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Abstract

Quantum entanglement is a key resource for numerous quantum information tasks,

quantum computing, quantum sensing and related quantum technologies. However,

the generation, detection and quanti�cation of entanglement may be quite complicated

depending on the nature and properties of the pertaining system. In this thesis, we

study various methods for detection and quanti�cation as resource theory of entan-

glement for a system of particles in the context of indistinguishability transition of

particles' identity.

We start our discussion with the system of distinguishable particles and discuss

di�erent methods of entanglement detection and quanti�cation such as Schmidt de-

composition and von Neumann Entropy, with all their merits and demerits. The

notion of entanglement is extended for the quantum systems composed of indistin-

guishable particles and, its detection and quanti�cation is analyzed. It is found that

the conventional Schmidt decomposition deeds to be modi�ed, in the form of Slater-

Schmidt decomposition, when the particles' identity becomes indistinguishable. In

order to build a comprehensive analysis, we review various techniques to make a global

entanglement detection scheme, such as, so-called no label approach which becomes

complicated in the case of indistinguishable particles. Finally, we discuss the second

quantization approach which helps to reduce the complications of symmetrization pos-

tulate for indistinguishable particles and suggest a way to develop a uni�ed approach

to all quantum systems.
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Chapter 1

Introduction

Entanglement is a unique feature of a composite quantum system that basically orig-

inates from the principle of superposition. It questions our sense of locality as �rst

discussed by Einstein, Podolsky, and Rosen [1]. They questioned the completeness

of quantum mechanics on the basis of "locality" which disagrees with the concept of

remote in�uence and "realism" which emphasizes the intrinsic values of physical prop-

erties before observation. Schrodinger [2] recognized its importance and stated,

"I would not call [entanglement] one but rather the characteristic trait of

quantum mechanics, the one that enforces its entire departure from classical

lines of thought"

It was a revolutionary resource for quantum communication that defeat the classical

devices with its high computing power and time-saving characteristics. These features

and their vast application motivated scientists to perform experiments and put forward

theoretical proposals in order to generate entanglement. In 1964 Bell [3] describe the

EPR concept of incompleteness in terms of the Local Hidden Variable Model (LHVM).

He proved that by applying the assumptions of realism, locality, and free will we can

impose restrictions on correlations that involve bipartite systems in the form of Bell

inequalities. He showed that some states violate the bell inequality on measurement

which was termed entangled states. So it was clear that this unique feature cannot be

simulated in the classical world. The transition from thought experiments to laboratory
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started in the mid-60s but the convincing violation of Bell inequalities was reported by

Aspect, J.Dalibard, and G.Roger in 1982 [4]. After that many interesting experimental

tests were performed against LHVM in the laboratories that con�rms the prediction

of quantum description. In the early 90s, this concept evolves in terms of entropic

inequalities on the basis of von Neumann entropy. The violation of these inequalities is

the indicator of entanglement in quantum states but the physical meaning of this was

unclear. In 1997 Cerf and Adami [5] tried to explain it in term of conditional entropy

and considered it a fundamental quantity responsible for the capabilities of transmis-

sion of quantum information. All of this was theoretical until a direct violation of the

entropic inequalities was experimentally demonstrated and con�rmed the breaking of

classical statistical order in compound quantum systems in 2005 by Bovino [6]. Later

this entanglement theory plays an important role in the discoveries of quantum cryp-

tography [7], quantum dense coding [8] and quantum teleportation [9, 10]. Due to

enormous application in the modern world, nowadays many experiments aim at the

generation of entanglement. In any of these experiments, typical questions arise: How

can one be sure that entanglement was indeed produced? How can one detect the pres-

ence of entanglement? Can we quantify the entanglement in the experiment? These

questions are di�cult to answer and many possible ways to tackle this problem have

been proposed. Scientist put a lot of e�ort to study entanglement in distinguishable

particle quantum systems that can be evaluated individually. Initially spin
1

2
parti-

cles were used to study entanglement. After that photonic entanglement discovered in

interferometry, e.g, parametric down-conversion, and we link the with qubit state in

order to devise a simpli�ed explanation.

Entanglement is a property that is exhibited by a system that is composed up of

two or more particle/sub-systems. The state of a single particle can be exact or in

superposition, e.g, (|ψ〉 = a |↑〉+ b |↓〉) that falls to a speci�c state on observation but

it does not a�ect the state of any other particle in the world while in entanglement

we have more than one particle in a system whose states are somehow correlated,

e.g, (|ψ〉 = a |↑, ↓〉1,2 + b |↓, ↑〉1,2) with each other. This correlation is entanglement,

when both the particles in a speci�c system attain a certain state when one of the
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particle's state is observed. So, before entanglement, we will take a look at di�erent

systems and various methods that are involved in their state representation [11]. Here

we are going to make use of the Stern-Gerlach apparatus in a decaying process of a

spin-0 particle into two spin-1/2 particles that travel in opposite directions in order to

conserve momentum obviously will have an opposite spin that satis�es the conservation

of spin angular momentum. Now the question arises which particle has +1/2 spin and

which one is with -1/2 spin? For this purpose consider two observers with Stern-

Gerlach apparatus who can observe the spin of one of the two particles that is in his

vicinity. We can write the state of this system as, |ψ〉 =
1√
2

(|↑, ↓〉1,2 − |↓, ↑〉1,2) [12]

which shows if we know the spin of any of these two particles we can tell the spin of

other particle with 100% accuracy. All the systems are not that state forward, some

methods are devised to detect entanglement in distinguishable quantum system like

separability and Schmidt decomposition [13] of the states. These methods only give

information about the presence or absence of entanglement in the system which is not

enough. For its use we need to quantify the entanglement that will be done with the

help of the Schmidt-coe�cient that comes from Schmidt decomposition. von Neumann

entropy and Concurrence are considered good quanti�er of the entanglement that make

use of Schmidt-coe�cient. These methods are only suitable for distinguishable systems

and are not applicable to indistinguishable particle systems.

Classically, distinguishable and indistinguishable particles are treated identically

because we can mark them with labels or we can trace the trajectory they follow but

this is not the case in quantum mechanics. The properties of indistinguishable parti-

cles di�er signi�cantly from distinguishable because we can not apply physical labels

or trace their trajectory as in classical systems. Initially, the systems of indistinguish-

able particles were described with the help of unphysical(mock) labels [13] that make

them distinguishable and symmetrization postulates were introduced in the system.

These labels make the characterization of quantum states and correlation complicated

and add exchange-correlation in the state of the system. Now the question arises that

is this correlation is entanglement or not? To counter with exchange-correlation and

characterization of entanglement a method called Slater rank was developed [14, 15]
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which was analogous to Schmidt decomposition in an indistinguishable system. Ac-

cording to it, the state which can be written in a single Slater determinant or convex

combination of them are separable [14, 16]. The quanti�cation of entanglement was

the same in both the system through von Neumann entropy but we need to add a shift

equals lnN to �lter entanglement in indistinguishable systems, where N is the total

number of particles in the system. This method suggest di�erent treatment for bosons

and fermions. Moreover, labels make particles distinguishable which was practically

impossible. So a method with no label approach was introduced which was extended

to Schmidt decomposition for indistinguishable particles [17, 18, 19]. Symmetrization

was achieved by the permutation of the particles that expel the need for labels. In the

end, in order to make a uni�ed approach to all the quantum systems, we introduce

second quantization [46] and its authentication will be veri�ed by comparing it with

results.

Throughout all this discussion we will chose some quantum systems like Sponta-

neous Parametric Down Conversion (SPDC) and apply all these methods on them and

will compare the results with the help of an entanglement graph that will simplify the

e�ect of localization and non-localization approach on entanglement.
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1.1 Thesis Outline

This work is organized as follows: In chapter 2 we will review the methods that are

used to represent the state of any system using product Hilbert space. After that,

we will discuss the density operator and its properties for the pure and mixed states.

In next step will talk about the methods of entanglement detection (separability and

Schmidt decomposition). The methods to separate out particles through partial trace

will come under discussion. We will apply some of these methods to Spontaneous Para-

metric Down Conversion (SPDC) photons. Entanglement quanti�er like von Neumann

entropy will come in the end of this chapter. In chapter 3 we will move from distin-

guishable to indistinguishable particles. In the �rst step, we will talk about the state

formalism of these particles. After that, we will look at di�erent methods to quantify

entanglement in these particles in which we will try to convert indistinguishable par-

ticles to distinguishable by freezing some of their freedoms. After that, we will apply

the mock label technique and symmetrization postulates which induce entanglement in

the system. To solve this theoretical entanglement Slater Schmidt decomposition will

be studied. To quantify entanglement we will talk about von Neumann entropy and

its behavior in both cases. At the end of this chapter, we discuss no label approach

that makes use of the permutation technique instead of symmetrization postulates.

Then extend this concept to build Schmidt decomposition for identical particles. In

chapter 4, we will apply the second quantization approach to show the behavior of

particles when they move from indistinguishable to the distinguishable domain, local

and non-local approach will be compared for all quantum systems and our work will

be concluded in chapter 5.
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Chapter 2

Entanglement in Quantum Systems

A composite system is one that incorporates more than one quantum object (for in-

stance, a molecule comprises protons and electrons). Our task is to assemble a formal-

ism in which the state of the whole system can be represented in terms of its constituent

states.

In general, we deal with composite systems which are not isolated but somehow

correlated with each other in the quantum mechanical scenarios. In many cases, we

deal with multiparticle states. To understand the composite system we build a large

Hilbert space H that is composed up of sub Hilbert spaces that are independent of

each other and separately represent a complete system. This mechanism is termed as

Kronecker or tensor product.

lets consider two Hilbert spaces Hα and Hβ of dimension M1 and M2 respectively.

To represent it in a composite system we combine these Hilbert spaces and build a

large Hilbert space H using a tensor product mechanism which is written as,

H = Hα ⊗ Hβ. (2.0.1)

The product of dimensions of Hα and Hβ represent the dimension of combined Hilbert

space.

dim(H) = M1M2 (2.0.2)
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2.1 Quantum Description of Composite System

A state vector in composite Hilbert space H, which is a combination of Hα and Hβ,is

written as the tensor product in Dirac notation. Let |ψ〉 ∈ Hα and |φ〉 ∈ HB then the

vector space in Hilbert space H is represented as,

|χ〉 = |δ〉 ⊗ |φ〉 , (2.1.1)

where |χ〉 belongs to composite Hilbert space H. The tensor product follows the linearity

property,

|δ〉 ⊗ [|φ1〉+ |φ2〉] = |δ〉 ⊗ |φ1〉+ |δ〉 ⊗ |φ2〉

[|δ1〉+ |δ2〉]⊗ |φ〉 = |δ1〉 ⊗ |φ〉+ |δ2〉 ⊗ |φ〉 .
(2.1.2)

It also shows linear behavior when multiplied by a scalar,

|δ〉 ⊗ (B |φ〉) = B |δ〉 ⊗ |φ〉 . (2.1.3)

Now the basis of large Hilbert space can be written in the form of tensor products of

basis vectors for the spaces Hα and Hβ. Lets de�ne the basis of Hα by |Xi〉 and Hβ by

|Yi〉 then the basis |Zi〉 for state of composite system is,

|Zi〉 = |Xi〉 ⊗ |Yi〉 . (2.1.4)

The tensor product is independent of the order; i.e,

|ψ〉 ⊗ |φ〉 = |φ〉 ⊗ |ψ〉 . (2.1.5)

The tensor product can also be represented as,

|ψ〉 ⊗ |φ〉 = |ψ〉 |φ〉 = |ψφ〉 . (2.1.6)

The procedure to calculate the scalar product of two vectors, that belong to the same

Hilbert space, is quite simple. Suppose we have two state vectors,

|ZA〉 = |XA〉 ⊗ |YA〉 ,

|ZB〉 = |XB〉 ⊗ |YB〉 .
(2.1.7)
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then, the inner product of above state vectors de�ned as,

〈ZA|ZB〉 = (〈XA| ⊗ 〈YA|)(|XB〉 ⊗ |YB〉),

= 〈XA|XB〉 〈YA|YB〉 .
(2.1.8)

We can build a basis of C4 out of C2 with the help of inner product in many cases.

2.1.1 Pure State

We will initially understand pure state with the example of a bipartite system and

then generalize it to the multi-partite systems. For a two-particle system prepared in

a pure state |ψi (i = 1, 2)〉; then the separable state of composite system |ΨS〉 can be

written as direct product form,

|ΨS〉 = |ψ1〉 ⊗ |ψ2〉 . (2.1.9)

The pure state can be a combination of independent states or superimposed states.

The above state in this form looks like a non-super imposed state that shows only

local measurements can be performed on the system, which means that the observer

had access to only one system at a time. When we perform local measurement on the

composite system e.g, (α⊗ I), where α operates on the �rst subsystem and I operates
on the second subsystem. The states of the �rst subsystem will be projected to the

eigenstates of the operator α and the second subsystem will remain unchanged. After

some time if the observer performs the measurement on the second subsystem it will

not a�ect the �rst subsystem and will not be a�ected by the earlier operation which was

performed on the �rst subsystem. This means that both the subsystem are independent

of each other.

When a pure state superimpose, then the resultant state is also a pure state that

can be written as,

|ΨE〉 =
1√
2

(|ψA〉 ⊗ |ψB〉+ |φA〉 ⊗ |φB〉), (2.1.10)

where |ψi〉 6= |φi〉 and (i=A,B). Now the operation of a local operator α ⊗ I on this
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system gives the result as,

〈α〉 = 〈ΨE|α⊗ I |ΨE〉 ,

= tr(α⊗ I |ΨE〉 〈ΨE|),

= trA(α trB |ΨE〉 〈ΨE|),

= trA(αρA),

(2.1.11)

where trA,B is the partial trace over one of the subsystems (A or B) and ρA =

trB |ΨE〉 〈ΨE|, is the reduced density matrix that belongs to subsystem A. From these

arguments, we can conclude that the reduced density matrix of the sub-subsystems can

be calculated from the density matrix of the system as,

ρ = |ΨE〉 〈ΨE| ,

ρA = trB |ΨE〉 〈ΨE| ,

ρB = trA |ΨE〉 〈ΨE| .

(2.1.12)

Above equations shows that the partial trace method is useful to separate one subsys-

tem from the other.(add generalized states)

For a multipartite system of N particles the pure state can be represented in the

tensor product form of N independent state vectors,

|Ψ〉 = |ψ1〉 ⊗ |ψ2〉 ⊗ ...⊗ |ψN〉 . (2.1.13)

2.1.2 Mixed State

Generally, the most frequently encountered state in real experiments is a mixed state

[20]. It is practically not feasible to isolate every system from the surrounding, so the

state which left to be dealt with is mixed. To get the mixed state of the system we

simply took the partial trace over the surroundings and then the left reduce state is

mixed. e.g for the bipartite system, of pure state, the mixed state is represented as,

ρ = ρ1 ⊗ ρ2, (2.1.14)
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where there is no correlation between ρ1 and ρ2 subsystems. In the form of convex

sum, we can write it as,

ρ = Σipiρ
1
i ⊗ ρ2

i , (2.1.15)

where pi is the probability which satis�es the conditions pi > 0 and Σipi = 1. For N

number of particles mixed state can be written as,

ρ = Σipiρ
1
i ⊗ ρ2

i ⊗ ...⊗ ρNi . (2.1.16)

2.2 Density Operator and its Properties

Single quantum systems are easy to handle but in general, we encounter with the

collection of systems called ensemble and its members can be found in di�erent quantum

states with some probability which may be the same or di�erent for every state. Let

us consider an example for further understanding [21, 22].

Suppose we have two dimensional Hilbert space whose basis vectors are de�ned as,

|ψ〉 and |φ〉. By using de�ned basis vectors |ψ〉 and |φ〉, we can prepare composite

system comprised of N number of particles in which each can be in one of the given

states, i.e,

|X〉 = α1 |ψ〉+ α2 |φ〉 ,

|Y 〉 = β1 |ψ〉+ β2 |φ〉 .
(2.2.1)

As the given states are normalized to unity so,

|α1|2 + |α2|2 = 1,

|β1|2 + |β2|2 = 1.
(2.2.2)

By considering N number of particles out of which nx are prepared in |X〉 state and
ny are in |Y 〉 state so we can write,

N = nx + ny. (2.2.3)

According to this relation the probability of �nding any random member of this sam-

ple/ensemble in state |X〉 can be represented by p = nx/N . As we knew the sum of all
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the probabilities is one so the probability of particle to be in state |Y 〉 is 1 - p, which

satis�es the law of probabilities.

So, from the above discussion, we can conclude that system probability behaves

classically at the ensemble level, which shows that the information we are getting

is incomplete; that is we have a simple statistical mixture at ensemble level. This

statistical mixture works for classical properties but not in the case of quantum states.

The calculated quantities need to be weighted by the probability of every state which

can be done by density operators application [21]. In the next section we will use this

density method approach for pure and mixed states.

2.2.1 Pure State

A system in some known state |Ψ〉 given as,

|Ψ〉 = c1 |ψ1〉+ c2 |ψ2〉+ ...+ cN |ψN〉 . (2.2.4)

Probabilities of any state can be found with the help of this de�nite state but here we

describe a di�erent way that can be generalized to the statistical mixture as in classical

situations. Here we use an operator to describe this statistical mixture which is called

density operator(ρ). In a pure state it is given as,

ρ = |Ψ〉 〈Ψ| . (2.2.5)

Density operator can be used to determine the expected value of any operator easily.

For example, the expectation value of operator X in the given basis of the pure state

is de�ned as,

〈X〉 = 〈Ψ|X|Ψ〉 ,

〈X〉 = (c∗1 〈ψ1|+ c∗2 〈ψ2|+ ...+ c∗N 〈ψN |)X(c1 |ψ1〉+ c2 |ψ2〉+ ...+ cN |ψN〉),

=
N∑

i,j=1

c∗i cj 〈ψi|X|ψj〉 .
(2.2.6)
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In above equation the coe�cient of expansion can be de�ned as,

cj = 〈ψj|Ψ〉 ,

c∗i cj = 〈Ψ|ψi〉 〈ψj|Ψ〉 ,

= 〈ψj|Ψ〉 〈Ψ|ψi〉 ,

= 〈ψj|ρ|ψi〉 .

(2.2.7)

So the expectation value becomes,

〈X〉 =
N∑

i,j=1

〈ψj|ρ|ψi〉 〈ψi|X|ψj〉 ,

〈X〉 =
N∑
j=1

〈ψj| ρ

(
N∑
i=1

|ψi〉 〈ψi|

)
X |ψj〉 ,

〈X〉 =
N∑
j=1

〈ψj| ρX |ψj〉 ,

〈X〉 = Tr(ρX).

(2.2.8)

If we look at the trace of density operator we get,

Tr(ρ) = Σi 〈ψi|Ψ〉 〈Ψ|ψi〉 ,

= Σic
∗
i ci,

= Σi|ci|2,

= 1.

(2.2.9)

This equation shows the conservation of probabilities. The density operator is Hermi-

tian which means that,

ρ = ρ†. (2.2.10)

In case of pure state,

ρ2 = |Ψ〉 (〈Ψ|Ψ〉) 〈Ψ| ,

= |Ψ〉 〈Ψ| ,

ρ2 = ρ.

(2.2.11)
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2.2.2 Mixed State

In case of ensemble for mixed state, the statistical mixture or the density matrix can

be built by,

� Build density operator for each state in the ensemble.

� Weight it by the probability in the ensemble.

� Sum up the probabilities.

Let us consider an example of an ensemble in which each member can be found in one

of the two given states,

|ψ〉 = a |x〉+ b |y〉 ,

|φ〉 = c |x〉+ d |y〉 .
(2.2.12)

The density operator of these states can be de�ned as,

ρψ = |ψ〉 〈ψ| ,

ρφ = |φ〉 〈φ| .
(2.2.13)

In above example, we have only two states and if we take the probability of state |ψ〉
be p then the probability of any member of the ensemble for being in the state |φ〉 will
be 1− p. So, the density operator can be written in terms of probabilities as,

ρ = pρψ + (1− p)ρφ. (2.2.14)

This is the simplest two state system of an ensemble which can be generalize to n state

system. For example, |Ψi〉 where i = 1, ..., n and density operator for every single state

is given as ρi = |Ψi〉 〈Ψi|. If the probability of each state is given by pi then the overall

density operator is given as,

ρ =
n∑
i=1

piρi

=
n∑
i=1

pi |Ψi〉 〈Ψi| .
(2.2.15)
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Properties of density operator:

The density operator has the following three key properties ,

1. It is hermitian, which means ρ = ρ†.

2. tr ρ = 1.

3. ρ is positive operator, 〈Ψ|ρ|Ψ〉 ≥ 0.

Characteristics of mixed states:

Di�erent components of a state or di�erent states interfere with each other when they

are coherent. In a statistical mixture (mixed state) there is no coherence present while

it is the property of the pure state of superposition states. So we can di�erentiate

between pure and mixed states on the basis of coherence which is indicated by the

density matrix. If o�-diagonal elements in this matrix are non-zero then coherence is

present in it. In short,

� A mixed state has all the o�-diagonal elements zero.

� A pure state has non-zero o�-diagonal elements.

There are other criteria that can be used to di�erentiate between pure and mixed states

which is related to the trace of the square of the density matrix. As we knew that for

the pure states ρ2 = ρ and the tr(ρ2) = 1, but this is not true for the case mixed states.

So, the distinction criteria for pure and mixed state is,

� 1 > Tr(ρ2) for mixed state.

� 1 = Tr(ρ2) for pure state.
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2.3 Reduced Density Operator by Partial Trace

The density operator is very useful in dealing with the subsystems. We can consider

here a composite bipartite system which consists of two subsystems one is under the

observation of observer A and the other is with B and they travel in the opposite direc-

tion. The whole system is described by a complete state which contains information of

the system, but each of them have no information about other half unless they adopt

any way of communication. We can build the density operator ρ for the whole system

and �lter it down into a reduced density operator that just shows what B or A alone

see. We calculate it with the help of partial trace and compute separate density oper-

ators for A and B. This operation is called reduced density operation and the operator

we get is reduced density operator [22].

Let's assume that the described system is in one of the Bell's states,

|χ10〉 =
|1A〉 |0B〉+ |0A〉 |1B〉√

2
. (2.3.1)

The density operator for this system can be written as,

ρ = |χ10〉 〈χ10| ,

=

(
|1A〉 |0B〉+ |0A〉 |1B〉√

2

)(
〈1A| 〈0B|+ 〈0A| 〈1B|√

2

)
,

=
|1A〉 |0B〉 〈1A| 〈0B|+ |1A〉 |0B〉 〈0A| 〈1B|+ |0A〉 |1B〉 〈1A| 〈0B|+ |0A〉 |1B〉 〈0A| 〈1B|

2
.

(2.3.2)

This density operator contains all the information about the system as according

to the situation each of the observer has access to only one subsystem so we need a

mathematical tool to identify what Alice see and what Bob will �nd upon measurement.

The tool we use here is the partial trace, this trace is computed over the diagonal states

of a single subsystem. Let's assume we are at B's place then we need to trace over A's

basis,

ρB = TrA(ρ),

= TrA(|χ10〉 〈χ10|),

= 〈0A|(|χ10〉 〈χ10|)|0A〉+ 〈1A|(|χ10〉 〈χ10|)|1A〉 .

(2.3.3)
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After computing the above equations the results we get,

〈0A|(|χ10〉 〈χ10|)|0A〉 =
|1B〉 〈1B|

2
,

〈1A|(|χ10〉 〈χ10|)|1A〉 =
|0B〉 〈0B|

2
.

(2.3.4)

So B's density operator is,

ρB = TrA(ρ),

= TrA(|χ10〉 〈χ10|),

=
|0B〉 〈0B|+ |1B〉 〈1B|

2
.

(2.3.5)

This is the density operator for B. We can evaluate TrρB = 1 and check that Trρ2
B =

1

4
which shows that B has a completely mixed state.

Partial Transpose

It is the transpose that is taken with respect to the one part of the system (bipartite).

The other part remains unchanged. e.g, if we have a density matrix ρ = ρXY in a

Hilbert space H = HX ⊗HY and we want to take transpose over subsystem X then it

can be viewed as a map T(ρ) ⊗ I. it can be de�ned on a composite system as,

P TX :

|1ψ〉 〈0φ| =⇒ |0ψ〉 〈1φ| , |0ψ〉 〈1φ| =⇒ |1ψ〉 〈0φ| .

Similarly,

P TY :

|ψ1〉 〈φ0| =⇒ |ψ0〉 〈φ1| , |ψ0〉 〈φ1| =⇒ |ψ1〉 〈φ0| ,

where ψ, φ ∈ 1,0.
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2.4 Entanglement Detection in States

In quantum mechanics, we can understand those phenomenons that are unknown to

classical mechanics e.g, the quantum states superposition, interference, or tunneling.

These e�ects are shown by the systems that consist of single particles and are explained

on the basis of quantum systems. This edge of quantum mechanics is not restricted to

single-particle systems but extended to multipartite systems as well. The connections

between subsystems bring about an extra quali�cation from classical frameworks. Clas-

sically the correlations are dealt with the probability theory but this theory is unable

to perform in terms of quantum systems. The very �rst problem in this scenario was

proposed by Einstein, Podolsky and Rosen [1]. According to their views in quantum

mechanics, there is remote action and they gave the concept of locality and realism.

States that show such non-classical correlations are referred to as entangled states.

Now we will look at di�erent tools which can be used to di�erentiate between classical

and quantum correlations.

2.4.1 Separability and Entanglement

Separability is de�ned via the existence of a decomposition of a state into tensor product

states, in the case of pure states, or into a convex sum of tensor products for mixed

states. To prove that whether the given state is separable or entangled, one need to

look for a representation in which that state can be written in decomposition; that is in

tensor product form. Which shows that each tensor is restricted to only one subsystem

of the composite system which reveals that the state is separable otherwise the state

may be entangled or may be separable but decomposition is non identi�able [23]. In

next section we will de�ne entanglement for pure and mixed states.

Pure States

Initially, we consider a bipartite system it is separable if it can be written in the state

vector of this system in terms of tensor product of two states which corresponds to

each subsystem,
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|ψs〉 = |ψ1〉 ⊗ |ψ2〉 . (2.4.1)

If the state cannot be decomposed in this form then it is entangled. e.g,

|ψe〉 =
1√
2

(|ψ1〉 ⊗ |ψ2〉+ |φ1〉 ⊗ |φ2〉), (2.4.2)

where |ψ1〉 6= |φ1〉.

Mixed States

It is represented by the tensor product of the density matrices of subsystems of the

composite system [6]. In the case of the bipartite system, it is written as,

% = ρ(1) ⊗ ρ(2),

% =
∑
i

piρ
(1)
i ⊗ ρ

(2)
i ,

(2.4.3)

where ρ(1) belongs to the �rst subsystem and ρ(2) to the second.

If this type of decomposition doesn't exist then the state is entangled, meaning ρ(1)

does not belong speci�cally to the �rst subsystem and vice versa,

% 6= ρ(1) ⊗ ρ(2). (2.4.4)

Entangled states describe the quantum correlation measurement in di�erent subsystems

of a single composite system which can not be described by the probability theory as

in the classical cases.

Limitations

The previous de�nition of separable and entangled states provides information only

about the presence or absence (detection) of entanglement for any system. We can not

guess anything about the percentage or quantity of entanglement in the system. In next

section we will discuss di�erent criterion for entanglement detection and quanti�cation.
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2.4.2 Schmidt Decomposition

For a pure bipartite system composed of system 'A' and 'B', there exists a state (|Ψ〉 ∈
H) that is the tensor product of two Hilbert spaces belongs to subsystems HA and HB.

For this type of system there exists at least one orthonormal basis for which the state

can be decomposed as,

|Ψ〉 =
∑
i

αi |ψi〉 ⊗ |φi〉 , (2.4.5)

where |ψi(i = 1, 2, ...)〉 are the orthonormal basis belongs to HA and |φi(i = 1, 2, ...)〉
represents the HB. These basis are called Schmidt basis and the coe�cient αi is

termed as Schmidt coe�cient that satis�es certain conditions αi ≥ 0 and
∑

i α
2
i = 1.

This expansion is known as Schmidt decomposition [25].

Entanglement depends upon the number of non-zero Schmidt coe�cients.

� If the number of Schmidt coe�cients is 1 the state is separable, Sch-no=1.

� If the number of Schmidt coe�cients is greater than 1, the state is entangled,

Sch-no > 1.

To compute the Schmidt coe�cient, we use the reduced density matrix approach as,

TrA or B(|Ψ〉 〈Ψ|),

ρA =
∑
i

α2
i |ψi〉 〈ψi| ,

ρB =
∑
i

α2
i |φi〉 〈φi| ,

(2.4.6)

the eigenvalues of these matrices are same and termed as Schmidt coe�cients.

Nevertheless, this approach is relatively simple and covers a broad range of systems

but it has certain limitations.

Limitations

This method is applicable to the bipartite systems only and useful for entanglement

detection but provides no information about the extent of entanglement in the system.

In the next step, we will apply this approach to a system and try to evaluate whether

the system is entangled or not.
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2.5 Entanglement Source

2.5.1 Spontaneous Parametric Down Conversion

This is a technique that is used to create a pure bipartite system composed of two pho-

tons. Generally, in Spontaneous Parametric Down Conversion (SPDC), a photon wave

which is referred to as a pump wave passes through a birefringent crystal (collinear

or noncollinear) that transforms some of the photons into two photons of larger wave-

length that are labeled signal(s) and idler(i). All the photons did not split into two

which restricts them from interference with each other and chances of parametric am-

pli�cation reduce during their travel through a crystal. The frequencies of signal (ν1)

and idler (ν2) obey the conservation law (ν1+ν2 = νp). The angle between wave vectors

(~k1,2) of resultant photons and wave vector of pump (~kp) gives information about their

propagation and conservation of momentum.It is the energy and momentum of the pup

photon that initiate this conversion and termed as phase-matching when it transform.

The polarization of photons is a trait that can be controlled by di�erent factors like

frequency of pump photon, angle of incident, crystal type but it can be horizontal(H)

or vertical(V). On the basis of polarization of signal(s) and idler(i) photon there are

Figure 2.5.1: Spontaneous Parametric Down-Conversion: νs,i and ks,i are frequencies and wave vectors
of signal and idler; (a)non-collinear and non-degenerate case, and (b) collinear and degenerate case.

two types of results that can be achieved type-I and type-II. In type-I both s and i

have same polarization (HH or VV) while in Type-II they posses di�erent polarization

(HV or VH).
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2.5.2 Schmidt Decomposition of SPDC

To apply Schmidt Decomposition (SD) on SPDC, we consider the simplest collinear

degenerate case in which both signal and idler photons have the same frequency νp/2

and they travel in the same direction the only property that can be di�erent between

them is polarization which can be our entangled trait. As polarization can be repre-

sented in the form of a qubit so we will use this notation to label the state of this

system. We can write our system in Schmidt basis as,

Φ(1, 2) =
2∑

n=1

2∑
m=1

αn,mν
(1)
n ⊗ ν(2)

m , (2.5.1)

where νn and νm separately form complete set of basis as
∑2

n=1 νn ⊗ ν†n = 1.

To specify Schmidt basis and Schmidt coe�cient we will follow the standard procedure

with certain restrictions of this system. By considering distinguishable particles we

have in total four possible terms that are independent of each other and can be written

as,

Φ(1, 2) = α0,0 |0, 0〉+ α0,1 |0, 1〉+ α1,0 |1, 0〉+ α1,1 |1, 1〉 , (2.5.2)

where |0〉 = |H〉 and |1〉 = |V〉 with reference to polarization.

As our system is in a pure state so we will build a density matrix for it which is,

ρ1,2 = |α0,0|2 |0, 0〉 〈0, 0|+ α0,0α
∗
0,1 |0, 0〉 〈0, 1|+ α0,0α

∗
1,0 |0, 0〉 〈1, 0|+ α0,0α

∗
1,1 |0, 0〉 〈1, 1|

+α0,1α
∗
0,0 |0, 1〉 〈0, 0|+ |α0,1|2 |0, 1〉 〈0, 1|+ α0,1α

∗
1,0 |0, 1〉 〈1, 0|+ α0,1α

∗
1,1 |0, 1〉 〈1, 1|

+α1,0α
∗
0,0 |1, 0〉 〈0, 0|+ α1,0α

∗
0,1 |1, 0〉 〈0, 1|+ |α1,0|2 |1, 0〉 〈1, 0|+ α1,0α

∗
1,1 |1, 0〉 〈1, 1|

+α1,1α
∗
0,0 |1, 1〉 〈0, 0|+ α1,1α

∗
0,1 |1, 1〉 〈0, 1|+ α1,1α

∗
1,0 |1, 1〉 〈1, 0|+ |α1,1|2 |1, 1〉 〈1, 1| .

(2.5.3)

In matrix form,

ρ1,2 =


|α0,0|2 α0,0α

∗
0,1 α0,0α

∗
1,0 α0,0α

∗
1,1

α0,1α
∗
0,0 |α0,1|2 α0,1α

∗
1,0 α0,1α

∗
1,1

α1,0α
∗
0,0 α1,0α

∗
0,1 |α1,0|2 α1,0α

∗
1,1

α1,1α
∗
0,0 α1,1α

∗
0,1 α1,1α

∗
1,0 |α1,1|2

 . (2.5.4)

Tracing out subsystem 2, the reduced density matrix we will get is,

ρ1 =

(
|α0,0|2 + |α0,1|2 α0,0α

∗
1,0 + α0,1α

∗
1,1

α1,0α
∗
0,0 + α1,1α

∗
0,1 |α1,0|2 + |α1,1|2

)
. (2.5.5)
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This matrix have two eigenvalues that are,

λ± =
1

2

[
1±

√
1− 4 (|α1,1α0,0 − α1,0α0,1|2 + |α1,1|2|α0,0|2 + |α1,0|2|α0,1|2)

]
. (2.5.6)

Till now we had not chosen our system type, whether it is Type-I or II. If we consider

our system to be Type-I in which the polarization of both the photons should be same

then the reduced density matrix will become,

ρ1 =
1

2

(
1 0
0 1

)
. (2.5.7)

This matrix has two eigenvalues λ1 =
1

2
= λ2 which shows that it is an entangled sys-

tem. Here we reached the conclusion that the states of the system under consideration

are entangled but we are still unaware of the amount of entanglement in this system.

2.6 Entanglement Quanti�cation

All the above-discussed techniques only detect the entanglement in the system but

we have no information about its quantity. To measure the extent of entanglement

in a composite system we devise a function, entanglement quanti�er,that have certain

requirements [11].

Requirements and qualities for entanglement measures

A good entanglement measure 'E' should ful�ll the following axioms [26] but the

commonly used entanglement measuring tools may not ful�ll all of them.

1. Separability : If density operator ρ of a composite system is separable then,

E(ρ)=0.

2. Normalization: For a maximally entangled two d-dimensional system E is given

as,

E(P d
+) = log(d). (2.6.1)
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3. No increasing e�ect under LOCC : We cannot increase entanglement by applying

local operations and classical communication (LOCC) to ρ,

E(ΛLOCC(ρ)) ≤ E(ρ). (2.6.2)

4. Continuity : If the distance between two density matrices approaches zero then

the di�erence between their entanglement should be zero, i.e.

E(ρ)− E(η)→ 0 for ‖ρ− η‖ → 0. (2.6.3)

5. Additivity : Identical copies of a system should contain 'm' times entanglement of

a single system

E(ρ⊗m) = mE(ρ). (2.6.4)

6. Subadditivity : Entanglement of a state which is in turn is a tensor product of

two states can never be greater than the sum of entanglement of each constituent

state,

E(ρ⊗ η) ≤ E(ρ) + E(η). (2.6.5)

7. Convexity : The entanglement measure should be a convex function

E(λρ+ (1− λ)η) ≤ λE(ρ) + (1− λ)E(η), (2.6.6)

for 0 < λ < 1.

Now we will discuss some entanglement measures in next section.

2.6.1 Schmidt Measures

Schmidt number is used to get an estimated measurement of entanglement which is

known as a Schmidt measure (Hartley strength) and is de�ned as,

ES(|Ψ〉) = log2(λ), (2.6.7)

where λ=Schmidt no of state |Ψ〉.
The unit of entanglement in this measurement is e-bits (entangled bits) which is de�ned

by the entanglement of Bell states as the Schmidt no of bell state is 2 and consequently,

ES = 1 e-bit. So the unit in this measure is the entanglement present in a Bell state.
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von Neumann entropy

Shannon entropy is the measurement of ignorance in the classical information similarly

von Neumann entropy [27] is de�ne as the ignorance about a quantum system and is

de�ned as,

E = S(ρ) = −Tr(ρ log ρ). (2.6.8)

In term of eigen values it can be written as

E = S(ρ) = −
∑
j

λj log λj, (2.6.9)

where λj are the eigen values of ρ. Actually, S(ρ) is the uncertainty in the quantum

state before measurement.

Di�erent properties of von Neumann entropy

� For a d-dimensional Hilbert space the von Neumann entropy is,

0 ≤ S(ρ) ≤ log2 d, (2.6.10)

where S(ρ) = 0 for separable state.

� S(ρ) = log2 d for completely mixed state.

� For a bipartite system

S(ρXY ) ≤ S(ρX) + S(ρY ), (2.6.11)

the entropy of a bipartite system is always less than or equal to the sum of

individual entropy of the subsystems.

� For a separable bipartite system, the above equation turns into equality only [28].

S(ρX ⊗ ρY ) = S(ρX) + S(ρY ). (2.6.12)
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To quantify entanglement with von Neumann entropy we consider here an example of

an entangled state written as,

|Ψ(α)〉XY = sinα |01〉XY + cosα |10〉XY . (2.6.13)

To extract subsystem A we use the reduced density matrix approach,

ρX = TrY (ρXY )

= TrY (sin2 α |01〉 〈01|+ cosα sinα |01〉 〈10|+ cosα sinα |10〉 〈01|+ cos2 α |10〉 〈10|)

= cos2 α |1〉 〈1|+ sin2 α |0〉 〈0| .
(2.6.14)

In matrix notation,

ρX =

(
sin2 α 0

0 cos2 α

)
. (2.6.15)

Therefore,

E(α) = −Tr(ρX log2 ρ
X)

= −Tr
((

sin2 α 0
0 cos2 α

)
log2

(
sin2 α 0

0 cos2 α

))
= −Tr

((
sin2 α 0

0 cos2 α

)(
log2 sin2 α 0

0 log2 cos2 α

))
= −2(sin2 α log2 cosα + cos2 α log2 sinα).

(2.6.16)

Here we can compute the eigenvalues of ρX which is sin2 α and cos2 α . This eigenvalue

is used to obtain von Neumann entropy. From here we can obtain maxima and minima

of E(α) and see how it measure entanglement

dE

dα
= −2

d

dα
(sin2 α log2 sinα + cos2 α log2 sinα),

= 2 sin 2α log2 cotα,
(2.6.17)

where
dE

dα
will give zero at sin2α=0 or α=

mπ

2
. E is zero at these points which means

that this state is separable at these points,

|Ψ(α)〉XY = |10〉XY , At α = 0 |Ψ(α)〉XY ,

= |01〉XY , At α =
π

2
.

(2.6.18)

The other set of zeroes of
dE

dα
correspond to log2 cotα = 0 or cotα = 1 or α =

π

4
± 2mπ. At these points E(α)=1, which corresponds to the maxima of von Neumann

entropy.
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von Neumann entropy in SPDC

The system discussed in section 2.5.1 results into reduced density matrix 2.5.7,

ρ1 =
1

2

(
1 0
0 1

)
. (2.6.19)

The eigenvalues of this matrix are

(
1

2
,
1

2

)
and von Neumann entropy was de�ned as,

E = S(ρ) = −
∑
j

λj log λj, (2.6.20)

The von Neumann entropy with these eigenvalues is 1 which means the states are

completely entangled.

Negativity

It is one of the popularly used measures of entanglement de�ned as,

N(ρ) =
1

2
(‖ρTX‖1 − 1),

= |Σiλi|,

=
1

2
Σj(|λj| − 1),

(2.6.21)

where ρTX is the partial transpose of the density operator of a bipartite system,'i'

runs over the negative eigenvalues of the density operator ρTX and j runs over all the

eigenvalues of ρTX . If all the eigenvalues are positive then negativity vanishes and

the state is un-entangled while the non-vanishing negativity indicates entanglement.

Negativity is unable to characterize all the entangled states.

2.6.2 Concurrence

For a bipartite system concurrence [13] is a quantitative measure of the amount of

entanglement which is de�ned as,

C(|Ψ〉) = | 〈Ψ|Ψ̃〉 |, (2.6.22)
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where |Ψ̃〉 = Y⊗Y |Ψ〉∗ ,Y is pauli matrix and |Ψ〉∗ is complex conjugate of the sate

|Ψ〉. Concurrence can be calculated from the density operator ρ of the state as,

C(ρ) = max(0, α1 − α2 − α3 − α4);

Y =

(
0 −i
i 0

)
,

(2.6.23)

where α1 ≥ α2 ≥ α3 ≥ α4 are eigenvalue of the matrix R=
√
ρ1/2ρ̃ρ1/2, where ρ̃ =

Y⊗Yρ∗Y⊗Y. when the concurrence is zero, state is separable otherwise it is entangled.

For maximally entangled state concurrence is 1 [29].

2.6.3 Entanglement of Formation

The entanglement of formation E(ρ) for an entangled state(mathematically) is the

number of resources needed to create that particular entangled state [27]. On the basis

of concurrence, it is de�ned as,

E(ρ) = H2

(
1 +

√
1− (C(ρ))2

2

)
, (2.6.24)

where H2 is binary entropy function given as,

H2(a) = −a log2(a)− (1− a) log2(1− a). (2.6.25)

From here we can say that entanglement of formation is the same as the von Neumann

entropy of the subsystems for a pure state.

In this chapter, our main focus was on distinguishable particles. We studied di�erent

entanglement detection and quanti�cation parameters but what happen if we have a

system composed of indistinguishable particles. In next chapter we will look at the

complications arise due to indistinguishability and there possible solutions.

28



Chapter 3

Indistinguishability Transition

In classical physics, it is irrelevant that the system consists of distinguishable or in-

distinguishable particles. They can always be identi�ed with the help of trajectory

and other classical properties while in quantum mechanics, we cannot trace a particle's

trajectory and all the quantum properties are the same, it is impossible to identify a

certain indistinguishable particle among others. This behavior creates certain compli-

cations in indistinguishable systems that cannot be summarized with a distinguishable

particle approach. In this chapter, we will discuss all these complications and their

possible solutions.

3.1 Distinguishable Particles

Particles can be considered distinguishable either on the basis of their intrinsic prop-

erties (mass, electric charge, etc) but generally, we deal with the systems that are

composed of particles with the same intrinsic properties. In this case, we can track

the trajectory of each particle that makes them distinguishable from others. But this

approach is not applicable in quantum systems because the position of particles is not

de�nite. In quantum mechanics, it is de�ned by wave functions that give a probability

of �nding particles at a speci�c position. As the particle move their wave functions

overlap and they become indistinguishable. So, we can say that most of the identical

particle systems in quantum mechanics are indistinguishable.
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Here we consider a case in which a composite system consists of more than two sub-

systems and all of them are completely distinguishable. There can be di�erent types

of correlations possible in this system. In an N-particle system, there may be a parti-

cle's group that can be entangled with another group and non-entangled to remaining

particles with respect to one property but the same may not be true with respect to

any other trait of these particles. We can identify the disentangled groups by repeated

analysis of each particle in the system and group them into separate subsystems that

are completely non-entangled to each other which is a quite complicated procedure. To

deal with this complication we follow the previously discussed procedures of separabil-

ity and Schmidt decomposition that we use for a bipartite system [30]. By following

these procedures we will look at di�erent situations of the system in which the simplest

is the completely non-entangled system.

3.1.1 Completely Non-entangled state

The components of a composite system may or may not be entangled and there may

be a case in which some of the constituents are entangled among themselves but non-

entangled to the other. Here we will see the representation of those systems that are

completely non-entangled.

Pure state

The pure state of a composite system consists of 'N' distinguishable particles |Ψ1,...,N〉 ∈
H1 ⊗ ... ⊗ HN is non-entangled if there exist N one-dimensional projection operator

where Pi belongs to Hi where 1 ≤ i ≤ N .

Tr1+...+N [Pi |Ψ1,...,N〉 〈Ψ1,...,N |] = 1. (3.1.1)

In terms of generalization to the bipartite system, the pure state is completely non-

entangled if we can factorize it completely. i.e, there are N sub-states each belongs to

a single particle only. i.e,

|Ψ1,...,N〉 = |ψ1〉 ⊗ ...⊗ |ψN〉 , (3.1.2)
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where |ψi〉 ∈ Hi where ∀i = 1, ..., N

For such a system there are N reduced density matrices which can be calculated

from density matrix,

ρi = Tr∀j 6=k[|Ψ1,..,j,..,k,..,N〉 〈Ψ1,..,j,..,k,..,N |]. (3.1.3)

Sometimes a group of particles in a system is entangled with another group in the same

system ut non-entangled with others.

3.2 Entanglement between Subsystems

In this section, we'll consider the situation in which di�erent subsystems are entangled

with some constituent and non-entangled to the others. On this basis, the system can

be divided into di�erent groups which are entangled themselves but are non-entangled

to other constituents.

If we consider a many-particle quantum system represented by |Φ1...N〉 belongs to
the Hilbert space H = H1⊗ ...⊗HN . This state can be divide into two di�erent groups

which contain the particles completely non-entangled. There are three conditions that

needs to be ful�lled in order to divide the system into sub-groups (S1,...,m and Sm+1,...,N)

that are not correlated to each other.

1. The state vectors of the system are factorizable. i.e,

|Ψ1,...,N〉 = |φ1,...,m〉 ⊗ |χm+1,...,N〉 , (3.2.1)

where

|φ1,...,m〉 ∈ H1 ⊗ ...⊗Hm,

|χ1+m,...,N〉 ∈ Hm+1 ⊗ ...⊗HN .

2. There exists a projection operator P1,...,m belongs to many folds of H1⊗ ...⊗Hm

that satis�es the following equation.

Tr(1+...+N)[P(1,...,m) ⊗ I(m+1,...,N)ρ(1,...,N)] = 1. (3.2.2)
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3. The reduced density operator should be recovered by using the following relation,

ρ(1,...,m) = Tr(m+1,...,N)[ρ(1,...,N)]. (3.2.3)

The separable state of a composite system that consists of N particles can be rep-

resented in the form of a tensor product as,

|Ψ1,...,N〉 = |ψ1〉 ⊗ ...⊗ |ψN〉 , (3.2.4)

where |ψi〉 belongs to ith subsystem only.

If a system is not separable then the entanglement in this composite system can be

detected with the strict correlation between appropriate observables of the components

of the system. If a subsystem (S1,...,m) of this system consists of 'm' particles is non-

entangled with subsystem (Sm+1,...,N) consists of all other particles in that system then

the action of the observable, X(1, .. ,m) belong to the Hilbert space H1⊗ ...⊗Hm and

Y(m+1, ... ,N) belongs to Hm+1⊗ ...⊗HN , on the pure state |Φ1...N〉 of the system is

written as,

〈Ψ1...N |X ⊗ Y |Ψ1...N〉 = 〈ψ1,...,m|X|ψ1,...,m〉 〈ψ1+m,...,N |Y |ψ1+m,...,N〉 , (3.2.5)

which shows that the joint probabilities of two non-entangled subsystems factorize

independent of the measurement process. There are di�erent criteria for identical

particles that need to be followed.

3.3 Formalism for Identical Particles

3.3.1 First Quantization Approach

The standard approach to represent quantum identical particles follows the process

of labeling di�erent particle states (with numbers or symbols) in �rst quantization.

The usual tools of entanglement detection and quanti�cation e.g, separability criterion,

Schmidt decomposition, and von Neumann entropy cannot be used directly in identical

particles (IP) cases. So, we will look for a method that can be used to characterize

entanglement in IP. In the end, we will test these methods by using the �rst quantization

approach [31].
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3.3.2 Exchange Degeneracy and Symmetrization Postulate

In classical mechanics, it is irrelevant for the description of a system to be a combination

of IP(identical particles) or NIP(Non-identical particles) because they follow di�erent

trajectories that can be traced independently of the identity of the particles. We can

label them without a�ecting their properties. All the label schemes come to the same

dynamic conduct of the particles that shows their label independence [31].

In quantum mechanics, the IP consider truly elementary when the system is in the

ground state and the exchange of energy between environments is much less than the

excited state energy of the particles of the system. The trajectory of the particles

can never be found without disturbing the system in quantum physics. So to identify

di�erent particles with non-zero probability in a speci�c region that are assigned with

un-physical labels, this approach of identi�cation is called Standard Approach(SA) [15].

The labeling of IP modi�es their properties. e.g, consider two IP in a certain region

of space. According to SA if we label them as 1 and 2 associated with states |A〉 and
|B〉 then di�erent quantum mechanical descriptions of the whole system can be given

as [35],

|Φ〉 = |A〉1 ⊗ |B〉2 . (3.3.1)

This state shows that the particle which is labeled as 1 is in state |A〉 and particle 2 is

in state |B〉. As these quantum particles are identical so they can be in opposite states

which is another possible state of this system,

|Φ〉 = |A〉2 ⊗ |B〉1 , (3.3.2)

The overall state of the system with certain probabilities is,

|Φ〉 = α|A〉1 ⊗ |B〉2 + β|A〉2 ⊗ |B〉1, (3.3.3)

This state shows that the probability of any particle is not a hundred percent at any

place before measurement. Where |α|2 + |β|2 = 1, which is known as exchange degen-

eracy. Both the particles are identical but the nonphysical labels 1 and 2 made them
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mathematical distinguishable. These label associate di�erent kets to the same sets of

eigenvalues and predicts these particles physically. The exchange degeneracy does not

allow us to write the state associated with a speci�c particle uniquely. We cannot know

the exact form of the state |Φ〉 without actual measurement. Di�erent mathematical

possibilities arise analogous to non-identical particles due to this labeling approach

[12]. The non-identical behavior in identical particles is counter by the introduction of

symmetrization postulates [31] that also remove the exchange degeneracy. According

to it the wave function can be symmetric or anti-symmetric depending upon the na-

ture of particles i.e, fermions (half-integral spin
~
2
,
3~
2
,
5~
2
,...) or boson (integral spin

0, ~, 2~, 3~,...). For N particles the wave function can be given as,

|Φ(x1, x2, ..., xi, xj, ..., xN)| = ±|Φ(x1, x2, ..., xj, xi, ..., xN)|. (3.3.4)

where the negative sign is for fermions and positive sign is for boson on exchange of

ith particle with jth.

The identical particles are mainly of two types they can either be bosons or fermions

and their wave function is symmetric and anti-symmetric respectively. For the simplest

case of two particles, the wave function can be written as,

Φs(x1, x2) =
1√
2

[φ(x1, x2) + φ(x2, x1)],

Φa(x1, x2) =
1√
2

[φ(x1, x2)− φ(x2, x1)].
(3.3.5)

For two non-interacting identical particle system the wave function is de�ned as,

Φs(x1, x2) =
1√
2

[φ1(x1)φ2(x2) + φ1(x2)φ2(x1)],

Φa(x1, x2) =
1√
2

[φ1(x1)φ2(x2)− φ1(x2)φ2(x1)].
(3.3.6)

In general it can be written as,

Φs(x1, x2) =
1√
2!

∑
P

(1)P [φ1(x1)φ2(x2)],

Φa(x1, x2) =
1√
2!

∑
P

(−1)P [φ1(x1)φ2(x2)],
(3.3.7)
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where P is the permutation and the determinant form of above anti-symmetric equation

is,

Φa(x1, x2) =
1√
2!

∣∣∣∣φ1(x1) φ1(x2)
φ2(x1) φ2(x2)

∣∣∣∣ . (3.3.8)

For three spin-
1

2
particles it is,

Φa(x1, x2, x3) =
1√
3!

∣∣∣∣∣∣
φ1(x1) φ1(x2) φ1(x3)
φ2(x1) φ2(x2) φ2(x3)
φ3(x1) φ3(x2) φ3(x3)

∣∣∣∣∣∣ . (3.3.9)

The generalization to 'N' anti-symmetric state it is,

Φa(x1, x2..., xN) =
1√
N !

∣∣∣∣∣∣∣∣∣
φ1(x1) φ1(x2) · · · φ1(xN)
φ2(x1) φ2(x2) · · · φ2(xN)

...
...

. . .
...

φ3(x1) φ3(x2) · · · φ3(xN)

∣∣∣∣∣∣∣∣∣ . (3.3.10)

This NÖN determinant is called Slater determinant and it involves only a single-

particle state because of the Pauli exclusion principle which states that no two identical

fermions can occupy the same state. This determinant is used to determine the Slater-

Schmidt number which is analogous to Schmidt number and it is used for entanglement

detection [36].

Experimental demonstration of indistinguishability

To illustrate the e�ects of indistinguishability on the state of the system that look

like distinguishable system, we take a system of two electrons located in a double-well

potential. We can consider two qubits as a manifestation of electron spin with spin

degree of freedom |↑〉 , |↓〉 and label spatial wave-functions with |ψ〉 and |φ〉 for left and
right potential well respectively. Under all these considerations the Hilbert space of

this system is four dimensional, {|ψ ↓〉 , |φ ↑〉 , |ψ ↑〉 , |φ ↓〉}.

Firstly, we consider two electrons in completely separated square wells as shown in

�gure 3.3.1. The state of this system is given as,

|Ψinit〉AB =
1√
2

[|ψ ↓〉A ⊗ |φ ↑〉B + |φ ↓〉A ⊗ |ψ ↑〉B] (3.3.11)
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Figure 3.3.1: The initial state of electrons localized in left and right square well observed by Alice and
Bob.

After performing measurements or �xing the spatial wave function with Alice and Bob

the state will become

|Ψinit〉AB = |ψ ↓〉A ⊗ |φ ↑〉B , (3.3.12)

which represent a distinguishable system.

Now we will disturb square wells potential. In a situation when the energy barrier

is removed or both the wells move closer to each other the probability of �nding the

electrons in each of two wells will gain some value. As both are electrons so they obey

fermionic statistics and their wave function will become,

|Ψ(t1)〉 =
1√
2

[|ψ ↓〉A ⊗ |φ ↑〉B − |φ ↑〉A ⊗ |ψ ↓〉B]

=
1√
2

∣∣∣∣|ψ ↓〉A |ψ ↓〉B
|φ ↑〉A |φ ↑〉B

∣∣∣∣ . (3.3.13)

The labeling of states is completely un-physical but it introduces the anti-symmetrization

Figure 3.3.2: The de-localization of wave function after lowering the potential tunneling barrier.
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in states |Ψ(t1)〉 which matches with an entangled state in distinguishable systems but

this entanglement is unreal and is due to the indistinguishability of the particles that

cannot be used as a resource. To characterize the useful entanglement in indistinguish-

able particles the term quantum correlations is used [33]. The quantum correlation in

a system of indistinguishable particles is related to the number of Slater determinants

involve in the representation of states. If more than one Slater determinant is involved

in writing the simplest state (anti-symmetric combination orthogonal single-particle

states) of fermions then it is considered entangled this is analogous to quantum entan-

glement in the distinguishable systems. To elaborate this point we consider the above

system with independent spin coupling J(t) that follow fermionic principles. Then the

state of the system will become,

|Ψ(t2)〉 =
1√
2

[|ψ ↓〉1 ⊗ |φ ↑〉2 − |φ ↑〉1 ⊗ |ψ ↓〉2] +
1√
2

[|ψ ↑〉1 ⊗ |φ ↓〉2 − |φ ↓〉1 ⊗ |ψ ↑〉2],

=
1√
2

∣∣∣∣|ψ ↓〉1 |ψ ↓〉2|φ ↑〉1 |φ ↑〉2

∣∣∣∣+
1√
2

∣∣∣∣|ψ ↑〉1 |ψ ↑〉2|φ ↓〉1 |φ ↓〉2

∣∣∣∣ .
(3.3.14)

That can be seen in �gure 3.3.3 . The above equation is in single particle basis and

contain two elementary Slater determinants and there is no possible basis that can

convert it to single determinant so this state is entangled and contain useful correlations

and can be seen by localizing the particles again by raising tunneling barrier. By this

the basis separate between Alice and Bob, Alice Hilbert space is (|ψ ↑〉 , |ψ ↓〉) and

Bobs (|φ ↑〉 , |φ ↓〉). Now we can consider both the particles as distinguishable because

both the fermions are spatially separated and their �nal state can be written as [34],

|Ψ�nal〉 =
1√
2

[|ψ ↓〉A ⊗ |φ ↑〉B + [|ψ ↑〉A ⊗ |φ ↓〉B]. (3.3.15)

That is illustrated in �gure 3.3.4. As it is clear from the analysis of this system that

labels are creating ambiguity between entanglement and indistinguishability of the

particles so we will exercise some other methods that can give better understanding of

the system.
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Figure 3.3.3: The de-localization of wave function after lowering the potential tunneling barrier and
controlled spin coupling J(t).

Figure 3.3.4: The �nal state |Ψfinal〉AB . Localization of wave functions by raising barrier.

3.3.3 Usual Tools and Identical Particle Entanglement

The basic tools we use in entanglement detection and quanti�cation are separability

and Schmidt decomposition of the state. A system that consists of two distinguishable

particles is separable if it can be represented by a state that is simply a tensor product

of two sub-states as,

|Ψ〉 = |ψ〉 ⊗ |φ〉 , (3.3.16)

where |Ψ〉 ∈ Hs = H1⊗H2, |ψ〉 ∈ H1, |φ〉 ∈ H2. In this type of system, each subsystem

is completely independent of others any operation performed on one sub-system does
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not a�ect the state of other system. If they disturb each other state by any mean then

they will be considered entangled and their entanglement will be detected by Schmidt

decomposition [37],

|Ψ〉 =
n∑
i=1

√
λi |ψi〉 ⊗ |φi〉 , (3.3.17)

where λi is Schmidt coe�cient.

If the number of non-zero Schmidt coe�cients is more than one then the state is

entangled otherwise not. The quanti�cation of entanglement is done with the help of

von Neumann entropy. Which is given as,

S(ρA) = S(ρA) = −
∑
i=1

λi log2 λi. (3.3.18)

In the case of identical particles, these criteria of separation and Schmidt decomposition

does not hold and two identical particles non-entangled state is given as,

|Ψ〉± =
1√
2

(|ψ〉1 ⊗ |φ〉2 ± |ψ〉2 ⊗ |φ〉1), (3.3.19)

where the +ve sign is for bosonic particle state and -ve is for fermionic.

� Separability: According to the criteria de�ned earlier, the states of identical

particles are separable until the symmetrization postulate does not apply. After

it, each and every state of IP become entangled which is an unrealistic interpre-

tation of symmetrization postulates as it is not possible for two independently

prepared identical particles to be entangled regardless of how far they are.[13]

� Schmidt number: As the labeling of particles made them distinguishable so

one can think that we can apply a non-identical particle approach to detect and

quantify entanglement but all these tools give un-physical correlation and most

of the times entanglement is only the re�ection of the symmetrization.

� von Neumann entropy: We can apply the concept of partial trace on IP but it

also depends upon mock labels that diminish the concept of indistinguishability.

So a careful analysis is required for IP.
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� There is a link proposed between von Neumann entropy and IP entanglement

which is discussed under di�erent approaches of �rst quantization (which require

a separate approach for bosons and fermions) [38, 37, 39] and second quantization

in which the concept of locality is used [40, 39].

A greater part of physicists agrees that two identical particles which are spatially

separated and never interacted before are intrinsically uncorrelated and this remains

true until they interact with each other. We can consider them distinguishable on the

basis of their spatial state. But when both IP has a certain probability of occupying

the same spatial state then the particles can not be considered uncorrelated and their

entanglement is detected with the help of mock labels. But there are some unrealistic

complications that arise due to this approach.

3.3.4 Slater-Schmidt Decomposition

As we had discussed earlier that Schmidt decomposition is used to detect entanglement

in the system composed of distinguishable particles and later we use the Schmidt

number to quantify by using von-Neuman entropy. Similarly here we introduce the

procedure of Slater-Schmidt decomposition which gives an alternative mechanism to

deal with indistinguishable particles. In the limit of �nite-dimensional single-particle

Hilbert space, we deal separately with fermionic and bosonic cases because they show

di�erent behavior.

3.3.5 Fermionic Entanglement

Theorem: For any anti-symmetric (N Ö N) complex matrix X [i.e X ∈ M(N,C) and
XT = −X ] there exist a unitary transformation matrix U such that X = UZUT ,

where Z is the block diagonal matrix of the form,

Z = diag[Z0, Z1, ..., ZM ], Z0 = 0, Zi =

(
0 zi
−zi 0

)
, (3.3.20)

where Z0 is the (N - 2M) Ö (N - 2M) null matrix and zi are complex numbers. Equiv-

alently, Z is the direct sum of the (N - 2M) Ö (N - 2M) null matrix and the M (2 Ö 2)
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complex antisymmetric matrices Zi.

Any state vector representing two fermions of spin 's' can be written as,

|Φ(1, 2)〉 =

(2s+1)/2∑
j=1

αj
1√
2

[|2j − 1〉1 ⊗ |2j〉2 − |2j〉1 ⊗ |2j − 1〉2], (3.3.21)

where {|j − 1〉 , |2j〉} are orthonormal basis, αj is complex coe�cient that satis�es

the normalization condition
∑

j |αj|2 = 1. The number of non-zero coe�cient αj is

called the Slater rank. If it is greater than 1 then the state is entangled otherwise

it is un-entangled. From here we can easily prove that the symmetrization state are

uncorrelated e.g, the above equation when αj = 1 can be written as,

|Φ(1, 2)〉 =
1√
2

[|1〉1 ⊗ |2〉2 − |2〉1 ⊗ |1〉2], (3.3.22)

which is the simple anti-symmetrization of the orthogonal state {|1〉 , |2〉} [14, 16, 15].
To quantify entanglement we will use the previously discussed concept of von Neumann

Entropy for which we need a reduced density matrix which can be obtained by using,

ρ(1) = Tr(2)[|Φ(1, 2)〉 〈Φ(1, 2)|]. (3.3.23)

By using this reduced density matrix the entropy can be de�ned as,

S(ρ(1)) = −Tr(1)[ρ(1) log2 ρ
(1)] = 1−

∑
j

|αj|2 log2 |αj|2. (3.3.24)

� Smin=1 correspond to Slater Number=1 while for distinguishable particles en-

tropy value is zero and the state is un-entangled.

� A state vector describing two identical fermionic states is entangled when the

Slater number is greater than 1 and the corresponding von Neumann entropy

also exceeds 1.

3.3.6 Bosonic Entanglement

Theorem: For any symmetric (N x N) matrix Y [i.e, Y ∈M(N,C) and Y T = Y ] there

exist a unitary transformation which is given a Y=UβUT where β is non-negative real
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diagonal matrix given as β = diag[y1, y2, ..., yN ]. The columns in matrix U are an or-

thonormal set of eigenvectors of Y Y † and the diagonal entries of β are the non-negative

square roots of the corresponding eigenvalues [45].

A state vector representing two identical bosons which are many fold symmetric S(C2s+1⊗
C2s+1) is written as,

|Φ(1, 2)〉 =
2s+1∑
j=1

aj |j〉 ⊗ |j〉 , (3.3.25)

where state |j〉 is orthonormal within the range. aj satis�es the normalization condition∑
j |aj|2 = 1.

In contrast to the distinguishable particles and fermions here we cannot conclude that

when the number of Schmidt coe�cients is 1 the system is non-correlated and for

greater than 1 it is entangled rather Bosons shows di�erent criteria for entanglement

in the system.

Schmidt number = 1: The state vector in this case is written as

|Φ(1, 2)〉 = |j〉 ⊗ |j〉 . (3.3.26)

which shows that both the bosons are in a single state and all the properties are known

for each particle. One can claim that we do not have any information exactly about the

identity of the particles. This property is useless regarding the useful entanglement.

So in this case the system is non-entangled.

Schmidt number = 2: The state vector in this scenario has the form

|Φ(1, 2)〉 = α1 |1〉1 ⊗ |1〉2 + α2 |2〉1 ⊗ |2〉2 . (3.3.27)

where {|α1|2 + |α2|2 = 1} which is a normalization condition and in this situation re-

duced density matrix and von Neumann entropy is,

ρ(1or2) = α2
1 |1〉 〈1|+ α2

2 |2〉 〈2| ,

S(ρ(1or2)) = −α2
1 log2 α

2
1 − α2

2 log2 α
2
2.

(3.3.28)
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Now from here depending upon the values of coe�cients, we have two conditions. when

α1 = α2, the state can be written by the symmetrization of the states. To prove this

claim consider α1 = α2 =
1√
2
. Now the state vector of the system will be,

|Φ(1, 2)〉 =
1√
2
|1〉1 ⊗ |1〉2 + |2〉1 ⊗ |2〉2 . (3.3.29)

If we de�ne the orthonormal states as |1〉 =
1√
2

(|ψ〉 + |χ〉) and |2〉 =
i√
2

(|ψ〉 − |χ〉)
then we can write the above state vector as,

|Φ(1, 2)〉 =
1√
2

(|ψ〉1 ⊗ |χ〉2 + |χ〉1 ⊗ |ψ〉2). (3.3.30)

This is the simplest application of symmetrization postulates and this state is non-

entangled and von Neumann entropy for this state will come out to be 1 which is solely

due to the ignorance of the association of bosons with a particular state vector.

When α1 6= α2 then the state can be written by the symmetrization of non-orthagonal

states.

|Φ(1, 2)〉 =
1√

2(1 + | 〈χ|ψ〉 |2)
[|ψ〉1 ⊗ |χ〉2 + |χ〉1 ⊗ |ψ〉2], 〈χ|ψ〉 6= 0. (3.3.31)

This state can also be represented in another form if we de�ne a unique normalized

state |ψ⊥〉 perpendicular to |ψ〉 and de�ned in two dimensional manifold |ψ〉 and |χ〉.
Then the state vector can be written as,

|Ψ(1, 2)〉 = a |ψ〉1 ⊗ |ψ〉2 +
b√
2

[|φ〉1 ⊗ |ψ⊥〉2 + |ψ⊥〉1 ⊗ |ψ〉2], (3.3.32)

where (a, b 6= 0) are complex coe�cients which satisfy the normalization condition

and depend upon the modulus of inner product as, |b| =

√
(1− | 〈χ|ψ〉 |2)√
(1 + | 〈χ|ψ〉 |2)

. Now by

applying our criteria of entanglement we can conclude that this state is entangled.

After applying Schmidt Decomposition on this state we can get,

|Φ(1, 2)〉 =

√
1 +

√
1− |b|4
2

|1〉1 ⊗ |1〉2 +

√
1−

√
1− |b|4
2

|2〉1 ⊗ |2〉2 , |b| ∈ (0, 1),

(3.3.33)

and we can quantify the entanglement from here with the help of von-Neuman entropy

using Schmidt coe�cients.
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Schmidt number ≥ 3: When it is greater than two the state is genuinely entangled

because we cannot obtain our state vector just by factorization of two orthagonal states.

Summary

� Schmidt number of |Φ(1, 2)〉=1 and S(ρ(1or2)) = 0 then the state is non-entangled

(Tensor product case).

� Schmidt number of |Φ(1, 2)〉=2 and S(ρ(1or2)) ∈ (0, 1) then the state is entangled

(Symmetrization of non-orthagonal states).

� Schmidt number of |Φ(1, 2)〉=2 and S(ρ(1or2)) = 1 then the state is non-entangled

(Symmetrization of orthagonal states).

� Schmidt number of |Φ(1, 2)〉 > 2 and then the state is entangled.

3.3.7 No Label Approach to Identical Particles

In the previous section, we studied identical particles with a mock label attached

to them which induces some ambiguities and later we introduce symmetrization to

rectify that misleading. Now we will look at a method in which no particle will be

associated with any label and generalize the concept of Schmidt decomposition to

identical particles.

Here in no label approach we incorporate the symmetric and anti-symmetric be-

havior of bosons and fermions in their state representation [42]. If two particles are in

state φ and χ then their combine state is given as |φ, χ〉. These two particles are not

completely independent of each other and their overall state is whole and can not be

written as tensor product i.e, |φ, χ〉 6= |φ〉 ⊗ |χ〉. However non-separable external sym-

metric product(wedge product) can be written as |φ, χ〉 := |φ〉 × |χ〉. The probability
amplitude of �nding these particles in some other state i.e, |α, β〉 is given as,

〈α, β|φ, χ〉 = 〈α|φ〉 〈β|χ〉+ η 〈α|χ〉 〈β|φ〉 , (3.3.34)
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where η is +1 for bosons and -1 for fermions.This probability density shows the sym-

metrization and anti-symmetrization of boson and fermions. Inner product between

di�erent dimensions are given as,

〈Ψi|φ, χ〉 = 〈Ψ|φ〉 |χ〉+ η 〈Ψ|χ〉 |φ〉 . (3.3.35)

The state |φ, χ〉 spans over two particle Hilbert space H(2). The two IP state can also

be expressed as |Ψ(2)〉 =
∑

i,j αij |i, j〉. The density matrix for this state is given as,

ρ = |Ψ(2)〉 〈Ψ(2)| , (3.3.36)

and on the basis of all this discussion reduced density matrix can be given as,

ρ(1) =
1

2

∑
j

〈j|Ψ(2)〉 〈Ψ(2)|j〉 =
1

2
Tr(1)ρ. (3.3.37)

On the basis of this concept, we will generalize Schmidt decomposition to identical

particles in next step.

3.3.8 Schmidt Decomposition for Identical Particles

A pure state of two degenerate IP |Ψ〉 can be written in the Schmidt decomposition

(SD) within a symmetric two-particle Hilbert space H(2),

|Ψ〉 =
1√
2

∑
k

√
λk |k, k̃〉 (λk > 0,

∑
k

λk = 1), (3.3.38)

where λk are Schmidt coe�cients which are the square roots of the eigenvalues of the

reduced density matrix.|k.k̃〉 are Schmidt basis and |k̃〉 ∈ {|k〉}.
Proof : The state of two identical particles |Ψ〉 in |k, l〉 basis can be given as

|Ψ〉 =
1

2

∑
k,l

|k, l〉 〈k, l|Ψ〉 , (3.3.39)

where
1

2

∑
k,l |k, l〉 〈k, l| = I2 is symmetric two particles identity matrix. By considering

|k̃〉 =
∑

l 〈k, l|Ψ〉 |l〉 ,
|Ψ〉 =

1

2

∑
k

|k, k̄〉 . (3.3.40)
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The states {|k̄〉} are generally not orthonormal. Nevertheless the basis {k} are orthog-
onal which means 〈k̄′|k̄〉 ∝ δkk′ . The inner product can be written as,

〈k̄′|k̄〉 =
∑
l,l′

〈l′| 〈Ψ|k′, l′〉 〈k, l|Ψ〉 |l〉 ,

=
∑
l

〈k, l|Ψ〉 〈Ψ|k′, l〉 ,

=
∑
l

〈k| × 〈l|Ψ〉 〈Ψ|l〉 × |k′〉 ,

(3.3.41)

where the reduced density matrix of symmetric two particle system is given as, ρ(1) =
1

2

∑
l 〈l|Ψ〉 〈Ψ|l〉. So the relation become,

〈k̄′|k̄〉 = 2
∑
k,k′

〈k|ρ(1)|k′〉 . (3.3.42)

The states {|k〉} are eigenstates of ρ(1), i.e, ρ(1) |k〉 = λk |k〉. As the states {|k̄〉} are
orthagonal so 〈k̄|k̄′〉 = 2λkδkk′ . From here we can use orthonormal bases {|k̃〉} that are
associated with orthagonal basis {|k̄〉} as,

|k̃〉 =
1√
2λk
|k̄〉 =

1√
2λk

∑
l

〈k, l|Ψ〉 |l〉 , (3.3.43)

both {|k〉} and {k̃} are the eigenstates of the reduced density matrix ρ(1) with same

eigenvalue λk. Thus, given a set of eigenstates {|k〉}, each |k̃〉 state belongs to the

same set. Now we have the relation |k̄〉 =
√

2λk |k̃〉. By substituting this we can

demonstrate Schmidt decomposition. When the state of individual particles in the

system is given by the combination of two properties e.g |k〉 ≡ |ab〉, which may be a

spatial and spin state in one case, then SD is applied by �xing one of them and taking

reduced density matrix with respect to other property [43]. Similar to distinguishable

particles SD is only the detection of entanglement and Schmidt number is the indicator

of it. Whenever the number of non-zero Schmidt coe�cients is greater than one the

particles are entangled. This entanglement is quanti�ed with the help of von Neumann

entropy, S(ρ1) = −Tr(1)(ρ(1) log2 ρ
(1)) = −

∑
k λk log2 λk.

In the light of above discussion SD of any two identical particle system can be

obtain by following these simple steps,
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� Perform trace of the ρ and �nd reduced density matrix ρ(1). if the particle

is expressed in multiple sub-states then we need to �x all of them except the

required one and perform the operation accordingly,

� Calculate eigenvalues and eigenstates of ρ(1), and

� Construct the state |k̃〉 and express the state in Schmidt basis {|k, k̃〉}.

3.3.9 SPDC Qutrits as Identical Particles

As we have discussed in the section 2.5.1 a biphotonic system in which the polarization

in 2D is represented in the form of qubits as,

Φ(1, 2) =
2∑

n=1

2∑
m=1

αn,mν
(1)
n ⊗ ν(2)

m . (3.3.44)

When the particles are indistinguishable they follow the symmetrization postulates

and the number of constants decreases as (α0,1 = α1,0). So the number of states left

behind are three that are independent of each other. Such states are called qutrits.

The polarization of photons is restricted to horizontal and vertical only. On basis of

this information, the qutrit states can be written as,

|φ〉
HH

= |1〉1 ⊗ |1〉2 , |φ〉
VV

= |0〉1 ⊗ |0〉2 ,

|φ〉
HV

=
1√
2

(
|1〉1 ⊗ |0〉2 + |0〉1 ⊗ |1〉2

)
,

(3.3.45)

where φHH and φVV represents the photons with similar while φHV state represent par-

ticles with di�erent polarization. This qutrit state can be de�ned by the superposition

of basic states,

|Φ〉qtr (1, 2) = α1 |φ〉HH + α2 |φ〉HV + α3 |φ〉VV , (3.3.46)

which obeys the normalization condition {|α1|2 + |α2|2 + |α3|2 = 1}. The polarization
function of these waves can be measured by taking an inner product with polarization
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vectors,

〈φ〉
HH

(p1, p2) = 〈p1, p2|0, 0〉 = δp1,Hδp2,H ,

〈φ〉
VV

(p1, p2) = 〈p1, p2|1, 1〉 = δp1,V δp2,V ,

〈φ〉
HV

(p1, p2) = 〈p1, p2|0, 1〉 ,

=
δp1,Hδp2,V + δp1,V δp2,H√

2
.

(3.3.47)

The density matrix of this system can be written by following the standard procedure

with these states which is,

ρ1,2 =



|α0,0|2
1√
2
α0,0α

∗
0,1

1√
2
α0,0α

∗
0,1 α0,0α

∗
1,1

1√
2
α0,1α

∗
0,0

1

2
|α0,1|2

1

2
|α0,1|2

1√
2
α0,1α

∗
1,1

1√
2
α0,1α

∗
0,0

1

2
|α0,1|2

1

2
|α0,1|2

1√
2
α0,1α

∗
1,1

α1,1α
∗
0,0

1√
2
α1,1α

∗
0,1

1√
2
α1,1α

∗
0,1 |α1,1|2


. (3.3.48)

By tracing over one particle the matrix will reduce to,

ρ1 =

 |α0,0|2 +
|α0,1|2

2

α0,0α
∗
1,0 + α1,0α

∗
1,1√

2
α0,1α

∗
0,0 + α1,1α

∗
0,1√

2

|α0,1|2

2
+ |α1,1|2

 . (3.3.49)

The eigenvalue of this matrix is,

λ± =
1

2
(1± (1− |2α0,0α1,1 − α2

0,1|2)1/2). (3.3.50)

We can relate this eigenvalue with concurrence as,

C = |2α0,0α1,1 − α2
0,1| = 2(λ+λ−)1/2. (3.3.51)

To quantify entanglement we use the concept of von Neumann entropy,

S = −λ+ log2 λ+ − λ− log2 λ−. (3.3.52)

All the above discussion revolves around two particle systems only. Now we will try

to generalize it to N-particle system and discuss methods that can be implemented to

quantify entanglement in it.
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Figure 3.3.5: Probability of 2-particle system changing their state.

3.3.10 N-Particle Formalism

In previous sections, we considered only two-particle systems when we were calculating

their probability amplitude in another two-particle state (symmetrized product) and

it was,

〈1̄, 2̄|1, 2〉η := 〈1̄|1〉 〈2̄|2〉+ η 〈1̄|2〉 〈2̄|1〉 , (3.3.53)

where the η is for symmetrization which is +1 for bosons and -1 for fermions. The

probability of �nding both the particles in a single state is,

〈1̄, 1̄|1, 2〉η = (1 + η) 〈1̄|1〉 〈1̄|2〉 , (3.3.54)

where it is zero for fermions which satis�es the Pauli exclusion principle and for bosons

probability is maximum. Generalization of this method to N-identical particles give

us,

〈1̄, 2̄, ..., N̄ |1, 2, ..., N〉η ; =
∑
P

ηP 〈1̄|P1〉 〈2̄|P2〉 , ..., 〈N̄ |PN〉 , (3.3.55)

where P is the parity of permutation, for bosons ηP is 1 while in fermionic case

it is 1 for even and -1 for odd permutations. In a system of N-identical particles

when ever two IP exchange their states with each other the resultant state is become

|1, 2, ..., k, ..., l, ..., N〉 = η |1, 2, ..., l, ..., k, ..., N〉, where k,l ∈ 1,2,...,N and l6=k.

The tensor product state of the N-particle system {|1〉 ⊗ |2〉⊗, ...,⊗ |N〉} is not

possible when two or more IP states are overlapping and the state is not normalized.

So the state of N-identical particles in normalized form is,

|Ψ(N)〉 :=
1

N
|ψ(N)〉 :=

1

N
|1, 2, ..., N〉 , (3.3.56)
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where N =
√
〈1, 2, ..., N |1, 2, ..., N〉. Now we will look at the action of a single par-

ticle operator on a multiparticle state. On N-identical particle state, the action of an

operator Ô(1) is

Ô(1) |1, 2〉 = |Ô(1)1, 2〉+ |1, Ô(1)2〉 , (3.3.57)

As all the particles are identical so the operator can act on all of them but the action is

not simultaneous rather one by one. We can generalize this idea to N-identical particle

state as,

Ô(1) |1, 2, ..., N〉 :=
∑
k

|1, ..., Ô(1)k, ..., N〉 . (3.3.58)

3.3.11 Partial Trace and von Neumann Entropy

The inner product of a single particle bra with multi-particle ket can be de�ned with

the action of a 1-particle operator Ô(1) = |i′〉 〈j′| on N-particle state which is given as,

Ô(1) |1, 2, ..., N〉 : =
∑
j

|i′〉 , |1, 2, ..., 〈j′|j〉 , ..., N〉 ,

=
∑
j

ηj−1 〈j′|j〉 |i′, 1, 2, ..., ��j, ..., N〉 .
(3.3.59)

The state |i′〉 is displaced from the jth site and placed at the �rst place due to the

individuality of the state and the initial state is canceled. The simple inner product

between 1-particle bra and N-particle symmetric Hilbert space H(N) ket is de�ned as,

〈j′|.|1, 2, ..., N〉 :=
N∑
j=1

ηj−1 〈j′|j〉 |1, ..., ��j, ..., N〉 . (3.3.60)

This is un-normalized (N-1)-particle state whose normalized state |Ψ(N−1)
j′ 〉 is,

|Ψ(N−1)
j′ 〉 =

〈j′|.|Ψ(N)〉√
〈Π(1)

j′ 〉Ψ(N)

, (3.3.61)

where Π
(1)
j′ = |j′〉 〈j′| is projection operator. The reduced density matrix of N-particle

state after performing one particle trace is,

ρ(N−1) :=
1

〈I(1)〉Ψ(N)

Tr(1) |Ψ(N)〉 〈Ψ(N)| ,

=
∑
j′

pj′ |Ψ(N−1)
j′ 〉 〈Ψ(N−1)

j′ | ,
(3.3.62)
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where 1-particle identity operator is de�ned as I(1) =
∑

j′ Π
(1)
j′ and its action on N-

particle state is I(1) |1, 2, ..., N〉 = N |1, 2, ..., N〉, therefore pj′ =
〈Π(1)

j′ 〉Ψ(N)

〈I(1)〉Ψ(N)

. This re-

duced density matrix is same for tracing out any particle from the system.

For 2-identical particles inner product is de�ned as,

〈i′, j′|.|1, 2, ..., N〉 =
N∑
k=1

ηk−1 〈i′|k〉[∑
j<k

ηj−1 〈j′|j〉 |1, ..., ��j, ...,��k, ..., N〉+
∑
j>k

ηj−2 〈j′|j〉 |1, ...,��k, ..., ��j, ..., N〉

]
.

(3.3.63)

This results replicates the two IP system when N=2. The identity operator of 2 particles

and their projection operator are de�ned as,

I(2) = (
1

2!
)
∑
k′

Π
(2)
k′ ,

Π
(2)
k′ =

1

N 2
k′
|k′1, k′2〉 〈k′1, k′2| .

(3.3.64)

So, normalized N-2 state is,

|ΨN−1
k′ 〉 =

〈k′1, k′2|.|Ψ(N)〉√
〈Π(2)

k′ 〉Ψ(N)

. (3.3.65)

The reduced density matrix of (N-2) particle state by using previous result is,

ρ(N−2) :=
1

2! 〈I(2)〉Ψ(N)

Tr(2) |Ψ(N)〉 〈Ψ(N)|

=
∑
k′

pk′ |Ψ(N−2)
k′ 〉 〈Ψ(N−2)

k′ | ,
(3.3.66)

where pk′ =
1

2!

〈Π(2)
k′ 〉Ψ(N)

〈I(2)|Ψ(N)

. We can generalize this procedure for any arbitrary number

M which ranges between 1 and N to �nd its reduced density matrix which will be

ρ(N−M) :=
1

M ! 〈I(2)〉Ψ(N)

Tr(M) |Ψ(N)〉 〈Ψ(N)| ,

=
∑
k′

pk′ |Ψ(N−M)
k′ 〉 〈Ψ(N−M)

k′ | .
(3.3.67)
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We can use this density matrix to calculate von Neumann entropy between any two IP

or group of identical particles [44],

S(ρ(N−M)) = −Tr(ρ(N−M) log2 ρ
(N−M)). (3.3.68)

This approach is termed as LO FRANCO AND COMPAGNO'S METHOD (LFC).

All the discussed methods are complicated and suggest di�erent approaches for bosons

and fermions. Moreover symmetrization add more to its complications. So, we will

discuss quantum systems in second quantization that is relatively a simple approach.
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Chapter 4

Second Quantization Approach

The second quantization was �rst introduced in quantum �eld theory where wave

functions were treated as �eld operators and can e expanded in terms of single particle

creation and annihilation operators. We are going to introduce a similar approach in

entanglement detection and quanti�cation. But the question arises here, why do we use

this approach? Our ultimate goal is to introduce a simpler mechanism than the tradi-

tional one that we have discussed. The di�culties that arise in �rst quantization was

due to the Pauli exclusion principle that tackled by using symmetrization postulates.

The Slater determinants that we had introduced in the previous approach was quite

complicated. In this method, the di�culties that arise from symmetrization postulates

resolve automatically and at its cost, we have the normal ordering of operators which

is relatively a simpler task. Other features of this approach is that it is independent of

number of particles that help in understanding behavior of each particle individually

and it play an important role in �nite basis approximation.

4.1 Representation of States

To represent a system in second quantization we make use of the orthonormal vac-

uum state (|0〉), creation (â†) and annihilation (â) operator. By using this state and

operators a single particle quantum state can be de�ned as,

|α〉 = â†α |0〉 . (4.1.1)
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The two particle state in �rst quantization is represented in determinant form which

follows the symmetrization postulates,

Φa(x1, x2) =
1√
2!

∣∣∣∣φ1(x1) φ1(x2)
φ2(x1) φ2(x2)

∣∣∣∣ , (4.1.2)

while in second quantization it is,

|α, β〉 = â†αâ
†
β |0〉 , (4.1.3)

which shows that a particle is in state α and other is in state β created in vacuum state

using creation operators. Depending upon the bosonic and fermionic nature of particle

their creation and annihilation operators follow commutation and anti-commutation

relations that is,

[â†α, â
†
β] = â†αâ

†
β − â

†
βâ
†
α = 0 (for bosons),

{â†α, â
†
β} = â†αâ

†
β + â†βâ

†
α = 0 (for fermions),

(4.1.4)

which can be computed by using the symmetrization property of the particles,

|Φ〉 = |α1, α2, α3, ..., αi, αj, ..., αn〉 ,

|Φ〉 = ± |α1, α2, α3, ..., αj, αi, ..., αn〉 ,
(4.1.5)

where the +ve sign is for bosons and -ve sign is for fermions. We can derive commutator

and anti-commutator relation between creation and annihilation operator by applying

this property.

[âα, â
†
β] = 0 (for bosons),

{âα, â†β} = 0 (for fermions),

[âα, â
†
α] = 1 (for bosons),

{âα, â†α} = 1 (for fermions).

(4.1.6)

N-particles separable state in second quantization is,

|Ψ〉 = |α1, α2, α3, ..., αn〉 = â†1â
†
2â
†
3...â

†
n |0〉 . (4.1.7)

To establish second quantization form of operators, the basic principle in this ap-

proach is that both representation should have same expectation value. In case of
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indistinguishable particle the fermionic non-entangle state is given in the form of con-

vex combination of Slater determinant,

ρf =
∑
j

pja
j
1

†
...ajN

† |0〉 〈0| ajN ...a
j
1, (4.1.8)

where ajk
†
and aj1 are creation and annihilation operators of fermions.

Single particle fermionic state can be evaluated with the help of trace and is given

as,

ρf1 ≡
1

N

N∑
j=1

a†j |0〉 〈0| aj, (4.1.9)

where the factor
1

N
arise due to action of single operator on all the possible states.

The von Neumann entropy and entanglement in second quantization are shifted and

written as,

E(|Ψ〉 〈Ψ|) = S(ρf )− lnN. (4.1.10)

Bosonic non-entangled pure state is represented as,

|Ψ〉 =
1√
N !

(a†)N |0〉 . (4.1.11)

We can compute density matrix and then follow the standard procedure to calculate

entropy. One particle reduced density matrix is,

ρb =
1

N
Tr(a†iaj |Ψ〉 〈Ψ|),

ρb =
1

N

N∑
i=1

nia
†
i |0〉 〈0| ai (i = j).

(4.1.12)

and the entropy in this case will come,

S(ρb) = −
N∑
i=1

(ni
N

)
ln
(ni
N

)
, (4.1.13)

which is the quantitative measure of entanglement. To test the authenticity of this

approach we will compare it with LFC's method.
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4.1.1 LFC's Method and Second Quantization

In this section, we will compare the LFC's method to second quantization (SQ) in order

to prove that both techniques agree with each other. The state of two indistinguishable

particles in LFC's method is de�ned as,

|ψ〉 =
∑
A,B,i,j

αAiBj |Ai,Bj〉 , (4.1.14)

where {A, B} represents the spatial degree of freedom and {i, j} is for another trait

like spin or polarization as discussed. The density matrix for this state is,

ρ = |ψ〉 〈ψ| =
∑
A,B,i,j

∑
C,D,k,l

αAiBjα
Ck∗
Dl |Ai,Bj〉 〈Ck,Dl| , (4.1.15)

where indices represent �nite orthogonal states and are generalized as,

A,B,C,D={E1, E2, ..., Es} and i,j,k,l={x1, x2, ..., xt}.
Localized partial trace in region E1 in non-normalized form is,

ρ̃
(1)
N = TrN(ρ) =

xt∑
n=x1

〈E1n|ρ|E1n〉 ,

=
xt∑

n=x1

∑
A,B,i,j

∑
C,D,k,l

αAiBjα
Ck∗
Dl


〈E1n|Ai〉 〈Dl|E1n〉 |Bj〉 〈Ck|

+ η 〈E1n|Ai〉 〈Ck|E1n〉 |Bj〉 〈Dl|

+ η 〈E1n|Bj〉 〈Dl|E1n〉 |Ai〉 〈Ck|

+ 〈E1n|Bj〉 〈Ck|E1n〉 |Ai〉 〈Dl|

 ,

=
xt∑

n=x1


∑
B,j

∑
C,k

αE1n
Bj α

E1n∗
Ck |Bj〉 〈Ck|+ η

∑
B,j

∑
D,l

αE1n
Bj α

Dl∗
E1n
|Bj〉 〈Dl|

+ η
∑
A,i

∑
C,k

αAiE1n
αE1n∗
Ck |Ai〉 〈Ck|+

∑
A,i

∑
D,l

αAiE1n
αDl∗E1n

|Ai〉 〈Dl|

 .

(4.1.16)

This is the reduced density operator that we obtain by using LFC's method.

Now we will derive reduced density matrix using second quantization. For this purpose

we will write density matrix in this formalism as,

ρ = |ψ〉 〈ψ| =
∑
A,B,i,j

∑
C,D,k,l

αAiBjα
Ck∗
Dl a

†
Aia
†
Bj |0〉 〈0| aCkaDl. (4.1.17)
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The non-normalized reduced density matrix for single particle by using commutation

relations in this approach is,

ρ̃(1) =
xt∑

n=x1

〈0| aE1nρa
†
E1n
|0〉 ,

=
xt∑

n=x1

∑
A,B,i,j

∑
C,D,k,l

αAiBjα
Ck∗
Dl

(
(δE1Aδnia

†
Bj + ηδE1Bδnja

†
Aj) |0〉

〈0| (δE1DδnlaCk + ηδE1CδnkaDl)

)
,

=
xt∑

n=x1


∑
B,j

∑
C,k

αE1n
Bj α

E1n∗
Ck a†Bj |0〉 〈0| aCk + η

∑
B,j

∑
D,l

αE1n
0 αDl∗E1n

a†Bj |0〉 〈0| aDl

+ η
∑
A,i

∑
C,k

αAiE1n
αE1n∗
Ck a†Aj |0〉 〈0| aCk +

∑
A,i

∑
D,l

αAiE1n
αDl∗E1n

a†Aj |0〉 〈0| aDl

 .

(4.1.18)

As both the reduced density matrices 4.1.16 and 4.1.18 so we can quantify entanglement

by computing von Neumann entropy of normalized reduced density matrix. Now we

will apply second quantization to detect and quantify entanglement in a quantum

system.

4.1.2 Application to SPDC

To apply second quantization here we will consider the type-II regime of SPDC in which

both the photons signal and idler have di�erent polarization which will be treated as

an entangled trait. If the spatial degree of freedom is {|A〉 , |B〉} and polarization is

{|H〉 , |V 〉} then the output state of this system is represented as,

|Ψ〉 = a |AH,BV 〉+ beiθ |AV,BH〉 , (4.1.19)

where |A〉 = κ |U〉 +
√

1− κ2 |L〉, |B〉 = κ |L〉 +
√

1− κ2 |U〉 , κ = 〈U |L〉 , b =
√

1− a2

(|U〉 and |L〉 represents the spatial region of upper and lower region). In type-I both

the photons have either vertical polarization (V) or Horizontal (H) but in this setup

polarization of both photons can never be same.

The state of the system after plugging {|A〉 , |B〉} is,

|Ψ〉 =((a+ ηbeiθ)κ
√

1− κ2) |UH,UV 〉+ (aκ2 + ηbeiθ(1− κ2)) |UH,LV 〉 ,

+ (a(1− κ2) + ηbeiθκ2) |LH,UV 〉+ ((a+ ηbeiθ)κ
√

1− κ2) |LH,LV 〉 .
(4.1.20)
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Figure 4.1.1: Type-II Spontaneous Parametric Down-Conversion:νs,i and ks,i are frequencies and wave
vectors of signal and idler.

Now second quantization form of this state is,

|Ψ〉 =((a+ ηbeiθ)κ
√

1− κ2)a†UHa
†
UV |0〉+ (aκ2 + ηbeiθ(1− κ2))a†UHa

†
LV |0〉

+ (a(1− κ2) + ηbeiθκ2)a†LHa
†
UV |0〉+ ((a+ ηbeiθ)κ

√
1− κ2)a†LHa

†
LV |0〉 .

(4.1.21)

From here we can easily calculate density matrix which is ρ = |Ψ〉 〈Ψ|. Now we will com-

pute entanglement both by localized partial trace method and trace over entire degree

of freedom of one particle separately. Firstly, the localized trace over {a†LH |0〉 , a
†
LV |0〉}

will give reduced density matrix which in normalized form is,

ρLT1 =
1

N


α1 0 α4 0
0 α1 0 α5

α∗4 0 α2 0
0 α∗5 0 α3

 , (4.1.22)
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where

α1 = (1 + 2ηab cos θ)κ(1− κ),

α2 = b2(1− κ) + a2κ+ 2ηab cos θ(1− κ)κ,

α3 = a2(1− κ) + b2κ+ 2ηab cos θ(1− κ)κ,

α4 = (1 + 2ηab cos θ)κ(1− κ),

α5 = a(a+ ηbeiθ + 2ib sin θ)
√

(1− κ)κ,

N = 2α1 + α2 + α3 = 1 + (2 + 8ηab cos θ)(1− κ)κ.

(4.1.23)

The eigenvalues of this reduced density matrix are,

λ1 =
a2 + (b2 + 4ηab cos θ)(1− κ)κ

1 + (2 + 8ηab cos θ)(1− κ)κ
,

λ2 = 1− λ1,

λ3 = λ4 = 0.

(4.1.24)

Now we can compute entanglement by von Neumann entropy of this reduced density

matrix which is,

ELT (|Ψ〉) = −
4∑
j=1

λj lnλj. (4.1.25)

The above calculations were with local trace (LT) but entanglement behave di�er-

ently when we trace over the entire degree of freedom (non-local),{a†LH |0〉 , a
†
LV |0〉 , a

†
UH |0〉 , a

†
UV |0〉},

of a single particle. The reduced density matrix in this scenario is,

ρSQ1 =
1

2(N − α1)


α1 + α3 0 α4 0

0 α1 + α2 0 α5

α∗4 0 α2 0
0 α∗5 0 α3

 . (4.1.26)

The eigenvalues of this matrix are,

λ1 = λ2 =
1

4

1 +

√√√√1− 8a2(1− a2)(1− κ)2κ2[
4
√
a2(1− a2)(1− κ)κ cos θ + η

]2

 ,

λ3 = λ4 =
1

4

1−
√√√√1− 8a2(1− a2)(1− κ)2κ2[

4
√
a2(1− a2)(1− κ)κ cos θ + η

]2

 .

(4.1.27)
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By using these eigenvalue it is straight forward to compute entanglement through von

Neumann entropy which is,

ESQ(|Ψ〉) = −
4∑
j=1

λj lnλj − ln 2. (4.1.28)

The last term ln2 discount the entanglement that arise because of exchange correlation

of the particles. As single Slater determinant of separable state is equals to ln2.

4.2 Comparison Between Local and Non-local Ap-

proach

To study the e�ect of local and non-local approach on distinguishable and indistinguish-

able particles we compare the entanglements that we obtain in bosonic, fermionic and

distinguishabble particle systems by using local and non local trace as shown in graph.

The overlapping parameter between the entangled states is 0.3 in case of indistinguish-

able particles and 0 when particles are distinguishable. In graph blue dotted lines show

Figure 4.2.1: Entanglement as a function of a2 with θ = 0 for bosons, fermion and distinguishable
particles case. Comparison between entanglement calculated by local trace and trace over entire
system with overlap parameter κ = 0.3 for indistinguishable particles and κ = 0 for distinguishable
particles [46]

.

the entanglement of bosons, red dotted lines are for fermions and the black line is for
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distinguishable particles. As the graph clearly depicts the de�ection in entanglement

when we move from distinguishable to the indistinguishable world. In distinguishable

particle systems, the nature of the particles has a minimalist e�ect on the entangle-

ment while indistinguishable case there is a huge di�erence recorded in entanglement

behavior under similar circumstances but di�erent nature of the particles (fermions

and bosons) in the system.

On the basis of approaches that we use to quantify entanglement, distinguishable

particle results agree both in local and non-local approaches but indistinguishable par-

ticles give di�erent results. As it is ridiculous to say that a system has two di�erent

values for a single quantity under the same conditions so there must be some factor

that restricts the results to be the same. This disagreement arise due to the contribu-

tion of exchange correlation that is taken into account in case of non-local approach

(ESQ(Ψ)) but in local approach it was ignored.
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Chapter 5

Discussion and Conclusion

In this thesis, we have studied various approaches for the detection and quanti�cation

of entanglement in indistinguishable particles. Entanglement is a basic resource that

is useful in quantum information, quantum communication, quantum computation,

quantum cryptography, superdense coding, quantum teleportation, and many other

advanced applications. However, generation, detection, and quanti�cation are much

involved and challenging processes and may be complicated in some systems depending

on their nature and properties. In general, there are two types of quantum systems, dis-

tinguishable and indistinguishable. Di�erent techniques to detect the entanglement in

distinguishable systems are separability and Schmidt decomposition. Usually, Schmidt

decomposition is used to detect entanglement in distinguishable particles however it

doesn't give any information about its quanti�cation in this contest di�erent methods

of quanti�cation are used such as von Neumann entropy, concurrence, negativity, and

entanglement of formation. The von Neumann entropy is most comprehensive among

them which is linked with Schmidt coe�cients.

Entanglement detection and quanti�cation become complicated in the systems of

indistinguishable particle. Here we try to present various tools to analyze the entan-

glement in indistinguishable domains but certain complications arise. To tackle them

�rstly, we introduced symmetrization postulates and develop Slater Schmidt decom-

position which was similar to Schmidt decomposition but depends upon the nature of

particles in the system. To develop a uni�ed approach, we try to generalize Schmidt
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decomposition for identical particles by using, so called no-labeling approach. All

these approaches were complicated largely due to symmetrization postulates. So, to

circumvent this complication, we introduced a second quantization approach, which

is based on the commutation relations. This approach is less complicated and can be

applied universally on both distinguishable and indistinguishable particles. Finally, it

is concluded that both of these approaches agree in the case of distinguishable parti-

cles but deviate in the case of indistinguishable particles. This deviation is because of

exchange-correlation that contributes to non-local measurements. It is found the Sec-

ond quantization approach is relatively simple, equally e�ective to all kinds of quantum

systems and it circumvents the complication of symmetrization postulates.
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