
Summary of Contents

Preface . xvii

1. An Introduction to SQL . 1

2. An Overview of the SELECT Statement . 23

3. The FROM Clause . 35

4. The WHERE Clause . 73

5. The GROUP BY Clause . 103

6. The HAVING Clause . 125

7. The SELECT Clause . 133

8. The ORDER BY Clause . 161

9. SQL Data Types . 183

10. Relational Integrity . 211

11. Special Structures . 237

A. Testing Environment . 253

B. Sample Applications . 259

C. Sample Scripts . 265

D. SQL Keywords . 285

Index . 287

SIMPLY SQL
BY RUDY LIMEBACK

Simply SQL
by Rudy Limeback

Copyright © 2008 SitePoint Pty. Ltd.

Editor: Kelly SteeleExpert Reviewer: Joe Celko

Index Editor: Russell BrooksTechnical Editor: Andrew Tetlaw

Cover Design: Alex WalkerTechnical Editor: Dan Maharry

Managing Editor: Chris Wyness

Technical Director: Kevin Yank

Latest Update: September 2010Printing History:

First Edition: December 2008

Notice of Rights
All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted

in any form or by any means, without the prior written permission of the publisher, except in the case

of brief quotations embodied in critical articles or reviews.

Notice of Liability
The author and publisher have made every effort to ensure the accuracy of the information herein.

However, the information contained in this book is sold without warranty, either express or implied.

Neither the authors and SitePoint Pty. Ltd., nor its dealers or distributors, will be held liable for any

damages caused either directly or indirectly by the instructions contained in this book, or by the software

or hardware products described herein.

Trademark Notice
Rather than indicating every occurrence of a trademarked name as such, this book uses the names only

in an editorial fashion and to the benefit of the trademark owner with no intention of infringement of

the trademark.

Published by SitePoint Pty. Ltd.

48 Cambridge Street

Collingwood VIC Australia 3066

Web: www.sitepoint.com

Email: business@sitepoint.com

ISBN 978-0-9804552-5-0

Printed and bound in the United States of America

iv

About the Author

Rudy Limeback is a semi-retired SQL Consultant living in Toronto, Canada. His broad SQL

experience spans more than 20 years, and includes working with DB2, SQL Server, Access,

Oracle, and MySQL. He’s an avid participant in discussion forums, primarily at SitePoint

(http://sitepoint.com/forums/). His two web sites are http://r937.com/ for SQL and

http://rudy.ca/ for personal stuff. When not glued to his computer, Rudy enjoys playing touch

football and frisbee golf.

About the Expert Reviewer

Joe Celko served ten years on ANSI/ISO SQL Standards Committee and contributed to the

SQL-89 and SQL-92 standards. He is the author of seven books on SQL for Morgan Kaufmann,

and has written over 800 columns in the computer trade and academic press, mostly dealing

with data and databases.

About the Technical Editors

Andrew Tetlaw has been tinkering with web sites as a web developer since 1997. Before that,

he worked as a high school English teacher, an English teacher in Japan, a window cleaner,

a car washer, a kitchen hand, and a furniture salesman. Andrew is dedicated to making the

world a better place through the technical editing of SitePoint books and kits. He’s also a

busy father of five, enjoys coffee, and often neglects his blog at http://tetlaw.id.au/.

Dan Maharry is a senior developer for Co-operative Web, a software development workers

co-op based in the UK. He specializes in working with new technologies and has been

working with .NET since its first beta. Dan lives with his lovely wife Jane and a rose bush

that’s trying to engulf his house.

About SitePoint

SitePoint specializes in publishing fun, practical, and easy-to-understand content for web

professionals. Visit http://www.sitepoint.com/ to access our books, newsletters, articles, and

community forums.

v

http://sitepoint.com/forums/
http://r937.com/
http://rudy.ca/
http://tetlaw.id.au/
http://www.sitepoint.com/

To my children, Dieter, Damon,

Anna, and Eric, my

granddaughters Claire and Norah,

and to my Mom.

Table of Contents

Preface . xvii

Who Should Read This Book? . xvii

The Challenges to Learning SQL . xviii

What’s in This Book? . xix

How to Gain Help . xxi

The SitePoint Forums . xxii

The Book’s Web Site . xxii

The SitePoint Newsletters . xxiii

Your Feedback . xxiii

Conventions Used in This Book . xxiii

Code Samples . xxiii

Tips, Notes, and Warnings . xxiv

Acknowledgments . xxv

Chapter 1 An Introduction to SQL 1

SQL Statement Overview . 1

Keywords, Identifiers, and Constants . 2

Clauses . 4

Syntax . 5

Data Definition Language . 6

CREATE, ALTER, and DROP . 7

Starting Over . 10

Data Manipulation Language . 11

INSERT, UPDATE, and DELETE . 12

The SELECT Statement . 18

Standard SQL . 20

Read The Fine Manual . 21

Wrapping Up: an Introduction to SQL . 22

Chapter 2 An Overview of the SELECT
Statement . 23

The SELECT Statement . 23

The SELECT and FROM Clauses . 24

Content Management System . 25

The WHERE Clause . 28

The GROUP BY and HAVING Clauses . 29

The ORDER BY Clause . 32

Wrapping Up: the SELECT Statement . 33

Chapter 3 The FROM Clause . 35

Why Start with the FROM Clause? . 36

Parsing an SQL Statement . 36

FROM One Table . 37

FROM More than One Table Using JOINs . 37

Types of Join . 38

The Inner Join . 39

Outer Joins . 40

The Cross Join . 44

Real World Joins . 46

Inner Join: Categories and Entries . 48

Left Outer Join: Categories and Entries . 56

Right Outer Join: Categories and Entries . 61

Full Outer Join: Categories and Entries . 63

Views . 67

Views in Web Development . 69

Subqueries and Derived Tables . 70

x

Wrapping Up: the FROM Clause . 71

Chapter 4 The WHERE Clause . 73

Conditions . 74

Conditions that are True . 74

When “Not True” is Preferable . 75

Shopping Carts . 76

Conditions that Evaluate as UNKNOWN . 79

Operators . 79

Comparison Operators . 79

The LIKE Operator . 82

The BETWEEN Operator . 83

Compound Conditions with AND and OR . 86

Truth Tables . 87

Combining AND and OR . 89

IN Conditions . 91

IN with Subqueries . 92

Correlated Subqueries . 93

EXISTS Conditions . 96

NOT IN or NOT EXISTS? . 98

WHERE Clause Performance . 99

Indexes . 100

Wrapping Up: the WHERE Clause . 102

Chapter 5 The GROUP BY Clause 103

Grouping is More than Sequencing . 104

Out of Many, One . 109

Drill-down SQL . 113

GROUP BY in Context . 114

How GROUP BY Works . 115

xi

Group Rows . 115

Rules for GROUP BY . 117

Columns with Certain Large Data Types . 117

Wrapping Up: the GROUP BY . 122

Chapter 6 The HAVING Clause . 125

HAVING Filters Group Rows . 125

HAVING without a GROUP BY Clause . 128

Wrapping Up: the HAVING Clause . 132

Chapter 7 The SELECT Clause . 133

SELECT in the Sequence of Execution . 134

Which Columns Can Be Selected? . 135

Detail Rows . 135

Group Rows . 136

The Discussion Forum Application . 138

The forums Table . 139

The members Table . 139

The threads Table . 139

The posts Table . 140

Functions . 140

Aggregate Functions . 141

Scalar Functions . 149

Operators . 154

Numeric Operators . 154

The Concatenation Operator . 154

Temporal Operators . 155

The Dreaded, Evil Select Star . 156

SELECT DISTINCT . 157

Wrapping Up: the SELECT Clause . 159

xii

Chapter 8 The ORDER BY Clause 161

ORDER BY Syntax . 162

How ORDER BY Works . 162

ASC and DESC . 164

ORDER BY Clause Performance . 167

The Sequence of Values . 168

The Scope of ORDER BY . 173

Using ORDER BY with GROUP BY . 175

ORDER BY Expressions . 176

Special Sequencing . 176

ORDER BY with UNION Queries . 178

Wrapping Up: the ORDER BY Clause . 182

Chapter 9 SQL Data Types . 183

An Overview of Data Types . 184

Numeric Data Types . 185

Integers . 185

Decimals . 187

Floating-point Numbers . 191

Conversions in Numeric Calculations . 193

Numeric Functions . 193

Character Data Types . 194

CHAR . 194

VARCHAR . 195

Numeric or Character? . 196

NCHAR and NVARCHAR . 198

CLOB and BLOB . 198

String Functions . 199

Temporal Data Types . 200

DATE . 200

xiii

TIME . 203

TIMESTAMP . 205

Intervals . 206

Date Functions . 207

Column Constraints . 208

NULL or NOT NULL . 208

DEFAULT . 209

CHECK Constraints . 209

Wrapping Up: SQL Data Types . 210

Chapter 10 Relational Integrity . 211

Identity . 212

Data Modelling . 212

Entities and Attributes . 213

Entities and Relationships . 214

Primary Keys . 219

UNIQUE Constraints . 221

Foreign Keys . 224

How Foreign Keys Work . 225

Using Foreign Keys . 226

Natural versus Surrogate Keys . 232

Autonumbers . 234

Wrapping Up: Relational Integrity . 235

Chapter 11 Special Structures . 237

Joining to a Table Twice . 237

Joining a Table to Itself . 240

Implementing a Many-to-many Relationship: Keywords 246

Wrapping Up: Special Structures . 251

xiv

Appendix A Testing Environment 253

Download Your Database System Software . 253

Bookmark or Download the SQL Reference . 254

Connect to the Database System . 255

Command Line . 255

Front-end Applications . 255

SQL Script Library . 256

Performance Problems and Obtaining Help . 257

Obtaining the Execution Plan . 257

Seeking Help . 258

Indexing . 258

Appendix B Sample Applications 259

Data Model Diagrams . 259

Teams and Games . 260

Content Management System . 261

Discussion Forums . 262

Shopping Carts . 263

Appendix C Sample Scripts . 265

Teams and Games . 266

The teams Table . 266

The games Table . 267

Content Management System . 268

The entries Table . 268

The categories Table . 270

The entries_with_category View . 272

The contents Table . 272

The comments Table . 273

xv

The entrykeywords Table . 274

Discussion Forums . 275

The forums Table . 275

The members Table . 275

The threads Table . 276

The posts Table . 276

Shopping Carts . 279

The items Table . 279

The customers Table . 281

The carts Table . 282

The cartitems Table . 283

The vendors Table . 284

Appendix D SQL Keywords . 285

Index . 287

xvi

Preface
This book is about SQL, the Structured Query Language.

SQL is the language used by all major database systems today. SQL has been around

for about 30 years, but is enjoying a real renaissance in the 21st century, thanks to

the tremendous success of database-driven web sites.

Whether your web site is written in PHP, ASP, Perl, ColdFusion, or any other pro-

gramming language, and no matter which database system you want to use—MySQL,

PostgreSQL, SQL Server, DB2, Oracle, or any of the others—one fact is almost certain:

if you want to have database-driven content, you’ll need to use SQL.

SQL is a simple, high-level language with tremendous power. You can perform

tasks with a few lines of SQL that would take pages and pages of intricate coding

to accomplish in a programming language.

Who Should Read This Book?
If you’re a web designer or developer looking for guidance in learning SQL for your

web projects, this book is for you.

In the early days of the Web, everyone was a web developer. Nowadays, the field

has matured to the point where many different disciplines exist. Two broad categor-

ies emerged:

■ Web designers are responsible for what web site visitors see. This includes the

design, graphics, and layout of the site. It also includes designing the function-

ality of the site, how it works, with considerations for the usability of site features.

■ Web developers are responsible for the code behind the site. This includes the

HTML, CSS, and JavaScript that make the site functional. In addition, web de-

velopers handle scripting languages such as PHP, which are used to automate

the production of HTML and other code. Scripting languages enable dynamic

web site interaction, and are used to communicate with the database.

If you’re a web designer, you can benefit from learning SQL—at least at a rudimentary

level—because it will help you design better user interactions. Understanding how

SQL works means that you can make life simpler for the developers who will im-

plement your designs: by ensuring that the web site is organized in a way that not

only serves the web site visitor, but also allows for simple SQL and good database

design. We’ll cover both SQL and database design in this book.

Web developers are the primary audience for the book. Using several simple web

application examples, we’ll explore all aspects of SQL and database design that are

required by web developers to develop efficient and effective web pages. The sample

applications in this book really are quite simple, and you may already be familiar

with one or more of them, just by using them on the Web.

Of course, database use goes beyond dynamic web sites. For example, databases are

also used in desktop and network applications. So even if you’re working with a

non-web-related application, the chances are good that you’re still working with a

database that uses SQL. The SQL you learn in this book can be applied in all situ-

ations where a database is used.

The Challenges to Learning SQL
We are confronted with insurmountable opportunities.

—Pogo

I first learned SQL in the late 1980s. At that time, there were no books on SQL, nor

web site SQL tutorials because the Web was yet to arrive. I learned by practicing,

and by reading the manual. In the 1990s, I solidified my own understanding of SQL

by helping others learn, as well as by participating in email discussion lists with

other SQL practitioners. Today, I’m hopelessly addicted to web discussion forums

like SitePoint, and have interacted with literally thousands of people as they learn

SQL too.

Some of the complaints about learning SQL that I’ve heard over the years include:

■ Basic SQL tutorials just cover the syntax, but they use trivial examples and fail

to explain anything in depth.

■ Some SQL tutorials use a secret language (for example, DRI, canonical synthesis,

non-trivial FD) that you'd need a PhD to understand.

xviii

■ Some SQL tutorials are tantalizingly close to what you’re looking for, but fail to

close the sale. That’s because they’re unable to relate their examples to your own

real-world situation.

By using common web-related sample applications, this book will cover not only

simple examples of SQL that are relevant to you, but also more complex concepts

using terminology I hope you won’t find too obscure.

What’s in This Book?
This book comprises the following chapters. In the first eight chapters, we’ll learn

about SQL, the language, its various statements and clauses, and how to use SQL

to store and retrieve database data. These chapters are organized to provide first an

introduction to the SQL language, then an overview of the SELECT statement, fol-

lowed by an examination of each of the SELECT statement’s clauses. In the last three

chapters, we’ll learn how to design databases effectively, taking into consideration

column data types, table relationships, primary and foreign keys, and so on.

Why this separation? Why do we postpone learning about designing tables until

well after the SELECT statement has been thoroughly dissected? Because effective

database design requires an understanding of how SQL works. You must walk before

you can run. If you’re new to SQL, you’ll want to focus on learning SQL first, rather

than be prematurely sidetracked on the whys and wherefores of database design

issues.

The SQL Language
Chapter 1: An Introduction to SQL

This introductory chapter will put the SQL language into a perspective relevant

to a typical web developer. You’ll learn the difference between a statement and

a clause, as well as data definition language (DDL) and data manipulation lan-

guage (DML). You’ll also go on a whirlwind tour through all the common SQL

statements: CREATE, ALTER, DROP, INSERT, UPDATE, DELETE, and SELECT.

Chapter 2: An Overview of the SELECT Statement

If SQL is all about database queries, then the SELECT statement is where all the

action is. This overview will dissect the SQL SELECT statement into its compon-

xix

ent clauses and give you a taste of what’s to come. The next six chapters will

look at each clause in detail.

Chapter 3: The FROM Clause

Few SQL books begin with the FROM clause, but this is where it all begins; the

FROM clause is executed first and all other clauses use the tabular results it pro-

duces. That’s why it’s a great place to start our in-depth examination of all the

clauses of the SELECT statement. This chapter will ease you through the tricky

subject of database table joins, where you’ll easily master the concepts of the

inner join, left outer join, right outer join, full outer join, and cross join. We’ll

also touch on the topics of database views and subqueries (or derived tables).

Chapter 4: The WHERE Clause

The WHERE clause filters the results of the FROM clause. This chapter will teach

you all about how to express conditions using the SQL keywords: LIKE, BETWEEN,

AND, OR, IN, EXISTS, and NOT, as well as correlated subqueries. We’ll also discuss

performance issues and indexing.

Chapter 5: The GROUP BY Clause

The GROUP BY clause aggregates the result of the FROM and WHERE clauses into

groups. Chapter 5 will teach you how grouping works and the rules for its use.

Chapter 6: The HAVING Clause

The HAVING clause filters the group rows produced by the GROUP BY clause.

Chapter 6 will show you how to write HAVING clause conditions, and how to

use the HAVING clause without a GROUP BY clause.

Chapter 7: The SELECT Clause

The SELECT clause defines the columns in the final result set. Chapter 7 will

show you how to use the SELECT clause effectively, and how its scope changes

in the presence or absence of the GROUP BY clause. This chapter also does a

survey of the common SQL aggregate functions (like SUM and COUNT) and scalar

functions (like CASE and SUBSTRING) available in most database systems.

Chapter 8: The ORDER BY Clause

The ORDER BY clause determines the order in which the result set is returned.

Chapter 8 is all about sequencing the various data types, and the difference

between sequencing and grouping. It’ll teach you how to write effective ORDER

xx

BY expressions, including how to use the CASE functions to implement special

sequencing.

Database Design
Chapter 9: SQL Data Types

This chapter provides a detailed look at the various numeric, character, and

temporal data types available for columns, and the rationales for their use. We

tour the common numeric, string, and date functions available in most database

systems. This chapter also contains a section on the column constraints: NULL,

NOT NULL, DEFAULT, and CHECK.

Chapter 10: Relational Integrity

Chapter 10 introduces some topics that are the source of much befuddlement

for many people new to databases. It’s about relational integrity, the real heart

and soul of effective database design. This chapter discusses the concept of

identity, primary keys, and uniqueness, and also extensively covers the concept

of the relationships between database entities: how they’re expressed with

database modelling and how they’re implemented using foreign keys.

Chapter 11: Special Structures

Chapter 11 examines some of the common database structures that can be used

to implement complex relationships between entities. This chapter takes a look

at how to join to a table twice, join a table to itself, and how to implement the

concept of keywords (or tagging)—a many-to-many relationship.

The sample applications used throughout the book are described in the appendices,

and all the examples of SQL in the book are taken from these applications. Instruc-

tions are given on creating the applications and loading them with data.

How to Gain Help
SQL has been around a few decades and hardly ever changes. Despite major database

systems like MySQL and SQL Server constantly upgrading themselves, the under-

lying SQL language is stable, so everything you learn in this book will be applicable

for years to come.

However, SQL is an immensely broad topic. Of necessity, much needs to be left out

of any single book that tries to cover all of SQL. Therefore, if you have any questions

xxi

about SQL or database design, you might wish to seek further help. Two sources

you can try are the SitePoint Forums and the web site for this book.

The SitePoint Forums
The SitePoint Forums1 are discussion forums where you can ask questions about

anything related to web development. You may, of course, answer questions, too.

That’s how a discussion forum site works—some people ask, some people an-

swer—and most people do a bit of both. Sharing your knowledge benefits others

and strengthens the community. A lot of fun and experienced web designers and

developers hang out there. It’s a good way to learn new stuff, get questions answered

in a hurry, and just have fun.

The SitePoint Forums include a main forum for Databases, and a subforum for

MySQL specifically (because of the immense popularity of this database system).

■ Databases: http://www.sitepoint.com/forums/forumdisplay.php?f=88
■ MySQL: http://www.sitepoint.com/forums/forumdisplay.php?f=182

The Book’s Web Site
Located at http://www.sitepoint.com/books/sql1/, the web site that supports this

book will give you access to the following facilities:

The Code Archive
As you progress through this book, you’ll note a number of references to the code

archive. This is a downloadable ZIP archive that contains each and every line of

example source code that’s printed in this book. If you want to cheat (or save

yourself from carpal tunnel syndrome), go ahead and download the archive.2

Updates and Errata
No book is perfect, and we expect that watchful readers will be able to spot at least

one or two mistakes before the end of this one. The Errata page on the book’s web

site will always have the latest information about known typographical and code

errors.

1 http://www.sitepoint.com/forums/
2 http://www.sitepoint.com/books/sql1/code.php

xxii

http://www.sitepoint.com/forums/
http://www.sitepoint.com/forums/forumdisplay.php?f=88
http://www.sitepoint.com/forums/forumdisplay.php?f=182
http://www.sitepoint.com/books/sql1/
http://www.sitepoint.com/books/sql1/code.php

The SitePoint Newsletters
In addition to books like this one, SitePoint publishes free email newsletters, such

as SitePoint Design View, SitePoint Market Watch, and SitePoint Tech Times, to

name a few. In them, you’ll read about the latest news, product releases, trends,

tips, and techniques for all aspects of web development. Sign up to one or more

SitePoint newsletters at http://www.sitepoint.com/newsletter/.

Your Feedback
If you can’t find an answer through the forums, or if you wish to contact us for any

other reason, the best place to write is books@sitepoint.com. We have a well-staffed

email support system set up to track your inquiries, and if our support team members

are unable to answer your question, they’ll send it straight to us. Suggestions for

improvements, as well as notices of any mistakes you may find, are especially

welcome.

Conventions Used in This Book
You’ll notice that we’ve used certain typographic and layout styles throughout this

book to signify different types of information. Look out for the following items.

Code Samples
Code in this book will be displayed using a fixed-width font, like so:

<h1>A Perfect Summer's Day</h1>
<p>It was a lovely day for a walk in the park. The birds
were singing and the kids were all back at school.</p>

If the code is to be found in the book’s code archive, the name of the file will appear

at the top of the program listing, like this:

example.css

.footer {
 background-color: #CCC;
 border-top: 1px solid #333;
}

xxiii

http://www.sitepoint.com/newsletter/

If only part of the file is displayed, this is indicated by the word excerpt:

example.css (excerpt)

 border-top: 1px solid #333;

If additional code is to be inserted into an existing example, the new code will be

displayed in bold:

function animate() {
new_variable = "Hello";

}

Also, where existing code is required for context, rather than repeat all the code, a

⋮ will be displayed:

function animate() {
 ⋮
 return new_variable;
}

Some lines of code are intended to be entered on one line, but we’ve had to wrap

them because of page constraints. A ➥ indicates a line break that exists for formatting

purposes only, and should be ignored.

URL.open("http://www.sitepoint.com/blogs/2007/05/28/user-style-she
➥ets-come-of-age/");

Tips, Notes, and Warnings

Hey, You!

Tips will give you helpful little pointers.

Ahem, Excuse Me …

Notes are useful asides that are related—but not critical—to the topic at hand.

Think of them as extra tidbits of information.

xxiv

Make Sure You Always …

… pay attention to these important points.

Watch Out!

Warnings will highlight any gotchas that are likely to trip you up along the way.

Acknowledgments
I’d like to thank Andrew Tetlaw, SitePoint’s Technical Editor, and Joe Celko, the

main reviewer. Both gave valuable advice that made the book better.

Joe, in particular, has been a tremendous influence on me as I learned SQL over the

years. I met Joe at a database conference in the early 1990s and have been a big fan

ever since, so I was very pleased that he agreed to review the book. As you may

know, Joe has been an outspoken SQL advocate for decades. He helped establish

the SQL standard, and has written numerous SQL columns, as well as many books

on SQL and databases. In particular, his book SQL for Smarties3 is a must have for

anyone venturing into advanced SQL.

I also owe Joe an apology for willfully disregarding ISO-11179, an international

standard for assigning data element names, primarily in my choice of “id” as the

name of several of my table columns. Joe was also dissatisfied with my coding style,

where I place the comma that separates items in a list—on a new line, at the front.

However, it’s my coding style and I trust that you’ll not find it too disruptive; it’s

served me well for many years, and I write a lot of SQL.

3 SQL for Smarties 3rd edition (San Francisco, Morgan Kaufmann, 2005)

xxv

Chapter1
An Introduction to SQL
Almost every web site nowadays, it seems, uses a database. Your objective, as a web

developer, is to be able to design or build web sites that use a database. To do this,

you must acquire an understanding of and the ability to use Structured Query

Language (SQL), the language used to communicate with databases.

We'll start by introducing the SQL language and the major SQL statements that

you’ll encounter as a web developer.

SQL Statement Overview
In the past, SQL has been criticized for having an inappropriate name. Structured

Query Language lacks a proper structure, does more than just queries, and only

barely qualifies as a programming language. You might think it fair criticism then,

but let me make three comments:

■ Structure refers to the fact that SQL is about tables of data or, more specifically,

tabular structures. A table of data has columns and rows. There are many in-

stances where we’ll encounter an alternative that isn’t, strictly speaking, a table,

but looks and acts like one. This tabular structure will be explained in Chapter 3.

■ While SQL includes many different types of statements, the main one is the SE-

LECT statement, which performs a query against the database, to retrieve data.

Querying data effectively is where the action is, the primary focus of the first

eight chapters. Designing the database effectively is covered in the last three

chapters.

■ The SQL language has been standardized. This is immensely important, because

when you learn effective SQL, you can apply your skills in many different

database environments. You can develop sites for your client or boss using any

of today’s common database systems—whether proprietary or open

source—because they all support SQL.

Those three concepts—tabular structures, effective querying, and SQL standards—are

the secret to mastering SQL. We’ll see these concepts throughout the book.

SQL or Sequel?

Before the real fun begins, let’s put to rest a question often asked by newcomers:

how do you pronounce SQL?

Some people say the letters, “S-Q-L.” Some people pronounce it as a word, “se-

quel”. Either is correct. For example, the database system SQL Server (by Microsoft,

originally by Sybase) is often pronounced “sequel server”. However, SQL, by it-

self—either the language in general or a given statement in that language—is

usually pronounced as S-Q-L.

Throughout this book, therefore, SQL is pronounced as S-Q-L. Thus, you will read

about an SQL statement and not a SQL statement.

We’ll begin our overview of SQL statements by looking at their components:

keywords, identifiers, and constants.

Keywords, Identifiers, and Constants
Just as sentences are made up of words that can be nouns, verbs, and so on, an SQL

statement is made up of words that are keywords, identifiers, and constants. Every

word in an SQL statement is always one of these:

Simply SQL2

Keywords These are words defined in the SQL standard that we use to con-

struct an SQL statement. Many keywords are mandatory, but most

of them are optional.

Identifiers These are names that we give to database objects such as tables and

columns.

Constants These are literals that represent fixed values.

Let’s look at an example:

SELECT name FROM teams WHERE id = 9

Here is a perfectly respectable SQL statement. Let’s examine its keywords, identifiers,

and constants:

■ SELECT, FROM, and WHERE are keywords. SELECT and FROM are mandatory, but

WHERE is optional. We'll cover only the important keywords in SQL in this book.

However, they’re all listed in Appendix D for your reference.

■ name, teams, and id are identifiers that refer to objects in the database. name and

id are column names, while teams is a table name.

We’ll define both columns and tables later on in this chapter but, yes, they are

exactly what you think they are.

■ The equals sign (=) is an operator, a special type of keyword.

■ 9 is a numeric constant. Again, we'll look at constants later in the chapter.

So there you have it. Our sample SQL statement is made up of keywords, identifiers,

and constants. Not so mysterious.

3An Introduction to SQL

Clauses
In addition, we often speak of the clauses of an SQL statement. This book has entire

chapters devoted to individual clauses. A clause is a portion of an SQL statement.

The name of the clause corresponds to the SQL keyword that begins the clause. For

example, let’s look at that simple SQL statement again:

SELECT
 name
FROM
 teams
WHERE
 id = 9

The SELECT clause is:

SELECT
 name

The FROM clause is:

FROM
 teams

The WHERE clause is:

WHERE
 id = 9

Coding Style

You’ll have noticed that, this time, the query is written with line breaks and in-

dentation. Even though line breaks and extra white space are ignored in SQL—just

as they are in HTML—readability is very important. Neatness counts, and becomes

more pertinent with longer queries: the tidier your queries the more likely you

are to spot errors. I’ll say more on coding style later.

Simply SQL4

Syntax
Each clause in an SQL statement has syntax rules for how it may be written. Syntax

simply means how the clause is put together—what keywords, identifiers, and

constants it consists of, and, more importantly, whether they are in the correct order,

according to SQL’s grammar. For example, the SELECT clause must start with the

keyword SELECT.

Syntax and Semantics

In addition to syntax, semantics is another term sometimes used in discussing

SQL statements. These terms simply mean the difference between what the SQL

statement actually says versus what you intended it to say; syntax is what you

said, semantics is what you meant.

The database system won’t run any SQL statement with a syntax error. To add

insult to injury, the system can only tell you if your SQL statement has a syntax

error; it doesn’t know what you actually meant.

To demonstrate the difference between syntax and semantics, suppose we were

to rewrite the example from the previous section like so:

FROM teams WHERE id = 9 SELECT name

This seems to makes some sense. The semantics are clear. However, the syntax

is wrong. It’s an invalid SQL statement. More often, you’ll get syntactically correct

queries that are semantically incorrect. Indeed, we’ll come across some of these

as we go through the book and discuss how to correct them.

Up to this point, I’ve alluded to a couple of database object types: tables and columns.

To reference database objects in SQL statements we use their identifiers, which are

names that are assigned when the objects are first created. This leads naturally to

the question of how those objects are created.

5An Introduction to SQL

Before we answer that, let’s take a moment to introduce some new terminology.

SQL statements can be divided into two types: DDL and DML.

Data Definition Language (DDL)

DDL is used to manage database objects like tables and columns.

Data Manipulation Language (DML)

DML is used to manage the data that resides in our tables and columns.

The terms DDL and DML are in common use, so if you run into them, remember

that they’re just different types of SQL statements. The difference is merely a con-

venient way to distinguish between the types of SQL statements and their effect on

the database. DDL changes the database structure, while DML changes only the

data. Depending on the project, and your role as a developer, you may not have the

authority or permission to write DDL statements. Often, the database already exists,

so rather than change it, you can only manipulate the data in it using DML state-

ments.

The next section looks at DDL SQL statements, and how database objects are created

and managed.

Data Definition Language
In the beginning the Universe was created. This has made a lot of

people very angry and been widely regarded as a bad move.

—Douglas Adams

Where do database objects like tables and columns come from? They are created,

modified, and finally removed from the database using DDL, the Data Definition

Language part of SQL. Indeed those three tasks are accomplished using the CREATE,

ALTER, and DROP SQL statements.

Simply SQL6

Trying Out Your SQL

It’s one thing to see an example of SQL syntax, and another to adapt it to your

particular circumstance or project. Trying out your SQL statements is a great way

to learn. If you have some previous SQL experience, you already know this (and

might want to skip ahead to Chapter 2). If you are new to SQL, and want to exper-

iment with the following DDL statements, keep in mind that you can always start

over. What you CREATE, you can ALTER, or DROP, if necessary.

Appendix A explains how to set up a testing environment for five popular database

systems—MySQL, PostgreSQL, SQL Server, DB2, and Oracle—and Appendix C

contains a number of DDL scripts you can try running if you wish.

CREATE, ALTER, and DROP
Of the many DDL statements, CREATE, ALTER, and DROP are the three main ones that

web developers need to be aware of. (The others are more advanced and beyond

the scope of this book.) Even if you haven’t been granted the authority or permission

to execute DDL statements on a given project, it helps to know the DDL to see how

tables are structured and interconnected.

The CREATE Statement
Earlier on, I suggested that a tabular structure is one of the main concepts you need

to understand when learning SQL. It’s actually quite simple, and a table of data

looks exactly like you would intuitively expect it to—it has columns and rows. Each

table contains information concerning a set of items. Each row in a table represents

a single item. Each column represents one piece of information that can be stored

about each item. Figure 1.1 provides a visualization of a table called teams with

three columns named id, name, and conference. The table pictured also contains

some data; each row in the table represents a single team and can store three pieces

of information about that individual team: its id number, its name, and its conference

(its division or league).

7An Introduction to SQL

Figure 1.1. Tables have rows, and rows have columns

Here’s an example of a DDL statement; this is the statement that creates the database

table pictured in Figure 1.1:

CREATE TABLE teams
(
 id INTEGER NOT NULL PRIMARY KEY,
 name VARCHAR(37) NOT NULL,
 conference VARCHAR(2) NULL
)

The CREATE TABLE statement creates the teams table—but not the data—with three

columns named id, name, and conference. This is a table used in the Teams and

Games sample application, one of several sample applications used in the book.

All the applications are described in Appendix B.

The Order of Columns

Note that while tables are represented graphically with the columns always in

the same order, this is for our ease of reference only. The database itself doesn’t

care about the order of the columns.

It would be optimistic to expect you to understand everything in the CREATE TABLE

statement above at this stage. (I’m sure some of you, new to SQL, might be wondering

“What’s an id?” or “What does PRIMARY KEY do?” and so on.) We simply want to

see an example of the CREATE TABLE statement, and not be sidetracked by design

issues for the Teams and Games application.

Simply SQL8

Note that the keywords of the CREATE TABLE statement are all in capital letters,

while the identifiers are all in lower case letters. This choice is part of my coding

style.

Upper Case or Lower Case?

Although it’s of no consequence to SQL whether a font appears in caps or lower

case, identifiers may indeed be case-sensitive. However, I’d strongly advise you

to create your database objects with lower case letters to avoid syntax problems

with unknown names.

Notice also the formatting and white space. Imagine having to read this SQL state-

ment all on one long line:

CREATE TABLE teams (id INTEGER NOT NULL PRIMARY KEY,
➥ name VARCHAR(37), conference VARCHAR(2) NULL)

Neatness helps us to spot parts of the statement we have omitted or mispelled, like

the NOT NULL that was accidentally left off the name column in the one line version

of the statement above. Did you spot the omission before you read this?

Looking at the sample CREATE TABLE statement, we see that each of the three columns

is given a data type (e.g., INTEGER, VARCHAR), and is also designated NULL or NOT

NULL. Again, please don’t worry if these terms are new to you. We will discuss how

they work and what they’re for in Chapter 9. This introductory chapter is not sup-

posed to teach you the SQL statements in detail, merely introduce them to you and

briefly describe their general purpose.

Are there other database objects that we can create besides tables? Yes. There are

schemas, databases, views, triggers, procedures and several more but we’re getting

ahead of ourselves again. Many CREATE statements are for administrative use only

and hence solely used by designated database administrators (DBAs). Learning to

be a DBA is such a large subject, it requires a book of its own just to cover its scope!

Needless to say, our coverage of Database Administration topics will be kept to a

minimum.

9An Introduction to SQL

The ALTER Statements
As its name suggests, ALTER changes an object in a database. Here’s an example ALTER

statement:

ALTER TABLE teams DROP COLUMN conference

The keyword DROP identifies what’s being dropped, or removed, from the table. In

this example, the teams table is being altered by removing the conference column.

Once the column is dropped, it’s no longer part of the table.

Note that if we tried to run the same ALTER statement for a second time, a syntax

error would occur because the database cannot remove a column that does not exist

from a table. Syntax errors can arise from more than just the improper construction

of the SQL statement using keywords, identifiers, and constants. Many syntax errors

arise from attempting to alter what are perceived (wrongly) to be the current structure

or current contents of the table.

The DROP Statement
The DROP statement—to round out our trio of basic DDL statements—drops, removes,

deletes, obliterates, cancels, blows away, and/or destroys the object it is dropping.

After the DROP statement has been run, the object is gone.

The syntax is as simple as it can be:

DROP TABLE teams

To summarize, the Data Definition Language statements CREATE, ALTER, and DROP

allow us to manage database objects like tables and columns. In fact, they can be

very effective when used together, such as when you need to start over.

Starting Over
Database development is usually iterative. Or rather, when building and testing

your table (or tables—there is seldom only one) you will often find yourself repeating

one of the following patterns:

■ CREATE, then test

Simply SQL10

First, you create a table. Then you test it, perhaps by running some SELECT

queries, to confirm that it works. The table is so satisfactory that it can be used

exactly as it is, indefinitely. If only life were like this more often …

■ CREATE, then test … ALTER, then test … ALTER, then test …

You create and test a table, and it’s good enough to be used regularly, such as

when your web site goes live. You alter it occasionally, to make small changes.

Small changes are easier than larger changes, especially if much code in the

application depends on a particular table structure.

■ CREATE, then test … DROP, CREATE, then test …

After creating and testing a table the first time, you realize it’s wrong. Or perhaps

the table has been in use for some time, but is no longer adequate. You need to

drop it, change your DDL, create it again (except that it’s different now), and

then test again.

Dropping and recreating, or starting over, becomes much easier using an SQL script.

A script is a text file of SQL statements that can be run as a batch to create and

populate database objects. Maintaining a script allows you to start over easily. Im-

provements in the design—new tables, different columns, and so on—are incorpor-

ated into the SQL statements, and when the script is run, these SQL statements

create the objects using the new design. Appendix C contains SQL scripts used for

the sample applications in this book. These scripts and more are available to

download from the web site for this book, at: http://www.sitepoint.com/books/sql1/.

Data Manipulation Language
In the last section, we covered the three main SQL statements used in Data Definition

Language. These were CREATE, ALTER, and DROP, and they are used to manage database

objects like tables and columns.

Data Manipulation Language has three similar statements: INSERT, UPDATE, and DE-

LETE. These statements are used to manage the data within our tables and columns.

11An Introduction to SQL

http://www.sitepoint.com/books/sql1/

Remember the earlier CREATE statement example:

CREATE TABLE teams
(
 id INTEGER NOT NULL PRIMARY KEY,
 name VARCHAR(37) NOT NULL,
 conference VARCHAR(2) NULL
)

This statement creates a table called teams that has three columns, pictured in Fig-

ure 1.2.

Figure 1.2. The teams table

Once the table has been created, we say it exists. And once a table exists we may

place our data in it, and we need a way to manage that data. We want to use the

table the way it’s currently structured, so DDL is irrelevant for our purposes here

(that is, changes aren’t required).

Instead, we need the three DML statements, INSERT, UPDATE, and DELETE.

INSERT, UPDATE, and DELETE
Until we put data into it, the table is empty. Managing our data may be accomplished

in several ways: adding data to the table, updating some of the data, inserting some

more data, or deleting some or all of it. Throughout this process, the table structure

stays the same. Just the table contents change.

Let’s start by adding some data.

The INSERT Statement
The INSERT DML statement is similar to the CREATE DDL statement, in that it creates

a new object in the database. The difference is that while CREATE creates a new table

and defines its structure, INSERT creates a new row, inserting it and the data it

contains into an existing table.

Simply SQL12

The INSERT statement inserts one or more rows. Here is our first opportunity to see

rows in action. Here is how to insert a row of data into the teams table:

INSERT INTO teams
 (id , name , conference)
VALUES
 (9 , 'Riff Raff' , 'F')

The important part to remember, with our tabular structure in mind, is that the IN-

SERT statement inserts entire rows. An INSERT statement should contain two comma-

separated lists surrounded by parentheses. The first list identifies the columns in

the new row into which the constants in the second list will be inserted. The first

column named in the first list will receive the first constant in the second list, the

second column has the second constant, and so on. There must be the same number

of columns specified in the first list as constants given in the second, or an error

will occur.

In the above example, three constants, 9, 'Riff Raff', and 'F' are specified in the

VALUES clause. They are inserted, into the id, name, and conference columns re-

spectively of a single new row of data in the teams table. Strings, such as 'Riff

Raff', and 'F', are surrounded by single quotes to denote their beginning and end.

We’ll look at strings in more detail in Chapter 9.

You are allowed (but it would be unusual) to write this INSERT statement as:

INSERT INTO teams
 (conference , id , name)
VALUES
 ('F' , 9 , 'Riff Raff')

We noted earlier that the database itself doesn’t care about the order of the columns

within a table; however, it’s common practice to order the columns in an INSERT

statement in the order in which they were created for our own ease of reference. As

long as we make sure that we list columns and their intended values in the correct

corresponding order, this version of the INSERT statement has exactly the same effect

as the one preceding it.

13An Introduction to SQL

Sometimes you may see an INSERT statement like this:

INSERT INTO teams
VALUES
 (9 , 'Riff Raff' , 'F')

This is perhaps more convenient, because it saves typing. The list of columns is

assumed. The columns in the new row being inserted are populated according to

their perceived position within the table, based on the order in which they were

originally added when the table was created. However, we must supply a value for

every column in this variation of INSERT; if we aren’t supplying a value for each

and every column, which happens often, we can’t use it. If you do, the perceived

list of columns will be longer than the list of values, and we’ll receive a syntax error.

My advice is to always specify the list of column names in an INSERT statement, as

in the first example. It makes things much easier to follow.

Finally, to insert more than one row, we could use the following variant of the INSERT

statement:

INSERT INTO teams
 (conference , id , name)
VALUES
 ('F' , 9 , 'Riff Raff'),
 ('F' , 37 , 'Havoc'),
 ('C' , 63 , 'Brewers')

This example shows an INSERT statement that inserts three rows of data, and the

result can be seen in Figure 1.3. Each row’s worth of data is specified within a set

of parentheses, known as a row constructor, and each row constructor is separated

by a comma.

Figure 1.3. The result of the INSERT statement: three rows of data

Simply SQL14

Next up, we want to change some of our data. For this, we use the UPDATE statement.

A Note on Multiple Row Constructors

While the syntax in the above example, where one INSERT statement inserts

multiple rows of data, is valid SQL, not every database system allows the INSERT

statement to use multiple row constructors; those that do allow it include DB2,

PostgreSQL, and MySQL. If your database system’s INSERT statement allows only

one row to be inserted at a time, as is the case with SQL Server, simply run three

INSERT statements, like so:

INSERT INTO teams
 (id , conference , name)
VALUES
 (9 , 'F' , 'Riff Raff')
;
INSERT INTO teams
 (id , conference , name)
VALUES
 (37 , 'F' , 'Havoc')
;
INSERT INTO teams
 (id , conference , name)
VALUES
 (63 , 'C' , 'Brewers')
;

Notice that a semicolon (;) is used to separate SQL statements when we’re running

multiple statements like this, not unlike its function in everyday language. Syn-

tactically, the semicolon counts as a keyword in our scheme of keywords, identi-

fiers, and constants. The comma, used to separate items in a list, does too.

The UPDATE Statement
The UPDATE DML statement is similar to the ALTER DDL statement, in that it produces

a change. The difference is that, whereas ALTER changes the structure of a table,

UPDATE changes the data contained within a table, while the table’s structure remains

the same.

15An Introduction to SQL

Let’s pretend that the team Riff Raff is changing conferences so we need to update

the value in the conference column from F to E; we’ll write the following UPDATE

statement:

UPDATE
 teams
SET
 conference = 'E'

The above statement would change the value of the conference column in every

row to E. This is not really what we wanted to do; we only wanted to change the

value for one team. So we add a WHERE clause to limit the rows that will be updated:

Teams_04_UPDATE.sql (excerpt)

UPDATE
 teams
SET
 conference = 'E'
WHERE
 id = 9

As shown in Figure 1.4, the above example will update only one value. The UPDATE

clause alone would change the value of the conference column in every row, but

the WHERE clause limits the change to just the one row: where the id column has

the value 9. Whatever value the conference column had before, it now has E after

the update.

Simply SQL16

Figure 1.4. Updating a row in a table

Sometimes, we’ll want to update values in multiple rows. The UPDATE statement

will set column values for every row specified by the WHERE clause. The classic ex-

ample, included in every textbook (so I simply had to include it too, although it

isn’t part of any of our sample applications), is:

UPDATE
 personnel
SET
 salary = salary * 1.07
WHERE
 jobgrade <= 4

Here, everyone is scoring a 7% raise, but only if their jobgrade is 4 or less. The

UPDATE statement operates on multiple rows simultaneously, but only on those rows

specified by the WHERE clause.

Notice that the existing value of the salary column is used to determine the new

value of the salary column. UPDATE operates on each row independently of all

others, which is exactly what we want, as it’s likely that the salary values are differ-

ent for most rows.

Finally, there is the DELETE statement.

17An Introduction to SQL

The DELETE Statement
The DELETE DML statement is similar to the DROP DDL statement, in that it removes

objects from the database. The difference is that DROP removes a table from the

database, while DELETE removes entire rows of data from a table, but the table con-

tinues to exist:

Teams_05_DELETE.sql (excerpt)

DELETE
FROM
 teams
WHERE
 id = 63

Once again, like the UPDATE statement, the scope of the DELETE statement is every

row which satisfies the WHERE clause. If there is no WHERE clause, all the rows are

deleted and the table is left empty; it has a structure, but no rows.

Finally, we are ready to meet the SELECT statement.

The SELECT Statement
The SELECT statement is usually called a query. Informally, all SQL statements are

sometimes called queries (as in “I ran the DELETE query and received an error”), but

the SELECT statement is truly a query because all it does is retrieve information from

the database.

When we run a SELECT query against the database, it can retrieve data from one or

more tables. Exactly how the data in multiple tables is combined, collated, compared,

summarized, sorted, and presented—by a single query—is what makes SQL so

wonderful.

The power is outstanding. The simplicity is amazing. SQL allows us to produce

complex, customized information with a minimum of fuss, in a declarative, non-

procedural way, using a small number of keywords.

SELECT is our fourth DML statement, although the operation it performs on the data

is simply to retrieve it. Nothing is changed in the database. This is one reason why

I prefer to discuss SELECT separately from the other three DML statements. Another

is that it breaks up the pleasant symmetry between the DDL and DML statements:

Simply SQL18

■ DDL: CREATE, ALTER, DROP
■ DML: INSERT, UPDATE, DELETE … and SELECT

The SELECT Retrieves Data
A simple SELECT statement has two parts, or clauses. Both are mandatory:

SELECT expression(s) involving keywords, identifiers, and constants
FROM tabular structure(s)

The purpose of the SELECT statement is to retrieve data from the database:

■ the SELECT clause specifies what you want to retrieve, and
■ the FROM clause specifies where to retrieve it from.

The SELECT clause consists of one or more expressions involving keywords, identi-

fiers, and constants. For example, this SELECT clause contains one expression,

consisting of a single identifier:

SELECT
 name
FROM
 teams

In this case the expression in the SELECT clause is name, which is a column name.

However, the SELECT clause can contain many expressions, simply by listing them

one after another, using commas as separators. For example, we may want to return

the contents of several columns from rows in the teams table:

SELECT
 id, name, conference
FROM
 teams

In addition, each expression can be more complex, consisting of formulas, calcula-

tions, and so on. Ultimately then, the SELECT clause can be fairly complex, but it

gives us the ability to include everything we need to return from the database. We

examine the SELECT clause in Chapter 7.

19An Introduction to SQL

Similarly, the FROM clause can be multifaceted. The FROM clause specifies the tabular

structure(s) that contain the data that we want to retrieve. In this chapter we’ve seen

sample queries in which the FROM clause specified a single table; complexity in the

FROM clause occurs when more than one table is specified. I suggested earlier that

tabular structures are one of the secrets to mastering SQL. We’ll cover them in detail

in Chapter 3.

We’ll have an overview of the SELECT statement and its optional clauses, WHERE,

GROUP BY, HAVING, and ORDER BY, in Chapter 2, and then look in detail at each of

its clauses in chapters of their own.

The SELECT Statement Produces a Tabular Result Set
One important fact to remember about SELECT is that the result of running a SELECT

query is a table.

When your web application (whether it is written in PHP, Java, or any other applic-

ation language) runs a SELECT query, the database system returns a tabular structure,

and the application handles it accordingly, as rows and columns of data. The query

might return a list of selected items in a shopping cart, or posts in active forums

threads, or whatever your web application needs to retrieve from your database.

We say that the SELECT statement produces a tabular result set. A result set is not

actually a table in the database; it is derived from one or more tables in the database,

and delivered, as tabular data, to your application.

One final introduction will complete our introduction to SQL: a comment about

standard SQL.

Standard SQL
The nice thing about standards is that there are so many to choose

from.

—Andrew S. Tanenbaum

In the beginning, I mentioned that SQL is a standard language. SQL has been

standardized both nationally and internationally. If you are relatively new to SQL,

do not look for any information on the standard just yet; you’re only going to confuse

Simply SQL20

yourself. The SQL standard is exceedingly complex. The standard is also not freely

available; it must be purchased from the relevant standards organisations.

The fact that the standard exists, though, is very important, and not just because it

makes the skill of knowing SQL highly portable. The SQL standard is being adopted,

in increasing measures, by all relational database systems. New database software

releases always seem to mention some specific features of the standard that are now

supported.

So as well as your knowledge of using simple SQL to produce comprehensive results

being portable, there is a better chance that your next project’s database system will

actually support the techniques that you already know. The industry and its practi-

tioners are involved in a positive feedback loop.

And yet, there are differences between standard SQL and the SQL supported by

various database systems you’ll encounter—sometimes maddeningly so. These

variations in the language are called dialects of SQL. Numerous proprietary exten-

sions to standard SQL have been invented for the various different database systems.

These extensions can be considerable, occasionally pointless, often counterintuitive,

and sometimes obscure.

There is only one sane way to cope.

Read The Fine Manual
Never memorize what you can look up in books.

—Albert Einstein

There will be occasions throughout this book where I’ll suggest referring to the

manual. This will be the manual for your particular database system, whatever it

may be. All database systems have manuals—often a great many—but fortunately,

most are of interest only to DBAs. The one you want is typically called SQL Refer-

ence.

After more than 20 years of writing SQL, I still need to look up certain parts of SQL.

Granted, I have committed most of standard SQL to memory, but there are always

nuances that trip me up, and new features to learn, and all those proprietary exten-

sions …

21An Introduction to SQL

Finding the Manual

Appendix A gives links for downloading and installing five popular database

systems: MySQL, PostgreSQL, SQL Server, DB2, and Oracle. In addition, links

are given to the online SQL reference manuals for each of these systems.

Make it easy on yourself. Bookmark the SQL reference manual on your computer,

on your company server, or on the Web. Be prepared for syntax errors. But be reas-

sured that they’re easy to fix, if you know where to look in the manual.

Wrapping Up: an Introduction to SQL
In this chapter, we covered lots of ground. I hope you’re not feeling completely

overwhelmed. The purpose of the whirlwind tour was simply to put the SQL lan-

guage into the perspective that a typical web developer needs; there are SQL state-

ments for everything you need to do, and, all things considered, these statements

are quite simple.

The two basic types of SQL statement are:

■ Data Definition Language (DDL) statements: CREATE, ALTER, DROP
■ Data Manipulation Language (DML) statements: INSERT, UPDATE, DELETE … and

SELECT

If you’re building your own database, you’ll need to know DDL, but you should

have some experience using DML first. Designing databases is the subject of the last

three chapters in this book.

As mentioned earlier, SQL is mainly about queries, and the SELECT statement is

where it’s at. Chapter 2 begins our in-depth look at the SELECT statement, providing

an overview of its six clauses.

Simply SQL22

Chapter2
An Overview of the SELECT Statement
In Chapter 1, our quick introduction to SQL, we briefly met the main SQL statements

that we will encounter as web developers:

■ CREATE, ALTER, DROP
■ INSERT, UPDATE, DELETE … and
■ SELECT

In this chapter, we’ll begin our more detailed look into SQL with an overview of

the SELECT statement.

The SELECT Statement
The SELECT statement’s single purpose is to retrieve data from our database and re-

turn it to us in a tabular result set. In Chapter 1, we saw some of its syntax:

SELECT expression(s) involving keywords, identifiers, and constants
FROM tabular structure(s)

The SELECT and FROM clauses are mandatory; what we didn’t reveal in Chapter 1 is

that the SELECT statement can include optional clauses used to filter, group, and

sort the returned results. Let’s expand our SELECT statement syntax to include the

optional clauses:

SELECT expression(s) involving keywords, identifiers, and constants
FROM tabular structure(s)
[WHERE clause]
[GROUP BY clause]
[HAVING clause]
[ORDER BY clause]

We’ve placed each optional clause in square brackets, […], to denote their optional

status. Don’t worry—we’ll introduce the WHERE, GROUP BY, HAVING, and ORDER clauses

in short order.

The examples we are about to discuss are fairly simple, so this chapter will be like

a quick review and set the stage for the chapters that follow. We’ll look at each of

its clauses in turn, with some very simple examples.

Trying Out Your SQL

If you are new to SQL, you may wish to try out the sample SELECT statements on

your own computer or testing system. You don’t have to—you can simply read

along—but trying out the sample SQL for yourself is a good way to begin. Ap-

pendix C contains the SQL that creates and populates the databases used for the

sample applications in this book. These scripts and more are available to download

from the web site for this book, located at http://www.sitepoint.com/books/sql1/.

The SELECT and FROM Clauses
Only the first two clauses of the SELECT statement—the SELECT and FROM clauses—are

mandatory, so our first SELECT statement will use only these.

To illustrate our SELECT statements, we’ll use another sample application. In

Chapter 1, the application was Teams and Games (although we used only the teams

table). In this chapter, the application is a content management system, or CMS for

short. Remember, the sample applications are described in Appendix B.

Content management system is a generic term that simply means a system to store,

manage, and retrieve content. In most cases this means the content of a web site.

Simply SQL24

http://www.sitepoint.com/books/sql1/

(One example is Wordpress, a popular blogging tool.1 Our sample content manage-

ment system isn’t anywhere near as sophisticated.) So before we can examine and

discuss our sample SELECT statements, we need to have some sample tables to select

from.

Content Management System
The database portion of our CMS will be designed to store articles. (The application

portion of the CMS will handle the processes of adding and updating these articles,

and displaying them on web pages. We’ll focus on the database portion, and how

it interacts with the application.) We’ll want our content—the articles—to be stored

in the database, and also displayed on web pages after being retrieved with SQL.

One way to display them would be as individual articles shown in their entirety

on their own web page. Another way might be a list of articles, such as on a site

map. We might also expect to have a search page to search for articles, and so on.

Actually, they don’t have to be articles. The database tables in our CMS will work

just as easily for stories, news updates, blog posts, journal/diary entries …

Yes, that’s it—let’s call them entries.

The entries Table
Our CMS database, and our first sample SELECT statement, begins with a single

table, the entries table. This consists of columns that hold data about each entry

(article or story), such as its title, the date it was created, and so on. Figure 2.1 shows

a simplified version of the table. If you look at the CREATE statement for this table

in the section called “Content Management System” in Appendix C, you’ll see it

has extra columns: an id column to store an ID number, an updated column for the

date each entry was last updated, and a content column to store the text content

of each entry. But for now we’ll just keep it simple.

1 Others are listed here: http://en.wikipedia.org/wiki/List_of_content_management_systems

25An Overview of the SELECT Statement

http://en.wikipedia.org/wiki/List_of_content_management_systems

Figure 2.1. The simplified CMS entries table

Now it’s finally time to look at our first sample SELECT statement. This one returns

two columns of data from the entries table:

SELECT
 title, category
FROM
 entries

Figure 2.2 shows the tabular result set produced by the above query.

Figure 2.2. First results—two columns of data

So our first simple SELECT statement produced a list of all entries, showing the title

and category of each. To put it a slightly different way, the query selected two

columns from a table, producing a tabular result set.

Simply SQL26

Displaying Query Results on a Web Page

The result set produced by our first sample query could be displayed on a web

page using the following HTML:

<h2>List of Articles</h2>

 What If I Get Sick and Die? (category: angst)
 Uncle Karl and the Gasoline (category: humor)
 Be Nice to Everybody (category: advice)
 Hello Statue (category: humor)
 The Size of Our Galaxy (category: science)

It could also be displayed using <table>, <tr>, <th>, and <td> tags. After all,

this is tabular data.

The general strategy for displaying query results on a web page is to use the ap-

plication programming language to loop over the rows in the result set, generating

one or more lines of output HTML for each row.

The specific mechanics of how this is achieved depends, of course, on which ap-

plication programming language you’re using. The point of the example is to show

a simple result set—several rows of data, in two columns—being used to create a

web page.

Our first SELECT statement was a very simple case of the more general syntax:

SELECT expression(s) involving keywords, identifiers, and constants
 FROM tabular structure(s)

In our first SELECT statement, the SELECT clause’s expressions were two simple

columns, title and category, and the FROM clause’s tabular structure was the

entries table.

Both the SELECT clause and the FROM clause are mandatory in the SELECT statement.

The next clause is optional, but it lets us be more selective about which rows to

return.

27An Overview of the SELECT Statement

The WHERE Clause
The WHERE clause is optional, but when it’s used, it acts as a filter.

To demonstrate, let’s take the simple query from the previous section and change

it slightly. We’ll select some different columns, and add a WHERE clause:

CMS_02_Display_an_Entry.sql (excerpt)

SELECT
 title, created, content
FROM
 entries
WHERE
 id = 524

Notice that the WHERE clause specifies a condition, an expression that can be evalu-

ated by the database system as either true, false, or in some cases, indeterminable.

The condition—in this case, whether the value of the id column is 524—is evaluated

against each row of the table. If, the condition is true for any given row, that row is

kept in the query result set and returned when the SELECT statement finishes execut-

ing. If the condition is false for a row, it is not included as part of the results.

Figure 2.3 shows the result set produced by this query.

Figure 2.3. Long field values may appear abridged (but never are)

Note that the result set consists of only one row. There are three columns in the

result set, corresponding to the three columns in the SELECT clause, but just one

row.

The third column, the content column, is a TEXT column, containing text that in-

cludes line breaks. However, it’s still just one value, even though it’s quite a longish

value to be revealed in its entirety—as shown in Figure 2.3. (TEXT columns can ac-

tually hold values up to several megabytes in size, or even larger. We’ll learn how

to choose data types when designing tables in Chapter 9.)

Simply SQL28

What’s the significance of the result set consisting of only one row? It means that

the WHERE clause has filtered out all the rows of the entries table except for the row

that has a value of 524 in the id column. This is the id value that was assigned to

the entry Uncle Karl and the Gasoline. Notice that it was not necessary for the

SELECT clause to include the id column, even though the id column was specified

in the WHERE clause.

To recap, the WHERE clause specifies conditions which are evaluated against the

rows of the table; these conditions act as a filter that determines which rows are

returned in the query result set.

We have now covered half of the clauses of the SELECT statement:

SELECT expression(s) involving keywords, identifiers, and constants
FROM tabular structure(s)
[WHERE clause]
[GROUP BY clause]
[HAVING clause]
[ORDER BY clause]

We’ll look at the next two clauses together, because that’s how they are used.

The GROUP BY and HAVING Clauses
The main purpose of the GROUP BY clause is to have the database examine every

row in the set generated by the FROM clause, and then filtered by the WHERE clause

if there is one; then it groups them together by the values of one or more of their

columns to produce a single new row (per group). This process is known as aggreg-

ation. The GROUP BY clause identifies the column(s) that are used to determine the

groups. Each group consists of one or more rows, while all the rows in each group

have the same values in the grouping column(s). The difficulty with this concept

is understanding that, after the grouping operation has completed, the original rows

are no longer available. Instead, group rows are produced. A group row is a new

row created to represent each group of rows found during the aggregation process.

29An Overview of the SELECT Statement

Here’s an example of a GROUP BY query:

CMS_03_Count_Entries_by_Category.sql (excerpt)

SELECT
 category, COUNT(*) AS articles
FROM
 entries
GROUP BY
 category

The grouping column in this example is category, as specified by the GROUP BY

clause. Each row in the entries table is assigned to a specific group based on the

value of its category column. Then the magic happens. The grouping, or aggregation,

of the rows in each group produces one row per group. Another way to think about

this is that grouping collapses each group’s rows, producing a single group row for

every group.

Figure 2.4 shows the result set produced by the query above.

Figure 2.4. Results for a GROUP BY query

The column called articles contains a count of the number of table rows in each

group. The name articles was assigned as a column alias for the expression

COUNT(*). This expression is an example of an aggregate function; one that counts

numbers of rows. We’ll meet this function later on in the section called “Aggregate

Functions” in Chapter 7.

This sample GROUP BY query produces a count of articles in each category. This

seems innocuous enough, because it’s so simple. The GROUP BY clause proves difficult

for some people only when more complex queries are attempted. Grouping is a

concept that takes a bit of effort to understand, so Chapter 5 focuses entirely on that.

Simply SQL30

The HAVING clause works in conjunction with the GROUP BY clause, by specifying

conditions which filter the group rows. As a simple example, let’s add a HAVING

clause to the previous example:

CMS_03_Count_Entries_by_Category.sql (excerpt)

SELECT
 category, COUNT(*) AS articles
FROM
 entries
GROUP BY
 category
HAVING
 COUNT(*) > 1

The filtering effect of the HAVING clause is apparent when you see the result, as

shown in Figure 2.5.

Figure 2.5. Grouped results filtered by a HAVING clause

The HAVING clause operates only on group rows, and acts as a filter on them in exactly

the same way that the WHERE clause acts as a filter on table rows. In this case, it filters

out rows in which the number of articles is one or fewer.

We’ll conclude our quick review of the SELECT statement with the ORDER BY clause.

31An Overview of the SELECT Statement

The ORDER BY Clause
The purpose of the ORDER BY clause is to return the tabular result set in a specific

sequence. It works just as you would expect it to; it sorts the rows in the result set.

Here’s an example:

CMS_04_Entries_Sorted_Latest_First.sql (excerpt)

SELECT
 title, created
FROM
 entries
ORDER BY
 created DESC

The ORDER BY clause in the example above specifies that the results should be sorted

into a descending sequence based on the created column. This is a typical require-

ment in a CMS context—to show latest articles first. The special keyword DESC de-

termines that it’s a descending sequence. (There’s a corresponding ASC keyword,

but ASC is the default and is optional.) Figure 2.6 shows the result set produced by

the above query.

Figure 2.6. Results ordered on the created column

You may specify multiple columns in the ORDER BY clause, to give multiple levels

of sequencing. Another way to describe this is to say that the ORDER BY clause allows

any number of major and minor sort keys.

Simply SQL32

For instance, consider the following ORDER BY clause:

ORDER BY
 category, created DESC

In the above example, the result rows are sorted first on the category column from

A to Z, and then the entries within each category are sorted on the created column,

from most recent to least recent, as shown in Figure 2.7.

Figure 2.7. Results ordered on multiple columns

Wrapping Up: the SELECT Statement
To summarize, in this chapter we conducted a quick review of the clauses of the

SELECT statement. The syntax for the SELECT statement is:

SELECT expression(s) involving keywords, identifiers, and constants
FROM tabular structure(s)
[WHERE clause]
[GROUP BY clause]
[HAVING clause]
[ORDER BY clause]

■ The SELECT and FROM clauses are mandatory, and the other clauses are optional.

SELECT determines the columns in the result set, and FROM specifies where the

data comes from.

■ The WHERE clause, when present, acts as a filter on the rows retrieved from the

table.

33An Overview of the SELECT Statement

■ The GROUP BY clause, when present, performs grouping or aggregation, in effect

collapsing all the rows retrieved from the table to produce one group row per

group. HAVING filters group rows in the same way that WHERE filters table rows.

■ The ORDER BY clause is used if the rows are to be sorted and returned in a specific

sequence.

Now we are ready to begin our detailed, in-depth analysis of the SELECT statement,

starting with the FROM clause in Chapter 3.

Simply SQL34

Chapter3
The FROM Clause
In Chapter 2, we broke the SELECT statement down into its various clauses, but

looked at each clause only briefly. In this chapter, we’ll begin our more detailed

look at the SELECT statement, starting with the FROM clause.

The FROM clause can be simple, and it can also be quite complex. In all cases, though,

the important point about the FROM clause is that it produces a tabular structure.

This tabular structure is referred to as the result set of the FROM clause. You may

also see it referred to as an intermediate result set, an intermediate tabular result

set, or an intermediate table. But, no matter whether the SELECT query retrieves data

from one table, from many tables, or from other, similar tabular structures, the result

is always the same—the FROM clause produces a tabular structure.

In this chapter we’ll review the common types of FROM clause that we might en-

counter in web development.

Why Start with the FROM Clause?
To begin writing a SELECT statement, my strategy is to skip over the SELECT clause

for the time being, and write the FROM clause first. Eventually, we’ll need to input

some expressions into the SELECT clause and we might also need to use WHERE,

GROUP BY, and the other clauses too. But there are good reasons why we should al-

ways start with the FROM clause:

■ If we get the FROM clause wrong, the SQL statement will always return the wrong

results. It’s the FROM clause that produces the tabular structure, the starting set

of data on which all other operations in a SELECT statement are performed.

■ The FROM clause is the first clause that the database system looks at when it

parses the SQL statement.

Parsing an SQL Statement
Whenever we send an SQL statement to the database system to be executed, the

first action that the system performs is called parsing. This is how the database

system examines the SQL statement to see if it has any syntax errors. First it divides

the statement into its component clauses; then it examines each clause according

to the syntax rules for that clause. Contrary to what we might expect, the database

system parses the FROM clause first, rather than the SELECT clause.

For example, suppose we were to attempt to run the following SQL statement, in

which we have misspelled teams as teans:

Teams_06_FROM_Teans.sql (excerpt)

SELECT
 id, name
FROM
teans

WHERE
 conference = 'F'

In this case, the FROM clause refers to a non-existing table, so there is an immediate

syntax error. If the database system were to parse the SELECT clause first, it would

need to examine the table definitions of all the tables in the database, looking for

one that might contain two columns called name and id. In fact, it’s quite common

Simply SQL36

for a database to have several tables with two columns called name and id. Confusion

could ensue and the database would require more information from us to know

which table to retrieve name and id from. Hence why the database system parses

the FROM clause first, and this is the first clause we think about as well.

FROM One Table
We’ve already seen the FROM clause with a single table. In Chapter 1, we saw the

FROM clause specify the teams table:

SELECT
 id, name
FROM
teams

In Chapter 2, we saw the FROM clause specify the entries table:

SELECT
 title, category
FROM
entries

This form of the FROM clause is as simple as it gets. There must be at least one tabular

structure specified, and a single table fits that requirement. When we want to retrieve

data from more than one table at the same time however, we need to start using

joins.

FROM More than One Table Using JOINs
A join relates, associates, or combines two tables together. A join starts with two

tables, then combines—or joins— them together in one of several different ways,

producing a single tabular structure (as the result of the join). Actually, the verb to

join is very descriptive of what happens, as we’ll see in a moment.

The way that the tables are joined—the type of join—is specified in the FROM clause

using special keywords as well as the keyword JOIN. There are several different

types of join, which I’ll describe briefly, so that you can see how they differ. Then

we’ll look at specific join examples, using our sample applications.

37The FROM Clause

Types of Join
A join combines the rows of two tables, based on a rule called a join condition; this

compares values from the rows of both tables to determine which rows should be

joined.

There are three basic types of join:

■ inner join, created with the INNER JOIN keywords
■ outer join, which comes in three varieties:

LEFT OUTER JOIN■

■ RIGHT OUTER JOIN

■ FULL OUTER JOIN

■ cross join, created with the CROSS JOIN keywords

To visualize how joins work, we’re going to use two tables named A and B, as shown

in Figure 3.1.

Figure 3.1. Tables A and B

On Tables A and B

These tables are actually oversimplified, because they blur the distinction between

table and column names. The join condition actually specifies the columns that

must match. Further, it’s unusual for tables to have just one column.

Don’t worry about what A and B might actually represent. They could be anything.

The idea in the following illustrations is for you to focus your attention on the values

in the rows being joined. Table A has one column called a and rows with values

Simply SQL38

102, 104, 106, and 107. Table B has one column called b and rows with values 101,

102, 104, 106, and 108.

To Create Tables A and B

The SQL script to create tables A and B is available in the download for the book.

The file is called test_01_illustrated.sql.

The Inner Join
For an inner join, only rows satisfying the condition in the ON clause are returned.

Inner joins are the most common type of join. In most cases, such as the example

below, the ON clause specifies that two columns must have matching values. In this

case, if the value (of column a) in a row from one table (A) is equal to the value (of

column b) in a row from the other table (B), the join condition is satisfied, and those

rows are joined:

test_01_illustrated.sql (excerpt)

SELECT
 a, b
FROM
A INNER JOIN B

 ON a=b

Figure 3.2 illustrates how this works.

Figure 3.2. A INNER JOIN B

As you can see, a row from A is joined to a row from B when their values are equal.

Thus values 102, 104, and 106 are returned in the result set. Value 107 in A has no

39The FROM Clause

match in B, and therefore is not included in the result set. Similarly, the values 101

and 108 in B have no match in A, so they’re not included in the result set either. If

it's easier to do so, you can think of it as though the matching rows are actually

concatenated into a single longer row on which the rest of the SELECT statement

then operates.

Outer Joins
Next, we’ll look at outer joins. Outer joins differ from inner joins in that unmatched

rows can also be returned. As a result, most people say that an outer join includes

rows that don’t match the join condition. This is correct, but might be a bit mislead-

ing, because outer joins do include all rows that match. Typical outer joins have

many rows that match, and only a few that don’t.

There are three different types of outer join: left, right, and full. We’ll start with the

left outer join.

The Left Outer Join
For a left outer join, all rows from the left table are returned, regardless of whether

they have a matching row in the right table. Which one’s the left table, and which

one’s the right table? These are simply the tables mentioned to the left and to the

right of the OUTER JOIN keywords. For example, in the following statement, A is

the left table and B is the right table and a left outer join is specified in the FROM

clause:

test_01_illustrated.sql (excerpt)

SELECT
 a, b
FROM
A LEFT OUTER JOIN B

 ON a=b

Figure 3.3 shows the results of this join. Remember—left outer joins return all rows

from the left table, together with matching rows of the right table, if any.

Simply SQL40

Figure 3.3. A LEFT OUTER JOIN B

Notice that all values from A are returned. This is because A is the left table. In the

case of 107, which did not have a match in B, we see that it is indeed included in

the results, but there is no value in that particular result row from B. For the time

being, it’s okay just to think of the value from B as missing—which, of course, for

107 it is.

The Right Outer Join
For a right outer join, all rows from the right table are returned, regardless of

whether they have a match in the left table. In other words, a right outer join works

exactly like a left outer join, except that all the rows of the right table are returned

instead:

test_01_illustrated.sql (excerpt)

SELECT
 a, b
FROM
A RIGHT OUTER JOIN B

 ON a=b

In the example above, A is still the left table and B is still the right table, because

that’s where they are mentioned in relation to the OUTER JOIN keywords. Con-

sequently, the result of the join contains all the rows from table B, together with

matching rows of table A, if any, as shown in Figure 3.4.

41The FROM Clause

Figure 3.4. A RIGHT OUTER JOIN B

The right outer join is the reverse of the left outer join. With the same tables in the

same positions—A as the left table and B as the right table—the results of the right

outer join are very different from those of a left outer join. This time, all values from

B are returned. In the case of 101 and 108, which did not have a match in A, they

are indeed included in the results, but there is no value in their particular result

rows from A. Again, those values from A are missing, but the row is still returned.

The Full Outer Join
For a full outer join, all rows from both tables are returned, regardless of whether

they have a match in the other table. In other words, a full outer join works just like

left and right outer joins, except this time all the rows of both tables are returned.

Consider this example:

SELECT
 a, b
FROM
A FULL OUTER JOIN B

 ON a=b

Once again, A is the left table and B is the right table, although this time it doesn’t

really matter. Full outer joins return all rows from both tables, together with

matching rows of the other table, if any, as shown in Figure 3.5.

Simply SQL42

Figure 3.5. A FULL OUTER JOIN B

The full outer join is a combination of left and right outer joins. (More technically,

if you remember your set theory from mathematics at school, it's the union of the

results from the left and right outer joins.) Matching rows are—of course—included,

but rows that have no match from either table, are also included.

The Difference between Inner and Outer Joins

The results of an outer join will always equal the results of the corresponding inner

join between the two tables plus some unmatched rows from either the left table,

the right table, or both—depending on whether it is a left, right, or full outer join,

respectively.

Thus the difference between a left outer join and a right outer join is simply the

difference between whether the left table’s rows are all returned, with or without

matching rows from the right table, or whether the right table’s rows are all re-

turned, with or without matching rows from the left table.

A full outer join, meanwhile, will always include the results from both left and

right outer joins.

43The FROM Clause

The Cross Join
For a cross join, every row from both tables is returned, joined to every row of the

other table, regardless of whether they match. The distinctive feature of a cross join

is that it has no ON clause—as you can see in the following query:

SELECT
 a, b
FROM
A CROSS JOIN B

Figure 3.6. A CROSS JOIN B

Simply SQL44

Cross joins can be very useful but are exceedingly rare. Their purpose is to produce

a tabular structure containing rows which rep all possible combinations of two sets

of values (in our example, columns from two tables) as shown in Figure 3.6; this

can be useful in generating test data or looking for missing values.

Old-Style Joins

There’s another type of join, which has a comma-separated list of tables in the

FROM clause, with the necessary join conditions in the WHERE clause; this type of

join is sometimes called the "old-style" join, or "comma list" join, or "WHERE clause"

join. For example, for the A and B tables, it would look like this:

SELECT
 a, b
FROM
 A, B
WHERE
 a=b

These old-style joins can only ever be inner joins; the other join types are only

possible with very proprietary and confusing syntax, which the database system

vendors themselves caution is deprecated. Compare this with the recommended

syntax for an INNER JOIN:

SELECT
 a, b
FROM
 A INNER JOIN B
 ON a=b

You may see these old-style joins in the wild but I’d caution you against writing

them yourself. Always use JOIN syntax.

To recap our quick survey of joins, there are three basic types of join and a total of

five different variations:

■ inner join
■ left outer join, right outer join, and full outer join
■ cross join

Now for some more realistic examples.

45The FROM Clause

Real World Joins
Chapter 2 introduced the Content Management System entries table, which we’ll

continue to use in the following queries to demonstrate how to write joins. Figure 3.7

shows some—but not all—of its contents. The content column, for example, is

missing.

Figure 3.7. The entries table

Within our CMS web site, the aim is to give each category its own area on the site,

linked from the site's main menu and front page. The science area will contain all

the entries in the science category, the humor area will contain all the entries in

the humor category, and so on, as shown in Figure 3.8. To this end, each entry is

given a category, stored in the category column of each row.

Figure 3.8. A suggested CMS site structure

Simply SQL46

The main category pages themselves would need more than just the one word cat-

egory name that we see in the entries table. Site visitors will want to understand

what each section is about, so we’ll need a more descriptive name for each category.

But where to store this in the site? We could hardcode the longer name directly

into each main section page of the web site. A better solution, however, would be

to save the names in the database. Another table will do the job nicely, and so we

create the categories table for this purpose; we’ll give it two columns—category

and name—as shown in Figure 3.9.

Figure 3.9. The categories table

The category column is the key to each row in the categories table. It’s called a

key because the values in this column are unique, and are used to identify each

row. This is the column that we’ll use to join to the entries table. We’ll learn more

about designing tables with keys in Chapter 10. Right now, let’s explore the different

ways to join the categories and entries tables.

Creating the Categories Table

The script to create the categories table can be found in Appendix C and in the

download for the book in a file called CMS_05_Categories_INNER_JOIN_Entries.sql.

47The FROM Clause

Inner Join: Categories and Entries
The first join type we’ll look at is an inner join:

CMS_05_Categories_INNER_JOIN_Entries.sql (excerpt)

SELECT
 categories.name, entries.title, entries.created
FROM
categories

 INNER JOIN entries
 ON entries.category = categories.category

Figure 3.10 shows the results of this query.

Figure 3.10. The results of the inner join

Let’s walk through the query clause by clause and examine what it’s doing, while

comparing the query to the results it produces. The first part of the query to look

at, of course, is the FROM clause:

FROM
 categories
 INNER JOIN entries
 ON entries.category = categories.category

The categories table is joined to the entries table using the keywords INNER JOIN.

The ON clause specifies the join condition, which dictates how the rows of the two

tables must match in order to participate in the join. It uses dot notation (table-

name.columname) to specify that rows of the categories table will match rows of

Simply SQL48

the entries table only when the values in their category columns are equal. We'll

look in more detail at dot notation later in this chapter.

Figure 3.11 shows in detail how the result set of the query is produced by the inner

join of the categories table to the entries table. Because it’s an inner join, each

of the rows of the categories table is joined only to the rows of the entries table

that have matching values in their respective category columns.

Figure 3.11. The inner join in detail

Some of the Entries Table is Hidden

The entries table actually has several additional columns that are not shown:

id, updated, and content. These columns are also available, but were omitted

to keep the diagram simple. In fact, the diagram would’ve been quite messy if the

content column had been included, as it contains multiple lines of text. Since

these columns were not mentioned in the query at all, including them in the dia-

gram might have made it confusing. Some readers would surely ask, “Hey, where

did these come from?”

49The FROM Clause

Regarding the matching of rows of the categories and entries tables, notice that:

■ The categories row for humor matched two entries rows, and both instances

of matched rows are in the results, with the name of the humor category appearing

twice.

■ The categories row for blog matched no entries rows. Consequently, as this

is an inner join, this category does not appear in the results.

■ The other categories rows matched one entries row each, and these matched

rows are in the result.

Stating these observations in a slightly different way, we can see that a single row

in the categories table can match no rows, one row, or more than one row in the

entries table.

One-to-Many Relationships

The more than one aspect of the relationship between a row in the categories

table and matching rows in the entries table is the fundamental characteristic

of what we call a one-to-many relationship. Each (one) category can have multiple

(many) entries.

Even though a given category (blog) might have no matching entries, and only

one of the categories (humor) has more than one entry, the relationship between

the categories and entries tables is still a one-to-many relationship in structure.

Once the tables are fully populated with live data, it’s likely that all categories

will have many entries.

Looking at this relationship from the other direction, as it were, we can see that

each entry can belong to only one category. This is a direct result of the category

column in the entries table having only one value, which can match only one

category value in the categories table. Yet more than one entry can match the same

category, as we saw with the humor entries. So a one-to-many relationship is also

a many-to-one relationship. It just depends on the direction of the relationship

being discussed.

Simply SQL50

Now we've examined the FROM clause and seen how the INNER JOIN and its ON

condition have specified how the tables are to be joined, we can look at the SELECT

clause:

SELECT
 categories.name
, entries.title
, entries.created

As you would expect, the SELECT clause simply specifies which columns from the

result of the inner join are to be included in the result set.

Leading Commas

Notice that the SELECT clause has now been written with one line per column,

using a convention called leading commas; this places the commas used to separate

the second and subsequent items in a list at the front of their line. This may look

unusual at first, but the syntax is perfectly okay; remember, new lines and white

space are ignored by SQL just as they are by HTML. Experienced developers may

be more used to having trailing commas at the end of the lines, like this:

SELECT
 categories.name,
 entries.title,
 entries.created

I use leading commas as a coding style convention to make SQL queries more

readable and maintainable. The importance of readability and maintainability

can’t be overstated. For example, see if you can spot the two coding errors in this

hypothetical query:

SELECT
 first_name,
 last_name,
 title
 position,
 staff_id,
 group,
 region,
FROM
 staff

51The FROM Clause

Now see if you can spot the coding errors here:

SELECT
 first_name
, last_name
, title
 position
, pay_scale
, group
, region
,
FROM
 staff

The query is missing a comma in the middle of the column list and has an un-

needed, additional comma at the end of the list. In which example were the errors

easier to spot?

In addition, leading commas are easier to handle if you edit your SQL in a text

editor with the keyboard. Sometimes you need to move or delete a column from

the SELECT clause, and it's easier to select (highlight) the single line with the

keyboard's Shift and Arrow keys. Similarly, removing the last column requires

also removing the trailing comma from the previous line, which is easy to forget.

A dangling comma in front of the FROM keyword is a common error that’s difficult

to make using leading commas.

All Columns Are Available after a Join
In any join, all columns of the tables being joined are available to the SELECT query,

even if they’re not used by the query. Let's look at our inner join again:

SELECT
 categories.name
, entries.title
, entries.created
FROM
 categories
 INNER JOIN entries
 ON entries.category = categories.category

In most join queries, tables being joined usually contain more columns than those

mentioned in the SELECT clause. This is true here too; the entries table has other

Simply SQL52

columns not mentioned in the query. We haven’t included them in Figure 3.11 just

to keep the figure simple. Although the figure is correct, it could be construed as

slightly misleading, because it shows only the result set of the query, rather than

the tabular structure produced by the inner join.

Figure 3.12 expands on the actual processing of the query and shows the tabular

structure that’s produced by the FROM clause and the inner join; it includes the two

category columns—one from each table. This tabular structure, the intermediate

table, is produced by the database system as it performs the join, and held tempor-

arily for the SELECT clause.

Figure 3.12. How an inner join is actually processed

53The FROM Clause

When a Join is Executed in a Query
Two important points come out of the analysis of our first example join query:

■ A join produces an intermediate tabular result set;
■ The SELECT clause occurs after the FROM clause and operates on the intermediate

result set.

At the beginning of this chapter, I mentioned that the FROM clause is the first clause

that the database system parses when we submit a query. If there are no syntax errors,

the database system goes ahead and executes the query. Well, it turns out that the

FROM clause is the first clause that the database system executes, too.

You could consider the execution of a join query as working in the following manner.

First, the database system produces an intermediate tabular result set based on the

join specified in the FROM clause. This contains all the columns from both tables.

Then the database system uses the SELECT clause to select only the specified columns

from this intermediate result set, and extracts them into the final tabular structure

that is returned as the result of the query.

Qualifying Column Names
Finally, let’s take one more look at our inner join query:

CMS_05_Categories_INNER_JOIN_Entries.sql (excerpt)

SELECT
categories.name

, entries.title
, entries.created
FROM
 categories
 INNER JOIN entries
 ON entries.category = categories.category

Each of the column names used in this query is qualified by its table name, using

dot notation, where the table name precedes the column name with a dot between

them.

Qualifying column names is mandatory when there is more than one instance of

the same column name in a query. (These would be from different tables, of course;

more than one instance of the same column name in a single table is not possible,

Simply SQL54

as all columns within a table must each have unique names.) If you don’t uniquely

identify each of the columns that have the same name but are in different tables,

you will receive a syntax error about ambiguous names. This applies whether the

query makes reference to both columns or not; every single reference must be

qualified.

When there is only one instance of the column name in the query, then qualifying

column names becomes optional. Thus, we could have written the following and

be returned the same result set:

SELECT
 name
, title
, created
FROM
 categories
 INNER JOIN entries
 ON entries.category = categories.category

However, it’s a good idea to qualify all column names in this situation because

when you look at the SELECT clause, you can’t always tell which table each column

comes from. This can be especially frustrating if you’re only remotely familiar with

the tables involved in the query, such as when you’re troubleshooting a query

written by another person (or even by yourself, a few months ago).

Always Qualify Every Column in a Join Query

Even though some or even all columns may not need to be qualified within a join

query, qualifying every column in a multi-table query is part of good SQL coding

style, because it makes the query easier for us to understand.

In a way, qualifying column names makes the query self-documenting: it makes

it obvious what the query is doing so that it’s easier to explain in documentation.

55The FROM Clause

Table Aliases
Another way to qualify column names is by using table aliases. A table alias is an

alternate name assigned to a table in the query. In practice, a table alias is often

shorter than the table name. For example, here’s the same inner join using table

aliases:

SELECT
cat.name

, ent.title
, ent.created
FROM
 categories AS cat
 INNER JOIN entries AS ent
 ON ent.category = cat.category

Here, the categories table has been assigned the alias cat, and the entries table

has been assigned the alias ent. You’re free to choose any names you wish; the table

aliases are temporary, and are valid only for the duration of the query. Some people

like to use single letters as table aliases when possible, because it reduces the

number of characters in the query and so makes it easier to read.

The only caveat in using table aliases is that once you have assigned an alias to a

table, you can no longer use the table name to qualify its columns in that query;

you must use the alias name consistently throughout the query. Once the query is

complete however, you're free to refer to the original table by its full name again,

the same alias, or even a different alias; the point here being that a table alias is

defined only for the duration of the query that contains it.

Left Outer Join: Categories and Entries
Continuing our look at join queries, the left outer join query we’ll examine is exactly

the same as the inner join query we just covered, except that it uses LEFT OUTER

JOIN as the join keywords:

CMS_06_Categories_LEFT_OUTER_JOIN_Entries.sql (excerpt)

SELECT
 categories.name
, entries.title
, entries.created

Simply SQL56

FROM
 categories

LEFT OUTER JOIN entries
 ON entries.category = categories.category

Figure 3.13 shows the results of the above query.

Figure 3.13. The results of the left outer join query

The only difference between this left outer join query and the preceding inner join

query is the inclusion of one additional row—for the category with the name Log

On to My Blog—in the result set. The additional row is included because the query

uses an outer join. Specifically, it’s a left outer join, and therefore all of the rows of

the left table, the categories table, must be included in the results. The left table,

you may recall, is simply the table that is mentioned to the left of the LEFT OUTER

JOIN keywords. Figure 3.14 shows the process of the join and selection in more

detail.

57The FROM Clause

Figure 3.14. How a left outer join query is actually processed

To make it more obvious which table is the left one and which table is the right

one, we could write the join without line breaks and spacing so categories is more

obviously the left table in this join:

FROM categories LEFT OUTER JOIN entries

Let’s take another look at the results of our left outer join, because there is one more

important characteristic of outer joins that I need to point out.

Simply SQL58

An Application for Left Outer Joins: a Sitemap

Looking at the results of our LEFT OUTER JOIN query, it's easy enough to see

how they could form the basis of a sitemap for the CMS. For example, the HTML

for the sitemap that can be produced by these query results might be:

<h2>Gentle Words of Advice</h2>

 Be Nice to Everybody (2009-03-02)

<h2>Stories from the Id</h2>

 What If I Get Sick and Die? (2008-12-30)

<h2>Log On to My Blog</h2>

<h2>Humorous Anecdotes</h2>

 Hello Statue (2009-03-17)
 Uncle Karl and the Gasoline (2009-02-28)

<h2>Our Spectacular Universe</h2>

 The Size of Our Galaxy (2009-04-03)

If you’re an experienced web developer, you can probably see how you’d make

the transformation from query results to HTML using your particular application

language.

Notice that the Log On to My Blog category has no entries, but is included in the

result (because it’s a left outer join). Therefore, the application logic needs to detect

this situation, and not produce the unordered list () tags for entries in that

category. Without going into the details of application programming logic, let me

just say that it’s done by detecting the NULLs in the entries columns of that result

row.

59The FROM Clause

Outer Joins Produce NULLs
Our left outer join includes rows from the left table that have no match in the right

table, as shown in Figure 3.13. So what exactly are the values in the title and

created columns of the blog category result row? Remember, these columns come

from the entries table.

The answer is: they are NULL.

NULL is a special value in SQL, which stands for the absence of a value. In a left

outer join, columns that come from the right table for unmatched rows from the left

table are NULL in the result set. This literally means that there is no value there,

which makes sense because there is no matching row from the right table for that

particular row of the left table.

Working with NULLs is part of daily life when it comes to working with databases.

We first came across NULL (albeit briefly) in Chapter 1, where it was used in a sample

CREATE TABLE statement and we’ll see NULL again throughout the book.

Right Outer Join: Entries and Categories
The following right outer join query produces exactly the same results as the left

join query we just covered:

CMS_06_Categories_LEFT_OUTER_JOIN_Entries.sql (excerpt)

SELECT
 categories.name
, entries.title
, entries.created
FROM
entries

 RIGHT OUTER JOIN categories
 ON entries.category = categories.category

But how can this be?

Hopefully you've spotted the answer: I've switched the order of the tables! In the

right outer join query, I wrote:

FROM entries RIGHT OUTER JOIN categories

Simply SQL60

In the preceding left outer join query, I had:

FROM categories LEFT OUTER JOIN entries

The lesson to be learned from this deviousness is simply that left and right outer

joins are completely equivalent, it’s just a matter of which table is the outer table:

the one which will have all of its rows included in the result set. Because of this,

many practitioners avoid writing right outer queries, converting them to left outer

joins instead by changing the order of the tables; that way the table from which all

rows are to be returned is always on the left. Left outer joins seem to be much easier

to understand than right outer joins for most people.

Right Outer Join: Categories and Entries
What if I hadn’t switched the order of the tables in the preceding right outer join?

Suppose the query had been:

CMS_07_Categories_RIGHT_OUTER_JOIN_Entries.sql (excerpt)

SELECT
 categories.name
, entries.title
, entries.created
FROM
categories

 RIGHT OUTER JOIN entries
 ON entries.category = categories.category

This time, as in our first left outer join, the categories table is on the left, and the

entries table is on the right. Figure 3.15 shows the results of this query are the

same as the results from our earlier inner join.

61The FROM Clause

Figure 3.15. The results of the right outer join query

How can this be? Is this more deviousness? No, not this time; the reason is because

it’s the actual contents of the tables. Remember, a right outer join returns all rows

of the right table, with or without matching rows from the left table. The entries

table is the right table, but in this particular instance, every entry has a matching

category. All the entries are returned, and there are no unmatched rows.

So it wasn’t really devious to show that the right outer join produces the same results

as the inner join, because it emphasized the rule for outer joins that all rows from

the outer table are returned, with or without matching rows, if any. In this case,

there weren’t any.

To really see the right outer join in action, we’d need an entry that lacks a matching

category. Let’s add an entry to the entries table, for a new category called computers,

as shown in Figure 3.16.

Figure 3.16. A new addition to the entries table

Simply SQL62

Trying Out Your SQL

The INSERT statement that adds this extra row to the entries table can be found

in the section called “Content Management System” in Appendix C.

Figure 3.17 shows that when we re-run the right outer join query with the new

category, the results are as expected.

Figure 3.17. The results of the right outer join query—take two

This time, we see the unmatched entry in the query results, because there’s no row

in the categories table for the computers category.

Full Outer Join: Categories and Entries
Our next example join query is the full outer join. The full outer join query syntax,

as I’m sure you can predict, is remarkably similar to the other join types we’ve seen

so far:

CMS_08_Categories_FULL_OUTER_JOIN_Entries.sql (excerpt)

SELECT
 categories.name
, entries.title
, entries.created
FROM
categories

 FULL OUTER JOIN entries
 ON entries.category = categories.category

63The FROM Clause

This time, the join keywords are FULL OUTER JOIN, but an unfortunate error happens

in at least one common database system. In MySQL, which doesn’t support FULL

OUTER JOIN despite it being standard SQL, the result is a syntax error: SQL Error:

You have an error in your SQL syntax; check the manual that corresponds

to your MySQL server version for the right syntax to use near 'OUTER

JOIN entries ON …'

Figure 3.18 shows the result in other database systems that do support FULL OUTER

JOIN.

Figure 3.18. The results of the full outer join query

Notice that the result set includes unmatched rows from both the left and the right

tables. This is the distinguishing feature of full outer joins that we saw earlier; both

tables are outer tables, so unmatched rows from both are included. It’s for this

reason that full outer joins are rare in web development as there are few situations

that call for them. In contrast, inner joins and left outer joins are quite common.

UNION Queries
If your database system does not support the FULL OUTER JOIN syntax, the same

results can be obtained by a slightly more complex query, called a union. Union

queries are not joins per se. However, most people think of the results produced by

a union query as consisting of two results sets concatenated or appended together.

UNION queries perform a join only in a very loose sense of the word.

Simply SQL64

Let’s have a look at a union query:

CMS_09_Left_outer_join_UNION_right_outer_join.sql (excerpt)

SELECT
 categories.name
, entries.title
, entries.created
FROM
 categories
 LEFT OUTER JOIN entries
 ON entries.category = categories.category
UNION
SELECT
 categories.name
, entries.title
, entries.created
FROM
 categories
 RIGHT OUTER JOIN entries
 ON entries.category = categories.category

As you can see, the left outer join and right outer join queries we saw earlier in this

chapter have simply been concatenated together using the UNION keyword. A union

query consists of a number of SELECT statements combined with the UNION operator.

They’re called subselects in this context because they’re subordinate to the whole

UNION query; they’re only part of the query, rather than being a query executed on

its own. Sometimes they’re also called subqueries, although this term is generally

used for a more specific situation, which we shall meet shortly.

When executed, a UNION operation simply combines the result sets produced by

each of its subselect queries into a single result set. Figure 3.19 shows how this

works for the example above:

I mentioned earlier that a join operation can best be imagined as actually concaten-

ating a row from one table onto the end of a row from the other table—a horizontal

concatenation, if you will. The union operation is therefore like a vertical concaten-

ation—a second result set is appended onto the end of the first result set.

65The FROM Clause

Figure 3.19. How a union query works

The interesting feature is that duplicates are removed. You can see the duplicates

easily enough—they are entire rows in which every column value is identical. The

reason that duplicates are produced in this example is due to both of the sub-se-

lects—the left outer join and the right outer join—returning rows from the same two

tables which match the the same join conditions. Thus, matched rows are returned

by both subselects, creating duplicate rows in the intermediate results. Only the

unmatched rows are not duplicated.

You might wonder why UNION removes duplicates; the answer is simply that it’s

designed that way. It’s how the UNION operator is supposed to work.

Simply SQL66

UNION and UNION ALL

Sometimes it’s important to retain all rows produced by a union operation, and

not have the duplicate rows removed. This can be accomplished by using the

keywords UNION ALL instead of UNION.

■ UNION removes duplicate rows. Only one row from each set of duplicate rows

is included in the result set.
■ UNION ALL retains all rows produced by the subselects of the union, maintain-

ing duplicate rows.

UNION ALL is significantly faster because the need to search for duplicate rows—in

order to remove them—is redundant.

The fact that our union query removed the duplicate rows means that the above

union query produces the same results as the full outer join. Of course, this example

was contrived to do just that.

There is more to be said about union queries, but for now, let’s finish this section

with one point: union queries, like join queries, produce a tabular structure as their

result set.

Views
A view is another type of database object that we can create, like a table. Views are

insubstantial, though, because they don’t actually store data (unlike tables). Views

are SELECT statements (often complex ones) that have been given a name for ease

of reference and reuse, and can be used for many purposes:

■ They can customize a SELECT statement, by providing column aliases.

■ They can be an alias to the result set produced by the SELECT statement in their

definition. If the SELECT statement in the view contains joins between a number

of tables, they are effectively pre-joined by the database in advance of a query

against the view. All this second query then sees is a single table to query against.

This is probably the most important benefit of using views.

■ They can enforce security on the database. Users of a database might be restricted

from looking at the underlying tables altogether; instead, they might only be

granted access to views. The classic example is the employees table, which

67The FROM Clause

contains columns like name, department, and salary. Because of the confidential

nature of salary, very few people are granted permission to access such a table

directly; rather, a special view is made available that excludes the confidential

columns.

To demonstrate, here's how you define the inner join query used earlier as a view:

CMS_10_CREATE_VIEW.sql (excerpt)

CREATE VIEW
 entries_with_category
AS
SELECT
 entries.title
, entries.created
, categories.name AS category_name
FROM
 entries
 INNER JOIN categories
 ON categories.category = entries.category

This statement defines a view called entries_with_category. It uses the AS keyword

to associate the name entries_with_category with the SELECT statement which

defines the view. With the view defined, we can query it as if it were a table:

CMS_10_CREATE_VIEW.sql (excerpt)

SELECT
 title
, category_name
FROM
 entries_with_category

Of course, it's not a table—the view itself does not actually store the result set pro-

duced by its SELECT statement. The use of the view name here works by executing

the view's underlying SELECT statement, storing its results in an intermediate table,

and using that table as the result of the FROM clause. The results of the above query,

shown in Figure 3.20, are quite familiar.

Simply SQL68

Figure 3.20. Selecting from a view

This result set is similar to the result set produced by the inner join query which

defines the view. Notice that only two columns have been returned, because the

SELECT statement which uses the view in its FROM clause (as opposed to the SELECT

statement which defines the view) only asked for two. Also, notice that a column

alias called category_name was assigned to the categories table’s name column in

the view definition; this is the column name that must be used in any SELECT

statement which uses the view, and it’s the column name used in the result set.

One particular implication of the view definition is that only the columns defined

in the view’s SELECT statement are available to any query that uses the view. Even

though the entries table has a content column, this column is unknown to the

view and will generate a syntax error if referenced in a query using the view.

Views in Web Development
How do views relate to our day-to-day tasks as web developers?

■ When working on a large project in a team environment, you may be granted

access to views only, not the underlying tables. For example, a Database Admin-

istrator (DBA) may have built the database, and you’re just using it. You might

not even be aware that you’re using views. This is because, syntactically, both

tables and views are used in the FROM clause in exactly the same way.

■ When you build your own database, you may wish to create views for the sake

of convenience. For example, if you often need to display a list of entries and

their category on different pages within the site, it’s a lot easier to write FROM

entries_with_category than the underlying join.

69The FROM Clause

Subqueries and Derived Tables
We started this chapter by examining the FROM clause, working our way up from

simple tables through the various types of joins. We briefly saw a UNION query and

its subselects, and we’ve also seen how views make complex join expressions

easier to use. To finish this chapter, we'll take a quick look at derived tables. Here’s

an example:

CMS_11_Derived_tables.sql (excerpt)

SELECT
 title
, category_name
FROM
(SELECT

 entries.title
 , entries.created
 , categories.name AS category_name
 FROM
 entries
 INNER JOIN categories
 ON categories.category = entries.category
) AS entries_with_category

The derived table here is the entire SELECT query in parentheses (the parentheses

are required in the syntax, to delimit the enclosed query). A derived table is a

common type of subquery, which is a query that’s subordinate to—or nested with-

in—another query (much like the subselects in the union query).

It looks familiar, too, doesn’t it? This subquery is the same query used in the

entries_with_categories view defined in the previous section. Indeed, just as

every view needs a name, every derived table must be also given a name, also using

the AS keyword (on the last line) to assign the name entries_with_category as a

table alias for the derived table. With these similarities in mind, derived tables are

often also called inline views. That is, they define a tabular structure—the result

set produced by the subquery—directly inline in (or within) the SQL statement,

and the tabular structure produced by the subquery, in turn, is used as the source

of the data for the FROM clause of outer or main query.

In short, anything which produces a tabular structure can be specified as a source

of data in the FROM clause. Even a UNION query, which we discussed briefly, can also

Simply SQL70

be used in the FROM clause, if it’s specified as a derived table; the entire UNION query

would go into the parentheses that delimit the derived table.

Derived tables are incredibly useful in SQL. We’ll see several of them throughout

the book.

Wrapping Up: the FROM Clause
In this chapter, we examined the FROM clause, and how it specifies the source of the

data for the SELECT statement. There are many different types of tabular structures

that can be specified in the FROM clause:

■ single tables
■ joined tables
■ views
■ subqueries or derived tables

Finally—and this is one of the key concepts in the book—not only does the FROM

clause specify one or more tabular structures from which to extract data, but the

result of the execution of the FROM clause is also another tabular structure, referred

to as the intermediate result set or intermediate table. In general, this intermediate

table is produced first, before the SELECT clause is processed by the database system.

In the Chapter 4, we’ll see how the WHERE clause can be used to filter the tabular

structure produced by the FROM clause.

71The FROM Clause

Chapter4
The WHERE Clause
The WHERE clause is the second clause of the SQL SELECT statement that we’ll now

discuss in detail. The FROM clause, which we covered in the previous chapter, intro-

duced the central concept behind SQL: tabular structures. It is the first clause that

the database system parses and executes when we run an SQL query. A tabular

structure is produced by the FROM clause using tables, joins, views, or subqueries.

This tabular structure is referred to as the result set of the FROM clause.

The WHERE clause is optional. When it’s used, it acts as a filter on the rows of the

result set produced by the FROM clause. The WHERE clause allows us to obtain a result

set containing only the data that we’re really interested in, when the entire result

set would contain more data than we need. In addition, the WHERE clause, more than

any other, determines whether our query performs efficiently.

Conditions
The WHERE clause is all about true conditions. Its basic syntax is:

WHERE condition that evaluates as TRUE

As we’ve learned, a condition is some expression that can be evaluated by the

database system. The result of the evaluation will be one of TRUE, FALSE, or UNKNOWN.

We’ll cover these one at a time, starting with TRUE.

Conditions that are True
A typical WHERE condition looks like this:

SELECT
 name
FROM
 teams
WHERE
 id = 9

In this query, as we now know from Chapter 3, the result set produced by the FROM

clause consists of all the rows of the teams table. After the FROM clause has produced

a result set, the WHERE clause filters the result set rows, using the id = 9 condition.

The WHERE clause evaluates the truth of the condition for every row, in effect com-

paring each row’s id column value to the constant value 9. The really neat part

about this evaluation is that it happens all at once. You may think of the database

system actually examining one value after another, and this mental picture is really

not too far off the mark. There is, however, no sequence involved; it is just as correct

to think of it happening on all rows simultaneously.

So what is the end result? No doubt you’re ahead of me here. Amongst all the rows

in the teams table, the given condition will be TRUE for only one of them. For all

the other rows, it will be FALSE. All the other rows are said to be filtered out by the

WHERE condition.

Simply SQL74

When “Not True” is Preferable
But what if we want the other rows? Suppose we want the names of all teams who

aren’t team 9?

There are two approaches:

■ WHERE NOT id = 9

The NOT keyword inverts the truthfulness of the condition.

■ WHERE id <> 9

This is the not equals comparison operator. You can, if you wish, read it as “less

than or greater than,” and this would be accurate.

Notice what we’ve done in both cases. We want all rows where the condition id =

9 is FALSE, but we wrote the WHERE clause in such a way that the condition evaluates

as TRUE for the rows we want, in keeping with the general syntax:

WHERE condition that evaluates as TRUE

More specifically, the WHERE clause condition can include a NOT keyword, and, as

we shall see in a moment, several conditions that are logically connected together

to form a compound condition.

Besides TRUE and FALSE, there is one other result that’s possible when a condition

is evaluated in SQL: UNKNOWN.

A condition evaluates as UNKNOWN if the database system is unable to figure out

whether it’s TRUE or FALSE. In order to see UNKNOWN in action, we’ll need a good ex-

ample, and for that, we’ll use yet another of our sample applications.

75The WHERE Clause

A Couple of MySQL Gotchas

You would expect that with a concept as simple as equals or not equals, everything

should work the same way. Regrettably, MySQL handles this slightly differently

to the perceived norm. Let’s recap the scenario: we want all rows where id is not

equal to 9.

The first way is to say NOT id = 9, which we expect to be TRUE for every row

except one. Unfortunately, MySQL applies the NOT to the id column value first,

before comparing to 9. In effect, MySQL evaluates it as:

WHERE (NOT id) = 9

MySQL—for reasons we’ll not go into—treats 0 and FALSE interchangeably, and

any other number as TRUE, which it equates with 1. If id actually had the value

of 0 (which no identifier should), then NOT id would be 1. For all other values,

NOT id would be 0. And 0 isn’t equal to 9.

Be careful using NOT. Unless you’re sure, enclose whatever comes after NOT in

parentheses. The following will work as expected in all database systems:

WHERE NOT (id = 9)

A better choice is to avoid using NOT altogether. Just use the not equals operator:

WHERE id <> 9

Also, avoid using MySQL’s version of the not equals operator, shown below:

WHERE id != 42

Note that using != is specific to MySQL and incompatible with other database

systems.

Shopping Carts
So far, we’ve seen the Teams application, briefly, in Chapter 1, and the Content

Management System application, in more detail, in Chapter 2 and Chapter 3.

Simply SQL76

Our next sample application, Shopping Carts, supports an online store for a web

site, where site visitors can select items from an inventory and place them into

shopping carts when ordering. Anyone who’s ever made a purchase on the Web

will already be familiar with the general features of online shopping carts. In case

you’re thinking that shopping carts are complex—and they are—our Shopping Carts

sample application is very simple in comparison to a real one. It’s not meant to be

industrial strength; it’s just a sample application, intended to allow us to learn SQL.

The first table we’ll look at in the Shopping Carts application is the items table.

This table will contain all the items that we plan to make available for purchase

online. Figure 4.1 shows the items table after its initial load of data.

Figure 4.1. The items table

Notice that some of the prices are empty in the diagram. These empty values are

actually NULL. I haven’t discussed NULL in detail yet, although we met NULL briefly

in Chapter 3: NULLs were returned by outer joins in the columns of unmatched rows.

77The WHERE Clause

To Create the Items Table

The SQL script to create the items table and add data to it is available in the

download for the book. The file is called Cart_01_Comparison_operators.sql. It’s

also found in the section called “Shopping Carts” in Appendix C.

What does it mean that the price of certain items is NULL? Simply that the price for

that item is not known—yet. Obviously, we can’t sell an item with an unknown

price, so we’ll have to supply a price value for these items eventually. NULL can

have several interpretations, including unknown and not applicable. In the case of

outer joins, NULLs in columns of unmatched rows are best understood as missing.

In the items table example, the price column is NULL for items to which we’ve not

yet been assigned a price, so the best interpretation is unknown.

How does all this talk about NULL relate to conditions in the WHERE clause? Let’s

look at a sample query:

Cart_01_Comparison_operators.sql (excerpt)

SELECT
 name
, type
FROM
 items
WHERE
 price = 9.37

Here the WHERE clause consists of just one condition: the value of the price column

must be 9.37 for that row to be returned in the result set. And the result set, shown

in Figure 4.2, produced by this query is exactly what we’d expect.

Figure 4.2. Using a simple WHERE clause

Simply SQL78

As we learned earlier, the condition in the WHERE clause is evaluated on each row,

and only those rows where the condition evaluates as TRUE are retained. So what

happens when the WHERE clause is evaluated for items that have NULL in the price

column? For these rows, the evaluation is UNKNOWN.

Conditions that Evaluate as UNKNOWN
A condition evaluates as UNKNOWN if the database system cannot figure out whether

it is TRUE or FALSE. The only situations where the evaluation comes out as UNKNOWN

involve NULL.

When the WHERE clause condition, price = 9.37, is evaluated for items that have

NULL in the price column, the evaluation is UNKNOWN. The database system cannot

determine that NULL is equal to 9.37—because NULL isn’t equal to anything—and

yet it also cannot determine that NULL is not equal to 9.37—because NULL isn’t not

equal to anything either. It's confusing, certainly, but it’s just how standard SQL

defines NULL. NULL is not equal to anything, not even another NULL. Any comparison

involving NULL evaluates as UNKNOWN. So the result of the evaluation is UNKNOWN.

Don’t let this confuse you. NULLs are tricky, but all you have to remember is that

the WHERE clause wants only those conditions which evaluate as TRUE. Rows for

which the WHERE conditions evaluate either FALSE or UNKNOWN are filtered out.

Operators
WHERE clause conditions can utilize many other operators besides equal and not

equal. These other operators are mostly straightforward and work just as we would

expect them to.

Comparison Operators
When making a comparison between two values, SQL—as well as being able to

determine whether the values are equal—can also determine whether a value is

greater than the other, or less than the other.

79The WHERE Clause

Here’s a typical example that compares whether one number (integer or decimal)

is less than another:

Cart_01_Comparison_operators.sql (excerpt)

SELECT
 name
, type
FROM
 items
WHERE
 price < 10.00

This sample query will return the name and type for any items that have a price less

than ten (dollars). An item with a price of 9.37 would be included in the result set

by the WHERE clause filtering operation, because 9.37 is less than 10.00.

Inequality operators also work on other data types, too. For example, you can

compare two character strings:

WHERE name < 'C'

This is a perfectly good WHERE condition, which compares the values in the name

column with the string ‘C’ and returns TRUE for all names that start with ‘A’ or ‘B’

because those name values are considered less than the value ‘C.’

For any comparison, a database uses a natural or inherent sequencing for the type

of values being compared. With this in mind, comparing which value is less than

the other can be seen as determining which of the values comes first in the natural

sequence. For numbers, it’s the standard numeric sequence, (zero, one, two, etc)

and for strings, it’s the alphabetical, or, more correctly, the collating sequence.

Simply SQL80

Collations

Collations in SQL are determined by very specific rules involving the sequence

of characters in a character set. We’re accustomed to think of the English alphabet

as consisting of twenty-six simple letters from A to Z. Actually, there are 52, if

you count lower case letters too. But there are also a few other letters, such as the

accented é in the word résumé. Obviously, é with an accent is not the same as e

without an accent; they are different characters. The question now is: does résumé

(a noun meaning summary) come before or after the word resume (a verb meaning

to begin again)? It’s the collating sequence that decides.

Collations exist to support many languages and character sets. All database systems

have default collations, and these are safe to use without you even knowing about

them. For more information, consult your manual for information specific to the

database system you’re using. You can also find general information about collating

sequences at Wikipedia.1

Besides comparing numbers and strings, we can also compare dates using the equals

and not equals operators (= and <>). For example, consider this WHERE clause:

WHERE created >= '2009-04-03'

For each row, the created column value is compared to the date constant value of

2009-04-03, and the row will be filtered out if the WHERE condition is not evaluated

as TRUE. In other words, earlier dates are filtered out. We saw that the sequence for

numbers is numeric (0, 1, 2, etc), and the sequence for strings is alphabetic (as

defined by the collation). The sequence for date values is chronological. So 2008-

12-30 comes before 2009-02-28, which comes before 2009-03-02.

Notice that the operator used in the example above is greater than or equal to. In

total, there are six comparison operators in SQL, as shown in Table 4.1.

1 http://en.wikipedia.org/wiki/Collating_sequence

81The WHERE Clause

http://en.wikipedia.org/wiki/Collating_sequence
http://en.wikipedia.org/wiki/Collating_sequence

Table 4.1. Comparison operators in SQL

equal to=

not equal to<>

less than<

less than or equal to<=

greater than>

greater than or equal to>=

Remember, these can be applied to numbers, strings, and dates, but in each case, a

specific sequence is used.

The LIKE Operator
The LIKE operator implements pattern matching in SQL: it allows you to search for

a pattern in a string (usually in a column defined as a string column), in which

portions of the string value are represented by wildcard characters. These are a

small set of symbolic characters representing one or more missing characters.

For example, consider the query:

Cart_02_LIKE_and_BETWEEN.sql (excerpt)

SELECT
 name
, type
FROM
 items
WHERE
 name LIKE 'thing%'

The results of this query are shown in Figure 4.3.

In standard SQL, LIKE has two wildcards: the percent sign (%), which stands for

zero or more characters, and the underscore (_), which stands for exactly one char-

acter. Notice how in the query above, name values which satisfied the WHERE condition

each start with the characters thing, followed by zero or more additional characters.

Thus, these values match the pattern specified by the LIKE string, so the condition

evaluates as TRUE.

Simply SQL82

Figure 4.3. Using a wildcard in a query

The BETWEEN Operator
The purpose of the BETWEEN operator is to enable a range test to see whether or not

a value is between two other values in its sequence of comparison. A typical example

is:

Cart_02_LIKE_and_BETWEEN.sql (excerpt)

SELECT
 name
, price
FROM
 items
WHERE
 price BETWEEN 5.00 AND 10.00

The way BETWEEN works here is fairly obvious. Items are included in the result set

if their price is between 5.00 and 10.00, as the result set in Figure 4.4 shows.

Figure 4.4. Using a BETWEEN operator

83The WHERE Clause

The BETWEEN range test is actually equivalent to the following compound condition,

in which two conditions—in this case 5.00 <= price and price <= 10.00—are

combined:

WHERE
 5.00 <= price AND price <= 10.00

There are two important aspects to note here.

■ The first is the sequence. 5.00 has to be less than or equal to price, and price

has to be less than or equal to 10.00. In other words, the smaller value comes

first, and the larger value comes last, with the value being tested coming between

them. If the actual value does not lie between the endpoints, the BETWEEN condi-

tion evaluates as FALSE.

■ The second important detail to notice is that the endpoints are included.

BETWEEN: It haz a flavr

Here are two examples which will illustrate the flavor or correct usage of BETWEEN.2

In the first example, we want to return all entries posted in the last five days:

WHERE
 created BETWEEN CURRENT_DATE AND CURRENT_DATE - INTERVAL 5 DAY

2 Illustration by Alex Walker

Simply SQL84

Here, CURRENT_DATE is a special SQL keyword that always corresponds to the current

date when the query is run. Furthermore, the CURRENT_DATE - INTERVAL 5 DAY

expression is the standard SQL way of doing date arithmetic (because that’s a minus

sign rather than a hyphen). Yet this WHERE clause fails to return any rows at all, even

though we know that there are rows in the table with a created value within the

last five days. What’s going on?

Let’s assume that the CURRENT_DATE is 2009-03-20, which would mean that CUR-

RENT_DATE - INTERVAL 5 DAY is 2009-03-15. The WHERE clause is then equivalent

to:

WHERE
 created BETWEEN '2009-03-20' AND '2009-03-15'

This might look okay, but it isn’t. Syntactically, it’s fine, but semantically, it’s flawed.

The flaw can be seen more easily if we rewrite the BETWEEN condition using the

equivalent compound condition:

WHERE
 '2009-03-20' <= created AND created <= '2009-03-15'

Now, there may be some rows with a created value that is greater than or equal to

2009-03-20. There may also be some rows with a created value that is less than

or equal to 2009-03-15. However, the same created value, on any given row, cannot

simultaneously satisfy both conditions. Our mistake is to have placed the larger

value first. Remember, with dates, smaller means chronologically earlier. The ori-

ginal WHERE clause should have been written with the earlier date first, like this:

WHERE
 created BETWEEN CURRENT_DATE - INTERVAL 5 DAY AND CURRENT_DATE

Our second example of correct BETWEEN usage concerns the endpoints. Consider the

following WHERE clause, intended to return all entries for February 2009:

WHERE
 created BETWEEN '2009-02-01' AND '2009-03-01'

85The WHERE Clause

This is fine, except that it includes entries posted on the first of March, which is

outside the date range we’re aiming for. Immediately, you might think to rewrite

this as follows:

WHERE
 created BETWEEN '2009-02-01' AND '2009-02-28'

This is correct, but inflexible. If we wanted to generalize this so that it returns rows

for any given month, we would need to calculate the last day of the month; this can

become extremely hairy, as anyone can attest who’s coded a general date expression

that takes February 29 into consideration. The best-practice approach in these cases,

then, is to abandon the BETWEEN construction and code an open-ended upper end-

point compound condition:

WHERE
 '2009-02-01' <= dateposted AND dateposted < '2009-03-01'

Notice that the second comparison operator is solely less than, not less than or

equal. All values of created greater than or equal to 2009-02-01 and up to, but not

including, 2009-03-01, are returned.

The compound condition is usually written like this, for convenience:

WHERE
 created >= '2009-02-01' AND created < '2009-03-01'

The only requirement then is to calculate the date of the first day of the following

month, rather than try to figure out when the last day of the month in question is.

Compound Conditions with AND and OR
Compound conditions—multiple conditions that are joined together—in the WHERE

clause are common. Here’s an example:

Cart_04_ANDs_and_ORs.sql (excerpt)

SELECT
 id
, name
, billaddr

Simply SQL86

FROM
 customers
WHERE
 name = 'A. Jones' OR 'B. Smith'

It’s clear what is meant here—return all rows from the customers table that have a

name value of 'A.Jones' or 'B.Smith'. Unfortunately, this produces a syntax error,

because 'B.Smith', by itself, is not a condition except in MySQL. In MySQL the string

is interpreted by itself as FALSE, so the compound condition above is equivalent

to “name equals 'A.Jones' (which may or may not be true), or FALSE.”

The correct way to write the compound condition shown above would be:

WHERE
 name = 'A.Jones' OR name = 'B.Smith'

To Create the Customers Table

The SQL script to create the customers table and add data to it is available in

the download for the book. The file is called Cart_04_ANDs_and_ORs.sql. It’s also

found in the section called “Shopping Carts” in Appendix C.

Truth Tables
For convenience, Table 4.2 and Table 4.3 illustrate how compound conditions are

evaluated.

Table 4.2. AND Truth Table

ResultCombination

TRUETRUE AND TRUE

FALSETRUE AND FALSE

FALSEFALSE AND TRUE

FALSEFALSE AND FALSE

87The WHERE Clause

Table 4.3. OR Truth Table

ResultCombination

TRUETRUE OR TRUE

TRUETRUE OR FALSE

TRUEFALSE OR TRUE

FALSEFALSE OR FALSE

Logically, these evaluations work just as you would expect them to. Sequence does

not matter, so TRUE AND FALSE evaluates the same as FALSE AND TRUE, and TRUE

OR FALSE evaluates the same as FALSE OR TRUE, as you can see. One way to remem-

ber them is that AND means both, while OR means either. With AND, both conditions

must be TRUE for the compound condition to evaluate as TRUE, while with OR, either

condition can be TRUE for the compound condition to evaluate as TRUE.

There are actually more complex truth tables than these, which involve the third

logical possibility in SQL: UNKNOWN. However UNKNOWN, as mentioned previously,

only comes up when NULLs are involved, and for the time being we shall leave them

to one side in our exploration. Just keep in mind that UNKNOWN is not TRUE, and that

the WHERE clause wants only TRUE to keep a row in the result set—FALSE and UNKNOWN

are filtered out.

Queens and Hearts

Let’s step into a real-world application of AND and OR. An ordinary deck of playing

cards consists of four suits (Spades, Hearts, Diamonds, and Clubs) of 13 cards

each (Ace, 2 through 10, Jack, Queen, and King). There is only one card that is

both a Queen AND a Heart. The only card that satisfies these combined conditions

is the Queen of Hearts.

There are 16 Queens OR Hearts. Not 17. There are four Queens, and there are 13

Hearts, but only 16 Queens and Hearts in total. This is because the combined

conditions—be they AND or OR—are evaluated on each card separately. If the

connector is OR, then 15 of those cards will evaluate either TRUE OR FALSE or

FALSE OR TRUE. Only one will evaluate TRUE AND TRUE, which is still just

TRUE, and which doesn’t make two cards out of one.

So there are only 16 Queens and Hearts, and we can see now that this use of and

in the above title “Queens and Hearts” really means OR. And there is only one

Simply SQL88

Queen of Hearts, because in this term, of means AND. After you do it for a while,

you can see SQL everywhere.

Combining AND and OR
Here’s a typical WHERE clause that combines AND and OR:

WHERE
 customers.name = 'A.Jones' OR customers.name = 'B.Smith'
 AND items.name = 'thingum'

The intent of this WHERE clause is to return thingums for either A.Jones or B.Smith.

However the results of this query will actually return all thingums purchased by

B.Smith, and all items for A.Jones. It is another example of an SQL statement that

is syntactically okay, but semantically flawed. In this case, the reason for the semant-

ic error is that AND takes precedence over OR when they are combined.

In other words, the compound condition is evaluated as though it had parentheses,

like this:

WHERE
 customers.name = 'A.Jones'
 OR (customers.name = 'B.Smith' AND items.name = 'thingum')

Do you see how that works? The AND is evaluated first, and the expression in paren-

theses will evaluate to TRUE only if both conditions inside the parentheses are

TRUE—the customer has to be B.Smith, and the item name has to be 'thingum.' Then

the OR is evaluated with the other condition, customers.name = 'A.Jones.' So no

matter what the item's name is, if the customer is A.Jones, the row will be returned.

The above example should therefore be rewritten, with explicit parentheses, like

this:

WHERE
 (customers.name = 'A.Jones' OR customers.name = 'B.Smith')
 AND items.name = 'thingum'

89The WHERE Clause

Use Parentheses When Mixing AND and OR

The best practice rule for combining AND and OR is always to use parentheses to

ensure your intended combinations of conditions.

WHERE 1=1

You may see in a web application a WHERE clause that includes the condition 1=1

and wonder what in the world is going on. For example consider the following:

WHERE
1=1

 AND type = 'widgets'
 AND price BETWEEN 10.00 AND 20.00

You usually find this in queries associated with search forms; it’s basically a way

to simplify your application code.

If you have a search form where the conditions are optional, you’ll need a way of

determining if a condition will require an AND to create a compound condition.

The first condition, of course, won’t require an AND.

So rather than complicate your application code that creates the query with logic

to determine if each condition should include an AND, if you always start the

WHERE clause with 1=1 (which always evaluates as true), you can safely add AND

to all conditions.

There’s another version of this trick using WHERE 1=0 for compound conditions

using OR, like so:

WHERE
 1=0
 OR name LIKE '%Toledo%'
 OR billaddr LIKE '%Toledo%'
 OR shipaddr LIKE '%Toledo%'

Just like the 1=1 trick, you can safely add or remove conditions without worrying

if an OR is required.

Simply SQL90

IN Conditions
You’ll recall this example from the section on AND and OR:

WHERE
 (customers.name = 'A.Jones' OR customers.name = 'B.Smith')
 AND items.name = 'thingum'

There’s another way to write this:

WHERE
customers.name IN ('A.Jones' , 'B.Smith')

 AND items.name = 'thingum'

In this version, we’ve moved the parentheses to be part of the IN condition rather

than being used to control the evaluation priority of AND and OR. The IN condition

syntax consists of an expression, followed by the keyword IN, followed by a list of

values in parentheses. If any of the values in the list is equal to the expression, then

the IN condition evaluates as TRUE. Should you wish to set the condition to check

if a value is not in a list of values, you can prefix the IN condition with the NOT

keyword:

WHERE
 NOT (customers.name IN ('A.Jones', 'B.Smith'))

You could also write this as:

WHERE
 customers.name NOT IN ('A.Jones', 'B.Smith')

Note that while the NOT keyword can be used with an IN condition in these two

ways, this doesn’t always apply to other operators. For example, it’s perfectly okay

to write:

WHERE
 NOT (customers.name = 'A.Jones')

However, it’s not okay to write:

91The WHERE Clause

WHERE
 customers.name NOT = 'A.Jones'

Another reason I prefer to place NOT in front of a parenthesized condition is that

it’s easier to spot it in a busy WHERE clause (that is, one which has many conditions)

than a NOT keyword buried inside a condition.

IN with Subqueries
The list of values used in an IN condition may be supplied by a subquery. As we

saw in Chapter 3, a subquery simply produces a tabular structure as its result set.

A list of values is merely another fine example of a tabular structure, albeit a

structure with only one column. Take, for example, a query that uses a subquery to

provide the values for the IN condition:

Cart_06_IN_subquery.sql (excerpt)

SELECT
 name
FROM
 items
WHERE
 id IN (
 SELECT
 cartitems.item_id
 FROM
 carts
 INNER JOIN cartitems
 ON cartitems.cart_id = carts.id
 WHERE
 carts.customer_id = 750
)

The subquery returns only one column, the item_id column from the cartitems

table. There’s a WHERE clause in the subquery, which filters out all carts that don’t

belong to customer 750. The values in the item_id column, but only for the filtered

cart items, become the list of values for the IN condition; that way the outer or main

query will return the names of all items for the selected customer.

Simply SQL92

This example again illustrates how to understand what a query with a subquery is

doing: read the subquery first, to understand what it produces, and then read the

outer query, to see how it uses the subquery result set.

Correlated Subqueries
Since this chapter is all about the WHERE clause, this is the appropriate context in

which to discuss the concept of correlation. In this context, a subquery correlates

(co-relates) to its parent query if the subquery refers to—and is therefore dependent

on—the parent to be valid.

A correlated subquery can’t be run by itself, because it makes reference—via a

correlation variable— to the outer or main query. To demonstrate, let’s work through

an example based on the entries table in the Content Management System applic-

ation that we saw in Chapter 3. This is shown in Figure 4.5.

Figure 4.5. The CMS entries table

93The WHERE Clause

The example will use this table in the outer query, and have a correlated subquery

that obtains the latest entry in each category based on the created date:

CMS_13_Correlated_subquery.sql (excerpt)

SELECT
 category
, title
, created
FROM
 entries AS t
WHERE
created = (

 SELECT
 MAX(created)
 FROM
 entries
 WHERE
 category = t.category
)

Let’s start looking at this by reviewing the subquery first. There are two features to

note here:

■ The subquery has a WHERE condition of category = t.category. The “t” is the

correlation variable, and it’s defined in the outer or main query as a table alias

for the entries table.

■ You’ll also notice the MAX keyword in the subquery’s SELECT clause. We haven’t

covered aggregate functions yet, of which MAX is one, although we did see another

one, COUNT, in Chapter 2. In this case, MAX simply returns the highest value in

the named column—the latest created date.

AS Means Alias

AS is a versatile keyword. It allows you to create an alias for almost any database

object you can reference in a SELECT statement. In the example above, it creates

an alias for a table. It can also alias a column, a view, and a subquery.

In essence, what this query does can be paraphrased as: “return the category, title,

and created date of all entries, but only if the created date for the entry being returned

is the latest created date for all the entries in that particular category.” Or, in brief,

Simply SQL94

return the most recent entry in each category. The correlation ensures that the par-

ticular category is taken into consideration to determine the latest date, which is

then used to compare to the date on each entry, as shown in Figure 4.6.

Figure 4.6. How correlation works

In this example, a comparison is made between each entry’s created value, and

the maximum created value of all rows in that category, as produced by the subquery.

If that entry contains the same date for its category as found by the subquery, it’s

returned in the result set. If it’s not the same date, it’s discarded.

Because this is a very simple example, only one category actually has more than

one entry: humor. The subquery determines that “Hello Statue” has the most recently

created date, and thus discards "Uncle Karl and the Gasoline."

If Figure 4.6 reminds you of Figure 3.11 (which demonstrated how an inner join

worked), remember that the distinguishing characteristic of a correlated subquery

is that it’s tied to an object in the outer or main query, and can’t be run on its own.

Joins, on the other hand, are part of the main query.

Aside from that, the inner join and the correlated subquery are quite similar. In the

join, the rows of the categories and entries tables were joined, based on the compar-

ison of their category columns in the join condition. In the correlated subquery, the

95The WHERE Clause

rows of the entries table are compared to the rows of the tabular result set produced

by the correlated subquery, and if this somehow reminds you of a join, full marks.

In fact, correlated subqueries can usually be rewritten as joins.

Here’s the equivalent query written using a join instead of a correlated subquery:

CMS_13_Correlated_subquery.sql (excerpt)

SELECT
 t.category
, t.title
, t.created
FROM
 entries AS t

INNER JOIN (
 SELECT
 category
 , MAX(created) AS maxdate
 FROM
 entries
 GROUP BY
 category
) AS m
 ON m.category = t.category AND m.maxdate = t.created

The join version employs a subquery as a derived table, containing a GROUP BY

clause. We’ll cover the GROUP BY clause in detail in Chapter 5, but for now, please

just note that the purpose of the GROUP BY here is to produce one row per category.

So the subquery produces a tabular result set consisting of one row per category,

and each row will have that category’s latest date, which is given the column alias

maxdate. Then the derived table, called m, is joined to the entries table, which uses

the table alias t. Notice that there are two join conditions. You can see both of these

conditions in the correlated subquery version, too—one inside the subquery (the

category correlation), and the other in the WHERE clause (where maxdate in the sub-

query should equal the created date in the outer query).

EXISTS Conditions
An EXISTS condition is very similar to an IN condition with a subquery. The differ-

ence is that the EXISTS condition’s subquery merely needs to return any rows, be

it a million or just one, in order for the EXISTS condition to evaluate to TRUE. Fur-

Simply SQL96

thermore, it does not matter what columns make up those rows—merely that some

rows exist (hence the name).

To demonstrate the use of EXISTS, we’ll use the Shopping Cart sample application

again, but this time focus on the customers and their carts. To put these terms in

context here, a customer is a person who has registered on the web site, and a cart

is the collection of items that the customer has selected for purchase. Let’s say we

want to find all the customers who have yet to create a cart. The key idea here is

the not part of the requirement, so we’ll use NOT EXISTS in the solution:

Cart_07_NOT_EXISTS_and_NOT_IN.sql (excerpt)

SELECT
 name
FROM
 customers
WHERE
 NOT EXISTS (
 SELECT
 1
 FROM
 carts
 WHERE
 carts.customer_id = customers.id
)

As you can see, we're using a correlated subquery again within the WHERE clause.

This time, the correlation variable is not a table alias, but rather just the name of

the table in the outer query. In other words, the subquery will return rows from the

carts table where the cart’s customer_id column is the same as the id column in

the customers table in the outer or main query. If a customer has one or more carts,

as returned by the subquery, EXISTS would evaluate to TRUE. However, we're using

NOT EXISTS in the main query so a customer's name will only be included in the

result set if there are no carts for the customer returned by the subquery, exactly as

required.

But what, you may well ask, is SELECT 1 all about? Well, as noted earlier, the EXISTS

condition does not care which columns are selected, so SELECT 1 simply returns a

column containing the numeric constant 1. The subquery could just as easily have

selected the customer_id column. EXISTS will evaluate TRUE or FALSE, no matter

97The WHERE Clause

which columns the subquery selects. We’ll cover the SELECT clause in detail in

Chapter 7.

NOT IN or NOT EXISTS?
The query above can be rewritten using a NOT IN condition rather than a NOT EXISTS

condition, if required. In fact, it can be written in two different ways using NOT IN.

The first way is to use an uncorrelated subquery:

Cart_07_NOT_EXISTS_and_NOT_IN.sql (excerpt)

SELECT
 name
FROM
 customers
WHERE
 NOT (
 id IN (
 SELECT
 customer_id
 FROM
 carts
)
)

The second way uses a correlated subquery:

Cart_07_NOT_EXISTS_and_NOT_IN.sql (excerpt)

SELECT
 name
FROM
 customers AS t
WHERE
 NOT (
 id IN (
 SELECT
 customer_id
 FROM
 carts
 WHERE
 customer_id = t.customer_id
)
)

Simply SQL98

Which is better? That’s the subject of the next section: performance.

A Left Outer Join with an IS NULL Test
Incidentally, the same query can also be rewritten as a LEFT OUTER JOIN with a test

for an unmatched row. We saw in the previous chapter that a left outer join will

return NULLs in the columns of the right table for unmatched rows. In this case,

we want customers without a cart, and the query is:

Cart_08_LEFT_OUTER_JOIN_with_IS_NULL.sql (excerpt)

SELECT
 customers.name
FROM
 customers
 LEFT OUTER JOIN carts
 ON customers.id = carts.customer_id
WHERE
 carts.customer_id IS NULL

Because it’s a left outer join, this query returns rows from the left table—in this

case, customers—with matching rows, if any, from the right table. If there are no

matching rows, then the columns in the result set which would have contained

values from the right table are set to NULL. So then, if we test for NULL in the right

table’s join column, this will allow the WHERE clause to filter out all the matched

rows, leaving only the unmatched rows. In other words, testing for NULL effectively

returns customers without a cart.

Note that the correct syntax to test for NULL is: IS NULL. You cannot use the equals

operator (WHERE carts.customer_id = NULL), because NULL is not equal to anything.

WHERE Clause Performance
We’ve just seen four different ways to write an SQL query to achieve a specific

result:

■ NOT EXISTS

■ NOT IN (uncorrelated)
■ NOT IN (correlated)
■ LEFT OUTER JOIN with an IS NULL test

99The WHERE Clause

In practice, which of these is the best approach to take? Generally, you should let

the database system optimize your queries for performance. The database optim-

izer—the part of the database system which parses our SQL, and then figures out

how to obtain the data as efficiently as possible—is a lot smarter than many people

think. It may realize that it doesn’t have to retrieve any carts at all!

Let’s consider what the LEFT OUTER JOIN version of the previous example is doing.

The query will retrieve all carts for all customers, including customers who have

no cart (since it’s a LEFT OUTER JOIN); then the WHERE clause throws away all rows

retrieved, except those rows for customers who have no cart. Seems wasteful, doesn’t

it? And it might well be … if it were an accurate portrayal. It’s unnecessary to actually

retrieve any cart rows; what’s needed is simply to know which customers don’t

have one. So the left outer join with an IS NULL test is the same, semantically, as

the NOT EXISTS version.

What about the correlated and uncorrelated subqueries using the NOT IN condition?

How will they perform? Here’s one way to think about what they’re doing: the un-

correlated subquery retrieves a list of customer_ids from all carts, and then, in the

outer query, checks each customer’s id against this list, keeping those customers

whose id is not in the list. The correlated subquery retrieves the customer_id from

individual cart rows, but only the cart rows for that customer. Yet in the end, the

correlated query will actually have retrieved all the cart rows too (like the uncorrel-

ated query did), even though it keeps only those customers who don’t have a cart,

as well. So it would seem that these queries, too, might wastefully retrieve all carts.

Intuition alone cannot lead us to a happy conclusion here. Our next step might be

to test all versions and see how they fare. More often than not, they will all perform

the same; ultimately, we’ll need to base our analysis on some facts, and for that, we

need to do some research. See the section called “Performance Problems and Ob-

taining Help” in Appendix A for some ideas on how to proceed.

Indexes
Indexing is the number one solution to poor performance.

Indexes are a special way of organizing information about the data in the database

tables. In a sense, indexes are additional data, much the same way that the index

at the back of a book is additional information about what’s in the book. Indexes

Simply SQL100

are used by the database optimizer to find rows quickly. An index is built on a

specific table column, and sometimes on more than one column.

A quick search for a topic in the index of a book will tell you which page/s it’s on,

and then you can simply jump right to those pages. Similarly, if the database optim-

izer is looking for the cart rows for customer 880, the index can tell the optimizer

where those rows are located. The important part about this is that the database

optimizer does not need to read through all the rows in the table. It just goes directly

to the desired rows.

Reading through all the rows in a table is called doing a table scan. Generally, this

is to be avoided, although it must be done if you actually need to retrieve all the

rows in the table. Using an index is known as performing an indexed retrieval and

is—compared to a table scan—much, much faster (especially if it needs to be repeated

many times, such as for every customer).

Where do indexes come from? We have to create them. As this is one of those

database administration topics we won’t be covering in this book, you should consult

the documentation for your particular database system if you’d like to investigate

indexes. The important points to note, with regard to WHERE clause performance,

are listed below:

■ Primary keys already have an index (by definition). There is no need to create

an additional index on a primary key. Primary keys will be discussed in

Chapter 10.

■ Foreign keys need to have an index declared (usually). Foreign keys will be

discussed in Chapter 10.

■ Columns used in the ON clause of joins are almost invariably either primary or

foreign keys; in those instances where they’re not, they’ll typically benefit from

having an index declared.

■ Search conditions—conditions in the WHERE clause—will usually benefit from

having an index declared.

In time, you’ll gain a complete understanding of these concepts, so don’t worry if

you’re feeling a little overwhelmed. Just remember, when you do encounter your

101The WHERE Clause

first performance problem, to see the section called “Performance Problems and

Obtaining Help” in Appendix A.

To tie this back to the recent customer example, you’ll recall that we had four dif-

ferent ways to write the SQL to find customers without a cart. Knowing that indexes

are used by the database optimizer to improve performance, we can finally see that

the cart rows, as hinted, do not actually need to be retrieved at all. The optimizer

simply needs to know if a particular cart row exists. It can determine which custom-

ers have no cart by looking only at the data in the indexes, a much faster way of

locating the cart than queries that require a table scan.

Wrapping Up: the WHERE Clause
We covered a lot of ground in this chapter, but the main points that you should take

away from it are:

■ The WHERE clause acts as a filter on the rows of the tabular result set produced

by the FROM clause.

■ The WHERE clause consists of one or more conditions, which are applied to each

row produced by the FROM clause; each condition must evaluate to TRUE in order

for that row to be accepted and not filtered out. These conditions can be combined

with AND and OR to make compound conditions. Sometimes we need to use NOT

to specify the condition that we want to apply to the rows.

■ WHERE clause conditions can use comparison operators, IN lists, IN with a sub-

query, and EXISTS with a subquery.

■ Performance depends largely on indexing and not quite so much on the actual

syntax of the SQL statement. Queries can often be written in different ways to

achieve the same result.

In Chapter 5, we'll look at the GROUP BY clause, which operates on the rows produced

by the FROM clause that weren’t filtered out by the WHERE clause.

Simply SQL102

Chapter5
The GROUP BY Clause
In Chapter 3, we learned that the FROM clause creates the intermediate tabular result

containing the data for a query. In Chapter 4, we learned that the WHERE clause acts

as a filter on the rows produced by the FROM clause. In this chapter, we'll learn what

happens when we use the GROUP BY clause, and the effect it has on the data produced

by the FROM clause and filtered by the WHERE clause.

The Latin expression E pluribus unum is well known to Americans (it’s stamped

on every American coin), and can be interpreted as representing the “melting pot”

concept of creating one nation out of many diverse peoples. Literally, it means: out

of many, one. In SQL, the GROUP BY clause has a similar role: it groups together data

in the tabular structure generated and filtered by a query's FROM and WHERE clauses,

and produces a single row in a query's result set for each distinct group. The GROUP

BY clause defines how the data should be grouped.

Grouping is More than Sequencing
Grouping is more than simply sequencing data. Sequencing simply means sorting

the data into a certain order. Grouping does involve an aspect of sequencing, but

it goes beyond that. To demonstrate, we'll first review the data in our sample

Shopping Cart application tables, and then work through several GROUP BY queries

to see how grouping affects the results.

Our first goal, therefore, is to write a query that produces a result set that displays

a useful set of data from our application, much like the queries we’ve been writing

so far. To make the distinction between the queries we’ve used up till now and a

query involving grouping, we call this type of query a detail query because it returns

detail rows—the columns and rows of data as they are stored in the database

tables—ungrouped. The distinction between detail rows and group rows is important

and will become clear shortly.

As always, the first item to write is the FROM clause. The sample Shopping Cart ap-

plication data is spread out over several tables, so we’ll need to bring it together

with a join query:

Cart_09_Detail_Rows.sql (excerpt)

FROM
 customers
 INNER JOIN carts
 ON carts.customer_id = customers.id
 INNER JOIN cartitems
 ON cartitems.cart_id = carts.id
 INNER JOIN items
 ON items.id = cartitems.item_id

This query joins four tables together. We haven’t seen a quadruple join before, so

we’ll walk through it slowly and examine each join in turn. It may help to look back

at the FROM clause as we walk through the joins.

The FROM clause starts with the customers table. Then the carts table is joined to

the customers table, based on the customer_id in each row of the carts table

matching the corresponding id in the customers table. We’re on solid ground here,

because all our previous join examples have involved two tables.

Simply SQL104

Then the cartitems table is joined, based on the cart_id in each row of the

cartitems table matching the corresponding id in the carts table. This is now the

third table in the join, and it might help to think of this third table as being joined

to the tabular structure produced by the join of the first two tables. Since that tabular

structure consists of the matched rows of the first two tables joined or concatenated

together (to form a wider tabular structure), the join of the third table is, in effect,

a join of two tabular structures again: the tabular structure produced by joining the

first two tables, to which the third table is joined. You’re probably ahead of me here,

but I still need to say it: the result of joining the third table is yet another tabular

structure.

Finally, the items table is joined, based on the id in the items table matching the

corresponding item_id in the cartitems table. This is the fourth table, and it joins

the tabular structure produced by the join of the previous three.

Testing the FROM Clause

At this point, if we wanted to test the result of our quadruple join we could use

what I commonly refer to as “the dreaded and evil select star.” This is my name

for the perfectly valid SQL syntax of SELECT *, where the star (or asterisk) is a

special keyword that represents all columns. I call it “dreaded and evil” because

using it for anything other than testing is rarely a good idea. We’ll examine it in

more detail in the section called “The Dreaded, Evil Select Star” in Chapter 7, but

for now, you just need to know it’s used to select all columns like so:

SELECT
 *
FROM …

SELECT * is useful when we want to see what the FROM clause is producing be-

cause it simply outputs all columns. For now, though, be aware that SELECT *

is completely incompatible with the GROUP BY clause, which requires that indi-

vidual columns are named in the SELECT clause before it works.

105The GROUP BY Clause

Retrieving the entire tabular result set produced by the four table join is too much

detail for our purposes here. There are many extraneous columns that would be in

the way of trying to understand the available data, as we prepare to use our first

GROUP BY clause. Therefore, we’ll specify only a few carefully chosen columns in

the SELECT clause:

Cart_09_Detail_Rows.sql (excerpt)

SELECT
 customers.name AS customer
, carts.id AS cart
, items.name AS item
, cartitems.qty
, items.price
, cartitems.qty
 * items.price AS total
FROM
 ⋮

We’ve yet to cover the SELECT clause in detail (we will in Chapter 7), but we’ve

certainly seen it before; in this particular case, the columns are straightforward,

with perhaps the exception of the last line. This expression computes the total

price of each item in a cart by multiplying its price by the amount of that item in

the cart.

We’ll also add an ORDER BY clause:

Cart_09_Detail_Rows.sql (excerpt)

 ⋮
ORDER BY
 customers.name
, carts.id
, items.name

The purpose of the ORDER BY clause here is to sort the result set into the specified

sequence: first by customer name, then the cart ID, and then the item name. We’ll

examine this clause in detail in Chapter 8.

Our completed detail query looks like so:

Simply SQL106

Cart_09_Detail_Rows.sql (excerpt)

SELECT
 customers.name AS customer
, carts.id AS cart
, items.name AS item
, cartitems.qty
, items.price
, cartitems.qty
 * items.price AS total
FROM
 customers
 INNER JOIN carts
 ON carts.customer_id = customers.id
 INNER JOIN cartitems
 ON cartitems.cart_id = carts.id
 INNER JOIN items
 ON items.id = cartitems.item_id
ORDER BY
 customers.name
, carts.id
, items.name

Figure 5.1 shows the result set the detail query produces: several customers, the

carts that they created, and the items in those carts, together with the quantity of

the items purchased, the price of each item, and the total price for that quantity.

“One-to-Zero-or-Many” Relationships

As a point of interest, there are actually eight customers in the sample application

customers table, but only seven of them are included in the result set produced

by our detail query. One customer has no cart yet and so isn’t included in the

results; this is because the join between customers and carts is an INNER JOIN,

which requires a match.

We can say that the customers-carts relationship is actually a “one-to-zero-or-

many” relationship, because a customer could have no cart. This situation exists

when customers register on the web site, before their first cart is created.

107The GROUP BY Clause

Figure 5.1. The results of the detail query: all the customers, carts, and items

Notice that the customers are in sequence. Within each customer, the carts are in

sequence (if there is more than one per customer), and within each cart, the items

are in sequence by name. This sequencing was accomplished by the ORDER BY clause,

which was used so we could see the customers-to-carts and carts-to-cartitems rela-

tionships in the data more easily (they would be harder to spot if the rows came

back in random order, for example).

So to recap what we’ve seen in the results for the detail query:

■ Customers included in the result set have at least one cart, represented by a row

in the carts table, with some having more than one cart.
■ Each cart has one or more items, represented by a cartitems row.
■ Each cart item has a matching row in the items table.

You may well be wondering at this point, “Yes, that’s nice, it makes sense, and I

can see the query results are sorted nicely, but what has this to do with GROUP BY?”

Simply SQL108

The reason for looking at the detail data carefully, and in this particular sequence,

is to see how the items for a cart are grouped together, and how the carts for a cus-

tomer are grouped together. However, this is not the grouping that the GROUP BY

clause produces; it is merely the sequencing that the ORDER BY clause produces. In

other words, if we want to see detailed row data “grouped” into a certain sequence,

we use ORDER BY. GROUP BY has another purpose altogether.

Out of Many, One
The role of the GROUP BY clause is to aggregate, meaning to collect together, or unite.

Let’s look at our first example of a query that uses a GROUP BY clause:

Cart_10_Group_rows.sql (excerpt)

SELECT
 customers.name AS customer
, carts.id AS cart
, COUNT(items.name) AS items
, SUM(cartitems.qty
 * items.price) AS total
FROM
 customers
 INNER JOIN carts
 ON carts.customer_id = customers.id
 INNER JOIN cartitems
 ON cartitems.cart_id = carts.id
 INNER JOIN items
 ON items.id = cartitems.item_id
GROUP BY
 customers.name
, carts.id

This is almost the same as the detail query; it has the same FROM clause, but there

are some slight differences in the SELECT clause, and the GROUP BY clause is new.

The SELECT clause now contains two common aggregate functions, COUNT and SUM.

As you might have guessed, COUNT counts rows, and SUM produces a total. We'll look

at these and other aggregate functions in more detail in Chapter 7.

The GROUP BY clause contains the names of two columns: customers.name and

carts.id. In doing so, the GROUP BY clause will produce one row, a group row or

aggregate row, in the query's result set for every distinct combination of the values

109The GROUP BY Clause

in the columns specified. The tabular structure shown in Figure 5.2 is the result set

returned by the above query. Instead of detail rows, we now have group rows.

Figure 5.2. Results of the GROUP BY query

The items column in this result set is the number of items in each particular cart,

while the total column is the sum of the individual line item totals on the cart.

Where a customer cart includes more than one item, those multiple item rows have

been aggregated into one row per cart per customer. There are still multiple rows

per customer, but there is now only one row per cart per customer.

The GROUP BY clause has aggregated the rows for each customer cart, producing one

out of many, while the COUNT and SUM functions have computed the aggregate

quantities—a count and a sum—for all those rows taken together. Hence, the presence

of the GROUP BY clause has created group rows from the detail rows of the tabular

result set, which was produced from the FROM clause.

Figure 5.3 illustrates the grouping concept by showing the results of the detail query

and the results of the above GROUP BY query, side by side. Note that the grouping

columns have been highlighted, and some spacing has been inserted, to make it

easier to see the grouping.

Simply SQL110

Figure 5.3. Comparing detail rows to group rows—two column grouping

Let’s write another example using the GROUP BY clause:

Cart_10_Group_rows.sql (excerpt)

SELECT
 customers.name AS customer
, COUNT(items.name) AS items
, SUM(cartitems.qty
 * items.price) AS total
FROM
 customers
 INNER JOIN carts
 ON carts.customer_id = customers.id
 INNER JOIN cartitems
 ON cartitems.cart_id = carts.id
 INNER JOIN items
 ON items.id = cartitems.item_id
GROUP BY
 customers.name

This is practically the same query as before, except that in this case, the GROUP BY

clause contains only one column, customers.name. Thus, the GROUP BY clause

produces one row for every customer, as shown in Figure 5.4.

111The GROUP BY Clause

Figure 5.4. Results grouped by customer name only

This time, the items column is a count of the number of items in all carts for the

customer, while the total column is the sum of the individual line item totals on

all carts for the customer. Figure 5.5 shows the side-by-side comparison of the detail

data with the results of GROUP BY customers.name:

Figure 5.5. Comparing detail and group rows—one column grouping

Let's recap what we’ve covered so far.

Simply SQL112

■ First we ran a detail query—that is, a query without a GROUP BY clause—to show

the detail rows, using ORDER BY to ensure we could see the data relationships

easily.

■ Next we ran the first GROUP BY clause, with two columns, and produced group

rows for distinct combinations of customer and cart.

■ Finally, we ran the second GROUP BY clause, with just one column, producing

group rows for distinct customers only. This resulted in the counts and totals

in the second query being larger.

GROUP BY is easier to understand—if you are meeting it for the first time—when

going in steps, from detailed data, to small aggregations, to larger aggregations.

Drill-down SQL
While it's easier to understand grouping by working from more detailed to less de-

tailed breakdowns, going in the other direction—from large numbers to more detailed

breakdowns—is a great tactic to use in the analysis of data. Suppose we want to

understand customer sales. Since this would be data at the customer level, we would

start with:

GROUP BY
 customers.name

Figure 5.4 shows that the results of this grouping are at the customer level of detail.

Perhaps those results need to be more detailed, so we’ll drill down another level

with:

GROUP BY
 customers.name
, carts.id

The results in Figure 5.2 reflect the further breakdown.

The more columns in the GROUP BY clause, the deeper down into the data we drill.

In other words, grouping by customer, and then grouping by customer and cart, is

an exploratory process that follows the one-to-many relationships inherent in the

joined data.

113The GROUP BY Clause

Many SQL tutorials and books teach the GROUP BY clause in this top-down direction.

However, I think it’s better to proceed from the bottom up, from detailed data to

smaller and then larger aggregations; this is because it mirrors the way the GROUP

BY clause works—producing, out of many rows, one row per group.

GROUP BY in Context

Figure 5.6. FROM, WHERE, and GROUP BY clauses in order of execution

The GROUP BY clause fits into the context of the overall query right after the WHERE

clause. Syntactically, a query begins with the SELECT clause which we’ll cover in

Chapter 7. Then comes the FROM clause, the WHERE clause, and then the GROUP BY

Simply SQL114

clause. More importantly, however, is the sequence in which the query clauses are

executed:

■ The FROM clause determines the contents of the intermediate tabular result that

the query starts with.
■ The WHERE clause, if present, filters the rows of that tabular structure.
■ The GROUP BY clause, if present, aggregates the remaining rows into groups.

This is illustrated in Figure 5.6.

How GROUP BY Works
When a GROUP BY clause is present in the query, it aggregates many rows into one.

After this is done, all the original rows produced by the FROM clause that survived

the WHERE filter, are removed. The GROUP BY clause produces group rows, which

you’ll recall from Chapter 2 are new rows created to represent each group of rows

found during the aggregation process. The original rows are no longer available to

the query. Only group rows come out of the grouping process.

Group Rows
One way to think about the grouping process goes like this:

■ The FROM clause produces a temporary result set, held as a temporary table

within the memory of the database system while the query is being executed.

■ If a WHERE clause is present, only some of those rows will be retained. If a row

passes the WHERE clause criteria, it is copied to a second temporary table. The

second temporary table would still have the same tabular structure as the first

one.

■ If a GROUP BY clause is present, another temporary table is created for the group

rows. This would have a different tabular structure from those produced by the

FROM or WHERE clauses.

To see this process one more time, let’s look at another grouping example. Here

again is the query from the previous example, but with an added WHERE condition:

115The GROUP BY Clause

Cart_11_GROUP_BY_WITH_WHERE.sql (excerpt)

SELECT
 customers.name AS customer
, SUM(cartitems.qty) AS qty
, SUM(cartitems.qty
 * items.price) AS total
FROM
 customers
 INNER JOIN carts
 ON carts.customer_id = customers.id
 INNER JOIN cartitems
 ON cartitems.cart_id = carts.id
 INNER JOIN items
 ON items.id = cartitems.item_id
WHERE
 items.name = 'thingum'
GROUP BY
 customers.name

The purpose of this query is to produce totals for each customer, but only for items

called thingum. Thus, rather than seeing how many carts each customer has, we’re

more interested in how many thingums were purchased. Remember the context of

GROUP BY in the overall query. The GROUP BY clause operates after the WHERE clause,

on the filtered intermediate tabular result, so we know that only thingum rows will

be grouped. Notice also that in this query, instead of counting items in the customer

carts, the qty result column in the SELECT clause is SUM(cartitems.qty), the total

quantity of items.

Figure 5.7 shows the results:

Figure 5.7. Thingum purchases grouped by customer

Simply SQL116

Aggregate Functions and GROUP BY

In the various preceding examples, different aggregate functions were used to

produce different kinds of totals—number of carts, number of items, total quantity,

total cost—while different GROUP BY clauses were used to produce aggregates at

different levels.

We’ll discuss aggregate functions again in Chapter 7. For now, we need only to

be aware that aggregate functions are often used in GROUP BY queries, to produce

the kinds of totals—sums, counts, and so on—that we would expect them to from

their function names.

Rules for GROUP BY
As we’ve seen, the GROUP BY clause performs an aggregation on the rows produced

by the FROM clause, and this grouping process creates group rows. Group rows are

not the same as rows from the tabular structure coming out of the FROM clause.

So the first rule for using the GROUP BY clause is that the result set can contain only

columns specified in the GROUP BY clause, or aggregate functions, or any combina-

tions of these. This rule will show up again when we discuss the SELECT clause in

Chapter 7.

Actually, columns in group rows can also include constants, as well as expressions

built by combining GROUP BY columns, aggregate functions, and constants. But this

nuance is inconsequential to the main point: group rows can contain only columns

that are mentioned in the GROUP BY clause or are contained inside aggregate functions

(or expressions built from these). The grouping process produces only these two

column types.

Columns with Certain Large Data Types
Another point about using GROUP BY is that only some database systems let you

specify columns with large data types in a GROUP BY clause. These particular data

types, Binary Large Objects (BLOBs), and Character Large Objects (CLOBs), are covered

in more detail in Chapter 9. Just quickly though, CLOBs are used to store large

amounts of character data, while BLOBs are used to store binary data, such as images,

sound, and video.

117The GROUP BY Clause

The restriction depends on the specific database system you’re using. However, it’s

unnecessary to specify a BLOB or CLOB column in the GROUP BY clause in the first

place. This is the direct consequence of a strategy I call pushing down the GROUP

BY clause into a subquery whenever possible. The following example will illustrate

this process.

In Chapter 2, we briefly encountered the Content Management System sample ap-

plication. The CMS application is described in detail in the section called “Content

Management System” in Appendix B. The entries table holds the entries that are

the basis for our CMS. An entry has a title, date created, and so on. It also may have

a large block of actual content. In the model of the CMS application (shown in Fig-

ure 5.8—more on these diagrams in the section called “Entity–Relationship Dia-

grams” in Chapter 10), this content is stored separately in a related row in the con-

tents table. (In Chapter 2, the content column was actually in the entries table.)

Figure 5.8. The structure of the CMS database

Simply SQL118

Each row in the entries table has, at most, one row in the contents table, but could

have none, because content is optional in our CMS. So, if we were to write a query

to return the entries in our CMS, along with the content for each entry (if any), our

query would look like this:

CMS_14_Content_and_Comment_tables.sql (excerpt)

SELECT
 entries.id
, entries.title
, entries.created
, contents.content
FROM
 entries
 LEFT OUTER JOIN contents
 ON contents.entry_id = entries.id

This is a straightforward left outer join; all entries are returned, including their re-

lated content, if any. If an entry has no matching contents row, then the row in the

result set for that entry will have NULL in the content column.

But we’ve still to reach where the GROUP BY complexity comes into play. To do so,

we need another table to join to—the comments table. Besides having an optional

content row, each row in the entries table also has one or more optional rows in

the comments table. Multiple comments can be made against each entry. In addition

to returning each entry with its optional content, we want also to return a count of

the number of comments for that entry.

119The GROUP BY Clause

Here’s the first attempt at the query to do this:

CMS_14_Content_and_Comment_tables.sql (excerpt)

SELECT
 entries.id
, entries.title
, entries.created
, contents.content
, COUNT(comments.entry_id) AS comment_count
FROM
 entries
 LEFT OUTER JOIN contents
 ON contents.entry_id = entries.id
 LEFT OUTER JOIN comments
 ON comments.entry_id = entries.id
GROUP BY
 entries.id
, entries.title
, entries.created
, contents.content

Let's take a look at the changes. First of all, the SELECT clause contains an aggregate

function. The COUNT function will count the number of comments for each entry.

However, we need a GROUP BY clause in order to do this, because a GROUP BY clause

is what collapses the multiple comments rows into one, so that the COUNT function

will work correctly.

Notice that the GROUP BY clause lists exactly the same columns as the columns in

the SELECT clause. We want to return those columns in the query results, but in a

GROUP BY query, only group row columns may be specified in the SELECT clause

outside of aggregate functions. Therefore those columns have to be in the GROUP BY

clause.

This would all be wonderful, if it actually ran. Unfortunately, contents.content

is a TEXT column, another large data type like CLOB which—as noted earlier—some

database systems won’t let you have in the GROUP BY clause.

There are two ways to work around this limitation, both involving a subquery.

The first solution is to push down the grouping process into a subquery, and then

join this subquery into the query as a derived table, in place of the original table:

Simply SQL120

CMS_14_Content_and_Comment_tables.sql (excerpt)

SELECT
 entries.id
, entries.title
, entries.created
, contents.content
, c.comment_count
FROM
 entries
 LEFT OUTER JOIN contents
 ON contents.entry_id = entries.id
 LEFT OUTER JOIN (

SELECT
 entry_id
 , COUNT(*) AS comment_count
 FROM
 comments
 GROUP BY
 entry_id
) AS c
 ON c.entry_id = entries.id

Notice that in the derived table subquery, the GROUP BY clause specifies the entry_id.

If there are multiple rows in the comments table for any entry_id, they are aggreg-

ated by the GROUP BY. Thus, the derived table consists of only group rows, which

have only the entry_id and comment_count columns. The derived table therefore,

has only one row per entry_id, and this is the column used to join the derived

table to the entries table. The outer query no longer has a GROUP BY clause; it’s

been pushed down into a subquery.

121The GROUP BY Clause

The second solution is similar, but instead of a subquery as a derived table in the

FROM clause, it uses a correlated subquery in the SELECT clause:

CMS_14_Content_and_Comment_tables.sql (excerpt)

SELECT
 entries.id
, entries.title
, entries.created
, contents.content
, (
 SELECT
 COUNT(entry_id)
 FROM
 comments
 WHERE
 entry_id = entries.id
) AS comment_count
FROM
 entries
 LEFT OUTER JOIN contents
 ON contents.entry_id = entries.id

We first discussed correlated subqueries back in the section called “Correlated

Subqueries” in Chapter 4. The above solution omits the GROUP BY clause, yet it

produces the same result. Once again, we see that there’s often more than one way

to write an SQL query to achieve the results we want.

In fact, there is grouping in the above correlated subquery, but it’s implicit. We’ll

explore this concept in the section called “Aggregate Functions without GROUP

BY” in Chapter 7, but for now all you need to know is that when there’s only aggreg-

ate functions in the SELECT clause, like the COUNT(entry_id) aggregate function

above, all of the rows returned by the FROM clause are considered to be one group.

The effect of this, in the above query, is that the subquery produces an aggregate

count of all correlated rows from the comments table for each id in the entries table

from the outer query.

Wrapping Up: the GROUP BY
In this chapter, we learned about the concept of grouping.

Simply SQL122

■ The GROUP BY clause is used to aggregate or collapse multiple rows into one row

per group. The groups are determined by the distinct values in the column(s)

specified in the GROUP BY clause.

■ During the grouping process, group rows are created. These rows have a different

tabular structure than the underlying tabular result produced by the FROM clause.

■ Only group row columns can be used in the SELECT clause. We’ll come back to

this point in Chapter 7.

■ In addition, this chapter introduced a technique to push down the GROUP BY

clause into a subquery. This technique avoids one minor problem: that columns

with certain large data types cannot be specified in the GROUP BY clause.

In Chapter 6, we’ll meet the companion to the GROUP BY clause, the HAVING clause.

123The GROUP BY Clause

Chapter6
The HAVING Clause
In Chapter 5, we learned that the GROUP BY clause produces group rows by aggreg-

ating rows of the tabular structure extracted from the database by the FROM clause

and then filtered by the WHERE clause. Each distinct value or combination of values

in the GROUP BY column(s) forms a separate group row.

In this chapter, we’ll look at the HAVING clause. This follows the GROUP BY clause

both in syntax (its position in the SELECT statement) and in the sequence of execution.

Its purpose is simple once you understand GROUP BY and group rows. HAVING is

basically the same as WHERE, with the difference that HAVING works on group rows.

HAVING Filters Group Rows
The purpose of the HAVING clause is to act as a filter for the group rows produced

by the GROUP BY clause. Everything we learned about conditions—how conditions

are evaluated to TRUE or FALSE, how they’re combined with ANDs and ORs—can be

applied to the HAVING clause as well. The only difference is that HAVING operates

on group rows, instead of on the rows from the original tabular structure (which

are now gone since grouping took place).

Figure 6.1 illustrates the execution of the SELECT statement clauses.

Figure 6.1. Where HAVING fits in the sequence of execution

When we say that the HAVING clause acts as a filter on group rows, what does this

actually mean? If you recall from Chapter 5, the only possible column types in group

rows are:

■ columns specified in the GROUP BY clause
■ aggregate functions

Expressions can be built from any combination of these two options, and constant

values may also be used. As with the GROUP BY clause, the HAVING clause can only

use these column types in its conditions.

Simply SQL126

To demonstrate, let’s use one of the GROUP BY queries from Chapter 5 and add a

HAVING clause:

Cart_12_GROUP_BY_with_HAVING.sql (excerpt)

SELECT
 customers.name AS customer
, SUM(cartitems.qty) AS sumqty
, SUM(cartitems.qty
 * items.price) AS totsales
FROM
 customers
 INNER JOIN carts
 ON carts.customer_id = customers.id
 INNER JOIN cartitems
 ON cartitems.cart_id = carts.id
 INNER JOIN items
 ON items.id = cartitems.item_id
GROUP BY
 customers.name
HAVING
 SUM(cartitems.qty) > 5

This is the same query as the one we used for the thingum totals, except that the

WHERE clause has been removed (because we want all items to be included in this

query). Remember, the WHERE clause is optional, so if there isn’t one, then all the

rows produced by the FROM clause go straight into the GROUP BY clause. This time

only group rows where SUM(cartitems.qty)—an aggregate function expression

that calculates the total number of cart items—is greater than 5 are retained. All

others are removed.

In the above example, the HAVING condition is a single condition:

SUM(cartitems.qty) > 5. It’s known as a group condition because it’s a condition

applied to group rows. The intent is to return customers with more than five items

purchased; Figure 6.2 shows the results.

127The HAVING Clause

Figure 6.2. The HAVING clause filters out unwanted group rows

Column Alias or Aggregate Expression

In the SELECT clause the aggregate expression SUM(cartitems.qty) is given

the column alias sumqty. You should be able to use the column alias instead of

the aggregate function expression in a query's HAVING clause. Thus, HAVING

sumqty > 5 and HAVING SUM(cartitems.qty) > 5 are equivalent. Try running

one of the grouping queries in the code archive or one of your own, for confirma-

tion. Note that using a column alias was not permitted in early versions of SQL.

If there was no HAVING clause in the query, its results would have been those shown

in Figure 6.3; all group rows are returned.

Figure 6.3. No HAVING clause means returning all group rows

HAVING without a GROUP BY Clause
No sooner than some people first learn about the HAVING clause, they happen to

stumble upon a HAVING clause without a GROUP BY clause. Naturally, they’re per-

plexed; if HAVING filters group rows, which are only achieved with a GROUP BY

clause, why and how do they work?

Simply SQL128

When there is no GROUP BY clause, all of the rows in the tabular structure produced

by the FROM clause (optionally filtered by the WHERE clause), are considered to be a

single group.

Threshold Alert
One example of HAVING without GROUP BY is as a threshold alert, in which an SQL

query produces a result only if some aggregate amount exceeds a threshold value.

Let's consider the following scenario. Your boss has sent you the following email:

Hi Steve,

Just wanted to add one item to the list of features.

My control panel should have an alert. Every time I log in I want to

see total sales for the previous day, but don't bother unless it's over

$1,000. Thanks, and looking forward to seeing this in your demo

next week.

T.

To satisfy this new feature request, a query is needed to return the total sales amount

for yesterday, but only if it’s over $1,000:

SELECT
 SUM(cartitems.qty * items.price) AS totsales
FROM
 carts
 INNER JOIN cartitems
 ON cartitems.cart_id = carts.id
 INNER JOIN items
 ON items.id = cartitems.item_id
WHERE
 carts.cartdate = CURRENT_DATE – INTERVAL 1 DAY
HAVING
 totsales > 1000

This query returns either a total sales number over 1,000, or NULL. It's unusual in

the combination of clauses used but it’s syntactically correct and it works nicely.

Indeed, it’s quite similar to our first HAVING query example, which filtered out cus-

tomers with 5 items or less. Of course, our first example query had a GROUP BY

129The HAVING Clause

clause for the customer, unlike this one. And yet it has a HAVING clause. Which may

seem a bit weird at first.

When there is no GROUP BY clause, all of the rows in the tabular structure produced

by the FROM clause (optionally filtered by the WHERE clause), are considered to be a

single group. So in this example, SUM(cartitems.qty*items.price) is calculated

for the entire single group of rows coming out of the WHERE clause—yesterday’s

sales. SUM is an aggregate function, so this expression (or its alias) is allowed in the

HAVING clause. So the HAVING condition is evaluated on the (single) group row,

specifically on the total sales amount for yesterday.

What happens if the total sales amount is not over 1,000?

Let’s step back just for a second and imagine this query without the HAVING clause.

If this were the case, the query would simply return the total sales number, the ag-

gregate sum of the sales of all items sold yesterday. The result set of the query will

be one row consisting of one column. There’s only one row because, since there’s

no GROUP BY clause, there’s only one group.

With the HAVING clause, however, the query will either return a single row or none

at all.

Are Thresholds Database or Application Logic?

Web developers working with a database may already know the importance of dis-

tinguishing between tasks more appropriately performed by the database, and tasks

that should be done in the application programming language.

This query—“I want to see total sales for the previous day, but don't bother unless

it's over $1,000”—is a small example, but it allows us to see the difference. If this

query returns NULL, that is, no result set, the application programming code needs

to be able to detect this situation, and take the appropriate action not to display the

total sales. But many database application developers already routinely detect the

“nothing returned from database” situation. They do so in order to raise a user-

friendly application error condition when a query doesn’t work. That’s because

there’s an assumption that there’s something wrong if a query returns no rows—and

most of the time that’s right. This example shows that a NULL result—nothing re-

turned from the query—may be just that, a NULL result, rather than an error.

Simply SQL130

Remember, the point of the alert was to report the sales, but only if they’re over

$1,000. An alert that says “Yesterday’s sales were $937” fails this requirement. On

the other hand, an alert that says “Yesterday’s sales were NULL” would be alarming,

as it would almost certainly be misinterpreted as “Yesterday, there were no sales.”

This is why application developers like to trigger the alert within the application,

and I agree with them. Instead, I’d write the query without the HAVING clause, using

an if test in the application.

Performance virtually is the same when the HAVING clause restricts the results, too.

The query has to retrieve and aggregate all those detail rows into one group anyway,

and this is 99.9% of the effort. Whether there is then one row or no row in the result

set will not affect overall performance. There are many tasks better accomplished

in the database than in the application side, but presentation logic like this should

be implemented in the application.

The Use of Column Aliases in the HAVING Clause

You may see the HAVING clause used to get around the fact that you can’t use a

column alias in the WHERE clause. For example, consider this hypothetical query

in which a WHERE clause has been changed to a HAVING clause just so the author

could make use of the column alias calc:

SELECT
 columnA
 , columnB
 , (some horribly complicated expression) AS calc
FROM
 tableA
HAVING
calc > 9 OR

 (columnC = 0 AND calc > 37)

The query would not have worked with the HAVING clause as a WHERE clause; it

would have failed with an error message, such as “Unknown column ‘calc’

in WHERE clause.” This particular approach is not standard SQL behaviour,

but it works in some database systems, notably MySQL.

131The HAVING Clause

Rather than rely on non-standard SQL, we can use a subquery to produce the same

results instead:

SELECT
 *
FROM
 (

SELECT
 columnA
 , columnB
 , (some horribly complicated expression) AS calc
 FROM
 tableA
) AS dt
WHERE
 calc > 9
 OR (columnC = 5 AND calc > 37)

The query has been pushed down into a subquery, and because that is executed

before the WHERE clause, the alias is now available to the WHERE clause.

Wrapping Up: the HAVING Clause
In this chapter, we learned how the HAVING clause works with the GROUP BY clause

to filter group rows; this works in the same way the WHERE clause filters the rows

of the tabular result set returned by the FROM clause. HAVING can specify conditions

involving only GROUP BY columns, aggregate functions (and expressions built from

these), and constants.

The next chapter finally tackles the SELECT clause.

Simply SQL132

Chapter7
The SELECT Clause
The SELECT clause has been used in every sample SQL SELECT statement we’ve seen

so far. This is not surprising, because the SELECT clause is mandatory; it’s the first

clause in any SELECT statement. I’ve tried to avoid describing the SELECT clause in

too much detail along the way, in order not to detract from the other clauses being

discussed, but now it’s time for us to get to know the SELECT clause a little better.

We’ve taken a different route to arrive here than most SQL tutorials or books, which

usually begin with the SELECT clause. Instead, we looked at the other clauses of the

SELECT statement first, and there’s a very good reason why we do this: it’s the order

in which they’re executed.

In the preceding chapters, we reviewed the clauses of the SELECT statement in the

following sequence:

1. FROM retrieves data from one or more database tables

2. WHERE filters the detail rows of the FROM clause’s tabular result

3. GROUP BY produces group rows from filtered detail rows

4. HAVING filters group rows

We are now—finally—ready to examine the SELECT clause. As we first learned in

Chapter 2, the SELECT statement’s single purpose is to retrieve data from our database

and return it in a tabular structure. The purpose of the SELECT clause is to define

the columns that will be returned in the final, tabular result set.

SELECT in the Sequence of Execution
Understanding the sequence of execution of clauses in a SELECT statement is import-

ant: the presence—or absence—of the GROUP BY clause in the SELECT statement de-

termines which columns we can have in our SELECT clause.

The SELECT clause is executed after the FROM clause, and any optional WHERE, GROUP

BY, and HAVING clauses, if present. We’ve already learned in the section called “All

Columns Are Available after a Join” in Chapter 3 that the execution of the FROM

clause builds an intermediate tabular result set from which the SELECT clause ulti-

mately selects the data to be returned. However, the presence of a GROUP BY clause

changes the structure of this intermediate table, thus changing the data available to

the SELECT clause when it’s finally executed.

If no GROUP BY clause is present, the SELECT clause can include any column from

any table mentioned in the FROM clause. If a GROUP BY clause is present, the SELECT

clause can include only grouping columns.

This distinction applies only to the columns that can appear in the SELECT clause.

In Chapter 5, we saw aggregate functions used in the SELECT clause in addition to

grouping columns. As you’ll recall, the syntax of the SELECT statement specifies

that the SELECT clause consists of expressions that involve keywords, identifiers,

and constants:

SELECT expression(s) involving keywords, identifiers, and constants
FROM tabular structure(s)
[WHERE clause]
[GROUP BY clause]
[HAVING clause]
[ORDER BY clause]

Keywords used in the SELECT clause are mostly functions. A small number of other

special keywords can be used, and we’ll see some of the more useful ones in this

chapter. Identifiers used in the SELECT clause are column names. They may be

Simply SQL134

qualified by their table names or table aliases. Constants are fixed values, but they

provide a means of making useful expressions when combined with the keywords

and identifiers.

We’ll start our detailed analysis with columns.

Which Columns Can Be Selected?
The columns that are allowed in the SELECT clause are entirely determined by the

presence or absence of the GROUP BY clause. If it seems like I’m really hammering

away at this point, there’s good reason. I’ve seen many people get into trouble

writing SELECT statements without an appreciation of the distinction between detail

rows and group rows.

Detail Rows
When there’s no GROUP BY clause, the SELECT clause can include any column from

any table mentioned in the FROM clause.

If there’s more than one table in the FROM clause, then the rows of all the tables in-

volved are joined together to form the intermediate result set, as depicted in Fig-

ure 7.1. This is the same figure we saw in the section called “All Columns Are

Available after a Join” in Chapter 3. At the time, I mentioned that the entries table

actually had several additional columns that were not shown: id, updated, and

content. These columns are also available, but they’ve been omitted from the dia-

gram to keep it simple.

135The SELECT Clause

Figure 7.1. All columns are available in the join

When the query includes a GROUP BY clause, however, then the columns that can

be specified in the SELECT clause change dramatically.

Group Rows
Planning and designing an SQL SELECT query must take into account these two

major considerations:

1. deciding which tables contain the data we need, and specifying how to join them

2. determining whether grouping is required

If grouping is required, then, as a rule, the only columns allowed in the SELECT

clause are the grouping columns: the columns listed in the GROUP BY clause. All

Simply SQL136

sample GROUP BY queries that we’ve seen in previous chapters have followed this

rule.

This may seem limiting, until we realize that when grouping is performed, many

useful aggregate functions are permitted. For example, let’s look again at the follow-

ing grouping query from Chapter 5:

Cart_10_Grouped_rows.sql (excerpt)

SELECT
 customers.name AS customer
, COUNT(items.name) AS items
, SUM(cartitems.qty
 * items.price) AS total
FROM
 customers
 INNER JOIN carts
 ON carts.customer_id = customers.id
 INNER JOIN cartitems
 ON cartitems.cart_id = carts.id
 INNER JOIN items
 ON items.id = cartitems.item_id
GROUP BY
 customers.name

The only column we can select in the SELECT clause is the customers.name column,

since that’s the only column in the GROUP BY clause—the only grouping column.

However, we also have two aggregate functions in the SELECT clause—we first met

these functions back in Chapter 5—that refer to columns that are not grouping

columns: COUNT(items.name) and SUM(cartitems.qty * items.price).

Inside aggregate functions, the use of columns that aren’t grouping columns is per-

fectly okay. During the grouping process, the aggregate functions compute an aggreg-

ate or total from each group’s set of detail rows. While there are multiple rows in

each group, only a single calculated value appears in the group row as a result of

the aggregate function.

SUM and COUNT, of course, do just what we expect them to—they produce the aggregate

sums and counts for the group rows. There’s nothing special about what they do,

but circumstances dictate that they can only be used in grouping queries, and the

grouping columns determine their granularity—how many detail row values are

137The SELECT Clause

aggregated into the group row value. In this case, there’s one group row for each

customer.

COUNT(items.name) produces a count of the number of items in all carts for every

customer. The grouping column, customers.name, determines the scope for the

COUNT aggregate function: there is one count produced for each customer.

Being an expression in the SELECT clause, COUNT(items.name) also produces one

of the columns in the query’s final result set. This expression is given a column

alias, items, which is the name used for that column in the result set. The other

aggregate function in the above query is SUM(cartitems.qty * items.price). This

expression is also given a column alias, total, which becomes the column name

used for that column in the query’s result set shown. Figure 7.2 displays the results

of our SELECT clause

Figure 7.2. Aggregate totals for each customer

Aggregate functions are the primary reason we write grouping queries in the first

place, and we’ll look at the more useful ones in a moment. First, though, I’d like to

introduce yet another sample application, Discussion Forums.

The Discussion Forum Application
In the section called “Discussion Forums” in Appendix B, you’ll find a detailed

description of the database for the Discussion Forums application, which allows

registered members to make posts about various topics that are organized into threads

within forums.

Simply SQL138

The forums Table
Our sample data has three forums as you can see in Figure 7.3.

Figure 7.3. The forums table

Of course, in the real world, a forum application might have many more

columns—for example, a column for a forum’s description—but we’ll keep it simple.

The members Table
Figure 7.4 shows that the sample data includes five members in the members table.

Figure 7.4. The members table

As anyone who is a member of SitePoint’s forums1 knows, a real world forum ap-

plication has many more columns—such as avatar, signature, and so on—but again,

simplicity is our goal in these samples.

The threads Table
Each thread belongs to a specific forum, and is started by a particular member. See

if you can visualize the relationships of the threads table, shown in Figure 7.5, to

the forums and members tables.

1 http://sitepoint.com/forums/

139The SELECT Clause

http://sitepoint.com/forums/

Figure 7.5. The threads table

The relationship of forums to threads can be categorized as one-to-zero-or-many; a

forum can have any number of threads, even zero. The Databases forum has three

threads, the Search Engines forum has one thread, and the Applications forum has

none. Similarly, the relationship of members to threads is also one-to-zero-or-many.

The posts Table
Finally, the posts table is depicted in Figure 7.6.

Figure 7.6. The posts table

The relationship of threads to posts is categorized as one-to-one-or-many. Each

thread can have any number of posts but must have at least one: the post that starts

the thread. Notice that the reply_to column relates one post to another, but that

each post is also related to the thread it belongs to. The starting post in each thread

has no reply_to value.

Now let’s go back to discussing the SELECT clause, and the expressions that you

may use. We’ll begin where we left off, with aggregate functions.

Functions
Functions in SQL are considered either aggregate or scalar, depending on the scope

of the data values that they operate on. Aggregate functions are allowed only in

Simply SQL140

grouping queries and produce an aggregate result for a group of rows, while scalar

functions can be used in both detail queries and grouping queries, and produce

values based upon the input of single values.

Standard SQL includes many functions, and the developers of the various database

systems (like the five mentioned in Appendix A) have added a few more of their

own. All of the following functions are Standard SQL unless otherwise noted.

Aggregate Functions
The distinguishing feature of aggregate functions is that they operate on groups of

column values. This makes sense when we consider the grouping operation per-

formed by the GROUP BY clause: multiple detail rows are collapsed or aggregated

into one group row, and aggregate functions are used to do the heavy lifting—provid-

ing additional meaningful data for those group rows.

Table 7.1 displays the main aggregate functions that you'll probably need as a web

developer:

Table 7.1. Common Aggregate Functions

PurposeAggregate Function

Counts the number of values in a groupCOUNT

Calculates the sum of a group of valuesSUM

Finds the minimum (lowest) value from a group of valuesMIN

Finds the maximum (highest) value from a group of valuesMAX

Calculates the average value of a group of valuesAVG

The SUM and AVG aggregate functions operate only on numeric columns. The COUNT,

MIN, and MAX aggregate functions can operate on any type of column. We’ll learn

more about data types in Chapter 9.

Most database systems have additional, non-standard aggregate functions, such as

STDEV2 for standard deviation and VAR3 for variance. Consult your SQL reference

manual to see what’s available to you.

2 http://msdn.microsoft.com/en-us/library/ms190474.aspx
3 http://msdn.microsoft.com/en-us/library/ms186290.aspx

141The SELECT Clause

http://msdn.microsoft.com/en-us/library/ms190474.aspx
http://msdn.microsoft.com/en-us/library/ms186290.aspx

Aggregate Functions without GROUP BY
When there’s no GROUP BY clause, all of the rows in the tabular structure produced

by the FROM clause—and optionally filtered by the WHERE clause—are considered to

be a single group.

Thus, aggregate functions are allowed without a GROUP BY clause, but only if they’re

the sole expressions in the SELECT clause (along with certain keywords and con-

stants). If the database system parses the SELECT statement to find that there’s no

GROUP BY clause and only aggregate functions in the SELECT clause, it knows that

it must aggregate all the detail rows. If aggregate functions appear alongside column

names within the SELECT clause in a SELECT statement that has no GROUP BY clause,

then a syntax error occurs.

The first example of an aggregate function that we’ll look at (involving our Discussion

Forums application) also has no GROUP BY clause, as we shall see.

To set the stage for this example, we will again start with a non-grouping (detail)

query. The following query uses LEFT OUTER JOINs to join the forums, threads,

and posts tables, so that we can get a close look at the related data:

Forums_02_Aggregate_functions.sql (excerpt)

SELECT
 forums.id AS f_id
, forums.name AS forum
, threads.id AS t_id
, threads.name AS thread
, posts.id AS p_id
, posts.name AS post
FROM
 forums
 LEFT OUTER JOIN threads
 ON threads.forum_id = forums.id
 LEFT OUTER JOIN posts
 ON posts.thread_id = threads.id

Nothing too complicated in this query, except that we’ve qualified the

columns—we’ve used dot notation, because the same column name is used in more

than one table—and assigned column aliases to distinguish the columns in the final

result set. We use LEFT OUTER JOINs because there can be forums without threads.

Simply SQL142

The results of this query are shown in Figure 7.7.

Figure 7.7. Results: forums, threads, and posts

Each forum is included, even if it’s without threads.

The reason for showing the results of this detail query is so you can visualize this

as the intermediate table produced by the FROM clause, prior to the grouping opera-

tion. Now let’s do a grouping query on this data, using the COUNT aggregate function:

Forums_02_Aggregate_functions.sql (excerpt)

SELECT
COUNT(forums.id) AS forums

, COUNT(threads.id) AS threads
, COUNT(posts.id) AS posts
FROM
 forums
 LEFT OUTER JOIN threads
 ON threads.forum_id = forums.id
 LEFT OUTER JOIN posts
 ON posts.thread_id = threads.id

Notice that there’s no GROUP BY clause, so the entire intermediate table produced

by the FROM clause is considered a single group. Therefore, the results of this query

(see Figure 7.8) are, as expected, a single group row.

143The SELECT Clause

Figure 7.8. COUNT Function Results

Are you surprised by the values of the counts? They certainly do need an explana-

tion, because—for example—we know there are only three forums!

Aggregate Functions Ignore NULLs
Firstly, why are there 8 forum values, and only 7 thread and post values? One of

the most important features of aggregate functions is that they ignore any NULLs in

the set of values that they operate on.

This is indeed what happened in the query above. The COUNT function has counted

occurrences of values, and has ignored the NULLs in the last row of the intermediate

tabular result produced by the FROM clause: the row for the Applications forum.

Aggregate functions ignore NULLs by design; COUNT counts only values, SUM only

sums values, and so on.

However, we know that there are only three forums. Is there a way to correct this

misinformation? The answer is, yes.

COUNT(DISTINCT)

One option available within aggregate functions is the use of the keyword DISTINCT.

This keyword tells the database system to aggregate only the distinct, or unique,

values within the scope of the aggregate function.

Simply SQL144

Let’s try it on our counting query:

Forums_02_Aggregate_functions.sql (excerpt)

SELECT
COUNT(DISTINCT forums.id) AS forums

, COUNT(DISTINCT threads.id) AS threads
, COUNT(DISTINCT posts.id) AS posts
FROM
 forums
 LEFT OUTER JOIN threads
 ON threads.forum_id = forums.id
 LEFT OUTER JOIN posts
 ON posts.thread_id = threads.id

Figure 7.9 shows the results returned with DISTINCT used inside each aggregate

function.

Figure 7.9. Results using DISTINCT

This certainly makes a lot more sense, doesn’t it? However, the usefulness of

COUNT(DISTINCT) comes at a hefty price. The database system will require additional

processing overhead to determine the distinct values in the intermediate table pro-

duced by the FROM clause. Only after it has built up a separate, temporary table of

distinct values somewhere in its memory, during execution of the query, can the

database system count these distinct values. Obviously, we’ll want to use

COUNT(DISTINCT) sparingly.

In the query above, notice that the count produced by COUNT(DISTINCT posts.id)

is 7, and this is the same value returned by the preceding query, which used

COUNT(posts.id). This makes sense, when we consider all post_id values are

distinct. In this case, the use of DISTINCT is a waste of resources.

145The SELECT Clause

Thus, to make our grouping queries slightly more efficient,4 we should only use

DISTINCT in aggregate functions for values that we know will repeat in the inter-

mediate table produced by the FROM clause—but leave it out if they won’t.

COUNT(*)

This special version of the COUNT function is used to count rows, not values. In this

case all rows are counted, regardless of NULLs in any of the columns. The archetypal

COUNT(*) query, the one in all the SQL tutorials, is the query that returns the number

of rows in a table:

Forums_03_COUNT.sql (excerpt)

SELECT
 COUNT(*) AS rows
FROM
 members

So why is it so special, compared to other uses of the COUNT function? It turns out

that COUNT(*) is extremely fast in comparison to the COUNT aggregate function used

on a particular column. The reason has to do with the fact that the database system

doesn’t have to examine any values looking for NULLs when it calculates COUNT(*).

Always use COUNT(*) if you are interested in the number of rows, not the number

of values.

To illustrate the difference, consider this detail query—which produces only the

forums and threads—again using LEFT OUTER JOIN because some forums may not

have threads:

Forums_03_COUNT.sql (excerpt)

SELECT
 forums.id AS f_id
, forums.name AS forum
, threads.id AS t_id
, threads.name AS thread
FROM

4 The bulk of the processing load is in retrieving the rows from the database tables on disk.

Simply SQL146

 forums
 LEFT OUTER JOIN threads
 ON threads.forum_id = forums.id

The results of this query, which we’ll again use to visualize the intermediate table

produced by the FROM clause in the subsequent count queries, is shown in Fig-

ure 7.10.

Figure 7.10. forums and threads detail query results

Our task is to retrieve data from our database that indicates how many threads exist

in each forum. The first query we’ll try, uses COUNT(*):

Forums_03_COUNT.sql (excerpt)

SELECT
 forums.id AS f_id
, forums.name AS forum
, COUNT(*) AS rows
FROM
 forums
 LEFT OUTER JOIN threads
 ON threads.forum_id = forums.id
GROUP BY
 forums.id
, forums.name

Notice that we’ve had to add a GROUP BY clause, because we want counts for each

forum. Figure 7.11 shows the results of the above query.

147The SELECT Clause

Figure 7.11. A row count for each forum

Can you spot the problem with these results? The Applications forum has no threads,

but the total returned is 1. This result is an example of one of the more frequent

problems encountered by people using COUNT(*). What has happened is that the

database engine has counted the rows in the intermediate table produced by the

FROM clause. Since the Applications forum was included—on purpose, because it’s

a LEFT OUTER JOIN—there’s a row for it in the intermediate result, and therefore

the count is 1.

What we actually want our query to do is to count the threads:

Forums_03_COUNT.sql (excerpt)

SELECT
 forums.id AS f_id
, forums.name AS forum
, COUNT(threads.id) AS threads
FROM
 forums
 LEFT OUTER JOIN threads
 ON threads.forum_id = forums.id
GROUP BY
 forums.id
, forums.name

Now the results, shown in Figure 7.12, make sense.

Simply SQL148

Figure 7.12. A thread count for each forum

Avoid Using COUNT(*) in LEFT OUTER JOINs

If you’re aggregating something in the right table of a LEFT OUTER JOIN, remember

that LEFT OUTER JOINs (like all outer joins) produce NULLs.

Usually this will mean that you don’t want to use COUNT(*). Instead, apply COUNT

to non-NULL columns of the right-hand table.

Note that COUNT is the only function that allows the all rows asterisk. You cannot

say SUM(*), for example.

Scalar Functions
Scalar functions, like aggregate functions, produce a single value as their result.

However, while aggregate functions return a result based upon the aggregation of a

group of column values, scalar functions return a result based on the input of single

values (with a few exceptions).

Here are some of the Standard SQL scalar functions that are commonly available

in all database systems.5

The SUBSTRING Function
The syntax of the SUBSTRING function is as follows:

SUBSTRING(string FROM position FOR length)

5 Your database system may use different function names or syntax. Check your SQL reference manual

to find the specifics for your system.

149The SELECT Clause

Anyone who has done any programming will immediately recognize this function

and what it does. The result of the SUBSTRING function is a string that has been ex-

tracted from the given string specified as the first parameter of the function, begin-

ning at character position position, for a length of length characters. For example,

SUBSTRING('Samuel' FROM 1 FOR 3) would return the string 'Sam'.

Here’s an example of the SUBSTRING function used in a query:

Forums_04_Scalar_functions.sql (excerpt)

SELECT
 threads.id AS t_id
, threads.name AS thread
, posts.id AS p_id
, SUBSTRING(posts.post FROM 1 FOR 21) AS excerpt
FROM
 threads
 LEFT OUTER JOIN posts
 ON posts.thread_id = threads.id

The results can be seen in Figure 7.13. Notice that the excerpt column contains

only the first 21 characters of the actual post column; this is the result of the

SUBSTRING function.

Figure 7.13. Using SUBSTRING

Simply SQL150

LEFT

Many database systems have a LEFT scalar function, which assumes that the FROM

position parameter is 1. In database systems that support the LEFT function, the

query above could have used LEFT(posts.post,21) instead.

The COALESCE Function
COALESCE is a very useful function that returns the first non-NULL value in a list of

values.

Consider the example of concatenation. The standard SQL concatenation operator

is the double pipes symbol: || (we’ll discuss operators later on in this chapter).

This is how we write the query:

SELECT lastname || ', ' || firstname AS fullname

Here we're returning the last name, then a string constant consisting of a comma

and a space, and then the first name, all concatenated together into a single string.

Now let's assume that we've anticipated the need to handle people who only submit

one name, by using firstname for those cases, and setting lastname to NULL. But

NULLs behave in a special way: they propagate, so we may have a problem.

NULLs Propagate in Expressions

When writing expressions that involve more than one value, be aware that NULLs

propagate; concatenating anything with NULL produces NULL, and adding any

numeric value with NULL again produces NULL. We’ll cover numeric addition

later in this chapter.

To make the concatenation work successfully, we have to deal with the possibility

of a NULL in lastname, and this is where we use COALESCE. First, concatenate last-

name and the comma and space together:

lastname || ', '

Now use this expression as the first parameter of the COALESCE function, and an

empty string ('') as the second:

151The SELECT Clause

COALESCE(lastname || ', ', '')

If lastname is NULL, then the first parameter is NULL. Now, COALESCE is looking for

the first non-NULL parameter, so it goes to the next parameter along: the empty string.

Since the empty string is not NULL, COALESCE will return it. So either "lastname plus

comma and space," when it’s not NULL, or the empty string, will be concatenated

with firstname. Thus, the NULL value never propagates to firstname.

The CASE Function
This function returns a value, or NULL, based on a series of conditional evaluations

using the keywords WHEN, THEN, ELSE, and END. It works the same way as the ex-

tremely common if/then programming construct, which some of you may be famil-

iar with.

The WHEN keyword indicates the expression to evaluate. The THEN keyword indicates

the value to return should the WHEN expression be evaluated as true. CASE can take

multiple WHEN expressions with matching THEN values. Finally, if none of the expres-

sions evaluate as true, then the ELSE keyword indicates the value to return.

For example, consider the following:

CASE WHEN lastname = ''
 THEN ''
 ELSE lastname || ', '
END || firstname AS fullname

You can translate the above code like this: in the CASE WHEN the lastname column

value is an empty string THEN return an empty string, ELSE return the lastname

value concatenated with a space and a comma, the END. This is finally concatenated

with the value of the firstname column.

CASE does not look like a normal function as it’s missing the usual parameters en-

closed in parentheses. The CASE keyword begins the expression, and the END keyword

ends it. It produces a single value, so it’s a scalar function.

While COALESCE is neater than CASE, COALESCE checks only for NULL. CASE can be

used to check for anything and return anything; it’s the Swiss Army Knife of scalar

functions.

Simply SQL152

EXTRACT

EXTRACT is used to extract portions of a DATE or DATETIME value. For example, this

expression will extract the year and month from the date stored in the posts.created

column as a number:

EXTRACT(year_month FROM posts.created)

Temporal functions vary greatly between different database systems. See your SQL

reference manual, typically under Date Functions.

CHAR_LENGTH

CHAR_LENGTH is used to determine the character length of a value. We’d use the

following to return the length of each post:

CHAR_LENGTH(posts.post)

The CAST Function

The CAST function is used to change the data type of a value. This operation is also

known as casting. The following changes the data type of the members.id column

as VARCHAR:

CAST(members.id AS VARCHAR)

Casting becomes important when importing data from external sources, or preparing

data to be exported. All too often, the external source is another application in the

same organization, with a different data structure. Casting is also used often in

UNION queries to ensure that corresponding columns in the subselects all have the

same data type. We discussed UNION queries back in the section called “UNION

Queries” in Chapter 3.

The NULLIF Function

NULLIF is tricky. This function returns NULL if the values of the two parameters are

equal. How might this be useful? Just as we wrapped an expression with COALESCE

to protect against a possible NULL, we use NULLIF to produce a NULL if the two

parameters are equal.

153The SELECT Clause

For example if we wanted to display only post names that are different from their

thread names, we could use the following to detect when the value in the posts.name

column is equal to the value in the threads.name column:

NULLIF(threads.name,posts.name)

Operators
Operators can be used within SELECT clause expressions, and we’ll briefly review

them here.

Numeric Operators
These include the usual suspects: addition, subtraction, multiplication, and division,

represented by the expected symbols: +, -, *, and /. We’ve already seen the multi-

plication operator used in a SELECT clause expression, in the example in the section

called “Group Rows”:

SELECT cartitems.qty * items.price AS total

Note that this is not that same as the star we saw in COUNT(*) previously.

The special unary operators + and - are used to specify signed (negative or positive)

values. Sometimes a modulus operator (returns the remainder of a division expres-

sion) is available, but often it’s a function like MOD instead. Additional arithmetic

operations are accomplished with functions, and there is a large variety available

in every database system. Consult your database system’s documentation for details.

The Concatenation Operator
The concatenation operator is the only character operator and is used to concatenate

strings. The standard SQL concatenation operator is the double pipes symbol: ||.

For an example of concatenation, consider the code snippet that we saw previously:

SELECT lastname || ', ' || firstname AS fullname

Here, the lastname and firstname column values are concatenated together with

a comma and a space.

Simply SQL154

In MySQL Use the CONCAT Function Instead

In MySQL, concatenation is performed with an actual function. The MySQL code

equivalent to the concatenation example above is:

SELECT CONCAT(lastname, ', ', firstname) AS fullname

Additional string manipulations are handled by character functions, such as

SUBSTRING and others like it.

SUBSTRING_INDEX in MySQL

The SUBSTRING_INDEX function is surprisingly useful at deconstructing a string

into multiple substrings based on the number of occurrences of a specified char-

acter, either from the left or the right.

If you use MySQL, make sure to look it up.

Temporal Operators
Date and time arithmetic uses intervals. For example, “tomorrow” is equivalent to

“today plus one day” and in this context, the plus is a temporal calculation. This

is how we would write such an expression in the SELECT clause:

SELECT CURRENT_DATE + INTERVAL 1 DAY AS tomorrow

CURRENT_DATE returns the current date on the server, which we then add to an ex-

pression we define as INTERVAL 1 DAY, meaning—obviously—1 day. This is very

similar to the interval calculation we saw in the section called “BETWEEN: It haz a

flavr” in Chapter 4.

All database systems have robust date and time handling capabilities, implemented

in most cases by proprietary, or non-standard, functions. This is primarily because

the need for date calculations was anticipated by every database system, and imple-

mented as date functions, long before the standard was agreed to.

155The SELECT Clause

For example, here are 3 different ways to implement the same calculation:

ADDDATE(CURDATE(),1)
SYSDATE + 1
CURRENT DATE + 1 DAY

The first is for MySQL, the second for Oracle, and the third for IBM DB2. As always,

please check your database system’s documentation.

The Dreaded, Evil Select Star
We first met SELECT * back in Chapter 5, where I mentioned that I call it “dreaded

and evil” because using it is rarely a good idea. SELECT * is a short form for specify-

ing all columns. Here’s a reminder of what it looks like in an SQL query:

SELECT * FROM entries

This query would return all columns—and all rows because there are no other

clauses—from the entries table.

Using SELECT * can be useful, though. When building up a query from scratch, the

first step is, of course, writing the FROM clause. This is actually a good time to use

the dreaded, evil select star because we want to concentrate first on making our

joins work. The advantage of using SELECT * at this point is that we can examine

the results carefully and confirm that the rows have been joined properly, that is,

on the correct columns.

The disadvantage is that SELECT * usually produces far too many columns to see

important data relationships easily.

Of course, once you’re sure your SQL query is working, it’s important to remove

the asterisk and only select the data that you really need.

There are three main reasons why the dreaded, evil “select star” should be avoided

in production systems:

Simply SQL156

Performance

Whether there is just one table in the query, or a number of tables involved in

joins, SELECT * returns all columns of all tables. A cardinal rule is to only return

the data that you will use. Otherwise you are simply wasting resources.

Stability

When changes take place which result in adding columns to tables, or removing

columns from tables, application code which uses SELECT * queries will be at

risk of failing.

Clarity

In line with good coding practice, specifying only the columns you want in the

SELECT clause can be useful for documentation purposes.

SELECT DISTINCT
DISTINCT is an optional keyword (which comes right after the SELECT keyword) to

indicate that duplicate rows in the result set are to be removed, leaving only one

instance of each. We could use it to build a list of all item types from the Shopping

Cart application. Figure 7.14 shows the contents of the items table. To produce a

list of only the three existing items types, our query would look like this:

SELECT DISTINCT type FROM items;

Remove the keyword DISTINCT and the query will return all 18 instances.

DISTINCT is actually one of two optional keywords that can come after the SELECT

keyword. The other is ALL, which is the default (so hardly anyone ever actually

specifies it). ALL simply means return all rows; do not remove duplicates. The use

of ALL or DISTINCT is valid in a few other places in SQL; we’ve already seen it

within the COUNT function.

157The SELECT Clause

Figure 7.14. The items table

Another way to think of DISTINCT is as a quick way of writing a grouping query

without any aggregate functions. Consider the following hypothetical DISTINCT

query:

SELECT DISTINCT
column1

, column2
, column3
, column4
FROM
table

This DISTINCT query produces rows where all combinations of values in the specified

columns are distinct. Sound familiar? This is exactly like grouping; in fact, it is

grouping! The same results are produced by this query:

Simply SQL158

SELECT
column1

, column2
, column3
, column4
FROM
table

GROUP BY
column1

, column2
, column3
, column4

If you’re deciding which approach to take, DISTINCT merely collapses all duplicate

rows into one, but has the benefit of simplicity. The advantage of using a GROUP BY

clause is that you can use aggregate functions.

Finally, make sure you remember that DISTINCT applies to all columns in the SELECT

clause.

Wrapping Up: the SELECT Clause
In this chapter, we learned that the SELECT clause is processed much later in the

sequence of execution of the clauses of the SELECT statement—after FROM, WHERE,

GROUP BY, and HAVING. Of most importance is the presence (or absence) of the GROUP

BY clause, which determines the scope of the columns and expressions that the SE-

LECT clause may include.

In addition, we made a very brief survey of aggregate and scalar functions, as well

as SQL operators, with a smattering of examples and just a hint of the many per-

mutations that SELECT expressions might allow.

The dreaded, evil select star was explained, and we touched on the use of SELECT

DISTINCT.

In the next chapter, we’ll complete our exploration of the SELECT statement with a

discussion of the ORDER BY clause.

159The SELECT Clause

Chapter8
The ORDER BY Clause
In this chapter, we’ll look at the ORDER BY clause, the last of the clauses of the SELECT

SQL statement.1 Not only is ORDER BY the last clause in the syntax, it’s also the last

clause in the execution sequence. Fortunately, ORDER BY is a really simple clause,

so let’s jump right in.

The purpose of the ORDER BY clause is to ensure that the result set produced by the

query is returned in the specified sequence. Simply, ORDER BY sorts the results.

(Personally, I think SORT BY might have been a better keyword, but it’s ORDER BY

and we just have to live with it.)

1 Actually, ORDER BY is not part of the SELECT statement in the SQL standard; there, ORDER BY is

defined in the context of cursors, which enable query results to be returned to application programs one

row at a time. The distinction is probably moot, since all database systems support ORDER BY used as

the last clause of the SELECT statement.

ORDER BY Syntax
Like the SELECT clause, the ORDER BY clause has very simple syntax:

ORDER BY
column [ASC | DESC]

[, column [ASC | DESC]]
 ⋮ further columns if required…

Following the ORDER BY keywords is at least one column with an optional ASC (as-

cending) or DESC (descending) keyword; if neither is specified, ascending is the

default.

There are some restrictions on which columns may be referenced, and we’ll cover

the scope of the ORDER BY clause a bit later on in this chapter. First, let’s examine

how ORDER BY works.

How ORDER BY Works
The function of the ORDER BY clause is to ensure that the result set produced by the

query is returned in the sequence specified by the list of columns. Sorting a query’s

result set is pretty much the same here as sorting rows or records in other areas of

computer technology—specifically, sorting may be performed on one or more fields,

resulting in major-to-minor sequencing.

When the ORDER BY clause specifies multiple columns, the query will return rows

in major-to-minor sequence by evaluating those columns in the order that they’re

listed—left to right, first to last, major to minor.

Let’s start with a familiar example. In Chapter 5, we discussed the difference between

sequencing and grouping, using the Shopping Cart sample application. To under-

stand how grouping works, we first looked at sequenced detail data.

Simply SQL162

I needed to use an ORDER BY clause in the detail query to present the detail rows in

the sequence necessary to make the GROUP BY concept easier to visualize:

Cart_09_Detailed_Rows.sql (excerpt)

SELECT
 customers.name AS customer
, carts.id AS cart
, items.name AS item
, cartitems.qty
, items.price
, cartitems.qty
 * items.price AS total
FROM
 customers
 INNER JOIN carts
 ON carts.customer_id = customers.id
 INNER JOIN cartitems
 ON cartitems.cart_id = carts.id
 INNER JOIN items
 ON items.id = cartitems.item_id
ORDER BY
 customers.name
, carts.id, items.name

Now, we can finally look at this ORDER BY clause more closely. The results of the

query are returned in the sequence shown in Figure 8.1.

We can confirm quickly that the results are in sequence by customer name, given

that customer name here is a single value that begins with an initial.2

So customers.name, the first column listed in the ORDER BY clause, is the major sort

field. Looking more closely, we can see that within each customer, rows are in se-

quence by cart, and within each cart, rows are in sequence by item. So subsequent

columns listed after the first one, in this case carts.id and items.name, are pro-

gressively minor sort fields.

2 Remember, this is just sample data. In a real application, it’s more likely that we’d have separate cus-

tomer first and last name columns.

163The ORDER BY Clause

Figure 8.1. Shopping Cart details in order

When we inspect the sorted results, we see groupings of rows in sequences, and

these groupings correspond exactly to the columns listed in the ORDER BY clause.

ASC and DESC
The sequence of values for each column in the ORDER BY clause is either ascending

or descending, with ascending being the default.

In the Shopping Carts example above, the ORDER BY clause sorted the details by

customer (ascending), cart (ascending), and item (ascending). Let’s change the ORDER

BY clause to:

Cart_13_ORDER_BY_qty_DESC.sql (excerpt)

ORDER BY
 cartitems.qty DESC
, items.name

Simply SQL164

This new ORDER BY clause produces the results shown in Figure 8.2.

Figure 8.2. Shopping Cart details in order of quantity and item names

Notice that cart items with a quantity of 3 are listed first, then those with a quantity

of 2, and finally 1. The ORDER BY clause specifies cartitems.qty as the first column,

so that’s the major sort key, and the direction is descending (DESC), so we see the

3s first, then the 2s, then the 1s.

Within each of these major groupings, cart items are listed in ascending sequence

by name. As a point of interest, we see that dinguses are quite popular, since three

of them were purchased on two different occasions.

165The ORDER BY Clause

Detecting ORDER BY Groupings in Applications

When ORDER BY has multiple columns, groupings of major-to-minor column

values are produced as a natural consequence of sorting on multiple fields. The

rows of the result set are returned in the ORDER BY sequence, and we can see the

groupings.

Application logic can also see these groupings, by detecting control breaks while

processing the result set returned by the query.

In an application, the rows of the result set are processed one at a time, sequen-

tially. Typically this is done with looping code. As each row in the sorted results

is processed, a comparison is made with a control field that contains the value

from the previous row. This is sometimes referred to as current/previous logic. If

the current row’s control field value is different from that of the previous row, a

control break has been detected.

In our original ORDER BY example the customer name was the first column spe-

cified in the ORDER BY clause. When the application code is processing the first

row for B. Smith, a control break is detected on the customer name, a change

from the previous name which was A. Jones. Before the data for B. Smith is

printed out, the application logic can do things like print subtotals for the previous

customer, A. Jones.

Current/previous logic can be extremely useful in displaying results on your web

page. The SQL is kept simple, which means that database processing efficiency

is optimal, and yet the processed results can include subtotals, even at multiple

levels. A detailed explanation belongs in a book about programming, not SQL,

but it’s still worth mentioning.

To recap, the grouping performed by the ORDER BY clause is different to the grouping

performed by the GROUP BY clause. The same groups of rows are involved in both

cases, but the GROUP BY clause aggregates or collapses each group of multiple rows

into one group row, whereas the ORDER BY clause just sequences the rows. Groupings

in the sorted result set commonly appear when multiple ORDER BY expressions are

specified.

Simply SQL166

ORDER BY Clause Performance
How does the ORDER BY clause actually achieve its sequencing of result rows? Most

often, it does this simply by sorting the result set. Just as in other computer applic-

ations, sorting is a relatively taxing process in executing SQL queries.

If the rows to be sorted are few in number then the performance overhead required

by the ORDER BY clause will be negligible. If the sort can be performed in the server’s

memory, it’s extremely fast. Of course that depends on several factors, such as how

much server memory is available to the database system and how busy it is.

However, if there are more than a few rows, the database system may need to place

the rows of the result set into a temporary table, and then sort that table. Writing

rows to a temporary table, and then reading them back (often in several passes) to

sort them, requires extra, expensive processing cycles.

If you’re thinking of presenting the results of a query in a particular sequence, the

only alternatives are:

■ use an ORDER BY clause
■ sort the result set in the application, without using an ORDER BY clause
■ forego sorting altogether

Using an ORDER BY clause is the simplest approach, because it’s dead easy to specify

the sequence you want. Furthermore, it’s self-documenting, meaning your intentions

are obvious to other programmers: these columns, from these tables, filtered by

these conditions, in this sequence.

Sorting query results in the application also makes sense. For example, you may

have seen web pages where tabular data is presented, with clickable column headers,

so that the web page visitor can sort the data into different sequences by those

columns. This can even be accomplished using JavaScript,3 which can sort the data

in the browser, independent of the server.

Finally, forgoing sorting also makes sense in certain situations. For example, if the

query’s purpose is to extract data which is to be exported somewhere, such as in a

backup file or a file sent to another application, sorting is unnecessary.

3 The SitePoint book The Art & Science of JavaScript has a chapter on implementing table sorting with

JavaScript. See http://www.sitepoint.com/books/jsdesign1/

167The ORDER BY Clause

http://www.sitepoint.com/books/jsdesign1/

Be aware that ORDER BY often has a relatively big performance cost. Use it only when

it’s required.

When ORDER BY Seems Unnecessary
Sometimes the results of a query appear to be in sequence even though an ORDER

BY clause has not been specified. Two common situations may tempt you into

omitting the ORDER BY clause.

Query results are often returned in a first-in-first-out sequence when an autonum-

bering column is involved. Auto-numbering columns will be explained in detail in

Chapter 10 but, in short, an auto-numbering column has its incrementing numbers

assigned as new rows are inserted into the table. When a simple query involving

an auto-numbering column produces a result set, the result set rows are often in

sequence by this column. Adding an ORDER BY clause for this column would seem

to be unnecessary.

The other situation involves the use of an indexed column. Indexes, first mentioned

in the section called “WHERE Clause Performance” in Chapter 4, allow for efficient

resolution of WHERE conditions. A query using an indexed column in the WHERE

clause will almost always produce its results in sequence by that column, without

an ORDER BY clause having been specified.

Since ORDER BY has a relatively high overhead, is it safe to omit it in these situations?

The answer is yes and no. The only way to guarantee a sequence is to specify that

sequence with the ORDER BY clause. You can omit the ORDER BY clause provided

that you don’t mind if the results are in a slightly difference sequence.

Also, a database system will know if the ORDER BY clause sequence is already satis-

fied by indexed retrieval; it will avoid the overhead of sorting them. So even when

ORDER BY is specified, sorting may not actually be performed.

The Sequence of Values
We discussed the sequence of values in the section called “Comparison Operators”

in Chapter 4. For example, the less than (<) operator makes its TRUE or FALSE determ-

ination based on the sequence of the values it compares.

The sequence used to compare values is of course also used to sort them. The data

type of the values determines the nature of the sequence:

Simply SQL168

■ Numeric data sorts numerically, from smaller to larger, with negative values

being smaller than zero.
■ String data sorts alphabetically, as defined by the collating sequence.
■ Temporal data sorts chronologically, from earlier to later dates and times.

Thus ORDER BY customers.name sorts alphabetically, while ORDER BY

cartitems.qty DESC sorts numerically, descending.

Dealing with ORDER BY Problems

Problems can occur when a column with an inappropriate data type is used in an

ORDER BY clause. For example, when the month name is used in the ORDER BY

clause instead of the month number, the results are returned in the following se-

quence:

Apr, Aug, Dec, Feb, …

Another common problem is when numbers are being sorted as string values al-

phabetically, as is the case with this sequence:

1, 10, 11, 12, 2, 3, …

The results of both sequences are exactly as specified, but are probably undesirable.

(It’s that old syntax versus semantics issue again.)

However, if you’re stuck with a database design you can’t change (for example, a

column containing numbers was defined as a character data type), use the standard

SQL CAST function in the SELECT clause; you can convert strings containing

numbers into actual numeric values, assign a column alias to the result of the

CAST, and use the alias in the ORDER BY clause. We met the CAST function in the

section called “Scalar Functions” in Chapter 7.

NULLs Usually Sort First
When query result rows are sequenced with the ORDER BY clause, NULL values in

the ORDER BY expressions are usually sorted first. I’ll explain the usually part in a

moment.

Back in Chapter 4, we initially loaded our items table with sample items, but some

of those items had NULL in the price column, as you can see in Figure 8.3.

169The ORDER BY Clause

Figure 8.3. The items table

To demonstrate what happens with NULL values in an ORDER BY query, let’s run this

query:

SELECT
 name
, price
FROM
 items
ORDER BY
 price

Figure 8.4 displays the results you’ll get in most database systems.

Simply SQL170

Figure 8.4. The result of ordering NULL values

In point of fact, standard SQL allows you to specify whether NULLs sort first or last.

Many database systems will sequence NULLs first, while a few, like Oracle, will se-

quence them last. This was the reason I said that NULLs usually sort first. It depends

on your database system, and of course you can determine exactly what your partic-

ular database system does simply by trying the above query.

171The ORDER BY Clause

If we use the DESC option, then the situation is reversed. NULLs will sort last—or

first, again depending on your database system:

SELECT
 name
, price
FROM
 items
ORDER BY
 price DESC

The results of the query using descending price ordering can be seen in Figure 8.5.

Figure 8.5. The result of ordering NULL values

Simply SQL172

What should we do if our database system sorts NULLs first, but we want NULLs to

sort last in ascending sequence? We can do this easily using an expression. But before

we look at an example, we need to discuss the scope of the ORDER BY clause.

The Scope of ORDER BY
At the beginning of this chapter, the first ORDER BY clause we discussed was from

the familiar customer-cart-items query we first saw in Chapter 5:

ORDER BY
 customers.name
, carts.id
, items.name

This example of the ORDER BY clause allowed us to explore the major-to-minor se-

quencing produced when you specify multiple columns.

So the ORDER BY clause can specify table columns, but here’s the neat part—those

columns don’t necessarily have to be mentioned in the SELECT clause. For example,

we could do this:

SELECT
 name
FROM
 items
ORDER BY
 price DESC

This query returns item names only, in order of item price with higher prices first.

173The ORDER BY Clause

The ORDER BY clause also allows column aliases to be used. Let’s use the customer-

carts query again, but change the ORDER BY clause as follows:

Cart_14_ORDER_BY_total.sql (excerpt)

SELECT
 customers.name AS customer
, carts.id AS cart
, items.name AS item
, cartitems.qty
, items.price
, cartitems.qty
 * items.price AS total
FROM
 customers
 INNER JOIN carts
 ON carts.customer_id = customers.id
 INNER JOIN cartitems
 ON cartitems.cart_id = carts.id
 INNER JOIN items
 ON items.id = cartitems.item_id
ORDER BY
 total DESC

This time, there’s only one column in the ORDER BY clause, but it’s not a table

column, it’s a column alias assigned to an expression in the SELECT clause: the ex-

pression cartitems.qty * items.price. The results are shown in Figure 8.6.

The last column of the query results—total—is our ORDER BY column. This means

we can sort query results not just by simple table columns, but also by more complex

expressions.

Simply SQL174

Figure 8.6. Shopping carts ordered by cart totals

Using ORDER BY with GROUP BY
As we learned in previous chapters, when a GROUP BY clause is present in the query,

the SELECT clause may include only the GROUP BY columns, aggregate functions,

and constants (and expressions formed by combining any of these).

This same restriction applies to the ORDER BY clause when a GROUP BY clause is

present. According to standard SQL, each column used in the ORDER BY clause must

be either a grouping column or a column alias in the SELECT clause for any other

expressions.

As you begin to feel comfortable writing GROUP BY queries, you may notice that, in

your particular database system, the results often seem to be returned in the GROUP

BY sequence. In other words, it appears as though the GROUP BY clause somehow

pre-sorts the detail rows, before collapsing them into group rows. It’s as though an

ORDER BY clause were present with the same columns as the GROUP BY clause.

175The ORDER BY Clause

The reason for this is simple: one easy way for the database system to perform the

grouping function is to first sort the rows. Leaving out the ORDER BY clause would

then appear to be reasonable, given that it’s an additional overhead. However, as

with the scenarios discussed earlier in this chapter, there’s no guarantee that the

result rows will actually be returned in the GROUP BY sequence.

Once again, the guideline is clear: the only way to guarantee a sequence is to specify

that sequence with the ORDER BY clause.

ORDER BY Expressions
Standard SQL allows only columns in the ORDER BY clause, however, most database

systems have relaxed this requirement. What this means is that we could have

written the ORDER BY clause of our previous detail query like this:

ORDER BY
 cartitems.qty * items.price DESC

By coding an expression into the ORDER BY clause, we can avoid having to include

the expression in the SELECT clause and assigning it an alias. However, in this spe-

cific example, the sequence of the results would be more apparent if the total column

was included in the result set. Sometimes, though, we’ll want the results of a query

to be sequenced by a column or expression that we don’t necessarily need in the

SELECT clause. This is feasible, and allowed by most database systems, provided

that the scope is respected if a GROUP BY clause is present.

Special Sequencing
Here’s a slightly more complex example of where the use of expressions in the ORDER

BY clause is useful: special sequencing. Special sequencing is when you use an ex-

pression in the ORDER BY clause to specify a sequence for data without relying on

the natural sequence for that data type. For an example of special sequencing, we’ll

use the situation mentioned earlier in this chapter: ensuring that NULLs sort last,

when they’d normally sort first.

We’ll use the same query as before, to return items and their prices, except this time

we’ll modify the ORDER BY clause, using the CASE function we learned about in the

section called “Scalar Functions” in Chapter 7, so that NULL prices appear last in

the sequence:

Simply SQL176

Cart_15_ORDER_BY_with_NULLs_last.sql (excerpt)

SELECT
 name
, price
FROM
 items
ORDER BY
CASE WHEN price IS NULL

 THEN 2
 ELSE 1
 END
, price

The results, shown in Figure 8.7, are sequenced first by an expression, and second

by the price column. As you can see above, the first expression does not appear in

the SELECT clause.

The CASE expression evaluates the price on each row, and produces a value of either

1 or 2 depending on whether or not the price is NULL. Thus, rows with a NULL price

get assigned a value of 2, and this group of rows will sort after the group of rows

with real prices, which have a value of 1 for the CASE expression.

Within each of these two groups, rows are sequenced by price, which is the second

ORDER BY column. Of course, this produces the desired result for actual prices, while

rows with NULL prices are also sorted within their group, except that they all have

the same value—actually, an absence of a value—so the sequence of these rows

within that second group is indeterminate. Whew!

It’s as if this first expression in the ORDER BY clause creates a pseudo-column which

is appended to each row, so that the rows can be sorted into major-to-minor sequence

(that is, 2s then 1s), just as if we’d declared the CASE expression in the SELECT clause

and assigned it a column alias. When the sorted results are ready to be returned to

the application which executed the query, the pseudo-column is not included.

177The ORDER BY Clause

Figure 8.7. The result of special sequencing—so that NULLs appear last

ORDER BY with UNION Queries
As you know from Chapter 3, a UNION query combines the results of several SELECT

queries—more properly referred to as subselects—into a single query.

When a UNION query’s results are to be sorted, there’s only one ORDER BY clause

permitted, and it must go at the end. The general form of the query is:

SELECT …
UNION
SELECT …
UNION
SELECT …
ORDER BY …

Simply SQL178

In standard SQL, the UNION query must be given a table alias, but the above general

form—where the ORDER BY clause is simply tacked on after the last subselect in the

UNION—is supported by most database systems.

The example we’ll explore for sorting the results of a UNION involves returning both

detail and group rows in the same result set. Let’s first have a look at the query:

Cart_16_Details_and_Totals.sql (excerpt)

SELECT
 *
FROM (
 SELECT
 customers.name AS customer
 , carts.id AS cart
 , items.name AS item
 , cartitems.qty
 , items.price
 , cartitems.qty
 * items.price AS total
 FROM
 customers
 INNER JOIN carts
 ON carts.customer_id = customers.id
 INNER JOIN cartitems
 ON cartitems.cart_id = carts.id
 INNER JOIN items
 ON items.id = cartitems.item_id

 UNION ALL

 SELECT
 customers.name AS customer
 , NULL AS cart
 , CAST(COUNT(items.name) AS CHAR) AS item
 , NULL AS qty
 , NULL AS price
 , SUM(cartitems.qty
 * items.price) AS total
 FROM
 customers
 INNER JOIN carts
 ON carts.customer_id = customers.id
 INNER JOIN cartitems

179The ORDER BY Clause

 ON cartitems.cart_id = carts.id
 INNER JOIN items
 ON items.id = cartitems.item_id
 GROUP BY
 customers.name
) AS dt
ORDER BY
 customer
, cart
, item

Notice that the UNION query (in this case UNION ALL) has been pushed down into

the FROM clause, making it a derived table, with dt as the imaginatively chosen table

alias. SELECT * star has been used in the outer query, but that’s okay, because it’s

clear exactly which columns are in the result set—the ones specified in the derived

table.

Look at each of the two subselects in the UNION. The first, by now, should be easily

recognized as our detail query. The second, because it has a GROUP BY clause, is a

grouping query, which produces aggregates for each customer. In the SELECT clause

of the second subselect, we see the same total expression as in the first subselect,

but within a SUM aggregate function, as well as an additional aggregate,

COUNT(items.name). This is the count of cart items for each customer, and it is

shoe-horned into the same column occupied by the item name in the first subselect,

using the CAST function to turn it into a string. This is because the matching columns

in each subselect of a UNION query must have the same data type.

Clearly, as Figure 8.8 shows, the detail and total (grouped) rows have been inter-

leaved in the result set. Notice furthermore that the totals row for each customer

precedes the detail rows for that customer. This is accomplished by the simple fact

that NULLs sort first, and the value of the cart column, the second column in the

ORDER BY clause, is NULL on total rows.

Simply SQL180

Figure 8.8. The results of using ORDER BY with a UNION query

If you are an experienced programmer, you can see an immediate benefit in having

the total row ahead of the detail rows for each customer if you need to use this data

in your application. Printing totals before details is normally quite complicated if

the result set contains only detail rows. Refer to Detecting ORDER BY Groupings in

Applications earlier in this chapter for comparison. The UNION query that produces

totals as well as details, and then interleaves them, is more complex than the simple

detail query, but nowhere near as complex as the application programming required

to achieve the same effect.

181The ORDER BY Clause

Wrapping Up: the ORDER BY Clause
In this chapter, we learned how the ORDER BY clause works to return sequenced

query results.

The ORDER BY clause is used to ensure that the query results are returned in the

specified sequence, even though a sort may not always be involved. Multiple ORDER

BY columns may be specified, and they act as major-to-minor sort keys. The nature

of the sequence—alphabetical, numerical, or chronological—is determined by the

data type of the column.

Sequencing of each ORDER BY column can be ascending or descending. NULLs usually

sort first, except in some database systems where they sort last. The scope of the

ORDER BY clause is the same scope as the SELECT clause, and the columns that can

be referenced in the ORDER BY clause depend on the presence or absence of the

GROUP BY clause.

This concludes our detailed examination of the SELECT SQL statement. In summary,

we learned that the clauses are executed in the following sequence:

1. FROM retrieves data and creates a tabular structure

2. WHERE filters the rows of this tabular structure

3. GROUP BY aggregates or collapses detail rows into group rows

4. HAVING filters group rows

5. SELECT specifies expressions to be returned as columns in the result set of the

query

6. ORDER BY sequences the results

We’ll now move on to the next part of the book, which is all about database design,

and learn more about creating effective tables for our applications.

Simply SQL182

Chapter9
SQL Data Types

Not everything that counts can be counted, and not everything that

can be counted counts.

—Albert Einstein

Welcome to the first of three chapters in this book about database design. If you’ve

followed along faithfully until now, well done. Several chapters were needed to

cover the SELECT statement in detail, so that we could gain an appreciation for how

tabular data is extracted from the database, filtered, summarized, presented, and

sequenced. Now it’s time to turn our attention to the challenges of creating database

tables.

Creating tables is straightforward, with only a few tricky aspects to watch out for.

These are encountered primarily when deciding how tables should be related to

each other, and we’ll cover table relationships in Chapter 10. In this chapter, we’ll

examine table columns in isolation, and discuss the options available to define

them.

In our sample applications, we’ve seen several examples of the CREATE TABLE

statement. When we create a table, we must give it one or more columns, and once

the table has been defined, we can go ahead and insert rows of data into it, and then

use it in our SELECT queries.

This chapter looks at how to choose a column’s data type. A data type must be as-

signed to each column, and we’ll cover the choices available. We’ll also discuss

briefly some of the constraints that we may employ to tailor the columns more to

our requirements.

An Overview of Data Types
When we create a column, we must give it a data type. The data type will correspond

to one of these basic categories of data:

1. numeric

2. character

3. temporal (date and time)

Each of these data type categories allows for a wide range of possible values, and

each of them is, by its very nature, different from the others. Numeric data type

columns are used to store amounts, prices, counts, ratings, temperatures, measure-

ments, latitudes and longitudes, shoe sizes, scores, salaries, identifier numbers, and

so on. Character data type columns are used to store names, descriptions, text,

strings, words, source code, symbols, identifier codes, and so on. Temporal data

type columns are used to store a date, a time, or a timestamp (which has both date

and time components). Although the concept is easy, temporal data types are often

the most troublesome for novices.

The process of choosing an appropriate data type begins with an analysis of the

data values that we wish to store in the column. Because the categories of data types

are so inherently different from each other, this is often a trivially easy step. Perhaps

the only difficulty arises in a few edge cases, where it may look like numeric data

but should actually be defined with a character data type. There’s an example later

in the chapter.

So let’s start discussing the data types in detail.

Simply SQL184

Numeric Data Types
Numeric data types can be divided into in two types: exact and approximate. Before

you begin to wonder how a number can be approximate, let me reassure you that

most of the numeric data types we use in web development are exact.

Exact numbers are those like 42 and 9.37. When you store a numeric value in an

exact numeric column, you’ll always be able to retrieve exactly the same value in

a SELECT query. This is not the case with approximate numbers, where the value

you retrieve might be a different number, although it would be very, very close.

Let’s start with the exact numeric data types, which are either integers or decimals.

Integers
Integers are the whole numbers that we have been accustomed to from the earliest

days of our childhood: 1, 2, 3, and so on. In standard SQL, there are three integer

data types. INTEGER and SMALLINT have been standard all along, and BIGINT appears

to have been added in either the SQL-1999 or SQL-2003 standard.1

INTEGER

INTEGER columns can hold both positive and negative numbers (and zero, of

course). The range of numbers that can be supported is usually from

-2,147,483,648 to 2,147,483,647. This is the range of numbers that can be

implemented in binary notation using 32 bits (4 bytes). Curiously, the SQL

standard does not actually specify a range for INTEGER, but all database systems

uniformly use 32 bits.

SMALLINT

SMALLINT columns will support—you guessed it—a smaller range of integers

than INTEGER. As with INTEGER, standard SQL does not specify the range, merely

stipulating that the range be smaller. SMALLINT is usually implemented in 16

bits (2 bytes), leading to a range of -32,768 to 32,767.

1 The various versions of the SQL standard, as I mentioned before, are not freely available and must be

purchased. What matters much more than minutiae like this, of course, is whether your particular

database system has implemented a given feature. MySQL, PostgreSQL, SQL Server, and DB2 all support

BIGINT.

185SQL Data Types

BIGINT

BIGINT columns support a much larger range of integers than INTEGER. Database

systems that support BIGINT usually use 64 bits (8 bytes), resulting in a range

of numbers from -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807.

That's over nine quintillion. Hence, it’s extremely unlikely that you’ll need to

use BIGINT. We'll see BIGINT again in the section on autonumbers in Chapter 10.

Pros and Cons of Non-standard Data Types

Some database systems have implemented additional, non-standard integer data

types.

MySQL has added MEDIUMINT, implemented in 24 bits (3 bytes), giving a range

of –8,388,608 to 8,388,607. This slots MEDIUMINT in between SMALLINT and

INTEGER.

MySQL and SQL Server also support TINYINT, although they have different im-

plementations. Both are based on 8 bits (1 byte). MySQL’s range is –128 to 127

or 0 to 255, while SQL Server disallows negative TINYINT values and so has a

range of 0 to 255.

If your database system supports TINYINT, using it can seem irresistible. Why

declare a numeric column with the 2-byte SMALLINT data type, when you know

that there will be only a few small values, comfortable fitting within the 1-byte

TINYINT range of -128 to 127 or 0 to 255?

One benefit of using TINYINT over SMALLINT or INTEGER comes from the reduced

disk space requirements. Of course, our table will need to have many millions of

rows in order for the saved space to amount to more than a few megabytes, and

we’ll also need to take the total space requirements of all other columns into

consideration to determine if the overall savings are meaningful.

One disadvantage is that we’ll need to change the data type if we have to port our

tables to a database system that doesn’t support TINYINT. This is mitigated by

the fact that changing the data type is easily accomplished; for example, we could

use a text editor on the source DDL, changing all occurrences of TINYINT to

SMALLINT in one command.

So while the best practice strategy is to use either SMALLINT or INTEGER because

these are portable to all database systems, many SQL developers will use TINYINT

anyway, if it’s available, even though the space saved is rarely considerable. Per-

haps we’re just being neat and tidy.

Simply SQL186

Decimals
Decimal numbers have two parts: the total number of digits, and the number of digits

to the right of the decimal point; the decimal point isn’t actually stored. For example,

the number 9.37 has three total digits, of which two are to the right of the decimal

point.

There are two, almost identical, kinds of decimal data type: NUMERIC and DECIMAL.

Both data types have the same format:

NUMERIC(p[,s])
DECIMAL(p[,s])

The mandatory parameter p above, represents the precision: the total number of

digits allowed. The optional parameters (which defaults to 0 if omitted) represents

the scale: the total number of digits to the right of the decimal point.

Standard SQL says that the difference between NUMERIC and DECIMAL is implement-

ation dependent. NUMERIC columns must have the exact precision specified, but

DECIMAL columns might have a larger precision than specified if this is more efficient

or convenient for the database system. In practice, they behave identically. My

personal preference is DECIMAL.

NUMERIC and DECIMAL data types each allow both positive and negative values, and

have the same range of possible values. However, the size of this range varies from

one database system to another. PostgreSQL, for example, allows a precision of

1,000 digits. In practice, you’ll rarely approach the limits of the range, whatever

they are.

187SQL Data Types

Use DECIMAL but Consult Your SQL Reference Manual

Check your manual for details about the DECIMAL data types available to you.

The maximum precision (total number of digits) and maximum scale (number of

digits to the right of the decimal point) can vary from one database system to an-

other.

DECIMAL data types are almost always preferred over floating-point data types

(discussed further on), simply because decimals are exact and floating-point

numbers are approximate.

DECIMAL data types are also preferred over non-standard ones such as SQL Server’s

MONEY data type, which is deprecated. (Deprecated means that you shouldn’t use

it because it will be removed in a future release of this SQL standard or product,

even though you can at present.)

Let’s look at a few quick examples of DECIMAL data types.

To define a column which will hold a value such as 9.37, we could employ

DECIMAL(3,2) as the data type. The precision and scale of 3 and 2 mean that:

1. 3 digits in total are allowed

2. 2 of those digits are to the right of the decimal point

Note that DECIMAL(3,2) is inadequate for holding a value such as 12.34, because

12.34 has two digits to the left of the decimal point, and we allowed for only one.

Attempting to insert this value usually results in an error message about “arithmetic

overflow.”

Nor can DECIMAL(3,2) properly hold a value such as 0.567, because even though

there are only three significant digits in total, the column can hold only two positions

to the right of the decimal point. Attempting to insert this value, however, does

proceed, with the value being rounded to 0.57 to fit into the column. The column

can hold the value, but with an accuracy of only two decimal digits. As to what

your particular database system will do, in the case where you attempt to insert a

value that does not conform to the column data type, you’ll just have to test it to

make sure.

Simply SQL188

Test Your Database System

Depending on your database system, attempting to insert the value above might

be allowed silently. To confirm how your database system handles this situation,

you might like to run a test query like the following. In this query we create a

table called test_decimals, add a column called d, and try to insert various

decimal values into it:

test_02_DECIMAL.sql (excerpt)

CREATE TABLE test_decimals
(
 d DECIMAL(3,2) NOT NULL PRIMARY KEY
);

INSERT INTO test_decimals (d) VALUES (9.37);
INSERT INTO test_decimals (d) VALUES (0.567);
INSERT INTO test_decimals (d) VALUES (12.34);
INSERT INTO test_decimals (d) VALUES (888.88);

SELECT
 d
FROM
 test_decimals
;

The two emphasized INSERT statements above will fail when run on SQL Server

with the error "arithmetic overflow error converting numeric to

data type numeric", but MySQL will allow them. Interestingly, when running

the SELECT query, MySQL will return:

 0.57
 9.37
12.34
99.99

In answer to the question, why, I’ll leave it as an exercise for you.

When using decimal data types, always choose a precision that comfortably holds

the maximum range of data that the column is expected to contain. Make the scale

adequate for your needs, too, considering that rounding will take place, especially

where arithmetic calculations are performed.

189SQL Data Types

For financial amounts, some people like to specify four decimal places instead of

two for greater decimal accuracy, for example, interest calculations. Accuracy here

refers to the decimal portion of the number; 12.0625 is more accurate than 12.06

if the number being represented is twelve and one sixteenth.

PS: Precision, scale, and accuracy

It’s easy to confuse the words accuracy and precision in this context, because in

everyday language they are synonyms. The syntax of the decimal and numeric

data type keywords is often written as:

DECIMAL(p,s)
NUMERIC(p,s)

A more accurate decimal number has more digits to the right of the decimal point,

but precision (the first parameter above: p) means the total number of significant

digits. A more accurate decimal number has a larger scale, but since scale digits

are counted within the total number of precision digits, a more accurate number

means a larger precision as well.

Scale (the second parameter above: s) can also be misunderstood as the range of

values describing how large or small the number can be; in everyday language,

to scale something up means to allow for it to enlarge. In decimal numbers, to allow

for a larger range, we need to increase the number of digits to the left of the

decimal point, which is equal to p minus s. So to increase the range also means

increasing the total number of significant digits, the p in DECIMAL(p,s).

PS: An easy way to remember which words to use is with the mnemonic, PS.

Example: Latitude and Longitude
Latitude and longitude (see Figure 9.1) are often expressed as decimals. Suppose

we wanted to keep 6 positions to the right of the decimal point. The values we’re

planning to store look like 43.697677 and -79.371643. Maybe that’s too accurate,

because specifying 6 digits to the right of the decimal point corresponds to pinpoint-

ing a location on earth with a level of accuracy as refined as to the size of a grapefruit.

To locate buildings, a scale of 4 (4 digits to the right of the decimal point) is suffi-

cient.

Simply SQL190

Figure 9.1. Latitude and longitude

We could use DECIMAL(6,4) for latitude, which has values that range from –90° to

+90°, but we’d need DECIMAL(7,4) for longitude, which has values that range from

–180° to +180°.

Having seen the exact numeric data types—integer and decimal—let’s move on to

the approximate numeric data types.

Floating-point Numbers
Approximate numbers are implemented as floating-point numbers, and are usually

either very, very large, or very, very small. Floating-point numbers are often used

for scientific data, where absolute accuracy is neither required nor assumed.

Consider this example of a very large number: a glass of water has approximately

7,900,000,000,000,000,000,000,000water molecules. This number is much larger

than a BIGINT column will allow. A decimal specification to hold this number

would be DECIMAL(25,0) and that’s quite a large precision value—each digit will

require extra storage space, but only two of the 25 digits are significant.

A floating-point number is compatible with scientific notation. That humongous

number of water molecules can also be written as 7.9 x 1024, where 7.9 is called

the mantissa and 24 is called the exponent. Scientific notation is useful because it

separates the accuracy of the number from its largeness or smallness. Floating-point

numbers also have a precision, but it applies to the mantissa only. Thus, 7.91 x

1024 is more accurate than 7.9 x 1024.

191SQL Data Types

Why are floating-point numbers called approximate? Simply because of rounding

errors, which depend in part on the underlying hardware architecture of the com-

puter. A more detailed explanation is beyond the scope of this book; see Wikipedia’s

page on IEEE Standard 754.2

FLOAT, REAL, and DOUBLE PRECISION
As with the decimal data types DECIMAL and NUMERIC, Standard SQL has several

kinds of floating-point data types: FLOAT, REAL, and DOUBLE PRECISION. As with

DECIMAL and NUMERIC, the differences are minor and implementation defined. In

practice, they all behave the same. It’s common for database systems to use either

4 or 8 bytes to store a floating-point number. DOUBLE PRECISION, as you might have

guessed, has greater precision than FLOAT or REAL. Check your SQL reference

manual for the full details of floating-point numbers in your database system.

Imagine a table called test_floats with a FLOAT column called f; when storing

numbers into a floating-point column, we can specify the value of the number like

so:

test_03_FLOAT.sql (excerpt)

INSERT INTO test_floats
 (f)
VALUES
 (7900000000000000000000000)

We can also do the same using exponent notation:

test_03_FLOAT.sql (excerpt)

INSERT INTO test_floats
 (f)
VALUES
 (7.9E24)

Exponent notation uses the letter E between the decimal mantissa and integer expo-

nent. The mantissa can be signed, giving a positive or negative number, while the

exponent can also be signed, giving a very large or very small number.

2 http://en.wikipedia.org/wiki/IEEE_754

Simply SQL192

http://en.wikipedia.org/wiki/IEEE_754
http://en.wikipedia.org/wiki/IEEE_754

When to Use Floating-point Data Types

Use a floating-point data type to store only very large or very small numbers.

As well, you may also use floating-point when accuracy is not crucial. In the

earlier example of latitudes and longitudes, floating-point numbers could be used

because the location specified by the latitude and the longitude numbers is only

approximate anyway. Think of it like this: with a large enough precision, you can

specify a location accurate to within the size of a grapefruit, while the rounding

errors due to using an approximate data type are equivalent to the width of the

grapefruit peel.

Conversions in Numeric Calculations
Whenever we perform a numeric calculation, data type conversion may occur de-

pending on the calculation. A numeric calculation performed in an SQL statement

will have a resulting value that’s typically given a data type large enough to accom-

modate it.

For example, the numbers 123,456,789 and 555 are perfectly good integers on their

own, but if we multiply them together, the result is 68,518,517,895. This is also

an integer, but will exceed an INTEGER column. If this multiplication is done in the

SELECT clause of a query, the result is simply returned as a BIGINT data type. If we

try to insert the result into an INTEGER column, we’ll receive an error message, as

the value is too big.

As another example, suppose we multiply the two perfectly ordinary DECIMAL(3,2)

numbers—1.23 and 4.56—together. The answer is 5.6088, and we know this value

will be rounded if it’s stored into another DECIMAL(3,2) column. (An error would

occur if the multiplication result is larger than 9.99.) If we simply return the calcu-

lation in a SELECT clause, the expression will have a data type of DECIMAL(5,4) or

DECIMAL(6,4).

Numeric Functions
Now that we’ve learned how and when to assign the various numeric data types,

let’s have a quick look at the functions that are available to work with them.

In the section called “Numeric Operators” in Chapter 7, we saw the basic arithmetic

operators, +, -, *, and / (for addition, subtraction, multiplication, and division) used

193SQL Data Types

to combine numeric values when creating expressions in the SELECT clause. There

are, in all database systems, a large number of additional numeric functions that

can be used. Here are a few:

Table 9.1. Commonly available numeric functions

PurposeNumeric Function

returns the absolute value of a numberABS

returns the smallest integer greater than or equal to the number

specified

CEILING

returns the largest integer less than or equal to the number specifiedFLOOR

returns the modulus (the remainder) of a division expressionMOD

returns a random numberRAND

rounds a number to a specified precisionROUND

Database systems will vary according to which functions they offer. Some will have

many more, including algebraic functions, geometric functions, and so on. Check

your SQL reference manual for details.

Now let’s move on to the second of the three major data type categories: character.

Character Data Types
Character data types should be very familiar to anyone who has worked with com-

puters. Character data types are used to store any values containing letters, symbols,

punctuation marks, and so on. Digits are permitted too, of course, and therein lies

one of the few pitfalls that you might encounter in selecting an appropriate data

type. We’ll discuss this issue in a moment.

CHAR
The first of the three character data types is CHAR, also called CHARACTER, which is

used to define a fixed-width character column. When specifying a CHAR column,

we must give a width. Thus, CHAR(1) and CHAR(21) are examples of character data

types resulting in columns which can hold character strings that are 1 and 21

characters long, respectively.

Simply SQL194

Again, the terminology here might be confusing. We speak of strings that have a

length of so many characters, but we speak of character columns as being so many

characters wide. This is mere convention, and both words should convey the same

concept in this context.

If a character string value is inserted into a CHAR column with fewer characters than

the column allows, it’s positioned at the left and padded with spaces on the right

until it fills the column. Fortunately, we don’t have to specify those spaces when

evaluating column values. Consider this condition:

WHERE country = 'Cuba'

If country is a CHAR(50) column, then the condition will evaluate as TRUE even

though the value stored in the column consists of the letters Cuba followed by 46

spaces. Trailing spaces are ignored. All values in the column are 50 characters long.

If a character string value is inserted into a CHAR column with more characters than

the column allows, excess characters are truncated from the right until it fits.

VARCHAR
VARCHAR, also called VARYING CHARACTER, requires a width too, but in this case it’s

the maximum width of the values allowed in the column. The actual width of the

column value in each row depends on the value.

Thus, the value Cuba stored in a VARCHAR(50) column will require only 4 characters.

This can make the rows substantially shorter. There is a very small amount of

overhead required for VARCHAR columns—an additional number is required to indic-

ate how long each value is. This number is typically a one byte binary number,

which is why many database implementations allow VARCHAR widths only up to

255.

In Figure 9.2, the lengths for the VARCHAR values are actually stored in the row,

whereas the lengths for the CHAR values are not.

195SQL Data Types

Figure 9.2. How CHAR(50) and VARCHAR(50) are stored in the database

Check your SQL reference manual for the maximum column width allowed for both

CHAR and VARCHAR columns.

The additional resource overhead for VARCHAR is typically more than offset by the

fact that the rows are, in general, shorter. Thus, more rows can fit onto a single block

of disk space, meaning that overall input and output operations performed by the

database system will be faster for the same number of rows.

If there is variation in the lengths of a column’s values, my own preference is to use

CHAR for widths up to 4, and VARCHAR for widths from 5 up, but that’s just a hunch

as to where the break even point might be. The difference in row lengths with

CHAR(4) versus VARCHAR(4) would be marginal, and I’ve yet to tested the differences

in performance.

Of course, you can also have large CHAR columns if they’re appropriate. If all the

values you wish to store are always the same length, then it only makes sense to

use CHAR with a fixed width. Fixed length standard codes, like the EAN number

used on product bar codes, are good candidates.

Numeric or Character?
One of the few problems in deciding on the data type to use for a column is an edge

case in which there’s a choice between numeric and character. Obviously, this

choice is possible only when the values consist of digits and no other characters;

as soon as any letter or symbol is involved, a numeric data type is out of the question.

Simply SQL196

The classic examples are phone numbers and American ZIP codes (postal codes).

Neither contains any characters other than digits, so both appear to be good candid-

ates for a numeric data type, especially given that:

1. numeric data types often require fewer bytes of storage than the equivalent

number of digits in a character column

2. numeric values are more efficient when used in indexes for searching

These properties are often attractive to novices. Nevertheless, to paraphrase Einstein,

not everything that can fit into a numeric column should be numeric. One good

rule of thumb is: “if you’re not going to do arithmetic with it, leave it as a character

data type.” Since finding an average phone number or the sum of all ZIP codes is

a ridiculous proposition, numeric properties are not needed for these columns. The

disadvantages of using numeric data types include formatting issues and sorting

problems.

When formatting is required, a character data type is better. The phone number

9375551212 is a valid BIGINT value, but we’d rather see it formatted as (937) 555-

1212. Doing this in every SELECT statement where we want to display the phone

number becomes tedious. With a character data type, the formatting can be imposed

upon data entry, storing the parentheses and dashes right in the value. Sorting the

formatted values works too, since they would all have the same parentheses and

dashes in the same positions.

If we store ZIP codes as a numeric data type, applying sorting would be disastrous.

For ZIP codes, the presence of the optional last 4 digits—indicating a more specific

segment within a delivery area—is problematic, since 5-digit and 9-digit codes

would be in separate parts of the sorted results. Table 9.2 shows us that while

sorting ZIP codes numerically is accurate for numbers, what we’d really prefer is

alphabetical sorting.

197SQL Data Types

Table 9.2. ZIP codes sorted numerically and alphabetically

Sorted AlphabeticallySorted Numerically

1234512345

12345-011212346

12345-011412347

12345-0116long list of values…

1234699901

1234799902

long list of values…123450112

99901123450114

99902123450116

As always, if you’re careful to analyse the needs of your application, you’ll be guided

in your decision about which data type to use.

NCHAR and NVARCHAR
The SQL standard also provides for NATIONAL CHARACTER and NATIONAL CHARACTER

VARYING data types. The NCHAR and NVARCHAR data types are just like CHAR and

VARCHAR, but use a larger character set, most often one of the Unicode character sets

such as UTF-8.3 You’d need this for internationalization purposes, for example, if

you store characters from foreign languages.

These data types behave just like CHAR and VARCHAR, except the NCHAR and NVARCHAR

columns require 2 bytes to store every character, rather than the 1 byte we’re used

to with character sets like ASCII.

Consult your SQL reference manual for specifics about the character sets supported.

CLOB and BLOB
When the contents of a character column are expected to be relatively large, larger

than can fit into the maximum CHAR or VARCHAR data type, a large-object character

data type is required. In web development, this type of column is used to store

things like the source text of an article entry (perhaps in plain text, perhaps with

3 http://en.wikipedia.org/wiki/UTF-8

Simply SQL198

http://en.wikipedia.org/wiki/UTF-8
http://en.wikipedia.org/wiki/UTF-8

HTML or XML tags), the full description of a shopping cart item (as opposed to its

shorter name or description), the content of a forum posting, and so on.

In standard SQL, the two data types CHARACTER LARGE OBJECT and BINARY LARGE

OBJECT, also affectionately known as CLOB and BLOB, are provided for large column

values. CLOBs are used to store character data (using character sets), while BLOBs are

used to store binary data, such as images, sound, and video. Only some database

systems implement both CLOBs and BLOBs, and these can vary in the way they’re

implemented across systems; MySQL, for instance, implements TEXT instead of

CLOB. Typical space limitations, if any, are in the megabyte range or even larger.

Both of these data types have restrictions in database systems that implement them.

For example, CLOBs and BLOBs can’t be indexed or sorted—but then, doing so hardly

makes sense.4 Imagine all the novels ever written stored in a large database; why

would you want to list them sorted by their text content?

There are also some limitations with character functions and operators working

with CLOBs or BLOBs. Speaking of which, it’s time for a quick review of character

functions, more commonly known as string functions.

String Functions
In Chapter 7, we saw two basic string functions, SUBSTRING and the concatenation

operator (||), used to extract portions of, or combine character values when creating

expressions in the SELECT clause. There are, in all database systems, a large number

of additional string functions that can be used. Table 9.3 lists just a few.

4 This refers to normal performance-oriented indexes. Several database systems support full text indexes

for large text objects.

199SQL Data Types

Table 9.3. Some common string functions

PurposeString Function

returns a substring from the left of the string valueLEFT

returns a substring from the right of the string valueRIGHT

returns the length of the string in bytesCHAR_LENGTH

reverses the characters of the stringREVERSE

removes characters from the stringTRIM

replaces characters in the string with specified charactersREPLACE

change the characters to lower or upper caseLOWER, UPPER

It will vary amongst database systems who has what function, or even whether they

use the same function name. There are many other useful string functions, particu-

larly regular expressions, supported by some database systems, which allow for

very sophisticated pattern matching. You know the drill by now: check your SQL

reference manual for details of the string functions available to you.

Now let’s move on to the third major data type category: temporal.

Temporal Data Types
Temporal data types are dates, times, and timestamps (which consist of both date

and time components). These are intuitive data types that we can all understand,

but working with them causes new SQL developers more trouble than other data

types. The situation is not helped by the fact that temporal data types can have

vastly different implementations from one database system to another.

On the surface, dates and times are dead simple. The DATE data type is used to store

dates, and the TIME data type is used to store times. It gets progressively more

complicated after that, so let’s take things one step at a time (no pun intended).

DATE
The DATE data type is used to store date values from the Common Era calendar,

which is the standard, 365-day Gregorian calendar. A date value has three compon-

ents: year, month, and day. An example of a date constant can be seen in the follow-

ing query:

Simply SQL200

SELECT
 customer_id
FROM
 carts
WHERE
 cartdate = DATE '2008-09-21'

The important point to note here is that, in the above query (and in the SQL stand-

ard), the keyword DATE is actually part of the date constant value. However, because

most database systems were developed before dates and times were standardized

in SQL, standard SQL doesn’t always work. For example, the above query works

fine in MySQL, but fails in SQL Server until the DATE keyword is removed:

SELECT
 customer_id
FROM
 carts
WHERE
 cartdate = '2008-09-21'

This form of the date constant looks like a simple character string value, and will

work in all database systems, so I recommend using it.

The next issue with dates is even more problematic for novices.

Input Format, Storage Format, and Display Format
Each database system has its own specific rules for how to specify a date value.

Checking these rules in your SQL reference manual is a must. We specify input date

values when inserting new values into a column, whether with an INSERT or an

UPDATE statement, and when writing WHERE conditions such as the one in the previous

example.

The allowable date formats for input vary considerably from one database system

to another.

201SQL Data Types

All of the following are valid input date value formats in at least one database system:

DATE '2008-09-21'
'2008-09-21'
'20080921'
20080921
'09-21-2008'
'21-SEP-2008'
'2008/09/21'
'2008$09$21'

Specify Input Date Values Using the YYYY-MM-DD Format

The YYYY-MM-DD format is recognized by all database systems: 4 digits for the

year, 2 for the month, and 2 for the day. It’s compatible with ISO-8601,5 which is

the international standard for date and time formats.

Note that the dashes are optional, so, for example, we can specify either '2008-

09-21' or '20080921' for the 21st of September, 2008.

One of the biggest surprises regarding date and time values in database systems is

that they’re not stored the way they’re entered.

Usually, dates are stored as integers. The integer for a given date is calculated as

the number of days since a base or zero date. So if January 1, 1900 is the base

date—day 1, then January 2, 1900 would be day 2, and December 31, 1900 would

be day 365, not 366, since 1900 was not a leap year. (Date handling in database

systems is fully aware of the Gregorian leap year rules.) January 1, 1901 would then

be day 366, and we can count the days like this all the way from January 1, 1900 to

today, and on into the future for as long as we like. If the database system uses an

INTEGER internally for this day count, the day numbers can go for almost 12 million

years before the size of the INTEGER counter becomes inadequate.

So when we insert a date value, we must specify it using an allowed date constant

format, and realize that it will be converted upon entry into an internal storage

format. We never see the actual storage format, however, because every time we

SELECT a date value, it comes out in a display format. The database system performs

a conversion both on input and on output.

5 http://en.wikipedia.org/wiki/ISO_8601

Simply SQL202

http://en.wikipedia.org/wiki/ISO_8601

This is where many people stumble. They enter a date as 09/21/2008 (assuming

this format is allowed), and are surprised when it comes out as 2008-09-21 in a

SELECT query. I’ve seen people change the data type from DATE to VARCHAR just so

they can retrieve exactly the same format they put in! But I’d caution against this;

if you value the possibility of doing date calculations, or returning dates in a proper

chronological sequence, you’ll always store dates in a proper temporal data type

and not a character data type.

There are three options for dealing with display formats:

1. only use the default display format of your database system (or find a way to

change the default)

2. use whatever formatting functions are provided by your database system to

achieve the format you want

3. format the date in your application

The first option is, of course, the easiest. Fortunately, the default format is usually

YYYY-MM-DD anyway, which, in my opinion, is the easiest to understand. If formatting

is required, the third option is best practice because web application languages (like

PHP or ASP) have formatting functions built in. The second option may be appro-

priate if you’re writing the SELECT query to extract data that will be sent elsewhere,

like in an XML file.

TIME
Time values are similar to date values, in that there are differences between input

format, storage format, and display format. An input time format might look like

TIME '09:37' and a display format might look like 9:37 AM. Internally, time values

are often stored as another integer, representing the number of clock ticks after

midnight. (A clock tick might be a millisecond, or three milliseconds, or some

similar value.)

Times, however, have another aspect that makes them a bit trickier. That’s because

adding dates together is pure folly, yet adding times can make sense.

203SQL Data Types

Times as Duration
TIME values are assumed to be points in time on a time scale, but what if we need

to store durations—measures of elapsed time. Suppose we want to have a web site

for displaying triathlon race results. We’ll need a type of column to record different

times like these:

swim 20:35
bike 1:49:59
run 1:28:32

These times will then be added, and the total needs to come out as 3:39:06.

When dealing with durations like these, there are several choices for the data type

to use:

1. We could use TIME, but few database systems allow times to be added. Similarly,

DATE values are considered points on a calendric scale, not durations.

2. We could store three separate TINYINT values, for hours, minutes, and seconds,

but this requires complex expressions to calculate totals.

3. We could store the equivalent total seconds—instead of hours, minutes, and

seconds—in a single SMALLINT; this makes calculating the total easy, but we’d

still need to convert it back into hours, minutes, and seconds formatting.

Right about here, those of us from a programming background will start thinking

of complex ways to implement the second and third option in our chosen web ap-

plication languages. And it’s right about here that the lazy programmers among us

will look for a way to make the first option work. We look for a time function,

provided by the database system, to convert times to seconds. We also make sure

there’s another one for converting back. If we’re lucky, we find them both, and the

problem of adding times becomes very, very simple:

test_04_SUM_times.sql (excerpt)

SELECT
 SEC_TO_TIME(SUM(TIME_TO_SEC(splittime))) AS total_time
FROM
 raceresults

Simply SQL204

This example shows the TIME_TO_SEC function is used to convert individual TIME

values in the splittime column to seconds. These seconds are then added up by

the SUM aggregate function. The result of the SUM is then converted back to a TIME

value using the SEC_TO_TIME function.

TIME_TO_SEC and SEC_TO_TIME are MySQL functions, but the same approach can

be used in database systems that have different functions. All it takes is a couple

of expressions to perform the same calculations. Converting a time to seconds will

require use of the EXTRACT function, to pull out the hours, minutes, and seconds

separately, with some familiar multiplication (hours multiplied by 3600 and minutes

multiplied by 60), as well as addition. Converting seconds to time can be accom-

plished easily by using the TIMEADD or DATEADD function—which every database

system has—to add those seconds to a base time of 00:00:00 (midnight).

The point of this example was to demonstrate, step by step, the thinking process

that leads to simplifying an application; because there are no functions to develop

in your application programming language, we can do the calculations with SQL

instead.

Times as Points in Time
Also known as clock time, this is used for single points in time, independent of any

date.

For example, a bricks-and-mortar store would have an opening time and a closing

time. These might vary by day of the week, but one feature of a clock time value is

that it often recurs. So for this particular store, an opening time of 8:30 AM is the

same on every day to which it applies.

TIMESTAMP
Timestamps are data types that contain both a date and a time component. What

we’ve learned about dates and times separately applies equally to dates and times

combined in timestamps: be careful with input formats, and reformat for display

in the application if necessary.

205SQL Data Types

When to Use DATE, TIME, or TIMESTAMP

Use DATE when the event or activity has a date only, and the time is irrelevant.

For example, in most database applications where people’s birth dates are stored,

the time of birth is not applicable.

Use TIME for recurring clock times and for durations as required. Remember that

duration calculations may require conversion.

Use TIMESTAMP when an event has a specific date and time. Tables which store

system logins and similar events should use the greatest timestamp precision

available.

You should refrain from using separate DATE and TIME columns for the same

event. For example, avoid organizing columns like this:

event_date DATE
event_start TIME
event_end TIME

This may appear to be worthwhile because it avoids repeating the date, but it can

cause serious headaches to calculate intervals from one event to another. Instead

organize your columns like this:

event_start TIMESTAMP
event_end TIMESTAMP

Calculating intervals is discussed in the next section, where you’ll see how using

separate DATE and TIME columns make that task much too difficult.

Intervals
Intervals are like the time duration examples we saw earlier in the athletic race:

swim 20:35, bike 1:49:59, and run 1:28:32. Naturally, there are date intervals as

well. The interval including January 1st through to March 1st is either 59 or 60 days,

depending on the year.

In standard SQL, intervals have their own special syntax. However, few database

systems have adopted the standard interval syntax, primarily because—as stated

previously—the need for date calculations was anticipated by every database system,

and implemented as date functions, long before the standard was agreed to.

Simply SQL206

We saw one example of an interval calculation back in the section called “BETWEEN:

It haz a flavr” in Chapter 4:

CURRENT_DATE - INTERVAL 5 DAY

This is an expression in standard SQL that calculates the date that is 5 days earlier

than the current date. If it fails to work in your particular database system, there’ll

be equivalent date functions for the same purpose. As we mentioned back in the

section called “Temporal Operators” in Chapter 7, you’ll have to read the document-

ation for your system.

Date Functions
Database system implementations have a rich variety of date functions. We call

them date functions, but they also include time functions, and timestamp functions.

Standard SQL has few date functions, EXTRACT being the main one, in addition to

functions that perform interval calculations. Standard SQL also has the three func-

tions, CURRENT_DATE, CURRENT_TIME, and CURRENT_TIMESTAMP, designed expressly

to return the corresponding date and time value from the computer that database

system is running on.

Each database system also has a number of other non-standard date functions. Some,

such as WEEKDAY, are decidedly useful in real world applications. Table 9.4 lists

some of the date functions available in one database system or another.

Table 9.4. Some common date functions

PurposeDate Function

adjusts a date by a specified intervalDATEADD or ADDDATE

returns the interval between two datesDATEDIFF

performs the same function as EXTRACT but more intuitively

named

YEAR, MONTH, DAY

returns the day of the week of a specified date as a number from

1 through 7

WEEKDAY

returns the name of the day of a specified date, for example

Sunday, Monday, and so on

DAYNAME

207SQL Data Types

Date functions are, in general, very comprehensive, but it’s important to use them

correctly. Refer to your SQL reference manual for more details.

Column Constraints
Column constraints enable us to specify additional data integrity criteria for columns

than what is permitted by their data type.

For example, a SMALLINT column can hold values between -32,768 and 32,767,

but we might want to restrict this to a range that is meaningful. We might, for ex-

ample, have a rule that the maximum purchase of any particular item in a single

shopping cart, is 10. This can be implemented with a CHECK constraint, as we’ll see

in a moment.

NULL or NOT NULL
The first constraint that we should think about for any column, is whether the

column should allow NULLs. Any attempt to insert a row in which a value is missing

for a column designated as NOT NULL will fail, and the database system will return

an error message.

How do we decide if a column should be NULL or NOT NULL? Simply, if we need to

have a value in every possible instance. For example, it’s impossible to have an

item on a customer cart without a selected quantity:

Cart_04_ANDs_and_ORs.sql (excerpt)

CREATE TABLE cartitems
(
 cart_id INTEGER NOT NULL
, item_id INTEGER NOT NULL
, qty SMALLINT NOT NULL
);

The qty column is NOT NULL because it’s senseless to have a customer cart for a null

quantity of an item. Key columns, like cart_id and item_id, must also be NOT NULL,

but we’ll cover them in Chapter 10.

Simply SQL208

DEFAULT
The DEFAULT constraint allows us to specify a default value for a column. This default

value will be used in those instances where a NULL is about to be inserted. Let’s

adjust the cartitems table so that the default qty value for any item is 1:

Cart_04_ANDs_and_ORs.sql (excerpt)

CREATE TABLE cartitems
(
 cart_id INTEGER NOT NULL
, item_id INTEGER NOT NULL
, qty SMALLINT NOT NULL DEFAULT 1
);

We’ve also used a DEFAULT constraint in our customers table for the shipping address:

Cart_04_ANDs_and_ORs.sql (excerpt)

CREATE TABLE customers
(
 id INTEGER NOT NULL PRIMARY KEY
, name VARCHAR(99) NOT NULL
, billaddr VARCHAR(255) NOT NULL
, shipaddr VARCHAR(255) NOT NULL DEFAULT 'See billing address.'
);

The default for the shipping address is the constant ‘See billing address’, and

this string would be inserted into the shipaddr column when a customer is added

to the table without specifying a shipping address.

CHECK Constraints
CHECK constraints are even more useful, because they can be as complex as needed

by the application. A CHECK constraint consists of the keyword CHECK followed by

a parenthesized condition. The neat part is that this condition can be a compound

condition, involving AND and OR, just like in the WHERE clause.

Lets adjust the CREATE query for the cartitems table so that the maximum qty value

for any item is 10:

209SQL Data Types

Cart_04_ANDs_and_ORs.sql (excerpt)

CREATE TABLE cartitems
(
 cart_id INTEGER NOT NULL
, item_id INTEGER NOT NULL
, qty SMALLINT NOT NULL DEFAULT 1 CHECK (qty <= 10)
);

In our forums application, the CHECK constraint was used to ensure the TIMESTAMP

value in the revised column was always after (chronologically speaking) the value

in the created column:

Forums_01_Setup.sql (excerpt)

 created TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP
, revised TIMESTAMP NULL CHECK (revised >= created)

Wrapping Up: SQL Data Types
In this chapter, we learned about numeric, character, and temporal data types. We

also learned when—and in some cases when not—to use them. We did a very quick

tour of the functions that are available when working with the different types of

data. Selecting an appropriate data type for each column in the tables we’re

designing is fairly straightforward. Implementing appropriate constraints can ensure

the integrity of the data in our database.

In the next chapter, we’ll tackle the more difficult task of selecting which columns

to combine into which tables, and how to relate the tables properly.

Simply SQL210

Chapter10
Relational Integrity

What's in a name? that which we call a rose

By any other name would smell as sweet;

—Juliet

In the previous chapter, we saw the various data types that can be used when defin-

ing table columns in our database. Most of the concepts there are simple and

straightforward, and should’ve been familiar if you’ve had any exposure to program-

ming at all.

By contrast, this chapter will introduce some topics that are the source of much

befuddlement for many people new to databases. This chapter is about relational

integrity, the real heart and soul of effective database design. We’ll start our journey

into relational integrity with a simple notion—the concept of identity.

Identity
I yam what I yam

—Popeye the Sailor Man

What makes someone or something unique? How do we identify him or her or it

from other instances of the same kind of thing? Other than simply pointing to it,

one way is to assign a different name or label to each instance—but naming is im-

perfect. Here lies both the essence of the problem, and at the same time, its solution.

The problem is that names and labels are often duplicated. For example, many

people share the same name. People’s names can change, for example, by marriage

or deed poll. However, regardless of name, you are always you. This naming problem

exists in all computer applications, and is solved by assigning an identifier to

everything.

An identifier is very much like a name or a label; it can even be a name or a label.

Often, it’s a code, or a number. Throughout this book, you’ve seen examples of SQL

queries with table name and column name identifiers such as team_id, customer_id,

and forum_id. Using numeric identifiers is common, but there are other options.

As long as each identifier value unambiguously defines a unique instance of the

person or object, it’s a good identifier. It’s an even better identifier if it’s stable, and

its value rarely changes. The challenge, therefore, is to find the right identifier for

each situation.

Before we develop these ideas further, we need to take a brief tour of the related

topic of data modelling, the starting point of good database design. Identity plays

a role in data modelling, as we’ll soon see.

Data Modelling
Data modelling is a technique used in the early stages of application development.

It focuses attention on the items of interest about which we wish to store information

in the database—their attributes, and the relationships between items—within the

scope of the application.

Data modelling commences with a simple analysis of the application’s entities and

attributes.

Simply SQL212

Entities and Attributes
Entities and attributes can be described as follows:

1. Entities are persons, objects, places, events, actions, or other items, about which

we want to store information in the database; the nouns of the data model.

2. Attributes are the properties of an entity; the adjectives of the data model.

For example, the entities involved in a shopping cart application might be the cus-

tomers, the purchased items, and the shopping carts. A customer can have multiple

attributes, such as name, billing address, and so on. An item has a name, price, and

perhaps other attributes, such as size or color.

Entity-attribute modelling is the first step in data modelling. We must discover and

catalog all the entities and their attributes that we think will be involved in the

database. We do this by an analysis of the application’s requirements, by an under-

standing of the subject matter, by exploring any available information, or by whatever

means necessary, including invention—which involves creating the information

from scratch, based on the entities and attributes that we think will be required to

support the application.

If we compare the finished database design to a blueprint for constructing a house,

then the entity-attribute model is the preliminary spec sheet—three bedrooms, two

bathrooms, a garden, a garage. This part of the data modelling process is the easiest.

Example: Forums, Threads, Posts, and Members
Let’s walk through a simple entity–attribute model, using the Discussion Forums

sample application.

The purpose of this application is to have forums in which members can create

threads and make posts within threads. With a little bit of analysis, we can conclude

that there are four different entities involved, and we can quickly list some of the

attributes that we’d like each entity to have.

213Relational Integrity

The following list will be our initial entity–attribute model:

1. Each member will have a member name, password, email address, and so on.

2. Each forum will have a name.

3. Each thread will have a name.

4. Each post can have an optional name, but must have some content (the body of

the post), and the date when it was posted.

Did you notice how sparse this list of attributes is? What’s missing are the relation-

ships.

Entities and Relationships
Modelling entity relationships is probably the most engaging part of the design

process for many database designers. After all, it’s where all the action is. Listing

the attributes of each entity is pretty straightforward; the relationships are more

challenging.

Entity–Relationship Diagrams
The results of entity–relationship modelling are often shown using an entity–rela-

tionship diagram (or ER diagram), and also informally called ER model.

For example, in the Content Management System (CMS) application, two entities

of interest are the content entries themselves, and the categories that classify them.

These entities are shown in an ER diagram like the one in Figure 10.1. Note that

this diagramming convention—using an arrow—is my own diagramming convention,

and you probably won’t find it in any textbook on data modelling. More on the arrow

in a moment.

In the early stages of application development, we use data modelling to initiate

the design, which eventually determines which tables the database will contain.

Typically, each entity will be implemented in the database as a separate table. Thus,

in the CMS application, there’ll be a categories table and an entries table.

Simply SQL214

Figure 10.1. The relationship between categories and entries

The ER model also allows us to identify and study the relationships between entities.

The arrow between entities in an ER diagram represents a relationship. We can see

from Figure 10.1 that there's a relationship between the categories and entries tables.

The most important quality of any relationship between entities is the cardinality

of the relationship: how many instances of each entity are involved on either side

of the relationship. The type of arrow linking the entities indicates the cardinality.

In Figure 10.1, the arrow further indicates that it’s a one-to-many relationship, by

pointing from the one entity to the many entity. We say the categories entity is related

to the entries entity in a one-to-many relationship because each category has multiple

entries.

If we look at the relationship arrow in the opposite direction, as it were, the relation-

ship can be expressed by saying that each entry belongs to only one category. It’s

still a one-category-to-many-entries relationship, but from the point of view of the

entries, it’s a many-to-one relationship, in which the important fact is that each

entry belongs to only one category.

I prefer using an arrow for the relationship because it’s easy to draw. Preliminary

ER diagrams are best done with paper and pencil—and an eraser. However, there

are several alternatives to the plain arrow to indicate a many-to-one relationship.

Data model diagrams using a crow's foot are very common, and sometimes you may

see a circle in place of the arrow; both of these styles are shown in Figure 10.2. The

key point to remember is that the one end of the one-to-many relationship is the

end of the line with no embellishment.

215Relational Integrity

Figure 10.2. The crow’s foot and circle styles

Two additional ER diagramming conventions exist. An arrow without an arrow-

head—a simple unembellished line—is used to indicate a one-to-one relationship,

while an arrow with an arrowhead at both ends represents a many-to-many relation-

ship. Both of these are shown in Figure 10.3.1

Figure 10.3. One-to-one and many-to-many relationships

As you might expect, there’s a lot more to ER diagrams than this very humble intro-

duction. Most of it is beyond the scope of this book. The diagram itself, though, is

quite indispensable to your design efforts, so you should always perform this step.

The ER diagram, with relationships showing cardinalities—one-to-one, one-to-many,

1 This is not implying that categories and entries share the relationships depicted; those entities were

merely used for convenience.

Simply SQL216

or many-to-many—is most assuredly worth a thousand words. (Okay, several hun-

dred.) Just by looking at an ER diagram, you gain an immediate sense of what kind

of data is in the application, and how it’s related. If we compare the finished database

design to a blueprint for constructing a house, then the ER diagram is the architect’s

concept sketch.

Let’s create the ER diagram for the Discussion Forums application. We’ll start by

taking the bare bones entity–attribute model we created in the last section and

augment it with information about the relationships between entities:

1. Each member will have a member name, password, email address, and so on.

Each member can start one or more threads, and make one or more posts in any

thread.

2. Each forum will have a name, and each forum may have one or more threads.

3. Each thread will have a name, and, in addition, a thread starter (the member who

started the thread). Each thread will belong to only one forum, and can have one

or more posts.

4. Each post can have an optional name, but must have some content, and the date

when it was posted. Each post will belong to only one thread, have a poster (the

member who posted it), and may be a reply to a previous post in the same thread.

In real world applications, the distinction between an attribute and a relationship

may be unclear. For example, a thread has a name and a thread starter (the member

who started the thread). It isn’t initially obvious that the thread starter is actually

relationship information and not simply an attribute of the thread.

By using the diagramming technique we introduced above, we can whittle away

the verbiage and end up with the diagram shown in Figure 10.4.

217Relational Integrity

Figure 10.4. The Discussion Forums application ER diagram

The arrows in this diagram can be elucidated in both directions, as follows:

1. Each forum has one or more threads. Each thread belongs to only one forum.

2. Each thread has one or more posts. Each post belongs to only one thread.

3. Each thread is started by only one member. Each member can start one or more

threads.

4. Each post is made by only one member. Each member can make one or more

posts.

Clarifying all the relationships may seem tedious, but every once in a while, just

saying how many of this are related to how many of that will uncover an issue that

needs to be investigated further. Most experienced modellers actually jump straight

to the ER diagram, and flesh out the entities by listing their attributes afterwards.

ER modelling is not difficult. Mostly, it requires a simple transformation of words

and ideas into entities and their relationships, but it can take some time before the

process becomes familiar. Review the ER diagrams in Appendix B, and try creating

a few of your own if you already have applications containing database tables.

Simply SQL218

ER Modelling Tools

If your database system is expected to be larger than, say, five or six entities, you

might want to look into using an ER modelling tool. They range in price from free

to many thousands of dollars per individual license.

There are three main features to look for when evaluating ER modelling tools:

1. graphical ease of use—how easy it is to click, drag, drop, and use various tools

to add entities, attributes, and relationships to the ER diagram

2. reverse engineering—the ability to read the catalog information in an actual

database and generate the diagram from the tables it contains

3. forward engineering—the ability to generate the DDL to create a database from

the entities and relationships in the diagram

My advice is to consider only those tools that have all three features. The reverse

and forward engineering capabilities, of course, have to work on your particular

database system; there’s not much point in using a slick graphical tool that can

only generate MySQL DDL if you’re using Oracle.

Primary Keys
The purpose of data modelling is to describe clearly the entities that will be repres-

ented in the application’s database tables, as well as the relationships between those

entities. In order for this to work, one very important task must be done. For each

entity, a primary key must be selected.

A key is simply the terminology we use in databases to mean an identifier, in the

same sense as we discussed earlier in this chapter: a means to identify, unambigu-

ously and uniquely, a particular instance of an entity. When we store or retrieve

data in a database table that contains entities, each instance must be uniquely dis-

tinguished from every other instance of the same type of entity. This can only be

done with a key that has unique values for all instances.

For example, we’ve seen SQL queries with identifiers such as customer_id and

forum_id. These identifiers are valid keys because every instance, every value,

represents a different entity. All the values are unique. It’s unlikely we’d ever think

of assigning the same customer_id value to two different customers, nor the same

forum_id value to two different forums. Is this too obvious? It seems like only

common sense, and, yes, it really is that simple.

219Relational Integrity

So these examples of identifiers are unique keys. Then what is a primary key? A

primary key is simply any one of the keys that an entity may have. The reason we

need to pick one of these keys, and designate it as the primary key, is so that foreign

keys or related entities will have a designated key that they can relate to. We’ll see

how this works in a moment.

Take you, for example: what is it about you that identifies you? As we discussed

before, your name is not a good key, because others may share the same name. Some

possible keys that would be unique might be a representation of your fingerprints,

or your retinal pattern, or even your DNA sequence. Let’s leave aside for the moment

some obvious questions of practicality—such as whether these identifiers could be

forged, whether they’re accurate enough, or even what to do about identical

twins—and concentrate only on their uniqueness. Assuming for the sake of argument

that we accept these identifiers as being capable of uniquely identifying every person

in our application, we now have three unique keys to choose from. We pick one of

them—even if we plan to store all three—and call it the primary key.

Another important point about primary keys is that they must never allow a NULL.

This, too, seems obvious. If the primary key value is NULL, it's unable to be used to

identify a particular entity. This makes no sense, and so primary keys quite logically

must have a non-NULL value. If we have everybody’s fingerprints and retinal patterns,

but lack the DNA sequences for everybody, then it’s pointless to use the DNA se-

quence as the primary key—even though all the values of the DNA sequence that

we do have are unique. Thus, each entity must have a primary key, which always

has unique, non-NULL values.

Turning an ER model into a functioning database involves implementing each entity

as a database table (sometimes more than one table, but in most cases as just one

table). So there’s a nice correspondence between entities and tables. Attributes

usually correspond with columns too. The primary key columns that we identify

in ER modelling are declared with the keyword PRIMARY KEY in the DDL that creates

the database tables. So declared, a database table’s primary key column is both

unique and NOT NULL by definition.

The DDL for the creation of the forums table provides an example of a primary key

column declaration:

Simply SQL220

Forums_01_Setup.sql (excerpt)

CREATE TABLE forums
(
id INTEGER NOT NULL PRIMARY KEY

, name VARCHAR(37) NOT NULL
);

It’s also possible to use more than one column for the primary key, and this is known

as a composite key. This means that both columns must be used to uniquely

identify each row. The syntax for a composite primary key is shown below:

CREATE TABLE table_name
(
 ⋮ column declarations…
, PRIMARY KEY (column1, column2)
);

UNIQUE Constraints
In a real world discussion forum application, member names are usually unique.

It would be horribly confusing if two different members actually had the same

member name, since the application typically displays member names on threads

and posts. This is also true of our sample Discussion Forums application that we

examined in Chapter 7. The member table from the application can be seen in Fig-

ure 10.5.

Figure 10.5. The members table

In our application we want member names to be unique, and this means that the

name column would actually be a good key. However, since we’re using a numeric

id as the primary key, we declare the name column in the members table with a

221Relational Integrity

UNIQUE constraint. Thus, the database will ensure that member names are always

unique. Here’s how it’s done in the DDL that creates the table:

Forums_01_Setup.sql (excerpt)

CREATE TABLE members
(
 id INTEGER NOT NULL PRIMARY KEY
, name VARCHAR(37) NOT NULL
, CONSTRAINT name_uk UNIQUE (name)
);

The CONSTRAINT keyword declares that a table constraint condition is to be added,

we give it an alias, name_uk, and then define the constraint with UNIQUE (name);

that is, the name column value must be unique. If we attempt to insert or update a

row that would create a duplicate name, the database system will return an error.

We give the constraint an alias, so that in the future, in any DDL that modifies or

removes the constraint, we can refer to it by its alias.

It’s also possible to declare a composite unique constraint where a combination of

values from more than one column must be unique within each row. For example,

in our threads table we want to ensure that each thread is uniquely named within

each forum (not precluding the possibility of identically named threads in multiple

forums). Multiple columns are specified separated by a comma:

Forums_01_Setup.sql (excerpt)

CREATE TABLE threads
(
 id INTEGER NOT NULL PRIMARY KEY
, name VARCHAR(99) NOT NULL
, forum_id INTEGER NOT NULL
, starter INTEGER NOT NULL
, CONSTRAINT thread_name_uk UNIQUE (id, name)
);

Simply SQL222

Dealing with Keys in Application Code

Knowing that a column is a key is extremely useful, as it helps you avoid unne-

cessary application code.

The Discussion Forums application needs to provide a means for new members

to be added. This would likely be done with a registration form. The application

programming logic that accepts the form submission will need to ensure the new

member’s name is unique. It’s common for application developers to write code

which first checks the member name with a SELECT query like this:

SELECT
 name
FROM
 members
WHERE
 name = 'Todd'

This query will return a row if the name Todd already exists. The application then

typically displays a message such as “Member name already exists.” However,

if the query returns no row, then the member name doesn’t exist, so the application

code then executes the necessary INSERT statement to add the new member.

This two-step process is unnecessary. Just execute the INSERT statement. If the

member name already exists, the database will not add a duplicate. Instead, it

will return an error code; in this case, a code indicating that the UNIQUE constraint

was violated. The application will detect this return code and display the same

“Member name already exists” message.

This is one of those great win-win situations in databases (there are many others).

We know that the name is unique, and that the database will enforce this. There-

fore, there is less application code to write, and it’s more efficient.

223Relational Integrity

Foreign Keys
Let’s return to the Discussion Forums application and examine a couple of its rela-

tionships in more detail, specifically those in the portion of the ER model shown

in Figure 10.6.

Figure 10.6. The relationships between forums, threads, and members

In our examination of foreign keys we’re going to use the same sample data that we

saw in Chapter 7 for the Discussion Forums application. Firstly, there were three

forums; Figure 10.7 shows the forums table. The id column is the primary key in

this table.

Figure 10.7. The forums table

Next, there were five members in the members table as Figure 10.8 shows. The id

column is the primary key in this table as well.

Figure 10.8. The members table

Simply SQL224

Finally, we have thread data stored in the threads table, shown in Figure 10.9.

Again, the id column is the primary key. Whether thread names need to be unique

is debatable; we might want to allow the same thread name to be used in more than

one forum, for example, a thread called Rules for this forum. The last two columns,

forum_id and starter, as we shall soon see, are foreign keys; they relate the data

in this table to the primary keys in the other tables.

Figure 10.9. The threads table

How Foreign Keys Work
When we first saw this data in Chapter 7, we had yet to introduce the term foreign

key. Hopefully, what these columns were doing was obvious, and you were able to

visualize the relationships. Now, we can explore their nature and purpose as foreign

keys.

First, let’s take another look at the portion of the ER model for our application,

shown in Figure 10.10, and take notice of which way the arrows point. The forums-

to-threads relationship is one-to-many, and the members-to-threads relationship is

also one-to-many.

Figure 10.10. The relationships between forums, threads, and members

Relationships defined in the ER diagram are implemented in database tables using

foreign keys. For one-to-many relationships, the foreign key resides in the many

table. The foreign key columns are implemented with the FOREIGN KEY clause in

the DDL that creates the database tables. We’ll see an example in a moment.

225Relational Integrity

How do these foreign keys actually work? It’s as simple as it looks.

Each thread has a forum_id column value that corresponds to the value of the

primary key of the particular entry in the forums table, the forum that the thread

belongs to. Foreign keys implement the one-to-many relationships, with the many

instance always relating back to the one instance it belongs to. Thus, each thread

relates back to the forum it belongs to; we can see that three threads belong to the

Databases forum, and one thread to the Search Engines forum.2

Similarly, the starter column values in the threads table correspond to the primary

key values in the members table. Each thread is related to the member who started

that thread.

Using Foreign Keys
There are several rules and properties about foreign keys that are important to know.

The Foreign Key Goes in the Many Table
One such rule has already been mentioned in the previous section: the foreign key

goes in the table on the many side of the relationship. It can hardly be the other

way around. The Databases forum has three threads in the threads table, and if this

information were to be kept in the forums table, this would mean somehow storing

the thread id values: 15, 35, and 45. You may be tempted into thinking you could

have an additional column, perhaps called forum_threads, which contains a comma-

separated list of thread id values. But that approach will only lead to frustration.

What about relationships other than one-to-many? Many-to-many relationships

occur frequently in ER models, but are always implemented as two one-to-many

relationships with an intervening relationship table. We examine this type of rela-

tionship in the section called “Implementing a Many-to-many Relationship:

Keywords” in Chapter 11. In our sample CMS application, entries and keywords

are related through the entrykeywords table. Multiple entries can have the same

keyword and each entry can have multiple keywords. The ER diagram for this rela-

tionship is shown in Figure 10.11.

2 If you’re able to visualize this by looking back at the sample data for the forums, it’s because you’ve

done a mental inner join. The join’s ON condition matches threads.forum_id with forums.id.

Simply SQL226

Figure 10.11. The relationships between entries and keywords

The only other possible relationship is one-to-one, in which case it helps to think

of one of the entities involved in the one-to-one relationship either as optional or

on the many side of a one-to-many relationship. In the CMS sample application,

there’s a one-to-one relationship between entities and content. This is shown in the

ER model as an arrow without the arrowhead, depicted in Figure 10.12.

Figure 10.12. The relationship between entries and content

An entry may, optionally, have a row in the contents table. An entry can exist

without having a content row, but a content row can’t exist by itself without an

entry to belong to. Thus, the foreign key goes in the contents table. Potentially, you

could also have multiple rows in the contents table for each entry, if, for example,

content for each entry was stored in multiple languages.

The Foreign Key Must Reference a Key
The next rule is that foreign keys must reference a key. In actual implementation,

this means either a primary key or a key column with a UNIQUE constraint. Both

work, because both are unique. In practice, a foreign key almost always references

a primary key.

The term referencing is used because in order to declare a foreign key, we must

identify the key it relates to, and the DDL syntax used for this is the REFERENCES

clause within the FOREIGN KEY declaration. This is where the term referential integ-

227Relational Integrity

rity comes from. The foreign key must reference a key, either a PRIMARY KEY or a

UNIQUE key.

The benefit of referential integrity is that the database ensures that a foreign key

always has a value that can be found in the key column it references. No other values

for the foreign key are allowed (except NULL, which we’ll talk about in a moment).

Another name for referential integrity is relational integrity, the subject of this

chapter. Just as with the example of the UNIQUE constraint enforcing unique member

names, where the database ensures that duplication of values is impossible—with

foreign keys the database ensures that it’s impossible for a foreign key to refer to a

non-existent primary key.

Here’s an example. Let’s change the threads table so that the forum_id column

references the forums table’s id column (the primary key of the forums table):

Forums_05_Foreign_keys.sql (excerpt)

ALTER TABLE threads
ADD CONSTRAINT
 forum_fk
 FOREIGN KEY (forum_id)
 REFERENCES forums (id)

Using the keywords ADD CONSTRAINT, we first declare an alias for this constraint:

forum_fk. To declare a foreign key, you must specify which column(s) make up the

foreign key, within parentheses after the keywords, FOREIGN KEY. In the code above,

the forum_id column is declared as a foreign key column using FOREIGN KEY

(forum_id). Note that the foreign key column(s) are rarely primary or unique keys

in their table (the referencing table), since foreign keys implement the many side

of a one-to-many relationship.

After the foreign key declaration, we must specify which key the foreign key column

is referencing; this is achieved with the mandatory keyword REFERENCES, followed

by the name of the table being referenced (and optionally, the specific key column(s)

of that table, again within parentheses). If the column names are omitted, the primary

key column of the referenced table is used. If the primary key we’re referencing is

a composite key consisting of two columns, we must declare a foreign key constraint

in which two columns from the referencing table match both columns of the com-

posite key.

Simply SQL228

With the constraint in place, the database will only allow us to insert a thread with

a valid forum_id. Here valid means that the forum exists. Yes, the key that forum_id

references, namely the id column in the forums table, is an integer—but guaranteeing

full integrity goes beyond just ensuring that forum_id is numeric.

MySQL Requires an Index First

In MySQL, applying a foreign key constraint is a two-step process; you first have

to add an index to the foreign key column like so:

ALTER TABLE threads
ADD INDEX
 forum_ix (forum_id)

Similarly, there’s another foreign key that needs to be declared for the threads

table. We want relational integrity to ensure that it’s impossible for the database to

allow us to insert a thread with an invalid starter. Here, starter is the foreign

key, referencing the id column in the members table. Here’s the DDL statement to

add this constraint:

Forums_05_Foreign_keys.sql (excerpt)

ALTER TABLE threads
ADD CONSTRAINT
 starter_fk
 FOREIGN KEY (starter)
 REFERENCES members (id)

In the same way that the use of a column constraint means you can avoid the need

for application code to ensure that duplicate member names are impossible, foreign

keys implement relationships in such a way that only valid relationships are possible.

Relational integrity is the sine qua non of databases.

229Relational Integrity

Do You Need to Declare a Foreign Key to Use One?

Foreign keys are a concept, and one can quite happily program a database applic-

ation using the concept of foreign keys without actually declaring foreign keys in

the database. This is what so many MySQL developers had to do in the early days

of MySQL before foreign keys were actually supported, and many developers still

do. (Some database formats even lack support for foreign key constraints like the

MyISAM format in MySQL;3 you can declare them but they are ignored!) Your

application logic can insert values into columns which conceptually link tables

together, without an explicit foreign key constraint.

To me, it’s fair to call these conceptual links foreign keys, because that's exactly

how they’re used—even if the database is not involved in enforcing integrity.

Others might disagree, and say that they aren't foreign keys unless they’re actually

declared and enforced by the database. I think this is merely splitting a semantic

hair.

Foreign Keys May Be NULL
Relationships are sometimes optional. This is handled quite simply by allowing

the foreign key to be NULL. Naturally, it will only be NULL in some instances—just

for those instances where that particular row has no relationship.

For example, in our Shopping Cart data model the relationship between the vendors

table and the items table is one-to-many, but it’s quite possible that items may not

belong to a vendor. What does optionality mean here? Well, it might be that most

of the items in our online store are supplied by a vendor, but a few are supplied by

the shopping cart provider. For example, we might have items called Gift Wrapping

and Discount Coupon, which have a standard price, and which can be selected by

the customer in any cart—but are without a vendor. For these types of items, the

vendor_id—the foreign key—would be set to NULL. You can always determine if a

relationship is optional by seeing whether the foreign key is defined as NULL or NOT

NULL.

3 http://dev.mysql.com/doc/refman/5.0/en/myisam-storage-engine.html

Simply SQL230

http://dev.mysql.com/doc/refman/5.0/en/myisam-storage-engine.html

ON DELETE and ON UPDATE
Finally, foreign keys can be declared with two additional, very useful properties,

which govern what happens to related rows when a change occurs to the primary

key.

In the Discussion Forums sample application, consider what would happen if we

were to delete the Search Engines forum:

DELETE
FROM
 forums
WHERE
 id = 10001

What should happen to the threads in a forum, if the forum itself is gone? Obviously,

relational integrity might be violated. In our example, there’s only one thread, named

“How do I get listed in Yahoo?”, in the Search Engines forum, but there could be

many more when the forum is deleted. There are several choices:

1. prevent the forum from being deleted because it has at least one thread

2. delete the forum’s threads as well

3. keep the threads but set its forum_id foreign key to NULL

Each of these three choices can be selected as an option in the ON DELETE clause of

the FOREIGN KEY declaration. The corresponding options are:

1. ON DELETE RESTRICT

2. ON DELETE CASCADE

3. ON DELETE SET NULL

Check your SQL reference manual for the exact options available in your particular

database system.

Sometimes, an instance of a primary key must change its value. (This hardly ever

happens with a numeric primary key, as we’ll see shortly.) In those situations, the

options specified in the ON UPDATE clause of the FOREIGN KEY declaration work in

a similar fashion to the ON DELETE options above. The change can be prevented

(RESTRICT), or the change can also be made to the foreign key values (CASCADE), or

the foreign key values can be set to NULL—although this last option would be unusual.

231Relational Integrity

In our Forums application we’ve elected to use the CASCADE option:

Forums_05_Foreign_keys.sql (excerpt)

ALTER TABLE threads
ADD CONSTRAINT
 forum_fk
 FOREIGN KEY (forum_id)
 REFERENCES forums (id)

ON DELETE CASCADE
 ON UPDATE CASCADE

The main point to remember about the ON DELETE and ON UPDATE options is that

they allow us to fine-tune the relationships; they govern how the foreign keys are

affected by deletions of—or updates to—primary key values.

Natural versus Surrogate Keys
Now we come to an important part of the discussion about keys, the issue of

whether to use a surrogate key. There have been numerous examples so far in this

book of tables that have a numeric id column as their primary key. As you en-

countered these cases, you may perhaps have noticed that these numeric id primary

keys are, in a way, artificial. For example, there’s nothing intrinsic about the thread

named “Difficulty with join query” that would warrant using the number 15 as its

identifier, as opposed to any other number. It seems that this number is not a natural

property of the thread, but rather, it’s a number that is assigned to the thread.

At the beginning of this chapter, we discussed identity, and how identity is enforced

with primary keys. Where did the notion of using a number as the primary key come

from? These numbers used as identifiers are called surrogate keys. A surrogate key

is a key that is used instead of a natural key. A natural key is one of the attributes

that an entity has, which could be used as the primary key.

In the members entity, we wanted to ensure that the member name was unique. The

member name would have made a great natural primary key—because it’s unique,

and because it would never be NULL. However, since we’re using the numeric id

column as the primary key, we gave the name a UNIQUE constraint instead. The id

column value is a surrogate key.

Simply SQL232

There’s really only one reason for using a surrogate key instead of a natural key: the

natural key is unwieldy, mostly because the natural key is too long. To demonstrate

this, consider the forums table without the id column. It would have a name column

only, meaning the name would have to be the primary key. That’s good, because we

want all our forums to have unique names.

However, since threads are related to forums, the threads table’s foreign key would

have to use the name of the forum. Figure 10.13 shows what the threads table looks

like in our application with the foreign key referencing the surrogate key of the

forums table. Figure 10.14 shows what the threads table would look like if the foreign

key was the natural key, the name of the forum. Using a numeric surrogate key saves

substantial space, and is also considerably more efficient in queries in which a

forum needs to be selected.

Figure 10.13. The relationships between threads and forums using a surrogate key

Figure 10.14. The relationships between threads and forums using a natural key

233Relational Integrity

Myth: Surrogate Keys Reduce Redundancy

When thinking about the database design of the example just outlined—where

the forums table’s primary key is the name of the forum, and also the threads

table’s foreign key—many developers instantly choose to use a surrogate numeric

key instead. They reason that doing so will eliminate the redundancy of having

the same forum name appear in every thread that belongs to that forum.

This notion of eliminating redundancy, is a fallacy; using a numeric surrogate key

has just as much redundancy as using a natural key. It just seems neater, that’s

all. The real benefits of surrogate keys are space and efficiency, as we’ve already

discussed.

Use Suitable Natural Keys When Possible

Using a surrogate key is inappropriate when a suitable natural key exists. For ex-

ample, consider that in many countries, standard codes exist for the states or

provinces within the country: ON is Ontario in Canada, NY is New York in the

United States of America, and QLD is Queensland in Australia. If we needed to

keep information about states or provinces in a separate table, it would be silly

to invent an additional numeric identifier for each state. Just use the code—it’s a

perfect natural key.

Autonumbers
A specific type of surrogate key is the autonumber, which is what it sounds like:

an automatically inserted incrementing number. Although it’s not part of the SQL

standard, it’s such a commonly used feature that every database system has a pro-

prietary method for declaring such a number. In MySQL, you can declare a column

to be AUTO_INCREMENT, In DB2 and SQL Server they’re known as identity columns,

and in PostgreSQL and Oracle they’re known as serial numbers. Check your SQL

reference manual for specific details on working with these numbers.

When declaring an autonumber, use INTEGER. This will allow a range of numbers

up to 2 billion (approximately). If you anticipate that you’ll exceed this number of

rows, the next step up is BIGINT. However, very few real world applications need

BIGINT.

Simply SQL234

As a hypothetical example, let’s assume that our online Shopping Carts application

sees a new customer cart created every second. This would be a phenomenally busy

application, but let’s carry through with the exercise. Each cart is assigned a new

cart_id, which is defined as INTEGER, and let’s say it’s an autonumber. At the rate

of one new number per second, we assign 86,400 new numbers every day, but we’d

be safely covered for nearly the next 70 years. You can well imagine that we might

have other problems, such as running out of disk space for our two billion orders,

long before then. So BIGINT would be overkill at the outset, and INTEGER will do

just fine for the first few years.

Always Try to Declare a UNIQUE Constraint

When using surrogate keys, always try to declare a unique constraint on one of

the other columns in the table. The reason for doing so is self-preservation; failure

to do so means that you risk having duplicates in your data.

In the members table, the name was declared unique. Let’s imagine that we forgot

to specify this unique constraint, and used just the numeric surrogate id.

Nothing will prevent the entry of a duplicate member name with a different nu-

meric id (other than doing the SELECT before the INSERT, which we know is extra

and inefficient processing). The numeric primary key will allow any number of

rows with the same name, unless the name is constrained to be unique.

In the threads table, we specifically wanted to allow multiple threads with the

same name. The example was the “Rules for this forum” thread name, which we

wanted to allow in every forum. The unique key in this table would therefore be

the composite key consisting of the thread name and the forum_id foreign key.

This prevents the same thread name from occurring more than once in each forum.

Always try to declare a unique constraint. Look carefully for one, even if it has to

be composite. Every instance of an entity has a natural key—some column, or

combination of columns—that should be declared unique.

Wrapping Up: Relational Integrity
In this chapter, we learned about relational integrity, and how it’s one of the

cornerstones of databases. Relational integrity depends on the concept of identity,

and requires that each instance of an entity be uniquely identified. Primary keys

are the keys chosen for this purpose, from among the possible unique keys that an

235Relational Integrity

entity may have. Foreign keys are used to implement relationships, and must be

defined to reference either a primary or unique key.

In the next chapter, we’ll conclude our exploration of database design, with a look

at some more complex structures.

Simply SQL236

Chapter11
Special Structures

Classifications are theories about the basis of natural order, not dull

catalogs compiled only to avoid chaos.

—Stephen Jay Gould

In this final chapter about database design, we’ll see a number of special structures.

These special structures are illustrated using the same sample applications we’ve

discussed throughout the book.

The special structures in this chapter are just some of the ones you’ll encounter;

we could fill a second book discussing all of the possible structures, but these are

simply the more common ones that you might need. Each will teach you either an

SQL technique or a table design strategy—or both, since the SQL and the design are

often, of course, interdependent.

Let’s begin with an example that requires joining to a table twice.

Joining to a Table Twice
Figure 11.1 depicts a portion of the data model diagram for the Teams and Games

application, where the teams table is related to the games table twice. Why would

we want to do this? The answer: each game involves two different teams. In every

game, one of the teams is the home team, and another team is the away team. Thus,

two relationships are needed.

Figure 11.1. The teams table is related to the games table twice

Using the diagramming convention introduced in Chapter 10, the arrows indicates

the cardinality of the one-to-many relationship. This data model shows that:

1. a team can participate in many games as the home team

2. a team can participate in many games as the away team

Following the arrows in the data model diagram from the games entity to the teams

entity—in the many-to-one direction—we can see that each game can have only

one home team, and one away team. The details of the relationship are unspecified

in the diagram in Figure 11.1, with no mention of home and away teams; obviously

you would annotate the diagram properly, though, if you produce diagrams for your

own use or in a professional team environment.

Figure 11.2 shows the data in the games table. The first detail you may notice is that

the hometeam and awayteam columns are numbers, not names. These columns are

foreign keys that correspond to values of the primary key id column in the teams

table. The SQL for the creation of the games table can be found in the section called

“The games Table” in Appendix C.

Figure 11.2. The games table

So the design of this special structure is fairly straightforward, but to produce a report

or display that’s useful, we’ll need to use team names instead of the foreign key

Simply SQL238

values. We’ll need to perform two lookups, to translate the foreign keys into names.

The SQL that’s needed to display team names seems to give many developers trouble.

This is where joining to a table twice comes in. To retrieve the team names, we need

to join the games table to the teams table, but we need to use both of the foreign key

columns. This, in turn, requires that we use two joins:

Teams_07_Games.sql (excerpt)

SELECT
 games.gamedate
, games.location
, home.name AS hometeam
, away.name AS awayteam
FROM
 games

INNER JOIN teams AS home
 ON home.id = games.hometeam
 INNER JOIN teams AS away
 ON away.id = games.awayteam

Each of the inner joins in this query joins the same row of the games table to a dif-

ferent row of the teams table—one being the home team, and the other being the

away team. Figure 11.3 illustrates what’s happening in the joins.

Figure 11.3. The teams table joined to the games table twice

The result of the query is shown in Figure 11.4. In short, we’ve joined the games

table to the teams table twice, and thereby enabled two separate queries. The im-

portant point to note here, is that we need to use table aliases to accomplish this.

In any query that references two representations of the same table, we must always

use table aliases to distinguish them.

239Special Structures

Figure 11.4. Team names in the result set

In addition, the query uses column aliases on two of the columns in the SELECT

clause. (The column aliases hometeam and awayteam are actually the same names

as the foreign key columns in the games table. This is a mere coincidence; any two

different names will serve.) The purpose of the column aliases is to distinguish the

home team from the away team. Without the column aliases, the result set would

have two columns called name.

Joining a Table to Itself
We saw categories and entries in some detail in Chapter 3, in which the relationship

between categories and entries was examined in the context of the various types of

joins. Figure 11.5 shows the entries table, where the category column is a foreign

key to the category column of the categories table, which is its primary key. This

is, of course, not the whole entries table—it’s missing some columns—just a simpli-

fied version for our purposes here. The categories table is shown in Figure 11.6.

Figure 11.5. The entries table

Simply SQL240

Figure 11.6. The categories table

Now let’s say that we want to distinguish further between our categories of entries.

We have a curious mix of different kinds of entries here—some are objective, ana-

lytical, and factual, whereas others are subjective, personal, and pensive. What we

want to do is set up two new super-categories, General and Personal, as shown in

Figure 11.7. This classification of our original categories into General and Personal

would allow us, for example, to display entries from these categories using different

themes.

Figure 11.7. The new super-categories

Other than calling them super-categories, we can call them categories and demote

the old categories to subcategories. The category/subcategory structure is implemen-

ted with a foreign key from the categories table to itself. Figure 11.8 shows the actual

data once this relationship has been created. You can have a look at the SQL query

241Special Structures

that achieves this in the section called “The categories Table” in Appendix C.

Notice that the new column, parent, contains values which are the same values as

used in the category column—except in the first two rows. A category is determined

to be a subcategory when it has a parent category value.

Figure 11.8. The categories table with the new parent column

Figure 11.9 shows a portion of the data model diagram for the Content Management

System application representing the relationship between categories and entries.

Figure 11.9. The relationship between categories and entries

You may be wondering about that funny-looking relationship from the categories

table to itself. This is a reflexive relationship (sometimes called a recursive relation-

ship). It’s a one-to-many relationship because each category can have multiple

subcategories, but each subcategory can have only one (parent) category.

Finally, we’re ready to see an example of a query that joins a table to itself. We’ll

start with a query to list our categories and subcategories alphabetically:

Simply SQL242

CMS_16_Supercategories.sql (excerpt)

SELECT
 cat.name AS supercategory
, sub.name AS category
FROM
 categories AS cat
 INNER JOIN categories AS sub
 ON sub.parent = cat.name
ORDER BY
 cat.name
, sub.name

The results of this query are shown in Figure 11.10.

Figure 11.10. Results of the categories table joined to itself

So the categories table is being self-joined, or joined to itself, using a join condition

which matches the foreign key of one row to the primary key of another row in the

same table. The ON clause specifies that the sub row’s parent column value must

match the cat row’s category column value. Figure 11.11 illustrates what’s occurring

in the join.

243Special Structures

Figure 11.11. The categories table is being joined to itself

Choosing Table and Column Aliases

Did you notice that the above query uses cat and sub as table alias names, but

supercategory and category as column alias names for display purposes?

Which alias names you use in either case is up to you. You must use table aliases

for syntax purposes, and you should use column aliases to distinguish the columns

in the result set.

So are they super-categories and categories, or categories and subcategories? It’s

really up to you.

For more information on hierarchies, including examples of queries with several

levels of subcategories, see the article Categories and Subcategories at

http://sqllessons.com/categories.html.

The lines in the diagram above indicate the only pairs of cat and sub rows that ac-

tually match. It’s an inner join, and since NULL equals no value, two of the sub rows

are unmatched with any cat row. This is because the General and Personal categories

do not themselves have parent categories.

Using categories and subcategories in a database is a common requirement. For in-

stance, we often see them in a web site’s navigation bar or site map. Our application’s

programming language helps us easily transform the result set in Figure 11.10 to

the following HTML:

Simply SQL244

http://sqllessons.com/categories.html

 Articles and Resources

 Information Technology
 Our Spectacular Universe

 Personal Stories and Ideas

 Gentle Words of Advice
 Humourous Anecdotes
 Log On to my Blog
 Stories from the Id

The transformation logic is a bit beyond the scope of this book, but involves looping

over the rows of the result set and detecting control breaks in the super-category

name—a technique introduced in the section called “ASC and DESC” in Chapter 8.

Finally, let’s take our query one step further, and join the categories to the entries

table as well:

CMS_16_Supercategories.sql (excerpt)

SELECT
 cat.name AS supercategory
, sub.name AS category
, entries.title
FROM
 categories AS cat
 INNER JOIN categories AS sub
 ON sub.parent = cat.category
 LEFT OUTER JOIN entries
 ON entries.category = sub.category
ORDER BY
 cat.name
, sub.name
, entries.title

Using a left outer join, we join the entries table to the result set of joining the cat-

egories table to itself. The result, shown in Figure 11.12, is a result set listing all

245Special Structures

entries with three columns: supercategory, category, and title. Because we used

a left outer join to join to the entries table, we have a NULL in the title column

for the Log on to My Blog category.

Figure 11.12. Super-categories, categories, and titles

Implementing a Many-to-many
Relationship: Keywords
Keywords are a very common feature of many different types of applications; you

may see them implemented as tags in web applications where users tag entries with

topic-related keywords. In our Content Management System application, entries

may have one or more keywords, and the same keyword may be applied to multiple

entries. So the relationship between entries and keywords is a many-to-many rela-

tionship. This relationship is shown in Figure 11.13.

Figure 11.13. The relationship between entries and keywords in the CMS

However, when we’re in the implementation stage of our data model, that is, when

we’re creating tables for the entities defined by our model, each many-to-many re-

lationship must be broken down into two, one-to-many, foreign-key relationships.

Knowing this, most data modellers simply introduce a relationship entity into the

model. In this case, the relationship between entries and keywords is implemented

Simply SQL246

via two one-to-many relationships, with the EntryKeywords entity—on the arrowhead

end of both relationships in our ER diagram in Figure 11.13.

Lets first examine the data in our sample CMS application. Figure 11.14 shows the

id (the primary key) and title columns from the entries table.

Figure 11.14. The entries table

Figure 11.15 shows the new entrykeywords table, where entry_id is a foreign key,

referencing the id of the entries table, so this is just another typical one-to-many

relationship. The SQL for the creation of this table can be found in the section called

“The entrykeywords Table” in Appendix C.

Figure 11.15. The entrykeywords table

The primary key of the entrykeywords table is a composite key consisting of both

columns, since we only want a keyword to be assigned to an article once. Any query

which needs to return entries along with their keywords will have to perform a join

between the entries and the entrykeywords tables, using the primary key and

foreign key relationship depicted in Figure 11.16.

247Special Structures

Figure 11.16. A join between the entries and entrykeywords table

In most situations, to achieve this result, a left outer join from entries to

entrykeywords is used. You might like to use an inner join, however, if you’re in-

terested only in entries that have had at least one keyword assigned.

At this point, it would seem that our many-to-many relationship has been success-

fully implemented using only two tables, so why do we need a third? As it’s imple-

mented at the moment, we can insert rows into the entrykeywords table using

whatever keywords we like; the keyword column in the entrykeywords is simply

a data column, as opposed to a foreign key column. (It should still be a part of the

primary key, though, so that we avoid inserting the same keyword more than once

for each entry.)

This is another one of those delightful instances where the choice is up to you. As

it stands any keywords can be inserted into the entrykeywords table. However, if

your application should only allow a restricted set of keywords to be used, then

you’ll need to implement the second one-to-many relationship and make a third

table for keywords.

This new keywords table will contain the list of keywords that can be associated

with entries. Using a foreign key constraint, we can make sure that only keywords

that are in the keywords table can be added to an entry. Of course, this will also

mean that if a new keyword is introduced, it will have to be added to the keywords

table first before it can be added to an entry.

We could implement the keywords table with two columns: an id column for the

primary key (possibly a surrogate key, like an autonumber) and a keyword column

for the keyword itself. The entrykeywords table should then be modified so that

Simply SQL248

the keyword column becomes a foreign key column; that way it references the values

from the id column in the new keywords table.

With an implementation like that, any query which needs to return entries along

with their keywords will have to perform a join between the entries and the

entrykeywords tables, and then between the entrykeywords table and keywords

table, using the primary key and foreign key relationship. To me, this hardly seems

worth the effort!

If all we’re doing is ensuring that only the keywords in the keywords table are used

for entries, it really only needs one column—the keyword column—as it’s a perfect

natural key; the surrogate primary key column is entirely redundant in this situation.

Figure 11.17 illustrates the relationship between entrykeywords and a one-column

keywords table.

Figure 11.17. The relationship between entrykeywords and keywords

With the keywords table in place (and the foreign key relationship defined between

the entrykeywords table to the keywords table), we simply add a new keyword to

the keywords table, and then we can start assigning it to entries. We’ll only be able

to assign a new keyword to an entry if that keyword has been inserted beforehand

in the keywords table. Since we’re using a natural key (the keyword itself) instead

of a surrogate key, we know that every foreign key value must have a matching

primary key value. There’s no need to perform a join operation to retrieve them,

because they’re going to be the same as the keyword values in the entrykeywords

table.

249Special Structures

The MySQL Function GROUP_CONCAT

MySQL has a wonderful aggregate function called GROUP_CONCAT. In a nutshell,

it works on strings the same way that SUMworks on numbers. The GROUP_CONCAT

function concatenates the values in a character column, using an optional separ-

ator—the default being a comma.

This function is supremely useful in many situations where data from multiple

relationships must be retrieved. It allows one of those relationships to be collapsed

to one row per entity. Here’s an example using entries and keywords:

(excerpt)

SELECT
 entries.title
, GROUP_CONCAT(entrykeywords.keyword) AS keywords
FROM
 entries
 LEFT OUTER JOIN entrykeywords
 ON entrykeywords.entry_id = entries.id
GROUP BY
 entries.title

The results of this query are shown in Figure 11.18. All of the keywords for each

entry_id have been concatenated into a single value (but separated by commas

within the single value), and placed in the row for the matching entry id value.

Figure 11.18. The results using GROUP_CONCAT

We started with a many-to-many relationship in the original data model, but ended

up implementing only half of the two one-to-many table relationships needed to

Simply SQL250

support it. This is actually very common; the one half of a many-to-many structure

is used for numerous other applications besides keywords and tags. As you work

with databases, keep an eye open. Whenever you encounter a one-to-many relation-

ship between two tables, ask yourself whether there needs to be another table—to

complete the other half of a many-to-many relationship—and if a surrogate key is

really necessary.

Wrapping Up: Special Structures
In this chapter, we learned about three types of special structures that occur often

in applications:

1. two or more different relationships between the same two entities (showing how

to join to a table twice)

2. a reflexive or recursive relationship (showing how to join a table to itself)

3. keywords in a many-to-many scenario (and whether a keyword table needs to be

declared)

This concludes the chapters on database design, and also the book.

Don’t forget that there’s a web site that goes along with this book, located at

http://www.sitepoint.com/books/sql1/, where you can also obtain the actual SQL

script files used we’ve used.

There’s a lot more to SQL than what we’ve covered in this book. SQL is like

chess—you can learn the basics in a couple of hours, but it takes a long time to be-

come a grand master. There is, however, only one way to become better: practice,

practice, practice!

251Special Structures

http://www.sitepoint.com/books/sql1/

Appendix A: Testing Environment
In order to test your SQL, you need a testing environment. Even if you’re working

for an organization that creates web sites using databases (and therefore may have

servers you can test on), you might want to have your own space, to see how more

ambitious SQL queries work. Well, it’s easy to set up your own testing environment

on a laptop or desktop computer, but there are so many options it may take you a

while to decide what to use.

Will you be using a Mac or PC? Do you need a specific database system, or are you

free to assess what each one offers? How comfortable are you with source code text

editing or with using the command line? What sorts of design tools will you use?

It may be the case that you'll try out several combinations of database and script

editor before you find one you like, but you should persevere.

The first step is to obtain a copy of the database system.

Download Your Database System Software
Choose a database system, and download and install the software. The more popu-

lar—but by no means only—database servers are listed here, including the URL of

the web page where you can download them. These are all free versions that are

ideal for practice.

MySQL Community Server

http://www.mysql.com/downloads/

Available for Windows, Mac OS X, and Linux.

PostgreSQL

http://www.postgresql.org/download/

Available for Windows, Mac OS X, and Linux.

Microsoft SQL Server Express

http://www.microsoft.com/express/sql/download/

Available for Windows.

http://www.mysql.com/downloads/
http://www.postgresql.org/download/
http://www.microsoft.com/express/sql/download/

IBM DB2 Express-C

http://www-306.ibm.com/software/data/db2/express/

Available for Linux and Windows.

Oracle Database Express Edition

http://www.oracle.com/technology/software/products/database/xe/index.html

Available for Linux and Windows.

Follow the installation instructions provided and if you have any difficulty, remem-

ber that you can always find help in the Sitepoint Databases forum at

http://www.sitepoint.com/forums/forumdisplay.php?f=88.

The next step is to make sure you have access to the manual.

Bookmark or Download the SQL Reference
All database systems offer their SQL reference manual on the Web. Find your sys-

tem’s manual and bookmark it. It’s invaluable for looking up those nasty—or useful,

depending on the circumstance—deviations from standard SQL. Here are the links

for the online manuals for the database systems listed above. You might also want

to investigate obtaining the manual as a download, so that you don’t have to be

connected to the Internet to look up SQL syntax.

MySQL

http://dev.mysql.com/doc/refman/5.0/en/index.html

PostgreSQL

http://www.postgresql.org/docs/8.3/interactive/sql.html

Microsoft SQL Server

http://msdn.microsoft.com/en-us/library/bb510741.aspx

IBM DB2

http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/

➥topic/com.ibm.db2.luw.container.doc/doc/c0052964.html

Oracle

http://download.oracle.com/docs/cd/B28359_01/server.111/b28286/toc.htm

Simply SQL254

http://www-306.ibm.com/software/data/db2/express/
http://www.oracle.com/technology/software/products/database/xe/index.html
http://www.sitepoint.com/forums/forumdisplay.php?f=88
http://dev.mysql.com/doc/refman/5.0/en/index.html
http://www.postgresql.org/docs/8.3/interactive/sql.html
http://msdn.microsoft.com/en-us/library/bb510741.aspx
http://download.oracle.com/docs/cd/B28359_01/server.111/b28286/toc.htm

Connect to the Database System
Communicating with the database system is accomplished via a connection, which

must first be established. Once a connection is made, you send your SQL statements

over this connection to the database system, and the results (or error messages) are

sent back. There are two ways to establish a connection to your database: through

the command line, or via a front-end application.

Command Line
Developers experienced in executing commands from the command line will need

no instructions. If you lack the know-how, do yourself a favor and install a front-

end application instead.

Front-end Applications
The benefits of using a front-end application are apparent the first time you use

one:

■ You never have to re-type an entire query to fix a simple error.

■ It lists the tables in your database; allows you create, modify, and delete those

tables; and also lets you browse the data they contain.

■ It will help you write SQL queries, and in many cases will build join queries

based on existing primary and foreign keys.

■ It applies code highlighting to your queries. This means that the application

understands SQL syntax and will apply different colors to the keywords, identi-

fiers, and constants used in your queries.

■ Those with more advanced interfaces let you build queries with drag-and-drop

functionality.

Front-end applications are even easier to download and install than the database

systems are. Many excellent third-party products exist, some free, some not. Here

are some front-end applications to consider:

255Appendix A: Testing Environment

MySQL

MySQL Workbench is available for Windows:

http://dev.mysql.com/downloads/workbench/5.0.html.

MySQL GUI Tools are available for Windows, Mac OS X, and Linux:

http://dev.mysql.com/downloads/gui-tools/5.0.html.

PostgreSQL

pgAdmin is available for Windows, Mac OS X, and Linux:

http://www.pgadmin.org.

Microsoft SQL Server

Available for Windows, if you download the server package called SQL Server

2008 Express with Tools, you’ll also receive SQL Server Management Studio Basic:

http://www.microsoft.com/express/sql/download/.

IBM DB2

The DB2 Developer Workbench is available for Windows and Linux, but you’ll

need to setup an IBM ID account to download it:

https://www14.software.ibm.com/webapp/iwm/

➥web/preLogin.do?lang=en_US&source=swg-dm-db2dwb

Oracle

Oracle SQL Developer is available for Windows, Mac OS X, and Linux:

http://www.oracle.com/technology/products/database/sql_developer/index.html

SQL Script Library
One final suggestion is to set up your own SQL script library, a simple text-based

library of SQL code that you can reuse as the need arises. For example, you might

wish to keep this template for returning unmatched rows:

FROM
ltable

 LEFT OUTER JOIN rtable
 ON rtable.fk = ltable.pk
WHERE
rtable.fk IS NULL

Simply SQL256

http://dev.mysql.com/downloads/workbench/5.0.html
http://dev.mysql.com/downloads/gui-tools/5.0.html
http://www.pgadmin.org
http://www.microsoft.com/express/sql/download/
http://www.oracle.com/technology/products/database/sql_developer/index.html

Appendix C contains the scripts to create the tables used in our sample applications.

If you’re building a similar application, copy those scripts into your script library

and customize as necessary.

Scripts can also be generated by many front-end applications from existing database

tables. This feature is often named Export, and will allow you to export database

structure as DDL and/or existing data as DML (producing INSERT statements) into

an SQL file. Doing this periodically is actually an effective backup strategy, although

you would probably not mix these backup files in with your script library.

Using a comprehensive text editor can help, too, especially if your front-end applic-

ation is weak in the text editing department. The code library would be the repository

of your SQL queries—working in conjunction with either your text editor, your

front-end application, or both.

Performance Problems and Obtaining Help
When everything else breaks down, I don't hesitate to roam out of

the pocket and do the boogaloo.

—Fran Tarkenton

With so many different ways possible to write an SQL query, the number one cri-

terion for writing good SQL is correctness. Performance plays a secondary role.

Given that database systems all have competent optimizers, it shouldn’t really

matter which way you write your queries, as long as the results produced are correct.

It matters little how fast a query runs, if it produces the wrong results.

However, in the real world, it sometimes does matter. If you end up having a per-

formance problem with a query, there are three ways to solve it:

■ analyze the execution plan
■ gain external help
■ implement proper indexing

Obtaining the Execution Plan
Many database systems offer help in this area, by letting you see the execution plan

for a query—an outline of how the server’s optimizer plans to execute the query—

without actually running the query.

257Appendix A: Testing Environment

Some database systems have tried to make it simple for you to see the optimizer’s

execution plan. For example, both MySQL and PostgreSQL allow you just to stick

the keyword EXPLAIN in front of the SELECT statement; Microsoft SQL Server’s

Management Studio Express, on the other hand, has the Display Estimated Execution

Plan option, and so on.

Analyzing the information in the optimizer’s execution plan is well beyond the

beginner-to-intermediate level; it verges into DBA (database administrator) territory.

But you may need to know at least how to produce the execution plan, especially

if you’re going to go looking for help elsewhere, so have a look in your SQL reference

manual.

Seeking Help
Gaining external help can be done through the Sitepoint Forums. There is a main

forum for Databases, and a second forum specifically for MySQL because of its

popularity:

■ Databases: http://www.sitepoint.com/forums/forumdisplay.php?f=88

■ MySQL: http://www.sitepoint.com/forums/forumdisplay.php?f=182

If you do post your performance problem there (or in any other forum), you’ll likely

be asked whether you’ve indexed your tables properly, as this will almost always

solve the performance problem. If you have, you’ll probably next be asked to show

your execution plan output—just in case you were wondering what to expect.

Indexing
Indexing is the number one solution to poor performance. We were introduced to

indexes in the section called “WHERE Clause Performance” in Chapter 4. You should

consult the documentation for your particular database system if you’d like to in-

vestigate indexes.

Simply SQL258

http://www.sitepoint.com/forums/forumdisplay.php?f=88
http://www.sitepoint.com/forums/forumdisplay.php?f=182

Appendix B: Sample Applications
For illustrative purposes, the SQL discussed in this book is based on several sample

applications:

Teams and Games

This application keeps track of games played by sports teams. Each game has

two teams who play each other, at a specific location. One team is designated

the home team, and the other, the away team.

Content Management System (CMS)

In the Content Management System, online content is stored and retrieved via

lists, displays, and searches. Comments, keywords, and categories of content

are implemented.

Discussion Forums

The Discussion Forum application manages discussion threads consisting of

related posts by registered forum members.

Shopping Carts

Shopping Carts are orders for specific items made by customers of an online

store. Customers browse items for purchase from the site’s inventory, and selec-

ted items are placed into a shopping cart.

Data Model Diagrams
Each of the sample applications is described with a data model diagram that gives

a graphical overview of the entities, and the relationships between entities, in the

application. Data modelling is a technique used in the early stages of application

development to focus attention on the entities and their relationships within the

scope of the application.

Translating a data model diagram into functional database table specifications is

fairly straightforward. It involves creating primary and foreign keys in the tables,

and we discuss this process in detail in Chapter 10. Each relationship ends up

generating at least one foreign key. The diagram itself, though, is indispensable;

just by looking at a data model diagram, you gain an immediate sense of what kind

of data is in the application, and how it’s related.

Here are the data model diagrams for the sample applications discussed in this

book. See if you can acquire a sense of the cardinality of the various relation-

ships—look for the arrowhead that indicates the one-to-many nature of the relation-

ship.

Teams and Games
Figure B.1 shows the relationships between the entities in this application.

Figure B.1. The Teams and Games data model

Each team belongs to a conference (which could be a league, or a division). Each

conference has multiple teams. This application is often implemented without the

conference entity, if the teams all belong to just one league and there’s no division

of teams into separate groupings.

Teams play games, but there are two relationships between teams and games; one’s

for the home team, and the other’s for the away team. Each team is related to many

games where it’s the home team, and many games where it’s the away team. However,

the same team cannot be both home and away for any given game.

Simply SQL260

Content Management System
Figure B.2 shows the relationships between the entities in this application.

Figure B.2. The Content Management System data model

The main entity is the entry entity. An entry constitutes a web page, the basic unit

of content. Entries belong to only one category, and each category can have many

entries. Categories form a hierarchy of categories and subcategories, indicated by

the reflexive one-to-many relationship from the categories entity to itself. A category

that has a parent category is a subcategory.

Entries may have one or more keywords. At the same time, a single keyword may

be applied to multiple entries, so this is actually a many-to-many relationship

between the two entities. However, when tables are created for entities, each many-

to-many relationship must be broken down into two one-to-many relationships. In

this case, the many-to-many relationship between entries and keywords is imple-

mented via two one-to-many relationships with the entrykeywords table, as illustrated

above. In our example, we want to allow keywords to be assigned to entries without

the database checking to see if they’re an allowed keyword, so there’s no specific

keywords table mapping to the entity in Figure B.2.

261Appendix B: Sample Applications

Entries may have one or more comments. Each comment belongs to only one entry.

Entries have optional contents. When content is appropriate, it’s stored in the con-

tents table, which is in a one-to-one relationship with entries. A given entry has at

most one content row, and each content row belongs to only one entry.

Discussion Forums
Figure B.3 shows the relationships between the entities in this application.

Figure B.3. The Discussion Forums data model

The Discussion Forums application allows registered members to make posts about

various topics, organized into discussion forums. There can be one or more forums,

and each forum consists of one or more threads. Each thread belongs to only one

forum.

A thread consists of one or more related posts, and each post belongs to only one

thread.

Both threads and posts are related to a member. For threads, it’s the member who

started the thread, and for posts, it’s the member who made the post. Members can

start multiple threads and make multiple posts.

Simply SQL262

Shopping Carts
Figure B.4 shows the relationships between the entities in this application.

Figure B.4. The Shopping Cart data model

Customers of an online store place orders for items from an inventory (of items)

that they can browse. Each separate order is called a shopping cart, and a customer

can have more than one cart. Each cart belongs to only one customer.

A cart consists of multiple items. An item can be ordered in multiple carts. The

many-to-many relationship between carts and items is implemented using the inter-

mediary table cartitems. Each cart item belongs to only one cart and is for only

one item. The cartitem entity allows for a quantity to be specified, so that, for ex-

ample, three widgets can be ordered in a particular cart.

Each item is supplied by a specific vendor, and vendors can supply more than one

item.

263Appendix B: Sample Applications

Appendix C: Sample Scripts
The following scripts are used to create, populate, and alter the tables belonging to

the applications in this book, as described in Appendix B.

The samples are presented in the form of scripts, SQL statements saved as a source

or text file using the file extension .sql. These files are available at the web site for

this book: http://www.sitepoint.com/books/sql1/. Each script file is meant to be

executed, and you can do this quite simply in the command line, or by importing

the script into your front-end application. Also included in the code archive are

scripts containing the SQL statements discussed in the book. Each script also con-

tains commentary relating to its purpose and position in the book.

TIMESTAMP and DATETIME

All the scripts in this chapter use the TIMESTAMP data type to hold date and time

values. If your database system does not support this data type, you should use

the DATETIME data type instead and change the scripts accordingly.

Row Constructors

All the scripts in this appendix that INSERT rows into a new table use row con-

structors to add them in one step. If your database of choice does not support row

constructors, you'll need to insert each row individually, as shown in Chapter 1.

http://www.sitepoint.com/books/sql1/

Teams and Games
The Teams and Games application uses three entities: teams, games, and conferences.

They’re represented in two tables called teams and games.

The teams Table
The Teams table has three columns and three rows, and is first met in Chapter 1.

Here’s the DDL to create the table:

Teams_02_INSERT.sql (excerpt)

CREATE TABLE teams
(
 id INTEGER NOT NULL PRIMARY KEY
, name VARCHAR(37) NOT NULL
, conference CHAR(2) NOT NULL
 CHECK (conference IN ('AA','A','B','C','D','E','F','G'))
);

Note that the CHECK constraint appearing above is discussed in Chapter 9. If your

database lacks support for CHECK constraints, you’ll need to delete it. To populate

the teams table we run the following:

Teams_03_DELETE_INSERT.sql (excerpt)

INSERT INTO teams
 (conference , id, name)
VALUES
 ('F' , 9 , 'Riff Raff')
, ('F' , 37 , 'Havoc')
, ('C' , 63 , 'Brewers')

Simply SQL266

Later in Chapter 11, the teams table is repopulated:

Teams_07_Games.sql (excerpt)

DELETE FROM teams;

INSERT INTO teams
 (id , name , conference)
VALUES
 (9 , 'Riff Raff' , 'F')
, (11 , 'Savages' , 'F')
, (15 , 'Blue Devils' , 'F')
, (24 , 'Hurricanes' , 'F')
;

The games Table
The games table has four columns and two rows, and is first met in Chapter 11:

Teams_07_Games.sql (excerpt)

CREATE TABLE games
(
 gamedate DATETIME NOT NULL
, location VARCHAR(37) NOT NULL
, hometeam INTEGER NOT NULL
, awayteam INTEGER NOT NULL
);

INSERT INTO games
 (gamedate , location , hometeam , awayteam)
VALUES
 ('2008-09-06' , 'McKenzie' , 9 , 24)
, ('2008-09-13' , 'Applewood' , 15 , 9)
;

267Appendix C: Sample Scripts

Content Management System
The Content Management System application uses six entities: entries, categories,

comments, contents, entrykeywords, and keywords. They’re represented in five

tables, with entrykeywords and keywords being wrapped up into one table called

entrykeywords. A view called entries_with_category is also created for demon-

stration purposes.

The entries Table
The entries table has six columns and five rows. It’s first introduced in Chapter 2:

CMS_01_Title_and_Category_of_Entries.sql (excerpt)

CREATE TABLE entries
(
 id INTEGER NOT NULL PRIMARY KEY
, title VARCHAR(99) NOT NULL
, created TIMESTAMP NOT NULL
, updated TIMESTAMP NULL
, category VARCHAR(37) NULL
, content TEXT NULL
);

INSERT INTO entries
 (id, title, created, updated, category)
VALUES
 (423,'What If I Get Sick and Die?',
 '2008-12-30','2009-03-11','angst')
, (524,'Uncle Karl and the Gasoline',
 '2009-02-28',NULL,'humor'),
, (537,'Be Nice to Everybody',
 '2009-03-02',NULL,'advice'),
, (573,'Hello Statue',
 '2009-03-17',NULL,'humor'),
, (598,'The Size of Our Galaxy',
 '2009-04-03',NULL,'science')
;

A second script provides the extended content for one of the entries:

Simply SQL268

CMS_02_Display_An_Entry.sql (excerpt)

UPDATE
 entries
SET
 content =
 'When I was about nine or ten, my Uncle Karl, who would''ve
 been in his late teens or early twenties, once performed
 what to me seemed like a magic trick.

 Using a rubber hose, which he snaked down into the gas tank
 of my father''s car, he siphoned some gasoline into his
 mouth, lit a match, held it up a few inches in front of his
 face, and then, with explosive force, sprayed the gasoline
 out towards the lit match.

 Of course, a huge fireball erupted, much to the delight of
 the kids watching. I don''t recall if he did it more than
 once.

 The funny part of this story? We lived to tell it.

 Karl was like that.'
WHERE
 id = 524

A sixth row is added to the table to demonstrate right outer joins in Chapter 3:

CMS_07_Categories_RIGHT_OUTER_JOIN_Entries.sql (excerpt)

INSERT INTO entries
 (id, title, created, updated, category)
VALUES
 (605,'Windows Media Center Rocks','2009-04-29',NULL,'computers')

Once the contents table has been created, the content column in the entries table

is removed:

CMS_14_Content_and_Comment_Tables.sql (excerpt)

ALTER TABLE entries DROP COLUMN content

269Appendix C: Sample Scripts

Finally, in Chapter 11, the table receives an index and foreign key (if you're using

MySQL, you'll need to index the foreign key first):

CMS_15_Add_FK_To_Entries.sql (excerpt)

ALTER TABLE entries
ADD INDEX
 category_ix (category)
;

ALTER TABLE entries
ADD CONSTRAINT
 category_fk
 FOREIGN KEY (category)
 REFERENCES categories (category)
 ON DELETE CASCADE
 ON UPDATE CASCADE
;

The categories Table
The categories table has two columns and initially five rows. It’s first seen in

Chapter 3 and then altered in Chapter 11:

CMS_05_Categories_INNER_JOIN_Entries.sql (excerpt)

CREATE TABLE categories
(
 category VARCHAR(9) NOT NULL PRIMARY KEY,
 name VARCHAR(37) NOT NULL
);

INSERT INTO categories
 (category, name)
VALUES
 ('blog' , 'Log on to My Blog')
, ('humor' , 'Humorous Anecdotes')
, ('angst' , 'Stories from the Id')
, ('advice' , 'Gentle Words of Advice')
, ('science' , 'Our Spectacular Universe')
;

Simply SQL270

Later, in Chapter 11, a sixth category is added:

CMS_15_Add_FK_to_Entries.sql (excerpt)

INSERT INTO categories
 (category, name)
VALUES
 ('computers' , 'Information Technology')

Finally, a new column, index, and foreign key are added to the table to demonstrate

how a table can be joined to itself. (Again, if you're using MySQL, you'll need to

index the foreign key first.) This creates a pseudo-hierarchy of items stored within

the table:

CMS_16_Supercategories.sql (excerpt)

ALTER TABLE categories
ADD COLUMN
 parent VARCHAR(9) NULL
;

ALTER TABLE categories
ADD INDEX
 parent_ix (parent)
;

ALTER TABLE categories
ADD CONSTRAINT
 parent_fk
 FOREIGN KEY (parent)
 REFERENCES categories (category)
;

INSERT INTO categories
 (category, name)
VALUES
 ('general' , 'Articles and Resources')
, ('personal' , 'Personal Stories and Ideas')
;

UPDATE
 categories
SET
 parent = 'general'

271Appendix C: Sample Scripts

WHERE
 category in ('computers', 'science')
;

UPDATE
 categories
SET
 parent = 'personal'
WHERE
 category in ('advice', 'angst', 'blog', 'humor')
;

The entries_with_category View
The entries_with_category view is created in Chapter 3. The script to create it

will only work in versions of MySQL from version 5.0.1:

CMS_10_CREATE_VIEW.sql (excerpt)

CREATE VIEW
 entries_with_category
AS
SELECT
 entries.title
, entries.created
, categories.name as category_name
FROM
 entries
 INNER JOIN categories
 ON categories.category = entries.category

The contents Table
The contents table has two columns and one row initially, copied from the entries

table. It’s first mentioned in Chapter 5. Note that you must create the entries table

and populate it before running this script:

CMS_14_Content_and_Comment_Tables.sql (excerpt)

CREATE TABLE contents
(
 entry_id INTEGER NOT NULL PRIMARY KEY
, content TEXT NOT NULL

Simply SQL272

);

INSERT INTO contents
 (entry_id , content)
SELECT
 id
, content
FROM
 entries
WHERE
 NOT (content IS NULL)
;

Once the contents table has been created and populated, the contents column of

the entries table is no longer needed:

CMS_14_Content_and_Comment_Tables.sql (excerpt)

ALTER TABLE entries
 DROP COLUMN content
;

The comments Table
The comments table has six columns and three rows. It’s first met in Chapter 5:

CMS_14_Content_and_Comment_Tables.sql (excerpt)

CREATE TABLE comments
(
 entry_id INTEGER NOT NULL
, username VARCHAR(37) NOT NULL
, created TIMESTAMP NOT NULL
, PRIMARY KEY (entry_id, username, created)
, revised TIMESTAMP NULL
, comment TEXT NOT NULL
);

INSERT INTO comments
 (entry_id, username, created, revised, comment)
VALUES
 (524, 'Steve0', '2009-03-05', NULL ,
 'Sounds like fun. Must try that.')
, (524, 'r937' , '2009-03-06', NULL ,

273Appendix C: Sample Scripts

 'I tasted gasoline once. Not worth the discomfort.')
, (524, 'J4s0n' , '2009-03-16','2009-03-17',
 'You and your uncle are both idiots.')
;

The entrykeywords Table
The entrykeywords table has two columns and seven rows. It’s first seen in

Chapter 11:

CMS_17_Entrykeywords.sql (excerpt)

CREATE TABLE entrykeywords
(
 entry_id INTEGER NOT NULL
, keyword VARCHAR(99) NOT NULL
, PRIMARY KEY (entry_id, keyword)
, CONSTRAINT entry_fk
 FOREIGN KEY (entry_id)
 REFERENCES entries (id)
);

INSERT INTO entrykeywords
 (entry_id, keyword)
VALUES
 (524,'family')
, (524,'reckless')
, (537,'my three rules')
, (537,'family')
, (598,'astronomy')
, (605,'windows')
, (605,'television')
;

Simply SQL274

Discussion Forums
The Discussion Forums application, used in Chapter 7, has four entities: forums,

members, threads, and posts; they’re represented in four tables of the same name.

All four are created in the same script, but we’ve separated them here for clarity.

The forums Table
First, the forums table, which has two columns and three rows:

Forums_01_Setup.sql (excerpt)

CREATE TABLE forums
(
 id INTEGER NOT NULL PRIMARY KEY
, name VARCHAR(37) NOT NULL
, CONSTRAINT forum_name_uk
 UNIQUE (name)
);

INSERT INTO forums
 (id, name)
VALUES
 (10001 , 'Search Engines')
, (10002 , 'Databases')
, (10003 , 'Applications')
;

The members Table
The members table has two columns and five rows:

Forums_01_Setup.sql (excerpt)

CREATE TABLE members
(
 id INTEGER NOT NULL PRIMARY KEY
, name VARCHAR(37) NOT NULL
, CONSTRAINT name_uk
 UNIQUE (name)
);

INSERT INTO members
 (id, name)

275Appendix C: Sample Scripts

VALUES
 (9 , 'noo13')
, (37 , 'r937')
, (42 , 'DeepThought')
, (99 , 'BarbFeldon')
, (187 , 'RJNeedham')
;

The threads Table
Now the threads table—it has four columns and four rows:

Forums_01_Setup.sql (excerpt)

CREATE TABLE threads
(
 id INTEGER NOT NULL PRIMARY KEY
, name VARCHAR(99) NOT NULL
, forum_id INTEGER NOT NULL
, starter INTEGER NOT NULL
, CONSTRAINT thread_name_uk
 UNIQUE (id, name)
);

INSERT INTO threads
 (id, name, forum_id, starter)
VALUES
 (15 , 'Difficulty with join query', 10002 , 187)
, (25 , 'How do I get listed in Yahoo?', 10001 , 9)
, (35 , 'People who bought ... also bought ...' , 10002 , 99)
, (45 , 'WHERE clause doesn''t work', 10002 , 187)
;

The posts Table
Finally, the posts table. Note that you should remove the DEFAULT and CHECK con-

straints if your database does not support them. It has eight columns and seven

rows, each of which has been added in its own INSERT statement for clarity:

Simply SQL276

Forums_01_Setup.sql (excerpt)

CREATE TABLE posts
(
 id INTEGER NOT NULL PRIMARY KEY
, name VARCHAR(99) NULL
, thread_id INTEGER NOT NULL
, reply_to INTEGER NULL
, posted_by INTEGER NOT NULL
, created TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP
, revised TIMESTAMP NULL CHECK (revised >= created)
, post TEXT NOT NULL
);

INSERT INTO posts
 (id, name, thread_id, reply_to,
 posted_by, created, revised, post)
VALUES
 (201 , 'Difficulty with join query' , 15, NULL , 187 ,
 '2008-11-12 11:12:13', NULL, 'I''m having a lot of trouble
 joining my tables. What''s a foreign key?')
;

INSERT INTO posts
 (id, name, thread_id, reply_to,
 posted_by, created, revised, post)
VALUES
 (215 , 'How do I get listed in Yahoo?', 25, NULL , 9 ,
 '2008-11-15 11:20:02', NULL, 'I''ve figured out how to submit
 my URL to Google, but I can''t seem to find where to post it
 on Yahoo! Can anyone help?')
;

INSERT INTO posts
 (id, name, thread_id, reply_to,
 posted_by, created, revised, post)
VALUES
 (216 , NULL , 25, 215 , 42 , '2008-11-15 11:37:10', NULL,
 'Try http://search.yahoo.com/info/submit.html ')
;

INSERT INTO posts
 (id, name, thread_id, reply_to,
 posted_by, created, revised, post)
VALUES

277Appendix C: Sample Scripts

 (218 , 'That''s it!' , 25, 216 , 9 , '2008-11-15 11:42:24',
 NULL, 'That''s it! How did you find it?')
;

INSERT INTO posts
 (id, name, thread_id, reply_to,
 posted_by, created, revised, post)
VALUES
 (219 , NULL , 25, 218 , 42 , '2008-11-15 11:51:45',
 '2008-11-15 11:57:57', 'There''s a link at the bottom of the
 homepage called "Suggest a site"')
;

INSERT INTO posts
 (id, name, thread_id, reply_to,
 posted_by, created, revised, post)
VALUES
 (222 , 'People who bought ... also bought ...' , 35, NULL ,
 99 , '2008-11-22 22:22:22', NULL, 'For each item in the
 user''s cart, I want to show other items that people
 bought who bought that item, but the SQL is too hairy
 for me. HELP!')
;

INSERT INTO posts
 (id, name, thread_id, reply_to,
 posted_by, created, revised, post)
VALUES
 (230 , 'WHERE clause doesn''t work' , 45, NULL , 187 ,
 '2008-12-04 09:37:00', NULL, 'My query has WHERE
 startdate > 2009-01-01 but I get 0 results, even though
 I know there are rows for next year!')
;

Simply SQL278

Shopping Carts
The Shopping Carts application uses four tables to represent customers, items,

shopping carts, and cartitems, the items in each cart: customers, carts, cartitems,

and items. All of them are introduced in Chapter 4. A fifth table, vendors, is intro-

duced in Chapter 10 to represent those who are selling the items.

The items Table
The items table has four columns and eighteen rows:

Cart_01_Comparison_operators.sql (excerpt)

CREATE TABLE items
(
 id INTEGER NOT NULL PRIMARY KEY
, name VARCHAR(21) NOT NULL
, type VARCHAR(7) NOT NULL
, price DECIMAL(5,2) NULL
);

INSERT INTO items
 (id, name, type, price)
VALUES
 (5021,'thingie' ,'widgets', 9.37)
, (5022,'gadget' ,'doodads', 19.37)
, (5023,'dingus' ,'gizmos' , 29.37)
, (5041,'gewgaw' ,'widgets', 5.00)
, (5042,'knickknack' ,'doodads', 10.00)
, (5043,'whatnot' ,'gizmos' , 15.00)
, (5061,'bric-a-brac' ,'widgets', 2.00)
, (5062,'folderol' ,'doodads', 4.00)
, (5063,'jigger' ,'gizmos' , 6.00)
, (5901,'doohickey' ,'widgets', 12.00)
, (5902,'gimmick' ,'doodads', 9.37)
, (5903,'dingbat' ,'gizmos' , 9.37)
, (5911,'thingamajig' ,'widgets', NULL)
, (5912,'thingamabob' ,'doodads', NULL)
, (5913,'thingum' ,'gizmos' , NULL)
, (5931,'contraption' ,'widgets', 49.95)
, (5932,'whatchamacallit','doodads', 59.95)
, (5937,'whatsis' ,'gizmos' , NULL)
;

279Appendix C: Sample Scripts

In Chapter 4, before we experiment with AND and OR in the WHERE clause, we have

to supply prices to the items that have a price of NULL:

Cart_04_ANDs_and_ORs.sql (excerpt)

UPDATE
 items
SET
 price = 22.22
WHERE
 name IN ('thingamajig', 'thingamabob', 'thingum')
;

UPDATE
 items
SET
 price = 93.70
WHERE
 name = 'whatsis'
;

In Chapter 10, the vendors table is created, and then a foreign key column and ref-

erence to that table is added to the items table linking items to their vendors.

Cart_17_Vendors.sql (excerpt)

ALTER TABLE items
ADD COLUMN
 vendor_id INTEGER NULL
;

ALTER TABLE items
ADD INDEX
 vendor_ix (vendor_id)
;

ALTER TABLE items
ADD CONSTRAINT
 vendor_fk
 FOREIGN KEY (vendor_id)
 REFERENCES vendors (id)
 ON DELETE CASCADE
 ON UPDATE CASCADE
;

Simply SQL280

UPDATE
 items
SET
 vendor_id = 17
WHERE
 name < 't'
;

UPDATE
 items
SET
 vendor_id = 19
WHERE
 name > 'w'
;

INSERT INTO items
 (id, name, type, price, vendor_id)
VALUES
 (9901, 'gift wrapping', 'service', 5.00, NULL)
, (9902, 'discount coupon', 'service', -10.00, NULL)
;

The customers Table
The customers table has four columns and eight rows. Note that the first seven rows

use the default value of the shipaddr column, but the eighth uses its own and so

is added using its own INSERT statement:

Cart_04_ANDs_and_ORs.sql (excerpt)

CREATE TABLE customers
(
 id INTEGER NOT NULL PRIMARY KEY
, name VARCHAR(99) NOT NULL
, billaddr VARCHAR(255) NOT NULL
, shipaddr VARCHAR(255) NOT NULL DEFAULT 'See billing address.'
);

INSERT INTO customers
 (id, name, billaddr)
VALUES
 (710,'A. Jones','123 Sesame St., Eureka, KS')

281Appendix C: Sample Scripts

, (730,'B. Smith','456 Sesame St., Eureka, KS')
, (750,'C. Brown','789 Sesame St., Eureka, KS')
, (770,'D. White','246 Sesame St., Eureka, KS')
, (820,'E. Baker','135 Sesame St., Eureka, KS')
, (840,'F. Black','468 Sesame St., Eureka, KS')
, (860,'G. Scott','357 Sesame St., Eureka, KS')
;

INSERT INTO customers
 (id, name, billaddr, shipaddr)
VALUES
 (880,'H. Clark',
 '937 Sesame St., Eureka, KS', 'P.O. Box 9, Toledo, OH')
;

The carts Table
The carts table has three columns and ten rows:

Cart_04_ANDs_and_ORs.sql (excerpt)

CREATE TABLE carts
(
 id INTEGER NOT NULL PRIMARY KEY
, customer_id INTEGER NOT NULL
, cartdate TIMESTAMP NOT NULL
);

INSERT INTO carts
 (id, customer_id, cartdate)
VALUES
 (2131,710,'2008-09-03 00:00:00')
, (2461,820,'2008-09-16 00:00:00')
, (2921,730,'2008-09-19 00:00:00')
, (2937,750,'2008-09-21 00:00:00')
, (3001,750,'2008-09-23 00:00:00')
, (3002,730,'2008-10-07 00:00:00')
, (3081,880,'2008-10-13 00:00:00')
, (3197,770,'2008-10-14 00:00:00')
, (3321,860,'2008-10-26 00:00:00')
, (3937,750,'2008-10-28 00:00:00')
;

Simply SQL282

The cartitems Table
The cartitems table has three columns and fifteen rows. Note that you should re-

move the DEFAULT and CHECK constraints if your database does not support them:

Cart_04_ANDs_and_ORs.sql (excerpt)

CREATE TABLE cartitems
(
 cart_id INTEGER NOT NULL
, item_id INTEGER NOT NULL
, qty SMALLINT NOT NULL DEFAULT 1 CHECK (qty <= 10)
);

INSERT INTO cartitems
 (cart_id, item_id, qty)
VALUES
 (2131,5902,3)
, (2131,5913,2)
, (2461,5043,3)
, (2461,5901,2)
, (2921,5023,3)
, (2921,5937,2)
, (2937,5913,1)
, (3001,5912,3)
, (3001,5937,2)
, (3002,5901,1)
, (3081,5023,3)
, (3081,5913,2)
, (3197,5932,1)
, (3321,5932,3)
, (3937,5913,3)
;

283Appendix C: Sample Scripts

The vendors Table
This script creates the vendors table. It has two columns and two rows. We never

get around to doing much with the vendors table, other than pointing out that items

don’t have to belong to a vendor.

Cart_17_Vendors.sql (excerpt)

CREATE TABLE vendors
(
 id INTEGER NOT NULL PRIMARY KEY
, name VARCHAR(21) NOT NULL
);

INSERT INTO vendors
VALUES
 (17, 'Acme Corp')
, (19, 'Ersatz Inc')
;

Simply SQL284

Appendix D: SQL Keywords
The following are—or were—reserved words in at least one version of the SQL

standard.1 The purpose of this appendix is primarily to alert you to some of the

words that you should not use as an identifier, for example, for a table or column

name.

Of course, the final arbiter of whether you’ll have a problem using any word you

choose is not this list, but the SQL reference manual for your particular database

system. In fact, your database system may have its own, additional reserved

words—so don’t use those, either:

ABSOLUTE, ACTION, ADD, AFTER, ALL, ALLOCATE, ALTER, AND, ANY,
ARE, ARRAY, AS, ASC, ASENSITIVE, ASSERTION, ASYMMETRIC, AT,
ATOMIC, AUTHORIZATION, AVG, BEFORE, BEGIN, BETWEEN, BIGINT,
BINARY, BIT, BIT_LENGTH, BLOB, BOOLEAN, BOTH, BREADTH, BY, CALL,
CALLED, CASCADE, CASCADED, CASE, CAST, CATALOG, CHAR, CHAR_LENGTH,
CHARACTER, CHARACTER_LENGTH, CHECK, CLOB, CLOSE, COALESCE,
COLLATE, COLLATION, COLUMN, COMMIT, CONDITION, CONNECT,
CONNECTION, CONSTRAINT, CONSTRAINTS, CONSTRUCTOR, CONTAINS,
CONTINUE, CONVERT, CORRESPONDING, COUNT, CREATE, CROSS, CUBE,
CURRENT, CURRENT_DATE, CURRENT_DEFAULT_TRANSFORM_GROUP,
CURRENT_PATH, CURRENT_ROLE, CURRENT_TIME, CURRENT_TIMESTAMP,
CURRENT_TRANSFORM_GROUP_FOR_TYPE, CURRENT_USER, CURSOR, CYCLE,
DATA, DATE, DAY, DEALLOCATE, DEC, DECIMAL, DECLARE, DEFAULT,
DEFERRABLE, DEFERRED, DELETE, DEPTH, DEREF, DESC, DESCRIBE,
DESCRIPTOR, DETERMINISTIC, DIAGNOSTICS, DISCONNECT, DISTINCT, DO,
DOMAIN, DOUBLE, DROP, DYNAMIC, EACH, ELEMENT, ELSE, ELSEIF, END,
EQUALS, ESCAPE, EXCEPT, EXCEPTION, EXEC, EXECUTE, EXISTS, EXIT,
EXTERNAL, EXTRACT, FALSE, FETCH, FILTER, FIRST, FLOAT, FOR,
FOREIGN, FOUND, FREE, FROM, FULL, FUNCTION, GENERAL, GET, GLOBAL,
GO, GOTO, GRANT, GROUP, GROUPING, HANDLER, HAVING, HOLD, HOUR,
IDENTITY, IF, IMMEDIATE, IN, INDICATOR, INITIALLY, INNER, INOUT,
INPUT, INSENSITIVE, INSERT, INT, INTEGER, INTERSECT, INTERVAL,
INTO, IS, ISOLATION, ITERATE, JOIN, KEY, LANGUAGE, LARGE, LAST,
LATERAL, LEADING, LEAVE, LEFT, LEVEL, LIKE, LOCAL, LOCALTIME,
LOCALTIMESTAMP, LOCATOR, LOOP, LOWER, MAP, MATCH, MAX, MEMBER,
MERGE, METHOD, MIN, MINUTE, MODIFIES, MODULE, MONTH, MULTISET,
NAMES, NATIONAL, NATURAL, NCHAR, NCLOB, NEW, NEXT, NO, NONE, NOT,
NULL, NULLIF, NUMERIC, OBJECT, OCTET_LENGTH, OF, OLD, ON, ONLY,

1 Sometimes, a word is “unreserved” by a subsequent version of the standard.

OPEN, OPTION, OR, ORDER, ORDINALITY, OUT, OUTER, OUTPUT, OVER,
OVERLAPS, PAD, PARAMETER, PARTIAL, PARTITION, PATH, POSITION,
PRECISION, PREPARE, PRESERVE, PRIMARY, PRIOR, PRIVILEGES,
PROCEDURE, PUBLIC, RANGE, READ, READS, REAL, RECURSIVE, REF,
REFERENCES, REFERENCING, RELATIVE, RELEASE, REPEAT, RESIGNAL,
RESTRICT, RESULT, RETURN, RETURNS, REVOKE, RIGHT, ROLE, ROLLBACK,
ROLLUP, ROUTINE, ROW, ROWS, SAVEPOINT, SCHEMA, SCOPE, SCROLL,
SEARCH, SECOND, SECTION, SELECT, SENSITIVE, SESSION, SESSION_USER,
SET, SETS, SIGNAL, SIMILAR, SIZE, SMALLINT, SOME, SPACE, SPECIFIC,
SPECIFICTYPE, SQL, SQLCODE, SQLERROR, SQLEXCEPTION, SQLSTATE,
SQLWARNING, START, STATE, STATIC, SUBMULTISET, SUBSTRING, SUM,
SYMMETRIC, SYSTEM, SYSTEM_USER, TABLE, TABLESAMPLE, TEMPORARY,
THEN, TIME, TIMESTAMP, TIMEZONE_HOUR, TIMEZONE_MINUTE, TO, TRAILING,
TRANSACTION, TRANSLATE, TRANSLATION, TREAT, TRIGGER, TRIM, TRUE,
UNDER, UNDO, UNION, UNIQUE, UNKNOWN, UNNEST, UNTIL, UPDATE, UPPER,
USAGE, USER, USING, VALUE, VALUES, VARCHAR, VARYING, VIEW, WHEN,
WHENEVER, WHERE, WHILE, WINDOW, WITH, WITHIN, WITHOUT, WORK,
WRITE, YEAR, ZONE

Simply SQL286

Index

A
ADD CONSTRAINT keyword, 228

aggregate, 109

aggregate function, 30

aggregate functions, 109, 120, 140, 141–

149

COUNT (*), 146–149

COUNT (DISTINCT), 144–146

ignore NULLs, 144

without GROUP BY, 142–144

aggregate functions and GROUP BY

clause, 117

aggregate row, 109

aggregation, 29

ALTER statement, 7, 10

AND and OR

combining, 89–90

compound conditions with, 86

use parentheses when mixing, 90

ASC (keyword), 32

ASC and ORDER BY clause, 164–166

attributes (data modelling), 213–219

autonumbers (surrogate key), 234–235

B
BETWEEN operators, 83–86

BIGINT (data type), 185, 186, 193

Binary Large Objects (BLOBs), 117

BLOB column, 198–199

C
cardinality, 215

cart_id, 105

cartitems table, 105, 283

carts table, 282

carts.id, 109, 163

CASE function, 152–154

case-sensitivity, 9

CAST function, 153

categories table, 47, 270–271

full outer join, 63–67

inner join, 48–56

left outer join, 56–61

one-to-many relationships, 50

right outer join, 61–63

category column, 47, 242

CHAR column, 194–195

CHAR_LENGTH, 153

CHARACTER column, 194

character data types, 194–200

CHAR, 194–195

CLOB and BLOB, 198–199

NCHAR and NVARCHAR, 198

numeric or character, 196–198

string functions, 199–200

VARCHAR, 195–196

Character Large Objects (CLOBs), 117

CHECK constraints, 209–210

clauses, 4, 19–20

CLOB column, 198–199

COALESCE function, 151–152

code highlighting, 255

coding style, 4

Collations, 81

column, 3, 7

column alias, 30, 244

column alias or aggregate expression,

128

column constraints, data types (SQL),

208–210

CHECK constraints, 209–210

DEFAULT, 209

NULL or NOT NULL, 208

column name, 3

column names

qualifying, 54–55

columns, 25, 28, 33, 184

grouping, 137

numeric data type, 184

selecting, 135–138

columns with certain large data types,

117–122

columns, order of, 8

comments table, 273

Common Era calendar, 200

comparison operators, 79–82

composite key, 221

compound condition, 75

compound conditions with AND and OR,

86–90

combining AND and OR, 89–90

truth tables, 87–89

concatenation operator, 154–155

condition (WHERE clause), 28

conference (column), 8

Constants, 3, 13

CONSTRAINT keyword, 222

Content Management System (CMS), 24,

25–27, 46, 118, 214, 259, 261–262,

268–274

contents table, 272–273

contents.content (TEXT column), 120

conversions in numeric calculations

numeric data types, 193

correlated subqueries, 93–96

correlated subquery, 97

correlation, 93

COUNT (DISTINCT), 144–146

COUNT function, 120, 144, 146

COUNT(*), 30, 146–149

COUNT(entry_id) aggregate function,

122

COUNT(items.name), 138

CREATE statement, 7–9, 12

CREATE TABLE statement, 8, 9, 183

cross join, 38, 44–45

current/previous logic, 166

CURRENT_DATE - INTERVAL 5 DAY,

85

CURRENT_DATE (keyword), 85

CURRENT_DATE (time function), 207

CURRENT_TIME (time function), 207

CURRENT_TIMESTAMP (time function),

207

customer table, 87

customers table, 281–282

customers.name, 109

customers.name column, 137

D
data, 6

Data Definition Language (DDL), 6–11,

22

ALTER statement, 7, 10

CREATE statement, 7–9, 12

DROP statement, 7, 10

starting over, 10–11

Data Manipulation Language (DML), 6,

11–20, 22

DELETE statement, 18

INSERT statement, 12–15

SELECT statement, 18

288

UPDATE statement, 15–17

data model diagrams, 259–260

data modelling, 212–219

entities and attributes, 213–214

entities and relationships, 214–219

data retrieval, 2, 19–20

data types, 180

data types (SQL), 183–210

character data types, 194–200

column constraints, 208–210

numeric data types, 185–194

overview, 184

pros and cons of non-standard data

types, 186

temporal data types, 200–208

wrapping up, 210

database design, 2, 211

database designer, 214

database development, 10

database environments, 2

database objects, 6

database optimizer, 100

database structure, 6

database system, 189

database system software, 253–254

database system, connecting to the, 255–

256

database systems, 21, 204

DATE, 206

DATE (keyword), 201

DATE (temporal data types), 200–203

input format, storage format and dis-

play format, 201–203

date arithmetic, 85

DATE data type, 200

date functions (temporal data types),

207–208

date values, inserting, 201–203

DATETIME, 265

DB2, 7, 15, 22, 156, 185, 254

DECIMAL, 187–188

decimal data type

latitude and longitude, 190–191

precision, scale and accuracy, 190

decimals

numeric data types, 187–191

DEFAULT (column constraints), 209

DELETE statement, 18

deprecated (data type), 188

derived tables, 70–71

DESC (keyword), 32

DESC and ORDER BY clause, 164–166

designated database administrators

(DBAs), 9

detail query, 104

detail rows, 104, 135–136

Discussion Forum application, 138–140

forums table, 139

members table, 139

posts table, 140

threads table, 139–140

Discussion Forums, 138

Discussion Forums application, 213,

217, 221, 223, 224, 262, 275–278

forums table, 275

members table, 275–276

posts table, 276–278

threads table, 276

Display Estimated Execution Plan, 258

displaying query results on a Web Page,

27

DISTINCT (keyword), 144

dot notation, 48, 54

drill-down SQL, 113–114

289

DROP statement, 7, 10

E
entities (data modelling), 213–219

entities and relationships (data model-

ling), 214–219

entity-relationship (ER) diagram, 214–

219

entity-relationship (ER) modelling tools,

219

entries table, 25–27, 268–270

full outer join, 63–67

inner join, 48–56

left outer join, 56–61

one-to-many relationships, 50

right outer join, 61–63

some of it is hidden, 49

entries_with_category view, 272

entrykeywords table, 247, 248, 249, 261,

274

equals sign = (keyword), 3

error

full outer join, 64

execution plan for a query, 257

EXISTS conditions, 96–99

exponent, 191

EXTRACT, 153

F
floating-point data type, 193

floating-point numbers

numeric data types, 191–193

FOREIGN KEY keyword, 228

foreign keys (relational integrity), 224–

232

declaring, 230

how they work, 225–226

must reference a key, 227–230

NULL, 230

ON DELETE and ON UPDATE, 231–

232

using, 226–232

forums Table, 139

forums table, 275

FROM (keyword), 3

FROM clause, 1, 19–20, 24–27, 33, 115,

133, 134, 180, 182

derived tables, 70–71

more than one table using JOINS, 37–

45

one table, 37

real world joins, 46–67

result set, 73

subqueries, 70–71

testing, 105

views, 67–69

Why start with?, 36–37

wrapping up, 71

front-end applications, 255–256

full outer join, 38, 42–43

categories and entries, 63–67

union queries, 64–67

FULL OUTER JOIN (keyword), 64

G
games table, 239, 267

granularity, 137

GROUP BY

using ORDER BY with, 175–176

GROUP BY clause, 20, 29–31, 34, 103–

123, 133, 135, 159, 163, 166, 182

and aggregate functions, 117

290

columns with certain large data types,

117

group rows, 125–126

HAVING without a, 128–132

how it works, 115–117

in context, 114–115

rules for, 117–122

subquery, 118, 120

wrapping up, 122–123

GROUP BY queries, 104

group condition, 127

group row, 109

group rows, 29, 104, 115–117, 136–138

GROUP_CONCAT, 250

Grouping, 104

grouping columns, 137

H
HAVING clause, 20, 29–31, 34, 125–132,

133, 134, 182

Are thresholds database or application

logic?, 130–131

use of common aliases in the, 131–132

wrapping up, 132

HAVING filters group rows, 125–132

HAVING without a GROUP BY clause,

128–132

threshold alert, 129–132

help, SQL, 257–258

I
IBM DB2, 254, 256

IBM DB2 Express-C, 254

id (column), 8

id (identifier), 3

ID number, 25

Identifiers, 3

case-sensitivity, 9

identity (relational integrity), 212, 235

primary keys, 219–221

IN conditions, 91–93

with subqueries, 92–93

indexed retrieval, 101

indexes

WHERE clause performance, 100–102

Indexing, 258

inner join, 38, 39

all columns are available after a join,

52–53

categories and entries, 48–56

difference between outer join, 43

qualifying column names, 54–55

table aliases, 56

when a join is executed in a query, 54

INSERT statement, 12–15

INTEGER, 9

integers

numeric data types, 185–186

intervals (temporal data types), 206–207

IS NULL test, 99, 100

items table, 78, 105, 279–281

items.name, 163

J
JavaScript, 167

join condition, 38

joined tables, 37–67

all columns are available after a join,

52–53

cross, 44–45

difference between inner and outer

joins, 43

full outer, 63–67

291

inner, 39–40

joining a table to itself, 240–246

joining to a table twice, 237–240

left outer, 56–61

outer, 40–43

query, 55

real world, 46–56

right outer, 61–63

types of, 38–39

when a join is executed in a query, 54

K
keys (see foreign keys (relational integ-

rity);natural keys (relational integ-

rity);primary keys (data model-

ling)surrogate keys (relational integ-

rity))

keywords, 3, 246–251, 261, 285–286

L
left outer join, 38, 40–41

categories and entries, 56–61

LEFT OUTER JOIN, 99, 100

avoid using COUNT(*), 149

LIKE operator, 82

M
major-to-minor sequencing

ORDER BY clause, 162

mantissa, 191

manuals, database, 21–22

many-to-many relationship, 216, 226,

246–251, 261, 263

many-to-one relationship, 215

mastering SQL, 2

MEDIUMINT, 186

members table, 139, 275–276

Microsoft SQL Server, 254, 256

Microsoft SQL Server Express, 253

MONEY (data type), 188

multiple row constructors, 15

MySQL, 7, 22, 64, 76, 156, 185, 186, 201,

205, 229, 230, 250, 254, 256

CONCAT function, 155

SUBSTRING_INDEX, 155

MySQL Community Server, 253

MySQL DDL, 219

N
name (column), 8

name (identifier), 3

natural keys (relational integrity), 232–

235

autonumbers, 234–235

using, 234

NCHAR column, 198

non-standard data types, 186

NOT (keyword), 75

NOT EXIST condition, 98–99

NOT IN condition, 98–99

NOT NULL (column), 208

NOT NULL (name column), 9

NULL, 9, 77

NULL (column), 208

NULL (outer joins), 60

NULL or NOT NULL (column con-

straints), 208

NULL value, 220

NULL values, 169–173, 180

NULLIF function, 153–154

NULLs by design, 144

NUMERIC (decimal data type), 187–188

numeric data types, 185–194

292

conversions in numeric calculations,

193

decimals, 187–191

floating-point numbers, 191–193

integers, 185–186

numeric functions, 193–194

numeric functions

numeric data types, 193–194

numeric identifiers, 212

numeric operators, 154

NVARCHAR column, 198

O
“One-to-Zero-or-Many” relationships,

107

ON clause, 39

ON DELETE clause, 231

ON UPDATE clause, 231

one-to-many relationship, 50, 215, 226,

242

one-to-many relationships, 247, 261

one-to-many table relationships, 250

one-to-one relationship, 216

online SQL reference manuals, 22

operator (keyword), 3

operators

BETWEEN, 83–86

comparison, 79–82

concatenation operator, 154–155

LIKE, 82

numeric, 154

SELECT clause, 154–156

temporal, 155–156

operators (WHERE clause), 79–86

Oracle, 7, 22, 156, 254, 256

Oracle Database Express Edition, 254

ORDER BY clause, 20, 32–33, 34, 108,

161–182

ASC and DESC, 164–166

dealing with problems, 169

detecting groupings in applications,

166

expressions, 176

how it works, 162–173

major-to-minor sequencing, 162

performance, 167–168

scope of, 173–181

sequence of values, 168–169

special sequencing, 176–177

syntax, 162

using with GROUP BY, 175–176

when it seems unnecessary, 168

with UNION queries, 178–181

wrapping up, 182

ORDER BY expressions, 176

ORDER BY syntax, 162

outer join, 40–43

(see also full outer join; left outer join;

right outer join)

difference between inner join, 43

produce nulls, 60

OUTER JOIN (keyword), 40

outer table, 61

P
parsing an SQL statement, 36–37

pattern matching, 82

performance problems, SQL, 257–258

PostgreSQL, 7, 15, 22, 185, 253, 254, 256

posts table, 140, 276–278

precision (decimals), 187

primary keys (data modelling), 219–221

293

Q
qualifying column names, 54–55

queries

correlated subqueries, 93–96

execution plan, 257–258

GROUP BY, 104

subqueries, 92–93

UNION, 178–181

queries, union, 64–67

query

SQL (Structured Query Language), 99,

257

query results on a web page, 27

query, join, 55

query, when a join is executed in a, 54

R
range test, 83

real world joins, 46–67

REFERENCES keyword, 228

referential integrity, 228

reflexive relationship, 242

relational integrity, 211–236

data modelling, 212–219

foreign keys, 224–232

identity, 212

natural versus surrogate keys, 232–235

primary keys, 219–221

UNIQUE constraints, 221–223

wrapping up, 235–236

result set, 20

right outer join, 38, 41–42

categories and entries, 60–63

row, 7, 12

row constructor, 14–15

row constructors, 265

rows

detail, 135–136

group, 136–138

S
sample applications, SQL, 259–263

scalar functions, 141, 149–154

scale (decimals), 187

script, 11

SELECT (keyword), 3, 157

SELECT *, 156–157

SELECT * (keyword), 105

SELECT clause, 5, 19–20, 24–27, 33,

106, 120, 133–159, 240

Discussion Forum application, 138–

140

functions, 140–154

operators, 154–156

SELECT *, 156–157

SELECT DISTINCT, 157–159

sequence in execution, 134–135

Which columns can be selected?, 135–

138

wrapping up, 159

SELECT DISTINCT, 157–159

SELECT SQL statement, 161

select star (*), 105

SELECT statement, 2, 18–20, 23–24, 33,

133, 135, 183

clauses, 19–20

data retrieval, 19–20

tabular structure, 20

self-documenting, 55

semantics, 5

sequence of values

ORDER BY clause, 168–173

Sequencing, 104

294

Shopping Cart, 104

shopping carts, 76–79, 263, 279–284

cartitems table, 283

carts table, 282

customers table, 281–282

items table, 279–281

vendors table, 284

sitemap

application for left outer joins, 59

SMALLINT, 185, 186

SMALLINT column, 208

SMALLINT values, 204

special sequencing

ORDER BY clause, 176–177

special structures, 237–251

implementing a many-to-many rela-

tionship, 246–251

joinging a table to itself, 240–246

joining to a table twice, 237–240

wrapping up, 251

splittime column, 205

SQL (Structured Query Language), 1

aggregate functions, 141–149

functions, 140–154

help, 257–258

keywords, 285–286

language, 2

online reference manuals, 22

performanve problems, 257–258

query, 2, 99, 257

sample applications, 259–263

scalar functions, 149–154

script, 11

standards, 2, 20–22

structure, 1

syntax, 7

tabular structures, 1, 7, 13, 20

testing environment, 253–258

trying out the sample, 24

trying out your, 7

types of statements, 2

SQL data types (see data types (SQL))

SQL or Sequel, 2

SQL reference, 254

SQL reference manual, 201, 258, 285

SQL scalar functions

commonly available in all database

systems, 149–154

SQL script library, 256–257

SQL Server, 7, 22, 185, 186, 201

SQL Server 2008 Express with Tools, 256

SQL standard, 198, 201

SQL statement, parsing an, 36–37

SQL statements, 1, 7, 22, 133, 161

clauses, 4

Data Definition Language (DDL), 6

Data Manipulation Language (DML),

6

keywords, identifiers and constants,

2–3

overview, 1–6

script, 11

syntax, 5–6

types of, 2

SQL, drill-down, 113–114

SQL-1999, 185

SQL-2003 standard, 185

standards, SQL, 2, 20–22

starting over, 10–11

string functions (character data types),

199–200

strings, 13

structure, SQL, 1

Structured Query Language (SQL), 1

295

subqueries, 70–71

subquery, GROUP BY clause, 118, 120–

122

subselects (union queries), 65

SUBSTRING function, 149–151

surrogate keys (relational integrity), 232–

235

and redundancy, 234

autonumbers, 234–235

UNIQUE constraint, 235

syntax, 5–6

T
table, 3

table aliases, 56, 244

table name, 3

table scan, 101

tables

(see also joined tables)

creating, 39

single, 37

tables, multiple, 37

tables, single

FROM clause, 37

tabular structure, 1, 7, 13, 20, 73, 105

tags, 246

teams (identifier), 3

Teams and Games application, 266–267

teams and games data model, 260

teams table, 8, 239, 266

temporal data types, 184, 200–208

DATE, 200–203

date functions, 207–208

intervals, 206–207

TIME, 203–205

TIMESTAMP, 205–206

temporal operators, 155–156

temporary table, 115

testing environment, SQL, 253–258

TEXT column, 28

threads table, 139–140, 276

threshold alert, 129–132

thresholds, database or application logic,

130–131

TIME, 206

TIME (temporal data types), 203–205

times as duration, 204–205

times as point in time, 205

time as duration, 204

TIME data type, 200

TIME values, 205

times as points in time, 205

TIMESTAMP, 265

timestamp (temporal data types), 184

TIMESTAMP (temporal data types), 205–

206

TINYINT, 186

TINYINT values, 204

truth tables, 87–89

U
UNION (keyword), 65

UNION ALL, 67

union queries

full outer join, 64–67

UNION Queries

ORDER BY with, 178–181

UNIQUE constraint

NULL, 230

UNIQUE constraints (relational integ-

rity), 221–223, 235

dealing with keys in application code,

223

UNKNOWN (WHERE clause), 75, 79, 88

296

UPDATE statement, 15–17

V
VARCHAR, 9

VARCHAR column, 195–196

vendors table, 284

Views, 67–69

W
web development

views, 69

WEEKDAY (date function), 207

WHERE (keyword), 3

WHERE clause, 20, 28–29, 33, 115, 133,

134, 168, 182

compound conditions with AND and

OR, 86–93

conditions, 74–75

correlated subqueries, 93–96

EXIST conditions, 96–99

operators, 79–86

performance, 99–102

shopping carts, 76–79

wrapping up, 102

WHERE condition, 74–75

conditions that are true, 74

when 'Not True" is preferable, 75

wildcard characters, 82

Wordpress, 25

Y
YYYY-MM-DD format, 202

297

What’s Next?

Web designers: Prepare to master the
ways of the jQuery ninja!

JQUERY: NOVICE
TO NINJA
By Earle Castledine &
Craig Sharkie

jQuery has quickly become the
JavaScript library of choice, and
it’s easy to see why.

In this easy-to-follow guide, you’ll
master all the major tricks and
techniques that jQuery offers—
within hours.

Use this link to save 10% off the cover price of jQuery: Novice to
Ninja, compliments of the SitePoint publishing team.

www.sitepoint.com/launch/customers-only-jquery1

PANTONE 2955 CPANTONE Orange 021 C

CMYK 100, 45, 0, 37CMYK O, 53, 100, 0

Black 100%Black 50%

CMYK:

Pantone:

Grey scale

RICH, FAST, VERSATILE — JAVASCRIPT THE WAY IT SHOULD BE!

JQUERY
NOVICE TO NINJA

BY EARLE CASTLEDINE
& CRAIG SHARKIE

SAVE
10%

Save 10% with this link:

This book has saved my life! I especially love the
“excerpt” indications, to avoid getting lost. JQuery
is easy to understand thanks to this book. It’s a
must-have for your development library, and you
truly go from Novice to Ninja!

Amanda Rodriguez, USA

gallery-replace.indd 2 5/10/10 11:09 AM

How About …

Create mind-blowingly beautiful and
functional forms with ease

FANCY FORM DESIGN
By Jina Bolton, Tim Connell &
Derek Featherstone

No longer do you need to worry at
the thought of integrating a stylish
form on your site.

Fancy Form Design is a complete
guide to creating beautiful web forms
that are aesthetically pleasing,
highly functional, and compatible
across all major browsers.

Use this link to save 10% off the cover price of Fancy Form Design,
compliments of the SitePoint publishing team.

www.sitepoint.com/launch/customers-only-forms1

PANTONE 2955 CPANTONE Orange 021 C

CMYK 100, 45, 0, 37CMYK O, 53, 100, 0

Black 100%Black 50%

CMYK:

Pantone:

Grey scale

CREATE SENSATIONAL WEB FORMS THAT SPARKLE

FANCY FORM
DESIGN

BY JINA BOLTON
TIM CONNELL

DEREK FEATHERSTONE

SAVE
10%

Save 10% with this link:

Overall it’s a good book, entertaining, well-written,
not overly long, (and) full of immediately practical
examples that anyone familiar with form design
and development can use.

Gary Barber, 17 Jan 2010

gallery-replace.indd 5 5/10/10 11:09 AM

How About …

HTML email simplified, seriously

CREATE STUNNING
HTML EMAIL THAT
JUST WORKS!
By Mathew Patterson

This step-by-step guide is perfect
for front-end web designers looking
to expand their range of services to
clients. You’ll be able to take your
CSS and HTML skills, and deploy
them to build beautiful, effective,
and compatible HTML emails.

Use this link to save 10% off the cover price of Create Stunning
HTML Email That Just Works!, compliments of the SitePoint
publishing team.

www.sitepoint.com/launch/customers-only-htmlemail1

PANTONE 2955 CPANTONE Orange 021 C

CMYK 100, 45, 0, 37CMYK O, 53, 100, 0

Black 100%Black 50%

CMYK:

Pantone:

Grey scale

CREATE HTML EMAILS THAT LOOK GREAT AND DELIVER!

CREATE STUNNING

HTML EMAIL
BY MATHEW PATTERSON

THAT JUST WORKS!

SAVE
10%

Save 10% with this link:

I have been searching for a book about HTML
email design and have finally found it! I just read
the entire thing in about 2 hours.

Russell , 6 May 2010

gallery-replace.indd 6 5/10/10 11:09 AM

How About …

The definitive beginners’ guide to PHP

BUILD YOUR OWN
DATABASE DRIVEN
WEB SITE USING PHP
& MySQL, 4th Ed.
By Kevin Yank

Take your first step into the world
of PHP.

If you hate wading through dry
academic-style, “how to” texts, this
book will be a breath of fresh air.

Use this link to save 10% off the cover price of Build Your Own
Database Driven Web Site Using PHP & MySQL, courtesy of
the SitePoint publishing team.

www.sitepoint.com/launch/customers-only-phpmysql4

PANTONE 2955 CPANTONE Orange 021 C

CMYK 100, 45, 0, 37CMYK O, 53, 100, 0

Black 100%Black 50%

CMYK:

Pantone:

Grey scale

LEARNING PHP & MYSQL HAS NEVER BEEN SO EASY!

BUILD YOUR OWN

DATABASE
DRIVEN WEB SITE

USING PHP & MYSQL
BY KEVIN YANK

4TH EDITION

SAVE
10%

Save 10% with this link:

If you’re like me, you’ve looked at many books on
this subject. I had great difficulty finding one that
not only TAUGHT me how to use PHP, but did
so with real-world examples AND attention to
standards!

Bryan D, USA

gallery-replace.indd 7 5/10/10 11:09 AM

How About …

The first guide to tapping into the
endless capacity of the cloud

HOST YOUR WEB
SITE IN THE CLOUD:
AMAZON WEB
SERVICES MADE EASY
By Jeff Barr

Stop wasting time, money, and
resources on servers that can’t
grow with you. Cloud computing
gives you ultimate freedom and
speed, all at an affordable price.

Use this link to save 10% off the cover price of Host Your Web
Site in the Cloud, compliments of the SitePoint publishing team.

www.sitepoint.com/launch/customers-only-cloud1

PANTONE 2955 CPANTONE Orange 021 C

CMYK 100, 45, 0, 37CMYK O, 53, 100, 0

Black 100%Black 50%

CMYK:

Pantone:

Grey scale

SCALABLE, REDUNDANT, AND RELIABLE HOSTING AT A FRACTION OF THE PRICE!

BY JEFF BARR

HOST YOUR

WEB SITE
IN THE CLOUD

AMAZON WEB SERVICES MADE EASY

SAVE
10%

Save 10% with this link:

About Jeff Barr

In his role as the Amazon Web Services
Senior Evangelist, Jeff speaks to developers
at conferences, as well as user groups all
over the world.

gallery-replace.indd 8 5/10/10 11:09 AM

	Simply SQL
	Table of Contents
	Preface
	Who Should Read This Book?
	The Challenges to Learning SQL
	What’s in This Book?
	How to Gain Help
	The SitePoint Forums
	The Book’s Web Site
	The Code Archive
	Updates and Errata

	The SitePoint Newsletters
	Your Feedback
	Conventions Used in This Book
	Code Samples
	Tips, Notes, and Warnings

	Acknowledgments

	An Introduction to SQL
	SQL Statement Overview
	Keywords, Identifiers, and Constants
	Clauses
	Syntax

	Data Definition Language
	CREATE, ALTER, and DROP
	The CREATE Statement
	The ALTER Statements
	The DROP Statement

	Starting Over

	Data Manipulation Language
	INSERT, UPDATE, and DELETE
	The INSERT Statement
	The UPDATE Statement
	The DELETE Statement

	The SELECT Statement
	The SELECT Retrieves Data
	The SELECT Statement Produces a Tabular Result Set

	Standard SQL
	Read The Fine Manual

	Wrapping Up: an Introduction to SQL

	An Overview of the SELECT Statement
	The SELECT Statement
	The SELECT and FROM Clauses
	Content Management System
	The entries Table

	The WHERE Clause
	The GROUP BY and HAVING Clauses
	The ORDER BY Clause
	Wrapping Up: the SELECT Statement

	The FROM Clause
	Why Start with the FROM Clause?
	Parsing an SQL Statement

	FROM One Table
	FROM More than One Table Using JOINs
	Types of Join
	The Inner Join
	Outer Joins
	The Left Outer Join
	The Right Outer Join
	The Full Outer Join

	The Cross Join

	Real World Joins
	Inner Join: Categories and Entries
	All Columns Are Available after a Join
	When a Join is Executed in a Query
	Qualifying Column Names
	Table Aliases

	Left Outer Join: Categories and Entries
	Outer Joins Produce NULLs
	Right Outer Join: Entries and Categories

	Right Outer Join: Categories and Entries
	Full Outer Join: Categories and Entries
	UNION Queries

	Views
	Views in Web Development

	Subqueries and Derived Tables
	Wrapping Up: the FROM Clause

	The WHERE Clause
	Conditions
	Conditions that are True
	When “Not True” is Preferable

	Shopping Carts
	Conditions that Evaluate as UNKNOWN

	Operators
	Comparison Operators
	The LIKE Operator
	The BETWEEN Operator
	BETWEEN: It haz a flavr

	Compound Conditions with AND and OR
	Truth Tables
	Combining AND and OR

	IN Conditions
	IN with Subqueries

	Correlated Subqueries
	EXISTS Conditions
	NOT IN or NOT EXISTS?
	A Left Outer Join with an IS NULL Test

	WHERE Clause Performance
	Indexes

	Wrapping Up: the WHERE Clause

	The GROUP BY Clause
	Grouping is More than Sequencing
	Out of Many, One
	Drill-down SQL
	GROUP BY in Context

	How GROUP BY Works
	Group Rows

	Rules for GROUP BY
	Columns with Certain Large Data Types

	Wrapping Up: the GROUP BY

	The HAVING Clause
	HAVING Filters Group Rows
	HAVING without a GROUP BY Clause
	Threshold Alert
	Are Thresholds Database or Application Logic?

	Wrapping Up: the HAVING Clause

	The SELECT Clause
	SELECT in the Sequence of Execution
	Which Columns Can Be Selected?
	Detail Rows
	Group Rows

	The Discussion Forum Application
	The forums Table
	The members Table
	The threads Table
	The posts Table

	Functions
	Aggregate Functions
	Aggregate Functions without GROUP BY
	Aggregate Functions Ignore NULLs
	COUNT(DISTINCT)
	COUNT(*)

	Scalar Functions
	The SUBSTRING Function
	The COALESCE Function
	The CASE Function
	EXTRACT
	CHAR_LENGTH
	The CAST Function
	The NULLIF Function

	Operators
	Numeric Operators
	The Concatenation Operator
	Temporal Operators

	The Dreaded, Evil Select Star
	SELECT DISTINCT
	Wrapping Up: the SELECT Clause

	The ORDER BY Clause
	ORDER BY Syntax
	How ORDER BY Works
	ASC and DESC
	ORDER BY Clause Performance
	When ORDER BY Seems Unnecessary

	The Sequence of Values
	NULLs Usually Sort First

	The Scope of ORDER BY
	Using ORDER BY with GROUP BY
	ORDER BY Expressions
	Special Sequencing
	ORDER BY with UNION Queries

	Wrapping Up: the ORDER BY Clause

	SQL Data Types
	An Overview of Data Types
	Numeric Data Types
	Integers
	Decimals
	Example: Latitude and Longitude

	Floating-point Numbers
	FLOAT, REAL, and DOUBLE PRECISION

	Conversions in Numeric Calculations
	Numeric Functions

	Character Data Types
	CHAR
	VARCHAR
	Numeric or Character?
	NCHAR and NVARCHAR
	CLOB and BLOB
	String Functions

	Temporal Data Types
	DATE
	Input Format, Storage Format, and Display Format

	TIME
	Times as Duration
	Times as Points in Time

	TIMESTAMP
	Intervals
	Date Functions

	Column Constraints
	NULL or NOT NULL
	DEFAULT
	CHECK Constraints

	Wrapping Up: SQL Data Types

	Relational Integrity
	Identity
	Data Modelling
	Entities and Attributes
	Example: Forums, Threads, Posts, and Members

	Entities and Relationships
	Entity–Relationship Diagrams

	Primary Keys
	UNIQUE Constraints
	Foreign Keys
	How Foreign Keys Work
	Using Foreign Keys
	The Foreign Key Goes in the Many Table
	The Foreign Key Must Reference a Key
	Foreign Keys May Be NULL
	ON DELETE and ON UPDATE

	Natural versus Surrogate Keys
	Autonumbers

	Wrapping Up: Relational Integrity

	Special Structures
	Joining to a Table Twice
	Joining a Table to Itself
	Implementing a Many-to-many Relationship: Keywords
	Wrapping Up: Special Structures

	Appendix A: Testing Environment
	Download Your Database System Software
	Bookmark or Download the SQL Reference
	Connect to the Database System
	Command Line
	Front-end Applications

	SQL Script Library
	Performance Problems and Obtaining Help
	Obtaining the Execution Plan
	Seeking Help
	Indexing

	Appendix B: Sample Applications
	Data Model Diagrams
	Teams and Games
	Content Management System
	Discussion Forums
	Shopping Carts

	Appendix C: Sample Scripts
	Teams and Games
	The teams Table
	The games Table

	Content Management System
	The entries Table
	The categories Table
	The entries_with_category View
	The contents Table
	The comments Table
	The entrykeywords Table

	Discussion Forums
	The forums Table
	The members Table
	The threads Table
	The posts Table

	Shopping Carts
	The items Table
	The customers Table
	The carts Table
	The cartitems Table
	The vendors Table

	Appendix D: SQL Keywords
	Index

