

Design of a Backdoored Block Cipher and its
Evaluation

By
Humayun Ajmal

A thesis submitted to the faculty of Information Security Department,

Military College of Signals, National University of Sciences and

Technology, Rawalpindi in partial fulfillment of the requirements for the

degree of MS in Information Security

February 2022

i

THESIS ACCEPTANCE CERTIFICATE

This is to certify that final copy of MS thesis written by NS Humayun Ajmal Student of

MSIS-18, Reg.No 00000318940 of Military College of Signals has been vetted by

undersigned, found complete in all respects as per NUST statutes / regulations / MS Policy,

is free of plagiarism, errors and mistakes and is accepted as partial fulfillment for award of

MS degree. It is further certified that necessary amendments as pointed out by GEC

members and local evaluators of the scholar have also been incorporated in the said thesis.

 Signature ____________________________

 Name of Supervisor (Asst Prof Dr. Fawad Khan)

 Date: ___________ 2022

 Signature (HoD)____________________________

 Date: ___________ 2022

 Signature (Dean / Principal)__________________

 Date: ___________ 2022

ii

Declaration

I hereby declare that except where specific reference is made to the work of others, the

contents of this dissertation are original and have not been submitted in whole or in part for

consideration for any other degree or qualification either at this institution or elsewhere.

This dissertation is my own work and contains nothing which is the outcome of work done

in collaboration with others, except as specified in the text and acknowledgements

Humayun Ajmal

February 2022

iii

Dedication

“In the name of Allah, the most Beneficent, the most Merciful"

I dedicate this thesis to my late father, family, friends who supported and encouraged me during

every step of this study and remained a source of inspiration and strength.

I owe everything presented in this study to my teachers and fellow students who guided me

throughout this phase and shared their words of advice and encouragement to finish this study,

iv

Acknowledgments

All praises to Allah for the strengths and His blessing in completing this thesis.

I would like to convey my gratitude to my supervisor, Dr. Fawad Khan for his supervision

and constant support. His invaluable help, constructive comments and suggestions

throughout the experimental and thesis works are major contributions to the success of this

research. Also, I would thank my committee members; Asst Prof Dr. Shahzaib Tahir, and

Assoc Prof Dr. Muhammad Faisal Amjad and Maj Wajahat Sultan for their support and

knowledge regarding this topic.

Last, but not the least, I am highly thankful to my parents and family. They have always

stood by my dreams and aspirations and have been a great source of inspiration for me. I

would like to thank them for all their care, love and support through my times of stress and

excitement.

v

Abstract

Symmetric key block ciphers are employed for data encryption widely in everyday

applications. Block ciphers are considered robust and secure even if their structure is known

globally and immune to several cryptanalysis attacks including linear and differential

cryptanalysis. Data retrieval should only be possible with the help of data encryption key.

However, there may exist block ciphers whose structure is transparent, but may

contain an inherent algebraic backdoor helping the designer to retrieve the data encryption

key. Undiscoverable algebraic backdoors are hard to design because of the hidden

mathematical structure employed to retrieve the key. Moreover, it is also interesting to

explore statistical methods in order to determine an inherent mathematical backdoor.

In this thesis, we explored various backdoor embedding methodologies previously,

and have employed the recent LowMC-M framework to design a backdoored cipher.

Furthermore, we applied the standard NIST statistical suite tests against the backdoored

cipher and the standard AES to explore which statistical methods might help to determine

the underlying backdoor cipher

vi

Table of Contents

Chapter 1: Introduction ... 1

1.1 Problem Statement .. 3

1.2 Motivation .. 4

1.3 Research Objectives .. 4

1.4 Contributions .. 5

1.5 Thesis Outline ... 5

Chapter 2: Existing Research In Cryptographic Backdoors 7

2.1 Challenges in Backdoors implementation .. 7

2.2 Research in the field of Backdoors .. 8

2.3 Low Multiplication Complexity Ciphers ... 11

2.4 Conclusion .. 12

Chapter 3: Priliminary Background ... 14

3.1 The Symmetric Key Cryptosystems .. 14

 3.1.1 Block Ciphers and SPN Networks .. 14

 3.1.2 Tweakable Block Ciphers ... 15

3.2 Components of a Tweakable Block Cipher .. 15

 3.2.1 The Plain Text (M) ... 16

 3.2.2 The Encryption / Decryption Algorithm (E) .. 16

 3.2.3 The Master Key (K) ... 16

 3.2.4 Cipher Text (C) ... 17

 3.2.5 The Tweak Input (T) .. 17

3.3 The Advanced Encryption Standard (AES) ... 17

 3.3.1 The AES Design and Working ... 17

 3.3.2 Plain Text Handling by AES .. 19

vii

 3.3.3 Rijndael’s Key Scheduling Algorithm for Key Expansion................................ 19

 3.3.4 The Key Whitening Layer.. 19

 3.3.5 The AES Rounds ... 19

 3.3.5.1 Byte Substitution Layer (ByteSub or S-Box Layer) 19

 3.3.5.2 Shift Rows ... 20

 3.3.5.3 Mix Column .. 20

 3.3.5.4 Round Key Addition Layer .. 20

 3.3.6 The Cipher Text (C) and its Decryption .. 20

3.4 Cryptanalysis .. 21

 3.4.1 Differential Cryptanalysis .. 23

 3.4.2 Linear Cryptanalysis. ... 25

3.5 Backdoors in Block Ciphers .. 27

 3.5.1 Characteristics of Backdoors in Ciphers ... 28

 3.5.2 Security Notions .. 29

 3.5.3 The SageMath Tool ... 30

 3.5.3.1 SageMath Components ... 30

 3.5.3.2 Utility ... 32

3.6 Conclusion .. 32

Chapter 4: Block Cipher With An Embedded Algebraic Backdoor 34

 4.1 The Generic LowMC Framework……………………………………………………… 35

 4.1.1 The design Overview ... 35

 4.1.2 LowMC-M Framework: The LowMC with a Backdoor 35

4.2 Tweakable Block Ciphers: .. 36

 4.2.1 Tweak Value ... 37

 4.2.2 The Tweak Schedule.. 39

4.3 The Cipher Parameters and Instantiation ... 39

 4.4 The Plaintext …………………………………………………………………………….40

viii

 4.5 The Whitening Key ………………………………………………………………...…..40

4.6 The Whitening Tweak ... 41

4.7 The Round Function .. 41

4.8 The Non-Linear Layer (Si) .. 41

4.9 Handling round keys in rounds with Partial nonlinear layers ... 42

4.10 The S-box layer design .. 43

4.11 Round key Addition (kri) ... 44

4.12 Round Constant Addition (RCi) ... 45

4.13 Round Tweak Addition ... 45

4.14 Linear Layer (Li) ... 45

4.15 Differential Characteristics and Differential Cryptanalysis .. 45

4.16 State and Linear Matrix Multiplication - Notation ... 46

4.17 Generating the Linear Layer Matrices ... 47

4.18 Conclusion .. 47

Chapter 5: The Designed Cipher –Performance And Security Analysis 48

5.1 Performance Analysis of Our Code ... 48

5.2 Security Analysis of the Code ... 49

Chapter 6: Conclusion ... 55

Appendix ... 59

ix

List of Figures

Figure 3.1 A tweakable Block Cipher .. 16

Figure 3.2 AES Block Diagram ... 18

Figure 3.3 AES Operations Flowchart………………………………………………………….18

Figure 3.4 AES Shift rows operation ... 20

Figure 4.1 The Block Diagram of LowMC (left) and compared to LowMC-M (right) .………36

Figure 4.2 The Block Diagram of LowMC-M ……………………………………………..….37

Figure 4.3 Tweak Addition in the LowMC Framework ……………………………………… 38

Figure 4.4 Output of XOF…………..…………………………………………………………..39

Figure 4.5 Representation of LowMC with Key Size equal to S ………….…………………..42

Figure 4.6 The S-Box of the Non-Linear Layer ……….…………………………………….…43

Figure 4.7 The partial non-linear layer………………………………………………….………44

Figure 5.1 Result of NIST Statistical Test Results when run on AES………………………….52

Figure 5.2 Result of NIST Statistical Test Results when run on our Code…………………….52

x

List of Tables

Table 3.1 AES key lengths and number of rounds ……………………………………………18

Table 3.2 Attack Scenarios …...……………………………………………………………….21

Table 4.1 Parameters for Instantiation of LowMC-M….……………………………………...39

Table 4.2 Lookup Table for S-Box ….………………………………………………………..43

Table 5.1 NIST Statistical Test Suite ………………………………………………………….49

1

Chapter 1

Introduction

Since the beginning of this millennium, Information technology is one field that has

witnessed a revolution. Researchers now agree that the world’s most valuable resource is no

more gold or oil, but data. Technology have become an essential component in almost every

field, generating and contributing to the next gold reservoir, the Big Data. Considered as a

repository of every sort of information, from financial to medical, health to classified to

personal information, it is growing at an exponential rate every day.

However, with Big Data comes big responsibility. The responsibility to secure it during

storage and during communication, so that it remains safe from hackers, eavesdroppers,

commercial organizations and even hostile nations, willing to access it for their own

interest. Cryptography has attempted to provide an answer to evade these attempts, even as

early as around 1900 BC by Egyptians, as recorded in ancient history. Every organization,

therefore, wants its information to be secure from eavesdroppers and it wishes to guarantee

its users that their data is secure during every stage of its handling.

Cryptology has evolved from simple ciphers used by Egyptians and Romans to complex

algorithms. Scientific community has researched and developed Cryptographic protocols /

algorithms (like RSA, DHKE, DES, AES, RC4, SHA etc), augmented by employing a

Symmetric (single key) or asymmetric (public key) cryptography system. The use of these

crypto systems has been limited by performance issues; computational power and battery

2

requirement etc when it comes to their deployment with IoT devices. Therefore, many light

weight symmetric key ciphers have been proposed to address these issues.

Cryptology is broadly divided into two branches, i.e. Cryptography and Cryptanalysis.

These fields are very closely related and, in a sense, complement each other. Cryptography

deals with the development of cryptosystems whereas cryptanalysis ensures that these

crypto systems remain free from vulnerabilities that may lead to a compromise. A crypto

system may seem very strong and efficient, but researchers will strive to find out design

flaws that may give away information and resultantly lead to a compromise. Cryptanalysis

ensures that a cipher design is free from such vulnerabilities so that the encrypted data

remains secure during all phases of communication and storage.

Breaking these ciphers and retrieving information has always seemed a tempting task.

Hackers, Governments and Intelligence agencies have been trying since long to break the

cryptographic means used for securing data. Possibility of brute-force effort to find the

secret key virtually been ruled out by the use of complex algorithms resistant to

cryptanalysis, larger key space and limited computational power.

Backdoors can provide solution to these problems. A backdoor is a way of by-passing

encryption. Encrypted information can be recovered by anyone knowing the backdoor and

not knowing the secret key.

Broadly speaking Backdoors are divided into two categories :-

i. Embedded in a product at key scheduling, sharing or at protocol level

ii. An algebraic backdoor which is implemented at the design level of cipher

Existence of backdoor in a cryptographic algorithm (DES, for instance) has always been a

debatable question in academia and research community, further fueled by recent proof of

concept of existence of a backdoor in NIST Dual_EC_DBRG and revelation by Edward

3

Snowden leaks about existence of Cryptographic backdoors in NSA algorithms. The news

about Swiss firm AG Crypto, selling rigged machines capable of breaking the codes to 3rd

world countries including India and Pakistan have been termed as the “intelligence coup of

the century”.

Tweakable block ciphers provide one approach to answer this issue. While designing a

block cipher, the designers can embed a backdoor that is not easy to detect. This will allow

the designer to either retrieve the key or part of the key which will substantially reduce the

brute-force effort. The backdoor is designed and embedded in such a fashion that even if its

existence is known, it is computationally impossible to retrieve.

The research in this field gives rises to a general suspicion that most of the publicly

available block ciphers can also have backdoors which have not been claimed by the

designer in implementation. However, it is a complex battle between remaining secure and

exploiting a system. A designer may consider his design secure and share it publicly for

researchers to exploit it. A researcher may find a vulnerability and NOT declare it, creating

a false sense of cryptographic security. Researchers continue to find new ways to attack a

cryptosystem and come up with new ideas to break a cryptosystem.

1.1 Problem Statement

With the advancement and easy access to information, use of technology that was once

considered highly sophisticated by ordinary people is no surprise. One of the major concern

of LEAs and Government remains the use of encryption and covert channels by criminals,

which helps them to dodge surveillance. Pakistan remained embroiled for over a decade in

combating terrorism. Pakistan decided to ban use of VPNs [1] and social media applications

4

including Telegram in 2011, since these applications were extensively used by terrorists

owing to their ease of use and easy access to internet even in the remotest of areas.

Surveillance, therefore, remains a major contributor towards intelligence gathering. On the

other hand, encryption remains a preferable choice for anyone desirous to hide from

Government tailing. In order to remain one step ahead of these criminals, Governments

want access to any covert communication that takes place between these criminals. Where

breaking a cipher is not feasible in time sensitive scenarios, deploying a cryptographic

backdoor in a cipher may seem to address the problem. The research proposes an AES-like

block cipher based on SPN architecture, with a mathematical backdoor which helps to

retrieve key or part of key that would help in deciphering ciphertext.

1.2 Motivation

Back doored cryptosystems can be employed by Government organizations, LEAs and

intelligence agencies. A back doored cryptosystem based communication system (mail and

messaging applications etc.) will help LEAs and intelligence agencies for law enforcement

and national security requirements. Moreover, government organizations can keep an eye on

policy implementation and ensuring communication security by randomly checking

communication. Designing a block cipher with a mathematical backdoor is the main motive

behind this study, which may help anyone knowing certain parameters in deciphering the

Ciphertext without knowing the Secret Key at the expense of large computational effort.

Key recovery, however, is not the goal of this research.

1.3 Research Objectives

This research focuses on following objectives:-

5

1.1.1 Developing a cipher similar to AES that contains a mathematical backdoor

1.1.2 Analyzing effectiveness of linear and differential crypt analysis

1.1.3 Applying statistical analysis to observe how conservative the algorithm is in

terms of randomness

1.4 Contributions

The design of the new cipher will contribute to the existing research in following ways:

a. Develop an understanding of the cryptographic backdoors by providing

detailed literature review

b. Develop an understanding of a block cipher, how linear and non-linear layers

function, and discuss the impact of linear and differential cryptanalysis of such

functions.

c. Design and working of non-linear layers (S-Box) of a block cipher which can

help in understanding presence of backdoors in block ciphers.

d. Paving a way for future work with an endaveour to embed cryptographic

backdoors in an AES-like block cipher.

1.5 Thesis Outline

The research work has been organized and distributed in following chapters:

 Chapter 1: Chapter 1 presents a brief introduction to Cryptographic

backdoors. It also presents the problem statement, followed by motivation

behind the research and enumerates research objectives. Lastly it highlights

the contributions made through this research.

 Chapter 2: Existing Research in Cryptographic Backdoors.

6

 Chapter 2 presents an overview of the existing / recent research that has

already been carried out in the field of cryptographic backdoors.

 Chapter 3: Preliminary Background. This chapter gives an insight of the

preliminary background knowledge that is vital in understanding block cipher

designs and cryptanalysis techniques used against them.

 Chapter 4: Construction of A Block Cipher with An Embedded Algebraic

Backdoor. The chapter presents an introduction / brief description of the

LowMC Block Cipher which form the basis of our backdoored design. It will

also elaborate on underlying concepts of how an algebraic backdoor is

embedded in LowMC cipher.

 Chapter 5: The Designed Cipher – Security and Performance Analysis.

 This chapter would review the security as well as the performance analysis of

the cipher that we have designed. It will also present an analysis of how our

cipher compares to AES.

 Conclusion

7

Chapter 2

Existing Research in Cryptographic Backdoors

This chapter highlights previous significant research work carried out in the field of

Algebraic cryptographic backdoors. An idea of having a backdoor in block ciphers has been

a catalyst for academia, however, it has proven to be a difficult task. Presently, there are two

ways of implementing backdoors in block ciphers :-

a) Embedding a backdoor at protocol or key management level of the cipher

b) A cryptographic, mathematical or algebraic backdoor that is embedded in the

design of a cipher and exposes the cipher to some form of cryptanalysis.

The first type of backdoor is the commonly used type which is easy to design. The second

type, however, is difficult to implement and will form the base of this thesis.

2.1 Challenges in Backdoors implementation

Though the concept of mathematical backdoors has opened new avenues for public

research, yet only limited work has been done in this field so far, primarily due to facts

stated below :-.

1) It is difficult to embed secure backdoors in Block Cipher design since they are

deterministic in nature and very less likely to evade the research by hackers and

researchers while studying their design.

2) In order for a backdoor to be successful, the effort for key recovery and

correspondingly information extraction from only ciphertext should practically be

less than the brute-force effort.

8

3) Designers would not like to reveal the presence of any backdoor inside their

design, since it will affect the confidence of users on the product. Once such

backdoors are discovered, the researchers / organizations will not publish this fact

due to any security / financial gains associated with it.

2.2 Research in the field of Backdoors

Eli Biham, in 1994, proposed the idea of attacking key scheduling algorithms [2] that may

have inherent relationships between keys. He proved that these relationships can be used to

carry out attack against a block cipher. The paper explores the concept that Key scheduling

implementation in most of the block ciphers designs can be seen as a sequence of

algorithms. Each of these algorithm computes and derives a particular round key or sub-key

from sub keys of previous rounds. If the key scheduling algorithms for key derivation is

same for all the rounds, then it is possible to shift given sub-key one round backwards to

retrieve all the sub-keys and ascertain the relationship between the keys. Similarly, for

another given key, all the valid sub-keys can be derived using the same relationship, called

Related Keys. Therefore, if the structure of key scheduling algorithm is kept simple it will

expose the cipher to Related key attacks. Both the attacks were mounted against LOKI89

and LOKI91, the two variants of LOKI block cipher. The authors displayed that related-key

attacks do not exploit any vulnerability in DES and concluded how key-scheduling

algorithm can seriously compromise the design of a cipher.

Adam Young and Moti Yung extensively studied cryptographic backdoors and in 1996

coined the term [3] “Kleptography” which they described as the study of stealing

information from cryptosystems in a secure fashion. They explained that “subliminal

channels” can be designed within a cryptosystem which would place a hacker at an

advantage of retrieving information without the knowledge of users. The paper explains that

9

the use of “black box” cryptographic devices with trusted internal structure can have

backdoors which will enable hackers to steal the secrets in an invisible manner. Their paper

proposed a “Secretly Embedded Trapdoor with Universal Protection” or SETUP, a trapdoor

implementation technique which can be embedded in cryptosystems like El-Gamal, RSA,

DSA etc and will leak encrypted secret key information. However, instead of containing an

information leaking “subliminal” channel, the design would provide opportunities for the

attacker to retrieve information from the output of the cipher.

Rijmen and Preneel [4] suggested several methods to embed trap-doors in block ciphers [3]

in 1997. They defined partial trapdoors, which may either give partial information about the

key or do not work for all keys. The paper discusses the design of a trapdoor in a m x n S-

Box (where n represents the number of S-Boxes implemented in a round and m represents

the number of input bits to an S-Box) by adding an extra function T(x) (which is the

Trapdoor function) and is derived from the S-Box S(x). The researchers displayed that with

the higher value of m x n, it is easier for the cipher to hide a trapdoor. The paper concludes

that a trapdoor hidden in a 10 x 80 bits S-box is virtually undetectable, thereby verifying

that the possibility of having a trapdoor hidden in a seemingly legitimate block cipher

exists. Though the embedded backdoor remains undetectable, even when the general design

and characteristics of the cipher are known, yet the paper emphasis that trusting a cipher

whose design is secret is not advisable since it may contain a trapdoor which is hard to

detect. The cipher design was subsequently broken by Wu et al. in 1998 [5], who concluded

that the backdoor proposed by Rijmen and Preneel can be broken by applying linear

cryptanalysis techniques proposed by Matsui [6]. The trapdoor can be discovered if its

global design is known but not the parameters. In 1999 Paterson [7] proposed a DES-like

cipher structure containing a backdoor, which was based the idea that when a round function

10

acts on a message group, it can generate a group which can be imprimitive. In this case, the

design of the cipher will contain an inherent weakness which can be exploited, allowing

construction of a backdoor based on this weakness. Anyone knowing the backdoor will be

able to retrieve the key with 241 permutations. However, it concluded that the backdoor was

easily detectable.

Patarin and Goubin studied new cryptosystem [8], which was based on the asymmetric

cryptosystem “ C* ” and was proposed earlier in [9]. These cryptosystems were based on

the idea of hidden s-box computations with a secret function known only to the designer.

These functions were of one or two degrees. “C*” was concluded as a special case,

however, it did not contain the algebraic properties of “C*”, which subsequently led to its

cryptanalysis [10]. Therefore, these ideas were taken forward to explore different

cryptanalysis techniques that could exploit the algebraic characteristics of these ciphers and

led to introduction of completely new cryptanalysis tools.

In 2002, Liskov, Moses, Ronald L. Rivest, and David Wagner [11] introduced the concept

of Tweakable class of Block Ciphers. The idea was based on the concept of a nonce for

OCB mode or IV in CBC mode. A conventional block cipher has two input components, a

key, a plaintext and produces an output, the ciphertext. The idea behind was the address the

deterministic behavior of block ciphers, where a plaintext will always produce the same

ciphertext, if it is encrypted with the same key.

In 2013, Angelova, Vesela, and Yuri Borissov [12] studied design of block ciphers and

highlighted the weaknesses of S-Boxes that have flaws in their design, despite fulfilling

some design criteria and will result in very weak ciphers. It describes an attack that can

exploit these weaknesses and help in recovering plaintexts in DES-like ciphers that have

11

poorly or improperly constructed S-boxes. The paper discussed DES / triple-DES like

ciphers in ECB mode with modified S-Boxes.

In Bannier, Arnaud, and Eric Filiol [13] the authors discussed the general design of block

ciphers and proposes a block cipher embedded with a backdoor. The block cipher was based

on an encryption system which is vulnerable to cryptanalysis as suggested by Matsui in [5]

and which enables an attacker to retrieve the secret κ-bit key with a single plaintext / cipher

text pair. Bannier, Arnaud, and Eric Filiol [14] proposed an AES-like cipher named BEA-1,

which had an algebraic / mathematical backdoor which is implemented in the design of

cipher and had following characteristics :-

 80-bit Block size

 120-bit Key size

 11 rounds

The designers were able to recover 120-bits of key in 10 seconds with only 300 kb of

plaintext and 300 kb of corresponding ciphertext. The authors of the backdoors claim that

the backdoor still remains undiscoverable despite sharing its design.

2.3 Low Multiplication Complexity Ciphers

SPNs are constructed using a non-linear and a linear layer. Non-linear layers (S-Boxes) are

cost heavy in terms of execution times and therefore effect the overall performance of the

design. Low Multiplication Complexity or LowMC is a class of AES-like ciphers that is

designed to achieve Low Multiplication Complexity by employing partial non-linear layers

and a strong linear layer. A partial non-linear layer is designed in a fashion that S-Boxes

only act on a part of the layer and not the complete layer. This helps reduce the

computational overload as presented by Arnaud Bannier, Nicolas Bodin, and Eric Filiol

[15].

12

In 2020, Peyrin, Thomas, and Haoyang Wang [16] introduced LowMC-M, a malicious

instantiation of a LowMC variant. LowMC-M is based on a related-key attack and has an

additional tweak input, as shared by [1] and [10], which helps recover the secret key using

differential cryptanalysis. LowMC-M employs a partial non-linear layer in its design and

compensates for the security using a strong Linear layer.

2.4 Conclusion

In 2006, NIST proposed an algorithm, Dual_EC_DBRG classified as a CSPRNG and

became part of NIST SP 800-90A as a standard in 2007. However, in 2007, it was revealed

[17] that the DBRG contained a design flaw that could be termed as a “trap door”, a type of

backdoor. The news story was exposed in 2013 by the newspapers, The Guardian [18], and

The New York Times [19] while analyzing the memos shared by Edward Snowden, and

commented that the design flaw was deliberately kept by NSA, allowing one having the

secret NSA-points on the standard EC to reconstruct the secret key being used.

Similarly, the Washington Post in February 2020 [20] published a news story about Swiss

firm AG Crypto, selling rigged machines capable of breaking the codes to 3rd world

countries including India and Pakistan. The story has labelled this event as the “intelligence

coup of the century”, and explains how NSA established AG Crypto as a front-end company

to sell rigged machines to third world countries.

There has always been a debate on existence of Backdoors in commercial / public cipher

algorithms that no not claim existence of a backdoor otherwise. With the discovery of such

backdoors, users have become more suspicious and careful, and has opened new avenues for

researchers, who have been working hard to find any evidence of existence of a backdoor

embedded by the designer.

13

Backdoors in block ciphers, therefore, can be embedded in their design or protocol level, the

later being easily detectable. Designing a block cipher with a mathematical backdoor,

however, is a difficult task since its discovery will seriously affect the credibility of the

cipher and designers both. Apart from this, anyone discovering the backdoor can use it for

its own benefit.

In subsequent chapters, we will discuss the underlying concepts involved in the design of a

mathematical backdoor.

14

Chapter 3

Preliminary Background

Design of all the cryptosystem revolved around the Kerckhoffs's principle of cryptography

which states that a cryptosystem must be secure if its design and everything, except the key,

is a public knowledge. In other words, the strength of the cryptosystem will depend on the

key and not its algorithm. Our thesis will be restricted to the Symmetric Key Cryptography

only which is one of the two sub-domains of Cryptography.

3.1 The Symmetric Key Cryptosystems

The Symmetric Key Cryptosystems use identical key for doing the encryption and

decryption operation. When a user encrypts plaintext by using a key, it must be decrypted

with the same key. Therefore, the encrypting party ensures that all the parties who would be

requiring to decrypt a plaintext must also be in possession of the Secret Key. Handling and

distribution of Secret Key is beyond the scope of this thesis.

Symmetric Key Cryptosystems are further divided into Block and Stream Ciphers. In this

thesis, we would focus our attention towards Block Ciphers only and after explaining the

general primitives, will discuss Tweakable Block Ciphers which are pertinent to our thesis.

3.1.1 Block Ciphers and SPN Networks

A block Cipher generates permutations on a fixed length of bits, called a Block. These

permutations are indexed or controlled by a secret Key. Consequently, a block Cipher will

have two algorithms: an encryption algorithm and a decryption algorithm.

To keep it structurally simple and to increase its cryptographic strength, a Block Ciphers use

a technique to iteratively update its internal state multiple number of times (as intended by

15

the designer) after it has been initialized by a plaintext. This technique is called ‘round

function’. Again, the Secret Key (K) or the Master Secret Key is passed through a Key

Scheduling Algorithm that will calculate a set of round keys, one to be used for each round,

so that each round does not depend on the Master Secret Key and depends on the round Key

only.

The design of round keys may follow one of the two design frameworks, a Feistel Network

and a SP-Network. Here SP stands for Substitution-Permutation. Though the design of the

round function may differ, yet the rest of the primitives will remain the same.

3.1.2 Tweakable Block Ciphers

A special type or variant of Block Ciphers is “Tweakable Block Ciphers”, which were

introduced by Rivest, Liskov and Wagner [21]. Here, the block cipher is designed to accepts

an additional input value known as ‘Tweak” and encrypts a message M which is controlled

by two entities, the key ‘K’ and a “tweak” T. Both values act together to encrypt a message

to produce a cipher text C. Therefore, we can represent a tweakable block cipher as

3.2 Components of a Tweakable Block Cipher

Classically, all Symmetric encryption systems are built using four components. However, in

the thesis our design will revolve around a Tweakable Block Cipher and therefore we shall

be dealing with an additional Tweak Input as well. We will describe these one by one before

exploring each in detail.

A Typical Tweakable Block Cipher is illustrated in Figure 3.1 :

16

Figure 3.1: A TBC

3.2.1 The Plain Text (M)

The message, clear text or literal text forms the input to a cipher algorithm. This is the text

that the sender wants to encrypt so that the adversary is not able to read it during

communication or storage if he accesses it. The Cipher receives a fixed length of plaintext

bits known as a Block. The length or size of the Block fed to the Encryption algorithm as an

input will remain fixed for a given scheme of Block Cipher.

3.2.2 The Encryption / Decryption Algorithm (E)

The component of encryption system that takes the Plain text message (M) and generates a

Cipher Text (C) under control of the key (K) is known as the Encryption (E) / Decryption

(D)Algorithm. The Block Cipher, classically, will take a Block of Input Text, will perform

Encryption (E) process, and creates a cipher text (C). This process will be done under

control of the key (K).

3.2.3 The Master Key (K)

The master key (K) is a string of random characters which is known to only the sender and

receiver. It is used to encrypt and decrypt the data and therefore, is kept secret.

17

1) The Key string is kept random so that it is difficult to guess and is long

enough for making the brute-force (or trying all possible combinations)

effort infeasible.

2) A Key scheduling algorithm is used to generate keys, since block ciphers

use more than one round for encryption.

3.2.4 Cipher Text (C)

The result of the Encryption Process (E) is the Cipher Text (C). This is the output of a

Block Cipher which, for an adversary, is unintelligible. Therefore, if an adversary wants to

derive information from Cipher Text (C), it has to be reverted back to its original state using

the Decryption Process (E).

3.2.5 The Tweak Input (T)

For the Tweakable Block Cipher to work, an additional input is also provided to the Block

Cipher known as Tweak Input (T).

3.3 The Advanced Encryption Standard (AES)

The objective of our research is to design an AES-like SPN cipher, therefore we will explain

the brief working of AES in this section, to develop an understanding of how AES works.

3.3.1 The AES Design and Working

The Advanced Encryption Standard (AES) is an iterative, Substitution – Permutation

Network Cipher. Being an iterative Cipher, it has multiple rounds, the number of which are

determined by the length of the Key, whereas the round function remains the same. Table

3.1 and the figure 3.2 shows the various key lengths and corresponding rounds.

18

Table 3.1 AES key lengths and rounds

Key Length Number of rounds Comments
128-bits 10
192-bits 12
256-bits 14

Figure 3.2 AES Block Diagram

The AES working is described in subsequent sections and shown in Figure 3.3 :

Figure 3.3 AES Operations Flowchart

19

3.3.2 Plain Text Handling by AES

AES is designed to perform computations on Bytes, rather than the Bits. Therefore a 128-bit

data block in AES is treated as 16 bytes. AES further arranges these 16 bytes into a 4x4

matrix for processing in GF(28).

3.3.3 Rijndael’s Key Scheduling Algorithm for Key Expansion

The same Secret Key is not used for every round, instead the Master Secret Key is used to

determine a set of Sub-Keys. The series of "round keys”, one key for every round, is

calculated or derived using the Rijndael’s key scheduling algorithm.

3.3.4 The Key Whitening Layer

The initially driven 128-bit Sub-Key or K0, (which is calculated from the Master Secret Key

by using the Key Scheduling Algorithm, as explained in 3.3.2) is XORed with the state. This

is done before the start of AES rounds operation to perform a Key Whitening operation.

3.3.5 The AES Rounds

The length of the Master Secret Key determines the number of rounds in AES (as discussed

in Table 3.1 above). The number of rounds will be numbered from 0 to Nr – 1, where

Nr ε {10, 12, 14}.

Except the last round, AES round functions comprise of following transformations in the

order given below. We will not go into the detailed working of these operations :-

3.3.5.1 Byte Substitution Layer (ByteSub or S-Box Layer)

Byte Substitution Layer is the non-linear layer that would apply identical S-Box

permutation to every bit of the state and non-linearly transforms the state by making use of

special lookup tables that have special mathematical properties.

20

3.3.5.2 Shift Rows

The Shift Row operation shifts or rotates (in a cyclic manner) the ith row of the state by i

bytes, where i = 0, 1, 2, 3 (the number of row). The process is shown in Figure 3.4.

Figure 3.4 AES Shift rows operation

3.3.5.3 Mix Column

The Mix Column function operates on each column of the state. It starts by treating each

individual column as a vector and multiplying it with a 4x4 fixed matrix.

3.3.5.4 Round Key Addition Layer

Towards the end of every round, a Round Key Addition operation is performed which

existing stat is XORs with the Round Key. As discussed earlier, Round keys are driven from

the Master Secret Key through Key Scheduling Alorithm.

3.3.6 The Cipher Text (C) and its Decryption

The output of the AES is a block of encrypted data that can be securely stored and

communicated over an un-encrypted network, provided the Secret Key is kept secure.

Being a SP-Network based, the decryption operation is merely an inverse of the encryption

operation and layers along with their order are inverted.

21

3.4 Cryptanalysis

The strength of a cipher lies in the Secret Key. Even if every detail of the cipher is public

and its design and working is known, the cipher should be considered secure till the time the

Secret Key is not known. Therefore, the objective of an adversary is to find a way to recover

the Secret Key. The adversary can achieve this in a many ways.

The attacker is assumed to have gained access to the Cipher and it can submit queries in the

form of Plaintexts / Ciphertexts and receive a corresponding reply (Ciphertext for plaintext

and a plaintext for ciphertext). An attacker can launch an attack in a white-box context

where the internal state or the design of the cipher is known to the attacker, or a black-box

context where the internal state or the design of the Cipher is not known to the attacker. In

the later, the adversary is dependent on encryption / decryption queries only. The table 3.2

describes the various scenarios in a black-box context that an adversary may use to launch

an attack.

Table 3.2 Attack Scenarios

Ser Type of attack Description

1.

Ciphertext only

attack or Known

Ciphertext attack

During this scenario, the attacker or adversary has access to

ciphertexts only.

2.
Chosen Ciphertext

Attack (CCA)

In CCA, the adversary obtains the plaintexts against a set of

ciphertexts for further analysis

2a. Adaptive CCA

In this type, after receiving the plaintexts for the chosen

Ciphertext attack and analyzing them, the adversary can

request for plaintexts for additional Ciphertexts.

3.
Known plaintext

Attack

Here, the adversary possesses certain pairs of plaintexts along

with their generated ciphertexts

4.
Chosen Plaintext

Attack (CPA)

The adversary can select random plaintexts which are required

to be encrypted and obtains their corresponding cipher texts

22

after encryption

4a.
Adaptive chosen-

plaintext attack

In this model, after receiving the cipher texts for the chosen

plaintext attack and analyzing them, the adversary can request

for ciphertexts for additional plaintexts.

The attacker can choose to exploit Keys as well. As discussed earlier, an iterative cipher

employs a Key Scheduling Algorithms for generating round keys. The attacker, therefore,

can attack using Original Secret Key or the Round Keys. This is done in either of the

following manners [22]: -

1) Single-key attack: the attacker can only make queries to the cipher by making

use of the master key K.

2) Related-key attack: Both Original secret key K, as well as a related key K1, can

be used to make queries using to the cipher. In case the Cipher makes use of a

weak or simple Key Scheduling Algorithm, it is easy for the attacker to determine

the relationship and derive further keys.

3) Chosen-Tweak attack. The attacker can also analyse the tweak input, determine

and use a relation between tweaks for attacking a Cipher by selecting a tweak

value. This is known as Chosen-tweak attack.

Symmetric Key Block Ciphers, inherently being deterministic in nature, are susceptible to a

number of attacks. A number of bits, or a block, when encrypted with a key, will always

produce the same cipher text. This characteristic of a block cipher makes it vulnerable to a

number of cryptanalysis techniques, the most common being the Differential and Linear

Cryptanalysis. These attacks, when combined, form the basis of new type of attacks e.g.

Boomerang attack and meet-in-the-middle attacks.[23].

23

3.4.1 Differential Cryptanalysis

Eli Biham was the first to introduce Differential Cryptanalysis in 1991 [24]. This type of

cryptanalysis is a chosen cryptanalysis attack, where the probability of existence of a

differential, i.e. an input-out difference pair is exploited.

For instance, let us consider a Cipher which has input X = [X1 X2 X3 ….Xn] and consequent

output as Y = [Y1 Y2 Y3 … Yn]. Then for each plaintext input X*, there will exist a

corresponding Ciphertext output, Y*.

Consider X’ and X” and two inputs such that their corresponding outputs exist as Y’ and Y”.

Then the difference between the two inputs is given by

∆X = X′ ⊕ X″ i.e. the input difference equals the XOR of X′ and X″

with ⊕ being the bit-wise XOR of the two n-bit input values, And therefore

 ∆X = [∆X1 ∆X2 …… ∆Xn]

Where ∆Xi = X i′ ⊕ X i′′, where Xi’ and Xi” represent the i-th bit of Xi’ and Xi”.

Similarly

∆Y = Y′ ⊕ Y″

And therefore

 ∆Y = [∆Y1 ∆Y2 …… ∆Yn]

Where ∆Yi = Y i′ ⊕ Y i′′, where Yi’ and Yi” represent the i-th bit of Yi’ and Yi”.

Therefore, in a truly random cipher, the probability that given a particular ∆X is given as

input and a certain output difference ∆Y exists, will be 1/2n, (where n is number of bits in X).

However, this will not be true in every case and in some cases, the probability of occurrence

will be high. A pair of input-output differences (∆X, ∆Y) with high probability of occurrence

is known as a differential.

24

For constructing the complete differential of a SPN Cipher having multiple rounds with

Plaintext Input as X and Ciphertext Output as Y, we calculate the Differential

Characteristics of each round (i.e. input and output differences). For this, we shall examine

the properties of individual S-Boxes of the cipher to determine the Differential (∆X, ∆Y)

with highest occurring probability. This is done by calculating a Difference Distribution

Table (DDT) for each S-Box, from where the probability of occurrence of a specific ∆Y

against a specific ∆X is determined. For each S-Box in a round, the ∆Y with highest

probability of occurrence is chosen for a given ∆X. This way, the non-zero ∆Y bits from a

round relates to non-zero ∆X bits of the next round. This gives us a high-probability

difference from start (input) of the Cipher to the input of the last round. This is termed as

Constructing Linear Approximations for the Complete Cipher.

Being a Chosen-Plaintext Attack, the adversary is allowed to select a pair of inputs X′ and

X″ so that a particular ∆X is satisfied. Moreover, the attacker knows that what values of ∆Y

value would occur with high probability therefore, he is at liberty to choose input pairs to

get the corresponding ∆X.

We also have to consider the fact that we are to find the key for this Cipher. It is concluded

that the Key will not effect the input difference and will cancel out when XORed.

After a Differential Characteristic for R-1 round has been determined in a R-round Cipher,

we can attempt to recover key bits of the subkey of last round which we can term as Target

Partial Round Key. Since a single S-Box in a specific round receives a small portion of the

state, its output (ciphertext) can be brute-forced by XORing the Ciphertext with all the

values of the Target Partial Round Key. The resultant vector or Ciphertext value is passed

back through the all the respective S-Box. We will do this for all plaintext / ciphertext pairs

and a counter for each recovered Target Partial Sub Key is kept. This value is incremented

25

if the linear expression is found to be true after a Partial Decryption using a Target Partial

Round Key. After all the Target Partial Sub Keys have been tested, the counters are

checked. Thy key whose counter is found to deviate the greatest from half of the Plaintext /

Ciphertext numbers is presumed to be the Target Partial Sub Key bits.

3.4.2.1 Linear Cryptanalysis

In subsequent paragraphs we will explain the Linear Cryptanalysis attack against a

Substitution-Permutation Network Cipher.

Matsui discovered that the plaintext, cipher text and sub-key bit share a high probability

relationship which can be expressed in the form of Linear Equations. The attack works with

an assumption that an attacker has access to a random set of plaintexts and their

corresponding ciphertexts, with a clause that he has no control over selection of plaintexts

that are being used. Thus this is a Known Plaintext Attack.

First, we try to find out a linear approximation in our SPN Cipher to the last round. We start

with a portion of the cipher and expresses it form of a linear expression (linearity being a

binary XOR operation). The equation can be written as:

X* ⊕ Y* = 0

The linear equation is formed in following manner

Xi1 ⊕ Xi2 ⊕ ……. ⊕ Yj1 ⊕ Yj2 ⊕ ……… ⊕ Yjm = 0

where

Xi represents the i-th bit of the input X = [X1, X2, ...]

Yj represents the j-th bit of the output Y = [Y1, Y2, ...].

This equation is representing XOR of u input and v output bits

26

So basically, we find expressions like equation above that have a high or low probability of

occurrence. The existence of linear expressions of above form with a high or low probability

is an indicator of poor randomization abilities and can subsequently be exploited in the

Linear Cryptanalysis attack.

To proceed, we select random values of u and v, and place them in the equation above. The

probability that the above equation will hold will be exactly ½. The deviation from this

probability value is known as Linear Probability Bias, and forms the basis of a Linear

Cryptanalysis Attack.

The expressions that are highly linear are constructed by taking into account the input and

output bits of an S-Box and find out linear vulnerabilities in a S-Box. So for a S-Box that

handles input X = [X1, X2, X3, X4] and output Y = [Y1, Y2, Y3, Y4], we shall examine all linear

approximations and compute Linear Probability Bias for each.

Therefore, for one particular linear equation, by applying all the 16 input values of the S-

Box and examining the corresponding output, we will find out the probability bias, i.e. the

number of times this expression holds true. We can formulate the Linear Approximation

Table of the S-Box by using all of its linear approximations.

Later, we can concatenate the linear approximations of multiple S-Boxes together so

that we can come up with a linear expression which only contains the bits from plaintext

and input bits from the last round.

The Key-recovery process is similar to what is done in Differential Cryptanalysis. We find

out the R-1 round linear approximation for a R-round Cipher and with a large probability

bias, which makes it possible for us to launch an attack to recover last round key bits or

Target Partial Sub Key. Rest of the process is the same as the key recovery process of

Differential Cryptanalysis.

27

3.5 Backdoors in Block Ciphers

So far, we have also discussed the general structure of Block Ciphers and focused on its

classic example; the AES. In order to defeat encryption, researchers and hackers’ resort to

tools like Linear and Differential Cryptanalysis, which forms basis of other type of attacks

like Boomerang Attack etc. Privy of the fact, the designers of a crypto system take into

account these cryptanalysis techniques during the design phase of the cipher and try to make

the Cipher as much resistant to modern day cryptanalysis techniques as possible.

Considering their public use, it becomes equally cumbersome for the law enforcement

agencies to decrypt any captured encrypted communication which made use of publicly

available strong cryptosystems, like AES for example. So, over a period of time, thought

was given to have a simpler method, like a backdoor, which is only known to designers,

Governments and law enforcement agencies and would give them control over how

encryption systems work. However, they would work best if they are only known to the

designers.

Backdoors are regarded as the best way to implement cryptographic control over Ciphers.

Theoretically, they require far less effort than brute-forcing a cipher. Consequently, they are

ideal for use by governments and law enforcement agencies who want to control or by-pass

encryption.

As mentioned in Introduction earlier, embedding a backdoor in block ciphers is a

challenging task since exploit randomness in computations is difficult due to their

deterministic behavior. Moreover, researchers and hackers both are always at the lookout

for exploring a loophole in an encryption algorithm which can help in recovery of sensitive

data and circumvent encryption, thus exploitation.

28

Broadly speaking when it comes to implementation, backdoors are categorized into two

main types:-

 A backdoor can be embedded in a system at either the key scheduling,

generation, distribution or management phase. These are more suited methods,

being easier to implement.

 An algebraic backdoor which is implemented at the mathematical design level of

cipher. These are considered difficult to implement and not much significant

work exists in this field. A mathematical backdoor should assist its designer (or

anyone who is in knowledge of a mathematical backdoor) in an effective

cryptanalysis and help in recovering the key on a modern-day computer with

limited plaintext / ciphertext pairs)

3.5.1 Characteristics of Backdoors in Ciphers

In order to have a strong cipher with an Algebraic backdoor, it is assumed that it will fulfill

certain requirements, which make the design practical and workable [16]. These include :-

 Even if the general form of the cipher or internal design is known to an adversary,

retrieving backdoor information should still remain computationally difficult.

 The security of backdoor (effort involved in recovering the backdoor) should be

equivalent to that of cipher. In other words, retrieving the backdoor should be as

difficult as brute-forcing the cipher, otherwise the security of backdoor will defeat the

strength of cipher.

 The backdoor should perform an attack that is deemed practical or provide such an

information that would significantly reduce the brute force effort for the designer.

29

Merely reducing 2256 to 2128 may seem great advantage theoretically, but it would still

remain practically infeasible.

 Finally, the designed block cipher with an embedded backdoor must be protected in

the classical sense, that is, it should not be vulnerable to state-of-the-art cryptanalysis

techniques.

3.5.2 Security Notions

For a Backdoor to be achieve both the purposes, i.e. being practical and secure at the same

time, it must adhere to following security notions:-

1) Undetectability. The Backdoor must be embedded in a manner that it would

remain undetected. Thus, Undetectability represents the inability of researchers

and hackers to comprehend that a covert Backdoor exists in the Cipher.

2) Undiscoverability. This notion represents the inability of researchers and

hackers to find a hidden Backdoor embedded in a block cipher, even if they

somehow know that a hidden Backdoor has been embedded in the cryptographic

algorithm.

3) Untraceability. This notion states that if an adversary uses the backdoor to

launch an attack, no information about the existence or working of Backdoor is

revealed.

4) Practicability. The last and the most important security notion is the

Practicability. It defines that when an entity is in knowledge of the Backdoor and

it intends to launch an attack for key recovery, it should be practical and should

allow the key recovery without much effort.

30

Above in view, it is therefore considered that designing a backdoor which meets above

criteria is virtually impractical, and not much of a research exists in this field and the topic

remains of extreme interest for academia.

3.5.3 The SageMath Tool

Lastly, we will briefly introduce the SageMath Tool. The SageMath is an Open-source,

mathematical system licensed under GPL. It is a library which is constructed on top of many

other free and open-source libraries like NumPy, matplotlib etc. These libraries can be

accessed through a Command-Line Interface (CLI) which is based on Python, a renowned

programming language.

SageMath can be downloaded from https://www.sagemath.org/download-windows.html and

will work on any 64-bit windows (windows 7 onwards) or from GitHub

(https://github.com/sagemath/sage-windows/releases).

3.5.3.1 SageMath Components

A normal SageMath installation can be run through three desktop / start menu shortcuts.

The normal convention is SageMath <version>.

1) SageMath 9.2 . The basic Sage: command Prompt can be accessed through the

SageMath console. It is a CLI where we can enter commands and execute them.

For example, we can simply write 2 + 2 on the command line and SageMath

Console will sum these up and give 4 as output in the next line.

https://www.sagemath.org/download-windows.html
https://github.com/sagemath/sage-windows/releases).

31

2) SageMath 9.2 Shell. This shortcut a bash-shell which is intended for advanced

users accustomed to use SageMath in a UNIX-like environment (Linux, for

example).

3) SageMath 9.2 Notebook. The SageMath 9.2 Notebook starts a Jupyter NoteBook

Server which can run Jupyter Notebooks in a Sage Kernel (i.e. we can run Sage

inside Jupyter). Running the Notebook will execute the Notebook Server in a

command-line environment and open the NoteBook in our default browser.

32

3.5.3.2 Utility

For this thesis, we shall be making use of SageMath to write our code for the Cipher. The

coding is done in Python and reason for selecting SageMath is its built-in collection of

libraries which would otherwise require to be imported in Python.

3.6 Conclusion

Brute-force and cryptanalysis are two tools that are employed for breaking a cipher and

recovering key information. During the design phase, designers use Cryptanalysis tools to

analyses the system and try to find out design vulnerabilities which may help in recovering

key. Addressing these vulnerabilities will not only strengthen the cipher, but make the task

of attacker more difficult. Similarly, for a law enforcement agency, this task will be equally

difficult considering longer keys and ciphers that are resistant to cryptanalysis.

Researchers are now considering embedding backdoors in the ciphers. To recapitulate, a

backdoor is a hidden way of bypassing security in a cryptographic algorithm with an aim to

facilitate the designer (or anyone who is in knowledge of Backdoor) in key recovery.

Implementation of a backdoor may be easy, but keeping it secure so that hackers and

researchers do no discover it and use it for breaking the cipher is a cumbersome and difficult

task.

33

This research focuses around the design of a framework that can be used to embed a

mathematical or algebraic backdoor in an AES like, SPN based tweakable block cipher. We

will start with a broader overview of the cipher and then discuss each component

threadbare.

34

Chapter 4

Block Cipher with an Embedded Algebraic Backdoor

After having gone through the preliminary background in the preceding chapters, we shall

discuss the framework design of a backdoored block cipher and its code.

Designing a weak cipher susceptible to cryptanalysis (linear or differential) has an inherent

weakness since anyone can exploit these weaknesses and retrieve the secret key. Such a

design will not contribute to a practical solution where the backdoor (cryptanalysis) is not

only discoverable but detectable and traceable. Therefore, we need a design that is

workable and exhibits strong cryptographic properties and resists cryptanalysis. In short, it

should behave like any other cipher, but has a secret backdoor element that is known;

however, the secret element value is not easily discoverable or retreivable. This secret

backdoor will help an attacker (who is in knowledge of the backdoor) in key recovery.

For designing the backdoored cipher, we employ the LowMC-M framework [16]. The

framework generally generates the parameters for a traditional LowMC cipher with

embedded backdoor. However, the concrete framework does not contain the underlying

design code to make the backdoored cipher. We have designed and coded a cipher which is

compatible with the LowMC-M framework and initiates by taking parameter values

generated by the framework. The encryption / decryption algorithm running inside the

LowMC-m code will be explained where required. Main emphasis will be on the

explanation of concept, theory and coding being done to embed the Backdoor inside the

Block Cipher.

The LowMC uses randomly generated matrices for Whitening Key and Linear Layer matrix

multiplication. This is essential because of the following reasons: -

35

1) If the underlying matrices are fixed, it will make the cipher deterministic, leading

to correct decryption of the ciphertext. This is also the well-known fact for AES

as well in which the underlying matrix employed in encryption and decryption

operations is fixed.

2) Fixed Matrices or values (without any mathematical justification) leads to a

suspicion that the designer might have embedded a mathematical backdoor in the

design by specifically choosing these matrices. Due to the underlying design of

the LowMC cipher for being lightweight, every time we instantiate the cipher, the

random parameters are generated, which are then fixed by both the sending and

receiving parties for encryption / decryption.

4.1 The Generic LowMC Framework

Our Cipher is designed based on the LowMC class of Block Ciphers which is a Low

Multiplication Complexity Cipher. This family of Block Ciphers belongs to the SPN

architecture and utilizes a partial non-linear layer.

4.1.1 The design Overview

Based on a conventional SPN design, the LowMC cipher comprises of an initial Key

Whitening stage followed by a round function which is iterated r number of times. The

general diagram of the LowMC is illustrated in figure 4.1. Each layer will be described in

subsequent paragraphs.

4.1.2 LowMC-M Framework: The LowMC with a Backdoor

The LowMC-M framework is a variant of LowMC framework. The LowMC-M framework

transforms the LowMC into a tweakable block cipher (TBC) with hidden high-probability

36

differential characteristics which embeds a Backdoor. The additional input of the TBC is

controlled by a Tweak value which is added before the rounds as Whitening Tweak and

during each round as round tweak [26]. The general form of the LowMC and LowMC-M

framework is illustrated in figure 4.1.

Figure 4.1 The Block Diagram of LowMC (left) as compared to LowMC-M (right)

4.2 Tweakable Block Ciphers

The LowMC-M instantiation is designed basing on a Tweakable Block Cipher (TBC) with a

partial nonlinear layer. The TBC is designed as such so that the Tweak Value and the

37

partial nonlinear layer are used to embed differential characteristics over a number of

rounds. With the knowledge of the Tweak Value, it is easy for an attacker to recover full or

part of Secret Key. The Tweak Value, therefore, acts as the backdoor.

4.2.1 Tweak Value

In order for the tweakable block cipher to work, a tweak value is given as an additional

input to the cipher during its various stages. The addition of same tweak value in all stages

of the cipher will be not serve the purpose and will cancel out during the Cryptanalysis.

Figure 4.2 shows the block diagram of how Tweak values are added in LowMC-M.

Figure 4.2 Tweak Addition in the LowMC Framework

The tweak value is generated from a randomly selected tweak pair using an extendable-

output function (XOF). XOF, as its name suggests, is a variation of a HASH function which

can produce an output of a desired length.

38

Since we intend using this as the backdoor, therefore it is assumed that it is known to the

designer who, however, is not in possession of Secret Key and wants to retrieve it.

Following steps are involved in tweak generation phase of the cipher, which are

depicted in Figure 4.3:-

Figure 4.3 Tweak Value Generation

1. A n-bit random tweak pair (t1 & t2) is selected. This tweak pair is used to

generate the Tweak Value.

2. Each Tweak Value (t1 & t2) is fed to an extendable-output function (XOF) which

in turn generates a Hash Value. An XOF can generate a desired length output,

which can be used to generate the Tweak Schedule.

3. The output of the XOF is XORed to generate the Master Tweak Value.

Master Tweak Value
1. Select n-bit tweak values (tweak_1 & tweak_2). These values are random

2. Compute following:

XOF(tweak_1) → t1

XOF(tweak_2) → t2

3. Evaluate the difference

t0 = ∆t = t1 ⊕ t2

4. The evaluated value is the t0 Master Tweak Value

39

4.2.2 The Tweak Schedule

The code uses SHAKE128 as XOF, therefore the length of input i.e. tweak_1 = tweak_2 =

128. The XOF uses these 128-bit vectors to generate t1 and t2. The length of t1 and t2 is fixed

such that the whitening and round tweaks can be derived from it. The output of the XOF is

depicted in figure 4.4 below:-

Figure 4.4 Output of XOF

4.3 The Cipher Parameters and Instantiation

Unlike the conventional ciphers, the LowMC instantiation is not fixed and user is at liberty

to choose parameters of his own choice to instantiate the Cipher. For the purpose of this

thesis, we select parameters as stated in table 4.1 for instantiation.

Table 4.1 Instantiation of LowMC-M

Parameter Symbol Size (bit) description

Key Size k∈ {0,1}s 128 the Key size

Block Size p ∈ N 128 The block size is denoted by p = plaintext

Size of S-Box n ∈ N 3 the input size of S-box

Number of S-Box m ∈ N 30 the number of S-box applied in each rounds

Rounds r ∈ N 70 the number of rounds

Non-linear size s ∈ N 90 Size of non-linear Layer is denoted by s =

mn

40

It is worth noting that using different combinations of instantiation parameters would result

into different security strength owing to varying number of rounds and S-Boxes in the linear

layer.

4.4 The Plaintext (p)

The block cipher takes a 128-bit block of data as input, which will be transformed by the

block cipher into the cipher text of the same length, i.e. 128-bit.

4.5 Whitening Key (kw)

The first step of the cipher is key whitening stage or layer. The whitening and the round keys

both are generated by using a key scheduling algorithm, that derives these keys from the

master secret key. We will generate random keys for using with the LowMC-M framework

cipher and save them for the encryption and decryption round. All parameters are generated

by LowMC-M framework based on the underlying LowMC cipher design.

The Whitening key is a n x k matrix which is required to be generated by the key scheduling

algorithm. However, in our case, this is generated as a random matrix of size p x k. The state

(plaintext) vector is multiplied in GF(2) with the n x k whitening key matrix generated

earlier. The result product of the matrix multiplication is a n-bit vector.

 In this layer, the 128-bit input text block or the state S1 is multiplied by a 128 x 128

bit binary matrix and the output of this layer S2 is a 128-bit binary vector.

41

4.6 The Whitening Tweak

In the next layer, the state S2 is XORed with the 128-bit Whitening Tweak value, which is

driven from the Tweak Schedule. The output of the Whitening Tweak layer is a 128-bit

vector S3.

4.7 The Round Function

The SPN based cipher will have r number of rounds (where r ∈ 1, 2, 3, …). We shall

consider a round function at round i, (where i ∈ {1, 2, 3, … The previous round will be .({ݎ

referred to as ri-1 and next round as ri+1.

Therefore, at the start of round ri, the state xi will be output from ri-1. At the start of the first

round, output of Whitening Tweak Layer i.e. S3, is available to round function as input.

4.8 The Non-Linear Layer (Si)

The non-linear or the S-box layer comprises of m number of n-bit s-boxes that are identical

and applied onto the state. Here, the S-boxes are not applied to the complete state, but only

to a portion of state. This type of non-linear layer is termed as a partial non-linear layer.

 In a classical SP Network based block cipher, the Linear (Li) and Non-Linear (Si) are

applied to the complete state during every round. In 2013, Gerard et al [xx] presented the

concept of partial non-linear layers. The non-linear state (Si) only acts on a part of the state

only. Assume that we are using a cipher where in its design it utilizes m number of s-boxes

in each layer having a block size of 3 bits for each s-box, then the size of non-linear layer s

= 3m where s < p.

Therefore, if we look at our parameters above, since state p = 128, and a partial non-linear

layer has m = 30 s-boxes in each layer with the size of each s-box as 3, therefore the size of

42

partial non-linear layer s = 3m = 30 x 3 = 90. Moreover, clearly s < p since 90 < 128. This

means that out of the 128-bits of the state S4, only 90 bits will be transformed by the s-boxes

(thus the partial non-linear layer) and remaining (n – s) 38-bits will pass without any

change.

4.9 Handling round keys in rounds with Partial nonlinear layers

In LowMC, we observe that the partial nonlinear layer will act on s-bits of the state and

remaining (n-s) bits will pass through the layer unchanged. This can be used to optimize key

generation. If we split the round key is into two parts, i.e. ki’ (0) and ki’(1) such that size of ki’

(0) = s and ki’ (1) = (n – s), then the ki’ (0) part will be XORed with data that has been

transformed by s-box and ki’ (1) remains unaffected. Thus, if the round key layer follows the

S-Box Layer, then it can be moved up and combined with the ki-1 of the previous layer.

Figure 4.5: Representation of LowMC with key size equal to S

43

4.10 The S-box layer design

The S-box being used in LowMC is a 3-bit S-box, which is shown in Figure 4.6. An S-box

can be realized in terms of a look up table, where the substitutions are carefully designed

after evaluating Boolean functions and it is ensured that they satisfy certain security criteria.

The S-Box is designed on following Boolean functions.

S (x0, x1, x2) = (x0 ⊕ x1 x2, x0 ⊕ x1 ⊕ x0 x2, x0 ⊕ x1 ⊕ x2 ⊕ x0 x1)

Figure 4.6 The Sbox of the Non-Linear Layer
From the Boolean code above, the lookup table for the S-Box is given below.

Table 4.2: Lookup table for S-Box

Input Output
x0 x1 x2 y0 y1 Y2
0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 1
0 1 1 1 1 0
1 0 0 1 1 1
1 0 1 1 0 0
1 1 0 1 0 1
1 1 1 0 1 0

From the parameter settings of our cipher, three 3-bit S-boxes will be act on the first 9 bits

(S2) in the first round, since we are using the partial non-linear layer. The remaining n-s bits

44

will be identity. Therefore, for input xi (i ∈ {1, 2, 3, … ݊}) and corresponding output yi (i ∈

{1, 2, 3, … ݊}) , the partial non-linear is shown in Figure 4.7:

Figure 4.7 The partial non-linear layer

4.11 Round key Addition (kri)

For a r-round cipher, (where r ∈ 1, 2, 3, …), r number of round keys are required to be

generated by the key scheduling algorithm. As already concluded above, the size of the

round key ki (where i ∈ {1, 2, 3, … will be equal to S which is the nonlinear size of the ,({ݎ

nonlinear layer. Therefore, each round key is a s x k matrix which is required to be

generated by the key scheduling algorithm. However, in our case, this is generated as a

random matrix of size s x k.

The state xi (n-bit vector) is split into x(0) and x(1), s.t. xi = (xi(0) || xi (1)) where x(0) is multiplied

with the s x k round key ki (where i ∈ {1, 2, 3, … in GF(2). The resultant product of the ({ݎ

matrix multiplication is a s-bit vector, which is concatenated with the identity xi (1) to

generate an n-bit vector S5, which is the output of this layer.

45

4.12 Round Constant Addition (RCi)

In this Layer, the State S5 is split into x(0) and x(1), s.t. xi = (xi(0) || xi (1)) where x(0) is XORed

with a randomly generated S-bit round constant vector. The resultant vector is concatenated

with xi (1) to generate an n-bit vector S6, which is the output of this layer.

4.13 Round Tweak Addition

The state S6 again is split into x(0) and x(1), s.t. xi = (xi(0) || xi (1)) where x(0) is XORed with a S-

bit Round Tweak, which is generated by the Tweak Schedule using XOF. The resultant

vector is concatenated with xi (1) to generate an n-bit vector S7, which is the output of this

layer.

4.14 Linear Layer (Li)

In the LowMC, the state is multiplied with an invertible randomly selected n x n binary

matrix Li in the Linear Layer.

However, in LowMC-M the Linear Layer Matrix is not chosen randomly, but is generated

to embed differential characteristics in every round, one round after the other. This means

that the Linear Layer Matrix is generated separately for every round.

4.15 Differential Characteristics and Differential Cryptanalysis

If we recall, in-order for a Key recovery attack to work, Differential Cryptanalysis is

performed to recover the s-bit subkey kr for the last round first, say round r. This is done

when differential characteristics exist over r-1 rounds. After recovering the subkey bits, the

cipher is reduced to r-1 rounds and the next (previous round) key i.e. kr-1 is recovered. For

recovering the next round ket Kr-2, r-2 differentials would exist and will be exploited. So far,

46

we have discussed existence of 3 differential characteristics, one for round r, r-1 and r-2

each.

So, when we intend embedding a-differential characteristics over i-numbers of rounds of

the cipher, we would have to consider the initial i-1 rounds and design the linear layer

matrices accordingly. Note that Linear Layer Matrix Li of round I will not be designed as

effect on S-Boxes of last round i is not required. However, if we design the cipher requires

the differential characteristics to be extended to one more round, then we would be required

to design the linear layer matrix of round i as well.

4.16 State and Linear Matrix Multiplication - Notation

When carrying out the differential cryptanalysis, the difference during the i-th round before

it is changed by the Linear Layer is represented by Xi. The Linear Layer Matrix Li can be

partitioned into 4-sub matrices while denoting its k-th row by [k,*] and is shown below:-

As discussed earlier, we know that during a round, partial non-linear layer will acts on a

fragment of the state, i.e. x(0), and

fi(x) = Li (Si (x(0))||x(1))

With this notation,

For Non-linear part

Li00 will correspond to x(0)

Li01 will correspond to x(1)

For Linear part

Li10 will correspond to x(0)

47

Li11 will correspond to x(1)

4.17 Generating the Linear Layer Matrices

As discussed earlier, we will generate the Linear Layer Matrix for use during the first round,

after a tweak difference has been pre-computed. Later the Linear Layer matrices are

generated round by round along with the differential characteristics. During this process, the

differential characteristics will be integrated and will extend from one round to the next

round.

4.18 Conclusion

The Generic LowMC-M is a malicious variant of the light weight block Cipher LowMC and

has an embedded Backdoor. The LowMC Cipher has been modified into a Tweakable Block

Cipher to carry the malicious backdoor. The LowMC-M framework also provides a python

code which provides insight to the cipher working. The framework does not contain fixed

values and generates random parameters every time it is run. By doing this, the designer of

the framework have tried to eliminate this doubt that the code carries a backdoor.

The limitations of this framework is that it does not contain a concrete code and can be

embedded in any design.

48

Chapter 5

The Designed Cipher –Performance and Security
Analysis

In this chapter we will be discussing the security and performance analysis of our design. As

we have already discussed, malicious tweak pair that is used to generate parameters and the

differences of the plaintext used is the Backdoor. For anyone else, the cipher acts as a

normal AES-like Tweakable Block Cipher, which performs encryption and decryption

operations. The Code uses partial non-linear layers and can be instantiated using different

parameters.

5.1 Performance Analysis of Our Code

The performance analysis of the LowMC was carried out by Peyrin, Thomas, and Haoyang

Wang [16]. They used the AVX2 instruction set for Intel Haswell processor and concluded

that single encryption usually costs 10,000 to 30,000 cycles. However, this calculation was

dependent on the instantiation parameters used to with the cipher along with the block size

being used. Our tests were conducted on a laptop with intel Core i7 6700 processor

operating at 2.6 GHz. The encryption and decryption operations with parameters selected

were comparable to AES as far as running time is concerned. The parameters selected

included:-

 n = 128-bits (Block size)

 k = 128 bits (key size)

 s = 90 bits (Non Linear Size)

 XOF = 128

 r = 14 (rounds)

49

 number of differentials selected = 2

A wide range of parameter combinations can be used for instantiating LowMC within the

framework of LowMC-M framework. However, every time the code is instantiated, a

unique malicious tweak pair is required to be used to initiate a new embedded differential

characteristic.

5.2 Security Analysis of the Code

 We have subjected our Code to NIST test suite [27] to test the randomness of binary

sequence produced by the cryptographic random number generators used by our code. The

tests conducted along-with their output is shown in table 5.1

Table 5.1 – NIST Statistical Test Suite

Test
Number

Nomenclature
of Test

Description Result
AES Our Code

1. Frequency

(Monobit) - Test

Check proportion of zeros and ones

in a sequence and to ascertain

whether number of zeros and ones is

the same as would be expected in a

truly Random Number Generator

Non

Random

Random

2. Runs - Test Ascertain total number of runs

(uninterrupted sequence of identical

bits) occurring in a sequence

Random Random

3. Repeated

occurrence Test

Check ratio of 1s in a n-bit block Random Random

4. Binary Matrix

Rank Test

the rank of disjoint sub-matrices of

the entire sequence are tested. This

tests for linear dependence among

fixed length substrings of the

sequence given for tests.

Random Non

Random

5. Lengthiest Find the lengthiest occurrence Random Random

50

sequence of 1s

in a Block

(uninterrupted sequence) of 1s within

a n-bit Block, that would be required

for a qualifying for Random

Sequence

6 Discrete

(Spectral)

Fourier

Transform Test

Detect periodic features (i.e.,

repeating sequences that occur near

each other) in the tested sequence

that would indicate a deviation from

the assumption of randomness.

Random Random

7. Overlapping

Template

Matching Test

Test the number of occurrences of

specified target strings that have

already been defined

Random Non

Random

8. Non-

overlapping

Template

Matching Test

Identify generators that produce large

occurrences of a given non-periodic

(aperiodic) m-bit pattern

Random Random

9. Maurer’s

“Universal

Statistical” Test

Detect if the sequence could be

considerably compressed without

causing any loss of information.

Non

Random

Non

Random

10. Linear

Complexity Test

Detect if sequence is complex

enough so it can be considered as

random

Random Non

Random

11. Approximate

Entropy Test

Compare the frequency of

occurrence of two consecutive

overlapping blocks of adjacent

lengths (x and x+1). It is tested

against the result that expected for a

random sequence

Random Random

12 Cumulative

Sums (Cusum)

Test (forward

Checks the cumulative Sum of the

partial sequences in the given

sequence. It checks if it is too large

Non

Random

Random

51

and reverse) or too small relative to the expected

behavior required for random

sequences

13 Serial Test Checks the number of the 2m m-bit

overlapping patterns, and determines

if it is almost the same as would

occur in a random sequence.

Random Random

14 Random

Excursions

Variant Test

The purpose of this test is to detect if

the expected number of visits to

various states in the random walk

exists or otherwise

Random Random

15 Random

Excursions Test

Checks the number of visits to a

particular state within a cycle. It

checks if that visits are different from

that occurring in a random sequence

Random Random

The tests where the result of our code differ from that of AES may explored from the

prospects of detecting a backdoor.

The screenshot of results displayed by running these tests on AES are shown in Figure 5.1

and on our code are shown in Figure 5.2

52

Figure 5.1 Result of NIST Statistical Test Results when run on AES

Figure 5.2 Result of NIST Statistical Test Results when run on our Code

53

5.3 Security Analysis of the Backdoor

5.3.1 Undetectability

An entity should not be able to distinguish between an instance of LowMC-M that does not

contain a backdoor from an instance that is embedded with a backdoor. If we recall our

code, the instance of LowMC-M that contains a backdoor will have embedded differential

characteristics that are generated round by round by specially designed linear layer matrices

using the distinct tweak pairs. The Linear Layer matrices, therefore, are the only difference

between the two instances.

We have also discussed earlier that while extending the differentials from one round to the

next, we create a set of linear equations and try to look for some solution. We have also

highlighted in the previous chapter that these parameters are dependent on the tweak pair

and the sub-tweak differences. Now, in order for the backdoor to be embedded in LowMC-

M undetected, a tweak pair used for constructing differential characteristics is not

recommended to be used again. The backdoor, therefore, is undetectable, provided the

tweak pairs are not reused.

5.3.2 Practicability

As far this property is concerned, once the designer is aware of the backdoor, only a little

data and computation effort will be needed to launch a comprehensive key recovery attack.

In this case, the backdoor is claimed to practical by its designers.

5.3.3 Untraceability

The user can detect the malicious tweaks while querying using the chosen-tweaks attack

model. Since the designer would need to make a few queries before launching an attack, a

54

user can also find out the malicious tweak pair by brute forcing the queries. The backdoor,

therefore, is traceable.

5.3.4 Undiscovereability

Undiscoverability is the inability of an attacker to recover the backdoor. However, in this

case, the backdoor i.e. the tweak pair, tweak difference, sub-tweak differences and tweak

differentials are fully protected by the XOF (SHAKE128). Recovering the tweak pair or the

other deterministic tweak differentials should be as difficult as recovering the Key by brute

force. The backdoor, therefore, is undiscoverable.

5.3 Conclusion

Our design within the LowMC-M Framework provides a practical and efficient approach to

embedding a backdoor in an AES-like Tweakable Block Cipher.

55

Chapter 6

Conclusion

LowMC-M is a Framework for embedding Malicious Backdoor in a Block Cipher. The

framework is based on LowMC (Low Multiplicative Complexity) variants of Tweakable

Block Ciphers. The designers of this framework proposed a mathematical backdoor and

claimed its effectiveness and practicability by embedding deterministic differential

characteristics in cipher rounds and recovering the secret key by differential cryptanalysis.

However, the limitation with the framework was its practical manifestation. The designers

of the framework kept it generic, instantiating it with random values every time the code

was run, so that any suspicion of a backdoor could be averted.

In this thesis, we designed an AES-like tweakable block cipher based on the LowMC-M

framework. The cipher performed encryption and decryption operations successfully and

was subjected to NIST statistical test suite for testing randomness. The Cipher exhibited

behavior similar to AES and the results of the test were found comparable to AES.

Embedding a backdoor in a block cipher is a challenging task when it comes to

incorporating a backdoor in its design. On the other hand, protocol level implementation is

easy but discoverable. Our Backdoor is a mathematical backdoor which is embedded in the

design of the cipher and is based on the LowMC-M framework which allows key recovery

using the Differential Cryptanalysis.

56

References

[1] Pakistan to ban encryption software | Pakistan Defence published online

https://defence.pk/pdf/threads/pakistan-to-ban-encryption-software.127633/

[2] Biham, Eli. "New types of cryptanalytic attacks using related keys." Journal of

Cryptology 7.4 (1994): 229-246.

[3] Young A., Yung M. (1997) Kleptography: Using Cryptography Against

Cryptography. In: Fumy W. (eds) Advances in Cryptology — EUROCRYPT ’97.

EUROCRYPT 1997. Lecture Notes in Computer Science, vol 1233. sSpringer,

Berlin, Heidelberg. https://doi.org/10.1007/3-540-69053-0_6

[4] Rijmen V., Preneel B. (1997) A family of trapdoor ciphers. In: Biham E. (eds) Fast

Software Encryption. FSE 1997. Lecture Notes in Computer Science, vol 1267.

Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0052342.

[5] Wu, H., Bao, F., Deng, R.H., Ye, Q.Z.: Cryptanalysis of Rijmen-Preneel Trapdoor

Ciphers. In: Ohta, K., Pei, D. (eds.) Advances in Cryptology – ASIACRYPT’98.

LNCS, vol. 1514, pp. 126–132. Springer, Heidelberg, Germany (1998)

[6] M. Matsui, ”Linear cryptanalysis method for DES cipher”, Advances in Cryptology,

Proceedings Eurocrypt’93, LNCS 765, T. Helleseth, Ed., Springer-Verlag, 1994, pp.

386-397.

[7] Paterson, K.G.: Imprimitive Permutation Groups and Trapdoors in Iterated Block

Ciphers. In: Knudsen, L.R. (ed.) Fast Software Encryption – FSE’99. LNCS, vol.

1636, pp. 201–214. Springer, Heidelberg, Germany (1999)

[8] Patarin, Jacques, and Louis Goubin. "Asymmetric cryptography with S-Boxes Is it

easier than expected to design efficient asymmetric cryptosystems?." International

https://defence.pk/pdf/threads/pakistan-to-ban-encryption-software.127633/
https://doi.org/10.1007/3-540-69053-0_6
https://doi.org/10.1007/BFb0052342.

57

Conference on Information and Communications Security. Springer, Berlin,

Heidelberg, 1997.

[9] Tsutomu Matsumoto, Hideki Imai, Public quadratic polynomial-Tuples for efficient

Signature Verification and Message - Encryption, EUCROCRYPT’88, Springer-

Verlag, pp. 419-453.

[10] Jacques Patarin, Cryptanalysis of the Matsumoto and Imai public Key Scheme of

Eurocrypt’88, CRYPTO’95, Springer-Verlag, pp. 248-261

[11] Liskov, Moses, Ronald L. Rivest, and David Wagner. "Tweakable block ciphers."

Annual International Cryptology Conference. Springer, Berlin, Heidelberg, 2002.

[12] Angelova, Vesela, and Yuri Borissov. "Plaintext recovery in des-like cryptosystems

based on s-boxes with embedded parity check." Serdica Journal of Computing 7.3

(2013): 257p-270p.

[13] Bannier, Arnaud, and Eric Filiol. "Partition-Based Trapdoor Ciphers." In Partition-

Based Trapdoor Ciphers. IntechOpen, 2017.

[14] Bannier, A., Filiol, E.: Mathematical Backdoors in Symmetric Encryption Systems -

Proposal for a Backdoored AES-like Block Cipher. arXiv preprint

arXiv:1702.06475 (2017)

[15] Arnaud Bannier, Nicolas Bodin, and Eric Filiol. Partition-based trapdoor ciphers.

Cryptology ePrint Archive, Report 2016/493, 2016. http://eprint.iacr.org/2016/493.

[16] Peyrin, Thomas, and Haoyang Wang. "The MALICIOUS Framework: Embedding

Backdoors into Tweakable Block Ciphers." Annual International Cryptology

Conference. Springer, Cham, 2020.

http://eprint.iacr.org/2016/493.

58

[17] Dan Shumow and Niels Ferguson. On the possibility of a back door in the NIST

SP800-90 Dual_Ec_Prng. CRYPTO 2007 Rump Session, August 2007. http:

//rump2007.cr.yp.to/15-shumow.pdf

[18] https://www.theguardian.com/world/2013/sep/05/nsa-gchq-encryption-codes-security

[19] https://www.nytimes.com/2013/09/06/us/nsa-foils-much-internet-

encryption.html?pagewanted=all&_r=0.

[20] https://www.washingtonpost.com/graphics/2020/world/national-security/cia-crypto-

encryption-machines-espionage/.

[21] Liskov, Moses, Ronald L. Rivest, and David Wagner. "Tweakable block ciphers."

Annual International Cryptology Conference. Springer, Berlin, Heidelberg, 2002.

[22] Wang, Qingju. "Design and Cryptanalysis of Symmetric Key Primitives." (2016).

[23] Sinkov, Abraham, and Todd Feil. Elementary cryptanalysis. Vol. 22. MAA, 2009.

[24] Biham, Eli, and Adi Shamir. "Differential cryptanalysis of DES-like

cryptosystems." Journal of CRYPTOLOGY 4.1 (1991): 3-72.

[25] M. Matsui, Linear Cryptanalysis Method for DES Cipher, Abstracts of

EUROCRYPT'93, pp. W112–W123, May 1993.

[26] Rechberger, C., Soleimany, H., Tiessen, T.: Cryptanalysis of Low-Data Instances of

Full LowMCv2. IACR Transactions on Symmetric Cryptology 2018(3), 163–181

(2018)

[27] Rukhin, Andrew, et al. "A statistical test suite for random and pseudorandom

number generators for cryptographic applications,” NIST Special Publication 800-

22 (revised May 15." (2002).

https://www.theguardian.com/world/2013/sep/05/nsa-gchq-encryption-codes-security
https://www.nytimes.com/2013/09/06/us/nsa-foils-much-internet-
https://www.washingtonpost.com/graphics/2020/world/national-security/cia-crypto-

59

Appendix

Main.py

import numpy as np
from pyfinite import ffield
import BitVector

def sub3(num):
 ###### Substitution. Kindly Check Image Attached
 if num == 0:
 return np.array([1,1,1])
 elif num == 1:
 return np.array([1,0,0])
 elif num == 2:
 return np.array([0,1,1])
 elif num == 3:
 return np.array([0,1,0])
 elif num == 4:
 return np.array([0,0,0])
 elif num == 5:
 return np.array([0,0,1])
 elif num == 6:
 return np.array([1,0,1])
 else:
 return np.array([1,1,0])

def sBox(arr):
 ####### Checks and converts Inserted Array to 16 Bits

 ####### Slices the Least Significant 9 bits for 3 bit Byte
Substitution

FAWAD, this needs to be changed
 l1 = arr[0:3]
 l2 = arr[3:6]
 l3 = arr[6:9]
 rem = arr[9:]
 ####### Converts to Decimal
 l1 = int("".join(str(x) for x in l1), 2)
 l2 = int("".join(str(x) for x in l2), 2)
 l3 = int("".join(str(x) for x in l3), 2)
 ####### Calls Sub 3 method in Line 4. Returns 3 bit numpy Array
 l1 = sub3(l1)
 l2 = sub3(l2)
 l3 = sub3(l3)
 ####### Appends and substituted bits and unchanged 7 bits
 rem = np.append([l1,l2,l3],rem)
 return rem

def ECipher(pt, key, rounds, blocksize, LMatrices, roundkey_matrices,
constants, tweakdifferences, nonLsize):

60

 #print('PT = :')
 #print(pt)
 ###### Retrieves Whitening Data From Data Class
 wk = np.array(roundkey_matrices[0])
 ###### Matrix Multiplication of Whitening Key and Key
 wk = np.mod(np.dot(wk,key),2)
 #print('WK = :')
 #print(wk)
 ###### Retrieves tweak diff From Data Class
 wt = np.array(tweakdifferences[0][0])

 #pt = pt^wt^wk

 wk = int("".join(str(x) for x in wk), 2)
 wt = int("".join(str(x) for x in wt), 2)
 pt = int("".join(str(x) for x in pt), 2)

 pt = pt^wt^wk
 pt = np.array([int(x) for x in bin(pt)[2:].zfill(blocksize)])

 for i in range(rounds):

 ####### SBox Subsitution. Go to Line 22
 #print(pt)
 pt = sBox(pt)
 #print(pt)
 #pt = np.array([int(x) for x in bin(pt)[2:].zfill(32)])

 ####### Retrieves Data Per Round
 LLM = np.array(LMatrices[i])
 RK = np.array(roundkey_matrices[i+1])
 RC = np.array(constants[i])
 RT = np.array(tweakdifferences[0][i+1])
 #print(LLM)
 #print(RK)

 ####### LLM Matrix Multiplication with Altered Plain Text
 # FADDI
 pt = np.mod(np.dot(LLM,pt),2)

 ####### Converting 9x16 Round Key to 9x1 Round Key with Key
 Matrix Mul

 RK = np.mod(np.dot(RK,key),2)
 #print(pt)
 #print(RT)
 #print(RC)
 #print('Round Key = :')
 #print(RK)
 #Aux = np.bitwise_xor(Aux,RT)

 apt = pt[0:9]
 rem = pt[9:]
 xr = RK ^ RC ^ RT
 apt = int("".join(str(x) for x in apt), 2)
 xr = int("".join(str(x) for x in xr), 2)

61

 apt = apt ^ xr
 apt = np.array([int(x) for x in bin(apt)[2:].zfill(nonLsize)])
 pt = np.append(apt,rem)

 return pt

 def invsub3(num):
 ###### Substitution. Kindly Check Image Attached
 if num == 0:
 return np.array([1,0,0])
 elif num == 1:
 return np.array([1,0,1])
 elif num == 2:
 return np.array([0,1,1])
 elif num == 3:
 return np.array([0,1,0])
 elif num == 4:
 return np.array([0,0,1])
 elif num == 5:
 return np.array([1,1,0])
 elif num == 6:
 return np.array([1,1,1])
 else:
 return np.array([0,0,0])

def invsBox(arr):
####### Slices the Least Significant 9 bits for 3 bit Byte
Substitution

 l1 = arr[0:3]
 l2 = arr[3:6]
 l3 = arr[6:9]
 rem = arr[9:]

 ####### Converts to Decimal
 l1 = int("".join(str(x) for x in l1), 2)
 l2 = int("".join(str(x) for x in l2), 2)
 l3 = int("".join(str(x) for x in l3), 2)
 ####### Calls Inverse Sub 3 method in Line 4. Returns 3 bit numpy
 Array
 l1 = invsub3(l1)
 l2 = invsub3(l2)
 l3 = invsub3(l3)
 ####### Appends and substituted bits and unchanged 7 bits
 rem = np.append([l1,l2,l3],rem)
 return rem
 def __invert_lin_matrix(LLM, blocksize):
 mat = LLM
 inv_mat = []
 for i in range(blocksize):
 temp_bv = BitVector.BitVector(intVal=0, size=blocksize)
 temp_bv[i] = 1
 inv_mat.append(temp_bv)
 # Transform to upper triangular matrix
 row = 0
 for col in range(blocksize):
 if (not mat[row][col]):

62

 r = row + 1
 while ((r < blocksize) and (not mat[r][col])):
 r += 1
 if (r >= blocksize):
 continue
 else:
 temp = mat[row]
 mat[row] = mat[r]
 mat[r] = temp
 temp = inv_mat[row]
 inv_mat[row] = inv_mat[r]
 inv_mat[r] = temp
 for i in range(row + 1, blocksize):
 if (mat[i][col]):
 mat[i] = mat[i] ^ mat[row]
 inv_mat[i] = inv_mat[i] ^ inv_mat[row]
 row += 1

 # Transform to inverse matrix
 for col in range(blocksize, 0, -1):
 for r in range(col - 1):
 if (mat[r][col - 1]):
 mat[r] = mat[r] ^ mat[col - 1]
 inv_mat[r] = inv_mat[r] ^ inv_mat[col - 1]

 return inv_mat

def DCipher(pt, key, rounds, blocksize, LMatrices, roundkey_matrices,
constants, tweakdifferences, nonLsize):
 gf = ffield.FField(rounds)
 #key = np.array([int(x) for x in bin(key)[2:]])
 #key = key.transpose()
 for i in range(rounds, 0,-1):

 RK = roundkey_matrices[i]
 RC = constants[i-1]
 RT = tweakdifferences[0][i]
 LLM = np.array(LMatrices[i-1]) #
Compute its inverse (Invertable matrix Remaining)
 RK = np.mod(np.dot(RK,key),2)

 apt = pt[0:9]
 rem = pt[9:]
 xr = RK ^ RC ^ RT
 apt = int("".join(str(x) for x in apt), 2)
 xr = int("".join(str(x) for x in xr), 2)
 apt = apt ^ xr
 apt = np.array([int(x) for x in bin(apt)[2:].zfill(nonLsize)])
fills values to the left as desired, can be cross checked as well
 pt = np.append(apt,rem)

 bv = []
 #LLM = np.linalg.inv(LLM)
 #LLM = np.mod(LLM,2)

63

 #LLM = LLM.astype(int)

 # FADDI

 #LLM = inverseMatrix(LLM, blocksize)
 #print(LLM)

 for vec in range(blocksize):
 bv.append(BitVector.BitVector(bitlist = LLM[vec].tolist()))
 LLM = __invert_lin_matrix(bv,blocksize)
 pt = np.mod(np.dot(LLM,pt),2)

 ####### Inverse S Box
 pt = invsBox(pt)

 wk = np.array(roundkey_matrices[0])
 wk = np.mod(np.dot(wk,key),2)
 wt = np.array(tweakdifferences[0][0])

 wk = int("".join(str(x) for x in wk), 2)
 wt = int("".join(str(x) for x in wt), 2)
 pt = int("".join(str(x) for x in pt), 2)

 pt = pt^wt^wk
 pt = np.array([int(x) for x in bin(pt)[2:].zfill(blocksize)])

 return pt

lowmc_mc.py

'''

This program generates an instance of LowMC-M. Since SHAKE128 is
considered, so the key size is fixed to 128 bits for security concern.

'''

from sage.all import *

from SHAKE128 import *

from Main import *

import numpy as np #numpy is a library

import pickle

blocksize = 16

keysize = 16

tweaksize = 16

sboxsize = 3 # sbox size

64

m = 3 # number of sboxes

nonLsize = sboxsize*m # non-linear size

rounds = 14 # number of rounds

num_dc = 1 # number of differential characteristics to be
embedded

def generate_Kmatrix():

 roundkey_matrices = [] #has been defined empty

 #Generate the whitening key

 while True: # loop till the time it is true

 mat = np.random.randint(0,2,size = (blocksize,keysize))

Generates a random number 01001 matrix ... size (128, 128)

 Mat = matrix(GF(2),mat) #

 if rank(Mat) == min(blocksize,keysize):

what does this mean

 break # break loop if condition is met

 roundkey_matrices.append(mat.tolist())

 np.shape(round)

#Generate the round keys

 for r in range(rounds):

 while True:

 mat = np.random.randint(0,2,size = (nonLsize,keysize)) #
size (9, 128) Generates it for 70 rounds

 Mat = matrix(GF(2),mat)

 if rank(Mat) == min(nonLsize,keysize):

 break

 roundkey_matrices.append(mat.tolist())

 return roundkey_matrices

def generate_constants():

 cons = []

 for r in range(rounds):

 con = np.random.randint(0,2,size = nonLsize) # Round constant
will only have one row of size = nonLsize

65

 cons.append(con.tolist())

 return cons

def generate_tweakdifferences():

 subtweakdiff_set = []

 tweak_set = []

 for i in range(num_dc):

 subtweaks1 = [0] * (rounds+1) # generate row of 71 x 0 = [0 0 0
0]

 subtweaks2 = [0] * (rounds+1)

#*************TWEAK GENERATION**************

It can be chosen by the user alternatively, both size and value

 tweak1 = list(np.random.randint(0,2,size=tweaksize))
one row of size 128

 tweak2 = list(np.random.randint(0,2,size=tweaksize))

#***

 tstring1 = shake128(tweak1, blocksize+rounds*nonLsize)
one row of size 758

 tstring2 = shake128(tweak2, blocksize+rounds*nonLsize)

 subtweaks1[0] = tstring1[:blocksize]
one row of size 128 extracted from above 758

 subtweaks2[0] = tstring2[:blocksize]

 for r in range(rounds):

 subtweaks1[r+1] =
tstring1[blocksize+r*nonLsize:blocksize+(r+1)*nonLsize]

for every round, 9 next bits are extracted from above

 subtweaks2[r+1] =
tstring2[blocksize+r*nonLsize:blocksize+(r+1)*nonLsize]

758 - 128 - (70*9) = 0

 subtweak_differences = []

 for r in range(rounds+1):

 subtweak_differences.append([subtweaks1[r][j] ^
subtweaks2[r][j] for j in range(len(subtweaks1[r]))]) # bitwise XoR

66

Subtweaks XoR for 70 rounds not including 128 bit first key

 subtweakdiff_set.append(subtweak_differences)

 tweak_set.append([tweak1,tweak2])

 return subtweakdiff_set, tweak_set

def generate_Lmatrix(differences, tweakdiff, r): # Function called in
line 148 and 152

 Length = len(differences)

 Nonzero = [0]*sboxsize

 # This is to ensure that an i-round deterministic differential
characteristic will active all the Sboxes in round i+1

 if r >= (rounds-1-num_dc):

 for i in range(m):

 while True:

 Nonzero[i] = np.random.randint(0,2,size=m)

 if sum([Nonzero[i][j]^tweakdiff[Length-1][r+1][j+m*i] for
j in range(sboxsize)]) != 0:

 break

 Set = []

 for t in range(nonLsize):

 extra_column = []

 for i in range(Length):

 extra_column.append([tweakdiff[i][r+1][t]])

 if r >= (rounds-1-num_dc):

 extra_column[-1][0] = Nonzero[t//m][t%m]

 augmented_mat = (np.append(differences, extra_column,
axis=1)).tolist()

 Mat = matrix(GF(2),augmented_mat)

 Set.append(Mat.right_kernel().basis_matrix())

 while True:

67

 Matrice = []

 # Generate the first (nonLsize) rows

 for t in range(nonLsize):

 while True:

 tmpvec = random_vector(GF(2),len(list(Set[t])))

 if (tmpvec*Set[t])[-1] == 1:

 Matrice.append(list((tmpvec*Set[t])[:-1]))

 break

 # Generate the left (blocksize-nonLsize) rows

Last non-linear rows after 9th row

 for i in range(blocksize-m*sboxsize):

 Matrice.append(list(np.random.randint(0,2,size=blocksize)))

 mat = matrix(GF(2),Matrice)

 if rank(mat) == blocksize:

 return Matrice

def generate_DC():

 roundkey_matrices = generate_Kmatrix() #Generate key matrices

 constants = generate_constants() #Generate round constants

 tweakdifferences, tweak_set = generate_tweakdifferences() #Generate
tweak pairs and its corresponding sub-tweak differences

 BS_differences = [[] for _ in range(rounds)] # Difference before Sbox
transformation in each round

 AM_differences = [[] for _ in range(rounds)] # Difference after
matrix multiplication in each round

 LMatrices = [] # Linear matrices

 plaintext_differences = [] # The plaintext difference is input
difference of the differential characteristic to be embedded, it can be
chosen by the user along with the first sub-tweak difference.

 for i in range(num_dc): # Generate plaintext difference

 plaintext_differences.append(tweakdifferences[i][0][:nonLsize] +
list(np.random.randint(0,2,size=blocksize-nonLsize)))

 # For 14 number of differentials, it generates PT difference
as: tweakdifferences from 0 to 9 + list (119 values)

68

 for i in range(num_dc): # Compute the difference between the
plaintext difference and the first sub-tweak difference

 BS_differences[0].append([plaintext_differences[i][j] ^
tweakdifferences[i][0][j] for j in range(blocksize)])

 # Fawad xor of plaintext_differences and tweakdifferecnes -->
Ctrl + F tweakdifferences

 #*************GENERATE ROUND DIFFERENCE**************

 # Building (num_dc) differential characteristics, the number of
rounds ranges from (rounds-1) to (rounds-1-num_dc+1)

 # For round 69 to round 55 - 56 seen from file generated.

 #**

 for r in range(rounds-1): # 1 to 69

 if r <= (rounds-1-num_dc): # if r <= 55

LMatrices.append(generate_Lmatrix(BS_differences[r],tweakdifferences,r))
Generate linear matrix

 current_num_dc = num_dc

 elif r > (rounds-1-num_dc):

 LMatrices.append(generate_Lmatrix(BS_differences[r][:-
1],tweakdifferences,r)) # Generate linear matrix

 current_num_dc = rounds-r-1

 for i in range(current_num_dc): # For remaining I guess

 AM_differences[r].append(list(matrix(GF(2),LMatrices[r]) *
vector(GF(2),BS_differences[r][i])))

BS_differences[r+1].append([AM_differences[r][i][j] +
tweakdifferences[i][r+1][j] for j in range(nonLsize)] + \
AM_differences[r][i][nonLsize:])

 # Generate the last linear matrix

 while True:

 mat = np.random.randint(0,2,size = (blocksize,blocksize))

 Mat = matrix(GF(2),mat)

 if rank(Mat) == blocksize:

 break

69

 LMatrices.append(mat.tolist())

 with open('matrices_and_constants.txt', 'w') as matfile:

 s = 'Linear layer matrices\n\n'

 for r in range(rounds):

 s += '\nround ' + str(r) + ':\n'

 for row in LMatrices[r]:

 s += str(row) + '\n'

 s += '\nKey matrices\n\n'

 for r in range(rounds+1):

 s += 'round ' + str(r) + ":\n"

 for row in roundkey_matrices[r]:

 s += str(row) + "\n"

 s += '\nRound constants\n\n'

 for r in range(rounds):

 s += str(constants[r]) + '\n'

 s += '\nRound-Tweaks\n'

 s += str(tweakdifferences) + '\n'

 matfile.write(s)

 with open('Differential Characteristics.txt','w') as dcfile:

 s = 'Differential Characteristics\n\n\n'

 for i in range(num_dc):

 s += '\ndifferential ' + str(i+1) + ':\n'

 s += 'length: {} rounds\n'.format(rounds-i-1)

 s += 'tweak pair:\n'

 s += str(tweak_set[i][0]) + '\n'

 s += str(tweak_set[i][1]) + '\n'

 s += 'plaintext difference:\n'

 s += str(plaintext_differences[i]) + '\n'

 s += 'differences before SB:\n'

 for r in range(rounds-i):

 s += 'round {:3} '.format(r+1) +
str(BS_differences[r][i]) + '\n'

70

 dcfile.write(s)

 return LMatrices, roundkey_matrices, constants, tweakdifferences

def main():

 #If you would like to generate new values then UNCOMMENT the
Creqation BLock of Code. Otherwise this will work on the same values.

#Creation Block START

PT = np.random.randint(0,2,size=blocksize)

Key = np.random.randint(0,2,size=blocksize)

print('PT :')

print(PT)

LMatrices, roundkey_matrices, constants, tweakdifferences =
generate_DC()

with open('items.pkl','wb') as f:

pickle.dump([rounds, blocksize, LMatrices, roundkey_matrices,
constants, tweakdifferences, nonLsize],f)

f.close()

 #Creation Block END

 analysis()

if __name__ == "__main__":

 main()

generate.py

#def main():

 # for i in range(100):
 #PT = np.array([0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1])
 #Key =np.array([1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1])
 # PT = np.random.randint(0,2,size=blocksize)
 # Key = np.random.randint(0,2,size=blocksize)
 #print('PT :')
 #print(PT)
 # LMatrices, roundkey_matrices, constants, tweakdifferences =
generate_DC()
 # CT= ECipher(PT,Key, rounds, blocksize, LMatrices,
roundkey_matrices, constants, tweakdifferences, nonLsize)
 #print('CT')
 # print(CT)
 #res= DCipher(CT,Key, rounds, blocksize, LMatrices,
roundkey_matrices, constants, tweakdifferences, nonLsize)
 #print('PT')
 #print(res)
if __name__ == "__main__":
 main()

71

