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Abstract 

 

With the advancement of technology, people need to know the things in advance so that 

they can make appropriate decisions for it. Similarly, when it comes to energy, we are 

curious to know that how much energy we are going to use in the next hour and how much 

it will cost them.  There are many accurate price and load forecasting algorithms already 

working but they ignore the convergence rate. Data Science helps in evaluating the huge 

amount of data to predict future values. Executing any algorithm on such large amount of 

data needs high computational time. In the case of predicting the next hour or one-day value 

if the algorithm takes too much time in results formulation, then it becomes useless for us. 

We incorporated deep learning techniques as they process a large amount of data very fast 

and can predict fairly accurate results with a fast convergence rate. The proposed solution 

LSTM-BiGRU is formed in combination of LSTM and GRU, both are RNN variations and 

capable of forecasting best results.  LSTM and GRU are combined in a best possible way 

to achieve the maximum accuracy with a fair convergence rate. The proposed solution is 

showing MAPE in load forecasting from 3.12% to 4.07%. The proposed solution is 

showing MAE in January 2019 for price forecasting from 2.35 to 3.02 and the execution of 

proposed solution in every scenario is recorded <1 min. So, a fair tradeoff is maintained 

between forecasting results and computational time.  In future, the proposed method can be 

improved by other techniques i.e., block chains, optimization of proposed hybrid 

algorithms with evolutionary algorithms, and the use of GPUs and TPU can further 

decrease the computational time.   
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Chapter 1 

1.1 Introduction 

Energy crises are always present in this world. Many different sources are incorporating 

together to fulfil the energy demand. These sources are limited. So, an accurate energy forecast 

is very important for the producers, consumers, and the utilities. Producers and consumers are 

always looking for the energy prices for decision making and for making optimal bidding 

strategies. At the same time, accurately forecasting the load is also very important so that 

proper energy scheduling can be done before time.     

Load and price forecasting are both important equally for utilities as they must manage the 

significant capital investments. The revenues are estimated from the forecasted load values. 

Moreover, utilities must sign contracts for energy generation with different power plants. 

Accurate forecasting helps the investors in deciding which technologies to invest in, i.e., 

classic gas turbines or renewable energy generators[1]. If price forecasting trend is showing 

an uplift, it is beneficial to put solar panels over the city roofs and deploy the windmills. 

Renewable energy production is not profitable at low prices. Similarly, inappropriate 

forecasting discourages investors to invest their time and efforts in energy as it not only causes 

loss of energy, but also investment and planning[2].    

1.2 Background 

Smart Grid replaces the traditional grids by providing communication between 

users/consumers, utilities and manufactures. It helps in managing the resources efficiently, in 

management of demand and supply, in enhancing reliability, in trading and in cost 

management. It provides bidirectional communication between power generators, 

transmitters, distributers, and consumers. Electrical energy once produced it can’t be stored 

on the large scale. It is produced according to the load demand estimation [3]. As energy is 

produced from many different natural sources including coal, petroleum, natural gas, hydro, 

nuclear, biomass and wind, a proper planning is required for its production, to save the 

resources and to better manage it [4]. Energy management is basically monitoring, controlling, 

and conserving energy. There are many techniques introduced already for managing the 

energy effectively. Energy management can be made better when accurate energy forecasting 

occurs. 
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Figure 1: Conceptual Diagram of Smart Grids 

 

Forecasting the load and price values are helpful in many ways, it helps end users to manage 

their usage according to their needs and budgets, it helps utilities to efficiently manage the 

demand and supply of electricity, load switching, network configurations and infrastructure 

development and electricity producers to manage producing the electricity accordingly [5]. It 

also helps users to shift the usage of different appliances in off peak hours and on peak hours, 

accordingly.  

1.3 Types of Forecasting  

To better manage the energy, it is necessary to better forecast it accurately. So, we generally 

categorize forecasting as follows:   

1.3.1 Short term forecasting  

Short Term Forecasting (STF) for both price and energy demand involve horizon of few hours 

to few days. It is generally involved where operations and decision making must take on day 

to day bases. Very Short-Term Forecasting (VSTF) involves forecasting from few minutes to 

one hour. It is generally considered and calculated separate from STF [6].   

1.3.2 Medium term forecasting 

Medium Term Forecasting (MTF) involves forecasting of both price and load values, its 

horizon is including few days to few months forecast. It is preferred for derivative pricing, 

balance sheet calculations and risk management. This is generally used in estimation of price 
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and not for accurate load forecast as the forecast is made for the future time periods[7].   

1.3.3 Long term Forecasting  

Long Term Forecasting (LTF) involves forecasting of both price and load values for months, a 

year and several years. This forecasting is generally made for planning and investment 

profitability analysis like making contracts for fuel with different power plants[8]. 

 

Figure 2: Types of Forecasting 

The rate with which an algorithm reaches to its optimal result is called as rate of convergence. 

Here we are looking for fast convergent and fairly accurate result producing algorithms to get 

help in taking decisions. The convergence rate and accuracy are considered as inverse to each 

other. There are three approaches for convergence rate linear, superliner, and quadratic 

ordered from slowest to fastest [9].  

1.4 Motivation  

There are many mathematical, machine learning and deep learning algorithms are already 

working on load and price forecasting. The accuracy rate in predicting these values has been 

reached above 90%.  

Beyond accuracy in results, these algorithms become successful in achieving many objectives, 

fast execution, decreased computational times, reliability, profit, validity, robustness, stability 

in models, reduced complexity, best fitting, minimizing cost and peak to average ratio, and 

online forecasting. But there are some limitations in each model designed, including models 

are not generalized they are specific for a specific type of forecasting, some of them are 

complex, enhanced execution and computational time, decreased convergence rate, premature 

convergence, and over fitting are observed.  
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Figure 3: Challenges in Forecasting 

 

1.5 Problem Statement  

  The more the algorithm predict higher accuracy, the more time it takes in its calculations 

before reaching to final answer.  

 

Figure 4: Problem Statement 

We have observed two types of convergence in different papers i.e., slow convergence and fast 

convergence.  Slow convergence occurs when the designed model is complex, the data wasn’t 

preprocessed earlier, and the forecast algorithm is time taking. Usually, slow convergence 

ranges from 2 minutes and more. While fast convergence is how fast or robust an algorithm 

reaches to its local optimal point. It is usually a minute or less than it. There are many factors 

on which convergence rate depends including over fitting, complex models, models with slow 

training times, preprocessing requires time, data preprocessing, coding style and optimizers 

Accuracy in results  
Fast Convergence   
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[11]. Some of the algorithms work on increasing the accuracy of their results, for this they have 

undergone exhaustive training of their data which is later causing overfitting. So, we need 

designing the best fit model, the model that is immune to the unseen or noise data. Unfitting 

may not lead us to accuracy of results, and they are procuring vague values. Best fit model is 

the one that is appropriate in predicting the results and don’t undergo iterative or exhaust 

training.  

 

 

 

 

 

 

 

 

 

 

Best fitting model produces the appropriately accurate results, it will undergo fast convergence 

and help in managing the demand side management. This model helps utilities to manage the 

energy demand on time.   

With the advancement of technology, people need to know the things in advance so that they 

can make appropriate decisions for it. Similarly, when it comes to energy, people want to know 

in advance how much energy they are going to use in the next hour and how much it will cost 

them. In this way, they can save money by minimizing the consumption. There are many 

accurate price and load forecasting algorithms already working but they ignore the convergence 

rate. Data analytic techniques evaluate huge amount of data to predict future values. Executing 

any algorithm on such big data needs high computational time[12]. In the case of predicting 

the next hour or one-day value if the algorithm takes too much time, we consider the algorithm 

as inefficient.  

1.6 Objectives  

Proposed approach presents STF of Electricity load and Price for the ISONE CA grid station. 

In this regard, this manuscript focuses on hourly, daily, and weekly forecasting of electricity 

consumption for the historical data provided by the ISO NE CA. The main contribution for our 

research is to enhance the accuracy of our system, and a fair computational time. 

Overfitting  Under fitting Best fitting 

Figure 5: Types of Model Fitting 
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1.7 Organization of the Thesis  

The objective of the thesis is to design a deep learning-based solution for load and price 

forecasting for smart grids, that provide results with good accuracy and a fair computation time. 

For this purpose, we have explained the brief introduction of SGs, types of forecasting, 

problems of forecasting models, our problem statement in objectives in the present chapter that 

is Chapter 1. In the next chapter (Chapter 2), we will be discussing the literature in this topics 

regard. We will brief their techniques and imitations in tabular format.  In Chapter 3, we will 

discuss the proposed solution, each module and discuss the functioning of each in detail. In 

Chapter 4, We will perform simulations and present results in tabular format with discussion 

of each simulation. In Chapter 5, we conclude the manuscript, mentioning our objectives and 

how we achieve them. We will mention the future advancement with those too.  
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Chapter 2 

2.1 Related Work 

Smart grids (SG) are replacement of traditional grids. In traditional grid system, we were 

not sure about the energy demand and how much it will cost us. Moreover, in limited resources 

optimal energy management is also a challenge. To manage the resources, we should know the 

energy demand to make our power stations capable of meeting the demand on time. Similarly, 

smart grids provide us the facility of managing the load from user end. People knew about their 

next hour usage with the cost of that hour. The problem is how appropriate our current systems 

are predicting the load and price values. 

To better capture the problem, we need to understand the existing techniques and their 

limitations. In this section, we will review different papers focusing on preprocessing of data, 

forecasting methods and optimization techniques. In general, we discussed some Artificial 

Neural Networks (ANNs) and mathematical model-based forecasting methods with different 

optimizers, evaluating accuracy, performance, convergence rate and execution time from them. 

At the end we compare all the discussed methods in tabular form for better understanding. 

These are discussed below:  

2.1.1 Artificial Neural Network-based forecasting  

ANN is trending these days; it is highly using in forecasting. It works like brain. It takes 

input and learn it, so that, later it can predict unseen output on unseen data. Here we reviewed 

the latest work on load and price forecasting based on artificial neural networks. A basic unit 

of Neural Network is attached below attached Figure 6:  

Let’s understand the basic architecture of NN with help of below mentioned literature 

reviews. DALF is very important as it is helping utilities to manage the load accordingly. Load 

values are volatile, so it is difficult to predict the load for a long period and hence forecasting 

is difficult. In [13], ANN based DALF model is proposed to forecast load with accuracy. 

Metrological and exogenous variables influence DALF. Sigmoid is used as an activation 

function in ANN and MARA is used for training. Due to normalization, execution time has 

been reduced, and due to training, non-linearities in the data set has been captured.  EDE 

algorithm is used for optimization.  Dataset has been taken from USA i.e., EKPC, FE and 

DAYTOWN, simulation results showed that 98.76% forecast accuracy is achieved as 

compared to Mutual Information (MI)+ANN based technique. 
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Figure 6: Architecture of Neural Network 

This model increases the forecast accuracy without having any influence on convergence 

or execution rate. And hence, demand side management can easily be managed. Although the 

preprocessing of data is slow as well as the scope of this paper is limited to STF only. 

To manage the energy demand and cost, an incentive-based algorithm is designed with 

Reinforcement Learning (RL) and Deep Neural Network (DNN).  

In [14], the service provider can purchase energy from the customers to cope the energy 

demand. The excessive energy or reduced energy consumption by the customers help them in 

selling their energy to service provider on some optimal price, to enhance grid reliability and 

balance energy fluctuations. Separate models for customers and service providers are defined. 

Markov decision process (MDP) helps in deciding the price at which the service provider 

should buy the energy from customers. The MDP considers current environment, current states 

and then predict incentive rates for both service providers and customers, and when they are 

having long partnership so a discount factor can be multiplied with this incentive rate. 

Similarly, Q- learning algorithm helps in finding the maximum benefit value for both, by 

adjusting and updating it. Here, neural networks help in prediction of price and load values, 

later helps service provider to make a purchase from customers. Historical data is used as input 

as well as training of NN, sigmoid function is used as transfer function.  Weights and biasness 

are adjusted by Levenberg-marquardt (LM) back propagation to get the desired results. Mean 

Average Error (MAE) and Mean Average Percentage Error (MAPE) is used for accuracy 

evaluation. Simulation results showed fluctuations in energy management are balanced and 

grid reliability is achieved. Both the customers and service providers got benefited. But the 
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proposed model can cause overfitting, it is complex and increases user discomfort.  

Recent research in predicting price and load, conducted on small data which reduced the 

accuracy, or they have overfitting problems. This [15] using big data, forecast short- and 

medium-term load and price accurately and separately with the involvement of DNNs. The 

proposed model undergoes time series forecast method with help of ANN. Long short-term 

memory (LSTM) is basically back propagation of NN in which weights can be readjusted to 

increase the accuracy of the results. The process involves preprocessing of data to normalize 

the values of price and load. The data used in this method is large as it uses big data techniques 

and it get more accurate results when data set is large. So, data taken from Independent System 

Operator New England (ISO NE) and New York Independent System Operator (NYISO) from 

2011 to 2017 + 3 months of 2018 and NYISO 2006 to 2017 + 9 months of 2019. Deep Long 

short-term memory (DLSTM) network was trained on month-wise data. Data was partitioned 

into three parts: train, validation, and test data.  Training data in form of month wise is sent to 

forecast engine and get validated with   validation data it. Once it gets validated the next step 

is tuning the network and predicting the price. Every predicted value in tuning phase is the part 

of ANN for the next prediction. Adam is used to optimize the forecasted values. After the first 

initial result Normalized Root Square Mean Error (NRSME) is calculated and retuning and 

relearning continues until the minimum possible value of NRSME is calculated.  Deep Long 

Short-Term Memory (DLSTM) forecasting model has lesser MAE and NRMSE as compared 

to Extreme Learning Machine (ELM) and Non-linear Auto Regression network (NARX). To 

validate the tests, Friedman test (FT) and Diebold-Mariano (DM) are performed in comparison 

with ELM and NARX and DLSTM shows better performance than others. But this paper lacks 

features selection process.     

2.1.2 Block model-based forecasting 

To overcome the limitations of optimizers and to keep intact the whole forecasting 

procedure, block models are being used these days. Some of the well-known block model-

based load and price forecasting is discussed below:  

Smart grid makes people to think about the increasing price and managing load problem, for 

this there is a need to predict the load and price accurately. Accurate predictions avoid loss of 

extra production of energy and enable management with less resources.  In [16], a hybrid 

forecast model is purposed to predict load and price accurately. This hybrid model comprises 

of (Dual-Tree Complex Wavelet Transform) DTCWT and Multi-Stage Forecast Engine 

(MSFE). DTCWT is used in the new feature selection method known as MGR-MR-IG that is 
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(Global Redundancy Minimization-Relevancy Maximization-Interaction Gain Criteria. 

 

Table 1: Summary of Artificial Neural Network-based forecasting Research 

Related Work Scope Technique used 

Forecaster + 

optimizer 

Target achieved Limitations 

Day ahead load 

forecasting  

[13] 

VSTLF ANN based 

forecaster with 

EDE optimizer 

Reduced execution 

time 

Enhanced forecast 

accuracy 

Limited Scope  

Preprocessing is slow  

Decreased 

convergence rate   

Incentive based 

demand and 

supply  

[14] 

STLF ANN+Q-

learning 

(reinforcement 

learning) 

Increases profit 

Increased reliability  

User discomfort 

increases  

Complexity increases  

Can cause overfitting  

 

 

Price and load 

forecast 

accuracy in 

Smart cities 

[15] 

STLF 

STPF 

MTLF 

MTPF 

ANN based 

forecaster + 

Adam optimizer 

Increased Accuracy Specified feature 

selection is missing  

 

First step of MSFE is preliminary forecast, which includes a block comprising of ANN, Radial 

base function neural network (RBFNN) and Support Vector Machine (SVM) with Shark Spell 

Optimization (SSO) for the direct optimized predictions so that the signal enters directly in the 

forecast engine block. Feed backward NN is used, with the primary function of reducing the 

error and entering the optimal weights and biasness in the forecast engine. RBFNN is used for 

avoiding the training error, in this paper, sliding window method is used for this training. SVM 

is used for linear constrained optimization here. Second step is Improved Fusion Algorithm 

(IFA) that works on Ordered Weighted Average (OWA), initially the weights are updated 

independently but later according to the performance of agents, hence, gathering output of 

MSFE.  The proposed model is implemented on Australia’s and New England electricity 

market data with short term load forecasting problem. Results showed the better accuracy when 
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compared with benchmarks including Autoregressive Integrated Moving Average (ARIMA), 

Wavelet Transform (WT) +ARIMA, and MR-MI +NN.  NRSME and NMAPE shows less error 

as compared to other benchmarks.  But this increases the computational complexity and 

executional time. This model can cause overfitting as well.  

The [16] focuses on accurate STLF enhancing the block forecast engine with two stage 

forecast engine. Input data (lagged loads) is in form of signals on which feature selection is 

performed with MIT to forecast the load of next hour. Then the two-step forecast engine begins 

where two different neural networks are implemented namely: ridgelet and Elman NNs. Where 

ridgelet forecast on the normalized data and ENN calculates the signal prediction error so that 

it can be avoided in the targeted forecast. RNN and ENN works on shark smell optimization 

function which undergoes chaotic and binary enhancement to predict accurately.  Later, 

experiments are performed on Australian energy market commission, Pennsylvania-new 

Jersey-Maryland and North American data calculating forecasting errors including absolute 

forecasting errors, symmetric errors, measures based on percentage errors, scaled errors, and 

measures based on relative errors. Results showed the better accuracy than the other 36 

compared forecasting algorithms. But the proposed method takes a long convergence time, 

execution time also increased. This model can cause overfitting as well  

Better prediction accuracy can save a lot of energy from getting waste. In [17], best topology 

for ENN based different forecast engines for load and price are suggested.  Input is in form of 

load and price signals. For feature selection and optimization, MI and greedy algorithm is 

applied on the signals to avoid redundant and relevant signals, the selected features than enters 

the Enhanced Neural Networks (ENN) based forecast engine. Here, forecast error minimization 

is performed by optimization of ESSO. In Enhanced Shark Smell Optimization ESSO, there is 

a context layer between input and hidden layer that causes sensitivity to the data entered in the 

hidden layer. ESSO also avoids overfitting in the training process.  Numerical analysis is 

performed to analyze robustness of ESSO, feature selection as well as applied on real word test 

cases. North American and New England test cases are examined to find Short Term Load 

forecasting (STLF) and Short-Term Price Forecasting (STPF). Results showed that validity of 

the proposed strategy on different topologies. The convergence time of proposed model is high, 

and an expensive process.  
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Table 2: Summary of Block Model -based forecasting Research 

Related Work Scope Technique used 

Forecaster + 

optimizer 

Target achieved Limitations 

Multi-block 

based 

forecasting for 

price and load  

[18] 

STLF 

STPF 

ANN, RBFNN, 

SVM based 

forecaster +SSO 

Increased accuracy  

Valid model  

Overfitting 

Decreased 

convergence time  

Increased executional 

time  

Multi-block 

based 

forecasting for 

price and load  

[17] 

STLF 

STPF 

ENN based 

forecaster 

+ESSO 

Accurate  

Valid model 

Robust  

Increased 

computational 

Decreased 

executional time 

Load 

forecasting with 

two stage 

forecasting 

engine [16] 

STLF Ridgelet-NN, 

ENN based 

forecaster +SSO 

Increased Accuracy  

Effective results  

Overfitting 

Increased 

computational 

Increased executional 

time  

 

2.1.3 Convolutional Neural Network based forecasting   

With the passage of time these neural networks enhanced, CNN is one of those modified 

and better performance network. Different number of maxpooling layer can be adjusted to get 

the accurate results. Here we have discussed the latest work on CNN:   

Forecasting price helps in managing the resources and price at both consumer and supplier 

end. Accurate load forecasting is very important as power stations must plan the production to 

meet the demand. In [19], an accurate load forecasting optimization technique is introduced for 

STF, MTF and LTF. CNN is used to process the data and give initial predictions of load. Two 

models are implemented with CNN NN- Genetic Algorithm (GA) and NN-Particle Swarm 

Optimization (PSO). Proposed model is tested through Matlab simulations, data of last 5 years 

are used from Pecan Street Inc., and divided into training, validation, and testing sets. 

Predictions are made for summer and winter season as well as for one day, one month and a 
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year. Results showed that NN-PSO works better for MTF and LTF while NN-GA works better 

for STF.  These predictions can be used in demand side management and supply to fulfill the 

future requirements.   

In traditional grids, electricity once produced can’t be stored, so a smart grid is required to 

identify the amount of need of electricity so that wastage of energy can be avoided, and cost 

can be reduced. For this purpose, electricity load forecasting classification technique is 

proposed in [20] using ECNN on one-year hourly data provided by Independent System 

Operator New England Control Area (ISO NE CA) market of year 2017 from January to 

December. Preprocessing or normalization of data is done before feature selection. Random 

Forest (RF) and MI are used in eliminating the features with less importance and later in feature 

extraction, Kernel Principal Component Analysis (KPCA) reduces dimensionality and 

redundant features and extract the important ones. CNN are enhanced here, by having 96 filters, 

2 kernels and 32 filters, 3 kernels with pooling layer of size 2, for forecasting load. Training is 

done by 155 epochs in 30 batch size and rest of the data is used in testing purpose.  Adam 

optimizer is used in this process. Simulation results showed that the proposed method is better 

than other benchmarks. Accuracy of the model is evaluated with loss function MAE and MAPE 

and a low value of 0.279 is achieved.  This paper is limited to predict load only; price needs to 

be predicted as well.  

SG manages intelligently the consumption, distribution, and generation of energy than the TG. 

The primary goal of SG is to keep a balance between demand and supply of electricity. Data 

Analytics is used it to identify patterns to forecast the load and the price of energy. In prediction 

of accurate load and price, complexity, overfitting, and computational time increases.  In [21], 

two models are presented with little differences to predict load and price.  For load prediction, 

data set is taken from ISO-NE of year 2018 and predict the load of 1st week of January. Data 

undergoes pre-processing i.e., features extraction and selection. For feature extraction 

Recursive Feature Elimination (RFE) is used and for feature selection RF. After preprocessing, 

the selected features are sent to ECNN to forecast load.  For price prediction model, date set is 

taken from NYISO from November 2016 to 15 January 2017. There are two models, one is 

same as load forecast model using ECNN while the other used Enhanced Support Vector 

Regression (ESVR) method. For preprocessing of data, feature extraction is done by RFE with 

cross validation to maintain accuracy and followed by feature section with XGBoost and 

Decision Tree (DT). The most important step is tuning the parameters. This tuning by Grid 

Search (GS) is creating the difference in the final step. Every subset of SVM parameters 

undergoes classifier followed by k-fold cross validation. Now it is passed to ESVR to predict 



14 
 

the final output. Results are compared with 27 Benchmarks and performance matrices i.e., 

MAPE, MSE, RMSE and MAE, results are compared. Both these methods performed well, 

and ECNN and ESVR with threshold values 0.08 and 0.15 achieve 2% and 1 % accuracy 

respectively.   

The [22] paper focuses on load prediction accurately and efficiently by considering ECNN 

and Efficient kth neighbor neural network (EKNN). Data of year 2016-2017 was taken from 

NYISO on hourly rate that is used as an input, preprocessing is performed on it. 80% of data 

is being utilized in training purpose while rest is being utilized in testing purpose. Feature 

selection involves Mutual Information (MI) which removes less important features.  Feature 

extraction involves RFE to remove recurrent features. For forecasting load, KNN and CNN is 

enhanced so that they can work efficiently. Efficiency of CNN increased by 2 max-pooling and 

3 convolutional layers, for KNN, the tuning of the classifier is performed by hyper-parameters.  

EKNN and ECNN is used to forecast load. For optimization, hyper parameters are used. 

Simulation results showed the accuracy of 92% and 93% by ECNN and EKNN. Their 

performance is later evaluated by MAPE, MAE, MSE and RMSE, which showed the better 

performance than other benchmarks.  

To forecast the load and price accurately in [23], two methods are proposed. First method 

includes normalization of data, feature selection, extraction and forecasting utilizing 

Classification and regression technique (CART), RFE, Relief-F and Enhanced Linear 

Regression (ELR). Whereas the second method includes preprocessing of data, feature 

selection by (Recurrent Extreme Learning Machine) RELM, forecasting (RELM enhanced by 

GWO: ERELM) and cross validation (Monte Carlo & k-fold). UMASS Electric Dataset (multi-

variate dataset) and UCI (uni-variate dataset) both models are applied to both datasets. 

Accuracy of both the models can be checked on bases of MAPE, MAE, MSE and RMSE on 

one day, one weak and one-year time. Results showed that ELR works well with UMASS 

Electric Dataset whereas ERELM works well for UCI Datasets. However, for ERELM there is 

a tradeoff between convergence time and accuracy. 
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Table 3: Summary of Convolutional Neural Network Based Forecasting Research 

Related Work Scope Technique used 

Forecaster + 

optimizer 

Target achieved Limitations 

Hourly Load 

forecast [20] 

VSTLF ECNN based 

forecaster + 

Adam optimizer 

Increased Accuracy Scope is very limited.  

 

Price and load 

forecast 

accuracy in 

Smart grids 

[21] 

STLF 

STPF 

ECNN, ESVR 

based forecaster 

+ Adam 

optimizer 

Reduced 

computations 

Reduced execution 

time 

Stable model 

Accurate results   

Overfitting 

Complex  

Limited Scope  

 

Efficient load 

forecasting  

[22] 

STLF ECNN+EKNN 

based forecaster 

Better prediction 

accuracy  

Less complex  

Efficient  

Reduce overfitting  

Results need 

optimization  

Decreased 

convergence time 

Slow speed  

Forecasting 

energy demand   

[19] 

STLF 

MTLF 

LTLF 

CNN based 

foreca0ster and 

NN-GA, NN-

PSO 

Increased accuracy  

Minimize cost  

 

Large data set 

required  

Computational 

complexity  

Slow convergence  

Short term load 

and price 

forecasting 

[23] 

STLF 

STPF 

RELM based 

forecaster 

+GWO 

Forecast accuracy 

increased  

Increased 

computational time  

Slow convergence  

Increased waiting 

time 

Expensive  

 

2.1.4 Recurrent Neural Networks  

It is the type of neural networks that works on LSTM. It undergoes proper training of 
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neurons from the data set and thus to produce more accurate forecasting results. Some of the 

latest papers in this area are discussed below, consider the attached figure7 to better understand 

the described literature below:   

Micro-grid manages the demand and supply at micro-level. Load time series have some 

volatile and non-volatile characteristic, due to which accurate STLF is an issue. This [24] 

proposed SRWNN as forecasting engine for addressing the nonvolatile nature of load time 

series, as it have feedback loops to deal with it. One-year hourly data set from Columbia and 

California is used. MI is used to avoid less important features during feature selection. LM 

train the data to SRWNN in less than 35sec for one day STF. Results showed that SRWNN can 

cope with non-smooth and volatile time series data and generate accurate forecast results than 

WNN. However, results need optimization.  

 

Figure 7: Basic Architecture of Recurrent Neural Network 

To predict the load for a building in [25], three-time series approaches are designed. 

Seasonal ARIMAX (SARIMAX) is basically a non-DL technique which computes that part of 

temperature that is in difference from the outdoor temperature. Gated Recurrent Neural 

Network (GRNN) keep in memory the weights for a long time and GCNN considers input 

variables in synchronous series and concatenated weather predictions. Datasets of three 

buildings (academics, primary school, and a grocery store) are considered which includes 

outdoor features including temperature, humidity, air pressure and wind speed. On this raw 

data, data cleaning (removing missing values), data segmentation (separating the training, 

validation, and test data), dividing the data according to time series and normalizing it. Then 

fed to respective models for output. The performance is analyzed on direct multi-step (one day) 
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and recursive multistep (24 times) forecasting manners. The results of prediction accuracy 

showed that SARIMAX model shows better results than GRNN24 as its accuracy decreases by 

22.6% due to weather covariance. The computational accuracy of GCNN24 increased by 8% 

as compared to SARIMAX model. While generally the performance of GRNN1, GCNN1 and 

GCNN24 is less than that of the SARIMAX model.  In DL scope, GCNN24 model performs 

better than all other Deep Learning (DL) models and have better accuracy as compared to 

GCNN1. However, there is need to extend these models for predicting energy consumption.  

2.1.5 Radial Base Function-Neural Network   

For time series forecasting, function approximation and system control the NN are extended 

with radial base function to produce the accurate results. In load and time forecasting, RBF is 

being used to increase the accuracy of results.  

To fulfil the demand and supply, appropriate forecasting is crucial. The [26] considers seven 

different influential features and energy sources that can vary with time and conditions. Like 

feature ‘rain’ can be ignored in summers. In order to avoid these instabilities and forecasting 

issues two types of neural networks are fussed together i.e. Radial Base function (RBF) and 

Adaptive Neuro-Fuzzy Interface System (ANFIS). Multilayer Perception (MLP) involves in 

training phase. Cuckoo optimizer is used in forecasting phase. Later the output is sent to IOWA 

operator for aggregation where MSE is calculated. The results showed improvements as 

compared to other non-hybrid techniques.    

Some variations in RBF-NN makes it Generalized-NN(GRNN). To forecast load and price 

with accuracy and efficiently, GRNN are used in comparison with ANNs.  This [27] finds out 

that there is no need to train the classifier recursively, but data selection for training should be 

selected wisely.  For this, data assembled in ordered way (first six months in training and rest 

six in testing, random way, mixed weeks (first four weeks in training and rest one for testing) 

and adaptive way (splitting data in half).  GRNN smoothing parameters are applied to both 

selection and final forecast model, while in ANN Levenberg-Marquardt algorithm for training 

purpose is used. To evaluate the performance of both the models, they are compared with 

MAPE.  Due to ordered and adaptive data sampling for GRNN, it is considered better than 

ANN, although both have same accuracy, but the difference is in the computational time, 

GRNN takes less computational time than ANN. 
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Table 4: Summary of Radial Base Function Neural Network Research 

Related Work Scope Technique used 

Forecaster + 

optimizer 

Target achieved Limitations 

Day ahead load 

forecast for a 

building  

[25] 

STLF RNN, CNN 

based forecaster 

+ Adam 

optimizer 

Better accuracy 

Better computation 

efficiency 

Robust 

generalizable 

technique   

Need to extend the 

scope  

 

Short term load 

forecasting for 

a building 

[24] 

STLF SRWNN based 

forecaster 

Efficient  

Good forecasting 

performance 

Less computational 

time  

Need optimization of 

results  

Accuracy can be 

increased  

Efficient load 

forecasting 

[26] 

STLF 

MTLF 

LTLF 

RBFNN, ANFIS 

based forecaster 

+ cuckoo 

optimizer 

Accurate and precise 

forecast results  

Slow convergence  

Slow computational 

speed  

Fast 

computations 

for price and 

load   

[27] 

LTLF GRNN based 

forecaster 

Decreased 

computational time  

Better performance  

Accuracy can be 

increased  

Optimization is 

required  

2.1.6 Least square support vector machine-based forecasting 

For identifying patterns and analyzing data Least Square Support Vector Machine 

(LSSVM) algorithms are used. And to identifying the patterns for load and price so that we can 

understand the usage and hence devise methods to get the maximum benefit from it. Some of 

the papers that uses LSSVM are discussed below:   

Smart grids enable the users to manage the load according to the change in the price. The load 

and price values are highly correlated.  Previous all methods help in forecasting the load and 

price values, but they allow the change in use of energy pattern with the change in price. This 
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[28]. Multiple input Multiple Output (MIMO) model helps in calculating the correlation values 

of price and load. First step is preprocessing, in which Wavelet Packet Transform (WPT) and 

Generalized Mutual Input (GMI) helps in calculating the best features i.e. by detecting the 

change of seasons, searching similar days and tagging days. The second step is MIMO-LSSVM 

that gives predictions on hourly bases. The last step is optimization that is performed by Quasi-

Oppositional Artificial Bee Colony (QOABC) algorithm to increase the forecast accuracy. 

Proposed model is tested on popular electricity markets including NYISO, NSW and PJM 

electricity market. Simulation results showed that great performance when performance 

evaluated with Rastrigin and Ackley benchmark functions. For testing the accuracy of proposed 

algorithm, the MAPE, FMSE and ESD are calculated on daily and weekly bases, showing 

better accuracy of the proposed method than ABC. The proposed method doesn’t need a-priori 

data to forecast load and price on the forecast day and thus this method can be adapted to real 

markets.  

To get the maximum benefits, there is a need to make the market cost effective. Load and price 

are correlated terms; these should be predicted with great accuracy to make better bidding 

polices for the real market. The [29] proposed a novel method MIMO- Non-linear Least Square 

Support Vector Machine (NLLSVM) and ARIMA.  The first step is preprocessing in which 

input data in form of signals are sent to FWPT so that it can decompose the wavelet into 

different frequencies and noisy data can be removed. Later, feature selection is performed by 

Conditional Mutual Information (CMI) to select the best feature from the input data. Second 

step is forecasting, MIMO-NLLSVM and ARIMA are used to correlate or forecast between 

linear and non-linear load and price values. The proposed strategy works better when tested, it 

can predict the peak values when the data is volatile and have price spikes. Third step is 

optimization by modified ABC, that is Time-Varying Coefficients and Stumble Generation 

Operator (TV-SABC) which considers load factors and cost function to eliminate the cost high 

price peak values. This model is tested in real word markets (NYISO, NSW and PJM) and have 

better accuracy than the benchmarks, but the computational complexity and time is high.   

2.1.7 Hybrid Greedy Wolf and Differential Evolution based forecasting  

Besides NN, there are many other methods that can facilitates in forecasting accurately are 

discussed below: 

For establishing balance between electricity demand and supply, DSM, and DR help in 

decreasing the cost of energy for end users and helps in stabling the operations of grids. 

HGWDE is proposed in [30] to reduce cost and PAR for RTP and CPP. 17 different appliances 
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are considered from one house and categorized as shift-able (washing machine, dishwasher 

etc.), non-shift-able (TV, telephone, refrigerator etc.) and controllable appliances (lights, 

heating system, air condition etc.), they are considered under different pricing schemes. In the 

hybrid model, EDE and EWO works in coordination. First step is initializing the parameters, 

this generated the population in second step. In third step EDE and GWO works in 

coordination, EDE is generating the population and selecting the best mutants from it and 

checking its fitness in comparison of α, β, δ of GWO until the termination criterion is reached. 

Simulation results shows that HGWDE performed better than EDE and GWO, both cost and 

PAR have low values than the others but waiting time has been increased.  RTP reduced to 

53.02%, 29.02% and 26.55%, and the electricity bill is reduced to 12.81%, 12.012% and 

12.95%, for 15, 30 and 60 min OTI. PAR using the CPP tariff and electricity bill are reduced 

to 47.27%, 22.91%, 22% and 13.04%, 12%, 11.11%. However, this paper was only limited to 

few numbers of devices and one house only. Other optimization algorithms need to be explored 

in this regard.  

Table 5: Summary of Evolutionary Algorithms based Research 

Related Work Scope Technique used 

Forecaster + 

optimizer 

Target achieved Limitations 

Simultaneous 

load and price 

forecast  

[28] 

STLF 

 

MIMO-LSSVM 

based forecaster 

+ QOABC 

High Accuracy 

Robust 

Fast Convergence 

rate 

Highly flexible  

High algorithmic 

complexity 

Excess memory 

required 

Overfitting 

Early Convergence 

Price and load 

forecast for 

demand side 

management  

[29] 

STLF 

 

MIMO-

NLSSVM based 

forecaster + TV-

SABC 

High Accuracy 

Robust 

Fast Convergence  

Highly Flexible 

Excess Memory 

required  

Complex  

Premature 

convergence 

Overfitting 
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Power 

scheduling with 

critical and real 

time pricing 

scheme 

[30] 

STPF HGWDE based 

forecaster 

PAR minimizes 

cost minimizes  

Accuracy increased  

Increased waiting 

time  

Slow convergence  

Data driven 

strategy for 

load forecasting  

[31] 

STLF DMD Satisfied accuracy  

Comprehensive 

ability  

Less computational 

complexity  

Less execution 

speed  

Early convergence  

Accuracy can be 

increased  

 

2.1.8 Dynamic Mode Decomposition based forecasting  

Load prediction is a difficult task as it has fluctuations, non-linearity, and variations 

because of different seasons. Accurate STLF is necessary to predict load for next one or two 

day’s at-least.  Different model-based methodologies are being designed for this however there 

is a need of data-driven method exits.  Data driven model have the capability of deriving the 

meaningful and relevant features from the system whose physical models are unknown. DMD 

is proposed in [31], that is a data driven technique.  Data of four days is selected i.e., data from 

two last days, the same day in the last week and last day in the last week, so that the load can 

be predicted for the targeted day.  Data preparation involves the input data in normalized 

dynamic load series, which undergoes hankelization of it. In next step, DMD undergoes Eigen-

decomposition that reduces the dimensionality of it and dynamic mode estimation is made. 

Foresting is performed by de-normalization of these Eigen vectors followed by rearrangement 

and averaging of these values. For testing the half an hour data (48-observations) of North 

American electric utility and Australian Energy Market (AEMO) are considered and 

experiments are performed in different regions. Later the performance is compared on RMSE, 

MAPE, MAE, and running time with benchmarks (ARMAX, SVR, ANN etc). Computational 

time of DMD is 0.125 seconds which make its performance satisfactory, and it can be used as 

an efficient tool in real time STLF. However, real time price calculation is still needed to 

explore by this data driven method.   
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2.1.9 Random forest-based forecasting  

To fulfil the electricity demand, service provider must plan. Day ahead load forecasting 

with accuracy needs to be predicted. In [32], load for next one day is forecasted, on hourly 

bases, considering the precious day load, weather predictions, general holidays and non-

geographical holidays. RF is used in making predictions while expert selection algorithm is 

used to select best features. The basic architecture of RF is in figure 8.  

This forecasting process is online as it has the load variations. Random forest is immune to 

parameters change, measure importance of variables and perform internal validations. It 

generated 24 outputs for 24 hrs. This method is tested on Tunisian’s data. The inputs are 

selected on if-then rules. Simulation results showed accuracy in results. 

We have reviewed multiple forecasting models on base of different optimizers, evaluating 

accuracy, performance, and execution time. We have discussed the objectives, approaches and 

their limitations. So far, all the approaches are concerned with increasing accuracy of the 

proposed model and ignoring the convergence rate. We need to consider this aspect as well as 

higher convergence rate help us in taking decisions on time. And this will be beneficial for both 

utilities and end users.   

 

  

Figure 8: Basic Architecture of Random Forest 
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Chapter 3  

Proposed Methodology 

As discussed in the literature review, many papers showed difference accuracy results for short 

term load forecasting and a very few of them work on convergence rate. We are considering 

the convergence rate with fair accuracy so that decision making can be done before time. A 

very generic methodology for forecasting is as follows:  

 

 

Figure 9: Overview of Proposed Module 

Considering figure 9, we have designed a similar forecast module. Our proposed module is 

made up of two RNN variations. The explanation is below:   

3.1 Proposed Methodology  

As discussed in chapter 2, there are many mathematical, machine learning and deep neural 

networks are already working to predict the load and price values for the short-term memory 

with good accuracy, we are here to recommend a robust, fast, and fairly accurate model to 

provide us the best possible results with suitable convergence rate.   

So, we have used a combination of statistical and deep learning algorithms. Our methodology 

is designed in 4 phases. These 4 phases are below:    

1. Preprocessing  

2. Data Determination 

3. Forecast Engine  

4. Evaluation 

The detailed figure of our proposed solution is as follows, the above mentioned 2 modules are 

further divided into 4 modules. The detail of every step is mentioned on the figure 10 below. 

The details that we miss mentioning on the diagram is explained in the description below it.  
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Figure 10 Proposed Solution LSTM BiGRU 



25 
 

Let us discuss each phase in detail. 

3.1.1 Feature Engineering 

3.1.1.1 Remove Constant Features  

  Constant features are the features that are constant, hence not having major 

impacts on output or target values. These constant features can be redundant in the dataset. As 

their presence is not adding any value to the target so it is better to remove them. Eliminating 

constant and redundant features and keeping only useful features comes under the filter method 

for Feature Selection Methods [33] . 

3.1.1.2 Remove Duplicate Features  

  In large datasets there may exist some repeating features, having similar features 

in repetitive manner is not adding value to the final output. So, it is always advisable to remove 

these [33].   

3.1.1.3 Remove Correlated Features 

  Correlated features are the features that measure strength between multiple 

features. Correlation can be positive, negative and no correlation. Two features out of which if 

one’s strength increase causes an increase in other’s strength, this kind of linear relationship is 

known as positive correlation. Similarly, if strength of one variable decreases with the increase 

or other and vice versa, this is known as negative correlation. And the features that have no 

relationship and have no impact with increase or decrease of others is the state of no correlation 

[33].  

 

Correlation is calculated between 0 and 1, where correlation value if found between 0.5 to 1 

means positive correlation. 0.9 and 1 means strong correlation, -1 means strong negative 

correlation.  

Here we are removing the correlated features because the features that are showing strong 

correlation between them are the features that are providing almost the same information for 

the forecast.  So having the same information repeatedly may not always increase the accuracy 

of forecasting but can decrease it. That is why, we have removed the features with high 

correlation values and selected 3 features out of 18.    

𝑐𝑜𝑟𝑟 =
∑(𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)

√∑  (𝑥𝑖 − �̅�)2∑(𝑦𝑖 − �̅�)2
 (1) 
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3.1.1.4 Mutual Information  

  Mutual Information (MI) measures non-linear relationships between two 

variables. MI value represents how much information can be obtained from one variable by 

observing the other.  

𝑀𝐼(𝑥, 𝑦) = ∑∑𝑝(𝑥, 𝑦)𝑙𝑜𝑔2 (
𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
)

𝑦𝑥

 
(2) 

In correlation, we measure linear relationship between variables while in MI we measure 

nonlinear relationship between variables. The benefit of using features based on MI is that it 

considers dependencies between variables that are not detected by covariance. This means MI 

is 0 when two random variables are independent [34]. 

 

3.1.1.5 Sequential Feature Selection 

  Greedy search algorithms are the algorithms that are simple and intuitive in 

nature. These algorithms select optimal solutions at every point when solving a problem. Hence 

overall providing the simplest optimal solution. Sequential Feature Selection (SFS) belongs to 

the family of greedy search algorithms. SFS reduces the initial d-dimensional features to k<d. 

SFS helps in automatically selecting best features from the pool of features. By removing the 

irrelevant features or noise, SFS helps in reduction of generalization error. Also, it is 

computational active [35]. 

Algorithm 1 Pseudocode of Sequential Foreword Selection 

Algorithm 1 Sequential Foreword Selection 

Input: Y= {y1, y2,, yn}[36] 

Output: xk= {xj|j=1, 2…, k; xjϵY} where k<Y 

1.Initialization x0=∅, k=0 

2. Step 1 Inclusion 

x+= argmax J(xk+x), where x ϵ Y-xk 

Xk+1=xk+x+ 

K=k+1 

Go to step 1 

3.Termination k=p 
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3.1.1.6 Common Features  

   We have set a threshold of selecting 5 features from MI and SFS. Then 

we select the common features which came out as output from these two mentioned algorithms, 

So the common features came out were 3 in number. We have designed the whole data 

preprocessing techniques to get the best features. If we have the best features selected only then 

we can make accurate forecasting results.  

3.1.2 Data Determination  

Data determination is basically data preparation. In this phase, we prepare the data to enter the 

next phase (forecast engine) as deep neural networks require data in specified format and shape. 

For this, we scale the data and split it into training, validation, and testing phases, respectively.   

3.1.2.1 Data Normalization  

  Data normalization is basically scaling of data in a certain limit of values. The 

selected features are numeric in nature, and they appeared in 1 digit to 5-digit values. It is not 

a good practice to use values with large differences, in training the network. So, we perform 

MinMax scaling and scale the selected features between 0 and 1.     

3.1.2.2 MinMax Scaling  

   MinMax Scaling is the approach in which we scale the data in a 

specific range that is usually between 0 and 1.  The purpose of using MinMax scaling is 

bounding the values in a certain range that will end up in smaller standard deviations and thus 

mitigate the effect of outliers [12, 37]. We performed MinMax Scaling as follows:  

𝑦 =
(𝑥 − min(𝑥))

(max(𝑥) − min(𝑥))
 (3) 

Where x is the value in each row of each column, min x is the minimum value of that column 

and max x is the maximum value of that column. 

3.1.2.3 Data Split  

   We split the dataset in a 7:3 ratio. We used 70% data in training and 30% 

in validation of that training model. Whereas we used separate data for testing purposes. In 

predicting time series, we are required to test data of length we want to predict. It means we 

need one day's data to test prediction of the next day's data.  
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3.1.3 Forecast Engine  

3.1.3.1 An overview of LSTM and GRU  

  The proposed model consists of variations of recurrent neural network (RNN) 

i.e., LSTM and GRU. The hybrid model consists of layers of LSTM and GRU arranged in 

specified sequence to maximize performance.  LSTM and GRU are very effective and popular 

among researchers, especially for time series analysis. First, we explain each component and 

then we will explain the composition of these layers.  

3.1.3.2 Recurrent Neural Network (RNN) 

  Recurrent neural networks are the state-of-the-art algorithm for sequential or 

time series data. They are very powerful and robust designed with internal memory.  They were 

created in the 1980s. They have high computational power with massive data. The true 

potential was brought into light and the invention of LSTM brought RNN to foreground in the 

1990s [38].   

RNN came with their internal memory. They consider the prior inputs, as they influence the 

current input and output. They are not like traditional DNNs, considering the inputs and outputs 

are independent of each other. Instead, output of RNNs depends on the previous sequence of 

inputs.  

To demonstrate the working of RNN, let us consider the following figure. xt are the inputs in 

sequence form, ht are the output, where A is the RNN black box. From the figure, it is obvious 

that an amount of information is being passed to another cell. The cell utilized the information 

it received in forecasting the sequence. This is how it works.  

 

Figure 11: Recurrent Neural Network (RNN) 
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Not like all DNNs, RNN considers the information coming from the previous cell that increases 

the prediction accuracy but at the same time there was a problem with this structure. The 

problem is known as vanishing gradient or long short-term memory problem [38]. 

Now consider, if x2 is the input and it utilizes the information received from its previous cell. 

But in case, like word prediction, what happens if the x2 input requires information a few 

blocks behind it (not exactly behind it). In this case, the cell forgets that information that is a 

few cells behind that. This is called the vanishing gradient problem. It means the RNN structure 

could not remember the weight and biases value it utilized in the previous cells and that weight 

or bias vanishes. The similar condition is known as long term dependency problem, where the 

cell could not remember the long term stored information/weight/biases.   

To solve this problem, many versions of RNNs were developed. To solve our problem 

statement, we utilized two of them. Namely, Long Short-Term Memory (LSTM) and Gated 

Recurrent Unit (GRU). Let us discuss their structure in detail.  

3.1.3.3 LSTM (Long Short-Term Memory) 

  LSTM is a refined variation of RNN, addressing the problem of vanishing 

gradient. It was introduced by Hochreiter and Schmidhuber in 1997. It works on 

backpropagation principle as it must calculate gradients for the process optimization. It changes 

weight according to the error rate it calculates at each cell level. LSTM is capable enough to 

learn long term dependencies for a long time using its memory unit [39].  

The key component of the LSTM is the cell state. It runs straight down the entire time steps 

with only minor but important interactions. LSTM can add or remove information from the cell 

state using several gates. Each gate is made of a sigmoid neural network layer. These sigmoid 

layers produce output numbers between 0 and 1, which represents how much information each 

component should be let through. 0 means nothing through the layers whereas 1 represents 

letting everything through 3 layers out of the four are used to control the cell state tanh.   

Consider the following diagram to understand the LSTMs architecture. LSTM consists of three 

functions of gate controllers.  

•Forget gate ft decides which part of long-term state Ct should be omitted. 

• Input gate it controls which part of Ct should be added to long-term state ct  

• Output gate Ot determines which part of Ct should be read and 

 Outputs to ht and Ot. 
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Figure 12: Basic Architecture of LSTM 

In the above figure, xt is the input into the LSTM cell, ht-1 is the output of the previous cell 

and ct-1 is the cell state that is received by the current cell. It helps in the prediction of the 

current cell. First gate is the forget gate, the equation is below:  

𝑓𝑡 = 𝜎(𝑊𝑓 .  [ℎ𝑡−1, 𝑥𝑡] +  𝑏𝑓) (4) 

 The sigmoid of the multiplication of the input added with the bias value happened here. This 

layer helps in returning 0 and 1, whether we need this information in prediction or not.  

The next gate is input gate, consider the below mentioned equation.  

𝑖𝑡 =  𝜎(𝑊𝑖.  [ℎ𝑡−1, 𝑥𝑡] +  𝑏𝑖) (5) 

�̃�𝑡 =  𝑡𝑎𝑛ℎ(𝑊𝐶 .  [ℎ𝑡−1, 𝑥𝑡] +  𝑏𝐶) (6) 

𝐶𝑡 =  𝑓𝑡 ∗ 𝐶𝑡−1 +  𝑖𝑡 ∗  �̃�𝑡 (7) 

The first part of the input layer equation is like the equation of forget gate, except by the weight 

and bias. It undergoes a sigmoid function. In the next two equations, it controls which part to 

add as cell state using tanh function.   

The mechanism of LSTM can be broken down into 3 stages. First of which is the decision of 

what information is to be extracted from the cell state. This is done by the sigmoid layer also 
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known as the ft forget gate. It observes ht-1 and xt from the last step performed, to produce an 

output ranges between 0 and 1. The next stage of this process is to what information will be 

stored in the cell state. The sigmoid layer named as output gate Ot determines the values that 

needs updating. Afterwards, a new vector of the proposed values is created by tanh layer. These 

values are termed as Ct and are added to cell state. Then old cell state Ct-1 needs to be updated 

into the new cell state Ct. The last stage is to determine what values are system is going to 

provide as the output. The output depends on the cell state yet a sifted edition of it. First the 

sigmoid layer chooses what parts of the cell state will be introduced as output. Then, at that 

point the cell state is put through the tanh function to change over the qualities between - 1 and 

1, the resultant of which is them multiplied with sigmoid layers output to get the result [39]. 

The mathematical equations for this stage are: 

𝑜𝑡 =  𝜎(𝑊𝑜.  [ℎ𝑡−1, 𝑥𝑡] +  𝑏𝑜) (8) 

ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝐶𝑡) (9) 

So that’s how LSTM works, as discussed above, we use GRU in combination with LSTM. 

Let’s discuss GRU in detail:  

3.1.3.4 GRU (Gated Recurrent Unit) 

  Gated Recurrent Units become the most promising algorithm and were 

introduced in 2014 by Cho et al. It solves the problem of vanishing gradient. GRU is considered 

as the variation of LSTM. Both these algorithms provide the best results in certain scenarios.  

To understand the architecture of GRU [40], consider the following figure. It consists of three 

sigmoid layers, namely: update gate, reset gate, and tanh layer. Consider the attached diagram 

to better understand the equations. GRU uses the update gate and reset gate for vanishing 

gradient problems and these help in deciding the output as well. Let us discuss each gate below:  

The initial point of this algorithm is update gate. First, the following formula calculates the 

update gate zt at time interval t: 

𝑧𝑡 = 𝜎(𝑊(𝑧)𝑥𝑡 +  ℎ𝑡−1) (10) 

Where xt is added to product h(t-1) and its weight. Afterwards, a sigmoid function normalizes 

the resultant between 0 and 1. This determines the required amount of past information to 

pass along for the future time step with the help of update gate. 

The following equation computes the reset gate rt, at time step t: 
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𝑟𝑡 = 𝜎(𝑊(𝑟)𝑥𝑡 +  ℎ𝑡−1) (11) 

 

Figure 13: Basic Architecture of GRU 

Calculation starts when xt is added to product h(t-1) and its weight. Then, at that point a sigmoid 

function is utilized to change over the output between the worth 0 and 1. Reset gate assists the 

model with deciding the amount of the past data should be neglected. 

This is engaged with the reset gate. This begins with presenting another memory content that 

will utilize the reset gate and store the important data from an earlier time. The numerical 

condition is as per the following:  

ℎ𝑡
′ = tanh(𝑊𝑥𝑡 + 𝑟𝑡⨀ℎ𝑡−1) (12) 

The estimation begins with the augmentation of the information xt with its weight. Then the 

element-wise multiplication is done to the reset gate rt and the preview output ht-1. This 

permits us to just pass the significant past data. Then, at that point both determined outcomes 

are added together, and a tanh function is applied. 

Lastly, the unit needs to figure the ht vector which holds data for the current unit, and it will 

pass the data further down to the network. The update gate zt assumes a critical part in this. 

The numerical equation for this is: 

ℎ𝑡 = 𝑧𝑡 ⨀  ℎ𝑡−1 + (1 − 𝑧𝑡) ⨀ ℎ𝑡
′  (13) 

From the computation, if the vector zt is near 0, a major piece of the current substance will be 

disregarded since it is unimportant for the forecast. Simultaneously, since zt will be near 0 

right now step, 1-zt will be near 1, permitting most of the past data to be kept [40]. 
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3.1.3.5 Working of Proposed Hybrid Model LSTM-BiGRU 

We designed the hybrid model by utilizing different LSTM and GRU layers provided by Keras  

library introduced by Python. The organization of the model is as follows:   

Consider the model from bottom to top. The model consists of layers of LSTM and GRU 

considering feed forward and bidirectional layers to better train and accurate forecasting the 

electrical load and price values. The input layer consists of normalized feature set. The input 

features are {DA_LMP', 'Dew_Point', 'System_Load'}. Input features feed to first layer that is 

LSTM layer training input features in feed forward manner. GRU layer applied in bidirectional 

layer. First it undergoes training in feed forward manner then in feed backward manner. The 

hybrid layer containing layers of both LSTM and GRU in specified manner is enhancing the 

accuracy of predictions of the forecasting model, respectively. The LSTM Layer contains 256 

units in first layer followed by a dropout layer to avoid over fitting. Similarly, the bidirectional 

GRU layer contains 20 neurons. Dense layer at the end is receiving the output from all the input 

neurons and is connected deeply.  

The model training is evaluated on the MSE calculated at each iteration. With each iteration 

the MSE is observed to be decreasing. This decrease in MSE is stopped after certain number 

of iterations and then it becomes constant, no further decreasing. This is the point when our 

model is fully trained with the training dataset. To stop further iterations to occur, we have used 

Figure 14:Architecture of proposed Model LSTM-BiGRU 
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EarlyStopping, EarlyStopping is basically used to stop iterations when the MSE error further 

stops decreasing. So instead of executing 100 complete iterations model usually stops training 

after a certain number of iterations or when the error stops decreasing. This helps in decreasing 

the training time, and the composition of hybrid model helps in better training thus more 

accurate predictions. 

Accuracy and convergence rate are inversely proportional to each other. In order of increasing 

accuracy, we usually observe the convergence rate very slow. But in predicting electricity load 

and price value the convergence rate and time are very crucial. We must maintain a balance 

between accuracy and convergence rate, so proposed this method. The multiple layered and 

directional training and early stopping both are satisfying to solve the problem statement.        

After forecasting the load and price values, the next step is to calculate the error between the 

actual and predicted values. This error calculation will help us in validating the model.  

 

 

 

 

 

 

 

Algorithm 2 Proposed Methodology: Electricity Load and Price Forecasting 

Algorithm 2 Electricity Load and Price Forecasting; 

1      Input: Electricity Load/Price Data 3 years X={x1,x2,x3,… xn}; 

2      Output: Forecasted Load/Price Values Y={y}; 

3      Feature Selection: F={f1,f2,f3,… fn} 

4                         input: X={x1,x2,x3,… xn} 

5                         target: y={y} 

6                         x_train, x_test, y_train, y_test = train_test_split(X, y, split_ratio=0.3);     

7                         X1=Remove constant_features(X)  

8                         X2=Remove duplicate_features(X1) 

9                         X3=Remove correlated_features(X2) 

10                       Calculate mutual_info_regression (X3)  

11                       SelectKBest(mutual_info_regression, k=5)                                         (1) 

12                       Calculate SFS (X3) 

13                       SelectKBest(SFS, k=5)                                                                        (2) 
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14                       F= Select common features from (1) and (2)                                                              

15    Date Determination train_x, test_x, train_y, test_y  

16                        F1=Scaling   MinMax (F1)  

17                       (train_x, test_x, train_y, test_y) =Splitting Training Set (F, 70%) 

                                                                                               Validation Set (F, 30%) 

18    Forecast Engine: Forecast Y={y}  

19                        model=Sequential ()                       

20                        model.add(LSTM (train_x)) 

21                        model.add(Dropout (0.2)) 

22                        model.add(Bidirectional(GRU)) 

23                        model.add(Dense (1, activation= Relu)) 

24                        model.compile(optimizer=Adam, matrices=mse) 

25                        LSTM-BiGRU model = model.fit (train_x, train_y,      

                                                                        validation_data=(test_X, test_y),  

                                                                        callbacks=[EarlyStopping] 

 

26                       Y= LSTM-BiGRU model.predict(test_x) 

  

27   Evaluation RMSE, MAE, MAPE, TIME 

28                             Invert_Scaling (Y, test_y) 

29                            RMSE= Calculate RMSE (Y, test_y) 

30                             MAE=Calculate MAE (Y, test_y) 

31                             MAPE=Calculate MAPE (Y, test_y)  

32                            TIME= Calculate Execution time  

 

 

 

 

 

3.1.4 Evaluation 

3.1.4.1 Root Mean Square Error (RMSE) 

  The standard deviation of the prediction errors is known as RMSE. The 

prediction errors are generally consideration of prediction value that how far it is from the 

regression line [41]. It is calculated by below mentioned formula:  

𝑅𝑀𝑆𝐸 = √∑
(𝑦�̂� −  𝑦𝑖)2

𝑛

𝑛

𝑖=1

 (14) 

Where, i is the number of observations, yi is actual value and  𝑦�̂� is forecasted value.   

3.1.4.2 Mean Absolute Percentage Error (MAPE)  

To calculate accuracy of any forecast system, we calculate the MAPE value. Accuracy is 

measured in percentage. It is calculated by below mentioned formula:  
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𝑀𝐴𝑃𝐸 =
100%

𝑁
∑|

𝑦𝑖 − �̂�𝑖
𝑦𝑖

|

𝑁

𝑖=1

 (15) 

Where, N is the number of observations, yi is actual value and 𝑦�̂�  is forecasted value. The 

more it is close to zero, the more accurate results are [41, 42] . We have observed the 

limitations of MAPE when calculating it for Price forecasting. Fortunately, we have load 

values greater than 0, so we calculated the MAPE accurately. But we have 0 and negative 

values in price forecasting and thus we get a huge value of MAPE even when there happened 

a small deviation but in a negative or nearly zero value. For this purpose, we are calculating 

Mean Absolute Error (MAE) for Price forecasting especially and for load values as well. 

Let’s discuss this below:   

3.1.4.3 Mean Absolute Error (MAE) 

MAE measures the distance between the actual data and the predicted data. It provides us 

with the absolute average between the actual and forecasted data points [42]. The formula is 

as follows:  

 

𝑀𝐴𝐸 =∑
(𝑦�̂� −  𝑦𝑖)

2

𝑛

𝑁

𝑖=1

 

(16) 

 

Where 𝑦�̂�is predicted value, 𝑦𝑖is actual value and n is the number of observations. The more 

it is close to zero, the more accurate results are.  

3.1.4.4 Convergence Rate (sec) 

   We have defined convergence rate as time elapsed. Time taken by 

algorithm to predict its first output is the convergence rate. We calculate it by using following 

python commands [13]: 

start = timer.start () (16) 

end = timer.end () (17) 

Time Elapsed(s)=end – start (18) 

So, that is how the whole proposed model is build. During building the model the dependency 

of every algorithm is checked and adjusted accordingly. Now it is time to build the proposed 

model and perform simulations on it. In the next Chapter we will explain the results of each 

phase possible for us. During this model, we have used the generic terms i.e., forecasting, we 

have not used the specified term Load Forecasting as we are going to perform simulations for 

Price Forecasting as well. Let us discuss the details of Load and Price Forecasting in the next 
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chapter in detail.  
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Chapter 4 

Results and Discussion 

4.1 Forecasting with LSTM-BiGRU based hybrid Solution. 

This chapter discusses the simulations and results while implementing our improved 

methodology for time series electricity load and price forecasting. Moreover, data analysis and 

behavior of load curves on yearly, daily, and hourly basis is also done for the data provided by 

the ISO NE. ISO is International System Operators for New England. It is responsible for 

reliably operating 32,000 MWH bulk electricity generation and transmission, and to provide 

tariffs for the prices of the energy supply in New England. In this work, three evaluation cases 

are presented to predict load and price values and performance of all methods is compared and 

evaluated through well-known forecasting errors. Simulations are performed utilizing Google 

Collaboratory.  

4.2 Exploring Dataset 

To better understand the dataset, we need to explore it first. The dataset is taken from ISONE. 

The dataset is available on the below mentioned link: https://www.iso-

ne.com/isoexpress/web/reports/pricing/-/tree/zone-info . ISONE dataset is in excel sheet and it 

contains hourly data file including load, day-ahead and real-time prices for the ISO New 

England Control Area (ISO-NE CA) and the eight load wholesale zones. These zones include 

Massachusetts, Connecticut, Vermont, New Hampshire, Maine, and Rhode Island.  The dataset 

included column as below:  

Table 6: Exploring Features in Dataset 

Column Name  Explanation 

Date MM/DD/YYYY format. 

Hour 

 

Hour ending value with Hour 1 equal to the 

hour e 

nding at 1:00 am. 

DA_DEMD Day-ahead demand consisting of fixed and 

price sensitive demand bids plus decrement 

bids and increment offers.    

RT_DEMD RT_DEMAND is the Non-PTF Demand for 

ISO-NE CA, and the load zones as determined 

https://www.iso-ne.com/isoexpress/web/reports/pricing/-/tree/zone-info
https://www.iso-ne.com/isoexpress/web/reports/pricing/-/tree/zone-info
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by metering.  Non-PTF Demand is the load  

DA_LMP  Day ahead locational marginal price. 

DA_EC  Energy component of the day ahead price. 

 

DA_CC  Congestion component of the day ahead price. 

 

DA_MLC  

 

Marginal loss component of the day ahead 

price. 

RT_LMP Real time locational marginal price. 

RT_EC   Energy component of the real time price. 

RT_CC   Congestion component of the real time price. 

RT_MLC  Marginal loss component of the real time 

price. 

DryBulb  Dry bulb temperature in degrees Fahrenheit 

for the corresponding weather station. 

DewPt Dew point temperature in degrees Fahrenheit 

for the corresponding weather station. 

SYSLoad (for ISO-NE CA only)  Actual system load in MW as determined by 

metering.  The system load is used for day-

ahead.  

RegCP (on the ISO-NE CA Worksheet only)  Regulation Clearing Price in $/MWh. 

 

Prices in the ISO-NE CA worksheet are the hub prices, and all prices are reported as $/MWh.  

All the model training and testing are performed on ISO-NE CA worksheets. We have 

considered 2016-2018 data for training the model and tested it on the 2019 dataset, 

respectively. Let us have some insights from the training dataset.    

Dataset is numeric. Dataset is going to be used for supervised learning. Load and Price 

forecasting is a regression problem, we are applying a regression-based hybrid model on it.  

4.3 Observing Electricity Consumption in Dataset  

When it comes to observing a dataset, we observe different load patterns in the dataset. The 

load consumption varies around the day, on weekends, public holidays and due to weather 

situations. We have comprehended the dataset exploration below with a few load observations. 

As our dataset is hourly organized, we plot hours on x-axis and Load consumption values in 
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MWh on y-axis. We have mentioned titles of every graph to avoid confusion. The legends are 

marked below x-axis, respectively.  

Load curves of 1st January of the years 2016, 2017 and 2018 as follows. In this graph, we 

observe the general load pattern in a single day and how it varies round the day. We are 

observing the load consumption curve for 3 years simultaneously, so that we get insights from 

it. The load value lies between 10,000 MWh and 20,000 MWH. As we are considering a dataset 

of ISO NE Control Area that is why the values of load consumption are very high.    

 

 

Figure 15: 1-Day Load Comparison Graph for 2016, 2017, and 2018 

 

The load consumption around the day slightly rises in hours 9 to 15 and it decreases a bit and 

then shows its maximum curve of the day in hours between 17 and 20. And, then normalizes 

again. These are load curves of 1st January of the years 2016, 2017 and 2018, respectively. 

Let us observe load curves of 1st June of the years 2016, 2017 and 2018, respectively. We made 

this observation considering it a summer day.  
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Figure 16: 1-Day Load Comparison Graph for 2016, 2017, and 2018 

Here we observe that the pattern is very much different than a winter day. The load 

consumption increases from the 6th hour of the day and keeps on rising till 17th and then it 

starts decreasing. Along with this observation, the load consumption of all the three years is 

almost similar. Here load consumption of 2018 is not more than the other two. This shows that 

in summers the energy consumption has not been increased to an entirely different load 

consumption range as in summers.  

So, we conclude that the winter season of 2018 showed expanded energy consumption than the 

other years which means it will increase or remain approximately equal to it.  

Load curves of the first week of January of years 2016, 2017 and 2018, respectively. In the 

below attached graph the 7 curves have been observed and each represents one day. Here we 

again compared the one-week load of winter season.    
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Figure 17: 1 Week Load Comparison for 2016,2017, and 2018 

All the seven days have different load curves. Considering each day of three years we find 

similarities in the curve style, although load consumption fluctuations are more prominent in 

2018, respectively.  

We made a similar observation from the summer season. We observed load curves of the first 

week of June of 2016 2017 and 2018, respectively. And to our surprise the load curve of 2016 

in the last 4 days of the week is higher than the other 2 years. The load consumption of 2017 is 

like 2018.  The load curve of 2018 in last 4 days of the week is decreasing as compared to the 

trend in previous 2 days.  

 

Figure 18: 1 Day Load Comparison for 2016, 2017 and 2018 

So, we conclude that in winters the load consumption of 2018 is more than the other two 

which means the load curve is going to raise or remain the same to 2018 in the year 2019, 

respectively. But in the summer, the load of 2016 showed unexpected behavior. The 2018 

curve does not show any major fluctuations, so we expect that in the year 2019 predictions 
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we have more or less the same curves.  

The observation of two weeks of load consumption is daily and weekly but when we observe 

the yearly load consumption only then we get an idea of the whole year. Consider the load 

curve of years 2016, 2017 and 2018. 

 

Figure 19: Yearly Comparison of Load Consumption 

From the above graph we conclude that there is a rise in load consumption in the winter season 

and similarly in the summers too. So, the data exploration has been completed here. Let us 

perform simulations and come to the results section. Before this, let us observe feature 

selection. 

4.4 Load Forecasting  

4.4.1 Feature Engineering for Load Forecasting 

First phase is feature engineering in which we undergo feature selection. Feature Selection 

undergoes multiple steps as explained in Chapter 3. Here we explain the results of those applied 

techniques.  After removal of constant, duplicate and correlated features, we performed MI and 

SFS side by side and then took common features from them. For feature selection, we used the 

dataset of 2018 only. Let us discuss the feature selection below:  

4.4.1.1 Mutual Information  

   We calculated MI of each feature with load consumption. We plot the 

following graph with the obtained value.   
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Figure 20: Mutual Information for Feature Selection (Load Forecasting) 

It is obvious from the graph that the most relevant features of load demand are System_Load, 

Dry_Bulb , DA_LMP and continue. The least related feature is RT_CC. So, we considered 

the first 5 most relevant features for now. 

Next, we performed SFS, the insights are explained below:     

4.4.1.2 Sequential Forward Selection  

SFS is a greedy way of selecting features. Here we generate a subset of features and perform 

regression as a learning algorithm on it. Then evaluate the performance and select the best 

features from them.   

As described in the methodology section, here we must select 5 features out of all.  Here in 

the attached graph below, blue lines are the calculated performance values against each 

feature while light below region shows the standard deviation 



45 
 

 

Figure 21: Sequential Feature Selection for Feature Selection (Load Forecasting) 

The algorithm begins with 0 features, and it keeps on adding a feature and calculating the 

importance. Here in the attached graph, we have importance of each feature marked with its 

standard deviation value. We have fixed a threshold of 5 features. So, the 5 selected features 

came out are 

'DA_LMP', 'Dew_Point', 'System_Load', 'Min_5min_RSP', and 'Min_5min_RCP'. 

4.4.1.3 Common Features 

We select features from both section methods described above. As we are working on short 

term load forecasting, we must make everything to select with best possible precision. We 

select common features from the feature selecting methods. They were 3 in number. These are 

as follows   

'DA_LMP', 'System_Load', 'Dew_Point' 

Now, we use these features in the next data determination step and forecasting steps.   

We have used a dataset from ISO NE CA. The dataset is hourly based. We used a dataset of 

three years 2016, 2017 and 2018 for training and evaluating the model and performing testing 

in 2019’s dataset, respectively.  

4.4.2 Model Training Loss Graph   

  We are using 90% data in training and 10% in validation. We will be using 

separate data from 2019 for testing models. Considering the scope of our project we will test 
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the model for one day, and one week forecasting.  Some other hyper parameters are as follows:  

Table 7: List of Optimized Hyper Parameters Selected during model building 

Input Sequence Size 24 or 168 

Output Sequence Size  24 or 168 

Training Batch Size 70% (24,544 rows) 

Validation Batch Size  30% (10,519 cols) 

Testing Batch Size  Separate time series of hrs (24 or 168)  

Batch size 1024 

Activation Function ReLU  

Optimizer Adam 

Learning Rate  0.18 to 0.01 

Dropout   0.2 

Number of LSTM Units  100 

Number of Bidirectional GRU Units  50 

 

The composition of the proposed hybrid model has been explained in Chapter 3. The graph 

attached below is the graph for calculating training loss during the model training phase. The 

error is measured in MSE.  

 

Figure 22: Training Loss graph for Load Forecasting 

It can be seen in the graph that the training MSE has decreased from 0.20 to below 0.04 and 

then it became stable. Similarly, on validation set the MSE value decreases from 0.11 to below 

0.03. Both the cures are seen very near to each other that means error values are least at that 
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time. It means the model got trained very well. The minor fluctuations are okay as validation 

loss is fluctuating while training loss is very stable. The second observation is the use of 

EarlyStopping criterion that makes the model to stop further training after 25 iterations. This 

helps us in decreasing the training time and composition of the model helps in robust and more 

precise forecasting.  

4.4.2.2 LSTM-BiGRU based Forecasting   

  After training the model, now it is time for forecasting. So, here we are going 

to present results of 1 day and 1-week graphs of load and price forecasting. We train the 

model once and then on base of that training we predict the time series. The predictions of 

one day and one week are predicted at the same time, and we just draw graphs to display the 

accuracy of the proposed solution.    

4.4.2.2.1 One Day Load Forecast 2nd January 2019  

The attached graph below is the graph for one day forecast for the month of January date 2nd  

 

 

Figure 23: One Day Load Forecast (January 2019) 

It is clearly seen that the predicted values follow the pattern as in the actual data graph. The 

MAPE error calculated is 3.12% and the deviations from the actual values in terms of RMSE 

is calculated and attached in the graph below.  

4.4.2.2.2 One Week Load Forecast January 2019  

The attached graph below is the graph for one week forecast for the month of January. 
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Figure 24: One Week Load Forecast (January 2019) 

It is clearly seen that the predicted values follow the pattern as in the actual data graph. The 

MAPE error calculated is 4.07% and the deviations from the actual values in terms of RMSE 

is calculated and attached in the graph below.  

As we have forecasted energy demand for the month of June, similarly we forecasted energy 

for the month of July as well. And for forecasting energy for July, we train our model with time 

series of 3.5 years and then used that specific time series in forecasting, respectively  

4.4.2.2.3 One Day Load Forecast July 2nd, 2019 

The attached graph below is the graph for one day forecast for the month of July date 2nd  

 

 

Figure 25: One Day Load Forecast (July 2019) 

It is clearly seen that the predicted values follow the pattern as in the actual data graph. The 

MAPE error calculated is 1.76% and the deviations from the actual values in terms of RMSE 

is calculated and attached in the graph below.  
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4.4.2.2.4 One Week Load Forecast July 2019  

The attached graph below is the graph for one week forecast for the month of January. 

 

Figure 26: One Week Load Forecast (July 2019) 

It is clearly seen that the predicted values follow the pattern as in the actual data graph. The 

MAPE error calculated is 7.42% and the deviations from the actual values in terms of RMSE 

is calculated and attached in the graph below.  

4.4.2.3 Comparison graphs  

4.4.2.3.1 One Day Load Forecast 2nd January 2019 

Consider the following graph, solid black graph representing the actual forecast values while 

green is representing the proposed LSTM-BiGRU model forecast.  

 

Figure 27: Comparison graph for Load Forecast 2nd January,2019 

Considering the above graph, it is clearly seen that the proposed solution performs better than 

the other benchmark solution with the decreased computational time. The computational 
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graph is attached at the end of the section. Please consider the below table for MAPE error in 

the forecasting 

Consider the MAPE calculated in the above-mentioned graph.  

Table 8: MAPE on 2nd January 2019 Load Forecasting 

Hr LSTM GRU SVR LSTM-BiGRU 

1-24 6.74% 7.53% 5.94% 3.12% 

 

It is clearly seen that the MAPE predicted in one day forecasting is only 3.12% that is the 

best result among the presented comparison result.  

Consider the MAE calculated as follows:  

Table 9: MAE on 2nd January 2019 Load Forecasting 

Hr LSTM GRU SVR LSTM-BiGRU 

1-24 739.48 853.47 677.01 355.38 

 It is clearly seen that the MAE predicted in one day forecasting is only 355.38that is the best 

result among the presented comparison result. 

For considering the deviation at hourly level, we have calculated RMSE, please consider the 

following graph 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

However, we have also calculated the RMSE of the whole 24hrs together to get a clear 
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Figure 28: Hourly RMSE deviation on 2nd January 2019 Load Forecasting 
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picture. Please consider the table below:  

 

Table 10: RMSE on 2nd January 2019 Load Forecasting 

Hr LSTM GRU SVR LSTM-BiGRU 

1-24 829.52 1003.32 795.90 419.49 

 

It is obvious from the above table that RMSE calculated for BI-GRU at each hour is less than 

the comparison models. There may be some hours where RMSE of the proposed solution be 

higher than the comparison models. We consider it alright as we are comparing them with the 

best benchmark solutions available and our aim of writing this thesis is to make a fairly 

accurate rate between forecasting and computational time. On average or considering load 

forecasting for the day it is alright of the proposed solution missed accuracy in a very few 

hours. In rest of the cases, the accuracy of forecasting is very close to original values.    

4.4.2.3.2 One Week Load Forecast January 2019  

 Consider the following graph, solid black graph representing the actual forecast values while 

green is representing the proposed LSTM-BiGRU model forecast.  

 

Figure 29: Comparison graph for Load Forecast 1st Week January 2019 

Considering the above graph, it is clearly seen that the proposed solution performs better than 

the other benchmark solution with the decreased computational time. The computational 

graph is attached at the end of the section. Please consider the below table for MAPE error in 

the forecasting 

Consider the MAPE calculated in the above-mentioned graph.  
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Table 11: MAPE on 1st Week of January 2019 Load Forecasting 

Hr LSTM GRU SVR LSTM-BiGRU 

1-168 6.15% 5.58% 7.04% 4.07% 

 

It is clearly seen that the MAPE predicted in one day forecasting is only 4.0% that is the best 

result among the presented comparison result.  

Consider the MAE calculated in the above-mentioned graph.  

Table 12: MAE on 1st Week of January 2019 Load Forecasting 

Hr LSTM GRU SVR LSTM-BiGRU 

1-168 910.65 829.72 1062.81 585.57 

 

It is clearly seen that the MAE predicted in one day forecasting is only 1110.89 that is the 

best result among the presented comparison result 

For considering the deviation at hourly level, we have calculated RMSE, please consider the 

following graph 

 

However, we have also calculated the RMSE of the whole 24hrs together to get a clear 

picture. Please consider the table below:  
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Figure 30: RMSE hourly deviation for 1st week of Jan, 2019 Load Forecasting 
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Table 13: RMSE on 1ST Week of January 2019 Load Forecasting 

Hr LSTM GRU SVR LSTM-BiGRU 

1-168 1029.53 983.23 1238.55 711.422 

 

It is obvious from the above table that RMSE calculated for BI-GRU at each hour is less than 

the comparison models. There may be some hours where RMSE of the proposed solution be 

higher than the comparison models. We consider it alright as we are comparing them with the 

best benchmark solutions available and our aim of writing this thesis is to make a fairly accurate 

rate between forecasting and computational time. On average or considering load forecasting 

for the day it is alright of the proposed solution missed accuracy in a very few hours. In rest of 

the cases, the accuracy of forecasting is very close to original values.   

4.4.2.3.3 One Day Load Forecast 2nd July 2019 

Consider the following graph, solid black graph representing the actual forecast values while 

green is representing the proposed LSTM-BiGRU model forecast.  

 

 

Figure 31: Comparison graph for Load Forecast 2nd July 2019 

 

Considering the above graph, it is clearly seen that the proposed solution performs better than 

the other benchmark solution with the decreased computational time. The computational 

graph is attached at the end of the section. Please consider the below table for MAPE error in 
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the forecasting 

Consider the MAPE calculated in the above-mentioned graph.  

 

Table 14 : MAPE on 2nd July 2019 Load Forecasting 

Hr LSTM GRU SVR LSTM-BiGRU 

1-24 3.58% 12.15% 16.19% 1.76% 

 

It is clearly seen that the MAPE predicted in one day forecasting is only 1.76% that is the 

best result among the presented comparison result.  

Consider the MAE calculated in the above-mentioned graph.  

 

Table 15: MAE on 2nd July 2019 Load Forecasting 

Hr LSTM GRU SVR LSTM-BiGRU 

1-24 456.93 1848.52 2694.62 231.72 

 

It is clearly seen that the MAE predicted in one day forecasting is only 231.72 that is the best 

result among the presented comparison result.  

For considering the deviation at hourly level, we have calculated RMSE, please consider the 

following graph.  
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Figure 32: Hourly RMSE deviation for 2nd July, 2019 Load Forecasting 
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However, we have also calculated the RMSE of the whole 24hrs together to get a clear 

picture. Please consider the table below:  

Table 16: RMSE on 2nd July 2019 Load Forecasting 

Hr LSTM GRU SVR LSTM-BiGRU 

1-24 617.64 2000.17 3143.06 299.26 

 

It is obvious from the above table that RMSE calculated for BI-GRU at each hour is less than 

the comparison models. There may be some hours where RMSE of the proposed solution be 

higher than the comparison models. We consider it alright as we are comparing them with the 

best benchmark solutions available and our aim of writing this thesis is to make a fairly 

accurate rate between forecasting and computational time. On average or considering load 

forecasting for the day it is alright of the proposed solution missed accuracy in a very few 

hours. In rest of the cases, the accuracy of forecasting is very close to original values.   

4.4.2.3.4 One Week Load Forecast July 2019  

 Consider the following graph, solid black graph representing the actual forecast values while 

green is representing the proposed LSTM-BiGRU model forecast.  

 

Figure 33: Comparison graph for Load Forecast 1st Week July, 2019 

Considering the above graph, it is clearly seen that the proposed solution performs better than 

the other benchmark solution with the decreased computational time 

The computational graph is attached at the end of the section. Please consider the below table 

for MAPE error in the forecasting 
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Consider the MAPE calculated in the above-mentioned graph.  

 

Table 17: MAPE on 1st Week July 2019 Load Forecasting 

Hr LSTM GRU SVR LSTM-BiGRU 

1-168 9.02% 9.85% 14.73% 7.42% 

 

It is clearly seen that the MAPE predicted in one day forecasting is only 7.42% that is the 

best result among the presented comparison result.  

Consider the MAE calculated in the above-mentioned graph.  

Table 18: MAE on 1st Week July Load Forecasting 

Hr LSTM GRU SVR LSTM-BiGRU 

1-168 1353.5 1605.21 2573.35 1110.89 

 

It is clearly seen that the MAE predicted in one day forecasting is only 1110.89 that is the 

best result among the presented comparison result.  

For considering the deviation at hourly level, we have calculated RMSE, please consider the 

following graph. 

  

 

Figure 34: Hourly RMSE deviation for 1st week July, 2019 Load Forecasting 

0

50

100

150

200

250

300

350

400

450

500

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0

1

1
0

6

1
1

1

1
1

6

1
2

1

1
2

6

1
3

1

1
3

6

1
4

1

1
4

6

1
5

1

1
5

6

1
6

1

1
6

6

R
M

SE

Hours

LSTM GRU SVR LSTM-BiGRU



57 
 

 

However, we have also calculated the RMSE of the whole 24hrs together to get a clear 

picture. Please consider the table below:  

Table 19: RMSE on 1st Week July 2019 Load Forecasting 

Hr LSTM GRU SVR LSTM-BiGRU 

1-168 1574.06 1843.82 3067.18 1400.11 

 

It is obvious from the above table that RMSE calculated for BI-GRU at each hour is less than 

the comparison models. There may be some hours where RMSE of the proposed solution be 

higher than the comparison models. We consider it alright as we are comparing them with the 

best benchmark solutions available and our aim of writing this thesis is to make a fairly 

accurate rate between forecasting and computational time. On average or considering load 

forecasting for the day it is alright of the proposed solution missed accuracy in a very few 

hours. In rest of the cases, the accuracy of forecasting is very close to original values.   

4.4.2.3.5 Yearly Load Forecast 2019  

We have computed the load forecast for the year 2019, that is as follows:  

 

Figure 35: Yearly Load Forecast for Year 2019 

The scope of this manuscript is for short term load forecasting, we have computed the whole 

year just to get an idea of overall efficiency of the proposed solution. The error metrices are 

as follows:  
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Hr MAE RMSE MAPE (%) Execution time  

1-8760 1610.40 2129.050 12.21 34.55 (sec) 

 

 

4.4.2.4 Computational Time for January Forecast   

   Here we are summarizing the computational time for one day forecast 

and one week forecast together. We are doing this together because our model is trained once 

and hence it predict forecast value of one day or week in almost same time. The computational 

Time here is inclusive of feature section (10.07 sec). Consider the table below:  

 

Figure 36: Model Computational Time for Load Forecasting January 2019 

 

The calculated execution time is in seconds. It is clear from the above-mentioned table the 

execution time of the proposed solution is almost half of the other proposed solutions. It means 

that the proposed solution is providing the best forecasting results in the least possible time, 

hence accomplishing the objective of this research.  

4.4.2.5 Computational Time for July Forecast  

Here we are summarizing the computational time for one day forecast and one week forecast 

together. We are doing this together because our model is trained once and hence it predict 

forecast value of one day or week in almost same time. The computational Time here is 

inclusive of feature section (10.07 sec). Consider the table below:  
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Figure 37: Model Computational Time for Load Forecasting July, 2019 

 

The calculated execution time is in seconds. It is clear from the above-mentioned table the 

execution time of the proposed solution is almost half of the other proposed solutions. It means 

that the proposed solution is providing the best forecasting results in the least possible time, 

hence accomplishing the objective of this research.  

4.3 Price Forecasting 

Price Forecasting is like Load forecasting, except we changed the target variable. For load 

forecasting the target variable that we are going to predict is DEMAND while in price 

forecasting the target value is RT_LMP that is Real Time Locational Marginal Price  

4.3.1 Feature Engineering for Price Forecasting   

Feature Engineering for Price Forecasting follows the same steps as Load forecasting. It 

includes removal of constant, duplicate and correlated features. We performed MI and SFS 

side by side and then took common features from them. For feature selection, we used the 

dataset of 2018 only. Let us discuss the feature selection below:  

4.3.1.1 Mutual Information  

   We calculated MI of each feature with load consumption. We plot the 

following graph with the obtained value.  Please consider the figure  
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Figure 38: Mutual Information for Feature Selection (Price Forecasting) 

Next, we performed SFS, the insights are explained below:     

4.3.1.2 Sequential Forward Selection  

  We have already explained the SFS in CHapter3 and in Section Feature 

Engineering for Load Forecasting.   

 As described in the methodology section, here we must select 5 features out of all.  Here 

in the attached graph below, blue lines are the calculated performance values against each 

feature while light below the region shows the standard deviation. Whereas we can’t see light 

blue section for all data points as they don't deviate from the performance value.  
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Figure 39: Sequential Foreword Selection for Feature Selection (Price Forecasting) 

The algorithm begins with 0 features, and it keeps on adding a feature and calculating the 

importance. Here in the attached graph, we have importance of each feature marked with its 

standard deviation value. We have fixed a threshold of 5 features. So, the 5 selected features 

came out are 

“DA_LMP, DA_EC, RT_EC, RT_CC, RT_MLC” 

4.3.1.3 Common Features 

We select features from both section methods described above. As we are working on short 

term load forecasting, we must make everything to select with best possible precision. We 

select common features from the feature selecting methods. They were 3 in number. These are 

as follows   

“DA_LMP, RT_EC, RT_MLC” 

Now, we use these features in the next data determination step and forecasting steps.  

4.3.2 Model Training Loss Graph 

We have used a dataset from ISO NE CA. The dataset is hourly based. We used a dataset of 

three years 2016, 2017 and 2018 for training and evaluating the model and performing testing 

in 2019’s dataset, respectively. We are using 90% data in training and 10% in validation. We 

will be using separate data from 2019 for testing models. Considering the scope of our project 

we will test the model for one day, and one week forecasting. The composition of the proposed 

hybrid model has been explained in Chapter 3. However, the hyper parameters selected during 

training and testing of the model are as follows:  
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Table 20: List of Optimized Hyper Parameters Selected during model building 

Input Sequence Size 24 or 168 

Output Sequence Size  24 or 168 

Training Batch Size 70% (24,544 rows) 

Validation Batch Size  30% (10,519 cols) 

Testing Batch Size  Separate time series of Price (24 or 168)  

Batch size 1024 

Activation Function ReLU  

Optimizer Adam 

Learning Rate  0.024 to 0.001 

Dropout   0.2 

Number of LSTM Units  100 

Number of Bidirectional GRU Units  50 

 

The graph attached below is the graph for calculating training loss during the model training 

phase. The error is measured in MSE.  

 

 

Figure 40: Training Loss graph for Price Forecasting 

It can be seen in the graph that the training MSE has decreased from 0.025 to below 0.004. 

Similarly, on validation set the MSE value decreases from 0.01 to below 0.001. Both the cures 
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are seen very near to each other that means error values are least at that time. It means the 

model got trained very well. The minor fluctuations are okay as validation loss is fluctuating 

while training loss is very stable. The second observation is the use of EarlyStopping criterion 

that makes the model stop further training after 63 iterations. This helps us in decreasing the 

training time and composition of the model helps in robust and more precise forecasting.  

After training the model, now it's time for forecasting. So, here we are going to present the 

results of 1 day and 1-week graphs of Price forecasting. We train the model once and then on 

base of that training we predict the time series. The predictions of one day and one week are 

predicted at the same time, and we just draw graphs to display the accuracy of the proposed 

solution.    

4.3.2.1 LSTM-BiGRU based Price Forecasting  

4.3.2.1.1 One Day Price Forecast 2nd January 2019  

The attached graph below is the graph for one day forecast for the second of January. 

 

Figure 41: Price Forecasting for 2nd January 2019 

It is clearly seen that the predicted values follow the pattern as in the actual data graph. The 

MAE error calculated is 11.23 and the deviations from the actual values in terms of RMSE is 

calculated 16.70.  

4.3.2.1.2 One Week Price Forecast January 2019  

The attached graph below is the graph for one week forecast for the month of January 
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Figure 42: Price Forecasting for 1st Week January 2019 

It is clearly seen that the predicted values follow the pattern as in the actual data graph. The 

MAE error calculated is 22.91 and the deviations from the actual values in terms of RMSE 

30.79 calculated and attached in the graph below.  

4.3.2.2. Comparison graphs  

4.3.2.2.1 One Day Price Forecast January 2019  

Consider the following graph, solid black graph representing the actual forecast values while 

green is representing the proposed LSTM-BiGRU model forecast.   

 

Figure 43: Comparison graph for Price Forecast 2nd January, 2019 

Considering the above graph, it is clearly seen that the proposed solution performs better than 

the other benchmark solution with the decreased computational time.  

The computational graph is attached at the end of the section. Please consider the below table 
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for MAE error in the forecasting.   

Table 21: MAE on 2nd January 2019 Price Forecasting 

Hr LSTM GRU SVR LSTM-BiGRU 

1-24 17.07 $/MWH 15.91 $/MWH 16.14 $/MWH 2.35 $/MWH 

 

It is clearly seen that the MAE predicted in one day forecasting is only 2.35 that is the best 

result among the presented comparison result.  

However, we have also calculated the RMSE of the whole 24hrs together to get a clear 

picture. Please consider the table below:  

 

Table 22: RMSE on 2nd January 2019 Price Forecasting 

Hr LSTM GRU SVR LSTM-BiGRU 

1-24 23.12 $/MWH 21.38 $/MWH 20.2 $/MWH 16.85 $/MWH 

 

It is obvious from the above table that RMSE calculated for BI-GRU at each hour is less than 

the comparison models. There may be some hours where RMSE of the proposed solution be 

higher than the comparison models. We consider it alright as we are comparing them with the 

best benchmark solutions available and our aim of writing this thesis is to make a fairly 

accurate rate between forecasting and computational time. On average or considering load 

forecasting for the day it is alright of the proposed solution missed accuracy in a very few 

hours. In rest of the cases, the accuracy of forecasting is very close to original values.   

4.3.2.2.2 One Week Price Forecast January 2019  

 Consider the following graph, solid black graph representing the actual forecast values while 

green is representing the proposed LSTM-BiGRU model forecast.  
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Figure 44: Comparison graph for Price Forecast 1st Week January 2019 

Considering the above graph, it is clearly seen that the proposed solution performs better than 

the other benchmark solution with the decreased computational time.  

The computational graph is attached at the end of the section. Please consider the below table 

for MAE error in the forecasting 

Consider the MAE calculated in the above-mentioned graph.  

Table 23: MAE on 1st Week January 2019 Price Forecasting 

Hr LSTM GRU SVR LSTM-BiGRU 

1-168 29.47$/MWH 29.58 $/MWH 30.04$/MWH 22.63 $/MWH 

 

It is clearly seen that the MAE predicted in one day forecasting is only 22.63 that is the best 

result among the presented comparison result.  

However, we have also calculated the RMSE of the whole 24hrs together to get a clear 

picture. Please consider the table below:  

Table 24: RMSE on 1st Week January 2019 Price Forecasting 

Hr LSTM GRU SVR LSTM-BiGRU 

1-168 37.68 $/MWH 37.78 $/MWH 38.20 $/MWH 30.79 $/MWH 

It is obvious from the above table that RMSE calculated for BI-GRU at each hour is less than 

the comparison models. There may be some hours where RMSE of the proposed solution be 

higher than the comparison models. We consider it alright as we are comparing them with the 
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best benchmark solutions available and our aim of writing this thesis is to make a fairly accurate 

rate between forecasting and computational time. On average or considering load forecasting 

for the day it is alright of the proposed solution missed accuracy in a very few hours. In rest of 

the cases, the accuracy of forecasting is very close to original values.   

As we have forecasted price for the month of January, similarly we forecasted energy for the 

month of July as well. And for forecasting energy for July, we train our model with time series 

of 3.5 years and then used that specific time series in forecasting, respectively.  

4.3.2.2.3 One Day Price Forecast for July 2nd, 2019 

The attached graph below is the graph for one day forecast for July 2nd. Here we are directly 

attaching the comparison graph below  

 

 

Figure 45: Comparison graph for Price Forecast 2nd July 2019 

Considering the above graph, it is clearly seen that the proposed solution performs better than 

the other benchmark solution with the decreased computational time. SVR is showing the 

highest deviations in this scenario.  

The computational graph is attached at the end of the section. Please consider the below table 

for MAE error in the forecasting 

Consider the MAE calculated in the above-mentioned graph.  

Table 25: MAE on 2nd July 2019 Price Forecasting 

Hr LSTM GRU SVR LSTM-BiGRU 

1-24 3.89 $/MWH 3.11 $/MWH 3.04 $/MWH 3.02 $/MWH 



68 
 

 

It is clearly seen that the MAE predicted in one day forecasting is only 3.02 that is the best 

result among the presented comparison result.  

However, we have also calculated the RMSE of the whole 24hrs together to get a clear 

picture. Please consider the table below:  

Table 26: RMSE on 2nd July 2019 Price Forecasting 

Hr LSTM GRU SVR LSTM-BiGRU 

1-24 4.55 $/MWH 3.84 $/MWH 4.06 $/MWH 3.02 $/MWH 

 

It is obvious from the above table that RMSE calculated for BI-GRU at each hour is less than 

the comparison models. There may be some hours where RMSE of the proposed solution be 

higher than the comparison models. We consider it alright as we are comparing them with the 

best benchmark solutions available and our aim of writing this thesis is to make a fairly 

accurate rate between forecasting and computational time. On average or considering load 

forecasting for the day it is alright of the proposed solution missed accuracy in a very few 

hours. In rest of the cases, the accuracy of forecasting is very close to original values.   

4.3.2.2.4 One Week Load Forecasting, July 2019 

The attached graph below is the graph for one week forecast. Here we are directly attaching 

the comparison graph below  

 

 

Figure 46: Comparison graph for Price Forecast 1st Week July 2019 
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Considering the above graph, it is clearly seen that the proposed solution performs better than 

the other benchmark solution with the decreased computational time. SVR is showing the 

highest deviations in this scenario.  

The computational graph is attached at the end of the section. Please consider the below table 

for MAE error in the forecasting 

Consider the MAE calculated in the above-mentioned graph.  

Table 27: MAE on 1st Week of July 2019 Price Forecasting 

Hr LSTM GRU SVR LSTM-BiGRU 

1-168 11.14 $/MWH 10.13 $/MWH 10.22 $/MWH 9.60 $/MWH 

 

It is clearly seen that the MAE predicted in one day forecasting is only 9.60 that is the best 

result among the presented comparison result.  

For considering the deviation at hourly level, we have calculated RMSE, please consider the 

following table.  

However, we have also calculated the RMSE of the whole 24hrs together to get a clear 

picture. Please consider the table below:  

Table 28: RMSE on 1st Week of July 2019 Price Forecasting 

Hr LSTM GRU SVR LSTM-BiGRU 

1-168 17.54 $/MWH 16.04 $/MWH 16.12 $/MWH 15.40 $/MWH 

 

It is obvious from the above table that RMSE calculated for BI-GRU at each hour is less than 

the comparison models. There may be some hours where RMSE of the proposed solution be 

higher than the comparison models. We consider it alright as we are comparing them with the 

best benchmark solutions available and our aim of writing this thesis is to make a fairly accurate 

rate between forecasting and computational time. On average or considering load forecasting 

for the day it is alright of the proposed solution missed accuracy in a very few hours. In rest of 

the cases, the accuracy of forecasting is very close to original values.   

4.3.2.2.5 Yearly Price Forecast 2019  

We have computed the load forecast for the year 2019, that is as follows:  
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Figure 47: Yearly Price Forecast for year 2019 

The scope of this manuscript is for short term price forecasting, we have computed the whole 

year just to get an idea of overall efficiency of the proposed solution. The error metrices are 

as follows:  

Hr MAE RMSE Execution time  

1-8760 24.85 47.56 38.55 (sec) 

 

 

4.3.2.3 Computational Time for January 2019 Price Forecast  

 Here we are summarizing the computational time for one day forecast and one week 

forecast together. We are doing this together because our model is trained once and hence it 

predict forecast value of one day or week in almost same time. The computational Time here 

is inclusive of feature section (9.73 sec). Consider the table below:  
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Figure 48: Model Computational Time for Price Forecasting January 2019 

The calculated execution time is in seconds. It is clear from the above-mentioned table the 

execution time of the proposed solution is almost half of the other proposed solutions. It means 

that the proposed solution is providing the best forecasting results in the least possible time, 

hence accomplishing the objective of this research.  

4.3.2.4 Computational Time for July 2019 Price Forecast 

 Here we are summarizing the computational time for one day forecast and one week 

forecast together. We are doing this together because our model is trained once and hence it 

predict forecast value of one day or week in almost same time. The computational Time here 

is inclusive of feature section (9.73 sec). Consider the table below:  

 

Figure 49: Model Computational Time for Price Forecasting July 2019 
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The calculated execution time is in seconds. It is clear from the above-mentioned table the 

execution time of the proposed solution is almost half of the other proposed solutions. It means 

that the proposed solution is providing the best forecasting results in the least possible time, 

hence accomplishing the objective of this research.  

So, here we have presented the results of the proposed solution, and it is clearly seen that the 

proposed solution performed better in terms of forecasting accuracy and convergence rate and 

hence we successfully concluded our manuscript. The conclusion and the improvements in the 

proposed model are explained in the next section.  
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Chapter 5 

Conclusion and Future Work 

5.1 Conclusion 

In SGs, STLF and STPF is very important as they have direct impact on the planning schedules 

of utilities. These forecasting have strong effect on the energy market.  

In this work, the importance of short-term load forecasting is discussed and analyzed for 

maintaining the stability between generation, transmission, and consumer end. As discussed in 

Chapter 5, due to high volatility in the historical load curves, STLF/STLP in SGs become more 

challenging when it comes to forecast for a longer time duration/ time series. Only electricity 

load and price values are not sufficient in accurate forecasting, we must consider other features 

too. We have discussed the details of all features in Chapter 5. We have designed the Feature 

selection module separately so that we can only get the best feature out of the pool, as all 

features are not adding any significant part in forecasting and sometimes, they only decrease 

the accuracy and enhances the computation time. Considering limitations of LSTM, including 

LSTMs require more memory to train, easy to over fit, and LSTMs are sensitive to different 

random weight initializations. We consider all these when implementing our hybrid model. For 

memory issues, we have not jumped on the larger dataset, we have used a small to medium 

sized dataset and from adjusting weights in the dropout layer we made LSTM to not undergo 

over fitting in discussed cases. We do consider limitations of GRU, their slow convergence and 

low learning efficiency. We mitigate the limitation of low learning efficiency using its 

bidirectional layer in combination with LSTM, and slow convergence using EarlyStopping 

criterion. The proposed model significantly reduced the execution time and enhanced the 

forecast accuracy as discussed. Moreover, ReLU activation function enable the forecast 

strategy to capture non-linearity’s in the time series. Tests are conducted on ISO NE CA dataset 

that contains hourly load and price values besides other 18 features. Results show that the 

proposed model achieves relatively better forecast accuracy (96.9%) in comparison to other 

models i.e., LSTM, GRU and SVR. Moreover, improvement in forecast accuracy is achieved 

while not paying the cost of slow convergence rate [13]. Thus, the trade-off between 

convergence rate and forecast is not created. Finally, from application perspective, the 

proposed model can be used by utilities to launch better offers in the electricity market. The 

proposed solution is showing MAPE in January 2019 load forecasting from 3.12% to 4.07%. 

The MAE is 355.28 that is very less than the comparison models. Similarly, in July the MAPE 
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error calculated in load forecasting is 1.76% and the MAE is 231.72, and these are again the 

best results achieved than the comparison solution. This means that the utilities can save 

significant amount of money due to better adjustment of their generation and demand schedules 

simply because of high accuracy of the proposed model. The proposed solution is showing 

MAE in January 2019 price forecasting from 2.28 to 2.35. The MAE calculated is very less 

than the comparison models. Similarly, in July the MAE calculated is 0.87 to 1.10, and these 

are again the best results achieved than the comparison solution. The objective of this research 

is to predict the future short term electricity demand and price values on hourly basis. We 

achieved this goal using historical data set of 3 years. This forecasted values not only helps 

power companies but on the other hand help users to use electricity according to the hourly 

price predicted and thus can manage their high load consumption activities accordingly.  

5.2 Future Work  

In future the proposed method can be improved by other techniques i.e., block chains or more 

powerful neural networks. Optimization of proposed hybrid algorithms can help in better results. 

There are many evolutionary algorithms that can predict better results. We can increase the scope 

from STLF/STPF to at least MTLF/MTPF. With the use of GPUs and TPUs we can decrease the 

computational time or by designing a simple network can also help in reduction of computational 

time further.   
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