1.18 bvp4c 

Nearly all physical problems that involving rate of change encountered in the real world are coded 

in the language of differential equations. The analytical solutions of these differential equations 

are not possible every time. Therefore, attention is drifted towards solving these problems 

numerically using computer aided software. MATLAB is a numerical computer software of 

present age which is a rich in built-in ODE and PDE solvers. Most of the fluid dynamics involving 

nonlinear ODEs. MATLAB provides a fairly easy to implement built-in solver for such problems 

called bvp4c which uses an error-controlled domain discretization procedure based upon 

collocation method. In order to solve such a system using this package, the user is required to 

transforms the higher order differential equations to a first-order system and then provides the 

initial guess vector. The choice of initial guess vector has prime importance in finding the accurate 

solution of interest. Indeed, the provision of initial guess is necessary because a bvp can have 

multiple solutions. When it is difficult to choose an appropriate guess for a particular interval of 

interest, the problem is first solved on a shorter interval, generally, and after having a reasonable 
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choice of an initial guess, the problem is then extended to that particular interval of interest. The 

computations required to obtain a numerical solution is strongly based upon the choice of initial 

guess. 
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Chapter 2 

A Comparative study of different Thermal Boundary 

Conditions for Heat Transfer in a Generalized Vortex Flow 

2.1 Introduction 

This chapter is based on the generalized vortex flow model investigated by Rahman and Anderson 

[12]. Here, development of thermal boundary layer under a generalized vortex flow is studied. A 

comparative study of two different thermal wall conditions for heat transfer in generalized vortex 

flow is presented. The cases of rigid body rotation and potential vortex corresponding to 𝑚 = 1 

and 𝑚 = −1 are discussed. 

2.2 Problem Formulation 

Assume that flow is steady, three-dimensional, incompressible and laminar. The fluid motion 

occurs above an infinite disk residing in the plane 𝑧 = 0 of the cylindrical coordinate system 

(𝑟, 𝜑, 𝑧). Fluid high above the disk undergoes vortex motion characterized by a power-law 

tangential velocity of the form 𝑣0(𝑟/𝑟0) 
2𝑛−1. Heat transfer problem with viscous dissipation 

effect is dealt in two ways. Firstly, prescribed surface temperature (PST) of the form 𝑇𝑤 = 𝑇∞ +

𝑇0(𝑟/𝑟0)
4𝑛−2 is considered. Secondly, a prescribed power-law heat flux (PHF) of the form 

−𝑘 (𝜕𝑇 𝜕𝑧)⁄ = 𝐷(𝑟/𝑟0)
5𝑛−3 is incorporated. 𝐷 is constant with unit 𝑊/𝑚2. In view of the 

axisymmetric flow assumption, one can ignore variations with respect to the azimuthal coordinate 

𝜑. Suppose that fluid temperature at the disk is denoted by 𝑇𝑤 and temperature at infinite is 

designated by 𝑇∞. There is no boundary layer and slip at the surface when viscosity is exactly zero. 

As the velocity decreases, the thickness of boundary layer approaches zero. 
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𝜕

𝜕𝑟
(𝑟𝑢) +

𝜕

𝜕𝑧
(𝑟𝑤) = 0, 

 
(2.1) 

𝑢
𝜕𝑢

𝜕𝑟
−
𝑣2

𝑟
+ 𝑤

𝜕𝑢

𝜕𝑧
= −

1

𝜌

𝜕𝑝

𝜕𝑟
+ 𝜈 (

𝜕2𝑢

𝜕𝑟2
+
𝜕

𝜕𝑟
(
𝑢

𝑟
) +

𝜕2𝑢

𝜕𝑧2
), (2.2) 

(𝑢
𝜕𝑣

𝜕𝑟
+
𝑢𝑣

𝑟
+ 𝑤

𝜕𝑣

𝜕𝑧
) = 𝜈 (

𝜕2𝑣

𝜕𝑟2
+
𝜕

𝜕𝑟
(
𝑣

𝑟
) +

𝜕2𝑣

𝜕𝑧2
), (2.3) 

𝑢
𝜕𝑤

𝜕𝑟
+ 𝑤

𝜕𝑤

𝜕𝑟
= −

1

𝜌

𝜕𝑝

𝜕𝑧
+ 𝜈 (

𝜕2𝑤

𝜕𝑟2
+
1

𝑟

𝜕𝑤

𝜕𝑟
+
𝜕2𝑤

𝜕𝑧2
), (2.4) 

𝜌𝐶𝑝 (𝑢
𝜕𝑇

𝜕𝑟
+ 𝑤

𝜕𝑇

𝜕𝑧
) = 𝑘 (

𝜕2𝑇

𝜕𝑟2
+
1

𝑟

𝜕𝑇

𝜕𝑟
+
𝜕2𝑇

𝜕𝑧2
) + Φ (2.5) 

 

where (𝑢, 𝑣, 𝑤) are the velocity components of the fluid radial, tangential and axial directions, 

respectively, and 𝑇 is the temperature. The specific heat constant at constant pressure of the fluid 

is 𝐶𝑝. 𝜈 is the kinetic viscosity of the fluid, 𝑘 is the thermal conductivity and 𝑝 is the pressure.  

By means of the usual boundary layer approximations, name that 𝑤 ≪ 𝑢, 𝑣 and 𝜕 𝜕𝑧⁄ ≫ 𝜕 𝜕𝑟⁄ , the 

system of Eqs. (2.1) − (2.5) simplifies to: 

𝜕

𝜕𝑟
(𝑟𝑢) +

𝜕

𝜕𝑧
(𝑟𝑤) = 0, 

 
(2.6) 

𝑢
𝜕𝑢

𝜕𝑟
−
𝑣2

𝑟
+ 𝑤

𝜕𝑢

𝜕𝑧
= −

1

𝜌

𝜕𝑝

𝜕𝑟
+ 𝑣 (

𝜕2𝑢

𝜕𝑧2
), (2.7) 

(𝑢
𝜕𝑣

𝜕𝑟
+
𝑢𝑣

𝑟
+ 𝑤

𝜕𝑣

𝜕𝑧
) = 𝜈 (

𝜕2𝑣

𝜕𝑧2
), (2.8) 

𝜕𝑝

𝜕𝑧
= 0, (2.9) 

𝜌𝐶𝑝 (𝑢
𝜕𝑇

𝜕𝑟
+ 𝑤

𝜕𝑇

𝜕𝑧
) = 𝑘 (

𝜕2𝑇

𝜕𝑧2
) + 𝜇 {(

𝜕𝑢

𝜕𝑧
)
2

+ (
𝜕𝑣

𝜕𝑧
)
2

}, (2.10) 

 

For the present flow problem following boundary conditions are considered: 

𝑢 = 𝑣 = 0,     𝑤 = 𝐴𝑣0√
𝜈

𝑣0𝑟0
(
𝑟

𝑟0
)
𝑛−1

(𝑛 + 1) at 𝑧 = 0,  

(2.11) 

𝑢 = 0,    𝑣 = 𝑣0 (
𝑟

𝑟0
)
2𝑛−1

 as 𝑧 → ∞. 
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It is worth pointing here that pressure gradient 𝜕𝑝 𝜕𝑟⁄  should equal the centrifugal force per unit 

volume at infinity. Following is assumed for the heat transfer problem.  

𝑇(𝑟, 0) = 𝑇𝑤 = 𝑇∞ + 𝑇0 (
𝑟

𝑟0
)
4𝑛−2

, 
 

(PST case) (2.12) 

−𝑘
𝜕𝑇

𝜕𝑧
│𝑧=0 = 𝐷 (

𝑟

𝑟0
)
5𝑛−3

,                 (PHF case) (2.13) 

               and                𝑇 → 𝑇∞       as      𝑧 → ∞, 
 

(2.14) 

where 𝐷 =
𝑇0𝑘√

𝑣0𝑟0
𝜈

𝑟0
 is a constant with dimension [MT−3] and 𝐷 > 0. 

2.3 Similarity Transformation 

For transforming the governing partial differential equations (PDEs), following substitutions are 

made in terms of similarity variable 𝜂 = (
𝑧

𝑟0
) (

𝑟

𝑟0
)
𝑛−1

√
𝑣0𝑟0

𝜈
. 

𝑢(𝑟, 𝑧) = −𝑣0 (
𝑟

𝑟0
)
2𝑛−1

𝐹(𝜂), 

(2.15) 

𝑣(𝑟, 𝑧) = 𝑣0 (
𝑟

𝑟0
)
2𝑛−1

𝐺(𝜂), 

𝑤 = 𝐴𝑣0√
𝜈

𝑣0𝑟0
(
𝑟

𝑟0
)
𝑛−1

(𝑛 + 1)𝐻(𝜂) + (𝑛 − 1)𝜂𝐹, 

𝑝(𝑟) =
𝜌𝑣0
4𝑛 − 2

(
𝑟

𝑟0
)
4𝑛−2

, 

𝑇(𝑟, 𝑧) = 𝑇∞ + (𝑇𝑤 − 𝑇∞)𝜃(𝜂), 

By using [26] 𝑇𝑤 − 𝑇∞ = 𝑇0 (𝑟 𝑟0)⁄ 4𝑛−2
, the similarity solution for temperature as follows: 

𝑇(𝑟, 𝑧) = 𝑇∞ + 𝑇0 (
𝑟

𝑟0
)
4𝑛−2

𝜃(𝜂), (2.16) 

 

utilizing Eqs. (2.15) and (2.16) in Eqs. (2.6) − (2.10), we obtain the following ODEs: 

               𝐻′ − 𝐹 = 0,  (2.17) 
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               𝐹′′ − (𝑛 + 1)𝐻𝐹′ − (1 − 2𝑛)𝐹2 − 𝐺2 + 1 = 0,  (2.18) 

               𝐺′′ − (𝑛 + 1)𝐻𝐺′ + 2𝑛𝐹𝐺 = 0,  (2.19) 

               𝜃′′ − 𝑃𝑟{(𝑛 + 1)𝐻(𝜂)𝜃′ − (4𝑛 − 2)𝜃 − 𝐸𝑐(𝐹′
2
+ 𝐺′

2
)} = 0,  (2.20) 

where 𝑃𝑟 = (𝜌𝜈𝐶𝑝) 𝑘⁄  defines the Prandtl number and 𝐸𝑐 = 𝑣0
2 (𝐶𝑝𝑇0)⁄  is the Eckert number. 

Transformed boundary condition are given below: 

𝐹(𝜂) = 0, 𝐺(𝜂) = 0, 𝐻(𝜂) = 𝐴 at 𝜂 = 0, 
(2.21) 

𝐹(𝜂) → 0, 𝐺(𝜂) → 1 as 𝜂 → ∞. 

Boundary conditions for 𝜃 (given in Eqs. (2.11) − (2.14)) are transformed as follow: 
 

𝜃(𝜂) = 1      at      𝜂 = 0,                  (PST case) (2.22) 

𝜃′(𝜂) = −1    at     𝜂 = 0,                   (PHF case) (2.23) 

   𝜃(𝜂) → 0        as    𝜂 → ∞.                   (2.24) 

 

Note that the transformed system given by Eqs. (2.17) − (2.20) involves the suction parameter 

𝐴, the power-law parameter 𝑛 = (𝑚 + 1) 2⁄  and the Prandtl number 𝑃𝑟. 

2.4 Numerical Approach 

We have used the MATLAB built-in function bvp4c to solve the system consisting of Eqs. 

(2.17) − (2.20) along with conditions (2.21) − (2.24). In the bvp4c code, the equivalent first-

order system is required to be inserted. To serve this purpose, we substitute: 

(𝐻, 𝐹, 𝐹′, 𝐺, 𝐺′, 𝜃, 𝜃′) = (𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5, 𝑦6, 𝑦7), 

which gives, from Eqs. (2.21) − (2.24): 
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(

 
 
 
 
 
 

𝑦1
′

𝑦2
′

𝑦3
′

𝑦4
′

𝑦5
′

𝑦6
′

𝑦7
′)

 
 
 
 
 
 

=

(

 
 
 
 

𝑦2
𝑦3

(𝑛 + 1)𝑦1𝑦3 + (1 − 2𝑛)𝑦2
2 + 𝑦4

2 − 1
𝑦5

(𝑛 + 1)𝑦1𝑦5 − 2𝑛𝑦2𝑦4
𝑦7

𝑃𝑟{(𝑛 + 1)𝑦1𝑦7 − (4𝑛 − 2)𝑦6 − 𝐸𝑐(𝑦3
2 + 𝑦5

2)})

 
 
 
 

, 

 

(2.25) 

The boundary conditions (2.21) − (2.24) are transformed accordingly as: 

 

                             

(

 
 
 
 
 

 𝑦1(0)

 𝑦2(0)
 𝑦4(0)
 𝑦6(0)
𝑦2(∞)
𝑦4(∞)
𝑦6(∞))

 
 
 
 
 

=

(

 
 
 
 

 𝐴 
0
0
1
0
1
0 )

 
 
 
 

, 

 

(PST case) (2.26) 

                             

(

 
 
 
 
 

 𝑦1(0)
 𝑦2(0)
 𝑦4(0)
 𝑦7(0)
𝑦2(∞)
𝑦4(∞)
𝑦6(∞))

 
 
 
 
 

=

(

 
 
 
 

𝐴
0
0
−1   
0
1
0 )

 
 
 
 

, 

 

(PHF case) (2.27) 

 

The set of equations given in (2.25) with the initial conditions (2.26) and (2.27) have been solved 

through package bvp4c. The computations have been performed in MATLAB and error tolerance 

of 10−6 is imposed. The skin friction coefficient and local Nusselt number [26] for the flow 

problem are defined as: 

𝑅𝑒𝑟
−1/2

𝑁𝑢𝑟 = −𝜃
′(0), (2.28) 

𝑅𝑒𝑟
1/2
𝐶𝑓𝑟 = {(𝐹

′(0))2 + (𝐺′(0))2}1/2, (2.29) 

where 𝑅𝑒𝑟 = (𝑣∞𝑟/𝜈) is the Reynolds number. The above local Nusselt number is only for PST 

case because in PHF case 𝜃′(0) = −1. 
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2.5 Results and Discussions 

2.5.1 Velocity and Temperature profiles in the viscous boundary layer 

In table 2.1, the radial wall shear stress 𝐹′(0), azimuthal wall shear stress 𝐺′(0) and volumetric 

flow rate 𝐻(∞) are assessed by changing the values of parameter 𝑛 in the presence of suction 

parameter 𝐴 = −2.0. The resisting wall shear is raised whenever 𝑛 is gradually increased. 

Theoretically speaking, suction tends to reduce momentum boundary layer thickness which in turn 

elevates wall shear stresses. For increasing values of parameter 𝑛, a slight decrease in axial velocity 

and volume flow rate is detected. 

In table 2.2, Nusselt number data for the case of“prescribed surface temperature (PST case)”is given 

evaluated for changing wall suction parameter 𝐴 and power-law index parameter 𝑛. The power-

law fluid index, the suction parameter, Eckert number and the general linear Prandtl number are 

discovered to be important in determining the solution. In table 2.2, by increasing values of suction 

parameter, more heat is transferred from the solid surface for all considered values of parameter 

𝑛. Moreover, heat transfer rate from the surface is maximum in the case of higher values of 𝑛 and 

minimum whenever 𝑛 diminishes. 

Table 2.1: Boundary layer characteristic 𝐹′(0), 𝐺′(0) and 𝐻(∞) with suction parameter 𝐴 = −2.0. 
 

𝒏 𝑭′(𝟎) 𝑮′(𝟎) 𝑯(∞) 

1.0 0.3698 4.0276 -1.9736 

0.75 0.4216 3.5285 -1.9609 

0.50 0.4916 3.0253 -1.9378 

0.18 0.6362 2.3598 -1.8644 

0.0 0.8076 1.9367 -1.7463 
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Table 2.2: Heat transfer rate −𝜃′(0) (PST case) for various values of flow behaviour index 𝑛 and 

suction parameter 𝐴 when 𝑃𝑟 = 7 and 𝐸𝑐 = 0.5. 
 

𝒏\𝑨 -1.0 -1.5 -2.0 -2.5 

1.0 6.9466 14.0421 19.8727 25.4040 

0.75 6.7605 12.6413 17.6565 22.4465 

0.50 6.7518 11.3919 15.5617 19.5894 

0.18 6.7324 10.0456 13.1319 16.1544 

0.0 6.5604 9.3579 11.9368 14.3871 

 

In Figs. 2.1 − 2.3, graphs of the functions 𝐹, 𝐺 and 𝐻 are obtained against the similarity variable 

𝜂 for various choices of suction parameter 𝐴. A sharp thinning in momentum boundary layer is 

predicted whenever the disk is porous. In absence of suction, axial flow is upwards as in pure 

Bödewadt flow. For a sufficiently large value suction parameter 𝐴, the direction of axial flow 

becomes downward. Oscillations in all profiles seem to vanish as suction tends to infinity. 

It can be concluded that in infinite suction limit, whole fluid admits rigid body rotation (as also 

observed by Turkyilmazoglu [7]). It is natural to witness that axial flow accelerates for increasing 

values of suction. 

To illustrate the consequence of parameter 𝑛 on the velocity components, Figs. 2.4 − 2.6 are 

obtained which show plots of the functions 𝐹, 𝐺 and 𝐻 for different values of 𝑛. As 𝑛 gradually 

enlarges, it takes increasingly lower distances for the profiles of 𝐹, 𝐺 and 𝐻 to reach their 

respective asymptotic values. It suggests that boundary layer thickness contracts in transition from 

potential vortex to pure Bödewadt situation. Axial flow at infinity is accelerated upon increasing 

values of 𝑛. 
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Temperature curves for both the imposed boundary conditions are presented in Figs. 2.7 − 2.14. 

Rahman and Andersson [12] have pointed out that solution of energy equation can be meaningful 

only when sufficiently large value of suction parameter is selected. Figures 2.7 and 2.8 display the 

onset of suction on the thermal boundary layer in PST and PHF cases. A drastic thinning in thermal 

boundary layer is noticed for increasing values of suction parameter. Variation in temperature 

curves appear to be of similar magnitude in both PST and PHF cases.  

Figs. 2.9 and 2.10 display the temperature curve for different choices of Prandtl number 𝑃𝑟 in 

PST and PHF cases respectively. Prandtl number 𝑃𝑟 is a dimensionless parameter used in 

calculations of heat transfer between a moving fluid and a solid body. 

Contribution of power-law index 𝑛 on the temperature profile in both PST and PHF cases is 

demonstrated in Figs. 2.11 and 2.12 respectively. A slight drop in temperature is noticed when 𝑛 

is varied from 0 to 1. 

Variation in temperature profile caused by changing Eckert number 𝐸𝑐 is noticed in Figs. 2.13 and 

2.14 for PST and PHF cases respectively. Eckert number 𝐸𝑐 gives the relative importance of heat 

generation as a consequence of frictional heating. Its value is higher for the cases where fluid flows 

at high velocity compared to the prescribed temperature difference. Physically, Eckert number 

measures the work done by the fluid against the viscous stresses. Graphs in the Figs. 2.13 and 2.14 

indicate that thermal boundary layer expands rapidly for increasing Eckert numbers. 
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      Fig. 2.1: Variation in radial velocity profile 

      𝐹(𝜂) with 𝜂 for different choices of suction 

parameter 𝐴 when (𝑛 = 1). 

 

      Fig. 2.2: Variation in tangential velocity profile 

 𝐺(𝜂) with 𝜂 for different choices of suction 

parameter 𝐴 when (𝑛 = 1). 

  

       Fig. 2.3: Variation in axial velocity profile 𝐻(𝜂) with 𝜂 for different choices of suction 

parameter 𝐴 when (𝑛 = 1). 
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           Fig 2.4: Variation in radial velocity profile 

           𝐹(𝜂) with 𝜂 for different choices of power- 

law parameter 𝑛 when (𝐴 = −2.0). 

 

     Fig. 2.5: Variation in tangential velocity profile 

     𝐺(𝜂) with 𝜂 for different choices of power-law 

parameter 𝑛 when (𝐴 = −2.0). 

 

 Fig. 2.6: Variation in axial velocity profile 𝐻(𝜂) with 𝜂 for different choices of power-law 

parameter 𝑛 when (𝐴 = −2.0). 
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              Fig. 2.7: Variation in temperature profile 

             𝜃(𝜂)with 𝜂 for different choices of suction  

parameter 𝐴 in PST case. 

 

           Fig. 2.8: Variation in temperature profile 

                 𝜃(𝜂) with 𝜂 for different choices of  

suction parameter 𝐴 in PHF case. 

 

      Fig. 2.9: Variation in temperature profile 𝜃(𝜂) 

     with 𝜂 for different choices of Prandtl 

number 𝑃𝑟 in PST case. 

 

     Fig. 2.10: Variation in temperature profile 𝜃(𝜂) 

                with 𝜂 for different choices of Prandtl 

number 𝑃𝑟 in PHF case. 
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     Fig. 2.11: Variation in temperature profile 𝜃(𝜂) 

  with 𝜂 for different choices of power-law 

parameter 𝑛 in PST case. 

 

     Fig. 2.12: Variation in temperature profile 𝜃(𝜂) 

 with 𝜂 for different choices of power-law 

parameter 𝑛 in PHF case. 

 

    Fig. 2.13: Variation in temperature profile 𝜃(𝜂) 

with 𝜂 for different choices of Eckert 

number 𝐸𝑐 in PST case. 

 

     Fig. 2.14: Variation in temperature profile 𝜃(𝜂)  

with 𝜂 for different choices of Eckert 

 number 𝐸𝑐 in PHF case. 
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Chapter 3 

Vortex Flow and Heat Transfer Over a Permeable Disk in 

the Presence of Concentration Gradient 

 

3.1 Introduction 

Concentration gradient effects on the boundary layer formed beneath a vortex flow are formulated 

in this chapter. Advection-diffusion process is assumed to be influenced by activation energy of 

chemical reaction; which takes place because fluid media being treated is comprising of chemically 

reactive substances. Boundary condition for velocity and temperature are similar to those 

employed in [12]. A dimensional concentration function 𝜙 is introduced in term of similarity 

variable 𝜂 (defined in Chapter 2), which is utilized to obtain self-similar (mass transfer) equation 

in 𝜙. Numerical solution is achieved, which is used to forecast the impacts of chemical reaction 

and activation energy on the associated mass transport phenomena. 

3.2 Problem Formulation 

Suppose that fluid media being treated in Chapter 2 contains chemically reactive species. Let 𝐶𝑤  

and 𝐶∞ be concentrations of species at wall and ambient, respectively. A well-known Arrhenius 

function is invoked to model energy needed for the activation of chemical reaction.  

In view of such assumptions, the problem is governed by the following boundary layer equations: 

𝜕

𝜕𝑟
(𝑟𝑢) +

𝜕

𝜕𝑧
(𝑟𝑤) = 0, 

 
(3.1) 

𝑢
𝜕𝑢

𝜕𝑟
−
𝑣2

𝑟
+ 𝑤

𝜕𝑢

𝜕𝑧
= −

1

𝜌

𝜕𝑝

𝜕𝑟
+ 𝜈 (

𝜕2𝑢

𝜕𝑧2
), (3.2) 

(𝑢
𝜕𝑣

𝜕𝑟
+
𝑢𝑣

𝑟
+ 𝑤

𝜕𝑣

𝜕𝑧
) = 𝜈 (

𝜕2𝑣

𝜕𝑧2
), (3.3) 



31 

 

𝜕𝑝

𝜕𝑧
= 0, (3.4) 

𝜌𝐶𝑝 (𝑢
𝜕𝑇

𝜕𝑟
+ 𝑤

𝜕𝑇

𝜕𝑧
) = 𝑘 (

𝜕2𝑇

𝜕𝑧2
), (3.5) 

𝑢
𝜕𝐶

𝜕𝑟
+ 𝑤

𝜕𝐶

𝜕𝑧
= 𝐷(

𝜕2𝐶

𝜕𝑧2
− 𝑘𝑟

2 (
𝑇

𝑇∞
)
𝑓

𝑒−
𝐸𝑎
𝑘𝑇(𝐶 − 𝐶∞)), (3.6) 

 

In equation (3.6), the term 𝑘𝑟
2(𝑇 𝑇∞⁄ )𝑓𝑒

−𝐸𝑎

𝒌𝑇  is the Arrhenius function in which, 𝑘 =

8.61 × 10−5 𝑒𝑉 𝐾⁄  is the Boltzmann constant, 𝑓is defined as fitted rate constant which generally 

lies in the range −1 < 𝑓 < 1, 𝐸𝑎 is the activation energy, 𝑘𝑟
2
 signifies the reaction rate, 𝐶 shows 

the concentration of species and 𝐷 stands for diffusion coefficient of species. 

Boundary conditions are posed as follows: 

𝑢 = 0,  𝑣 = 0,  𝑤 = 𝐴𝑣0√
𝜈

𝑣0𝑟0
(
𝑟

𝑟0
)
𝑛−1

(𝑛 + 1),  𝑇 = 𝑇𝑤,  𝐶 = 𝐶𝑤     at 𝑧 = 0, 

(3.7) 

𝑢 → 0,  𝑣 → 𝑣0 (
𝑟

𝑟0
)
2𝑛−1

,  𝑇 → 𝑇∞,  𝐶 → 𝐶∞    as 𝑧 → ∞, 
 

3.3 Similarity Solution 

For the above generalized boundary conditions, we define following similarity transformations 

𝑢(𝑟, 𝑧) = −𝑣0 (
𝑟

𝑟0
)
2𝑛−1

𝐹(𝜂), 

(3.8) 

𝑣(𝑟, 𝑧) = 𝑣0 (
𝑟

𝑟0
)
2𝑛−1

𝐺(𝜂), 

𝑤 = 𝐴𝑣0√
𝜈

𝑣0𝑟0
(
𝑟

𝑟0
)
𝑛−1

(𝑛 + 1)𝐻(𝜂) + (𝑛 − 1)𝜂𝐹, 

𝑝(𝑟) =
𝜌𝑣0
4𝑛 − 2

(
𝑟

𝑟0
)
4𝑛−2

, 

𝑇(𝑟, 𝑧) = 𝑇∞ + (𝑇𝑤 − 𝑇∞)𝜃(𝜂), 

𝐶(𝑟, 𝑧) = 𝐶∞ + (𝐶𝑤 − 𝐶∞)𝜙(𝜂), 
 

where 𝜂 is dimensionless similarity variable which is defined as following: 
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𝜂 = (
𝑧

𝑟0
) (
𝑟

𝑟0
)
𝑛−1

√
𝑣0𝑟0
𝜈
, 

 

(3.9) 

 

By using similarity transformations Eq. (3.6) assumes the following form: 

−𝑣0 (
𝑟

𝑟0
)
2𝑛−1

(
𝑧

𝑟0
) (
𝑟

𝑟0
)
𝑛−1

(
1

𝑟
)√
𝑣0𝑟0
𝜈
(𝑛 − 1)𝐹(𝜂)𝜙′(𝐶𝑤 − 𝐶∞)

+ 𝑣0 (
𝑟

𝑟0
)
2𝑛−1

(
1

𝑟
)√

𝜈

𝑣0𝑟0
[(𝑛 + 1)𝐻(𝜂) + (𝑛 − 1)𝜂𝐹]𝜙′√

𝑣0𝑟0
𝜈
(𝐶𝑤 − 𝐶∞)

=
𝜈

𝑆𝑐
(
1

𝑟0
)
2

(
𝑟

𝑟0
)
2𝑛−1

(
𝑟0
𝑟
)
𝑣0𝑟0
𝜈
(𝐶𝑤 − 𝐶∞)𝜙

′′

− 𝑘𝑟
2(1 + 𝛿𝜃)𝑓 exp(−𝐸 1 + 𝛿𝜃⁄ ) (𝐶𝑤 − 𝐶∞)𝜙, 

 

 

 

 

 

where 𝐸 refers to the non-dimensional activation energy. Further simplification leads to the 

following: 

(𝑛 + 1)𝐻𝜙 =
1

𝑆𝑐
𝜙′′ −

𝑘𝑟
2

𝑣0

𝑟
(
𝑟

𝑟0
)
2𝑛−1

(1 + 𝛿𝜃)𝑓 exp(−𝐸 1 + 𝛿𝜃⁄ )𝜙, (3.10) 

 

By defining the reaction rate 𝑘𝑟
2
: 

𝑘𝑟
2 = 𝐾𝑟

2  (
𝑣0
𝑟
) (
𝑟

𝑟0
)
2𝑛−1

 

Eq. (3.10) can be cast into the following form: 

(𝑛 + 1)𝐻𝜙 =
1

𝑆𝑐
𝜙′′ − 𝐾𝑟

2(1 + 𝛿𝜃)𝑓 exp(−𝐸 1 + 𝛿𝜃⁄ )𝜙, (3.11) 

 

By rearraigning the equation, we get: 

𝜙′′ = 𝑆𝑐[(𝑛 + 1)𝐻𝜙′ + 𝐾𝑟
2(1 + 𝛿𝜃)𝑓 exp(−𝐸 1 + 𝛿𝜃⁄ )𝜙], (3.12) 

Hence, we are required to solve the following system:  

𝐻′ − 𝐹 = 0, (3.13) 

𝐹′′ − (𝑛 + 1)𝐻𝐹′ − (1 − 2𝑛)𝐹2 − 𝐺2 + 1 = 0, (3.14) 

𝐺′′ − (𝑛 + 1)𝐻𝐺′ + 2𝑛𝐹𝐺 = 0, (3.15) 
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𝜃′′ − Pr(𝑛 + 1)𝐻(𝜂)𝜃′ = 0, (3.16) 

𝜙′′ − 𝑆𝑐[(𝑛 + 1)𝐻𝜙′ + 𝐾𝑟
2(1 + 𝛿𝜃)𝑓 exp(−𝐸 (1 + 𝛿𝜃)⁄ )𝜙] = 0, (3.17) 

The boundary conditions are following: 

𝐹(𝜂) = 0, 𝐺(𝜂) = 0, 𝐻(𝜂) = 𝐴, 𝜃(𝜂) = 1,     𝜙(𝜂) = 1       at       𝜂 = 0, 
(3.18) 

 𝐹(𝜂) → 0, 𝐺(𝜂) → 1, 𝜃(𝜂) → 0,       𝜙(𝜂) → 0 as 𝜂 → ∞, 
 

By means of the transformation defined in Eq. (3.8), the PDEs in Eqs. (3.1) − (3.7) transform 

exactly into a set of coupled non-linear ordinary differential equations (ODEs) subjected to nine 

suitable boundary conditions in Eq. (3.18).  

3.4 Results and Discussions 

In table 3.1, wall concentration data is being calculated by varying wall suction parameter 𝐴 and 

power-law index parameter 𝑛. Originally, wall concentration increases from the solid surface 

whenever larger suction velocity is accounted. This outcome holds for all considered values of 

parameter 𝑛. Higher values of 𝑛, yield higher wall concentration gradient or thinner concentration 

boundary layer. Moreover, surface concentration is lowered whenever 𝑛 is decrease.  

        Table 3.1: Concentration rate −𝜙′(0) for differently revolving far-field flow 𝑣 ∼ 𝑟𝑚 with the power 

         𝑚 in the range from 𝑚 = +1 (solid-body rotation 𝑛 = 1) to 𝑚 = −1 (potential vortex 𝑛 = 0) when 

         𝑆𝑐 = 1, 𝐸 = 1, 𝛿 = 0.75, 𝑃𝑟 = 1 and 𝐾𝑟
2 = 1. 

 

 

𝒏\𝑨 0 -0.42 -0.5 -1.0 -2.0 

1.0 NA 1.1478 1.2588 2.1681 4.1115 

0.75 NA 1.0708 1.1778 1.9336 3.6249 

0.50 NA 0.9881 1.0794 1.7011 3.1418 

0.0 NA 0.8550 0.8955 1.1955 2.1868 
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Concentration profile 𝜙(𝜂) is plotted from the numerical solution for wide range of embedded 

parameters. Fig. 3.1 includes curves of 𝜙(𝜂) by varying suction-strength parameter 𝐴. 𝜙(𝜂) 

appears to be a monotonically decreasing function of similarity variable 𝜂. Moreover, 

concentration 𝜙(𝜂) appears to be suppressed as suction velocity enlarges. Concentration boundary 

layer is drastically thinned due to the inclusion of wall suction effect. 

To inspect how parameter 𝑛 influences the concentration boundary layer, Fig. 3.2 is presented 

which contains graphs of 𝜙 verses similarity variable 𝜂 for values of 𝑛 is the range 0 ≤ 𝑛 ≤ 1. An 

expansion in concentration boundary layer is detected when the case of potential. 

Fig. 3.3 shows the plots of 𝜙(𝜂) as the Schmidt number 𝑆𝑐 varies. The effect of Schmidt number 

is such that 𝜙(𝜂) decreases sharply for growing values of 𝑆𝑐. Physically, for higher 𝑆𝑐-values, 

mass diffusion coefficient is relatively small and concentration boundary layer is therefore thinner. 

Fig. 3.4 presents the concentration profile 𝜙(𝜂) for the different choices of activation energy 𝐸. It 

is clearly visible that activation energy works to increase the value of species concentration in the 

flow field. The effect of activation energy 𝐸 on the concentration 𝜙(𝜂) have been shown. It 

indicates that when the dimensionless activation energy increases, the concentration boundary 

layer thickens. Because of the low temperature and high activation energy, the reaction rate 

constant is less and the chemical reaction is slowed. 

Fig. 3.5 shows the variation in solute concentration 𝜙(𝜂) by changing temperature difference 

parameter 𝛿. The solute concentration 𝜙(𝜂) is seen to be a decreasing function of 𝛿. This means 

that when the temperature difference between the wall and the ambient temperature rises, the 

thickness of the concentration boundary layer also rises.  

Fig. 3.6 is prepared to perceive the importance of reaction rate on concentration 𝜙(𝜂). The 

reduction in concentration profile  𝜙(𝜂) is accompanied with a large concentration gradient at the 

wall. Physically, higher values of 𝐾𝑟
2 implies higher destructive chemical reaction rate which in 

turn reduces the concentration of species and concentration 𝜙 is therefore seen to be an increasing 

function of 𝐾𝑟
2. 

In Fig. 3.7, the effects of fitted rate constant 𝑓 on the solute concentration have been shown. It can 

be observed that an increase in 𝑓 results in an increase in factor 𝐾𝑟
2(1 + 𝛿𝜃)𝑓 exp(−𝐸 (1 + 𝛿𝜃)⁄ ). 
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This eventually favors the destructive chemical reaction due to which concentration rises. The 

reduction in 𝜙 is accompanied with a large concentration gradient at the wall. 

 

     Fig. 3.1: Variation in concentration profile 𝜙(𝜂)  

       with 𝜂 for different choices of suction 

parameter 𝐴. 

 

   Fig. 3.2: Variation in concentration profile 𝜙(𝜂)  

  with 𝜂 for different choices of power-law 

parameter 𝑛. 

 

   Fig. 3.3: Variation in concentration profile 𝜙(𝜂) 

            with 𝜂 for different choices of Schmidt 

number 𝑆𝑐. 

 

     Fig. 3.4: Variation in concentration profile 𝜙(𝜂)  

      with 𝜂 for different choices of activation  

energy 𝐸. 

 



36 

 

 

  Fig. 3.5: Variation in concentration profile 𝜙(𝜂) 

        with 𝜂 for different choices of temperature  

difference parameter 𝛿. 

 

        Fig. 3.6: Variation in concentration profile 𝜙(𝜂) 

        with 𝜂 for different choices of reaction rate 

parameter 𝐾𝑟
2. 

 

         Fig. 3.7: Variation in concentration profile 𝜙(𝜂) with 𝜂 for different choices of fitted rate constant 𝒇.. 
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Chapter 4 

Conclusions  

Heat and mass transport phenomena in a boundary layer formed under a generalized vortex flow 

are investigated. Generalized vortex flow is characterized by a power-law tangential velocity. Heat 

transport problem is solved in the existence of viscous dissipation term for two different kinds of 

boundary conditions. Furthermore, mass transport phenomena is analyzed by incorporating 

activation energy term. Main conclusions of the problem are listed below: 

• Energy equation with viscous dissipation term is solved by assuming two different thermal 

boundary conditions. The influence of viscous dissipation term is such that heat generation 

enhances for increasing frictional heating effect which leads to an enhanced temperature 

profile. 

• Governing problem is self-similar only if surface temperature and surface heat flux are 

prescribed as 𝑇𝑤 = 𝑇∞ + 𝑇0(𝑟/𝑟0)
4𝑛−2 and 𝑞𝑤 = 𝐷(𝑟/𝑟0)

5𝑛−3 respectively. Otherwise, 

the problem is locally similar. 

• Meaningful solutions of the energy and concentration equations are possible only when the 

axial flow is directed downward. This can be ensured by considering sufficiently large 

value of wall suction parameter 𝐴. 

• Activation energy of chemical reaction and concentration profile are directly related with 

each other. Moreover, higher the rate of chemical reaction, smaller will be the 

concentration boundary layer thickness. 

• Suction phenomena plays an important role in enhancing heat transfer from the disk in case 

of prescribed wall temperature. 
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• Power-law index 𝑛 has only a marginal influence on thermal and solute boundary layers. 

Values of temperature and concentration functions in a potential vortex case (𝑛 = 0) are 

lesser than that in the case of rigid body rotation (𝑛 = 1). 
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