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Preface 
 

This thesis proposes and implements solutions in context to smart infrastructure 

system for smart grid. The thesis is organized as: 

Chapter 1 discusses benefits and technologies of smart grid. Also in this chapter, 

the smart grid is presented as a combination of three subsystems. 

Chapter 2 proposes a telemetry solution based on radio frequency (RF) and general 

packet radio service (GPRS) technologies to monitor total power consumption and power 

flow in electricity distribution company network. Chapter also presents deisgn of a over-

load detector based on Generalized Likelihood Ratio Test for output feeder of grid station. 

Results of implementation of telemetry system and over-load detector in form of reduction 

in load-shedding for electricity distribution company of Pakistan are also included.  

In Chapter 3 multivariate multistep short-term power forecasting framework for 

electricity distribution company has been presented. Discussion on how 24 hours ahead 

power forecasting is helpful in achieving economic dispatch from power generation facility 

is made. Impact assessment on application of proposed forecasting framework for 

electricity distribution company of Pakistan is also included.  

Chapter 4 demonstrates bivariate 24 hours ahead forecasting of power imported and 

power exported by electricity distribution company using Long-short-term-memory 

network (LSTM). Forecasting performance of LSTM network for changes in input 

features, network settings, and training algorithms is also explored.  

Chapter 5 introduces estimation and output feedback control scheme using higher 

order Sliding Mode observer (SMO) for minimum phase nonlinear systems. This presented 

robust feedback linearization scheme is demonstrated in computer simulations for 

magnetic Levitation (Maglev) and DC motor systems. 

In Chapter 6 Cubature Kalman filter (CKF) estimator for output feedback control 

is introduced. Tracking performance of estimator based output feedback control scheme is 

compared with tracking performance of state feedback control. Tracking performances of 

Cubature Kalman filter, Unscented Kalman filter, Extended Kalman filter, State-Space 



 

 

xi 

Recursive Least Squares and SMO based output feedback control schemes in presence of 

external disturbance and parameters perturbation is also compared. 

In Chapter 7 a neuro-estimator based output feedback control scheme is discussed. 

An Emulation Design based discrete robust feedback linearization controller is achieved 

on employing neural network-aided dual Unscented Kalman filter estimation algorithm. 

Simulation results demonstrate robustness of presented scheme. 

Chapter 8 discusses output feedback control scheme for minimum phase nonlinear 

systems with unknown plant (system) parameters. Dual Unscented Kalman filter 

estimation and Emulation Design based discrete feedback linearization controller are 

employed in this sampled-data control configuration. 

Chapter 9 concludes this thesis, and suggests few recommendations for future work. 
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ABSTRACT 

DETECTION, ESTIMATION AND FORECAST FOR 

NONLINEAR SYSTEMS 

By 

ASIM ZAHEER UD DIN 

 

This thesis presents and implements detection, estimation, and forecast algorithms 

in context of smart infrastructure system for smart grid. A novel application of radio 

frequency wireless mesh network and general packet radio service technologies in a 

telemetry solution has been proposed. The telemetry solution measures power flow in the 

energy network of an electricity distribution company. The solution utilizes some selected 

circuits of grid stations, and calculates total power consumed, total power imported and 

total power exported by the distribution company. The selection of circuits for sensors 

installation is the key for reducing solution cost as compare to the case when sensors are 

installed on all the power output points. The framework involves installation of specially 

developed energy sensors (smart energy meters) and data concentrator units at the selected 

grid stations. The approach has been tested on two electricity distribution companies of 

Pakistan: Islamabad Electric Supply Company and Peshawar Electric Supply Company. 

Also in this work, result of over-load detection based on generalized likelihood ratio test 

for an industrial feeder of Islamabad Electric Supply Company is included. Detection 

probability of 0.96 with a false alarm probability of 0.04 has been achieved for 30 minutes 

data interval. 

Further, 4 years power data obtained from above mentioned system is utilized in a 

multivariate multi-step-ahead short-term forecasting formulation. The formulation 

operates on multiple inputs from multiple variables, and provides multi-step-ahead 

forecasts by generating multiple outputs for multiple variables. The presented framework 

is effective for large forecasting horizons since it forecasts for temporally dependent sub-
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intervals called runs from large horizon. Thus the framework forecasts are less biased and 

suffer low variance, as compared with direct method and iterated method estimators 

respectively. Feedward neural network and Long-short-term-memory network models 

have been evaluated in presented framework. The proposed framework has demonstrated 

forecasts of power import and power export with a horizon value of 48 for Peshawar 

Electric Supply Company (PESCO), Pakistan. The averaged mean absolute percentage 

error of two forecasted time series is 12.76 %, whereas, 24 hours ahead power consumption 

of PESCO total consumers has been forecasted with mean absolute percentage error of 

8.6%. Furthermore, exploiting 24 hours ahead power consumption forecasts has resulted 

in better power dispatch for PESCO grid stations by reducing mean absolute error by 11.52 

times between PESCO power allocated and PESCO power consumed. 

Next the thesis presents an Euler approximate discrete-time Sliding Mode observer 

(SMO) which simultaneously estimates states and combined effect of unmodeled system 

dynamics and disturbances. Emulation Design procedure is employed in designing of 

discrete feedback linearization controller. Computer simulations demonstrate performance 

of presented output feedback scheme for tracking applications of magnetic levitation and 

DC motor systems. Results illustrate that reducing sampling period more adversely affects 

Euler approximate discrete observer performance for faster changing system dynamics 

than for slower changing dynamics. The proposed scheme also exhibits good performance 

in presence of disturbances and parameters perturbation. 

Furthermore, it is demonstrated via simulations that robust tracking control is 

achived on using estimator (e.g Kalman filter, SMO, SSRLS filter) in sampled-data output 

feedback configuration, as compared to performing tracking using sampled-data state 

feedback scheme. Simulation results show that SMO based output feedback tracking is 

most robust, followed by CKF and EKF based output feedback scheme. UKF based output 

feedback scheme is robust against external disturbance; but for case of system parameter 

perturbation, UKF tracking error takes longer time to converge. State-Space Recursive 

Least Squares (SSRLS) based scheme behaves poorly in presence of external disturbance. 

This is because SSRLS estimation is based on constant velocity model and not on actual 

nonlinear system model. 
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Finally, output feedback control scheme for case of unknown system parameters 

has been presented. The scheme employs dual UKF estimation algorithm and Emulation 

Design based discrete feedback linearization controller. Implementation results exhibit that 

presented output feedback control scheme demonstrates better tracking performance and 

parameter estimation error when parameter estimate is initialized with a value (in dual 

estimation algorithm) which is closer to actual system parameter value.  
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CHAPTER 1 

THESIS INTRODUCTION - SMART GRID 

Electricity system that features all or any of the following four operations: 

electricity generation, electricity control, electricity distribution, and electricity 

transmission, is called a grid. On April 24th, 2007 at International Data Corporation, Energy 

Conference in Chicago, Andres E. Carvallo brought forward the term ‘Smart Grid’, as a 

blend of energy, hardware, software, and communications. He defined smart grid as a 

combination of an electric grid with hardware, software, and communication networks to 

monitor, control and manage the generation, distribution, consumption and storage of 

energy. 

Alternatively stated, ‘Smart Grid’ may be considered as a modernization effort of 

twentieth century power network “so it monitors, protects, and automatically optimizes 

the operation of its interconnected elements — from the central and distributed generator 

through the high-voltage network and distribution system, to industrial users and building 

automation systems, to energy storage installations and to end-use consumers and their 

thermostats, electric vehicles, appliances, and other household devices” [1]. 

In a smart grid, an automated, broadly distributed power network is achieved via 

two-way flow of information and electricity. There is a real-time energy supply-demand 

balance using the benefits of distributed communication and computing. 

Summarizing; in addition to the enhanced customer services and grid operations, 

the smart grid also offers environmental benefits. And all this realized by integration of 

information technology and communication in all phases of network, starting from point 

of power generation to the point of power consumption. 

1.1 Benefits of smart grid 

Several definitions of smart grid have been proposed by various government 

organizations and authors. Initially smart grid aim was to improve energy efficiency, power 

demand management, and construction of a reliable grid protection capable of self healing. 
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However with time, growing requirements made, governments, electricity industries, and 

research organizations to revise initially defined scope of smart grid.  

The requirements and expected benefits of smart grid according to a report from 

National Institute of Standards and Technology [2] are listed below: 

1. Efficiency and capacity enhancement of existing power networks 

2. Improvement in power quality and reliability 

3. Economic dispatch 

4. Automated operation and maintenance 

5. Better grid security 

6. Reduction in inefficient power generation during peak hours using oil 

7. Inclusion of distributed power system (sources) 

8. Inclusion of renewable sources 

9. Self healing and predictive maintenance 

10. Improvement in resilience against power interruptions 

11. Provision of new energy storage mechanism and facilitation for charging of electric 

vehicles 

12. Reduction in greenhouse gas emissions using new power sources and electric 

vehicles 

13. Enhanced options for consumer 

14. New enhanced markets, services, and products 

1.2 Literature review & motivation - Technologies in smart grid 

To comprehend above mentioned features of smart grid paradigm, and to 

standardize smart grid work being carried out for different parts of electrical power system, 

National Institute of Standards and Technology also proposed a reference conceptual 

model [2]. The smart grid has been divided into seven domains namely, customers, 

markets, service providers, operations, electricity generation, electricity distribution, and 

electricity transmission in this conceptual model. To materialize a smart grid, technologies 

have to be developed and applied in these seven domains. 

Brief reviews on technologies for smart grid have been presented in [3 – 5]. In [6, 

7] current standards for smart grid have been reviewed; and recommendations have been 



 

 

3 

proposed for future smart grid standards. Jiang in [8] has presented industry point of view 

on smart power distribution system; and has also identified future technologies for 

distribution network of smart grid. 

An optimum and complete smart grid is a vision. It may be considered as a designed 

integration of services, functions, sub-systems, and complementatary systems, under an 

intelligent autonomous monitoring, and control. Recognizing the broad scope of smart grid, 

researchers and industrialists have presented different opinions based on their priorities and 

plans. In [9] authors have presented smart grid system, as a system of systems, and have 

divided it in three majors areas (systems) on technical grounds, namely: smart 

infrastructure system, smart management system, and smart protection system. These three 

systems are briefly discussed below. Detailed references to thesis work are presented in 

later chapters of this thesis. 

1.2.1 Smart infrastructure system 

The smart infrastructure system encompasses information, energy, and 

communication frameworks of smart grid. For both the information and energy, the flow 

of data is bidirectional. i.e. not only the information data and energy flow forward from 

source of generation (network) to end-user; but also flow backward from end-user to the 

network. Furthermore, different systems, devices, and applications operating within smart 

grid regime are interconnected using communication framework. 

1.2.2 Smart management system 

In smart grid the objectives of advanced management, and control functionalities 

are achieved via smart management system. Provision for distributed and centralized 

control is made available. Objectives of advanced management may include, supply-

demand balance, utility optimization, energy efficiency, and emissions reduction.  

1.2.3 Smart protection system 

  The smart protection system includes all software and hardware of smart grid that 

offers energy network predictive maintenance, fault detection, and self-healing features. 

The smart protection framework incorporates network reliability analysis; and also 

addresses security and privacy concerns. 
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1.3 Thesis contribution on smart infrastructure system 

The work presented in this thesis contributes to smart infrastructure sub-system of 

smart grid. As discussed above the smart infrastructure sytem includes all the hardware 

and software working in their particular frameworks, relating to information, energy, and 

communication. The working frameworks and advanced features of intelligent 

infrastructure system in smart grid proposed and implemented in this thesis are briefly 

discussed below. 

1.3.1 Advanced energy metering, monitoring, and management 

This work proposes and implements a telemetry solution for electricity distribution 

company (EDC) operating in smart grid regime. The telemetry solution architecture utilizes 

both RF and GPRS technologies. It utilizes sensors installed on power import circuits and 

power export circuits of an EDC energy network grid stations, to calculate the real-time 

total power consumed by EDC region. The result is a reduced number of required sensors 

(and also solution cost); as compared to the case, when sensors are installed on every output 

feeder of EDC network. The framework comprises installation of specially designed 

energy sensor (smart energy meter, class 0.5) and data concentrator unit (DCU) at the 

selected grid stations, for measurement of energy data that includes active energy, reactive 

energy, active power, apparent power, current, voltage and power factor. A developed 

computer server application is also installed in power control center of distribution 

company. The developed solution provides both, telemetry of distribution network, and 

real-time total power consumption value of complete region serviced by EDC. 

Also in this work, to achieve advanced load (energy) management features, a over-

load detection algorithm based on generalized likelihood ratio test for an industrial feeder 

of a grid station has been proposed and implemented. Over-load detector results, and 

impact of thesis work on areas of advanced energy metering, monitoring, and management 

for Islamabad Electric Supply Company of Pakistan are also included. 

The above stated work is presented in Chapter 2 of this thesis.  

1.3.2 Advanced technologies in communication 

The work presented in this thesis proposes and implements a novel application of 

RF wireless mesh network and GPRS technologies in a telemetry solution to measure 



 

 

5 

power flow in the energy network of an electricity distribution company in smart grid. This 

hybrid combination of RF and GPRS technologies have been used in remote energy 

metering of industrial, commercial, and residential consumers throughout the world. The 

proposed and implemented telemetry application for EDC energy network has not been 

considered before to the best of our knowledge.  

The telemetry solution utilizes energy data from some selected circuits of grid 

stations, and calculates total power consumed, total power imported and total power 

exported by the distribution company as also discussed above. Within a grid station the 

measured data reaches DCU using 433 MHz wireless mesh network, and is transmitted to 

a remote power control center using GPRS. Energy data from different grid stations across 

the energy network of EDC is collected at power control center, and utilized in real-time 

calculations of total power consumed, total power import and total power export. The 

approach has been tested on two electricity distribution companies of Pakistan: Islamabad 

Electric Supply Company and Peshawar Electric Supply Company. 

This solution is also dicussed in Chapter 2 of thesis. 

1.3.3 Advanced electricity utilization 

Optimal operations and utilization of electricity generation facilities is one of the 

major objectives in operations of smart grid. Optimal operation of electricity generation 

facility requires that power generated balances consumers demand in real-time. This 

demand-supply balance is also referred to as economic dispatch. To assist economic 

dispatch an effective approach [10] is to model consumer demand, and then employ this 

model to forecast consumer demand on short-term, medium-term, and long-term bases. 

These forecasted power demand values are helpful in optimal scheduling of power plants. 

The work presented in this thesis discusses demand model learning for EDC consumer; 

and demonstrates 24 hours ahead short-term power forecasting results using learned model. 

Impact of short-term power forecasting for Peshawar Electric Supply Company of Pakistan 

is also discussed quantitatively. 



 

 

6 

The work on advanced electricity utilization is presented in Chapter 3 and 

Chapter 4 of this thesis. 

1.3.4 Advanced electricity generation  

In smart grid and conventional electrical grid, power stations, electrical substations, 

transmission lines, and distribution lines are interconnected to form a network for 

delivering electricity from power producers to power consumers. Power stations or 

generating stations are facilities generating three-phase electricity. The electricity 

generation at power plant is the process of generating electric power from primary energy 

sources and motiv power. Most often in power plant this electricity is generated by 

electromechanical generators that are driven by water turbines, steam turbines, wind 

turbines, internal combustion engines, etc. 

Electromechanical generator and motor are machines used most regularly in 

electrical power generation industry to convert mechanical energy into electrical energy, 

and vice versa. These electromagnetic system consist of rotor and stator. Usually bearings 

are mounted on each end of rotor to support rotor alignment, and for attaching load to rotor 

shaft. In context of smart grid, one effort towards an advanced and efficient electricity 

generation can be to use active magnetic bearings instead of conventional bearings. 

Magnetic bearings use magnetic levitation to support load, and are able to hold moving 

parts without physical contact. Also they provide high relative motion with very low 

friction, no mechanical wear, and no lubrication. This thesis presents state and parameter 

estimation algorithms, and output feedback control configurations for magnetic levitation 

system. The idea is to further employ these configurations in design and development of 

active magnetic bearings. 

Sampled-data output feedback control (OFC) of magnetic levitation system for four 

cases along with following techniques are presented: 

a. Case-I: Unknown plant model 

i. OFC based on sliding mode observer (information about input function 

required only) – discussed in Chapter 5 

ii. OFC based on state space recursive least squares filter (using constant 

velocity model) – discussed in Chapter 6 
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b. Case-II: Known plant model 

i. OFC based on Kalman (EKF, UKF, CKF) estimators – discussed in 

Chapter 6 

c. Case-III: Plant model mismatch 

i. OFC based on NN-aided UKF – discussed in Chapter 7 

d. Case-IV: Unknown plant parameters 

i. OFC based on dual UKF – discussed in Chapter 8 

Figure 1-1 demonstrates different reading outlines for thesis chapters.  

1.4 Conclusion 

A brief overview on benefits and technologies related to smart grid has been 

presented. Furthermore, smart grid system is discussed as an integration of three sub-

systems, smart infrastructure system, smart management system, and smart protection 

system.  

This chapter has set direction for upcoming thesis discussion. Later chapters 

investigate detection, estimation, and forecast in context of nonlinear systems and 

processes of smart grid.  
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CHAPTER 2 

TELEMETRY OF ELECTRICITY DISTRIBUTION COMPANY 

ENERGY NETWORK 

We present a novel application of radio frequency wireless mesh network and 

general packet radio service technologies in a telemetry solution to measure power flow in 

the energy network of an electricity distribution company. The telemetry solution utilizes 

some selected circuits of grid stations, and calculates total power consumed, total power 

imported and total power exported by the distribution company. The selection of circuits 

for sensors installation is the key for reducing solution cost as compare to the case when 

sensors are installed on all the power output points. The framework involves installation of 

specially developed energy sensors (smart energy meters) and data concentrator units at 

the selected grid stations, for measurement of energy data that includes active energy, 

reactive energy, active power, apparent power, current, voltage and power factor. The 

measured data reach data concentrator unit using 433 MHz wireless mesh network, and is 

transmitted to a remote power control center using general packet radio service. Energy 

data from different grid stations across the energy network is collected at power control 

center, and utilized in calculation of total power consumed, total power import and total 

power export. The approach has been tested on two electricity distribution companies of 

Pakistan: Islamabad Electric Supply Company and Peshawar Electric Supply Company. 

Also in this work, result of over-load detection based on generalized likelihood ratio test 

for an industrial feeder of Islamabad Electric Supply Company is included. Detection 

probability of 0.96 with a false alarm probability of 0.04 has been achieved for 30 minutes 

data interval. 

2.1 Introduction 

Most of utilities (electricity distribution companies) in developing countries are 

neither able to remotely measure power usage of individual consumer, nor able to calculate 

real time total power consumption of complete region serviced by that utility [11]. Chun-

Hao Lo in [11] has presented a detailed survey on progressive smart grid system. The 
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author reports that smart energy meters have multiple built-in interfaces, supporting 

various wireless and wired communication protocols. These smart meters, together with 

RF and power line communication technologies, may constitute a mesh communication 

network, and get utilized in smart grid solutions. The author also reports that WMN is 

considered as one of the foreseeable approaches to support smart grid applications; and can 

also manage other non-smart grid uses at the same time. Further the author has included 

result of a survey; that telecommunication technologies are quite mature and readily 

deployed these days. Therefore, Global System for Mobile communications (GSM) and 

GPRS have become technology candidates for supporting wireless communication in grid 

stations. They can be used for purposes of remote monitoring and control of substations 

and distributed energy sources. Also from work of [12-14], it can be concluded that present 

electric power system can be modernized into next generation power system (smart grid), 

by incremental inclusion of technology and intelligence. 

In smart grid stations, real-time system monitoring and load control can also be 

achieved using any WMN, like ZigBee. These WMNs are also being recognized as a 

promising technology for present grid stations. In [15], ZigBee deployment guidelines, 

under interference of wireless local area network have been presented. [16] presents an 

experimental study on communication channel of wireless sensor networks in 

environments of industrial power control room and 500 kV substation. 

In [17], 2.4 GHz ISM band parameters (RMS delay, coherence bandwidth and 

electromagnetic interferences) under different conditions of line-of-sight and polarizations 

are investigated for a 400 KV substation. In [18], a real-time monitoring system is 

presented, that monitors electrical quantities of nationwide electricity transmission 

network. The system was developed through National Power Quality Project of Turkey. 

Detailed study on wireless communication system for grid station is also presented in [19-

21]. Whereas, work on modeling of customer load consumption patterns in power 

distribution system is discussed in [22-24]. 

In this chapter we present a telemetry solution for electricity distribution company. 

The telemetry solution architecture utilizes both RF and GPRS technologies. This hybrid 

combination of RF and GPRS technologies have been used in remote energy metering of 
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industrial, commercial, and residential consumers throughout the world. The proposed 

telemetry application for EDC energy network has not been considered before to the best 

of our knowledge. It utilizes sensors installed on power import circuits and power export 

circuits of an EDC energy network, to calculate the total power consumed by EDC region. 

The result is a reduced number of required sensors (and also solution cost); as compared to 

the case, when sensors are installed on every output feeder of EDC network. The solution 

comprises specially designed energy sensor (smart energy meter) and DCU. A developed 

computer server application is also installed in power control center of distribution 

company. The developed solution provides both, telemetry of distribution network, and 

real-time total power consumption value of complete region serviced by EDC. Due to 

brevity, designs of energy sensor, and DCU are not included in this chapter. This chapter 

only discusses the communication architecture. The proposed solution has been deployed 

for two electricity distribution companies of Pakistan under USAID Energy Policy 

Program. These projects were part of an effort to modernize the present power system of 

Pakistan.  

The contributions of the chapter include a) the implementation of a real time system 

for an EDC that measures and monitors power import, power export and power consumed, 

b) the utilization of both RF and GPRS technologies in the proposed framework, and c) the 

identification of efficient sensor installation points resulting in lower system cost. With 

these contributions, logged power consumption profiles are available for analysis that helps 

in controlling, forecasting and planning the consumption patterns, which results in buying 

cheaper power from generation company.  

2.2 Background 

Many of the developing countries are unable to completely meet their growing 

energy (power) needs. In these countries, there may be a shortage of power generation due 

to different reasons. In such situations (countries), there is government or privately 

administered office, which regulates and monitors total power (megawatt) generated on 

national level. And distributes this generated power on allocated quota to country's 

electricity distribution companies. 
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As power generation is limited, and electricity distribution companies are provided 

allocated quota of this power; often a circumstance comes up, when electricity distribution 

companies face power shortfall. Power shortfall situation arises when power demand from 

EDC's end consumer exceeds EDC allocated quota, or the quota allocated (distributed) to 

EDC is already inadequate to fulfill its end consumer actual power need (demand). 

To manage EDCs power shortfalls, the power monitoring office issues load-

shedding schedules on daily or weekly basis, in which, each EDC disconnects its end 

consumer power (electricity) supply for duration of load-shedding. This electricity 

shutdown (disconnection) helps EDC to remain within received allocated power quota. 

An accurate load-shedding schedule may be formulated using EDC allocated power 

quota and real-time total power consumption values. This schedule can help EDC to remain 

compliant with allocated power quota; and also not to shutdown consumer electricity for 

unrequired (extra) time durations. 

For the case, when no automatic, real-time mechanism is in-place in EDC; that 

could measure and monitor actual, real-time EDC total power consumption (i.e. power 

consumed by EDC end consumer). EDC employs a manual mechanism, in which energy 

readings are read from electromechanical and digital energy meters (installed in different 

grid stations of EDC distribution network) by human meter readers. Human operators from 

different grid stations locations, via telephone calls convey these energy readings to power 

control center (PCC). In PCC, all the energy readings are manually summed up to calculate 

EDC total power consumption. For example, this manual mechanism of EDC total power 

consumption measurement and calculation, in some EDCs of Pakistan involve receiving 

around 40 telephone calls at PCC from different grid stations. Also in some cases, a total 

time period of 30-45 minutes is required to manually read all energy meters from different 

grid stations, and then to calculate one value of EDC total power (MW) consumption in 

PCC. 

EDC power consumption value worked out by this manual mechanism do not 

represents a true real-time value, and also at times is inaccurate, due to human involvement 

at different stages of this power measurement-calculation mechanism. 
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Eventually, as EDCs manually-calculated power consumption values are often 

inaccurate and delayed, the power monitoring office ends up preparing load-shedding 

schedules, which either disconnects end consumer power for extra (unjustified) time 

durations, or make EDCs to go beyond their allocated power quotas. 

The above discussed mechanism for EDC power (MW) consumption measurement 

and calculation; and load-shedding schedules formulation, can be improved, by developing 

a solution, that remotely measures power flow in EDC energy (distribution) network. As 

the developed solution is to be implemented in developing countries, so it should be cost-

reasonable and swift in installation. With the primary objective to obtain real-time EDC 

total power consumption in PCC. 

This work presents a telemetry solution for electricity distribution company energy 

network. Chapter discusses implementation and solution architecture (model) of wireless 

telemetry solution. The solution operates in real-time and accurately measures, both power 

flow in EDC distribution network and EDC total power (MW) consumption. 

Details of developed solution are presented in subsequent sections of this chapter. 

2.3 Proposed Solution 

Before presenting architecture and functionality, solution constituent modules for 

EDC energy network are described: 

2.3.1 Import circuit 

A circuit within a grid station of EDC distribution network; from (using) which 

electrical power is imported (taken in) by EDC from power generation facility, or from 

another electricity distribution company. An EDC distribution network may have more 

than one import circuit, and also multiple import circuits may exist in one grid station. 

An import circuit that delivers power to EDC end consumer through an output 

feeder is categorized as import circuit of type I. Whereas, an import circuit that steps down 

voltage, and distributes power to another grid station of the EDC is termed as import circuit 

of type II. 

For example, in Pakistan, power transformer of required specification is installed 

in an import circuit, that steps down voltage either from 220 kV to 132 kV, or 132 kV to 

66 kV, or 66 kV to 33 kV. 
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2.3.2 Output feeder 

A circuit with power transformer, that steps down voltage and delivers power to 

EDC end consumer. For example, in Pakistan, power is delivered to EDC end consumer 

through output feeder at 11KV. 

2.3.3 Export circuit 

A circuit within an EDC distribution network grid station, that steps down and 

delivers power to grid station of another electricity distribution company. An EDC 

distribution network may have more than one export circuit, and also multiple export 

circuits may exist in one grid station. Also, both import circuit and export circuit may be 

present in a single grid station. 

2.3.4 Common distribution point 

An EDC grid station is termed as Common Distribution Point (CDP), if it 

distributes power to another two, or more than two grid stations. The other grid stations 

may be both / all of same EDC, or both / all of another EDC, or one / some of same EDC 

and one / some of another EDC. i.e. CDP may consist all import circuits-type II, or all 

export circuits, or a combination of both import circuit-type II and export circuit. 

2.3.5 Power flow in an electricity distribution network 

Figure 2-1 demonstrates general flow of electric power from power generation 

facility (PGF) to end consumer through EDCs energy (distribution) networks. Figure 2-1 

shows grid stations of two electricity distribution companies, namely, electricity 

distribution company 'A' (EDC'A'), and electricity distribution company 'B' (EDC'B'). Grid 

station of EDC'A' is represented by G1; whereas, grid station of EDC'B' is represented by 

G2. Common Distribution Points (CDPs), power import, and power export circuits 

(branches) in distribution network of EDC'A' are also highlighted in Figure 2-1. 

2.4 Solution Architecture and Functional Description 

In this section, overall architecture and functional description of developed 

telemetry solution are presented. As discussed earlier, primary objective is to remotely 

measure from PCC, real-time EDC total power (MW) consumption (i.e. real-time total 

power consumed by EDC end consumers). Whereas, secondary requirement from  
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Figure 2-1. A general flow of electric power from power generation facility to end 

consumer of EDC 'A' and EDC 'B'. 

 

telemetry solution, is to provide in PCC, energy parameters of power flowing in different 

circuits of EDC distribution network. 

 In the proposed developed solution, energy sensor (smart energy meter) is installed 

on every import circuit and export circuit of EDC distribution network. This results into a 

lesser number of circuits, and reduced solution cost; as compared to the case if every output 

feeder circuit of EDC was selected for sensor installation. Figure 2-2 demonstrates circuits 

selected for an EDC. Whereas, Figure 2-3 shows energy sensors installed on circuits within 

one grid station. The energy sensor has been designed, developed, and qualified against 

standards, i) WAPDA specification for Solid State TOD Energy Meters DDS-50:2007, ii) 

PEPCO specification Advance Metering Infrastructure (AMI) DDS-98:2011, iii) NTDC  
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Figure 2-2. Illustration of selected circuits for DISCO ‘1’. 

 

specification Meter Data Collection Server to be used in AMI DDS-110:2012. Energy 

parameters (active energy, reactive energy, active power, apparent power, current, voltage, 

power factor) of EDC import / export circuits, measured by each sensor, are wirelessly 

transmitted to EDC power control center via DCU. The DCU is also installed in grid 

station.The solution utilizes a hybrid combination of RF 433MHz WMN and GPRS 

technologies. 

In PCC, real-time total EDC active power (MW) consumption is calculated by 

obtaining difference between EDC real-time values of total active power (MW) import and 

total active power (MW) export. i.e. let: 

       Active power (MW) imported by EDC via 1st import circuit at time instant t = 𝑃𝑖,1|𝑡 

       Active power (MW) imported by EDC via nth import circuit at time instant t =𝑃𝑖,𝑛|𝑡 

       Active power (MW) exported by EDC via 1st export circuit at time instant t =𝑃𝑒,1|𝑡 

       Active power (MW) exported by EDC via mth export circuit at time instant t =𝑃𝑒,𝑚|𝑡 

Real-time power imports (𝑃𝑖,1|𝑡, 𝑃𝑖,1|𝑡 , ⋯,𝑃𝑖,𝑛|𝑡) and exports (𝑃𝑒,1|𝑡, 𝑃𝑒,1|𝑡, ⋯,𝑃𝑒,𝑚|𝑡) values 

are remotely obtained at EDC power control center, where real-time total power import 

and total power export are calculated as: 

Total power import = ∑ 𝑃𝑖,𝑎|𝑡
𝑛
𝑎=1  ; Total power export = ∑ 𝑃𝑒,𝑏|𝑡

𝑚
𝑏=1  
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Figure 2-3. Energy sensors installed on circuits in one grid station. 

 

     Whereas, real-time total active power (MW) consumption by EDC is calculated using 

real-time values of: total power (MW) consumption =∑ 𝑃𝑖,𝑎|𝑡
𝑛
𝑎=1 − ∑ 𝑃𝑒,𝑏|𝑡

𝑚
𝑏=1  

Parameter t, i.e. time interval after which energy parameters (active energy, reactive 

energy, active power, apparent power, current, voltage, power factor) from each sensor are 

remotely retrieved, is programmable, and can have any value greater than 10 seconds.  

All import and export circuits in EDC distribution network are identified with help 

of related EDC office.For telemetry of EDC distribution network, energy sensors are 

installed on circuits (of importance), which are also selected with helpof EDC office. These 

circuits, may include circuits, which deliver power to industries, or deliver power to 

populated areas of high power consumption. Energy measurements from these sensors also 

reach EDC power control center (via DCU), and are utilized in power monitoring of 

distribution network. 

2.4.1 Architecture description 

Figure 2-4 presents architecture of developed telemetry solution. A grid station may 

have any number of import circuits, export circuits and other circuits of interest. Within a 

grid station, the installed sensors and DCU form a wireless mesh network. Each DCU in a 
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grid station acquires energy data from sensors (installed on circuits) using RF 433 MHz, 

and uploads it on server in EDC power control center via GPRS provided by cellular 

company. Energy data from all sensors is acquired by DCU, and after packet formation, is 

uploaded on PCC server. The DCU continues with this dedicated task of data acquisition, 

packet formation, and uploading on PCC server. 

As import / export circuits and other circuits (of interest) are present in more than 

one grid station, and also at different locations in EDC distribution network. Therefore, a 

DCU is installed in each grid station, from where circuit energy data is intended to be 

remotely read from EDC power control center.  

Figure 2-4 demonstrates telemetry of ‘N’ grid stations of an EDC distribution 

network. A grid station may have ‘N’ number of circuits (sensors). Each grid station DCU 

acts as a gateway for sensor energy data, and uploads sensors data on PCC server. 

In PCC, this sensor data is monitored and logged in files with date-time stamp. Also, this 

data is used to calculate real-time EDC total power (MW) consumption, as discussed 

earlier. As shown in Figure 2-4, monitoring of energy data is also possible from remote 

multiple client (node) positions. These multiple clients access PCC server data via internet. 

Figure 2-5 demonstrates installation of energy sensors and DCU within an EDC 

grid station. Sensor is installed in grid station circuit to output of current transformer (CT) 

and potential transformer (PT). Whereas, DCU operates on single phase AC voltage of 

100-250 V. The two types of import circuit and export circuit are also highlighted in Figure 

2-5. 

2.5 Detector Implementation 

Each sensor (energy meter) also provides over-load protection at installed circuit. 

The circuit may be of any type; import, export, or a branch of EDC energy network. As the 

energy sensor measures power (kW) consumed through each circuit, a detector is 

implemented in energy meter software; which generates an alarm signal when power 

consumed reaches a pre-defined threshold value. The alarm signal triggers a specific circuit 

which disconnects all, or particular output load of that circuit, depending on EDC 

requirements. EDC concerned authorities set pre-defined threshold value for each energy 

sensor detector. 
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Figure 2-4. Architecture of developed telemetry solution. 

 

2.5.1 Load consumption model for detector implementation 

The measured power consumed is modeled to have an average or mean value 𝐴𝑁, 

for an interval 𝑁, with load variations (random values over a mean) modeled as additive 

zero mean white Gaussian noise with variance 𝜎2, represented by Ɲ(0, 𝜎2). The notation 

Ɲ(𝜇, 𝜎2) denotes a Gaussian probability density function with mean 𝜇 and variance 𝜎2. 

Load consumption model utilized by sensor detector: 𝑥[𝑛] = 𝐴𝑁 + 𝑤[𝑛], 

where, 𝑥[𝑛] represents load consumption values at time step n; 𝑛 = 0,1,2, …𝑁 − 1, 𝑁 is 

maximum number of samples. The circuit power readings are being measured at 2 𝑚𝑠𝑒𝑐  
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Figure 2-5. Energy sensors installed on circuits within 220/132/66/33 kV grid station. 

 

sample time by each energy sensor; for detector implementation power readings in sensor 

memory are updated after every 2 seconds. 

2.5.2 Problem formulation 

The signal (over-load) detection problem is a binary hypothesis test, i.e. a single 

hypothesis must be chosen between two competing hypotheses 𝐻0 (null hypothesis) and 

𝐻1(alternative hypothesis). The goal of detector is to decide either 𝐻0 or 𝐻1 based on the 

observed (measured) set of data {𝑥[0], 𝑥[1], … , 𝑥[𝑁 − 1]}. This is a mapping from each 

possible data set value into a decision. Following detector hypotheses are defined [25, 26]:  

                    𝐻0: 𝑥[𝑛] = 𝐴𝑁 + 𝑤[𝑛] <  𝛾 ;  𝐻1: 𝑥[𝑛] = 𝐴𝑡ℎ + 𝑤[𝑛] >   𝛾                 (2-5.1) 

where, 𝑛 = 0,1,2, …𝑁 − 1. 𝐴𝑁 and 𝐴𝑡ℎ are load mean value for hypothesis 𝐻0 and 𝐻1 

respectively. 𝛾 is threshold. 𝐴𝑡ℎis set by EDC on basis of circuit load consumption history. 

The situation of deciding 𝐻1 when 𝐻0 is true, is termed as false alarm. 𝑝(𝐻1; 𝐻0) is referred 

to as the probability of false alarm, and is denoted by 𝑃𝐹𝐴. Over-load detection is defined 

as the case when measured load consumption value reaches the predefined value of 𝐴𝑡ℎ, 

i.e. deciding 𝐻1 when 𝐻1 is true in actual. 𝑝(𝐻1; 𝐻1) is referred to as the probability of 

detection, and is denoted by 𝑃𝐷. The design goal for required detector is to maximize 𝑃𝐷 =

𝑝(𝐻1; 𝐻1) subject to constraint 𝑃𝐹𝐴 = 𝑝(𝐻1; 𝐻0) = 𝛼. 
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2.5.3 Neyman-Pearson theorm 

The Neyman-Pearson (NP) approach [27, 28] has been used, which gives a test 

statistic, that is a function of measured load consumption 𝑥[𝑛]; and a threshold value. The 

detector decides 𝐻1, and a signal is generated (which is used to disconnect output load) 

when test statistic value exceeds the threshold value. NP approach to signal detection 

(hypothesis testing) states: To maximize 𝑃𝐷 for a given 𝑃𝐹𝐴 = 𝛼 decide 𝐻1 if: 

                                        𝐿(𝑥) =
𝑝(𝑥;𝐻1)

𝑝(𝑥; 𝐻0)
> 𝛾                                                       (2⎼5.2) 

where the threshold 𝛾 is found for a given value of 𝑃𝐹𝐴 from: 𝑃𝐹𝐴 =

∫ 𝑝(𝑥;𝐻0) 𝑑𝑥 = 𝛼{𝑥:𝐿(𝑥)>𝛾}
 (right tail probability), and complementary cumulative 

distribution function [25] 𝑄(𝑥), given by: 
1

√2𝜋𝑥
𝑒−

1

2
𝑥2

. 

The function 𝐿(𝑥) is termed likelihood ratio since it indicates for each value of 𝑥 

the likelihood of 𝐻1versus the likelihood of 𝐻0. 𝑝(𝑥;𝐻0) and 𝑝(𝑥;𝐻1) are the probability 

density functions of 𝑥[𝑛] under hypothesis 𝐻0 and 𝐻1 respectively. 

As in Equation (2-5.1) 𝐴𝑁 and random variation in load (variance) 𝜎0
2 are unknown 

for hypothesis 𝐻0, and change with time. For hypothesis 𝐻1, 𝐴𝑡ℎ is set by EDC, and 

therefore known; whereas, random variation in load (variance) 𝜎1
2 is unknown. So, detector 

is to be designed when signal (load mean) is unknown, but deterministic for hypothesis 𝐻0; 

and known for hypothesis 𝐻1. Noise (load variations) is Gaussian for both hypotheses, with 

unknown variances. 

The problem thus becomes to decide between 𝐻0 and 𝐻1 when the PDFs depend on 

a set of unknown parameters. These parameters are not the same under each hypothesis. 

Under 𝐻0 the vector 𝜃0 represents the unknown parameters; whereas, 𝜃1 represents the 

unknown parameters under hypothesis 𝐻1. 𝜃0 and 𝜃1 are defined as 𝜃0 = {𝜎0
2, 𝐴𝑁}, 𝜃1 =

𝜎1
2. 

 The PDFs of 𝐻0 and 𝐻1 are represented by 𝑝(𝑥; 𝜃0, 𝐻0) and 𝑝(𝑥; 𝜃1, 𝐻1) 

respectively. The approach now is to estimate the unknown parameters for use in a 

likelihood ratio test. 
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2.5.4 Generalized Likelihood Ratio Test (GLRT) 

The GLRT [29, 30] replaces the unknown parameters by their maximum likelihood 

estimates (MLEs). From Equation (2-5.2), the GLRT decides 𝐻1 if: 

                                   𝐿𝐺(𝑥) =
𝑝(𝑥; 𝜃1, 𝐻1)

𝑝(𝑥; 𝜃0, 𝐻0)
> 𝛾                                                   (2⎼5.3) 

where 𝜃1 is the MLE of  𝜃1 assuming 𝐻1 is true (𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒𝑠 𝑝(𝑥; 𝜃1, 𝐻1)), and 𝜃0 is the 

MLE of 𝜃0 assuming 𝐻0 is true (𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒𝑠 𝑝(𝑥; 𝜃0, 𝐻0)). The GLRT approach has been 

used, as it provides information about the unknown parameters. So in this work MLEs are 

determined before determining 𝐿𝐺(𝑥). 

2.5.5 Detector design 

The probability density function of 𝑥[𝑛] under hypothesis 𝐻0 and 𝐻1 with unknown 

parameters have distributions, Ɲ(�̂�𝑁 , �̂�0
2) and Ɲ(𝐴𝑡ℎ, �̂�1

2) respectively, and are found as: 

                       𝑝(𝑥; 𝜃0, 𝐻0) =
1

(2𝜋�̂�0
2)
𝑁
2⁄
exp [−

1

2�̂�0
2∑(𝑥[𝑛] − �̂�𝑁)

2
𝑁−1

𝑛=0

] 

                      𝑝(𝑥; 𝜃1, 𝐻1) =
1

(2𝜋�̂�1
2)
𝑁
2⁄
exp [−

1

2�̂�1
2∑(𝑥[𝑛] − 𝐴𝑡ℎ)

2

𝑁−1

𝑛=0

] 

Where Gaussian probability density function for a scalar random variable 𝑥 is defined as; 

𝑝(𝑥) =
1

√2𝜋𝜎2
exp [−

1

2𝜎2
(𝑥 − 𝜇)2], with µ and 𝜎2 as mean and variance. �̂�𝑁 estimated 

value of mean 𝐴𝑁 is calculated as: �̂�𝑁 =
1

𝑁
∑ 𝑥[𝑛]𝑁−1
𝑛=0  

The load consumption 𝑥[𝑛] variances (𝜎0
2, 𝜎1

2) under hypothesis 𝐻0 and 𝐻1 are estimated 

as: 

                                                �̂�0
2 =

1

𝑁
∑(𝑥[𝑛] − �̂�𝑁)

2
𝑁−1

𝑛=0

 

                                                �̂�1
2 =

1

𝑁
∑(𝑥[𝑛] − 𝐴𝑡ℎ)

2

𝑁−1

𝑛=0

 

The PDF under each hypothesis have been presented above, with the difference in means 

causing the PDF under 𝐻1to be shifted right (as 𝐴𝑡ℎ  ˃ 𝐴𝑁). Evaluating Equation (2-5.3) 

using expressions for 𝑝(𝑥; 𝜃0, 𝐻0) and 𝑝(𝑥; 𝜃1, 𝐻1): 
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1

(2𝜋�̂�1
2)
𝑁
2⁄
exp [−

1

2�̂�1
2∑ (𝑥[𝑛] − 𝐴𝑡ℎ)

2𝑁−1
𝑛=0 ]

1

(2𝜋�̂�0
2)
𝑁
2⁄
exp [−

1

2�̂�0
2∑ (𝑥[𝑛] − �̂�𝑁)

2𝑁−1
𝑛=0 ]

>  𝛾 

Simplifying: 

                                                     (
�̂�0
2

�̂�1
2)

𝑁
2⁄

>  𝛾                                                        (2⎼5.4) 

2.6 Telemetry of IESCO and PESCO Energy Networks 

The deployment of proposed telemetry solution completed in September, 2015 and 

October, 2016 for IESCO and PESCO respectively. To date the developed solution is 

effectively providing both IESCO PCC and PESCO PCC, telemetry of energy network and 

real-time total power (MW) consumption of EDC consumers. 

This section also provides a comparison between the implemented telemetry 

solution and power monitoring system implemented in Turkey [18]. 

2.6.1 Telemetry of IESCO energy network vs Turkey power monitoring system 

The electricity distribution network of IESCO delivers power to over 2.4 million 

consumers (www.iesco.com.pk). 52 import circuits, 11 export circuits, and 20 other circuits 

(of importance) in 49 grid stations were identified to be used by the proposed solution to 

calculate the total power consumed by IESCO region consumers. For these 83 circuits in 

49 grid stations of IESCO distribution network; 83 energy sensors and 49 DCUs are 

installed.  

Whereas IESCO region electricity consumers draw power through 929 11 KV 

output feeders; and if sensors were to be installed on output feeders like the Turkey power 

monitoring system [18], then a total of 929 sensors would have been required. This would 

have increased the solution cost. However, the implemented solution of this work is more 

cost effective, fast deployable, scalable, and more suitable for developing countries. 

Values of energy parameters, power import, power export and power consumed are 

updated after every 15 seconds for telemetry solution deployed in IESCO. Figure 2-6 

demonstrates detector performance of  test statistics Equation (2-5.4) via receiver operating 

characteristics (ROC) curves for an output feeder of IESCO. Using Equation (2-5.4) and 

hypotheses definition Equation (2-5.1) relationship equation of 𝑃𝐷 dependent on 𝑃𝐹𝐴, test 
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statistics and threshold was obtained. In Figure 2-6 each point on the curve corresponds to 

a value of (𝑃𝐹𝐴, 𝑃𝐷) for a given threshold 𝛾. As 𝛾 increases 𝑃𝐹𝐴 decreases and so does 𝑃𝐷, 

and vice versa. Result shows that detection probabilities of 0.96, 0.91 and 0.85 are obtained 

with a constraint of 0.04 false alarm probability at measured data (power) intervals of 30 

minutes, 20 minutes and 10 minute respectively. 

Figure 2-7 briefly presents impact of proposed telemetry and detector work on 

IESCO scheduled and unscheduled power (load) shedding. Approximated averaged 

number of hours per day load-shedding for months, January to December are shown. Power 

shutdown time due to faults and maintenance of IESCO distribution network has been 

excluded. 

2.6.2 Telemetry of PESCO energy network vs Turkey power monitoring system 

The electricity distribution network of PESCO delivers power to over 2.6 million 

consumers (www.pesco.gov.pk). 82 import circuits, 30 export circuits, and 42 other circuits 

(of importance) in 68 grid stations were identified to be used by the proposed solution to 

calculate the total power consumed by PESCO region consumers. For these 154 circuits in 

68 grid stations of PESCO distribution network, 154 energy sensors and 68 DCUs are 

installed. 

 

         Figure 2-6. Detector receiver operating characteristics. 
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Figure 2-7. Impact of proposed solution on load-shedding schedules of IESCO. 

 

 

 

       Figure 2-8. Photograph of PESCO Power Control Center server LCD screen. 
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Whereas PESCO region electricity consumers draw power through 969 11 KV 

output feeders; and if sensors were to be installed on output feeders, like the Turkey power 

monitoring system [18], then a total of 969 sensors would have been required. This would 

have increased the solution cost. Figure 2-8 shows picture of PESCO PCC server LCD 

screen. Real-time values of total power import, power export and power consumed by 

PESCO are displayed. These values are updated after every 15 seconds. 

2.7 Conclusion 

This work has discussed installation of energy sensors on import and export 

circuits, as well as DCU installation in grid stations to remotely monitor real-time total 

power (MW) consumed by the region serviced by an electricity distribution company. 

Within a grid station, the installed energy sensors and DCU form an RF 433 MHz wireless 

mesh network. The proposed solution via DCU offers GPRS based telemetry of EDC 

energy circuits. The deployed telemetry solutions for IESCO and PESCO have helped in 

circuits (power transformers) load balancing and quick identification of malfunctioning 

grid station equipment. 

Next chapter will discuss impact of telemetry solution and load detection on power 

distribution system of Pakistan. Also, application of time series forecasting techniques for 

multi-variable multistep power demand forecasting will be presented. 
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CHAPTER 3 

MULTIVARIATE MULTISTEP SHORT-TERM POWER 

FORECASTING FOR ELECTRICITY DISTRIBUTION COMPANY 

 

In this chapter, a multivariate multi-step-ahead short-term forecasting formulation 

has been presented. The formulation operates on multiple inputs from multiple variables, 

and provides multi-step-ahead forecasts by generating multiple outputs for multiple 

variables. The presented framework is effective for large forecasting horizons since it 

forecasts for temporally dependent sub-intervals called runs from large horizon. Thus the 

framework forecasts are less biased and suffer low variance, as compared with direct 

method and iterated method estimators respectively. The proposed framework has 

demonstrated forecasts of power import and power export with a horizon value of 48 for 

PESCO, Pakistan. The averaged mean absolute percentage error of two forecasted time 

series is 12.76 %, whereas, 24 hours ahead power consumption of PESCO total consumers 

has been forecasted with mean absolute percentage error of 8.6 %. Furthermore, exploiting 

24 hours ahead power consumption forecasts has resulted in better power dispatch for 

PESCO grid stations by reducing mean absolute error by 11.52 times between PESCO 

power allocated and PESCO power consumed. 

3.1 Introduction 

Efficient storage of electricity on large scale is not always feasible. It is therefore 

vital that power generated at a given instance matches power requirement from consumer. 

Accurate forecasting of power demand is an important tool that can assist power generation 

company in load planning and precise load dispatch for power distribution companies [31]. 

The electric power forecasting is classified into four categories depending on 

duration of the forecasting horizon. These are very short-term power forecasting, short-

term power forecasting, medium-term power forecasting, and long-term power forecasting 

[32]. In short-term forecasting, power is forecasted from several hours to several weeks in 

future using time series data of observed power [32]. These short-term power forecasts are 

essential for economic dispatch. In economic dispatch optimal output for electricity 
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generation facilities is determined fulfilling consumer power demand, subject to 

operational and transmission constraints, and at the lowest possible cost [33]. 

3.1.1 Background and motivation 

Before 2014 power dispatch control in Pakistan was executed using undeveloped 

methods utilizing dated or unreliable data. Also, dispatch controller in National Power 

Control Center (NPCC) had no or little knowledge about real time operating status at power 

generation and power distribution sides. The dispatch operations relied mainly on 

controller experience and on rough estimates of available power capacity and demand at 

any given time instance. At times, load assessments were done on manually recorded 

historical data. This caused conservative power allocation to electricity distribution 

companies. Information about operations were verbally communicated which delayed 

reaction times to generation changes and dynamic load. Simple voltage frequency meter 

was installed in power control center, which provided indication on instantaneous power 

supply-demand imbalance to dispatch controller. These practices led to controller reactive 

actions rather than predictive decisions. As a result of this inefficient power dispatch, 

electricity distribution companies had to resort to unplanned or planned power outages for 

its consumers [34]. 

To resolve these issues a couple of prominent projects were initiated in 2014 under 

USAID (United States Agency for International Development) Power Distribution 

Program (PDP) and Energy Policy Program (EPP). The project under PDP involved 

installation of automatic meter reading devices at grid substations of 10 electricity 

distribution companies of Pakistan. The purpose was to monitor in near real time, power 

and status of 11 kV circuit breakers. In the other project funded under EPP, a telemetry 

solution [35] was deployed on common distribution points of electricity distribution 

companies, as also discussed in previous chapter. The solution provided power import and 

power export by distribution company. The impact of deployed solution in reducing 

incidents of planned and unplanned load-shedding has been reported in [35]. This work is 

in continuation to exploit archival data from solution [35], and move forward towards 

achieving a tool, that can be employed for control and coordination of power from 

generation facility to all the electricity distribution companies of country. 
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In this chapter we have proposed a multivariate multistep forecasting framework. 

The framework, using artificial neural network based hypothesis has been tested on power 

data from Peshawar Electric Supply Company, Pakistan, to produce 24 hours ahead short-

term power forecasts. The framework not only offer provision to input multiple 

independent time series, but can also forecast multiple variables with long forecasting 

horizon. The proposed scheme has been evaluated for forecasting of two independent 

variables having a forecasting horizon of 48, while employing five independent variables 

(time series) for input. 

3.1.2 Related work 

A few relevant work relating to power forecast for nationwide and utility company 

consumers, recently completed in China, France, and Turkey have been reported in [36–

40]. [36] presents a novel forecasting model based on an improved particle swarm 

optimization-extreme learning machine. The model performance comparison with back 

propagation neural network for China utility company is also included. In [37] long-term 

local power forecast has been performed using multi-level data model simulator. The 

forecasting method is to be further utilized for ten projects in France. 

Multivariate multistep time series forecasting frameworks have recently received 

considerable attention due to its broad applications in power, transportation, finance, 

environment and etc. Authors in [41] have proposed a multivariate very short-term 

forecasting framework based on empirical dynamic modeling. [42, 43] report on 

multivariate time series forecasting employing deep learning and LSTM networks. [44] 

have investigated use of autoencoder (artificial neural network) based multi-to-multi 

mapping network for wind power forecasting for a time horizon of 24–72 hours. In [45] a 

hybrid forecasting method combining seasonal autoregressive integrated moving average 

model and neural network for multistep ahead forecasting has been demonstrated. 

Artificial neural networks (ANNs) have become popular short-term power 

forecasting method in past decade. ANNs are data driven and can approximate any 

nonlinear forecasting function by learning patterns from recorded observations [46]. A few 

relevant references to ANN applications to short-term forecasting are such as, radial basis 
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function [47, 48], generalized regression neural network [49], nonlinear autoregressive 

neural network with exogenous input [50], multilayer perceptron [51], etc. 

In most of reported recent work on ANN based short-term power forecasting, 

values are forecasted at one hour resolution, and for a time horizon of several hours to 24 

hours [52]. Also the forecasting models are designed for multiple inputs, but they provide 

single output for single variable at one forecasting instance, like in [53, 54]. Further 

investigation on enhancing forecasting performance of model includes study on features 

engineering. Short-term power demand has been shown to be significantly dependent upon 

weather parameters like dry bulb temperature and dew point temperature as also discussed 

in [55, 56]. Furthermore, power requirements are driven by human activities which are 

normally cyclic. Therefore, providing time information to power forecasting model reduces 

forecasting error as also highlighted in [57]. 

3.1.3 Chapter contribution 

The contributions of this chapter are discussed below. 

1. The work in this chapter extends on univariate formulation presented in [58] to 

propose a multivariate multistep ahead forecasting framework. The framework utilizes one 

forecasting model that processes multiple inputs, and achieves multistep ahead forecast by 

generating multiple outputs in single forecasting instance. For case of large forecasting 

horizon, proposed scheme forecasted values are less biased, as compared with direct 

estimator method, which utilizes many forecasting models [59]. Also in comparison with 

iterated method for large forecasting horizon case, forecasted values in proposed scheme 

suffer low variance [59]. 

2. Most of reported work on short-term power forecasting, as also highlighted in 

previous section, has demonstrated forecasting performance at a resolution of 60 minutes. 

Whereas in our work, we have trained forecasting model on data logged at 30 minutes 

resolution. Training of forecasting model on high frequency and noisy data is more 

challenging as compared to low frequency, less noisy data [46]. Also in this work, multiple 

variables forecasts are generated at 30 minutes resolution for forecasting horizon. 

3. Furthermore this work contributes by employing heat index as an external feature 

for time series forecasting to model power consumption dependence on weather. Recent 
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reported work in literature has mostly modeled weather dependence using dry bulb 

temperature and dew point temperature. Our investigation reveals that single weather 

parameter heat index is adequate for modeling weather influence on consumer power 

consumption requirement. 

4. Another salient feature of proposed framework is its ability to generate multivariate 

forecasts for large forecasting horizons. In comparison with seasonal, stationary, and linear 

time series, short-term power consumption time series are non-seasonal, non-stationary, 

and non-linear [32]. Developing an accurate model for large forecasting horizons for such 

a time series requires effort. In our work, this has been achieved by dividing the forecasting 

horizon into sub-horizons called runs, and using a 30 minutes resolution data for training 

instead of 60 minutes resolution. Using a higher frequency sampled data with prior known 

sub-interval (run) aids in identifying periodicity in power consumption time series. 

5. The overall impact of presented work for PESCO has been in form of improvement 

of power dispatch from power generation facility to PESCO grid stations. Before exploiting 

forecasted power values, the mean absolute error between PESCO power allocated and 

power consumed was 95.57 MW. After considering 24 hours ahead forecasts during power 

dispatch planning, this error has reduced by 11.52 times to an error of 8.29 MW. 

3.2 Problem Formulation 

Consider an univariate electric power time series 𝑆1 with 𝑙 observations 

{𝑠1,𝑡−1 , 𝑠1,𝑡−2, … , 𝑠1,𝑡−𝑙}. To forecast single step power value in future for time series 𝑆1, 

the Takens theorem [60] implies that between state of system and finite window of the time 

series there exists a one to one differential mapping function 𝑓, such that 𝑅𝑙 → 𝑅. This 

univariate multi-input single-output forecast for time series 𝑆1 with dimension 𝑙 is 

formulated as: 

                                     𝑠1,𝑡+1 = 𝑓(𝑠1,𝑡−𝑑 , 𝑠1,𝑡−𝑑−1, … , 𝑠1,𝑡−𝑑−𝑙+1)                           (3-2.1) 

Here 𝑑 is lag time. Formulation (3-2.1) assumes that function 𝑓 can accurately 

model the time series 𝑆1. However, in most cases complete information about model is 

unknown, so Equation (3-2.1) is extended to formulation of stochastic time series [61]: 

                       𝑠1,𝑡+1 = 𝑓(𝑠1,𝑡−𝑑 , 𝑠1,𝑡−𝑑−1, … , 𝑠1,𝑡−𝑑−𝑙+1) + 𝑤(𝑡)                   (3-2.2) 
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𝑤(𝑡) is zero mean noise term which represents unknown information about the 

accurate model of function 𝑓. To forecast power values of 𝐻 steps in future for time series 

𝑆1; the model Equation (3-2.2) generates one-step prediction, and predicts iteratively 𝐻 

times with predicted output fed as input for the next prediction till data points 

{𝑠1,𝑡+1 , 𝑠1,𝑡+2, … , 𝑠1,𝑡+𝐻} are obtained. Here 𝐻 is forecasting horizon with value, 𝐻 > 1. 

The model Equation (3-2.2) preserves conditional dependencies between 

forecasted values of correlated noisy terms in time series 𝑆1. However this recursive 

technique is sensitive to accumulation and propagation of prediction errors, resulting in 

degradation of forecasting accuracy for large value of 𝐻 [59]. In [58] a multi-input multi-

output formulation for univariate multistep forecasting is proposed to avoid this prediction 

error accumulation: 

                                                    𝑂1 = 𝐹(𝑆1) +𝑊                                               (3-2.3) 

Here 𝐹: 𝑅𝑙 → 𝑅𝐻, uses recorded 𝑙 observations 𝑆1 = {𝑠1,𝑡−1 , 𝑠1,𝑡−2, … , 𝑠1,𝑡−𝑙} and 

𝐻 future data points 𝑂1 = {𝑠1,𝑡+1 , 𝑠1,𝑡+2, … , 𝑠1,𝑡+𝐻} are forecasted. 𝑊 is noise vector whose 

covariance is not essentially diagonal. 

3.2.1 System and dataset description 

This work is an extension to our work [35] also presented in previous chapter. In 

[35] we presented implementation of a telemetry solution for energy network of an 

electricity distribution company. The implemented solution wirelessly transmitted energy 

data (active energy, reactive energy, active power, apparent power, current, voltage, and 

power factor) measured by multiple energy sensors (smart energy meter) to remote PCC 

using hybrid combination of RF and GPRS technologies. We also showed that total power 

consumption of complete region serviced by an electricity distribution company can be 

measured at low cost (using reduced number of sensors), if sensors are installed on power 

import points (circuits) and power export points (circuits) rather than on all output feeders 

of EDC network. The proposed solution has been working in IESCO and PESCO for last 

around four years. The project was part of an effort to upgrade power system infrastructure 

of electricity distribution companies in Pakistan. 

The developed solution provides provision to monitor energy data of all power 

import and power export points in EDC network at an interval of 10 seconds from PCC.  
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Also this data is logged with date and time stamp at an interval of 30 minutes in data base 

for analysis and planning for power consumption profiles. 

In PCC real-time total active power consumption of complete region serviced by 

EDC is calculated using real-time values of total active power imported and total active 

power exported: 

         Total power (MW) consumption = ∑𝑃𝑖,𝑎|𝑡

𝑝

𝑎=1

−∑𝑃𝑒,𝑏|𝑡

𝑞

𝑏=1

                 (3– 2.4) 

Where ∑ 𝑃𝑖,𝑎|𝑡
𝑝
𝑎=1  and ∑ 𝑃𝑒,𝑏|𝑡

𝑞
𝑏=1  are sum of power imported and power exported by EDC 

via 𝑝 import points and 𝑞 export points at time instance 𝑡respectively.  

This chapter describes work done for PESCO. PESCO is located in Peshawar, 

Pakistan, and provides service of power distribution to over 2.6 million consumers of 

approximately 12000 square kilometers area. The data from telemetry system installed in 

PESCO includes parameters active energy, reactive energy, active power, apparent power, 

currents of three phases, voltages of three phases, and power factor of 𝑝 import points and 

𝑞 export points. For PESCO 𝑝 = 82 and 𝑞 = 30, and these 112 power circuits are present 

at 68 different grid stations locations in PESCO region [35].These logged parameters are 

available for duration June 1st, 2014 to August 31st, 2018 at a resolution of 30 minutes, and 

therefore comprises 74544 observations. The 74544 values of both total power import 𝑃𝐼 

and total power export 𝑃𝐸for PESCO are calculated by summing active power measured 

from 82 import circuits and 30 export circuits respectively. The two time series are 

represented as: 

𝑇𝑜𝑡𝑎𝑙 𝑝𝑜𝑤𝑒𝑟 𝑖𝑚𝑝𝑜𝑟𝑡 (𝑀𝑊), 𝑃𝐼 = {𝑝𝐼,1, 𝑝𝐼,2, … , 𝑝𝐼,74544}  

𝑇𝑜𝑡𝑎𝑙 𝑝𝑜𝑤𝑒𝑟 𝑒𝑥𝑝𝑜𝑟𝑡 (𝑀𝑊), 𝑃𝐸 = {𝑝𝐸,1, 𝑝𝐸,2, … , 𝑝𝐸,74544} 

The total power consumption 𝑃𝐶of PESCO is then calculated using Equation (3-2.4) to 

obtain time series: 

𝑇𝑜𝑡𝑎𝑙 𝑝𝑜𝑤𝑒𝑟 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛, 𝑃𝐶 = {𝑝𝐶,1, 𝑝𝐶,2, … , 𝑝𝐶,74544} 

3.2.2 Problem statement 

The task is to forecast 24 hours ahead values of power imported �̂�𝐼 and power 

exported �̂�𝐸 by electricity distribution company. This objective can be achieved by 



 

 

34 

formulating a multivariate multistep forecast problem, and then generating multiple 

outputs for each variable to be forecasted. The number of outputs for each variable is equal 

to forecasting horizon 𝐻. i.e. to learn a mapping function 𝑓 from 𝑛 time series, with each 

time series having 𝑙 observations; and then forecast 𝑚 time series each with 𝐻 outputs. 

Where 𝑚 may not be equal to 𝑛. From Equation (3-2.3) following is formulated: 

                                           O = 𝐅(S) +W                                                      (3-2.5) 

Here W is noise covariance matrix, 𝐅 is mapping hypothesis such that: 𝑅(𝑛×𝑙)×1 →

𝑅(𝑚×𝐻)×1; time series vectors matrix, S and output vectors matrix,O are as: 

                    S = [𝑆1 𝑆2 ⋯ 𝑆𝑛]
𝑇 ;    𝑂 = [𝑂1 𝑂2 ⋯ 𝑂𝑚]

𝑇 

Where, 𝑆1 = {𝑠1,𝑡−𝑑, 𝑠1,𝑡−𝑑−1, … , 𝑠1,𝑡−𝑑−𝑙+1},  𝑆𝑛 = {𝑠𝑛,𝑡−𝑑 , 𝑠𝑛,𝑡−𝑑−1, … , 𝑠𝑛,𝑡−𝑑−𝑙+1}, 

𝑂1 = {𝑜1,𝑡+1, 𝑜1,𝑡+2, … , 𝑜1,𝑡+𝐻},𝑂𝑚 = {𝑜𝑚,𝑡+1, 𝑜𝑚,𝑡+2, … , 𝑜𝑚,𝑡+𝐻}. 

The mapping hypothesis 𝐅 in multivariate forecasting formulation Equation (3-2.5) 

utilizes only same time series data as input, which are to be forecasted. However in many 

cases, variables to be forecasted are also influenced by exogenous variables (features) 

obtained from other sources [62], and that are not extracted from input time series (which 

is to be forecasted). To further generalize, and also to improve forecasting performance of 

model Equation (3-2.5), matrix U is introduced to obtain: 

                                              O = 𝐅(U) +W                                                  (3-2.6) 

Where, 

U = [𝑈1 𝑈2 ⋯ 𝑈𝑛+𝑗]𝑇 = [𝑆1 ⋯ 𝑆𝑛 𝐴1 ⋯ 𝐴𝑗]𝑇 

                  𝐴1 = {𝑎1,𝑡−𝑑, 𝑎1,𝑡−𝑑−1, … , 𝑎1,𝑡−𝑑−𝑙+1},  

                  𝐴𝑗 = {𝑎𝑗,𝑡−𝑑, 𝑎𝑗,𝑡−𝑑−1, … , 𝑎𝑗,𝑡−𝑑−𝑙+1} 

Here 𝐴1, 𝐴2, … , 𝐴𝑗  represents 𝑗 different exogenous features which influence the 𝑚 

forecasted time series 𝑂1, 𝑂2, … , 𝑂𝑚. To remain consistent with number of elements of each 

vector in matrix 𝑆, each external feature is required to have 𝑙 observations in matrix 𝑈. 

3.3 Problem Solution 

This work extends univariate multiple output forecasting formulation Equation (3-

2.3) [58] to multivariate multiple output model Equation (3-2.6) that also includes external 

features for its input. However for cases when the forecasting horizon 𝐻 is large, order of 
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matrix O becomes large due to increase in dimensionality of forecasted multivariate time 

series. This makes multivariate estimation susceptible to large variance [44]. To 

countermeasure such effect different strategies including combination of models 

(predictors) have been reported in literature [45]. 

We propose a forecasting framework for multivariate multiple output problem that 

utilizes one model to forecast even for the cases of large forecasting horizon. The 

framework operates by dividing large forecasting horizon into 𝑅number of sub-intervals 

of forecasting horizon. These sub-intervals are called runs. The total number of samples 

(forecasts) in 𝑅 runs equal forecasted samples in horizon 𝐻. In this scheme, the 𝑅 runs are 

conditionally independent, and the mapping function Equation (3-2.6) maps 𝑅 different 

sets of input to forecast samples of 𝑅 runs. 

This scheme exploits the fact that for cases where time series data comprises variety 

of temporal patterns, conditional dependence among group of neighboring observations 

within each pattern is high. Whereas the conditional dependence between observations of 

two patterns is minimum, and decreases further as number of observation samples between 

two patterns increases. The number of runs 𝑅 in a forecasting horizon is selected by user 

having a priori knowledge of system generating the time series data. i.e. the user divides 

the horizon 𝐻 into 𝑅 runs of neighboring forecast samples which form a pattern (interval) 

of interest to user. In the proposed scheme, it is assumed that each output variable to be 

forecasted has same value of 𝐻 and 𝑅. 

In following sections an insight into working, advantage, and application of 

proposed multivariate multiple output forecast framework is presented. 

3.3.1 Probabilistic graphical model representation 

The problem of forecasting future 𝐻 values for time series 𝑂1, 𝑂2, … , 𝑂𝑚 is a task 

to estimate the distribution of 𝑚, 𝐻 dimensional random vectors𝑂1, 𝑂2, … , 𝑂𝑚conditional 

on values of 𝑈. i.e. the stochastic dependence (3-2.2) between forecasted value 𝑜𝑖,𝑡, (where 

𝑖 = 1, … ,𝑚,) and observed input data 𝑈1, 𝑈2, … , 𝑈𝑛+𝑗 generates existence of  𝑝(𝑂|𝑈), a 

multivariate conditional probability with 𝑂 ∈ 𝑅(𝑚×𝐻)×1 and 𝑈 ∈ 𝑅((𝑛+𝑗)×𝑙)×1. In this 

work, the proposed multistep forecasting model has implicitly implemented an estimator 

for this multivariate conditional distribution. 
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The distribution 𝑝(𝑂|𝑈) becomes highly complex for cases of large values of 𝑛,𝑚, 

and 𝐻. To reduce complexity, and gain further benefits over the iterated and direct methods 

for multistep prediction; the proposed framework divides forecasting horizon 𝐻 into 𝑅 

runs. For an insight into multivariate multiple output conditional distribution, and to 

highlight implemented framework benefits; Figure 3-1 demonstrates probabilistic 

graphical model [63] representation of distribution modeled by proposed approach for 𝑟𝑡ℎ 

run with 𝑑 = 0, 𝑚 = 2,  𝑟𝑡ℎ 𝑟𝑢𝑛 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 = 3. 

The graphical model in Figure 3-1 is equivalent to conditional independence 

assumption given in Equation (3-3.1). In machine learning this assumption is utilized to 

simplify multivariate classification problems by Naïve Bayes classifier.  

                                      𝑝𝑖(𝑂|𝑈) =∏𝑝(𝑂𝑚

𝑚

𝑎=1

|𝑈)                                                (3– 3.1) 

where,  

           

1, 1tu  1,tu ,n j tu , 1n j tu  

1, 1to  1, 2to 

1, 3to  , 3m to 

, 2m to , 1m to 

thr run

 

Figure 3-1. Probabilistic graphical modeling representation of  𝒓𝒕𝒉 𝒓𝒖𝒏 conditional 

distribution 𝒑𝒊(𝑶|𝑼) with 𝒅 = 𝟎,𝒎 = 𝟐, 𝒓𝒕𝒉 𝒓𝒖𝒏 𝒆𝒍𝒆𝒎𝒆𝒏𝒕𝒔 = 𝟑 for multi-input 

multivariate multiple output prediction problem. 
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                                        𝑝(𝑂𝑎|𝑈) =∏𝑝(𝑂𝑎

𝑛+𝑗

𝑏=1

|𝑈𝑏) 

                                                       = (∏𝑝(𝑂𝑎

𝑛

𝑏=1

|𝑆𝑏))(∏𝑝(𝑂𝑎

𝑗

𝑐=1

|𝐴𝑐)) 

The multivariate multiple output model Equation (3-2.6) returns multivariate 

estimation of joint distribution 𝑝(𝑂|𝑈) Equation (3-3.1) for each of the runs. The idea of 

dividing forecasting horizon into runs, accounts for the temporal dependencies and patterns 

existing between components of each of the output 𝑂1, 𝑂2, … , 𝑂𝑚. This consideration 

results in achieving a low biased estimate as compared to the direct estimator scheme. 

Although the iterated method (which employs one-step ahead prediction criteria,) returns 

non biased estimator of the conditional distribution. But its drawback is high variance due 

to propagation of prediction error [64]. 

3.3.2 Feature selection and representation 

In this section validation of proposed multivariate multiple output forecast 

framework is presented for short-term forecast of power imported �̂�𝐼 and power exported 

�̂�𝐸 by electricity distribution company. The forecasted power import and power export 

values are then used to calculate short-term forecast for total power consumed �̂�𝐶 Equation 

(3-2.4) by complete region serviced by electricity distribution company. 

To perform short-term forecast of 24 hours ahead at a resolution of 30 minutes (for 

�̂�𝐼 and �̂�𝐸), for system and dataset described in Section 3.2 using formulation Equation (3-

2.6) requires forecasting horizon, 𝐻 = 48. This value of  𝐻 makes forecasted values 

consistent with time interval of logged observations of power data for the duration June 1st, 

2014 to August 31st, 2018. For system description in Section 3.2 values of 𝑚 = 2 and 𝑛 =

2 gives output vectors that are to be forecasted: 

                                     O = [𝑂1 𝑂2]
𝑇 = [�̂�𝐼 �̂�𝐸]

𝑇                                     (3-3.2) 

With, �̂�𝐼 = {𝑝𝐼,𝑡+1, 𝑝𝐼,𝑡+ 2, … , 𝑝𝐼,𝑡+48}, �̂�𝐸 = {𝑝𝐸,𝑡+1, 𝑝𝐸,𝑡+ 2, … , 𝑝𝐸,𝑡+48}. 

Further, taking into account the a priori knowledge of PESCO officials about power 

consumption patterns of PESCO region; the horizon 𝐻 = 48 is divided into 12 runs, 𝑅 =
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12, each run of 2 hours (4 forecast elements) for the proposed forecasting framework of 

this work. Values of 𝑑 = 49, 𝑙 = 2 are selected for the input time series {𝑆1, 𝑆2} = {𝑃𝐼 , 𝑃𝐸} 

of given system. This work only addresses problem ofdetermining mapping function 𝐅 for 

multivariate multipleoutput framework, and does not include value selection process for 

variables 𝑑 and 𝑙. Good references on lag time 𝑑 and order selection 𝑙 are given in [51, 65]. 

The values 𝑑 = 48, 𝑙 = 2 correspond to 24 hours ago observations of power imported and 

power exported by PESCO region demonstrate forecasting performance acceptable to 

PESCO officials. 

Forecasting model Equation (3-2.6) also offers provision to take into account 

exogenous features obtained from other sources. Our study showed that load demand of a 

region is affected by weather condition (heat index), and also by time and calendar 

variables (time-of-day and day-of-week). 

Most of the work on short-term load forecasting in literature, reports use of weather 

parameters like dry bulb temperature, and dew point temperature in determining  





























20 3, 4tx a 

2

1Ω

2

2Ω

2

2 2

8h
Ω Ω

thr run input output mapping

1

1 1

30h
Ω Ω

1

1Ω

1

2Ω

17 3, 1tx a 

13 2, 1tx a 

9 1, 1tx a 

12 1, 4tx a 

16 2, 4tx a 

input layer hidden layer output layer

20V 

1

1,1w

1

1

,h V
w

2 1

2

,h h
w

2

1,1w

1

1ω

1

2ω

1

30ω







2

1ω

2

2ω

2

8ω

1

1ø

1

2ø

1

30ø 2

8ø

2

2ø

2

1ø

 1 1 1logsig w x Ω ω  2 2 1 2purelin w Ω Ω ω

4 1, 52tx s 

8 2, 52tx s 

1 1, 49tx s 

5 2, 49tx s 

 

Figure 3-2. Two layers neural network implementation for multi-input multivariate 

multiple outputs mapping function for 𝒓𝒕𝒉 𝒓𝒖𝒏 with 𝒅 = 𝟎,𝒎 =

𝟐, 𝒊𝒕𝒉 𝒓𝒖𝒏 𝒆𝒍𝒆𝒎𝒆𝒏𝒕𝒔 = 𝟑 . 
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the load demand of region for a particular time. However, we have contributed by utilizing 

weather parameter heat index (apparent temperature), as an input for modeling weather 

influence on power import and power export by PESCO region. To measure heat index we 

installed 100 smart sensors all across PESCO region. We then averaged the 100 heat index 

values from different locations to obtain a single heat index value 𝐻𝐼, representing PESCO 

region. We recorded 74544 observations for 𝐻𝐼 at a resolution of 30 minutes for duration 

June 1st, 2014 to August 31st, 2018. 

𝐻𝑒𝑎𝑡 𝑖𝑛𝑑𝑒𝑥 (℃), 𝐻𝐼 = {𝐻𝐼1, 𝐻𝐼2, … , 𝐻𝐼74544} 

The two other external features, time-of-day indicator, 𝑇𝑂𝐷 and day-of-week 

indicator, 𝐷𝑂𝑊 are important in determining power imported and power exported owing 

to routine lifestyle of human beings [57]. Therefore, at a resolution of 30 minutes, we have 

for 𝑇𝑂𝐷 and 𝐷𝑂𝑊 features: 

𝑇𝑖𝑚𝑒 − 𝑜𝑓 − 𝑑𝑎𝑦, 𝑇𝑂𝐷 = {𝑇𝑂𝐷1, 𝑇𝑂𝐷2, … , 𝑇𝑂𝐷74544} 

𝐷𝑎𝑦 − 𝑜𝑓 − 𝑤𝑒𝑒𝑘, 𝐷𝑂𝑊 = {𝐷𝑂𝑊1, 𝐷𝑂𝑊2, … , 𝐷𝑂𝑊74544} 

Considering above discussed features, input vectors matrix 𝑈, with 𝑛 = 2 and 𝑗 =

3, for 𝑖𝑡ℎ run of  𝑟 = 12 becomes: 

U = [𝑈1 𝑈2 𝑈3 𝑈4 𝑈5]
𝑇 

Where, 𝑈1 = {𝑠1,𝑡−49 , 𝑠1,𝑡−50 , 𝑠1,𝑡−51 , 𝑠1,𝑡−52 },𝑈2 = {𝑠2,𝑡−49 , 𝑠2,𝑡−50 , 𝑠2,𝑡−51 , 𝑠2,𝑡−52 },  

𝑈3 = {𝑎1,𝑡+1 , 𝑎1,𝑡+2 , 𝑎1,𝑡+3 , 𝑎1,𝑡+4 },𝑈4 = {𝑎2,𝑡+1 , 𝑎2,𝑡+2 , 𝑎2,𝑡+3 , 𝑎2,𝑡+4 }, 

𝑈5 = {𝑎3,𝑡+1 , 𝑎3,𝑡+2 , 𝑎3,𝑡+3 , 𝑎3,𝑡+4 } 

Table 1 summarizes features utilized in the proposed multivariate multiple output 

forecasting framework that has been implemented to generate 24 hours ahead forecast for 

PESCO power import and power export. 

3.3.3 Forecasting model and learning algorithm 

This work presents and implements ANN for modeling of hypothesis function 𝐅 

(3-2.6), which represents multivariate multiple outputs forecasting formulation. We 

implemented a 20 inputs ANN, 𝑉 = 20, with 2 layers, 𝐷 = 2, shown in Figure 3-2. The 

20 inputs 𝒙 = {𝑥1, 𝑥2, … , 𝑥20}
𝑇for ANN were selected as there are 5 input vectors 

{𝑈1, 𝑈2, 𝑈3, 𝑈4, 𝑈5}, and each vector with 4 elements, for the forecasting problem at hand.  
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TABLE 1. FEATURES SUMMARY FOR MULTIVARIATE FORECASTING FRAMEWORK  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ANN first layer (hidden layer), has 30 neurons, ℎ1 = 30, with log-sigmoid transfer 

function for each hidden layer neuron, given by: 

                                   𝑛𝑒𝑢𝑟𝑜𝑛 𝑜𝑢𝑡𝑝𝑢𝑡 =
1

1 + 𝑒−(𝑛𝑒𝑢𝑟𝑜𝑛𝑖𝑛𝑝𝑢𝑡)
 

 

Symbol 
Description 

Value 

𝑆1 Power import, 

𝑃𝐼  values from 

past 2 hours 

duration (2200 – 

2400) at 30 

minutes interval 

Measured using sensor 

𝑆2 Power export, 

𝑃𝐸  values from 

past 2 hours 

duration (2200 – 

2400) at 30 

minutes interval 

Measured using sensor 

𝐴1 Heat index, 𝐻𝐼 
values of 2 

hours duration 

at 30 minutes 

interval, for 

which power 

forecast is 

required 

Obtained from weather 

forecast 

𝐴2 Time-of-day, 

𝑇𝑂𝐷 indicator 

of 2 hours 

duration at 30 

minutes 

interval, for 

which power 

forecast is 

required 

Encoded: 

0000 hours  1, 0030 hours 

 1.5, 0100 hours  2, …, 

2330 hours  24.5 

𝐴3 Day-of-week, 

𝐷𝑂𝑊 indicator 

of 2 hours 

duration at 30 

minutes 

interval, for 

which power 

forecast is 

required 

Encoded: 

Monday  1, Tuesday  2, 

Wednesday  3, Thursday  

4, Friday  5, Saturday  

6,Sunday  7 
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The output of first layer is given by Ω1 = {Ω1
1, Ω2

1, … , Ω30
1 }𝑇. The design variables, 

number of hidden layer neurons and log-sigmoid function were selected via experiment 

and literature review [46–48], [51]. 

ANN second layer has 8 neurons, ℎ2 = 8, with linear transfer function for each 

second layer neuron. The output of second layer is given by Ω2 = {Ω1
2, Ω2

2, … , Ω8
2}𝑇. 

(Ω1
2, Ω2

2, Ω3
2, Ω4

2) are 4 forecast elements for power import �̂�𝐼, whereas (Ω5
2, Ω6

2, Ω7
2, Ω8

2) are 

4 forecast elements for power export �̂�𝐸. In Figure 3-2, 𝑤1 and 𝑤2 are weight matrices for 

hidden layer and output layer respectively. Also, 𝜔1 and 𝜔2 are neuron bias vectors for 

hidden layer and output layer respectively. The mapping hypothesis 𝐅 in (3-2.6) for 𝑟𝑡ℎ 

run can be written from Figure 3-2 as: 

                   𝐅 = Ω𝟐 = purelin(w2logsig(w1𝒙 + ω1) + ω2)                      (3-3.3) 

For the unknown parameters in Equation (3-3.3), parameter vector is written as 

following, which is to be learned: 

𝜃 = [𝜃1 𝜃2…𝜃𝑏]
𝑇 

                        𝜃 = [𝑤1,1
1 𝑤1,2

1 …𝑤ℎ1,𝑉
1 𝜔1

1…𝜔ℎ1
1 𝑤1,1

2 …𝜔
ℎ𝐷
𝐷 ]

𝑇
                        (3-3.4) 

here, 𝑏 = ℎ1(𝑉 + 1) + ℎ2(ℎ1 + 1) +⋯+ ℎ𝐷(ℎ𝐷−1 + 1), ℎ1 = 30, ℎ2 = 8, 𝑉 = 20 and 

𝐷 = 2. 

In this work, the unknown parameters of mapping hypothesis Equation (3-3.3) have 

been determined by considering this a training problem, and applying Levenberg-

Marquardt algorithm to the multilayer neural network shown in Figure 3-2. The 

performance index for this multilayer network training is sum of squared errors over the 

𝐺targets in the training set {(𝒙𝑔, 𝒚𝑔); 𝑔 = 1,2, … , 𝐺}: 

                                 𝐸(𝜃) = ∑(𝒚𝑔 − 𝑎𝑔
2)
𝑇
(𝒚𝑔 − 𝑎𝑔

2)

𝐺

𝑔=1

 

                                          = ∑(𝒆𝑔)
𝑇
(𝒆𝑔) = ∑∑(𝑒𝑖,𝑔)

2
=∑(𝑣𝑏)

2

𝐵

𝑖=1

ℎ𝐷

𝑖=1

𝐺

𝑔=1

𝐺

𝑔=1

      (3– 3.5) 

Here, 𝑒𝑖,𝑔is the 𝑖𝑡ℎ element of the error for 𝑔𝑡ℎinput-target pair, and 𝐵 = 𝐺 × ℎ𝐷. From 

Equation (3-3.5) error vector is: 
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 𝒗 = [𝑣1𝑣2  … 𝑣𝐵]
𝑇 = [𝑒1,1 𝑒2,1… 𝑒ℎ𝐷,1𝑒1,2   …  𝑒ℎ𝐷,𝐺]

𝑇
 

Thus the parameter update equation as per Levenberg-Marquardt algorithm for mapping 

hypothesis (3-3.3) is [66]: 

𝜃𝑘+1 = 𝜃𝑘 − [𝐽
𝑇(𝜃𝑘)𝐽(𝜃𝑘) + 𝜇𝑘𝐼]

−1𝐽𝑇(𝜃𝑘)𝒗(𝜃𝑘) 

                          ∆𝜃𝑘 = −[𝐽𝑇(𝜃𝑘)𝐽(𝜃𝑘) + 𝜇𝑘𝐼]
−1𝐽𝑇(𝜃𝑘)𝒗(𝜃𝑘)                      (3-3.6) 

𝐼 is identity matrix. The useful feature of Levenberg-Marquardt algorithm is, as 𝜇𝑘 is 

decreased to zero the algorithm becomes Gauss-Newton; whereas, the algorithm 

approaches steepest descent algorithm with small learning rate as 𝜇𝑘 is increased. 𝐽(𝜃𝑘) is 

Jacobian matrix given by: 

𝐽(𝜃) =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝜕𝑒1,1

𝜕𝑤1,1
1

𝜕𝑒1,1

𝜕𝑤1,2
1 ⋯

𝜕𝑒1,1

𝜕𝑤ℎ1,𝑉
1

𝜕𝑒1,1

𝜕𝜔1
1 ⋯

𝜕𝑒1,1

𝜕𝜔ℎ1
1

𝜕𝑒1,1

𝜕𝑤1,1
2 ⋯

𝜕𝑒1,1

𝜕𝜔ℎ𝐷
𝐷

𝜕𝑒2,1

𝜕𝑤1,1
1

𝜕𝑒2,1

𝜕𝑤1,2
1 ⋯

𝜕𝑒2,1

𝜕𝑤ℎ1,𝑉
1

𝜕𝑒2,1

𝜕𝜔1
1 ⋯

𝜕𝑒2,1

𝜕𝜔ℎ1
1

𝜕𝑒2,1

𝜕𝑤1,1
2 ⋯

𝜕𝑒2,1

𝜕𝜔ℎ𝐷
𝐷

⋮
𝜕𝑒ℎ𝐷,1
𝜕𝑤1,1

1

𝜕𝑒1,2

𝜕𝑤1,1
1

⋮
𝜕𝑒ℎ𝐷,𝐺
𝜕𝑤1,1

1

⋮     ⋯     ⋮
𝜕𝑒ℎ𝐷,1
𝜕𝑤1,2

1 ⋯
𝜕𝑒ℎ𝐷,1

𝜕𝑤ℎ1,𝑉
1

𝜕𝑒1,2

𝜕𝑤1,2
1 ⋯

𝜕𝑒1,2

𝜕𝑤ℎ1,𝑉
1

⋮   ⋯     ⋮
𝜕𝑒ℎ𝐷,𝐺
𝜕𝑤1,2

1 ⋯
𝜕𝑒ℎ𝐷,𝐺

𝜕𝑤ℎ1,𝑉
1

⋮     ⋯    ⋮          ⋮     ⋯        ⋮
𝜕𝑒ℎ𝐷,1
𝜕𝜔1

1 ⋯
𝜕𝑒ℎ𝐷,1

𝜕𝜔ℎ1
1

𝜕𝑒ℎ𝐷,1
𝜕𝑤1,1

2
⋯

𝜕𝑒ℎ𝐷,1

𝜕𝜔ℎ𝐷
𝐷

𝜕𝑒1,2

𝜕𝜔1
1 ⋯

𝜕𝑒1,2

𝜕𝜔ℎ1
1

𝜕𝑒1,2

𝜕𝑤1,1
2

⋯
𝜕𝑒1,2

𝜕𝜔ℎ𝐷
𝐷

⋮   ⋯ ⋮ ⋮      ⋯      ⋮
𝜕𝑒ℎ𝐷,𝐺
𝜕𝜔1

1 ⋯
𝜕𝑒ℎ𝐷,𝐺

𝜕𝜔ℎ1
1

𝜕𝑒ℎ𝐷,𝐺
𝜕𝑤1,1

2
⋯

𝜕𝑒ℎ𝐷,𝐺

𝜕𝜔ℎ𝐷
𝐷
]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     (3– 3.7) 

Here 𝑉 = 20, 𝐷 = 2,ℎ1 = 30 and ℎ2 = 8.𝐺 is number of targets in training set. The terms 

of Jacobian matrix have been computed as [66]: [𝐽]𝑐,𝐿 = �̃�𝑖,𝑐
𝑑 × Ω𝐽,𝑔

𝑑−1 or if 𝜃𝐿is a bias, 

then:[𝐽]𝑐,𝐿 = �̃�𝑖,𝑐
𝑑 . Where 𝑐 = (𝑔 − 1)ℎ𝐷 + 𝑘 and �̃�𝑖,𝑐

𝑑  is Marquardt sensitivity, given by: 

                                                  �̃�𝑖,𝑐
𝑑 ≡

𝜕𝑣𝑐

𝜕∅𝑖,𝑔
𝑑 =

𝜕𝑒𝑘,𝑔

𝜕∅𝑖,𝑔
𝑑  

∅𝑖,𝑔
𝑑  is 𝑖𝑡ℎ element of net input at layer 𝑑 on 𝑔𝑡ℎ input-target pair. 

3.3.4 Training and forecasting framework 

The dataset obtained from telemetry system installed in PESCO is for the duration 

June 1st, 2014 to August 31st, 2018at a resolution of 30 minutes, and comprises 74544 

observations. The data for interval June 1st, 2014 to May 22nd, 2017 is categorized as 

training set, whereas the data for interval May23rd, 2017 to August 31st, 2018 is test set 
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used for evaluating 24 hours ahead forecast generated by proposed framework. The outputs 

(observations) in training set are used to learn unknown parameters of forecasting model. 

This section presents the training of unknown parameter vector Equation (3-3.4) of 

mapping hypothesis Equation (3-3.3) for multiple input, multivariate, multiple output 

forecasting formulation Equation (3-2.6). Before generating forecast, training of 

hypothesis Equation (3-3.3) is performed by LM algorithm using features identified in 

Section 3.3 from data for duration June 1st, 2014 to May 22nd, 2017.  This training dataset 

represented by {(𝒙𝑔, 𝒚𝑔); 𝑔 = 1,2, … , 𝐺} comprises of 52181 training instances, 𝐺 =

52181.  

Figure 3-3 briefly highlights steps involved in LM algorithm. The algorithm 

provides a balance between guaranteed convergence of steepest descent and speed of 

Gauss-Newton’s method. Implementation of LM backpropagation algorithm is 

summarized as: 

a. The training set {𝒙𝑔; 𝑔 = 1,2, … , 𝐺} is presented to network Equation (3-3.3). Each 

training vector has 20 elements {𝑥1, 𝑥2, … , 𝑥20}
𝑇. For each vector of training set the 

network output and error 𝒆𝑔 = 𝒚𝑔 − 𝑎𝑔
2is computed. Then sum of squared errors 

𝐸(𝜃)for complete training set is computed using Equation (3-3.5). 

b. The Jacobian matrix 𝐽(𝜃) is computed using Equation (3-3.7). 

c. ∆𝜃𝑘 is computed using Eqaution (3-3.6) and the sum of squared errors Eqaution (3-

3.5) is recomputed using 𝜃𝑘 + ∆𝜃𝑘.  

d. If the new error is less than error computed in step (a), compute updated parameters 

𝜃𝑘+1 = 𝜃𝑘 + ∆𝜃𝑘, divide µ by ζ and return to step (a). If the new error is greater 

than error computed in step (a), then multiply µ by ξ and return to step (c). 

e. The algorithm is continued till any of condition mentioned in Figure 3-3 is fulfilled. 

On training completing, the hypothesis Equation (3-3.3)   is used to forecast 24 

hours ahead values for two variable, power import �̂�𝐼 and power export �̂�𝐸 for PESCO. The 

mapping hypothesis generates 8 outputs for every test vector; 4 forecasts each for both 

variables �̂�𝐼 and �̂�𝐸in all of the 12 runs.  The hypothesis is tested with test set 

{(�̃��̃�, �̃��̃�); �̃� = 1,2, … , �̃�} for �̃� = 22363 test vectors. Each test vector has 20 inputs 
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{�̃�1, �̃�2, … , �̃�20}
𝑇. The test set is prepared using features identified in Section 3.3 from data 

for duration May 23rd, 2017 to August 31st, 2018. �̃��̃� is target output for �̃�𝑡ℎ test vector 

(instance)  given by: 

�̃��̃� = [𝑃𝐼,�̃� 𝑃𝐸,�̃�]𝑇 

Where 𝑃𝐼,�̃� and 𝑃𝐸,�̃� are power imported and power exported by PESCO at �̃�𝑡ℎ time 

instance respectively. Henceforth, �̃� represents actual values (power) for 24 hours duration 

(one day) for test set data May 23rd, 2017 to August 31st, 2018 given by: 

Randomly 
initialize: 

k

Error 
evaluation: 
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Jacobian matrix computation 

       
1

1
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Ends when any of below is true:
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4) Performance gradient falls below
     gradient minimum value    

 

Figure 3-3. Brief overview of learning and forecasting framework. 
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�̃� = [𝑃𝐼 𝑃𝐸]
𝑻 

With, 𝑃𝐼 = {𝑝𝐼,𝑡+1, 𝑝𝐼,𝑡+ 2, … , 𝑝𝐼,𝑡+48}, 𝑃𝐸 = {𝑝𝐸,𝑡+1, 𝑝𝐸,𝑡+ 2, … , 𝑝𝐸,𝑡+48} are actual 

power imported and power exported respectively for 24 hours at 30 minutes interval. 

The hypothesis Equation (3-3.3) with learned parameter 𝜃 Equation (3-3.4) is 

utilized in formulation Equation (3-2.6) to generate 24 hours ahead forecast O = [�̂�𝐼 �̂�𝐸]
𝑇 

Equation (3-3.2) for 466 days of test set data May 23rd, 2017 to August 31st, 2018. The 

forecasted output O is compared against actual (target) �̃� power values for these 466 days 

of test set data, to establish performance of proposed multivariate multiple output 

forecasting framework. 

The 24 hours ahead forecast for �̂�𝐼 and �̂�𝐸 has been achieved by dividing the 

forecasting horizon, 𝐻 = 48 into 12 runs, 𝑅 = 12, as shown in Figure 3-3. In every run, 2 

hours ahead forecast for both variables �̂�𝐼 and �̂�𝐸 is generated. The selection of 4 samples 

(2 hours) forecast for both variables �̂�𝐼 and �̂�𝐸 in a single run has been decided on basis of 

prior knowledge about PESCO region power consumption pattern. 

3.3.5 Performance metric 

To evaluate forecasting accuracy, the output O = [�̂�𝐼 �̂�𝐸]
𝑇of hypothesis Equation 

(3-3.3) is compared against output �̃� = [𝑃𝐼 𝑃𝐸]
𝑻of test set. As discussed earlier the test 

set comprises of power imported and power exported by PESCO for 466 days, 𝐷 = 466. 

In literature various performance metrics (measures) have been proposed [67]. This work 

has utilized two performance measures namely, mean absolute error (MAE) and mean 

absolute percentage error (MAPE). Their definitions and salient features follow: 

3.3.5.1 Mean absolute error 

The performance metric (𝑀𝐴𝐸)𝐼 evaluates power import forecast against actual 

(target) power imported, and is defined as: 

                                                  (𝑀𝐴𝐸)𝐼 =
1

𝐷
∑(𝜀𝐼)𝑐

𝐷

𝑐=1

 

Where 𝐷 = 466, and 𝜀𝐼 given by: 
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                                                  𝜀𝐼 =
1

48
∑|𝑝𝐼,𝑐 − �̂�𝐼,𝑐|

48

𝑐=1

 

Similarly (𝑀𝐴𝐸)𝐸 is calculated to evaluate power export forecast against actual (target) 

power exported using 𝐷 = 466, and 𝜀𝐸:  

                                                 𝜀𝐸 =
1

48
∑|𝑝𝐸,𝑐 − �̂�𝐸,𝑐|

48

𝑐=1

 

The performance metric MAE measures average absolute deviation of forecast 

from output, and shows magnitude of cumulative forecasting error. Neither direction of 

error is known, nor large forecast errors are penalized by MAE. MAE depends on data 

transformation and scale of measurement. Smaller the value of MAE, better is the forecast 

performance. 

3.3.5.2 Mean absolute percentage error 

The performance metric (𝑀𝐴𝑃𝐸)𝐼 also evaluates power import forecast against 

actual (target) power imported, and is given by: 

                                             (𝑀𝐴𝑃𝐸)𝐼 =
1

𝐷
∑(𝜖𝐼)𝑐

𝐷

𝑐=1

 

Where 𝐷 = 466, and 𝜖𝐼 given by: 

                                            𝜖𝐼 =
1

48
∑|

𝑝𝐼,𝑐 − �̂�𝐼,𝑐
𝑝𝐼,𝑐

| × 100

48

𝑐=1

 

Similarly (𝑀𝐴𝑃𝐸)𝐸 is calculated to evaluate power export forecast against actual (target) 

power exported using 𝐷 = 466, and 𝜖𝐸:  

                                          𝜖𝐸 =
1

48
∑|

𝑝𝐸,𝑐 − �̂�𝐸,𝑐
𝑝𝐸,𝑐

| × 100

48

𝑐=1

 

The performance metric MAPE represents percentage of average absolute error 

occurred. Like MAE, in MAPE neither direction of error is known, nor large forecast errors 

are penalized. MAPE is affected by data transformation but is independent of scale of 

measurement. 
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3.4 Results 

This section presents results of proposed multivariate multistep forecasting 

framework (shown in Figure 3-3) for data set which has been obtained from telemetry 

system [35] installed in Peshawar region of Pakistan under USAID EPP for Pakistan. The 

framework forecasts 24 hours ahead values of power imported and power exported by 

region, serviced by Peshawar electricity distribution company. These forecasted powers 

are then used to calculate 24 hours ahead power consumption of PESCO region using 

Eqaution (3-2.4). The benefits of using power import and power export to forecast and 

calculate power consumption is discussed in our work [35]. 

Figure 3-4 qualitatively demonstrates the heat index, power import, and power 

export training data at 30 minutes resolution, which has been used to train hypothesis 

Equation (3-3.3) using Levenberg-Marquardt algorithm Equation (3-3.6). The Levenberg-

Marquardt algorithm parameters µ = 0.001 (for 𝑘 = 0), ζ = 10, ξ = 10 are set for 

learning unknown variables Equation (3-3.4) of hypothesis. The values for other two 

external features, day-of-week and time-of-day were encoded as shown in Table 1 at 30 

minutes resolution for training data duration June 1st, 2014 – May 22nd, 2017. From Figure 

3-4, it is noticeable that there are more high frequency components in power export training 

data as compared to power import training data. These high frequency components have 

adversely affected forecasting performance for power export in this work. For a 

multivariate forecasting problem taking inputs with different band of frequency 

components, such a behavior in forecasting performance has been reported [68].  

In Figure 3-5 qualitative curves for actual power import 𝑃𝐼 and forecasted power 

import �̂�𝐼 are plotted at a resolution of 30 minutes for test interval May 23rd, 2017 – August 

31st, 2018. On the horizontal axis the months are categorized in quarters as: Q1 is (January 

– March), Q2 is (April – June), Q3 is (July – September), and Q4 is (October – December). 

The proposed forecasting framework with ANN based hypothesis has been validated for 

test dataset, and generated 466 forecast of 24 hours ahead values for power import. The 

performance measures MAE and MAPE for forecast of power import have values of 98.72 

(MW) and 8.9 % respectively. In Figure 3-5, residual plot, 𝐸𝑟𝑟𝑜𝑟 = 𝑃𝐼 − �̂�𝐼 has also been 

plotted at 30 minutes resolution for test dataset duration. 
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Figure 3-4. Qualitative representation of heat index, power import, and power export 

data used for learning forecasting hypothesis. 

 

Figure 3-6 represents qualitative curves for actual power export 𝑃𝐸and forecasted 

power export �̂�𝐸 plots at a resolution of 30 minutes for test interval May 23rd, 2017 –  

August 31st, 2018. The implemented framework has been validated for test dataset, and 

generated 466 forecast of 24 hours ahead values for power export at 30 minutes resolution. 

The performance measures are 𝑀𝐴𝐸 = 12.56 (MW) and 𝑀𝐴𝑃𝐸 = 16.63 % for forecast 

of power export. The values are also tabulated in TABLE 2. As indicated earlier the values 

of MAE and MAPE for power export forecast are higher as compared 
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Figure 3-5. Qualitative representation of actual and forecasted power import for test 

dataset. 

 

Figure 3-6. Qualitative representation of actual and forecasted power export for test 

dataset. 
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TABLE 2. RESULTS SUMMARY FOR MULTIVARIATE FORECASTING FRAMEWORK 

 

Variable Mean Absolute 

Error 

Mean Absolute 

Percentage Error 

Power Consumed 91.75 (MW) 8.6 % 

Power Import 98.72 (MW) 8.9 % 

Power Export 12.56 (MW) 16.63 % 

 

          

         Figure 3-7. Error distribution of power import forecasts for test dataset. 

 

with MAE and MAPE of power import forecast. In Figure 3-6, residual plot, 𝐸𝑟𝑟𝑜𝑟 =

𝑃𝐸 − �̂�𝐸 has also been plotted at 30 minutes resolution for test dataset duration. 

For further qualitative analysis of forecasting performance, Figure 3-7 and Figure 3-8 

present error distribution (via histogram plots) for power import and power export forecasts 

respectively. Absolute error distribution and absolute percent error distribution plots for 

power import and power export forecasts are also shown. 
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   Figure 3-8. Error distribution of power export forecasts for test dataset. 

 

Additional investigation into forecasting performance is presented by randomly selecting 

three weeks from the test dataset duration May 23rd, 2017 – August 31st, 2018. For each of 

the three weeks actual powers (𝑃𝐼 , 𝑃𝐸) and forecasted powers (�̂�𝐼 , �̂�𝐸) are plotted along 

their residual plots (𝑃𝐼 − �̂�𝐼) and (𝑃𝐸 − �̂�𝐸). MAPE for 24 hours ahead forecast for 7 days 

of week is also included. Figure 3-9 randomly shows actual and forecasted plots along their 

error for following three weeks of test dataset duration: 31/10/17 – 11/6/17, 1/2/18 – 1/8/18, 

and 4/24/18 – 4/30/18. MAPE values of forecasted power import for these three weeks are 

16.21%, 5.77% and 6.81% respectively. Whereas three weeks MAPE values of 32.20%, 

23.44% and 19.97% are obtained for forecasted power export. 

Table 2 exhibits one year average MAPE values of 8.9% and 16.63% for forecasted 

power import and forecasted power export for test duration respectively. The MAPE of 

forecasted power import is less compared to MAPE of forecasted power export. 
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Figure 3-9. Qualitative representation of actual & forecasted power import and actual & forecasted 

power export for three randomly selected weeks from test dataset.   
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Figure 3-10. Qualitative representation of actual and forecasted power consumption 

for test dataset. 

 

This result is also reflected in Figure 3-9, where MAPE values of forecasted power import 

are less than forecasted power export for randomly plotted weeks. This superior forecasting 

performance for power import is due to better training of ANN forecasting model for power 

import as compared to power export. This occurred because training data available for 

power import shows more variety and variance as compared to power export data. This is 

qualitatively evident from Figure 3-4. The training instances for power export show more 

repetition, and hence forecasting model not trained enough to forecast for new instances of 

test duration. Furthermore, the variation in weekly MAPE values of forcasted power import 

and power export, are due to variation in periodicity and similarity of power values among 

days of a week. For a week that have days when actual power import or actual power export 

shows  more periodicity, the MAPE values of forcast are less for that week. This exhibited 

from plots of Figure 3-9. 

In Section 3.2 a brief description of system [35] was given. The system provides 

solution to compute real-time power consumption of a region by employing, real-time 
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power imported by region EDC, and real-time power exported by region EDC. As 

discussed in introduction section, 24 hours prior information about power requirement of  

a region is helpful for processes of power generation, planning, and distribution. Figure 3-

10 demonstrates both actual and forecasted values of total power consumption by PESCO 

region for test duration May 23rd, 2017 – August 31st, 2018, at 30 minutes resolution. 

Actual power consumption, 𝑃𝐶 has been computed using values of (𝑃𝐼 , 𝑃𝐸) for test duration 

in (3-2.4). Whereas forecasted power consumption, �̂�𝐶 has been computed using values of 

(�̂�𝐼 , �̂�𝐸) for test duration in (3-2.4). Figure 3-10 also exhibits residual (𝑃𝐶 − �̂�𝐶) at a 

resolution of 30 minutes. The performance metric for test dataset is 𝑀𝐴𝐸 = 91.75 (MW)  

and 𝑀𝐴𝑃𝐸 = 8.6 % for 24 hours ahead forecast of total power consumption by PESCO 

region. Results are also summarized in Table 2.     

3.5 Power Forecasts Impact Assessment 

The developed telemetry solution [35] for EDC (also discussed in previous chapter) 

was designed to provide real-time monitoring of important power circuits within PESCO 

energy network; and also monitoring of interface (import & export) circuits between EDCs 

energy networks and national power transmission grid, operated byNational Transmission 

Dispatch Company (NTDC) Pakistan. [35] has discussed the effectiveness of deployed 

solution in terms of reduction in incidents of unplanned and planned load-shedding. This 

work is in continuation to our previous work [35]. This section briefly assesses the impact 

of utilizing logged power data from PESCO telemetry system, for NTDC generation and 

PESCO distribution system. 

Information sources for power forecast impact assessment include NPCC and EPP 

offices. These sources provided data on national power grid, e.g. load-shedding schedules, 

power generation, dispatch, and distribution. Whereas, half hourly logged power import, 

power export, and power consumption values of complete region serviced by PESCO, was 

obtained from PESCO power control center. 

The impact of short-term (24 hours ahead) power forecasting on basis of logged 

data from PESCO telemetry system has shown both indirect and direct benefits. These 

benefits (impacts) have been evaluated at EDC and NPCC levels; and quantified wherever 

possible, given data and confidentiality constraints. 
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Logged power data in PCC of PESCO, and demand supply data for PESCO 

provided by NTDC for duration January 1st, 2018 – February28th, 2019 was analyzed to 

assess the direct impacts. The telemetry solution was primarily designed to monitor total 

power consumption of EDC region. However, additional features of tracking, analyzing, 

and forecasting power consumption values, have provided NTDC, and PESCO the ability 

to better match generated power dispatch with actual power consumption of PESCO. 

Resulting in more precise load dispatch. 

Furthermore, power forecasting has considerably assisted in reducing requirement 

for holding back large percentage of generated power. These high operating reserves were 

previously maintained to respond to unforeseen sudden increase in power demand at short 

notices. The operator in PCC can now more correctly set spinning margins (reserves), as 

compared to past cases of making conservative estimates. Therefore, a noticeable impact 

of increase in power availability for dispatch has been achieved via reduction of operating 

reserves requirement. 

In Figure 3-11, power difference between power allocated and power consumed by 

PESCO for duration September 1st, 2018 – November30th, 2018 is plotted at 30 minutes 

resolution. Here an adjustment factor previously used by NPCC has been added to PESCO 

power allocation. Quantifying power difference curve of these three months gave 𝑀𝐴𝐸 =

95.57 (MW). Also in Figure 3-11, power difference between power allocated and power 

consumed with forecasting aid has been plotted for duration December 1st, 2018 – 

February28th, 2019. This time an adjustment factor derived from 24 hours ahead forecast 

was added to PESCO power allocation. Again quantifying power difference curve for these 

three months gave 𝑀𝐴𝐸 = 8.29 (MW) [49]. Thus utilizing 24 hours ahead power 

consumption forecasted values, generated a more precise load dispatch for PESCO 

electricity consumers, and reduced the MAE by 11.52 times. 

For the indirect benefits, deployment of telemetry solution along with power 

forecasting provision has already started to exhibit its economic impacts on industrial, 

commercial, and residential sectors of PESCO [50]. The improvement in PESCO’s power 

supply situation is also creating a positive social impact on its population. The reduction  
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Figure 3-11. Power forecast impact assessment in terms of power dispatch to PESCO 

electricity consumer. 

 

in unplanned load-shedding, and provision of more power supplies is directly helping 

elevate Human Development Index values [71]. 

The deployed telemetry system is assisting PESCO officials in making preemptive 

actions and maintenances, while monitoring system imbalances. The system is also 

providing true archival data. The data can be used by electricity distribution company to 

understand their consumer power demand profiles. And then make accurate power 

obligation from generation facility accounting seasonal and daily demand variations. 

3.6 Conclusion 

Back in year 2010-2011, and its subsequent years, Pakistan faced a persistent power 

crisis, which was a function of faulty transmission system, insufficient power generation, 

and increasing demand. There was no system intact to get real time grid performance data. 

Inefficient power dispatch and suboptimal utilization of generated power capacity were 
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common practices. This resulted into nationwide electricity shortages. The work presented 

in this chapter is part of an effort to upgrade Pakistan power system. 

In next chapter, short-term forecasts for power import and power export by EDC 

using LSTM network in multivariate, multistep forecasting framework is discussed. 

  

Supporting publication: Asim Zaheer Ud Din and Yasar Ayaz, “Multivariate Multistep 

Short-Term Power Forecasting for Electricity Distribution Company”, Journal of King 

Saud University – Computer and Information Sciences (in review), 2021. 
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CHAPTER 4 

BIVARIATE SHORT-TERM ELECTRIC POWER FORECASTING 

USING LSTM NETWORK 

 

In this chapter, we have utilized LSTM network to generate short-term 24 hours in 

advance forecast for two (bivariate) independent time series. The work presents LSTM 

forecasting performance for three different weight optimizing algorithms, namely, 

Adaptive moment estimation, Root mean square propagation, and Stochastic gradient 

descent with momentum. Also, investigation into forecasting performance on changes in 

LSTM network and training options has been made. Furthermore, effects of different input 

features on LSTM short-term forecasts are demonstrated. The presented work has been 

employed for PESCO 4 years electric power data, recorded at 30 minutes resolution. From 

all the forecasting test cases of import power and export power for PESCO; the lowest 

values obtained are MAPE = 9.47 % and MAPE = 12.37 % for import power and export 

power respectively. 

4.1 Introduction 

Short-term power forecasting is key research area for assisting in economic 

electricity dispatch of power systems. Major benefits of economic dispatch include optimal 

utilization of available power generation facilities, reduced electricity cost, and minimum 

or no requirement for power outages (load-shedding) [72]. 

4.1.1 Background and motivation 

The work presented in this chapter is in continuation to our earlier work [35, 73], 

discussed in previous chapters. [35] discusses development of a wireless telemetry solution 

deployed in Islamabad and Peshawar Electric Supply Companies of Pakistan. Whereas [73] 

demonstrates 24 hours in advance forecast of total power consumption by Peshawar 

electricity consumer, based on data from system [35]. This work is an extension to prevous 

chapter and [73]. All the three work are part of an effort to propose enhanced solutions for 

advance infrastructure system in smart grid regime; and also to bring betterment in power 

generation and distribution mechanism of Pakistan. 
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As also briefed in previous chapters Pakistan power system before 2014 was mostly 

manually driven with no real-time status information about power generated and power 

consumed. This led to sub-optimal utility of power generation facilities and high frequency 

scheduled and unscheduled load-shedding. The system [35] not only has been effectively 

functioning for last around 5 years, but also providing important data for consumer 

electricity profiling.  

In this chapter we have demonstrated bivariate 24 hours ahead short-term 

forecasting using LSTM network. The forecasting performance for two variables, import 

power and export power of PESCO is investigated using three training algorithms, 

Adaptive moment estimation, Stochastic gradient descent with momentum, and Root mean 

square propagation. Effect on performance due to changes in LSTM network and training 

options are also reported. Furthermore, LSTM network forecasting for different sets of 

input features is also discussed. 

4.1.2 Related work 

LSTM network [74] a type of recurrent neural network has been reported for short-

term electric power forecasting applications, such as [75, 76]. LSTM networks have shown 

better learning ability for temporal sequence as compared to deep neural networks [77]. A 

variety of optimization algorithms exist which are used for training of LSTM networks. 

[78] reports Adaptive moment estimation (Adam) optimized LSTM network for electricity 

price forecasting. The work demonstrates better performance than stochastic gradient based 

optimization on dataset from New South Wales, Australia. In [79] authors have proposed 

an adaptive rate learning algorithm, and a variance reduction technique to speed up 

convergence of stochastic gradient descent (SGD) algorithms for deep neural networks. 

Author in [80] proposed Root mean square propagation (RMSProp) algorithm for neural 

network optimization for cases of big dataset. The algorithm works by dividing dataset into 

mini-batches, and uses recent magnitude of gradient running average for dividing current 

gradient. 

Most of the reported work on 24 hours ahead electric power forecasting have 

performed single variable prediction and that too at a resolution of 60 minutes, like in [57]. 
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Furthermore, reported literature also highlights enhancement in short-term power 

forecasting performance on utilizing weather and time information [57, 62]. 

4.1.3 Chapter contribution 

The contributions of this chapter are briefly highlighted as: 

1. This chapter has performed short-term electric power forecasting for two 

independent variables, whereas, most of reported work has presented single 

variable power forecasting. We have demonstrated 24 hours in advance forecasts 

for total import power and total export power of PESCO using LSTM. Contrary to 

short-term electric power forecasts at 60 minutes resolution; we trained our LSTM 

network with 30 minutes resolution dataset, and also generated bivariate forecasts 

at 30 minutes interval. 

2. Furthermore in this work a comparison of LSTM forecast performance is also 

included. The comparison is built for different cases. The cases are prepared on 

basis: 

i. Changes in LSTM network. 

ii. Changes in training options. 

iii. Change in training algorithm (Adam, SGD, RMSProp). 

iv. Different sets of feature from electric power time series, weather 

information, and time indication. 

3. To achieve 24 hours ahead forecast with horizon 𝐻 = 48, two forecasting methods 

have beenemployed. First method uses recursive strategy, while second uses direct 

strategy. 

4. Another contribution of 24 hours forecasts of import power and export power is 

assistance to PESCO in its planning for i) consumer power requirement, and ii) 

power export to another distribution company. 

4.2 Problem Formulation 

This section mathematically formulates problem discussed in previous section. 

Consider n time series {𝐼1, 𝐼2, … , 𝐼𝑛} each with l recorded observations. Whereas two time 

series represented by 𝑂1and 𝑂2 are of interest and to be computed. Each of the time series 

𝑂1and 𝑂2 is required to be known for H observations in future. Where H is called 
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forecasting horizon. The output time series 𝑂1and 𝑂2 are obtained by deriving a 

transformation function f  that utilizes time series {𝐼1, 𝐼2, … , 𝐼𝑛} as input: 

                                   {𝑂1, 𝑂2} = 𝑓{𝐼1, 𝐼2, … , 𝐼𝑛}                                         (4-2.1) 

such that 𝑓 is mapping function: 𝑅(𝑛×𝑙) → 𝑅(2×𝐻). And: 𝐼1 = {𝑖1,𝑡−1, 𝑖1,𝑡−2, … , 𝑖1,𝑡−𝑙}, 𝐼2 =

{𝑖2,𝑡−1, 𝑖2,𝑡−2, … , 𝑖2,𝑡−𝑙}, 𝐼𝑛 = {𝑖𝑛,𝑡−1, 𝑖𝑛,𝑡−2, … , 𝑖𝑛,𝑡−𝑙},  

𝑂1 = {𝑜1,𝑡+1, 𝑜1,𝑡+2, … , 𝑜1,𝑡+𝐻}, 𝑂2 = {𝑜2,𝑡+1, 𝑜2,𝑡+2, … , 𝑜2,𝑡+𝐻}. 

4.2.1 System and dataset description 

The work presented in this chapter is based on our telemetry system [35] which has 

been deployed in Pakistan two electricity distribution companies namely, IESCO and 

PESCO. Details about system can be read from [35] and Chapter 2. In addition to other 

features, the system provides provision for monitoring and logging of following important 

parameters of import and export circuits of EDC energy network. 

i. Active energy (kWh) 

ii. Reactive energy (kVArh) 

iii. Active power (kW) 

iv. Apparent power (kVA) 

v. Current (A) 

vi. Voltage (V) 

vii. Power factor 

These parameters are logged at a resolution of 30 minutes. One of our system 

working in PESCO has recorded above data (parameters) for duration June 1st, 2014 to 

August 31st, 2018 with 74544 observations. Let 𝑃𝐼 and 𝑃𝐸 represent total import power and 

total export power of PESCO for these 74544 observations: 

𝑇𝑜𝑡𝑎𝑙 𝑖𝑚𝑝𝑜𝑟𝑡 𝑝𝑜𝑤𝑒𝑟 (𝑀𝑊), 𝑃𝐼 = {𝑝𝐼,1, 𝑝𝐼,2, … , 𝑝𝐼,74544} 

𝑇𝑜𝑡𝑎𝑙 𝑒𝑥𝑝𝑜𝑟𝑡 𝑝𝑜𝑤𝑒𝑟 (𝑀𝑊), 𝑃𝐸 = {𝑝𝐸,1, 𝑝𝐸,2, … , 𝑝𝐸,74544} 

Calculation of total import power 𝑃𝐼 and total export power 𝑃𝐸 is discussed in our 

work [35]. Other then recorded 𝑃𝐼 and 𝑃𝐸 time series, our another work [73] provides heat 

index of PESCO region for duration June 1st, 2014 to August 31st, 2018 at 30 minutes 

resolution. The time series is represented as: 

𝐻𝑒𝑎𝑡 𝑖𝑛𝑑𝑒𝑥 (℃), 𝐻𝐼 = {𝐻𝐼1, 𝐻𝐼2, … , 𝐻𝐼74544} 
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4.2.2 Problem statement 

The objective of current work is to forecast 24 hours in advance two independent 

variables �̂�𝐼 (import power) and �̂�𝐸 (export power) for PESCO at a resolution of 30 minutes. 

This has been achieved using formulation (4-2.1), and utilizing three time series 𝑃𝐼, 𝑃𝐸 and 

𝐻𝐼 described in previous section. From (4-2.1):  

                                           {�̂�𝐼 , �̂�𝐸} = 𝑓{𝐼1, 𝐼2, 𝐼3, … , 𝐼𝑛}                                       (4-2.2) 

Where (𝐼1, 𝐼2, 𝐼3, …) represents features derived from time series (𝑃𝐼 , 𝑃𝐸 , 𝐻𝐼), and 𝐼𝑛 in 

Equation (4-2.2) represents exogenous features (variables). The transformation function 𝑓 

performance is dependent on these features for generating forecast. 

4.3 Problem Solution 

This work proposes to determine a single model for 24 hours ahead forecast as 

compared to direct method [59]. In direct method multiple models are derived to generate 

forecast for large forecasting horizon H. This work utilizes one model to forecast two 

independent time series �̂�𝐼 and �̂�𝐸 for 𝐻 = 48 using different sets of input.  The input sets 

and forecasting methods are elaborated later in this section. The unknown mathematical 

model 𝑓 in Equation (4-2.2) has been determined from training data comprising both the 

inputs and the desired output via supervised learning technique. 

In following sections features selection (input sets), forecasting model and 

methods, learning algorithms, and performance metric for forecasting evaluation are 

briefly presented.  

4.3.1 Feature selection and representation 

This section discusses features which have been used in current bivariate 

forecasting work. Related work on power forecasting has reported use of additional data 

features derived from observed time series [75]. Also use of time information, e.g. hour of 

day information, and day of week information have shown profound influence on  
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            TABLE 3. FEATURES SUMMARY FOR LSTM FORECASTING MODEL 

Symbol Description Value 

𝐼1 One sample (30 

minutes) ago power 

import value  

Obtained from recorded 

observations of power import, 

𝑃𝐼time series 

𝐼2 One sample (30 

minutes) ago power 

export value 

Obtained from recorded 

observations of power export, 𝑃𝐸  

time series 

𝐼3 48 samples (24 hours) 

ago power import value 

Obtained from recorded 

observations of power import, 

𝑃𝐼time series 

𝐼4 48 samples (24 hours) 

ago power export value 

Obtained from recorded 

observations of power export, 𝑃𝐸  

time series 

𝐼5 336 samples (168 hours) 

ago power import value 

Obtained from recorded 

observations of power import, 

𝑃𝐼time series 

𝐼6 336 samples (168 hours) 

ago power export value 

Obtained from recorded 

observations of power export, 𝑃𝐸  

time series 

𝐼7 Heat index value of time 

instance for which 

forecast is required 

Obtained via weather forecast 

𝐼8 Time of day information 

of time instance for 

which forecast is 

required 

Encoding: 

0000 hours  1, 0030 hours  

1.5, 0100 hours  2, …, 

2330 hours  24.5 

𝐼9 Day of week 

information of time 

instance for which 

forecast is required 

Encoding: 

Monday  1, Tuesday  2, 

Wednesday  3, Thursday  4, 

Friday  5, Saturday  6, 

Sunday  7 

 

power forecasts [62]. This is because human (consumer) power consumption activities are 

normally periodic.  
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Figure 4-1. Flow of data in a LSTM cell. 

 

Reported work on short-term forecasting has also considered dependence of power 

forecast on weather parameters [57]. Our work has considered heat index formodeling 

forecast dependence on weather. Whereas most of reported work has used dew point 

temperature, and dry bulb temperature for modeling forecast dependence on weather. Table 

3 highlights features that have been employed in our work to generate 24 hours in advance 

power import and power export values for PESCO. Result section demonstrates forecasting 

performance (comparison) for different sets of input (features) described in Table 3. 

4.3.2 Forecasting model and learning algorithm 

Our work has employed LSTM network to model unknown transformation function 

𝑓 in Equation (4-2.2). LSTM network has been shown to learn long-term dependencies 

between samples of a time series [74]. Figure 4-1 highlights data flow in a LSTM cell at 

time instance 𝑡. In Figure 4-1, ℎ𝑡 and 𝑐𝑡 are output state and cell state respectively for input 

sample 𝑥𝑡 at time instance 𝑡. Whereas ℎ𝑡−1 and 𝑐𝑡−1 are output state and cell state 

respectively for one previous time instance. In LSTM 𝑓, 𝑔, 𝑖, 𝑜 represents LSTM cell 

components forget gate, layer input, input gate, and output gate respectively, with 

following equations at time instance 𝑡: 

   𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑡 + 𝑅𝑓ℎ𝑡−1 + 𝑏𝑓) 

𝑔𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑔𝑥𝑡 + 𝑅𝑔ℎ𝑡−1 + 𝑏𝑔) 

   𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑡 + 𝑅𝑖ℎ𝑡−1 + 𝑏𝑖) 

                                                   𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑡 + 𝑅𝑜ℎ𝑡−1 + 𝑏𝑜)                                 (4-3.1) 

Where, 𝜎(𝑥) = (1 + 𝑒−𝑥)−1. 
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Modeling of function 𝑓 by LSTM network requires weights computation of LSTM 

network. The weight matrices of single LSTM cell from (4-3.1) can be written as: 

𝑊 =

[
 
 
 
𝑊𝑖

𝑊𝑓
𝑊𝑔
𝑊𝑜]
 
 
 
, 𝑅 =

[
 
 
 
𝑅𝑖
𝑅𝑓
𝑅𝑔
𝑅𝑜]
 
 
 
, 𝑏 =

[
 
 
 
𝑏𝑖
𝑏𝑓
𝑏𝑔
𝑏𝑜]
 
 
 

 

The weights of complete LSTM network have been determined via supervised 

learning technique using features discussed in Table 3. Effects of changing LSTM network 

architecture on 24 hours ahead forecast are demonstrated in results section of this chapter. 

Further, to determine weights of LSTM network via supervised learning technique, 

following three learning algorithms have been used: 

4.3.2.1 Stochastic gradient descent with momentum (SGDM) 

The SGDM algorithm adds a momentum term to weight update equation of 

stochastic gradient descent, which helps in reducing oscillations along path of steepest 

descent towards optimum [79]. 

4.3.2.2 Root mean square propagation (RMSProp) 

RMSProp algorithm uses different learning rate for different parameters which are 

automatically adapted to reduce loss function [80]. 

4.3.2.3 Adaptive moment estimation (Adam) 

Adam algorithm adds a momentum term to parameter update equation of RMSProp 

[78]. 

The performance of LSTM network for 24 hours in advance, short-term forecasting 

with weights learning using above three different learning algorithms is highlighted in 

results section. 

4.3.3 Training and forecasting methods 

Section 4-2 discussed dataset obtained from telemetry system installed in PESCO 

comprising 74544 observations for duration June 1st, 2014 to August 31st, 2018. The dataset 

also contained 74544 observations of total power import 𝑃𝐼 and total power export 𝑃𝐸 by 

PESCO. This work utilizes 70% of 74544 observations as training set, i.e. data for duration 

01.06.2014 to 22.05.2017 is used to learn weights of LSTM network. Whereas, data for 
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duration 23.05.2017 to 31.08.2018 is test dataset employed to evaluate forecasting 

performance of  LSTM model for 𝑓 in Equation (4-2.2). 

The unknown weights of LSTM model for 𝑓 in Equation (4-2.2) have been learnt 

via three learning algorithms SGDM, RMSProp, and Adam while using training dataset. 

The training data is given by {(𝒙𝑝, 𝒚𝑝); 𝑝 = 1,2, … , 𝑃} with 𝑃 = 52181 training instances. 

And test data given by {(�̃�𝑞 , �̃�𝑞); 𝑞 = 1,2, … , 𝑄} with 𝑄 = 22363 test instances. (𝒙𝑝, 𝒚𝑝) 

represents 𝑝𝑡ℎ instance input and desired output of training data. (𝒙𝑞 , 𝒚𝑞) represents 𝑞𝑡ℎ 

instance test input and test output of test data.In result section effects of changing training 

options for learning algorithms for test data are discussed. 

Once training is complete, the trained LSTM network generates 24 hours in 

advance forecasts of import power �̂�𝐼 and export power �̂�𝐸 for PESCO. The LSTM network 

24 hours forecasts are evaluated for test cases of total 466 days of test data duration 

23.05.2017 to 31.08.2018. 

Where for 24 hours duration, 

𝑃𝐼 = {𝑝𝐼,𝑡+1, 𝑝𝐼,𝑡+ 2, … , 𝑝𝐼,𝑡+48} 

𝑃𝐸 = {𝑝𝐸,𝑡+1, 𝑝𝐸,𝑡+ 2, … , 𝑝𝐸,𝑡+48} 

�̂�𝐼 = {�̂�𝐼,𝑡+1, �̂�𝐼,𝑡+ 2, … , �̂�𝐼,𝑡+48} 

                                         �̂�𝐸 = {�̂�𝐸,𝑡+1, �̂�𝐸,𝑡+ 2, … , �̂�𝐸,𝑡+48}                           (4-3.2) 

After model training two different methods have been used to generate 24 hours in 

advance forecast of �̂�𝐼 and �̂�𝐸 Equation (4-3.2). For 24 hours ahead forecast at a resolution 

of 30 minutes requires forecasting horizon, 𝐻 = 48 Equation (4-3.2). 

4.3.3.1 First method 

In first method with data features of 24 hours ago from 𝑃𝐼 and 𝑃𝐸 time series, 

forecast is performed as, from Equation (4-2.2): 

for 𝑖 = 1 to 48 

                 (�̂�𝐼,𝑡+𝑖, �̂�𝐸,𝑡+𝑖) = 𝑓{𝐼3, 𝐼4… } 

end for 

Also in first method with data features of 168 hours ago from 𝑃𝐼 and 𝑃𝐸 time series, 

forecast is performed as, from Equation (4-2.2): 
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for 𝑖 = 1 to 48 

                 (�̂�𝐼,𝑡+𝑖, �̂�𝐸,𝑡+𝑖) = 𝑓{𝐼5, 𝐼6… } 

end for 

4.3.3.2 Second method 

In second method with data features of 30 minutes ago from 𝑃𝐼 and 𝑃𝐸 time series, 

forecast is performed as, from Equation (4-2.2): 

for 𝑖 = 1 to 48 

    if 𝑖 = 1 then 

                    (�̂�𝐼,𝑡+𝑖, �̂�𝐸,𝑡+𝑖) = 𝑓{𝐼1, 𝐼2…} 

    else 

                    (�̂�𝐼,𝑡+𝑖, �̂�𝐸,𝑡+𝑖) = 𝑓{�̂�𝐼,𝑡+(𝑖−1), �̂�𝐸,𝑡+(𝑖−1)…} 

    end 

end for 

In both forecasting method exogenous features are also used along data features 

from recorded time series. In next section results are demonstrated for both forecasting 

methods with different sets of feature as described in Table 3. 

4.3.4 Performance metric 

Short-term bivariate forecasting performance of LSTM network for 466 days, 𝐷 =

466, of test dataset with different sets of feature, different training options, and different 

learning algorithms have been evaluated using mean absolute error (MAE) and mean 

absolute percentage error (MAPE).  

The MAE and MAPE for forecasted import power are given as: 

                               (𝑀𝐴𝐸)𝐼 =
1

𝐷
∑(

1

48
∑|𝑝𝐼,𝑐 − �̂�𝐼,𝑐|

48

𝑐=1

)

𝑐

𝐷

𝑐=1

 

                            (𝑀𝐴𝑃𝐸)𝐼 =
1

𝐷
∑(

1

48
∑|

𝑝𝐼,𝑐 − �̂�𝐼,𝑐
𝑝𝐼,𝑐

| × 100

48

𝑐=1

)

𝑐

𝐷

𝑐=1

 

Similarly(𝑀𝐴𝐸)𝐸 and (𝑀𝐴𝑃𝐸)𝐸 are calculated for forecasted export power. 
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4.4 Results 

In this section  quantitative  and  qualitative  results of 24 hours in advance bivariate 

forecast of PESCO import power and export power for 466 days is represented. Table 4 

presents quantitative results for 14 test cases with different settings of training algorithms, 

LSTM network, training options, and input features set. In all test cases of  

 

TABLE 4. RESULTS SUMMARY FOR LSTM FORECASTING MODEL 

Serial 

# 

LSTM network Training Options Training 

Algorithm 

Features Set Forecasting Error 

(Import power) 

Forecasting Error 

(Export power) 

1 Sequence input layer with 

2 inputs–LSTM layer with 

200 units–Completely 

joined layer with 2 

outputs–Regression layer 

Training iteration = 130 

Initial learn rate = 0.005 

Method for rate learning = 

piecewise 

Period for reducing learn rate = 80 

Factor for reducing learn rate = 0.2 

Shuffle =every iteration 

Gradient threshold =1 

Adam (𝐼3, 𝐼4) MAE =88.01 (MW) 

MAPE =9.69 % 

MAE =11.20 (MW) 

MAPE =13.70 % 

2 Sequence input layer with 

2 inputs–LSTM layer with 

200 units– Completely 

joined layer with 2 

outputs–Regression layer 

Training iteration = 130 

Initial learn rate = 0.005 

Method for rate learning = 

piecewise 

Period for reducing learn rate = 80 

Factor for reducing learn rate = 

0.2 

Shuffle =every iteration 

Gradient threshold =1 

SGDM (𝐼3, 𝐼4) MAE =92.48 (MW) 

MAPE =10.19 % 

MAE =11.80 (MW) 

MAPE =14.29 % 

3 Sequence input layer with 

2 inputs–LSTM layer with 

200 units– Completely 

joined layer with 2 

outputs–Regression layer 

Training iteration = 130 

Initial learn rate = 0.005 

Method for rate learning = 

piecewise 

Period for reducing learn rate = 80 

Factor for reducing learn rate = 

0.2 

Shuffle =every iteration 

Gradient threshold =1 

RMSProp (𝐼3, 𝐼4) MAE =87.99 (MW) 

MAPE =9.80 % 

MAE =11.39 (MW) 

MAPE =14.40 % 

4 Sequence input layer with 

2 inputs–LSTM layer with 

200 units– Completely 

joined layer with 2 

outputs–Regression layer 

Training iteration = 130 

Initial learn rate = 0.005 

Method for rate learning = 

piecewise 

Period for reducing learn rate = 80 

Adam (𝐼5, 𝐼6) MAE =113.04 (MW) 

MAPE =12.00 % 

MAE =13.67 (MW) 

MAPE =19.33 % 
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Factor for reducing learn rate = 

0.2 

Shuffle =every iteration 

Gradient threshold =1 

5 Sequence input layer with 

2 inputs–LSTM layer with 

200 units– Completely 

joined layer with 2 

outputs–Regression layer 

Training iteration = 130 

Initial learn rate = 0.005 

Method for rate learning = 

piecewise 

Period for reducing learn rate = 80 

Factor for reducing learn rate = 

0.2 

Shuffle =never 

Gradient threshold =1 

Adam (𝐼3, 𝐼4) MAE =86.55 (MW) 

MAPE =9.47 % 

MAE =11.08 (MW) 

MAPE =12.37 % 

6 Sequence input layer with 

2 inputs–LSTM layer with 

300 units– Completely 

joined layer with 2 

outputs–Regression layer 

Training iteration = 130 

Initial learn rate = 0.005 

Method for rate learning = 

piecewise 

Period for reducing learn rate = 80 

Factor for reducing learn rate = 

0.2 

Shuffle =never 

Gradient threshold =1 

Adam (𝐼3, 𝐼4) MAE =89.28 (MW) 

MAPE =10.00 % 

MAE =12.22 (MW) 

MAPE =18.29 % 

7 Sequence input layer with 

2 inputs–LSTM layer with 

200 units– Completely 

joined layer with 2 

outputs–Regression layer 

Training iteration = 130 

Initial learn rate = 0.005 

Method for rate learning = 

piecewise 

Period for reducing learn rate = 80 

Factor for reducing learn rate = 

0.2 

Shuffle =never 

Gradient threshold =1 

Adam (𝐼1, 𝐼2) MAE =122.82 (MW) 

MAPE =13.17 % 

Forecasting 

Method = 2nd 

MAE =13.96 (MW) 

MAPE =17.33 % 

Forecasting 

Method = 2nd 

8 Sequence input layer with 

3 inputs–LSTM layer with 

200 units– Completely 

joined layer with 2 

outputs–Regression layer 

Training iteration = 130 

Initial learn rate = 0.005 

Method for rate learning = 

piecewise 

Period for reducing learn rate = 80 

Factor for reducing learn rate = 

0.2 

Shuffle =never 

Gradient threshold =1 

Adam (𝐼3, 𝐼4, 𝐼7) MAE =89.89 (MW) 

MAPE =10.05 % 

MAE =11.36 (MW) 

MAPE =14.79 % 
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Serial 

# 

LSTM network Training Options Training 

Algorithm 

Features Set Forecasting Error 

(Import power) 

Forecasting Error 

(Export power) 

9 Sequence input layer with 

3 inputs–LSTM layer with 

300 units– Completely 

joined layer with 2 

outputs–Regression layer 

Training iteration = 130 

Initial learn rate = 0.005 

Method for rate learning = 

piecewise 

Period for reducing learn rate = 80 

Factor for reducing learn rate = 

0.2 

Shuffle =never 

Gradient threshold =1 

Adam (𝐼3, 𝐼4, 𝐼7) MAE =91.26 (MW) 

MAPE =10.13 % 

MAE =11.61 (MW) 

MAPE =15.42 % 

10 Sequence input layer with 

3 inputs–LSTM 1st layer 

with 200 units– LSTM 2nd 

layer with 100 units– 

Completely joined layer 

with 2 outputs–

Regression layer 

Training iteration = 130 

Initial learn rate = 0.005 

Method for rate learning = 

piecewise 

Period for reducing learn rate = 80 

Factor for reducing learn rate = 

0.2 

Shuffle =never 

Gradient threshold =1 

Adam (𝐼3, 𝐼4, 𝐼7) MAE =96.91 (MW) 

MAPE =11.14 % 

MAE =11.54 (MW) 

MAPE =14.72 % 

11 Sequence input layer with 

4 inputs–LSTM layer with 

200 units– Completely 

joined layer with 2 

outputs–Regression layer 

Training iteration = 130 

Initial learn rate = 0.005 

Method for rate learning = 

piecewise 

Period for reducing learn rate = 80 

Factor for reducing learn rate = 

0.2 

Shuffle =never 

Gradient threshold =1 

Adam (𝐼3, 𝐼4, 𝐼8, 𝐼9) MAE =87.03 (MW) 

MAPE =9.66 % 

MAE =11.02 (MW) 

MAPE =13.65 % 

12 Sequence input layer with 

5 inputs–LSTM layer with 

200 units– Completely 

joined layer with 2 

outputs–Regression layer 

Training iteration = 130 

Initial learn rate = 0.005 

Method for rate learning = 

piecewise 

Period for reducing learn rate = 80 

Factor for reducing learn rate = 

0.2 

Shuffle =never 

Gradient threshold =1 

Adam (𝐼3, 𝐼4, 𝐼7, 𝐼8, 𝐼9) MAE =91.19 (MW) 

MAPE =10.12 % 

MAE =11.33 (MW) 

MAPE =14.13 % 

13 Sequence input layer with 

5 inputs–LSTM layer with 

400 units– Completely 

joined layer with 2 

outputs–Regression layer 

Training iteration = 130 

Initial learn rate = 0.005 

Method for rate learning = 

piecewise 

Period for reducing learn rate = 80 

Factor for reducing learn rate = 

0.2 

Adam (𝐼3, 𝐼4, 𝐼7, 𝐼8, 𝐼9) MAE =95.53 (MW) 

MAPE =10.90 % 

MAE =11.95 (MW) 

MAPE =15.50 % 
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Shuffle =never 

Gradient threshold =1 

14 Sequence input layer with 

2 inputs–LSTM layer with 

200 units– Completely 

joined layer with 200 

neurons–Dropout layer 

with 0.5 factor–Fully 

connected layer with 2 

outputs–Regression layer 

Training iteration = 130 

Initial learn rate = 0.005 

Method for rate learning = 

piecewise 

Period for reducing learn rate = 80 

Factor for reducing learn rate = 

0.2 

Shuffle =never 

Gradient threshold =1 

Adam (𝐼3, 𝐼4) MAE =86.41 (MW) 

MAPE =9.52 % 

MAE =11.18 (MW) 

MAPE =13.30 % 

 

Table 4 first forecasting method is used except for test case at serial number 7. From Table 

4 it is evident that best forecasting performance (MAPE = 9.47 % and MAPE = 12.37 % 

for import power and export power respectively) is achieved for settings shown at serial 

number 5. Figure 4-2 to Figure 4-4 presents qualitative results of LSTM forecasting 

performance for 7 test cases. Actual and forecasted import power and export power curves 

for test duration (466 days) are plotted. Error curve between the forecasted and actual 

values is also plotted. On x-axis ‘Q’ represents a single quarter of year with 3 months 

duration. Although visually the forecasted power import and forecasted power export value 

curves appear to be similar in Figure 4-2 to Figure 4-4, but the quantitative performance 

measure for forecasting, i.e. MAPE is different for all the plotted 7 test cases. From Table 

4, the MAPE values of forecasted power import plots for Figure 4-2 to Figure 4-4 test case 

number 1, 2, 3, 4, 5, 7, 13 are 9.69%, 10.19%, 9.80%, 12.00%, 9.47%, 13.17%, 10.90% 

respectively. Similarly the MAPE values of forecasted power export for 7 test cases of 

Figure 4-2 to Figure 4-4 can be seen from Table 4. 

4.5 Conclusion 

The work presented in this chapter and previous chapters is an effort towards 

developing a detailed framework for forecasting short-term and long-term power 

requirements of electricity distribution companies of Pakistan. With the installation of 

systems (as discussed in earlier section) real-time monitoring and logging of power data 

for distribution companies is already being carried out. The data from these systems is used 

to learn model for power forecasting. The forecasted power values are useful for both 
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National Transmission & Dispatch Company, and for the electricity distribution companies 

of Pakistan. 

From next chapter onwards, state and parameter estimation algorithms application 

in output feedback control of magnetic levitation and motor systems are discussed. 
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Figure 4-2. Graphical representations of forecasted & actual import power, and forecasted & actual 

export power for three test cases. 
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Figure 4-3. Graphical representations of forecasted & actual import power, and forecasted & actual 

export power for three test cases. 
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Supporting publication: Asim Zaheer Ud Din, Yasar Ayaz, Momena Hasan, Jawad 

Khan, and Muhammad Salman, “Bivariate short-term electric power forecasting using 

LSTM network”, 3rd International Conference on Robotics and Automation in Industry, 

2019, Rawalpindi, Pakistan. 

 

Figure 4-4. Graphical representations of forecasted & actual import power, and forecasted & actual 

export power for one test case. 
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CHAPTER 5 

ESTIMATION USING HIGHER ORDER SLIDING MODE 

OBSERVER 

 

The previous Chapter 2 to Chapter 4 have presented implementation results of 

proposed detection and forecast algorithms for nonlinear processes in context to smart grid 

applications. Hereforth, Chapter 5 to Chapter 8, results of estimation algorithms utilized in 

proposed sampled-data output feedback controller for nonlinear magnetic levitation system 

in context to smart grid are presented. 

As also discussed in Chapter 1, magnetic levitation system are used in active 

magnetic bearings of electromechanical generators for advanced and efficient electricity 

generation in smart grid solution. These magnetic bearings use magnetic levitation to 

support load, and are able to hold moving parts without physical contact. Also they provide 

high relative motion with very low friction, no mechanical wear, and no lubrication. 

Chapter 5 to Chapter 8 presents design and simulated results for estimation algorithms, and 

output feedback control configurations for magnetic levitation system. The idea is to 

further implement these configurations for development of active magnetic bearings in 

later stages of efficient electricity generation project. 

The problem statement for work discussed in Chapter 5 to Chapter 8 is summarized 

as: 

 To design and simulate sampled-data output feedback control (OFC) for 

nonlinear magnetic levitation system for following cases: 

i. Case-I: Unknown plant model – discussed in Chapter 5 

ii. Case-II: Known plant model – discussed in Chapter 6 

iii. Case-III: Model mismatch – discussed in Chapter 7 

iv. Case-IV: Unknown plant parameters – discussed in Chapter 8 

 To compare state estimation performance of Kalman, SSRLS & sliding 

mode state estimators. 

   In this chapter an estimation based output feedback control configuration is 

presented to achieve robust feedback linearization for nonlinear minimum phase systems. 
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An Euler approximate discrete-time observer based on Sliding Mode observer is presented. 

The observer while operating in discrete-time domain simultaneously estimates states and 

drift term using system output. The estimated drift term is used in feedback loop to 

compensate unmodeled system dynamics and disturbances. Emulation Design procedure 

is employed in designing of discrete controller. The performance of presented sampled-

data robust feedback linearization scheme is demonstrated for tracking applications of 

magnetic levitation and DC motor systems in computer simulations. Magnetic bearings 

using magnetic leviatation, and motor systems are important components for electricity 

generation industry. Simulation results illustrate that reducing sampling period more 

adversely affects Euler approximate discrete observer performance for faster changing 

system dynamics than for slower changing dynamics. The proposed scheme also exhibits 

good performance in presence of disturbances and parameters perturbation.  

5.1 Introduction 

Often in control applications it is required to achieve specified closed-loop 

performance and robustness in presence of uncertainties, using only available system 

output. One approach is to reconstruct state vector on basis of nominal system model using 

observer; and then using this estimated state information in a robust or adaptive control 

scheme to achieve required performance. 

Another approach is to estimate drift term which constitutes combined effects of 

unknown parameters, model uncertainties and disturbances. The idea of estimating drift 

term and then canceling it via feedback control law has also been discussed in works of 

[81, 82]. In [82] the authors have considered relative degree one systems, whereas in [83] 

a high gain observer has been employed to estimate states and uncertainties in the system. 

In this work sampled-data robust feedback linearization scheme has been proposed based 

on the robust feedback linearization work presented in [84]. Robust feedback linearization 

has also been demonstrated in the works of [83, 85]. In [83] an extended high gain observer 

is employed, whereas higher order SMO is used in [85]. In both works state and drift term 

estimation is based on nominal plant model. In the work of [84], the authors have employed 

a higher order SMO to estimate states and drift term for relative degree n minimum phase 

systems. Euler approximate discrete model of SMO [84] along with discrete controller 
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(based on Emulation Design) has been used in this work. Detailed work on Euler 

approximate discrete model is present in [86, 87], whereas Emulation Design procedure 

for discrete controller designing is discussed in [88]. 

Sampled-data control configuration has been used in this work as most plants and 

processes in engineering practice are continuous-time. Controlling a continuous-time plant 

/ process using a computer or a digital controller, forms a sampled-data control system. 

Therefore, sampled-data control system also known as computer-controlled system 

involves both continuous-time and discrete-time signals in its operation.  

Furthermore, continuous-time nonlinear plant or process controlled by either a 

nonlinear or linear digital controller is categorized as a nonlinear sampled-data control 

configuration (system).A nonlinear sampled-data control configuration based on [84] is 

discussed later in this chapter.  

Generally three main techniques are used to design controller for a sampled-data 

system [89]. First technique is known as Emulation Design. In this technique, the controller 

is designed in continuous-time domain. Continuous-time controller is then discretized, and 

digitally implemented. Second technique is called Direct Discrete-time Design. In this 

technique, a discrete-time controller is designed in discrete-time domain using discrete-

time model of plant or process [88]. Inter-sample behavior is not considered during design 

in this technique. Third technique is Sampled-data Design, which considers inter-sample 

behavior during design process. 

5.2 Problem Formulation 

Consider a single-input-single-output nonlinear system in Generalized Controller 

Canonical Form (GCCF) [90]: 

 

                                                                  �̇�1 = 𝑥2 

                                                                  �̇�2 = 𝑥3 

                                                                        ⋮ 

   �̇�𝑟 = 𝑓(𝑥, 𝜉) + 𝑔(𝑥)𝑢 

                                                               �̇� = 𝜑(𝑥, 𝜉) 

                                                                   𝑦 = 𝑥1                                                      (5-2.1) 
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with states n and relative degree𝜌, such that 𝜌 ≤ 𝑛. 𝑥 ∈ ℛ𝜌 is observable state sub-vector, 

𝜉 ∈ ℛ𝑛−𝜌 is unobservable state sub-vector and 𝑢 ∈ ℛ is control input. 𝑓(∙) and 𝑔(∙) are 

smooth vector fields. 

Assumption: System Equation (5-2.1) is minimum phase system, as zero dynamics �̇� =

𝜑(0, 𝜉) of system is input-to-state stable [91]. System Equation (5-2.1) can be written in 

the form: 

�̇� = 𝐴𝑥 + 𝐵[𝑓(𝑥, 𝜉) + 𝑔(𝑥)𝑢] 

�̇� = 𝜑(𝑥, 𝜉) 

                                                                     𝑦 = 𝐶𝑥                                                    (5-2.2) 

where 

𝐴 =

[
 
 
 
 
0 1 0 ⋯ 0
0 0 1 ⋯ 0
0
⋮
0

0
⋮
0

0 … 0
⋮  ⋱  1
0  0 0]

 
 
 
 

, 𝐵 =

[
 
 
 
 
0
0
⋮
0
1]
 
 
 
 

, 𝐶 =

[
 
 
 
 
1
0
⋮
0
0]
 
 
 
 
𝑇

 

Let �̂� is estimate of state vector x, and 𝑔(�̂�) is input gain on basis of �̂�. System 

Equation (5-2.2) can be written as: 

�̇� = 𝐴𝑥 + 𝐵[𝑓(𝑥, 𝜉, ∆𝑢) + 𝑔(�̂�)𝑢] 

�̇� = 𝜑(𝑥, 𝜉) 

                                                                      𝑦 = 𝐶𝑥                                                    (5-2.3) 

where ∆𝑢= 𝑔(𝑥) − 𝑔(�̂�) is uncertainty of input channel. If in Equation (5-2.3), 𝑓(∙) is 

exactly known and 𝑔(�̂�) ≠ 0, then feedback linearization control for Equation (5-2.3) is 

[90]: 

 𝑢 =
1

𝑔(�̂�)
(−𝑓(𝑥, 𝜉, ∆𝑢) − 𝐾𝑥) (5-2.4) 

𝐾 is gain matrix, which can be designed using any modern or classical technique e.g. LQR, 

pole placement such that 𝐴 − 𝐵𝐾 is Hurwitz and closed-loop system meets required 

performance objectives. Using control law Equation (5-2.4) in system Equation (5-2.3), 

yields linear closed-loop dynamics: 

                                                             �̇� = (𝐴 − 𝐵𝐾)𝑥                                                (5-2.5) 
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However in most practical cases function 𝒇(∙) is not exactly known and only output 

of system is available. Thus the control law Equation (5-2.4) is not realizable, and control 

law: 

 𝒖 =
𝟏

𝒈(�̂�)
(−�̂� − 𝑲�̂�) (5-2.6) 

is used. In Equation (5-2..6), if drift term �̂� and states �̂� are correctly estimated such that 

�̂� → 𝒇(∙) and �̂� → 𝒙 in finite time, the desired performance of Equation (5-2.5), and effect 

of control law Equation (5-2.4) can be achieved. 

5.3 Robust Observer & Controller 

In this section a robust observer [84] is discussed, which estimates the drift term 𝑓 

and states �̂�. Methodology is similar in both [84] and [83], except a High Gain Observer is 

proposed in [83]. With 𝑓 ≡ 𝑓1, the observer structure [84] follows: 

�̇̂�1 = −𝜆𝑛+1𝐿
1 (𝑛+1)⁄ |�̂�1 − 𝑥1|

𝑛 (𝑛+1)⁄ 𝑠𝑖𝑔𝑛(�̂�1 − 𝑥1) + �̂�2 

�̇̂�2 = −𝜆𝑛𝐿
1 𝑛⁄ |�̂�2 − �̂�1|

(𝑛−1) 𝑛⁄ 𝑠𝑖𝑔𝑛(�̂�2 − �̂�1) + �̂�3 

⋮ 

�̇̂�𝑟 = 𝑓1 + 𝑔(�̂�)𝑢 

𝑓1 = −𝜆𝑛−𝜌+2𝐿
1 (𝑛−𝜌+2)⁄ |�̂�𝜌 − �̂�𝜌−1|

(𝑛−𝜌+1) (𝑛−𝜌+2)⁄
 

𝑠𝑖𝑔𝑛(�̂�𝜌 − �̂�𝜌−1) + �̂�𝜌+1 

⋮ 

�̇̂�𝑛 = 𝑓𝑛−𝜌+1 

𝑓𝑛−𝜌+1 = −𝜆2𝐿
1 2⁄ |�̂�𝑛 − 𝑓𝑛−𝜌|

1 2⁄
𝑠𝑖𝑔𝑛(�̂�𝑛 − 𝑓𝑛−𝜌) + �̂�𝑛+1 

                                                �̇̂�𝑛+1 = −𝜆1𝐿𝑠𝑖𝑔𝑛(�̂�𝑛+1 − 𝑓𝑛−𝜌+1)                           (5-3.1) 

𝝀𝒊 can be chosen as suggested in [92], and 𝑳 > 𝟎 is Lipschitz constant. 

5.3.1 Euler approximate discrete-time robust observer 

In this section Euler approximate discrete-time model of robust observer Equation 

(5-3.1) is presented. Euler approximation is used, as it is the simplest approximation that 

preserves the structure of continuous-time robust observer Equation (5-3.1) [86]. Discrete-

time observer model follows: 
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�̂�1,𝑘 = �̂�1,𝑘−1 + 𝑇{−𝜆𝑛+1𝐿
1 (𝑛+1)⁄ |�̂�1,𝑘−1 − 𝑥1,𝑘−1|

𝑛 (𝑛+1)⁄
 

𝑠𝑖𝑔𝑛(�̂�1,𝑘−1 − 𝑥1,𝑘−1]) + �̂�2,𝑘−1} 

�̂�2,𝑘 = �̂�2,𝑘−1 + 𝑇{−𝜆𝑛𝐿
1 𝑛⁄ |�̂�2,𝑘−1 − �̂�1,𝑘−1|

(𝑛−1) 𝑛⁄
 

𝑠𝑖𝑔𝑛(�̂�2,𝑘−1 − �̂�1,𝑘−1) + �̂�3,𝑘−1} 

⋮ 

�̂�𝜌,𝑘 = �̂�𝜌,𝑘−1 + 𝑇{𝑓1,𝑘−1 + 𝑔(�̂�𝑘−1)𝑢} 

𝑓1,𝑘−1 = −𝜆𝑛−𝜌+2𝐿
1 (𝑛−𝜌+2)⁄ |�̂�𝜌,𝑘−1 − �̂�𝜌−1,𝑘−1|

(𝑛−𝜌+1) (𝑛−𝜌+2)⁄
 

𝑠𝑖𝑔𝑛(�̂�𝜌,𝑘−1 − �̂�𝜌−1,𝑘−1) + �̂�𝜌+1,𝑘−1 

⋮ 

�̂�𝑛,𝑘 = �̂�𝑛,𝑘−1 + 𝑇{𝑓𝑛−𝜌+1,𝑘−1} 

𝑓𝑛−𝜌+1,𝑘−1 = −𝜆2𝐿
1 2⁄ |�̂�𝑛,𝑘−1 − 𝑓𝑛−𝜌,𝑘−1|

1 2⁄
𝑠𝑖𝑔𝑛(�̂�𝑛,𝑘−1 − 𝑓𝑛−𝜌,𝑘−1) 

+�̂�𝑛+1,𝑘−1 

                          �̂�𝑛+1,𝑘 = �̂�𝑛+1,𝑘−1 + 𝑇{−𝜆1𝐿𝑠𝑖𝑔𝑛(�̂�𝑛+1,𝑘−1 − 𝑓𝑛−𝜌+1,𝑘−1)}          (5-3.2) 

𝑻 is sampling period. Value of 𝑻 is close to zero. The discrete-time observer Equation (5-

3.2) is used in configuration as shown in Figure 5-1 to achieve sampled-data robust 

feedback linearization for minimum phase systems. Plant operates in continuous-time, 

where 𝒘(𝒕) represents process noise. Measurement noise 𝒗(𝒕) is added to output 𝒚(𝒕) of 

plant. Continuous-time plant output 𝒚(𝒕) is discretized (Sampling) using zero-order hold 

approach [87]. The observer Equation (5-3.2) uses measured state (output 𝒚[𝒌]) and input 

𝒖[𝒌] to estimate the drift term �̂� and state �̂� in Equation (5-2.6). Measured state (output 

𝒚[𝒌]) and estimated state vector �̂� are used to generate 𝒖[𝒌]. Controller gain matrix 𝑲 is 

designed using any modern or classical technique e.g. LQR, pole placement such that 𝑨 −

𝑩𝑲 is Hurwitz. Control input 𝒖[𝒕] is obtained using zero-order hold approach (Hold) [87], 

and is applied to the plant. 

5.3.2 Discrete-time robust controller 

In this section discrete-time robust feedback linearization controller based on 

Emulation Design procedure is presented. From Equation (5-2.6), discrete robust controller 

follows: 
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 𝑢[𝑘] =
1

𝑔(�̂�[𝑘])
(−𝑓[𝑘] − 𝐾�̂�[𝑘]) (5-3.3) 

The controller Equation (5-3.3) along with observer Equation (5-3.2) is used in 

configuration shown in Figure 5-1 to achieve robust feedback linearization for sampled-

data nonlinear minimum phase system. 

5.4 Computer Simulations: magnetic levitation system 

This section presents computer simulation results for the proposed Euler 

approximate discrete-time robust observer Equation (5-3.2) and controller Equation (5-3.3) 

for magnetic levitation system. Observer Equation (5-3.2) estimates the drift term and 

states for given magnetic levitation  system, and feedback linearization control law 

Equation (5-3.3) achieves tracking of reference signal. The reference signal is a 

bidirectional chirp, and levitated magnet disc of Maglev system tracks the reference chirp 

signal. 

5.4.1 Maglev model 

Magnetic levitation system with following model equation [93] and parameters 

(listed in Table 5) have been used in this work: 

 𝑚�̈�1 + 𝑐1�̇�1 = 𝐹𝑢11 −𝑚𝑔 (5-4.1) 

 

                          Figure 5-1.Sampled-data robust feedback linearization 
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where 𝒚𝟏 is position of levitated magnet disc, and 𝑭𝒖𝟏𝟏 is repulsive magnetic force [93] 

acting on disc due to current coil: 

𝑭𝒖𝟏𝟏 =
𝒖

𝟏, 𝟔𝟓(𝒚𝟏 + 𝟔. 𝟐)𝟒
 

u is input voltage applied to coil. State space representation of Equation (5-4.1) is: 

�̇�1 = 𝑥2 

        �̇�2 =
𝑢

0.198(𝑥1 + 6.2)4
− 9.8 − 9.7275𝑥2 

                                                                    𝒚 = 𝒙𝟏                                                     (5-4.2) 

𝒙𝟏 and 𝒙𝟐 (position and velocity) are two states of Maglev system  (𝒏 = 𝟐). 𝒚 = 𝒙𝟏 is the 

output of system. For given output and Maglev system model Equation (5-4.2), relative 

degree 𝝆 = 𝟐. As 𝒏 = 𝝆, no unobservable state exists for Equation (5-4.2), and hence it 

has no zero dynamics and is minimum phasesystem by default [91]. The system Equation 

(5-4.2) is transformed into state space error model for tracking control. With 

𝑒1 = 𝑥1 − 𝑟 

                                                                𝒆𝟐 = 𝒙𝟐 − �̇� (as �̇�𝟏 = 𝒙𝟐)                           (5-4.3) 

error model obtained is: 

�̇�1 = 𝑒2 

�̇�2 =
𝑢

0.198(𝑒1 + 𝑟 + 6.2)4
− 9.8 − 9.7275(𝑒2 + �̇�) − �̈� 

where 𝑟 is the reference (chirp) signal, 𝑓(𝑒) and input gain 𝑔(𝑒) is: 

                                                          𝑓(𝑒) = −9.8 − 9.7275(𝑒2 + �̇�) − �̈�                         (5-4.4)                             

 

𝑔(𝑒1) =
1

0.198(𝑒1 + 𝑟 + 6.2)4
 

TABLE 5. MAGNETIC LEVITATION SYSTEM PARAMETERS 

Name Symbol Value / Unit 

Mass of magnet    m 0.12 kg 

Acceleration due to gravity     g 9.8 ms−2 

Coefficient of viscosity 𝑐1              1.1673 
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5.4.2 Observer, controller and plant initialization 

The discrete-time robust observer Eqaution (5-3.2) uses discrete input 𝑢[𝑘] and 

𝑒1[𝑘] (𝑒1[𝑘] = 𝑦[𝑘] − 𝑟[𝑘]) in the configuration shown in Figure 5-1, and estimates drift 

term 𝑓 and  �̂�2 such that 𝑓 → 𝑓(∙) in Equation (5-4.4), and �̂�2 → 𝑥2 using Equation (5-4.3) 

in finite time. 

From Equation (5-3.2), Euler approximate discrete-time robust observer for given 

error model of Maglev system is: 

�̂�1,𝑘 = �̂�1,𝑘−1 + 𝑇{−𝜆3𝐿
1 3⁄ |�̂�1,𝑘−1 − 𝑒1,𝑘−1|

2 3⁄
𝑠𝑖𝑔𝑛(�̂�1,𝑘−1 − 𝑒1,𝑘−1]) + �̂�2,𝑘−1} 

�̂�2,𝑘 = �̂�2,𝑘−1 + 𝑇{𝑓1,𝑘−1 + 𝑔(𝑒1,𝑘−1)𝑢} 

𝑓1,𝑘−1 = −𝜆2𝐿
1 2⁄ |�̂�2,𝑘−1 − �̂�1,𝑘−1|

1 2⁄
𝑠𝑖𝑔𝑛(�̂�2,𝑘−1 − �̂�1,𝑘−1) + �̂�3,𝑘−1 

                                                �̂�3,𝑘 = �̂�3,𝑘−1 +  𝑇{−𝜆1𝐿𝑠𝑖𝑔𝑛(�̂�3,𝑘−1 − 𝑓1,𝑘−1)}                (5-4.5) 

Discrete robust feedback linearization control law implemented for Maglev system 

based on Emulation Design procedure: 

𝑢[𝑘] =
1

𝑔(𝑒1[𝑘])
(−𝑓[𝑘] − 𝑘1𝑒1[𝑘] − 𝑘2�̂�2[𝑘]) 

where 𝑓[𝑘] and �̂�2[𝑘] are estimated by observer and 

𝑔(𝑒1[𝑘]) =
1

0.198(𝑒1[𝑘] + 𝑟[𝑘] + 6.2)4
 

For Euler approximate discrete-time robust observer (5-4.5) 𝜆1 = 10, 𝜆2 = 3200 and 𝜆3 =

3200 (designed as suggested in [94]). Lipschitz constant 𝐿 = 1 and 

                                            �̂�1,𝑘=0 = 0, �̂�2,𝑘=0 = 0, �̂�3,𝑘=0 = 0                                 (5-4.6) 

The performance of discrete robust observer Equation (5-4.5) for sampling period  

𝑇 = 0.001𝑠𝑒𝑐. and 𝑇 = 0.01𝑠𝑒𝑐.  is studied in computer simulations. Controller gains 

𝑘1 = 1.72 and 𝑘2 = 0.065 are designed using pole placement method such that 𝐴 − 𝐵𝐾 is 

Hurwitz. Matrices 𝐴 and 𝐵 are obtained by linearization of Equation (5-4.2) at 0.05 (bias 

value of reference chirp signal). 

Maglev system in Equation (5-4.2) is initially at (position) 𝑥1 = 0.03 meter and 

(velocity) 𝑥2 = 0. This initial condition of system is different from observer initialization 

Equation (5-4.6). Output 𝑦 = 𝑥1, i.e. position of levitated magnet disc tracks reference 
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bidirectional chirp signal of  0.03 meter amplitude, 0.05 bias and frequency 37.68 rad/sec. 

Additive white Gaussian noise of variance 10−7 and 10−5 is added as process noise and 

measurement noise respectively. 

5.4.3 Results discussion 

Reference trajectory and position of Maglev levitated magnet disc, both are plotted 

in Figure 5-2 for a simulation duration of 80 seconds. The tracking simulation is performed 

with a sampling period 𝑇 = 0.001𝑠𝑒𝑐. for discrete observer and controller. 

The levitated magnet disc considerably tracks bidirectional chirp trajectory of 

0.03meter amplitude, 0.05 bias and 37.68 rad/sec frequency. Initial tracking error (value 

of 10−1), which is due to different initial condition of observer Equation (5-4.5) and 

Maglev Equation (5-4.2), (and also because of different bias value for reference trajectory,) 

settles to a constant reduced value as can be seen in Figure 5-2 (simulation duration 72−80 

seconds). 

Tracking error plot is shown in Figure 5-3. Error plot is obtained by difference of 

reference chirp trajectory and position of levitated magnet disc. Tracking error remains 

within range of 10−2 for sampling period 𝑇 = 0.001𝑠𝑒𝑐. as shown in Figure 5-3. 

Figure 5-4 demonstrates effect of increasing sampling period 𝑇 on performance of 

discrete observer Equation (5-4.5). In general, Euler approximate discrete-time model is a 

good approximation of exact model typically only for smaller values of 𝑇 [89]. The 

tracking error increases and reaches value of 10−1 when sampling period is increased from 

𝑇 = 0.001𝑠𝑒𝑐. to 𝑇 = 0.01𝑠𝑒𝑐. Also, as output / system dynamics of Maglev system are 

changing at a higher rate (tracking chirp trajectory of 37.68 rad/sec frequency) as compared 

with DC motor system (discussed in next section), increasing sampling period adversely 

affects performance of discrete observer Equation (5-4.5). 

5.5 Computer Simulations: DC Motor System 

As a second example to demonstrate the performance of observer Eqaution (5-3.2) 

and control law Equation (5-3.3), a DC motor system is considered. The motor shaft speed 

tracks a sinusoidal reference shaft speed signal (trajectory). 
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5.5.1 DC motor model 

DC motor with following model equation and parameters (listed in Table 6) have 

been currently used. A nonlinear DC motor model given in appendix A has also been used 

in another work.  

 

 

Figure 5-2. Levitated magnet disc of Maglev tracking a reference bidirectional chirp 

(37.68 rad/sec) trajectory. Sampling period T = 0.001sec. 
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Figure 5-3. Maglev tracking error plot for reference bidirectional chirp (37.68 

rad/sec) trajectory. Sampling period T = 0.001sec. 

                  

Figure 5-4. Maglev tracking error plot for reference bidirectional chirp (37.68 

rad/sec) trajectory. Sampling period T = 0.01sec. 
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 𝐿𝑜
𝑑𝑖

𝑑𝑡
= 𝑢 − 𝑅𝑖 − 𝐾𝑒𝜔 

   𝐽
𝑑𝜔

𝑑𝑡
= 𝐾𝑡𝑖 − 𝜏𝑙 (5-5.1) 

where u is input voltage, 𝜔 and i are shaft speed and armature current respectively. 𝜏𝑙 =

𝐵𝜔 is motor load torque. State space representation of Equation (5-5.1) is: 

�̇�1 = 8𝑥2 − 10𝑥1 

�̇�2 = 66.67𝑢 − 33.33𝑥2 − 0.067𝑥1 

                                                                 𝑦 = 𝑥1                                                        (5-5.2)                                                                              

𝑥1 and 𝑥2 (shaft speed and armature current) are two states of DC motor (𝑛 = 2). 𝑦 = 𝑥1 

is the output of system. For given output and DC motor model Equation (5-5.2), relative 

degree𝜌 = 2.As 𝑛 = 𝜌, no unobservable state exists for Equation (5-5.2), and hence it has 

no zero dynamics and is minimum phasesystem by default [91]. 

The system Equation (5-5.2) is transformed into GCCF error model to achieve 

tracking using control law Equation (5-3.3). With  

𝑒1 = 𝑟 − 𝑥1 

                                      𝑒2 = �̇� − 8𝑥2 + 10𝑥1  (as �̇�1 = 8𝑥2 − 10𝑥1)                           (5-5.3)                              

GCCF error model obtained is: 

�̇�1 = 𝑒2 

�̇�2 = −333.836𝑒1 − 43.33𝑒2 + 333.836𝑟 + 43.33�̇� + �̈� − 533.36𝑢 

where 𝑟 is the sinusoidal reference shaft speed, 𝑓(𝑒) and input gain 𝑏𝑜 is: 

 

TABLE 6. DC MOTOR PARAMETERS 

Name Symbol Value / Unit 

Inertia of motor rotor and load J 0.001 𝑘𝑔𝑚2 

Armature resistance R 0.5 Ω 

Armature inductance Lo            15 𝑚H 

Back-emf constant Ke              0.001 𝑉𝑟𝑎𝑑−1 

Torque constant Kt             0.008 𝑁𝑚𝐴−1 

Coefficient of viscous friction B         0.01 𝑁𝑚𝑠𝑟𝑎𝑑−1 
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                               𝑓(𝑒) = −333.836𝑒1 − 43.33𝑒2 + 333.836𝑟 + 43.33�̇� + �̈�               (5-5.4)                                                                                  

                    𝑏𝑜 = −533.36 

5.5.2 Observer, controller and plant initialization 

The discrete-time robust observer Equation (5-3.2) uses discrete input 𝑢[𝑘] and 

𝑒1[𝑘] (𝑒1[𝑘] = 𝑟[𝑘] − 𝑦[𝑘]) in the configuration shown in Figure 5-1, and estimates drift 

term 𝑓 and  �̂�2 such that 𝑓 →  𝑓(∙) in (5-5.4), and �̂�2 → 𝑥2 using Equation (5-5.3) in finite 

time. 

From Equation (5-3.2), Euler approximate discrete-time robust observer for given error 

model of DC motor: 

�̂�1,𝑘 = �̂�1,𝑘−1 + 𝑇{−𝜆3𝐿
1 3⁄ |�̂�1,𝑘−1 − 𝑒1,𝑘−1|

2 3⁄
𝑠𝑖𝑔𝑛(�̂�1,𝑘−1 − 𝑒1,𝑘−1]) + �̂�2,𝑘−1} 

�̂�2,𝑘 = �̂�2,𝑘−1 + 𝑇{𝑓1,𝑘−1 + 𝑏𝑜𝑢} 

𝑓1,𝑘−1 = −𝜆2𝐿
1 2⁄ |�̂�2,𝑘−1 − �̂�1,𝑘−1|

1 2⁄
𝑠𝑖𝑔𝑛(�̂�2,𝑘−1 − �̂�1,𝑘−1) + �̂�3,𝑘−1 

                                     �̂�3,𝑘 = �̂�3,𝑘−1 +  𝑇{−𝜆1𝐿𝑠𝑖𝑔𝑛(�̂�3,𝑘−1 − 𝑓1,𝑘−1)}                          (5-5.5) 

Discrete robust feedback linearization control law implemented for DC motor based 

on Emulation design procedure: 

𝑢[𝑘] =
1

𝑏𝑜
(−𝑓[𝑘] − 𝑘1𝑒1[𝑘] − 𝑘2�̂�2[𝑘]) 

where 𝑓[𝑘] and �̂�2[𝑘] are estimated by observer and 

𝑏𝑜 = −533.36 

For Euler approximate discrete-time robust observer Equation (5-5.5) 𝜆1 = 1, 𝜆2 =

9 and 𝜆3 = 25 (designed as suggested in [94]). These observer parameters are tuned at 

smaller values as compared with parameters (𝜆1 = 10, 𝜆2 = 3200, 𝜆3 = 3200) of 

observer Equation (5-4.5), because for the case of Maglev system, the discrete-time 

observer estimates for a faster changing output / system dynamics (chirp trajectory of 37.68 

rad/secfrequency). Whereas for DC motor, discrete-time observer estimates and shaft 

speed (output) tracks reference speed signal of comparatively lower frequency (1.57 

rad/sec.). Also for Equation (5-5.5) Lipschitz constant𝐿 = 1 and 

                                              �̂�1,𝑘=0 = 0, �̂�2,𝑘=0 = 0, �̂�3,𝑘=0 = 0                               (5-5.6) 
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The performance of discrete robust observer Equation (5-5.5) for sampling period 

𝑇 = 0.0001𝑠𝑒𝑐., 𝑇 = 0.001𝑠𝑒𝑐.  and 𝑇 = 0.01𝑠𝑒𝑐. is investigated in computer 

simulations. Controller gains 𝑘1 = 9 and 𝑘2 = 6 are designed using pole placement (two 

poles are placed at −3,−3) method such that 𝐴 − 𝐵𝐾 is Hurwitz. Matrices 𝐴 and 𝐵 are 

obtained by linearization of Equation (5-5.2) at 0 (bias value of reference shaft speed). 

DC motor in Equation (5-5.2) is initially at (shaft speed) 𝑥1 = 0 and (armature 

current) 𝑥2 = 0. Output 𝑦 = 𝑥1, i.e. motor shaft speed tracks sinusoidal reference shaft 

speed of 0.02 amplitude, 0 bias and frequency 1.57 rad/sec. Additive white Gaussian noise 

of variance 10−7 and 10−5is added as process noise and measurement noise respectively. 

5.5.3 Results discussion 

Reference signal and DC motor shaft speed, both are plotted in Figure 5-5 for 

asimulation duration of 80 seconds. Tracking simulation is performed with a sampling 

period 𝑇 = 0.001𝑠𝑒𝑐. for discrete controller and observer Equation (5-5.5). Motor shaft 

speed tracks reference speed signal (sine wave) of 0.02 amplitude, 0 bias and 1.57 rad/sec 

frequency. Shaft speed tracks reference speed signal from the beginning (simulation 

duration 0−8 seconds) to the end (simulation duration 72−80 seconds) of simulation as 

can be seen in Figure 5-5. 

Tracking error plot is shown in Figure 5-6. Error plot is obtained by difference of 

reference speed signal and motor shaft speed. Tracking error remains within range of 10−3 

for sampling period 𝑇 = 0.001𝑠𝑒𝑐. as shown in Figure 5-6.  

Euler approximate discrete observer Equation (5-5.5) for DC motor, when tuned 

demonstrates lower tracking error as compared to tuned discrete observer Equation (5-4.5) 

for Maglev system at same sampling period 𝑇 = 0.001𝑠𝑒𝑐. This is because, observer 

Equation (5-5.5) estimates system dynamics which change at a lower rate (reference signal 

frequency 1.57 rad/sec) as compared with observer Equation (5-4.5), which estimates 

faster changing (reference signal frequency 37.68 rad/sec) output / system dynamics. 

Figure 5-7 demonstrates effect of increasing sampling period 𝑇 on performance of 

discrete observer Equation (5-5.5). The tracking error only slightly increases from 

2 × 10−3 to 4 × 10−3 when sampling period is increased from 𝑇 = 0.001𝑠𝑒𝑐. to 𝑇 =

0.01𝑠𝑒𝑐. As the motor shaft speed is changing at a lower rate, increasing sampling period 
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slightly affects the performance of observer Equation (5-5.5). On further increasing 

sampling period of observer  

 

 

Figure 5-5. DC motor shaft speed tracking a reference sine (1.57 rad/sec) signal. 

Sampling period T = 0.001sec.  
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Figure 5-6. Shaft speed tracking error plot for reference sine (1.57 rad/sec) signal. 

Sampling period T = 0.001sec. 

 

Figure 5-7.  Shaft speed tracking error plot for reference sine signal with i) T = 

0.01sec. ii) T = 0.1sec. iii) T = 0.1sec. and retuned 𝝀𝟏, 𝝀𝟐, 𝝀𝟑. 
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Equation (5-5.5) and controller to𝑇 = 0.1𝑠𝑒𝑐., the tracking error crosses value of 

5 × 10−3. This tracking error is reduced when observer Equation (5-5.5) parameters (𝜆1 =

1, 𝜆2 = 45, 𝜆3 = 90) are retuned, and simulation is performed again at sampling period 

𝑇 = 0.1𝑠𝑒𝑐. (as can be seen in Figure 7-7).  

Simulation results suggests that increasing sampling period more adversely affects 

tracking results of Maglev system than that of DC motor. This is because of faster changing 

output / system dynamics of Maglev system as compared with DC motor. 

5.6 Tracking in Presence of Disturbance & Parameters Perturbation 

In this section tracking performance is demonstrated for robust feedback 

linearization controller Equation (5-3.3) and Euler approximate discrete robust observer 

Equation (5-3.2) in presence of disturbance and parameter perturbation for Maglev system 

Equation (5-4.1). 

 

Figure 5-8. i) Disturbance force acting on lower magnet disc. ii) Maglev tracking error 

plot for reference bidirectional chirp (37.68 rad/sec) trajectory in presence of 

disturbance. Sampling period T = 0.001sec.  
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5.6.1 Tracking in presence of disturbance 

Maglev system dynamics as modeled in [93] is given by Equation (5-4.1). Where 

𝑦1 is position and 𝑚 is mass of levitated magnet disc. 𝑚�̈�1 is force (in direction of �̈�1) 

acting on disc due to acceleration �̈�1, 𝑚𝑔 is weight (force) acting downwards, and force 

due to friction is given by 𝑐1�̇�1. 

The levitated magnet disc moves (levitates) on a vertical glass guide rod. A 

repulsive magnetic force 𝐹𝑢11 acts on levitated disc by energizing (lower) drive coil. Height 

of levitated disc increases on increasing drive coil current and vice versa. 

A disturbance (repulsive) force acts on the levitated magnet disc (lower) if a second 

(upper) magnet disc is stacked on top of lower disc. Both discs move (levitate) on the 

vertical glass guide rod. Upper magnet disc is stacked on top of lower such that both  

magnet discs have similar pole close to one another. Upper disc levitates and moves under 

influence of magnetic force from upper (second) drive coil. 

 

 

Figure 5-9. Maglev tracking error plot for reference bidirectional chirp (37.68 

rad/sec) trajectory in face of parameters perturbation. Sampling period T = 0.001sec. 
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The disturbance (repulsive) force acting on lower disc due to upper disc levitation 

(movement) is given by [93]: 

 𝐹𝑚12 =
2.69

(0.12 + 𝑦2 − 𝑦1 + 4.2)4
 (5-6.1) 

which depends on positions (𝑦1and 𝑦2) of lower and upper levitated magnet discs.  

Furthermore in this work, performance of robust feedback linearization controller 

and observer Equation (5-4.5) is demonstrated for tracking (sampling period 𝑇 =

0.001𝑠𝑒𝑐.) a chirp trajectory (0.03meter amplitude, 0.05 bias and 37.68 rad/secfrequency) 

by lower (first) magnet disc in presence of disturbance force Equation (5-6.1). Upper 

(second) magnet disc is made to track a sine trajectory (0.01meter amplitude and 18.84 

rad/secfrequency) using second drive coil; and upper disc position 𝑦2 (while tracking sine 

trajectory) determines 𝐹𝑚12 in Equation (5-6.1). 

Disturbance force acting on lower levitating magnet disc is shown in Figure 5-8, 

which has approximate mean and frequency of 0.14 N and 37.68 rad/sec respectively. 

Tracking error of lower levitating magnet disc in presence of this disturbance force is also 

shown in Figure 5-8. It can be seen that tracking error value in both Figure 5-8 and Figure 

5-3 is considerably same, which demonstrates robust behavior of observer Equation (5-4.5) 

and controller Eqaution (5-3.3) in presence of disturbance force.  

5.6.2 Tracking in face of parameters perturbation 

Equation (5-4.1) models Maglev system dynamics, where mass of levitated magnet 

disc is  𝑚 = 0.12𝑘𝑔 and coefficient of viscosity 𝑐1 = 1.1673 (from Table 5). Figure 5-9 

shows tracking error for chirp trajectory (37.68 rad/sec) at sampling period 𝑇 = 0.001𝑠𝑒𝑐. 

for +50% mass perturbation and +50% perturbation in value of coefficient of viscosity. 

Tracking error in both Figure 5-9 and Figure 5-3 is considerably same which demonstrates 

performance of presented sampled-data robust feedback linearization scheme. 

5.7 Conclusion 

In this chapter a robust feedback linearization scheme for nonlinear minimum phase 

systems has been presented. Approximate discrete model (based on Euler approximation) 

of higher order SMO has been successfully used in  simulation (tracking applications) for 
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magnetic levitation and DC motor systems. Simulation results show that performance of 

approximate discrete observer depends on sampling period and system dynamics.  

Next chapter presents CKF estimator based output feedback control scheme. 

Comparison of tracking performances exhibited by both sampled-data state feedback 

control, and sampled-data output feedback control in presence of external disturbance and 

parameters perturbation is also presented. Also in next chapter, tracking performance of 

SMO is compared with tracking performances of Kalman and SSRLS estimators based 

output feedback control schemes. 
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CHAPTER 9 

CONCLUSION  

 

 Back in year 2010-2011, and its subsequent years, Pakistan faced a persistent power 

crisis, which was a function of faulty transmission system, insufficient power 

generation, and increasing demand. There was no system intact to get real time grid 

performance data. Inefficient power dispatch and suboptimal utilization of 

generated power capacity were common practices. This resulted into nationwide 

electricity shortages. The current work funded under USAID Energy Policy 

program to upgrade Pakistan power system has been successfully completed. It has 

been accepted by power sector stakeholders as an important tool for grid 

monitoring, and electricity supply to consumer. The work has demonstrated its 

effectiveness in load-shedding reduction [35], and in optimal utilization of power 

generation capacity for PESCO as discussed in thesis.  

 The deployed telemetry solutions for IESCO and PESCO have helped in circuits 

(power transformers) load balancing and quick identification of malfunctioning 

grid station equipment. 

 The work presented in this thesis is an effort towards developing a detailed 

framework for forecasting short-term and long-term power requirements of 

electricity distribution companies of Pakistan. With the installation of system real-

time monitoring and logging of power data for distribution companies is already 

being carried out. The data from these systems can be used to learn model for power 

forecasting. The forecasted power values are useful for both National Transmission 

& Dispatch Company, and for the electricity distribution companies of Pakistan.  

 This project is a forward step towards achieving a planned transition for formation 

of a autonomous central power purchasing agency and an open power trading 

market in Pakistan. 

 Furthermore, the thesis has presented estimation based output feedback control 

schemes for nonlinear minimum phase systems, e.g magnetic levitation system, and 

DC motor system. The purpose of estimation work done in thesis is to implement 
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these state estimation and control schemes for active magnetic bearing and motor 

systems in electricity generation facilities of smart grid regime. Output feedback 

tracking schemes using following different estimators have been presented: 

1. Kalman estimators (Extended Kalman filter, Unscented Kalman filter and 

Cubature Kalman filter) 

2. State-Space Recursive Least Squares filter 

3. Sliding Mode observer 

4. Neural network-aided Unscented Kalman filter (neuro-estimator) 

5. Dual Unscented Kalman filter 

 The presented controllers are Emulation Design based discrete feedback 

linearization controller, and discrete-controller obtained by eigenvalues placement. 

 It has been demonstrated via computer simulations that output feedback control 

based on estimator is more robust to external disturbances and parameters 

perturbation as compared to state feedback control. 

 Output feedback tracking scheme for case of unknown plant model of nonlinear 

system have been presented using State-Space Recursive Least Squares filter. 

 Two robust feedback linearization schemes based on estimation have been 

presented. First scheme employs Euler approximate discrete-time Sliding Mode 

observer, whereas second scheme is based on neural network-aided Unscented 

Kalman filter. Simulation results demonstrate that feedback linearization based on 

Sliding Mode observer is more robust than feedback linearization scheme using 

neural network-aided Unscented Kalman filter. 

 Dual Unscented Kalman filter based output feedback control scheme has been 

presented for nonlinear systems with unknown system parameters. 

6.1 Recommendations for future work 

 Development of anomaly detection algorithm for electricity distribution company 

energy network. 

 Development of multivariate medium-term and long-term power forecasting 

frameworks. 



 

 

99 

 Implementation of state and parameter estimation algorithms, and output feedback 

controllers for active magnetic bearings in generator and motor of electricity 

generation facility.  

 Implementation of estimation based control schemes presented in Chapter 7 may 

be performed on magnetic levitation lab test bench. 

 In Chapter 6, Chapter 7 and Chapter 8 control schemes employ Kalman estimation 

and Emulation Design based discrete feedback linearization controller. 

Performances of control schemes based on Kalman estimation and other controller 

designing techniques may be explored. 

 Stability and convergence of Euler approximate discrete-time Sliding Mode 

observer discussed in Chapter 5, may be studied and proofed. 

 Other approximation techniques to obtain discrete-time observer from [89] may be 

studied. 

 Stability and convergence of NN-UKF estimator discussed in Chapter 7, may be 

studied. NN-UKF estimator employing Joint UKF technique for robust output 

feedback configuration may be explored. Also performance of NN-UKF estimator 

with control techniques other than feedback linearization be studied; and dynamic 

neural network may also be employed in NN-UKF implementation. 

 In Chapter 8, output feedback control employing dual UKF estimation is presented. 

Joint UKF estimation for state and parameter estimation in output feedback control 

be studied, and compared with dual UKF estimation. Also performance of dual 

UKF estimation with control techniques other than feedback linearization be 

studied; and dynamic neural network may also be employed in dual UKF state-

parameter estimation implementation.  

 Control schemes discussed in Chapter 5, Chapter 6, Chapter 7, and Chapter 8 are 

based on Emulation Design technique for discrete controller designing. These 

control schemes may be designed using Direct Discrete-time Design and Sampled-

data Design techniques for discrete controller designing.  
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APPENDIX A 

NONLINEAR DC MOTOR MODEL 

Dynamics of DC motor with a rigid arm attached are given by [84]: 

𝐽�̈� = 𝑘𝑐𝑢 − 𝐹 

where, θ represents shaft position, J is total moment of inertia of both rotor and arm, 𝑘𝑐 is 

motor input constant, and u is applied terminal voltage. F is unknown frictional torque, and 

can be represented by dynamical Lugre model [116]: 

𝐹 = 𝑧 + 𝜎1(𝜀0�̇�) + 𝜎2�̇� 

𝜀0�̇� = �̇� −
|�̇�|

𝑠(�̇�)
𝑧 

where, 𝜺𝟎 is reciprocal of average stiffness of bristles. 𝝈𝟏 is damping coefficient of bristles, 

whereas, 𝝈𝟐 is viscous friction. Stribeck curve, 𝒔(�̇�), is given as: 

𝑠(�̇�) =

{
 
 

 
 𝐹𝑐+ + (𝐹𝑠+ − 𝐹𝑐+)𝑒

−(�̇� 𝑣𝑠
⁄ )

2

  �̇� > 0

𝐹𝑐− + (𝐹𝑠− − 𝐹𝑐−)𝑒
−(�̇� 𝑣𝑠

⁄ )
2

  �̇� < 0

(𝑠(𝜃+) + 𝑠(𝜃−))
2
⁄                  �̇� = 0

 

𝑭𝒔± and 𝑭𝒄± are static and coulomb frictions respectively. 𝒗𝒔 is Stribeck velocity of motor. 

DC motor parameters along with nominal values are listed in following table. 

TABLE. DC MOTOR PARAMETERS 

Symbol Value / Unit 

J           0.095 𝑘𝑔𝑚2 

kc 2.5 

𝜎1 1.5Ns/m 

𝜎2 0.004Ns/m 

𝜀0 0.01 

𝐹𝑐+  0.023 kc N 

𝐹𝑐− 0.021 kc N 

𝐹𝑠+ 0.058 kc N 

𝐹𝑠− 0.052 kc N 

𝑣𝑠 0.01 m/s 
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APPENDIX B 

QUANTITATIVE PERFORMANCE COMPARISON OF 

ESTIMATION BASED OUTPUT FEEDBACK CONTROL SCHEMES  

 

Quantitative performance analysis of earlier discussed output feedback control schemes is 

obtained by implementing tracking control for Maglev system. A step reference of zero 

bias, and 10 cm (0.1m) amplitude is applied (for Maglev lower levitating disc), and 

performance of each scheme (estimator + feedback linearization controller) is observed. 

Response analysis parameters (% overshoot, settling time, mean squared error) for Maglev 

output (position of lower levitating disc) to step reference are obtained from pictorial view. 

In simulation, initial condition (values) for both plant states and estimator are assumed 

zero. Measurement noise ± 0.75 cm is simulated as additive white Gaussian noise 

(AWGN). % overshoot, settling time and mean squared error for previously discussed 

schemes is tabulated in Table 1. Whereas, % overshoot, settling time and mean squared 

error in presence of disturbance is tabulated in Table 2. Disturbance force is shown in 

Figure 2. In Table 3, % overshoot, settling time and mean squared error are tabulated for 

output feedback control schemes using UKF and neural network-aided UKF estimators in 

presence of disturbance force shown in Figure 3.  
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TABLE 1 

Feedback 

linearization 

controller (FLC)  

Incorporates 

noise 

information  

% Over shoot  Settling time (ms). 

3% criteria  

Mean squared error 

(cm)  

FLC + State 

feedback  

NA  2.3†  ~ 0†  0.161†  

FLC + Sliding 

mode observer  

No       1.8**     ~ 0**       0.231**  

FLC + SSRLS 

estimator  

No  2.4  2.2  0.390  

FLC + EKF 

estimator  

Yes  1.8  ~ 0  0.162  

FLC + UKF 

estimator  

Yes  3  2.5  0.479 

FLC + CKF 

estimator  

Yes  1.8  ~ 0  0.169  

FLC + (State- 

parameterˠ 

estimation)  

Yes  4.6 (m˳=0.09) 

6.8 (m˳=0.05) 

9.1 (m˳=0.01)  

5 

8.3 

11  

0.676 

0.921 

1.258  

 

 

 

† similar simulation conditions, except, measurement noise ± 0.1 cm simulated as additive 

white Gaussian noise (AWGN).  

** for step reference. See Figure 1. 

ˠ actual mass of Maglev disc 0.12kg, m˳= parameter (mass) initial estimate. 
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TABLE 2 

Feedback 

linearization 

controller 

(FLC) 

Incorporates 

noise 

information  

% Over shoot  Settling time 

(ms). 3% criteria  

Mean squared error 

(cm)  

FLC + State 

feedback  

NA  -70†  > 20†  1.50019  

FLC + 

Sliding mode 

observer  

No       1.8**     ~ 0**       0.232**  

FLC + 

SSRLS 

estimator  

No  -80  > 20  1.82  

FLC + UKF 

estimator  

Yes  5.5  8.75  0.769  

 

 

 

 

 

 

 

† similar simulation conditions, except, measurement noise ± 0.1 cm simulated as additive 

white Gaussian noise (AWGN).  

** for step reference. See Figure 1. 
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TABLE 3 

Feedback 

linearization 

controller 

(FLC) 

Incorporates 

noise 

information  

% Over shoot  Settling time 

(ms). 3% criteria  

Mean squared error 

(cm) 

FLC + UKF 

estimator  

Yes  58  > 20  3.18 

FLC + NN-

aided UKF  

Yes  6.2  9.5  0.98 
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Figure 1. Step reference & Maglev output for sliding mode observer 
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Figure 2. Disturbance force for Table 2 simulation results 

 

 

 

 

 

 

 

 

 



 

 

107 

 

Figure 3. Disturbance force for Table 3 simulation results 
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