
FORMULA STUDENT ELECTRONICS &

DASHBOARD DESIGN

By

Muhammad Ahmed Amaan NUST 2012 00583 BSMME 11112F

Usama Masud NUST 2012 01154 BSMME 11112F

Shahzeb Khan NUST 2012 01259 BSMME 11112F

Supervised By

Dr. Samiur Rahman Shah

School of Mechanical and Manufacturing Engineering,

National University of Sciences and Technology (NUST),

Islamabad, Pakistan

 June, 2016

FORMULA STUDENT ELECTRONICS &

DASHBOARD DESIGN

By

Muhammad Ahmed Amaan NUST 2012 00583 BSMME 11112F

Usama Masud NUST 2012 01154 BSMME 11112F

Shahzeb Khan NUST 2012 01259 BSMME 11112F

Supervised By

Dr. Samiur Rahman Shah

A thesis submitted in partial fulfillment of the requirements for the degree of

Bachelors of Engineering in Mechanical Engineering

School of Mechanical and Manufacturing Engineering,

National University of Sciences and Technology (NUST),

Islamabad, Pakistan

 June, 2016

National University of Sciences & Technology

FINAL YEAR PROJECT REPORT

We hereby recommend that the dissertation prepared under our supervision by: Muhammad

Ahmed Amaan (NUST201200583BSMME11112F), Usama Masud

(NUST201201154BSMME11112F) and Shahzeb Khan (NUST201201259BSMME11112F)

Titled: Formula Student Electronics & Dashboard Design be accepted in partial fulfillment

of the requirements for the award of Bachelors of Engineering in Mechanical Engineering

degree with (A grade).

English and format checked by Ms Aamna Hassan, Signature: ________________

Guidance Committee Members

1. Name:

Signature:_________________

2. Name: Signature:_________________

3. Name:

Signature:_________________

Supervisor’s Name: Signature:_________________

 Head of Department

 Date

COUNTERSIGNED

__________________ __________________

 Date Dean/Principal

1

DECLARATION

We certify that this research work titled “FORMULA STUDENT ELECTRONICS &

DASHBOARD DESIGN” is our own work. The work has not been presented elsewhere for

assessment. The material that has been used from other sources it has been properly

acknowledged / referred.

 Signature of Student

 Muhammad Ahmed Amaan

 NUST201200583BSMME11112F

 Signature of Student

 Usama Masud

 NUST201201154BSMME11112F

 Signature of Student

 Shahzeb Khan

 NUST201201259BSMME11112F

2

COPYRIGHTS STATEMENT

 Copyright in text of this thesis rests with the student author. Copies (by any process) either

in full, or of extracts, may be only in accordance with the instructions given by author and

lodged in the Library of SMME, NUST. Details may be obtained by the librarian. This page

must be part of any such copies made. Further copies (by any process) of copies made in

accordance with such instructions may not be made without the permission (in writing) of

the author.

 The ownership of any intellectual property rights which may be described in this thesis is

vested in SMME, NUST, subject to any prior agreement to the contrary, and may not be

made available for use of third parties without the written permission of SMME, NUST

which will describe the terms and conditions of any such agreement.

 Further information on the conditions under which disclosure and exploitation may take

place is available from the library of SMME, NUST, Islamabad.

3

Dedicated to my parents

4

ABSTRACT

Team Bolts aim to participate in this year’s Formula Student and for that reason, the project

undertaken by team Bolts Destiny was to design dashboard and electronics of Formula

Student Car, that would be efficient and serves its purpose to the fullest.

The work started with a detailed literature review of many previous teams and how they

achieved their simple goals. Many research papers and articles were thoroughly studied. Once

that was done, CAD models were prepared for the dashboard and electronic circuit layouts

along with the backend coding done in Arduino.

Once all the layouts and electronic components were complete, the team entered the

fabrication phase. Each part was fabricated according to the required electronic and

mechanical specifications and the whole system was then assembled together in the chassis.

The findings of the project can be divided into groups: mechanical and electrical. In the

electronics part, the team studied coding and data sheets used for every single electronics

component. The final system that was fabricated was the simplest system that could have

been prepared. A few problems the team encountered included component availability,

complex codes and telemetry, used to interface Accelerometer with an application on mobile

phone using Bluetooth connectivity.

5

PREFACE

Formula Student is an international event that takes place around the globe numerous times

every year. The competition comprises of teams from all over the globe who build their own

Formula style racing car from scratch and during the event, compete in a series of events. The

events can be divided into types: Static and Dynamic. Static events include exhibition of all

the features, design, ergonomics and functions of each vehicle and all of these factors are

judged by a group of expert judges from Formula Student.

Team Bolts is part of NUST Bolts Racing and its aim is to participate in Formula Student UK

in July 2016. The team comprises of 10 members, each responsible for a specific system of

the race car. Team Bolts Destiny was made responsible for the Dashboard Design, Data

Logging and the electronics of the race car. That became the reason Team Bolts Destiny

chose this as their Final Year Project, so that they could achieve two targets with one project.

This document contains all the literature review work, methodology, findings and drawings

of the work done by Team Bolts Destiny in order to completely manufacture their own FS

race car. The team started their work on this project in September 2015. The team consists of

Muhammad Ahmed Amaan, Usama Masud and Shahzeb Khan.

The aim to take part in FS UK is dependent on the success of this project and Team Bolts

Destiny hopes that their work takes them on the road to success.

6

ACKNOWLEDGEMENTS

Team Bolts Destiny took efforts in this project. However, it would not have been possible

without the kind support and help of various individuals and organizations. Team Bolts

Destiny would like to extend their sincere thanks to all of them.

The team is highly indebted to Dr. Samiur Rahman Shah for his guidance and constant

supervision as well as providing necessary information regarding the project and also for his

support and trust in completing the project. The team is also thankful to the parents of the

individual members for their utmost support and motivation.

A special gratitude goes out to the staff at SMME and MRC for their assistance in completing

the whole project.

7

Table of Contents

DECLARATION.. 1

COPYRIGHTS STATEMENT .. 2

ABSTRACT .. 4

PREFACE ... 5

ACKNOWLEDGEMENTS .. 6

ELECTRONICS .. 9

1.1 BACKGROUND ... 9

1.2 TEMPERATURE SENSOR BARGRAPH CODE ... 9

I. Pin Layout: .. 9

II. LCD Declaration in the code: .. 10

III. Void Setup () .. 11

IV. Void Loop () ... 12

V. Bargraph Code Explained .. 13

VI. End of Code ... 15

1.3 FUEL GAUGE BARGRAPH CODE ... 16

I. Pin Layout ... 16

II. LCD Declaration in the code ... 17

III. Void Setup () .. 18

IV. Void Loop () ... 19

V. Void Loop () ... 19

VI. End of the Code ... 21

1.4 REV COUNTER / TACHOMETER... 22

I. Pin Layout ... 22

II. LCD Declaration in the Code .. 23

III. Assigning Variables ... 23

IV. Void Setup () .. 25

V. Void Setup () .. 26

1.5 SPEEDOMETER .. 29

I. Pin Layout ... 29

8

II. LCD Declaration in the Code .. 30

II. Assigning Variables ... 30

III. Void Setup () .. 32

IV. Void Loop () ... 33

1.6 CAN-BUS SHIELD .. 36

I. Introduction ... 36

II. Explanation .. 36

III. Features .. 36

IV. Block Diagram ... 37

V. Transmitter Function ... 37

VI. Operating Modes ... 38

CONCLUSIONS AND FUTURE WORK ... 39

2.1 CONCLUSION ... 39

2.2 FUTURE WORK .. 39

REFERENCES ... 40

9

ELECTRONICS

1.1 BACKGROUND

In the dashboard head, there were four 16x2 LCDs used to display different outputs which are

as follows:

1- Speed

2- Rpm

3- Fuel Gauge

4- Temperature Gauge

1.2 TEMPERATURE SENSOR BARGRAPH CODE

I. Pin Layout:

Following figure shows the pin layout for 16x2 LCD:

10

Whereas the LCD is as shown below:

II. LCD Declaration in the code:

11

Steps involved are:

a) Initialization of the lcd library :
 #include <LiquidCrystal.h>

b) Then declaring the pins through which data transfer will occour between the
microcontroller and the LCD

 LiquidCrystal lcd(12,11,5,4,3,2);

c) Creating Progress Bar Characters:

This array makes every dot in the small dot matrix of a digit in 16x2 LCD to turn on.

III. Void Setup ()

 This is the part of the program gets initialized when the microcontroller starts operation
or when its operation is reset.

12

a) Declaring the type of LCD:

 lcd.begin(16,2);

 This is the definition that the LCD being used is 16x2

b) Serial library declaration :

 Serial.begin(9600);
 The serial library shows the data on the serial port

IV. Void Loop ()

 This part of the loop gets repeated again and again during the operation of the
microcontroller and whatever is written in it is the main operational code of the
microcontroller.

13

V. Bargraph Code Explained

a) Initialization of variables :

The variables are being initialized at first is an integer type variable and the variable
name is val and its value is coming from input pin A0.

 int val = analogRead(A0);

Next variable's name is mv and it is a float type variable and its value is a factor
multiplied with the variable val.

float mv = (val/1024.0)*5000;

Next is a float type variable named cel and it is the temperature in Celsius and it
comes by dividing the mv by 10.

float cel = mv/10;

Next variable is the scaling variable that will determine how many of the 16 bargraph
levels should be turned on. It is an integer type variable named a and it is just a
scaling of cel variable on 100 Celsius i.e. at 100 Celsius the value of a will be 16 so
full graph will be turned on

int a=cel/60*16;

b) Printing the value of a on serial monitor :

Next command will display the value of a on serial monitor

Serial.println(a);

c) Delay Function:

Next command is a delay function that puts a delay in the operation of
microcontroller and the function value is the number of mills it will take delay

delay(1);

d) Bargraph Displaying Loop :

This loop will print the bar graph on the LCD according to the value of variable a, the
value of variable a ranges from 0 to 16 and whatever the value of variable a would
be this loop will turn on respective amount of blocks in the bar graph:

14

The outer loop runs as many times as the value of variable a and every time it runs it
turns one block in the bar graph.

This outer for loop runs as many times as the value of variable a

for(int i=0; i<a; i++)

The inner loop will display a block of bargraph whenever it is run.

and it will run 5 times because a block of the bargraph comprises of small 5 rows of
dot matrix and this loop will turn all of them on to make the block fully turned on.

 for(int j=0; j<5; j++)

The loop will run 5 times to turn one block on because 16x2 has 2 rows so first it will
display half of the block then the other half.

lcd.setCursor(i,0);
lcd.write(j);

The first line will take the cursor to first row of the LCD and the write command will
print the block.

lcd.setCursor(i,1);
lcd.write(j);

This fist line will take the code to the 2nd row in the LCD and the write command will
print the block.

15

delay(10);
Then there will be 10 milliseconds delay.

VI. End of Code

Before the void loop runs again the screen must be cleared to display the bargraph
again.

 lcd.clear();
 delay(20);

16

1.3 FUEL GAUGE BARGRAPH CODE

I. Pin Layout

Following is the illustration of the LCD Pin Layout:

Whereas the LCD is as shown below:

17

II. LCD Declaration in the code

a) Initialization of the LCD library:

 #include <LiquidCrystal.h>

b) Then Declaring the pins through which data transfer will occour between the

microcontroller and the LCD

 LiquidCrystal lcd(12,11,5,4,3,2);

c) Creating Progress Bar Characters:

18

This array makes every dot in the small dot matrix of a digit in 16x2 LCD to turn it on.

III. Void Setup ()

 This is the part of the program that gets initialized when the microcontroller starts
operation or when its operation is reset.

a) Declaring the type of LCD:

 lcd.begin(16,2);

This is the definition that the LCD being used is 16x2.

b) Serial library declaration:

 Serial.begin(9600);
 The serial library shows the data on the serial port.

19

IV. Void Loop ()

This part of the loop gets repeated again and again during the operation of the
microcontroller and whatever is written in it is the main operational code of the
microcontroller.

V. Void Loop ()

a) Initialization of variables :

The variables are being initialized at first is an integer type variable and the variable
name is sensorValue and its value is coming from input pin A0.

 int sensorValue = analogRead(A0);

Then this sensor value is multiplied with a factor to get the value of variable a.

int a =sensorValue*300/1000;

b) Bargraph Displaying Loop:

This loop will print the bar graph on the LCD according to the value of variable a, the
value of variable a ranges from 0 to 16 and whatever the value of variable a would

20

be this loop will turn on that many blocks in the bar graph.

The outer loop runs as many times as the value of variable a and every time it runs it
turns one block in the bar graph.

This outer for loop runs as many times as the value of variable a.

for(int i=0; i<a; i++)

The inner loop will display a block of bargraph whenever it is run.

And it will run 5 times because a block of the bargraph comprises of small 5 rows of
dot matrix and this loop will turn all of them on to make the block fully turned on

for(int j=0; j<5; j++)

The loop will run 5 times to turn one block on

Because 16x2 has 2 rows so first it will display half of the block then the other half

lcd.setCursor(i,0);
lcd.write(j);

The first line will take the cursor to first row of the lcd and the write command will
print the block

lcd.setCursor(i,1);
lcd.write(j);

21

This fist line will take the code to the 2nd row in the lcd and the write command will
print the block

delay(10);

There will be a delay of 10 milliseconds.

VI. End of the Code

Before the void loop runs again the screen must be cleared to display the bargraph
again.

The lcd.clear() command clears the screen

lcd.clear();

The delay function puts 20 mills delay

delay(20);

And this is the end of the code.

22

1.4 REV COUNTER / TACHOMETER

I. Pin Layout

Following is the illustration of the LCD Pin Layout:

23

II. LCD Declaration in the Code

(a) Initialization of the lcd library.

#include <LiquidCrystal.h>

(b) Then Declaring the pins through which data transfer will occur between
the microcontroller and the LCD

 LiquidCrystal lcd(12,11,6,5,4,3);

III. Assigning Variables

24

byte freqpin = 2;

A byte stores an 8-bit unsigned number, from 0 to 255. Here the variable freqpin is
given the value 2 and is a byte type variable.

unsigned long timeone;

 Unsigned long variables are extended size variables for number storage, and store
32 bits (4 bytes). And here a variable timeone is assigned as unsigned long.

unsigned int frequency;

On the Uno and other ATMEGA based boards, unsigned ints (unsigned integers) are
the same as ints in that they store a 2 byte value. Instead of storing negative
numbers however they only store positive values, yielding a useful range of 0 to
65,535 (2^16) - 1). Here the variable frequency is declared as an unsigned int
variable.

unsigned int tcount=0;

On the Uno and other ATMEGA based boards, unsigned ints (unsigned integers) are
the same as ints in that they store a 2 byte value. Instead of storing negative
numbers however they only store positive values, yielding a useful range of 0 to
65,535 (2^16) - 1). Here the variable tcount is declared as an unsigned int variable.

unsigned int timediff;

On the Uno and other ATMEGA based boards, unsigned ints (unsigned integers) are
the same as ints in that they store a 2 byte value. Instead of storing negative
numbers however they only store positive values, yielding a useful range of 0 to
65,535 (2^16) - 1). Here the variable timediff is declared as an unsigned int variable.

unsigned int sampletime=1000;

On the Uno and other ATMEGA based boards, unsigned ints (unsigned integers) are
the same as ints in that they store a 2 byte value. Instead of storing negative
numbers however they only store positive values, yielding a useful range of 0 to
65,535 (2^16) - 1). Here the variable sampletime is declared as an unsigned int
variable.

25

IV. Void Setup ()

pinMode(freqpin, INPUT);

This sets the interrupt on the pin 2 so that the Hall Effect sensor will be attached to
it.

attachInterrupt(0,freqinput,RISING);

Set up the LCD's number of columns and rows for the display.

Declaring the type of LCD:

 lcd.begin(16,2);

 this is the definition that the lcd being used is 16x2

Serial library declaration:

 Serial.begin(9600);

The serial library shows the data on the serial port.

26

V. Void Setup ()

This part of the loop gets repeated again and again during the operation of the
microcontroller and whatever is written in it is the main operational code of the
Microcontroller.

Use while() loop and millis(). Calculate the time difference and compare the value with the
sample time. So while loop and mills function are used to calculate the time in milliseconds
of a frequency pulse.

a) Activation and Deactivation of interrupts:

27

The interrupt function is activated and then deactivated to count the milliseconds for which
the pulse lasted.

b) Displaying the frequency:

The text and the frequency values were displayed on the serial monitor

int rpm;
rpm=frequency*60;
Serial.println(rpm);
delay(30);

The rpm is 60 times the frequency and a delay of 30 mills is put for smoother
operation.

c) Displaying the rpm on the LCD:

lcd.setCursor(7,0);
The cursor is set on position 7,0 which means first row and 7th column on 16x2 LCD.

28

lcd.print("rpm");
The word rpm is printed at that location.

Serial.println(" ");
rpm =frequency*60;

lcd.setCursor(8,1);
The cursor is set on position 8,1 on the LCD

lcd.print(rpm);
The value of rpm is printed

Serial.println(rpm);
This value is also printed on the serial monitor.

delay(30);
Delay of 30 mills is taken.

This is the end of the void loop.

d) Interrupt routine:

The interrupt routine is a functions that works as a counter.

29

1.5 SPEEDOMETER

I. Pin Layout

The pin layout is as follows:

30

II. LCD Declaration in the Code

a) Initialization of the lcd library :

 #include <LiquidCrystal.h>

b) Then Declaring the pins through which data transfer will occour between the

microcontroller and the LCD

 LiquidCrystal lcd(12,11,6,5,4,3);

II. Assigning Variables

31

byte freqpin = 2;
A byte stores an 8-bit unsigned number, from 0 to 255. Here the variable freqpin is
given the value 2 and is a byte type variable

unsigned long timeone;

 Unsigned long variables are extended size variables for number storage, and store
32 bits (4 bytes). And here a variable timeone is assigned as unsigned long.

unsigned int frequency;

On the Uno and other ATMEGA based boards, unsigned ints (unsigned integers) are
the same as ints in that they store a 2 byte value. Instead of storing negative
numbers however they only store positive values, yielding a useful range of 0 to
65,535 (2^16) - 1). Here the variable frequency is declared as an unsigned int
variable.

unsigned int tcount=0;

On the Uno and other ATMEGA based boards, unsigned ints (unsigned integers) are
the same as ints in that they store a 2 byte value. Instead of storing negative
numbers however they only store positive values, yielding a useful range of 0 to
65,535 (2^16) - 1). Here the variable tcount is declared as an unsigned int variable.

unsigned int timediff;

On the Uno and other ATMEGA based boards, unsigned ints (unsigned integers) are
the same as ints in that they store a 2 byte value. Instead of storing negative
numbers however they only store positive values, yielding a useful range of 0 to
65,535 (2^16) - 1). Here the variable timediff is declared as an unsigned int variable.

unsigned int sampletime=1000;

On the Uno and other ATMEGA based boards, unsigned ints (unsigned integers) are
the same as ints in that they store a 2 byte value. Instead of storing negative
numbers however they only store positive values, yielding a useful range of 0 to
65,535 (2^16) - 1). Here the variable sampletime is declared as an unsigned int
variable.

32

III. Void Setup ()

pinMode(freqpin, INPUT);

This sets the interrupt on the pin 2 so that the Hall Effect sensor will be attached to
it.

attachInterrupt(0,freqinput,RISING);

Set up the LCD's number of columns and rows for the display.

Declaring the type of lcd:

 lcd.begin(16,2);

 This is the definition that the LCD being used is 16x2

Serial library declaration :

Serial.begin(9600);

The serial library shows the data on the serial port.

33

IV. Void Loop ()

This part of the loop gets repeated again and again during the operation of the
microcontroller and whatever is written in it is the main operational code of the
Microcontroller.

\

Use while() loop and millis(). Calculate the time difference and compare the value with the
sample time. So while loop and mills function are used to calculate the time in milliseconds
of a frequency pulse.

34

a) Activation and Deactivation of interrupts:

The interrupt function is activated and then deactivated to count the milliseconds for
which the pulse lasted.

b) Lcd Display:

lcd.setCursor(6,0);

Sets the cursor on column 6 and row 0 of 16x2 LCD.

35

lcd.print("speed");
Prints the word speed.

Serial.println(" ");
Gives a space.

rpm =frequency*60*2*3.14/60*4.14*0.3;

Multiplies the frequency with 60 to get rpm then multiplies with final drive ratio
4.14, 2 and pi followed by dividing it by 60 and multiplying with the radius of the tire
to get speed of vehicle.

(c) Interrupt routine:

The interrupt routine is a functions that works as a counter.

36

1.6 CAN-BUS SHIELD

I. Introduction

The CAN-Bus Shield provides Arduino with CAN-Bus capabilities and allows to hack
the vehicle. This shield allows to poll the ECU for information including coolant
temperature, throttle position, vehicle speed, and engine rpms which can later be
stored or displayed on a screen to make in-dash project.

II. Explanation

CAN-Bus uses the Microchip MCP2515 CAN controller with the MCP2551 CAN transceiver. CAN

connection is via a standard 9-way sub-D for use with OBD-II cable. This particular shield is ideal

for automotive CAN application. The shield also has a card holder, serial LCD connector and

connector for an EM506 GPS module. These features make this shield ideal for data logging

application.

III. Features

 CAN v2.0B up to 1 Mb/s

 High speed SPI Interface (10 MHz)

37

 Standard and extended data and remote frames

 CAN connection via standard 9-way sub-D connector

 Power can supply to Arduino by sub-D via resettable fuse and reverse polarity protection.

 Socket for EM506 GPS module

 Micro SD card holder

 Connector for serial LCD

 Reset button

 Joystick control menu navigation control

 Two LED indicator

IV. Block Diagram

V. Transmitter Function

The CAN bus has two states: Dominant and Recessive. A Dominant state occurs when the

differential voltage between CANH and CANL is greater than a defined voltage (e.g.,1.2V). A

Recessive state occurs when the differential voltage is less than a defined voltage (typically 0V).

The Dominant and Recessive states correspond to the Low and High state of the TXD input pin,

respectively. However, a Dominant state initiated by another CAN node will override a Recessive

state on the CAN bus.

38

VI. Operating Modes

The RS pin allows three modes of operation to be selected:

1. High-Speed

2. Slope-Control

3. Standby

(a) HIGH-SPEED

High-Speed mode is selected by connecting the RS pin to VSS. In this mode, the transmitter

output drivers have fast output rise and fall times to support high-speed CAN bus rates.

(b) SLOPE-CONTROL

Slope-Control mode further reduces EMI by limiting the rise and fall times of CANH and CANL.

The slope, or slew rate (SR), is controlled by connecting an external resistor (REXT) between RS

and VOL (usually ground). The slope is proportional to the current output at the RS pin. Since the

current is primarily determined by the slope-control resistance value REXT, a certain slew rate is

achieved by applying a specific resistance.

(a) STANDBY MODE

The device may be placed in Standby or SLEEP mode by applying a high-level to the RS pin. In

SLEEP mode, the transmitter is switched off and the receiver operates at a lower current. The

receive pin on the controller side (RXD) is still functional, but will operate at a slower rate. The

attached microcontroller can monitor RXD for CAN bus activity and place the transceiver into

normal operation via the RS pin (at higher bus rates, the first CAN message may be lost)

39

CONCLUSION AND FUTURE WORK

2.1 CONCLUSION

In this project, different sensors were used in order to acquire respective outputs. We tried to

connect the accelerometer with an application installed on cell phone named Bluetooth

Terminal, this interface allowed us to calibrate the accelerometer according to any initial

position by entering 0 0 0 coordinates on that app. This also helped us using telemetry in our

project in order to inspect and monitor the data acquired by accelerometer in real time on our

cell phone.

2.2 FUTURE WORK

1. Displaying all the outputs on a single Dot Matrix Display instead of using 4 different LCDs.

2. Installing the Dot Matrix Display in a detachable steering.

3. Using Wifi and GPS instead of Bluetooth in telemetry.

40

REFERENCES

[1] https://www.sparkfun.com/

[2] https://www.arduino.cc/

[3] http://www.aemelectronics.com/

