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Abstract 
 

Symmetric key block ciphers are employed for data encryption widely in everyday 

applications. Block ciphers are considered robust and secure even if their structure is known 

globally and immune to several cryptanalysis attacks including linear and differential 

cryptanalysis. Data retrieval should only be possible with the help of data encryption key.  

However, there may exist block ciphers whose structure is transparent, but may 

contain an inherent algebraic backdoor helping the designer to retrieve the data encryption 

key. Undiscoverable algebraic backdoors are hard to design because of the hidden 

mathematical structure employed to retrieve the key. Moreover, it is also interesting to 

explore statistical methods in order to determine an inherent mathematical backdoor.  

In this thesis, we explored various backdoor embedding methodologies previously, 

and have employed the recent LowMC-M framework to design a backdoored cipher. 

Furthermore, we applied the standard NIST statistical suite tests against the backdoored 

cipher and the standard AES to explore which statistical methods might help to determine 

the underlying backdoor cipher 
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Chapter 1 

Introduction 
 

 

Since the beginning of this millennium, Information technology is one field that has 

witnessed a revolution. Researchers now agree that the world’s most valuable resource is no 

more gold or oil, but data. Technology have become an essential component in almost every 

field, generating and contributing to the next gold reservoir, the Big Data. Considered as a 

repository of every sort of information, from financial to medical, health to classified to 

personal information, it is growing at an exponential rate every day.  

However, with Big Data comes big responsibility. The responsibility to secure it during 

storage and during communication, so that it remains safe from hackers, eavesdroppers, 

commercial organizations and even hostile nations, willing to access it for their own 

interest. Cryptography has attempted to provide an answer to evade these attempts, even as 

early as around 1900 BC by Egyptians, as recorded in ancient history. Every organization, 

therefore, wants its information to be secure from eavesdroppers and it wishes to guarantee 

its users that their data is secure during every stage of its handling. 

Cryptology has evolved from simple ciphers used by Egyptians and Romans to complex 

algorithms. Scientific community has researched and developed Cryptographic protocols / 

algorithms (like RSA, DHKE, DES, AES, RC4, SHA etc), augmented by employing a 

Symmetric (single key) or asymmetric (public key) cryptography system. The use of these 

crypto systems has been limited by performance issues; computational power and battery 
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requirement etc when it comes to their deployment with IoT devices. Therefore, many light 

weight symmetric key ciphers have been proposed to address these issues. 

Cryptology is broadly divided into two branches, i.e. Cryptography and Cryptanalysis. 

These fields are very closely related and, in a sense, complement each other. Cryptography 

deals with the development of cryptosystems whereas cryptanalysis ensures that these 

crypto systems remain free from vulnerabilities that may lead to a compromise. A crypto 

system may seem very strong and efficient, but researchers will strive to find out design 

flaws that may give away information and resultantly lead to a compromise. Cryptanalysis 

ensures that a cipher design is free from such vulnerabilities so that the encrypted data 

remains secure during all phases of communication and storage.  

Breaking these ciphers and retrieving information has always seemed a tempting task. 

Hackers, Governments and Intelligence agencies have been trying since long to break the 

cryptographic means used for securing data. Possibility of brute-force effort to find the 

secret key virtually been ruled out by the use of complex algorithms resistant to 

cryptanalysis, larger key space and limited computational power.  

Backdoors can provide solution to these problems. A backdoor is a way of by-passing 

encryption. Encrypted information can be recovered by anyone knowing the backdoor and 

not knowing the secret key.  

Broadly speaking Backdoors are divided into two categories :- 

i. Embedded in a product at key scheduling, sharing or at protocol level  

ii. An algebraic backdoor which is implemented at the design level of cipher 

Existence of backdoor in a cryptographic algorithm (DES, for instance) has always been a 

debatable question in academia and research community, further fueled by recent proof of 

concept of existence of a backdoor in NIST Dual_EC_DBRG and revelation by Edward 
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Snowden leaks about existence of Cryptographic backdoors in NSA algorithms. The news 

about Swiss firm AG Crypto, selling rigged machines capable of breaking the codes to 3rd 

world countries including India and Pakistan have been termed as the “intelligence coup of 

the century”.  

Tweakable block ciphers provide one approach to answer this issue. While designing a 

block cipher, the designers can embed a backdoor that is not easy to detect. This will allow 

the designer to either retrieve the key or part of the key which will substantially reduce the 

brute-force effort. The backdoor is designed and embedded in such a fashion that even if its 

existence is known, it is computationally impossible to retrieve.  

The research in this field gives rises to a general suspicion that most of the publicly 

available block ciphers can also have backdoors which have not been claimed by the 

designer in implementation. However, it is a complex battle between remaining secure and 

exploiting a system. A designer may consider his design secure and share it publicly for 

researchers to exploit it. A researcher may find a vulnerability and NOT declare it, creating 

a false sense of cryptographic security. Researchers continue to find new ways to attack a 

cryptosystem and come up with new ideas to break a cryptosystem. 

 

1.1 Problem Statement 

With the advancement and easy access to information, use of technology that was once 

considered highly sophisticated by ordinary people is no surprise. One of the major concern 

of LEAs and Government remains the use of encryption and covert channels by criminals, 

which helps them to dodge surveillance. Pakistan remained embroiled for over a decade in 

combating terrorism. Pakistan decided to ban use of VPNs [1] and social media applications 
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including Telegram in 2011, since these applications were extensively used by terrorists 

owing to their ease of use and easy access to internet even in the remotest of areas. 

Surveillance, therefore, remains a major contributor towards intelligence gathering. On the 

other hand, encryption remains a preferable choice for anyone desirous to hide from 

Government tailing. In order to remain one step ahead of these criminals, Governments 

want access to any covert communication that takes place between these criminals. Where 

breaking a cipher is not feasible in time sensitive scenarios, deploying a cryptographic 

backdoor in a cipher may seem to address the problem. The research proposes an AES-like 

block cipher based on SPN architecture, with a mathematical backdoor which helps to 

retrieve key or part of key that would help in deciphering ciphertext. 

 

1.2 Motivation 

Back doored cryptosystems can be employed by Government organizations, LEAs and 

intelligence agencies. A back doored cryptosystem based communication system (mail and 

messaging applications etc.) will help LEAs and intelligence agencies for law enforcement 

and national security requirements. Moreover, government organizations can keep an eye on 

policy implementation and ensuring communication security by randomly checking 

communication. Designing a block cipher with a mathematical backdoor is the main motive 

behind this study, which may help anyone knowing certain parameters in deciphering the 

Ciphertext without knowing the Secret Key at the expense of large computational effort. 

Key recovery, however, is not the goal of this research.   

1.3 Research Objectives 

This research focuses on following objectives:- 
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1.1.1 Developing a cipher similar to AES that contains a mathematical backdoor  

1.1.2 Analyzing effectiveness of linear and differential crypt analysis   

1.1.3 Applying statistical analysis to observe how conservative the algorithm is in 

terms of randomness  

 

1.4 Contributions 

The design of the new cipher will contribute to the existing research in following ways: 

a. Develop an understanding of the cryptographic backdoors by providing 

detailed literature review  

b. Develop an understanding of a block cipher, how linear and non-linear layers 

function, and discuss the impact of linear and differential cryptanalysis of such 

functions. 

c. Design and working of non-linear layers (S-Box) of a block cipher which can 

help in understanding presence of backdoors in block ciphers. 

d. Paving a way for future work with an endaveour to embed cryptographic 

backdoors in an AES-like block cipher. 

1.5 Thesis Outline 

The research work has been organized and distributed in following chapters: 

 Chapter 1: Chapter 1 presents a brief introduction to Cryptographic 

backdoors. It also presents the problem statement, followed by motivation 

behind the research and enumerates research objectives. Lastly it highlights 

the contributions made through this research. 

 Chapter 2: Existing Research in Cryptographic Backdoors. 
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 Chapter 2 presents an overview of the existing / recent research that has 

already been carried out in the field of cryptographic backdoors. 

 Chapter 3: Preliminary Background. This chapter gives an insight of the 

preliminary background knowledge that is vital in understanding block cipher 

designs and cryptanalysis techniques used against them.  

 Chapter 4: Construction of A Block Cipher with An Embedded Algebraic 

Backdoor. The chapter presents an introduction / brief description of the 

LowMC Block Cipher which form the basis of our backdoored design. It will 

also elaborate on underlying concepts of how an algebraic backdoor is 

embedded in LowMC cipher. 

 Chapter 5: The Designed Cipher – Security and Performance Analysis.

 This chapter would review the security as well as the performance analysis of 

the cipher that we have designed. It will also present an analysis of how our 

cipher compares to AES. 

 Conclusion 
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Chapter 2 

 

Existing Research in Cryptographic Backdoors 
 

 

This chapter highlights previous significant research work carried out in the field of 

Algebraic cryptographic backdoors. An idea of having a backdoor in block ciphers has been 

a catalyst for academia, however, it has proven to be a difficult task. Presently, there are two 

ways of implementing backdoors in block ciphers :- 

a) Embedding a backdoor at protocol or key management level of the cipher 

b) A cryptographic, mathematical or algebraic backdoor that is embedded in the 

design  of a cipher and exposes the cipher to some form of cryptanalysis. 

The first type of backdoor is the commonly used type which is easy to design. The second 

type, however, is difficult to implement and will form the base of this thesis.  

2.1 Challenges in Backdoors implementation 

Though the concept of mathematical backdoors has opened new avenues for public 

research, yet only limited work has been done in this field so far, primarily due to facts 

stated below :-. 

1) It is difficult to embed secure backdoors in Block Cipher design since they are 

deterministic in nature and very less likely to evade the research by hackers and 

researchers while studying their design. 

2) In order for a backdoor to be successful, the effort for key recovery and 

correspondingly information extraction from only ciphertext should practically be 

less than the brute-force effort.  
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3) Designers would not like to reveal the presence of any backdoor inside their 

design, since it will affect the confidence of users on the product. Once such 

backdoors are discovered, the researchers / organizations will not publish this fact 

due to any security / financial gains associated with it.  

2.2 Research in the field of Backdoors 

Eli Biham, in 1994, proposed the idea of attacking key scheduling algorithms [2] that may 

have inherent relationships between keys. He proved that these relationships can be used to 

carry out attack against a block cipher. The paper explores the concept that Key scheduling 

implementation in most of the block ciphers designs can be seen as a sequence of 

algorithms. Each of these algorithm computes and derives a particular round key or sub-key 

from sub keys of previous rounds. If the key scheduling algorithms for key derivation is 

same for all the rounds, then it is possible to shift given sub-key one round backwards to 

retrieve all the sub-keys and ascertain the relationship between the keys. Similarly, for 

another given key, all the valid sub-keys can be derived using the same relationship, called 

Related Keys. Therefore, if the structure of key scheduling algorithm is kept simple it will 

expose the cipher to Related key attacks. Both the attacks were mounted against LOKI89 

and LOKI91, the two variants of LOKI block cipher. The authors displayed that related-key 

attacks do not exploit any vulnerability in DES and concluded how key-scheduling 

algorithm can seriously compromise the design of a cipher.  

Adam Young and Moti Yung extensively studied cryptographic backdoors and in 1996 

coined the term [3] “Kleptography” which they described as the study of stealing 

information from cryptosystems in a secure fashion. They explained that “subliminal 

channels” can be designed within a cryptosystem which would place a hacker at an 

advantage of retrieving information without the knowledge of users. The paper explains that 
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the use of “black box” cryptographic devices with trusted internal structure can have 

backdoors which will enable hackers to steal the secrets in an invisible manner. Their paper 

proposed a “Secretly Embedded Trapdoor with Universal Protection” or SETUP, a trapdoor 

implementation technique which can be embedded in cryptosystems like El-Gamal, RSA, 

DSA etc and will leak encrypted secret key information. However, instead of containing an 

information leaking “subliminal” channel, the design would provide opportunities for the 

attacker to retrieve information from the output of the cipher. 

Rijmen and Preneel [4] suggested several methods to embed trap-doors in block ciphers [3] 

in 1997. They defined partial trapdoors, which may either give partial information about the 

key or do not work for all keys. The paper discusses the design of a trapdoor in a m x n S-

Box (where n represents the number of S-Boxes implemented in a round and m represents 

the number of input bits to an S-Box) by adding an extra function T(x) (which is the 

Trapdoor function) and is derived from the S-Box S(x). The researchers displayed that with 

the higher value of m x n, it is easier for the cipher to hide a trapdoor. The paper concludes 

that a trapdoor hidden in a 10 x 80 bits S-box is virtually undetectable, thereby verifying 

that the possibility of having a trapdoor hidden in a seemingly legitimate block cipher 

exists. Though the embedded backdoor remains undetectable, even when the general design 

and characteristics of the cipher are known, yet the paper emphasis that trusting a cipher 

whose design is secret is not advisable since it may contain a trapdoor which is hard to 

detect. The cipher design was subsequently broken by Wu et al. in 1998 [5], who concluded 

that the backdoor proposed by Rijmen and Preneel can be broken by applying linear 

cryptanalysis techniques proposed by Matsui [6]. The trapdoor can be discovered if its 

global design is known but not the parameters. In 1999 Paterson [7] proposed a DES-like 

cipher structure containing a backdoor, which was based the idea that when a round function 
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acts on a  message group, it can generate a group which can be imprimitive. In this case, the 

design of the cipher will contain an inherent weakness which can be exploited, allowing 

construction of a backdoor based on this weakness. Anyone knowing the backdoor will be 

able to retrieve the key with 241 permutations. However, it concluded that the backdoor was 

easily detectable.  

Patarin and Goubin studied new cryptosystem [8], which was based on the asymmetric 

cryptosystem “ C* ” and was proposed earlier in [9]. These cryptosystems were based on 

the idea of hidden s-box computations with a secret function known only to the designer. 

These functions were of one or two degrees. “C*” was concluded as a special case, 

however, it did not contain the algebraic properties of “C*”, which subsequently led to its 

cryptanalysis [10]. Therefore, these ideas were taken forward to explore different 

cryptanalysis techniques that could exploit the algebraic characteristics of these ciphers and 

led to introduction of completely new cryptanalysis tools.  

In 2002, Liskov, Moses, Ronald L. Rivest, and David Wagner [11] introduced the concept 

of Tweakable class of Block Ciphers. The idea was based on the concept of a nonce for 

OCB mode or IV in CBC mode. A conventional block cipher has two input components, a 

key, a plaintext and produces an output, the ciphertext. The idea behind was the address the 

deterministic behavior of block ciphers, where a plaintext will always produce the same 

ciphertext, if it is encrypted with the same key.   

In 2013, Angelova, Vesela, and Yuri Borissov [12] studied design of block ciphers and 

highlighted the weaknesses of S-Boxes that have flaws in their design, despite fulfilling 

some design criteria and will result in very weak ciphers. It describes an attack that can 

exploit these weaknesses and help in recovering plaintexts in DES-like ciphers that have 
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poorly or improperly constructed S-boxes. The paper discussed DES / triple-DES like 

ciphers in ECB mode with modified S-Boxes.  

In Bannier, Arnaud, and Eric Filiol [13] the authors discussed the general design of block 

ciphers and proposes a block cipher embedded with a backdoor. The block cipher was based 

on an encryption system which is vulnerable to cryptanalysis as suggested by Matsui in [5] 

and which enables an attacker to retrieve the secret κ-bit key with a single plaintext / cipher 

text pair. Bannier, Arnaud, and Eric Filiol [14] proposed an AES-like cipher named BEA-1, 

which had an algebraic / mathematical backdoor which is implemented in the design of 

cipher and had following characteristics :- 

 80-bit Block size  

 120-bit Key size 

 11 rounds 

The designers were able to recover 120-bits of key in 10 seconds with only 300 kb of 

plaintext and 300 kb of corresponding ciphertext. The authors of the backdoors claim that 

the backdoor still remains undiscoverable despite sharing its design.  

2.3 Low Multiplication Complexity Ciphers 

SPNs are constructed using a non-linear and a linear layer. Non-linear layers (S-Boxes) are 

cost heavy in terms of execution times and therefore effect the overall performance of the 

design. Low Multiplication Complexity or LowMC is a class of AES-like ciphers that is 

designed to achieve Low Multiplication Complexity by employing partial non-linear layers 

and a strong linear layer. A partial non-linear layer is designed in a fashion that S-Boxes 

only act on a part of the layer and not the complete layer. This helps reduce the 

computational overload as presented by Arnaud Bannier, Nicolas Bodin, and Eric Filiol 

[15].  
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In 2020, Peyrin, Thomas, and Haoyang Wang [16] introduced LowMC-M, a malicious 

instantiation of a LowMC variant. LowMC-M is based on a related-key attack and has an 

additional tweak input, as shared by [1] and [10], which helps recover the secret key using 

differential cryptanalysis. LowMC-M employs a partial non-linear layer in its design and 

compensates for the security using a strong Linear layer. 

2.4 Conclusion 

In 2006, NIST proposed an algorithm, Dual_EC_DBRG classified as a CSPRNG and 

became part of NIST SP 800-90A as a standard in 2007. However, in 2007, it was revealed 

[17] that the DBRG contained a design flaw that could be termed as a “trap door”, a type of 

backdoor. The news story was exposed in 2013 by the newspapers, The Guardian [18], and 

The New York Times [19] while analyzing the memos shared by Edward Snowden, and 

commented that the design flaw was deliberately kept by NSA, allowing one having the 

secret NSA-points on the standard EC to reconstruct the secret key being used. 

Similarly, the Washington Post in February 2020 [20] published a news story about Swiss 

firm AG Crypto, selling rigged machines capable of breaking the codes to 3rd world 

countries including India and Pakistan. The story has labelled this event as the “intelligence 

coup of the century”, and explains how NSA established AG Crypto as a front-end company 

to sell rigged machines to third world countries. 

There has always been a debate on existence of Backdoors in commercial / public cipher 

algorithms that no not claim existence of a backdoor otherwise. With the discovery of such 

backdoors, users have become more suspicious and careful, and has opened new avenues for 

researchers, who have been working hard to find any evidence of existence of a backdoor 

embedded by the designer.  
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Backdoors in block ciphers, therefore, can be embedded in their design or protocol level, the 

later being easily detectable. Designing a block cipher with a mathematical backdoor, 

however, is a difficult task since its discovery will seriously affect the credibility of the 

cipher and designers both. Apart from this, anyone discovering the backdoor can use it for 

its own benefit.  

In subsequent chapters, we will discuss the underlying concepts involved in the design of a 

mathematical backdoor.     
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Chapter 3 

Preliminary Background  
 

Design of all the cryptosystem revolved around the Kerckhoffs's principle of cryptography 

which states that a cryptosystem must be secure if its design and everything, except the key, 

is a public knowledge. In other words, the strength of the cryptosystem will depend on the 

key and not its algorithm. Our thesis will be restricted to the Symmetric Key Cryptography 

only which is one of the two sub-domains of Cryptography. 

3.1 The Symmetric Key Cryptosystems 

The Symmetric Key Cryptosystems use identical key for doing the encryption and 

decryption operation. When a user encrypts plaintext by using a key, it must be decrypted 

with the same key. Therefore, the encrypting party ensures that all the parties who would be 

requiring to decrypt a plaintext must also be in possession of the Secret Key. Handling and 

distribution of Secret Key is beyond the scope of this thesis. 

Symmetric Key Cryptosystems are further divided into Block and Stream Ciphers. In this 

thesis, we would focus our attention towards Block Ciphers only and after explaining the 

general primitives, will discuss Tweakable Block Ciphers which are pertinent to our thesis. 

3.1.1 Block Ciphers and SPN Networks 

A block Cipher generates permutations on a fixed length of bits, called a Block. These 

permutations are indexed or controlled by a secret Key. Consequently, a block Cipher will 

have two algorithms: an encryption algorithm and a decryption algorithm.  

To keep it structurally simple and to increase its cryptographic strength, a Block Ciphers use 

a technique to iteratively update its internal state multiple number of times (as intended by 
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the designer) after it has been initialized by a plaintext. This technique is called ‘round 

function’. Again, the Secret Key (K) or the Master Secret Key is passed through a Key 

Scheduling Algorithm that will calculate a set of round keys, one to be used for each round, 

so that each round does not depend on the Master Secret Key and depends on the round Key 

only. 

The design of round keys may follow one of the two design frameworks, a Feistel Network 

and a SP-Network. Here SP stands for Substitution-Permutation. Though the design of the 

round function may differ, yet the rest of the primitives will remain the same. 

3.1.2 Tweakable Block Ciphers 

A special type or variant of Block Ciphers is “Tweakable Block Ciphers”, which were 

introduced by Rivest, Liskov and Wagner [21]. Here, the block cipher is designed to accepts 

an additional input value known as ‘Tweak” and encrypts a message M which is controlled 

by two entities, the key ‘K’ and a “tweak” T. Both values act together to encrypt a message 

to produce a cipher text C. Therefore, we can represent a tweakable block cipher as 

 

 

3.2 Components of a Tweakable Block Cipher 

Classically, all Symmetric encryption systems are built using four components. However, in 

the thesis our design will revolve around a Tweakable Block Cipher and therefore we shall 

be dealing with an additional Tweak Input as well. We will describe these one by one before 

exploring each in detail. 

A Typical Tweakable Block Cipher is illustrated in Figure 3.1 : 
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Figure 3.1: A TBC 

3.2.1 The Plain Text (M) 

The message, clear text or literal text forms the input to a cipher algorithm. This is the text 

that the sender wants to encrypt so that the adversary is not able to read it during 

communication or storage if he accesses it. The Cipher receives a fixed length of plaintext 

bits known as a Block. The length or size of the Block fed to the Encryption algorithm as an 

input will remain fixed for a given scheme of Block Cipher. 

 

3.2.2 The Encryption / Decryption Algorithm (E) 

The component of encryption system that takes the Plain text message (M) and generates a 

Cipher Text (C) under control of the key (K) is known as the Encryption (E) / Decryption 

(D)Algorithm. The Block Cipher, classically, will take a Block of Input Text, will perform 

Encryption (E) process, and creates a cipher text (C). This process will be done under 

control of the key (K). 

3.2.3 The Master Key (K)  

The master key (K) is a string of random characters which is known to only the sender and 

receiver. It is used to encrypt and decrypt the data and therefore, is kept secret.  
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1) The Key string is kept random so that it is difficult to guess and is long 

enough for making the brute-force (or trying all possible combinations) 

effort infeasible.  

2) A Key scheduling algorithm is used to generate keys, since block ciphers 

use more than one round for encryption. 

3.2.4 Cipher Text (C)  

The result of the Encryption Process (E) is the Cipher Text (C). This is the output of a 

Block Cipher which, for an adversary, is unintelligible. Therefore, if an adversary wants to 

derive information from Cipher Text (C), it has to be reverted back to its original state using 

the Decryption Process (E).   

3.2.5 The Tweak Input (T)  

For the Tweakable Block Cipher to work, an additional input is also provided to the Block 

Cipher known as Tweak Input (T). 

3.3 The Advanced Encryption Standard (AES) 

The objective of our research is to design an AES-like SPN cipher, therefore we will explain 

the brief working of AES in this section, to develop an understanding of how AES works.  

3.3.1 The AES Design and Working 

The Advanced Encryption Standard (AES) is an iterative, Substitution – Permutation 

Network Cipher. Being an iterative Cipher, it has multiple rounds, the number of which are 

determined by the length of the Key, whereas the round function remains the same. Table 

3.1 and the figure 3.2 shows the various key lengths and corresponding rounds. 
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Table 3.1 AES key lengths and rounds 

Key Length Number of rounds Comments 
128-bits 10  
192-bits 12  
256-bits 14  

 

Figure 3.2 AES Block Diagram 

 

The AES working is described in subsequent sections and shown in Figure 3.3 : 

 
Figure 3.3 AES Operations Flowchart 
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3.3.2 Plain Text Handling by AES 

AES is designed to perform computations on Bytes, rather than the Bits. Therefore a 128-bit 

data block in AES is treated as 16 bytes. AES further arranges these 16 bytes into a 4x4 

matrix for processing in GF(28). 

3.3.3 Rijndael’s Key Scheduling Algorithm for Key Expansion 

The same Secret Key is not used for every round, instead the Master Secret Key is used to 

determine a set of Sub-Keys. The series of "round keys”, one key for every round, is 

calculated or derived using the Rijndael’s key scheduling algorithm.  

3.3.4 The Key Whitening Layer 

The initially driven 128-bit Sub-Key or K0, (which is calculated from the Master Secret Key 

by using the Key Scheduling Algorithm, as explained in 3.3.2) is XORed with the state. This 

is done before the start of AES rounds operation to perform a Key Whitening operation.  

3.3.5 The AES Rounds 

The length of the Master Secret Key determines the number of rounds in AES (as discussed 

in Table 3.1 above). The number of rounds will be numbered from 0 to Nr – 1, where  

Nr ε {10, 12, 14}. 

Except the last round, AES round functions comprise of following transformations in the 

order given below. We will not go into the detailed working of these operations :- 

3.3.5.1  Byte Substitution Layer (ByteSub or S-Box Layer) 

Byte Substitution Layer is the non-linear layer that would apply identical S-Box 

permutation to every bit of the state and non-linearly transforms the state by making use of 

special lookup tables that have special mathematical properties. 
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3.3.5.2  Shift Rows  

The Shift Row operation shifts or rotates (in a cyclic manner) the ith row of the state by i 

bytes, where i = 0, 1, 2, 3 (the number of row). The process is shown in Figure 3.4. 

 

Figure 3.4 AES Shift rows operation 
 

3.3.5.3 Mix Column 

The Mix Column function operates on each column of the state. It starts by treating each 

individual column as a vector and multiplying it with a 4x4 fixed matrix.   

3.3.5.4 Round Key Addition Layer 

Towards the end of every round, a Round Key Addition operation is performed which 

existing stat is XORs with the Round Key. As discussed earlier, Round keys are driven from 

the Master Secret Key through Key Scheduling Alorithm.  

3.3.6  The Cipher Text (C) and its Decryption 

The output of the AES is a block of encrypted data that can be securely stored and 

communicated over an un-encrypted network, provided the Secret Key is kept secure.  

Being a SP-Network based, the decryption operation is merely an inverse of the encryption 

operation and layers along with their order are inverted.  
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3.4 Cryptanalysis 

The strength of a cipher lies in the Secret Key. Even if every detail of the cipher is public 

and its design and working is known, the cipher should be considered secure till the time the 

Secret Key is not known. Therefore, the objective of an adversary is to find a way to recover 

the Secret Key. The adversary can achieve this in a many ways. 

The attacker is assumed to have gained access to the Cipher and it can submit queries in the 

form of Plaintexts / Ciphertexts and receive a corresponding reply (Ciphertext for plaintext 

and a plaintext for ciphertext). An attacker can launch an attack in a white-box context 

where the internal state or the design of the cipher is known to the attacker, or a black-box 

context where the internal state or the design of the Cipher is not known to the attacker. In 

the later, the adversary is dependent on encryption / decryption queries only. The table 3.2 

describes the various scenarios in a black-box context that an adversary may use to launch 

an attack.  

Table 3.2 Attack Scenarios 

Ser Type of attack Description 

1. 

Ciphertext only 

attack or Known 

Ciphertext attack 

During this scenario, the attacker or adversary has access to 

ciphertexts only. 

2. 
Chosen Ciphertext 

Attack (CCA) 

In CCA, the adversary obtains the plaintexts against a set of 

ciphertexts for further analysis 

2a. Adaptive CCA 

In this type, after receiving the plaintexts for the chosen 

Ciphertext attack and analyzing them, the adversary can 

request for plaintexts for additional Ciphertexts. 

3. 
Known plaintext 

Attack 

Here, the adversary possesses certain pairs of plaintexts along 

with their generated ciphertexts 

4. 
Chosen Plaintext 

Attack (CPA) 

The adversary can select random plaintexts which are required 

to be encrypted and obtains their corresponding cipher texts 
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after encryption 

4a. 
Adaptive chosen-

plaintext attack 

In this model, after receiving the cipher texts for the chosen 

plaintext attack and analyzing them, the adversary can request 

for ciphertexts for additional plaintexts. 

 

The attacker can choose to exploit Keys as well. As discussed earlier, an iterative cipher 

employs a Key Scheduling Algorithms for generating round keys. The attacker, therefore, 

can attack using Original Secret Key or the Round Keys. This is done in either of the 

following manners [22]: -  

1) Single-key attack: the attacker can only make queries to the cipher by making 

use of the master key K. 

2) Related-key attack: Both Original secret key K, as well as a related key K1, can 

be used to make queries using to the cipher. In case the Cipher makes use of a 

weak or simple Key Scheduling Algorithm, it is easy for the attacker to determine 

the relationship and derive further keys. 

3) Chosen-Tweak attack. The attacker can also analyse the tweak input, determine 

and use a relation between tweaks for attacking a Cipher by selecting a tweak 

value. This is known as Chosen-tweak attack. 

Symmetric Key Block Ciphers, inherently being deterministic in nature, are susceptible to a 

number of attacks. A number of bits, or a block, when encrypted with a key, will always 

produce the same cipher text. This characteristic of a block cipher makes it vulnerable to a 

number of cryptanalysis techniques, the most common being the Differential and Linear 

Cryptanalysis. These attacks, when combined, form the basis of new type of attacks e.g. 

Boomerang attack and meet-in-the-middle attacks.[23].  
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3.4.1 Differential Cryptanalysis  

Eli Biham was the first to introduce Differential Cryptanalysis in 1991 [24]. This type of 

cryptanalysis is a chosen cryptanalysis attack, where the probability of existence of a 

differential, i.e. an input-out difference pair is exploited.  

For instance, let us consider a Cipher which has input X = [X1 X2 X3 ….Xn] and consequent 

output as Y = [Y1 Y2 Y3 … Yn]. Then for each plaintext input X*, there will exist a 

corresponding Ciphertext output, Y*. 

Consider X’ and X” and two inputs such that their corresponding outputs exist as Y’ and Y”. 

Then the difference between the two inputs is given by 

∆X = X′ ⊕ X″ i.e. the input difference equals the XOR of X′ and X″ 

with ⊕ being the bit-wise XOR of the two n-bit input values, And therefore  

 ∆X = [∆X1 ∆X2 …… ∆Xn] 

Where ∆Xi = X i′ ⊕ X i′′, where Xi’ and Xi” represent the i-th bit of Xi’ and Xi”.  

Similarly  

∆Y = Y′ ⊕ Y″ 

And therefore 

 ∆Y = [∆Y1 ∆Y2 …… ∆Yn] 

Where ∆Yi = Y i′ ⊕ Y i′′, where Yi’ and Yi” represent the i-th bit of Yi’ and Yi”.  

 

Therefore, in a truly random cipher, the probability that given a particular ∆X is given as 

input and a certain output difference ∆Y exists, will be 1/2n, (where n is number of bits in X). 

However, this will not be true in every case and in some cases, the probability of occurrence 

will be high. A pair of input-output differences (∆X, ∆Y) with high probability of occurrence 

is known as a differential. 



 
 

24 
 

For constructing the complete differential of a SPN Cipher having multiple rounds with 

Plaintext Input as X and Ciphertext Output as Y, we calculate the Differential 

Characteristics of each round (i.e. input and output differences). For this, we shall examine 

the properties of individual S-Boxes of the cipher to determine the Differential (∆X, ∆Y) 

with highest occurring probability. This is done by calculating a Difference Distribution 

Table (DDT) for each S-Box, from where the probability of occurrence of a specific ∆Y 

against a specific ∆X is determined. For each S-Box in a round, the ∆Y with highest 

probability of occurrence is chosen for a given ∆X. This way, the non-zero ∆Y bits from a 

round relates to non-zero ∆X bits of the next round. This gives us a high-probability 

difference from start (input) of the Cipher to the input of the last round. This is termed as 

Constructing Linear Approximations for the Complete Cipher. 

Being a Chosen-Plaintext Attack, the adversary is allowed to select a pair of inputs X′ and 

X″ so that a particular ∆X is satisfied. Moreover, the attacker knows that what values of ∆Y 

value would occur with high probability therefore, he is at liberty to choose input pairs to 

get the corresponding ∆X. 

We also have to consider the fact that we are to find the key for this Cipher. It is concluded 

that the Key will not effect the input difference and will cancel out when XORed. 

After a Differential Characteristic for R-1 round has been determined in a R-round Cipher, 

we can attempt to recover key bits of the subkey of last round which we can term as Target 

Partial Round Key. Since a single S-Box in a specific round receives a small portion of the 

state, its output (ciphertext) can be brute-forced by XORing the Ciphertext with all the 

values of the Target Partial Round Key. The resultant vector or Ciphertext value is passed 

back through the all the respective S-Box. We will do this for all plaintext / ciphertext pairs 

and a counter for each recovered Target Partial Sub Key is kept. This value is incremented 
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if the linear expression is found to be true after a Partial Decryption using a Target Partial 

Round Key. After all the Target Partial Sub Keys have been tested, the counters are 

checked. Thy key whose counter is found to deviate the greatest from half of the Plaintext / 

Ciphertext numbers is presumed to be the Target Partial Sub Key bits. 

 

3.4.2.1 Linear Cryptanalysis 

In subsequent paragraphs we will explain the Linear Cryptanalysis attack against a 

Substitution-Permutation Network Cipher. 

Matsui discovered that the plaintext, cipher text and sub-key bit share a high probability 

relationship which can be expressed in the form of Linear Equations. The attack works with 

an assumption that an attacker has access to a random set of plaintexts and their 

corresponding ciphertexts, with a clause that he has no control over selection of plaintexts 

that are being used. Thus this is a Known Plaintext Attack.  

First, we try to find out a linear approximation in our SPN Cipher to the last round. We start 

with a portion of the cipher and expresses it form of a linear expression (linearity being a 

binary XOR operation). The equation can be written as: 

X* ⊕ Y* = 0 

The linear equation is formed in following manner  

Xi1 ⊕ Xi2 ⊕ ……. ⊕ Yj1 ⊕ Yj2 ⊕ ……… ⊕ Yjm = 0 

where  

Xi represents the i-th bit of the input X = [X1, X2, ...]  

Yj represents the j-th bit of the output Y = [Y1, Y2, ...].  

This equation is representing XOR of u input and v output bits 
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So basically, we find expressions like equation above that have a high or low probability of 

occurrence. The existence of linear expressions of above form with a high or low probability 

is an indicator of poor randomization abilities and can subsequently be exploited in the 

Linear Cryptanalysis attack. 

To proceed, we select random values of u and v, and place them in the equation above. The 

probability that the above equation will hold will be exactly ½. The deviation from this 

probability value is known as Linear Probability Bias, and forms the basis of a Linear 

Cryptanalysis Attack.  

The expressions that are highly linear are constructed by taking into account the input and 

output bits of an S-Box and find out linear vulnerabilities in a S-Box. So for a S-Box that 

handles input X = [X1, X2, X3, X4] and output Y = [ Y1, Y2, Y3, Y4], we shall examine all linear 

approximations and compute Linear Probability Bias for each.  

Therefore, for one particular linear equation, by applying all the 16 input values of the S-

Box and examining the corresponding output, we will find out the probability bias, i.e. the 

number of times this expression holds true. We can formulate the Linear Approximation 

Table of the S-Box by using all of its linear approximations. 

Later, we can concatenate the linear approximations of multiple S-Boxes together so 

that we can come up with a linear expression which only contains the bits from plaintext 

and input bits from the last round.  

The Key-recovery process is similar to what is done in Differential Cryptanalysis. We find 

out the R-1 round linear approximation for a R-round Cipher and with a large probability 

bias, which makes it possible for us to launch an attack to recover last round key bits or 

Target Partial Sub Key. Rest of the process is the same as the key recovery process of 

Differential Cryptanalysis. 
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3.5 Backdoors in Block Ciphers 

So far, we have also discussed the general structure of Block Ciphers and focused on its 

classic example; the AES. In order to defeat encryption, researchers and hackers’ resort to 

tools like Linear and Differential Cryptanalysis, which forms basis of other type of attacks 

like Boomerang Attack etc. Privy of the fact, the designers of a crypto system take into 

account these cryptanalysis techniques during the design phase of the cipher and try to make 

the Cipher as much resistant to modern day cryptanalysis techniques as possible.  

Considering their public use, it becomes equally cumbersome for the law enforcement 

agencies to decrypt any captured encrypted communication which made use of publicly 

available strong cryptosystems, like AES for example. So, over a period of time, thought 

was given to have a simpler method, like a backdoor, which is only known to designers, 

Governments and law enforcement agencies and would give them control over how 

encryption systems work. However, they would work best if they are only known to the 

designers.     

Backdoors are regarded as the best way to implement cryptographic control over Ciphers. 

Theoretically, they require far less effort than brute-forcing a cipher. Consequently, they are 

ideal for use by governments and law enforcement agencies who want to control or by-pass 

encryption. 

As mentioned in Introduction earlier, embedding a backdoor in block ciphers is a 

challenging task since exploit randomness in computations is difficult due to their 

deterministic behavior. Moreover, researchers and hackers both are always at the lookout 

for exploring a loophole in an encryption algorithm which can help in recovery of sensitive 

data and circumvent encryption, thus exploitation. 
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Broadly speaking when it comes to implementation, backdoors are categorized into two 

main types:- 

 A backdoor can be embedded in a system at either the key scheduling, 

generation, distribution or management phase. These are more suited methods, 

being easier to implement. 

 An algebraic backdoor which is implemented at the mathematical design level of 

cipher. These are considered difficult to implement and not much significant 

work exists in this field. A mathematical backdoor should assist its designer (or 

anyone who is in knowledge of a mathematical backdoor) in an effective 

cryptanalysis and help in recovering the key on a modern-day computer with 

limited plaintext / ciphertext pairs) 

 

3.5.1 Characteristics of Backdoors in Ciphers   

In order to have a strong cipher with an Algebraic backdoor, it is assumed that it will fulfill 

certain requirements, which make the design practical and workable [16]. These include :- 

 Even if the general form of the cipher or internal design is known to an adversary, 

retrieving backdoor information should still remain computationally difficult.  

 The security of backdoor (effort involved in recovering the backdoor) should be 

equivalent to that of cipher. In other words, retrieving the backdoor should be as 

difficult as brute-forcing the cipher, otherwise the security of backdoor will defeat the 

strength of cipher. 

 The backdoor should perform an attack that is deemed practical or provide such an 

information that would significantly reduce the brute force effort for the designer. 
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Merely reducing 2256 to 2128 may seem great advantage theoretically, but it would still 

remain practically infeasible.  

 Finally, the designed block cipher with an embedded backdoor must be protected in 

the classical sense, that is, it should not be vulnerable to state-of-the-art cryptanalysis 

techniques. 

3.5.2 Security Notions 

For a Backdoor to be achieve both the purposes, i.e. being practical and secure at the same 

time, it must adhere to following security notions:- 

1) Undetectability. The Backdoor must be embedded in a manner that it would 

remain undetected. Thus, Undetectability represents the inability of researchers 

and hackers to comprehend that a covert Backdoor exists in the Cipher. 

2) Undiscoverability. This notion represents the inability of researchers and 

hackers to find a hidden Backdoor embedded in a block cipher, even if they 

somehow know that a hidden Backdoor has been embedded in the cryptographic 

algorithm.  

3) Untraceability. This notion states that if an adversary uses the backdoor to 

launch an attack, no information about the existence or working of Backdoor is 

revealed. 

4) Practicability. The last and the most important security notion is the 

Practicability. It defines that when an entity is in knowledge of the Backdoor and 

it intends to launch an attack for key recovery, it should be practical and should 

allow the key recovery without much effort. 
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Above in view, it is therefore considered that designing a backdoor which meets above 

criteria is virtually impractical, and not much of a research exists in this field and the topic 

remains of extreme interest for academia. 

3.5.3 The SageMath Tool 

Lastly, we will briefly introduce the SageMath Tool. The SageMath is an Open-source, 

mathematical system licensed under GPL. It is a library which is constructed on top of many 

other free and open-source libraries like NumPy, matplotlib etc. These libraries can be 

accessed through a Command-Line Interface (CLI) which is based on Python, a renowned 

programming language.   

SageMath can be downloaded from https://www.sagemath.org/download-windows.html and 

will work on any 64-bit windows (windows 7 onwards) or from GitHub 

(https://github.com/sagemath/sage-windows/releases).  

3.5.3.1  SageMath Components 

A normal SageMath installation can be run through three desktop / start menu shortcuts. 

The normal convention is SageMath <version>. 

 

1) SageMath 9.2 . The basic Sage: command Prompt can be accessed through the 

SageMath console. It is a CLI where we can enter commands and execute them. 

For example, we can simply write 2 + 2 on the command line and SageMath 

Console will sum these up and give 4 as output in the next line. 

https://www.sagemath.org/download-windows.html
https://github.com/sagemath/sage-windows/releases).
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2) SageMath 9.2 Shell. This shortcut a bash-shell which is intended for advanced 

users accustomed to use SageMath in a UNIX-like environment (Linux, for 

example). 

 

3) SageMath 9.2 Notebook. The SageMath 9.2 Notebook starts a Jupyter NoteBook 

Server which can run Jupyter Notebooks in a Sage Kernel (i.e. we can run Sage 

inside Jupyter). Running the Notebook will execute the Notebook Server in a 

command-line environment and open the NoteBook in our default browser. 
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3.5.3.2  Utility 

For this thesis, we shall be making use of SageMath to write our code for the Cipher. The 

coding is done in Python and reason for selecting SageMath is its built-in collection of 

libraries which would otherwise require to be imported in Python.  

3.6 Conclusion 

Brute-force and cryptanalysis are two tools that are employed for breaking a cipher and 

recovering key information. During the design phase, designers use Cryptanalysis tools to 

analyses the system and try to find out design vulnerabilities which may help in recovering 

key. Addressing these vulnerabilities will not only strengthen the cipher, but make the task 

of attacker more difficult. Similarly, for a law enforcement agency, this task will be equally 

difficult considering longer keys and ciphers that are resistant to cryptanalysis. 

Researchers are now considering embedding backdoors in the ciphers. To recapitulate, a 

backdoor is a hidden way of bypassing security in a cryptographic algorithm with an aim to 

facilitate the designer (or anyone who is in knowledge of Backdoor) in key recovery. 

Implementation of a backdoor may be easy, but keeping it secure so that hackers and 

researchers do no discover it and use it for breaking the cipher is a cumbersome and difficult 

task. 
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This research focuses around the design of a framework that can be used to embed a 

mathematical or algebraic backdoor in an AES like, SPN based tweakable block cipher. We 

will start with a broader overview of the cipher and then discuss each component 

threadbare.  
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Chapter 4 

Block Cipher with an Embedded Algebraic Backdoor 
 

After having gone through the preliminary background in the preceding chapters, we shall 

discuss the framework design of a backdoored block cipher and its code.  

Designing a weak cipher susceptible to cryptanalysis (linear or differential) has an inherent 

weakness since anyone can exploit these weaknesses and retrieve the secret key. Such a 

design will not contribute to a practical solution where the backdoor (cryptanalysis) is not 

only discoverable but detectable and traceable. Therefore, we need a design that is 

workable and exhibits strong cryptographic properties and resists cryptanalysis. In short, it 

should behave like any other cipher, but has a secret backdoor element that is known; 

however, the secret element value is not easily discoverable or retreivable. This secret 

backdoor will help an attacker (who is in knowledge of the backdoor) in key recovery.  

For designing the backdoored cipher, we employ the LowMC-M framework [16]. The 

framework generally generates the parameters for a traditional LowMC cipher with 

embedded backdoor. However, the concrete framework does not contain the underlying 

design code to make the backdoored cipher. We have designed and coded a cipher which is 

compatible with the LowMC-M framework and initiates by taking parameter values 

generated by the framework. The encryption / decryption algorithm running inside the 

LowMC-m code will be explained where required. Main emphasis will be on the 

explanation of concept, theory and coding being done to embed the Backdoor inside the 

Block Cipher.   

The LowMC uses randomly generated matrices for Whitening Key and Linear Layer matrix 

multiplication. This is essential because of the following reasons: - 
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1)  If the underlying matrices are fixed, it will make the cipher deterministic, leading 

to correct decryption of the ciphertext. This is also the well-known fact for AES 

as well in which the underlying matrix employed in encryption and decryption 

operations is fixed. 

2) Fixed Matrices or values (without any mathematical justification) leads to a 

suspicion that the designer might have embedded a mathematical backdoor in the 

design by specifically choosing these matrices. Due to the underlying design of 

the LowMC cipher for being lightweight, every time we instantiate the cipher, the 

random parameters are generated, which are then fixed by both the sending and 

receiving parties for encryption / decryption. 

 

4.1  The Generic LowMC Framework   

Our Cipher is designed based on the LowMC class of Block Ciphers which is a Low 

Multiplication Complexity Cipher. This family of Block Ciphers belongs to the SPN 

architecture and utilizes a partial non-linear layer.  

4.1.1  The design Overview 

Based on a conventional SPN design, the LowMC cipher comprises of an initial Key 

Whitening stage followed by a round function which is iterated r number of times. The 

general diagram of the LowMC is illustrated in figure 4.1. Each layer will be described in 

subsequent paragraphs. 

4.1.2  LowMC-M Framework: The LowMC with a Backdoor 

The LowMC-M framework is a variant of LowMC framework. The LowMC-M framework 

transforms the LowMC into a tweakable block cipher (TBC) with hidden high-probability 
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differential characteristics which embeds a Backdoor. The additional input of the TBC is 

controlled by a Tweak value which is added before the rounds as Whitening Tweak  and 

during each round as round tweak [26]. The general form of the LowMC and LowMC-M 

framework is illustrated in figure 4.1. 

 

 

Figure 4.1 The Block Diagram of LowMC (left) as compared to LowMC-M (right) 
 

4.2 Tweakable Block Ciphers 

The LowMC-M instantiation is designed basing on a Tweakable Block Cipher (TBC) with a 

partial nonlinear layer. The TBC is designed as such so that the Tweak Value and the 
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partial nonlinear layer are used to embed differential characteristics over a number of 

rounds. With the knowledge of the Tweak Value, it is easy for an attacker to recover full or 

part of Secret Key. The Tweak Value, therefore, acts as the backdoor.  

4.2.1 Tweak Value  

In order for the tweakable block cipher to work, a tweak value is given as an additional 

input to the cipher during its various stages. The addition of same tweak value in all stages 

of the cipher will be not serve the purpose and will cancel out during the Cryptanalysis.  

Figure 4.2 shows the block diagram of how Tweak values are added in LowMC-M. 

 

Figure 4.2 Tweak Addition in the LowMC Framework 
 

The tweak value is generated from a randomly selected tweak pair using an extendable-

output function (XOF). XOF, as its name suggests, is a variation of a HASH function which 

can produce an output of a desired length. 
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Since we intend using this as the backdoor, therefore it is assumed that it is known to the 

designer who, however, is not in possession of Secret Key and wants to retrieve it.  

Following steps are involved in tweak generation phase of the cipher, which are 

depicted in Figure 4.3:- 

 

Figure 4.3 Tweak Value Generation 
 

1. A n-bit random tweak pair (t1 & t2) is selected. This tweak pair is used to 

generate the Tweak Value. 

2. Each Tweak Value (t1 & t2) is fed to an extendable-output function (XOF) which 

in turn generates a Hash Value. An XOF can generate a desired length output, 

which can be used to generate the Tweak Schedule. 

3. The output of the XOF is XORed to generate the Master Tweak Value. 

Master Tweak Value 
1. Select n-bit tweak values (tweak_1 & tweak_2). These values are random 

2. Compute following: 

XOF(tweak_1) → t1 

XOF(tweak_2) → t2 

3. Evaluate the difference 

t0 = ∆t = t1 ⊕ t2 

4. The evaluated value is the t0 Master Tweak Value 
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4.2.2   The Tweak Schedule  

The code uses SHAKE128 as XOF, therefore the length of input i.e. tweak_1 = tweak_2 = 

128. The XOF uses these 128-bit vectors to generate t1 and t2. The length of  t1 and t2 is fixed 

such that the whitening and round tweaks can be derived from it. The output of the XOF is 

depicted in figure 4.4 below:- 

 

Figure 4.4 Output of XOF 

4.3 The Cipher Parameters and Instantiation 

Unlike the conventional ciphers, the LowMC instantiation is not fixed and user is at liberty 

to choose parameters of his own choice to instantiate the Cipher. For the purpose of this 

thesis, we select parameters as stated in table 4.1 for instantiation. 

 

Table 4.1 Instantiation of LowMC-M 

Parameter Symbol Size (bit) description 

Key Size k∈ {0,1}s 128 the Key size 

Block Size p ∈ N 128 The block size is denoted by p = plaintext 

Size of S-Box n ∈ N 3 the input size of S-box 

Number of S-Box m ∈ N 30 the number of S-box applied in each rounds 

Rounds r ∈ N 70 the number of rounds 

Non-linear size s ∈ N 90 Size of non-linear Layer is denoted by s = 

mn 
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It is worth noting that using different combinations of instantiation parameters would result 

into different security strength owing to varying number of rounds and S-Boxes in the linear 

layer.  

 

4.4 The Plaintext (p) 

The block cipher takes a 128-bit block of data as input, which will be transformed by the 

block cipher into the cipher text of the same length, i.e. 128-bit.   

 

4.5 Whitening Key (kw) 

The first step of the cipher is key whitening stage or layer. The whitening and the round keys 

both are generated by using a key scheduling algorithm, that derives these keys from the 

master secret key. We will generate random keys for using with the LowMC-M framework 

cipher and save them for the encryption and decryption round. All parameters are generated 

by LowMC-M framework based on the underlying LowMC cipher design. 

The Whitening key is a n x k matrix which is required to be generated by the key scheduling 

algorithm. However, in our case, this is generated as a random matrix of size p x k. The state 

(plaintext) vector is multiplied in GF(2) with the n x k whitening key matrix generated 

earlier. The result product of the matrix multiplication is a n-bit vector. 

 In this layer, the 128-bit input text block or the state S1 is multiplied by a 128 x 128 

bit binary matrix and the output of this layer S2 is a 128-bit binary vector. 
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4.6 The Whitening Tweak 

In the next layer, the state S2 is XORed with the 128-bit Whitening Tweak value, which is 

driven from the Tweak Schedule. The output of the Whitening Tweak layer is a 128-bit 

vector S3. 

4.7 The Round Function 

The SPN based cipher will have r number of rounds (where r ∈ 1, 2, 3, … ). We shall 

consider a round function at round i, (where i ∈ {1, 2, 3, …  The previous round will be .({ݎ

referred to as ri-1 and next round as ri+1. 

Therefore, at the start of round ri, the state xi will be output from ri-1. At the start of the first 

round, output of Whitening Tweak Layer i.e. S3, is available to round function as input. 

 

4.8 The Non-Linear Layer (Si) 

The non-linear or the S-box layer comprises of m number of n-bit s-boxes that are identical 

and applied onto the state. Here, the S-boxes are not applied to the complete state, but only 

to a portion of state. This type of non-linear layer is termed as a partial non-linear layer.  

 In a classical SP Network based block cipher, the Linear (Li) and Non-Linear (Si) are 

applied to the complete state during every round. In 2013, Gerard et al [xx] presented the 

concept of partial non-linear layers. The non-linear state (Si) only acts on a part of the state 

only. Assume that we are using a cipher where in its design it utilizes m number of s-boxes 

in each layer having a block size of 3 bits for each s-box, then the size of non-linear layer s 

= 3m  where s < p.  

Therefore, if we look at our parameters above, since state p = 128, and a partial non-linear 

layer has m = 30 s-boxes in each layer with the size of each s-box as 3, therefore the size of 
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partial non-linear layer s = 3m = 30 x 3 = 90. Moreover, clearly s < p since 90 < 128. This 

means that out of the 128-bits of the state S4, only 90 bits will be transformed by the s-boxes 

(thus the partial non-linear layer) and remaining (n – s) 38-bits will pass without any 

change.  

4.9 Handling round keys in rounds with Partial nonlinear layers 

In LowMC, we observe that the partial nonlinear layer will act on s-bits of the state and 

remaining (n-s) bits will pass through the layer unchanged. This can be used to optimize key 

generation. If we split the round key is into two parts, i.e. ki’ (0) and ki’(1) such that size of  ki’ 

(0) = s and ki’ (1) = (n – s), then the ki’ (0) part will be XORed with data that has been 

transformed by s-box and ki’ (1) remains unaffected. Thus, if the round key layer follows the 

S-Box Layer, then it can be moved up and combined with the ki-1 of the previous layer. 

 

Figure 4.5: Representation of LowMC with key size equal to S 



 
 

43 
 

4.10 The S-box layer design 

The S-box being used in LowMC is a 3-bit S-box, which is shown in Figure 4.6. An S-box 

can be realized in terms of a look up table, where the substitutions are carefully designed 

after evaluating Boolean functions and it is ensured that they satisfy certain security criteria. 

The S-Box is designed on following Boolean functions.  

S (x0, x1, x2) = (x0 ⊕ x1 x2, x0 ⊕ x1 ⊕ x0 x2, x0 ⊕ x1 ⊕ x2 ⊕ x0 x1) 

 

Figure 4.6 The Sbox of the Non-Linear Layer 
From the Boolean code above, the lookup table for the S-Box is given below. 

Table 4.2: Lookup table for S-Box 

Input Output 
x0 x1 x2 y0 y1 Y2 
0 0 0 0 0 0 
0 0 1 0 0 1 
0 1 0 0 1 1 
0 1 1 1 1 0 
1 0 0 1 1 1 
1 0 1 1 0 0 
1 1 0 1 0 1 
1 1 1 0 1 0 
 

From the parameter settings of our cipher, three 3-bit S-boxes will be act on the first 9 bits 

(S2) in the first round, since we are using the partial non-linear layer. The remaining n-s bits 
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will be identity. Therefore, for input xi (i ∈ {1, 2, 3, … ݊})  and corresponding output yi (i ∈

{1, 2, 3, … ݊})  , the partial non-linear is shown in Figure 4.7: 

 

Figure 4.7 The partial non-linear layer 

 

4.11 Round key Addition (kri)   

For a r-round cipher, (where r ∈ 1, 2, 3, … ),  r number of round keys are required to be 

generated by the key scheduling algorithm. As already concluded above, the size of the 

round key ki (where i ∈ {1, 2, 3, …  will be equal to S which is the nonlinear size of the  ,({ݎ

nonlinear layer. Therefore, each round key is a s x k matrix which is required to be 

generated by the key scheduling algorithm. However, in our case, this is generated as a 

random matrix of size s x k. 

The state xi (n-bit vector) is split into x(0) and x(1), s.t. xi = (xi(0) || xi (1)) where x(0) is multiplied 

with the s x k round key ki (where i ∈ {1, 2, 3, …  in GF(2). The resultant product of the ({ݎ

matrix multiplication is a s-bit vector, which is concatenated with the identity xi (1) to 

generate an n-bit vector S5, which is the output of this layer. 
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4.12 Round Constant Addition (RCi) 

In this Layer, the State S5 is split into x(0) and x(1), s.t. xi = (xi(0) || xi (1)) where x(0) is XORed 

with a randomly generated S-bit round constant vector. The resultant vector is concatenated 

with xi (1) to generate an n-bit vector S6, which is the output of this layer. 

4.13 Round Tweak Addition 

The state S6 again is split into x(0) and x(1), s.t. xi = (xi(0) || xi (1)) where x(0) is XORed with a S-

bit Round Tweak, which is generated by the Tweak Schedule using XOF. The resultant 

vector is concatenated with xi (1) to generate an n-bit vector S7, which is the output of this 

layer. 

4.14 Linear Layer (Li)  

In the LowMC, the state is multiplied with an invertible randomly selected n x n binary 

matrix Li in the Linear Layer. 

However, in LowMC-M the Linear Layer Matrix is not chosen randomly, but is generated 

to embed differential characteristics in every round, one round after the other. This means 

that the Linear Layer Matrix is generated separately for every round. 

4.15 Differential Characteristics and Differential Cryptanalysis 

If we recall, in-order for a Key recovery attack to work, Differential Cryptanalysis is 

performed to recover the s-bit subkey kr for the last round first, say round r. This is done 

when differential characteristics exist over r-1 rounds. After recovering the subkey bits, the 

cipher is reduced to r-1 rounds and the next (previous round) key i.e. kr-1 is recovered. For 

recovering the next round ket Kr-2, r-2 differentials would exist and will be exploited. So far, 
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we have discussed existence of 3 differential characteristics, one for round r, r-1 and r-2 

each.   

So, when we intend embedding a-differential characteristics over i-numbers of rounds of 

the cipher, we would have to consider the initial i-1 rounds and design the linear layer 

matrices accordingly. Note that Linear Layer Matrix Li of round I will not be designed as 

effect on S-Boxes of last round i is not required.  However, if we design the cipher requires 

the differential characteristics to be extended to one more round, then we would be required 

to design the linear layer matrix of round i as well. 

4.16 State and Linear Matrix Multiplication - Notation 

When carrying out the differential cryptanalysis, the difference during the i-th round before 

it is changed by the Linear Layer is represented by Xi. The Linear Layer Matrix Li can be 

partitioned into 4-sub matrices while denoting its k-th row by [k,*] and is shown below:-  

 

As discussed earlier, we know that during a round, partial non-linear layer will acts on a 

fragment of the state, i.e. x(0), and  

fi(x) = Li (Si (x(0))||x(1)) 

With this notation,  

For Non-linear part 

Li00 will correspond to x(0) 

Li01 will correspond to x(1)  

For Linear part 

Li10 will correspond to x(0) 
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Li11 will correspond to x(1)  

4.17 Generating the Linear Layer Matrices 

As discussed earlier, we will generate the Linear Layer Matrix for use during the first round, 

after a tweak difference has been pre-computed. Later the Linear Layer matrices are 

generated round by round along with the differential characteristics. During this process, the 

differential characteristics will be integrated and will extend from one round to the next 

round.  

4.18 Conclusion 

The Generic LowMC-M is a malicious variant of the light weight block Cipher LowMC and 

has an embedded Backdoor. The LowMC Cipher has been modified into a Tweakable Block 

Cipher to carry the malicious backdoor. The LowMC-M framework also provides a python 

code which provides insight to the cipher working. The framework does not contain fixed 

values and generates random parameters every time it is run. By doing this, the designer of 

the framework have tried to eliminate this doubt that the code carries a backdoor. 

The limitations of this framework is that it does not contain a concrete code and can be 

embedded in any design. 
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Chapter 5 

The Designed Cipher –Performance and Security 
Analysis 

In this chapter we will be discussing the security and performance analysis of our design. As 

we have already discussed, malicious tweak pair that is used to generate parameters and the 

differences of the plaintext used is the Backdoor. For anyone else, the cipher acts as a 

normal AES-like Tweakable Block Cipher, which performs encryption and decryption 

operations. The Code uses partial non-linear layers and can be instantiated using different 

parameters.  

5.1 Performance Analysis of Our Code 

The performance analysis of the LowMC was carried out by Peyrin, Thomas, and Haoyang 

Wang [16]. They used the AVX2 instruction set for Intel Haswell processor and concluded 

that single encryption usually costs 10,000 to 30,000 cycles. However, this calculation was 

dependent on the instantiation parameters used to with the cipher along with the block size 

being used. Our tests were conducted on a laptop with intel Core i7 6700 processor 

operating at 2.6 GHz. The encryption and decryption operations with parameters selected 

were comparable to AES as far as running time is concerned. The parameters selected 

included:- 

 n = 128-bits (Block size) 

 k = 128 bits (key size) 

 s = 90 bits (Non Linear Size) 

 XOF = 128 

 r = 14 (rounds) 
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 number of differentials selected = 2 

A wide range of parameter combinations can be used for instantiating LowMC within the 

framework of LowMC-M framework. However, every time the code is instantiated, a 

unique malicious tweak pair is required to be used to initiate a new embedded differential 

characteristic. 

5.2 Security Analysis of the Code 

 We have subjected our Code to NIST test suite [27] to test the randomness of binary 

sequence produced by the cryptographic random number generators used by our code. The 

tests conducted along-with their output is shown in table 5.1 

Table 5.1 – NIST Statistical Test Suite 

Test 
Number 

Nomenclature 
of Test 

Description Result 
AES Our Code 

1. Frequency 

(Monobit) - Test 

Check proportion of zeros and ones 

in a sequence and to ascertain 

whether number of zeros and ones is 

the same as would be expected in a 

truly Random Number Generator 

Non 

Random 

Random 

2. Runs - Test Ascertain total number of runs 

(uninterrupted sequence of identical 

bits) occurring in a sequence 

Random Random 

3. Repeated 

occurrence Test  

Check ratio of 1s in a n-bit block Random Random 

4. Binary Matrix 

Rank Test 

the rank of disjoint sub-matrices of 

the entire sequence are tested. This 

tests for linear dependence among 

fixed length substrings of the 

sequence given for tests. 

Random Non 

Random 

5. Lengthiest Find the lengthiest occurrence Random Random 
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sequence of 1s 

in a Block 

(uninterrupted sequence) of 1s within 

a n-bit Block, that would be required 

for a qualifying for Random 

Sequence 

6 Discrete 

(Spectral) 

Fourier 

Transform Test 

Detect periodic features (i.e., 

repeating sequences that occur near 

each other) in the tested sequence 

that would indicate a deviation from 

the assumption of randomness. 

Random Random 

7. Overlapping 

Template 

Matching Test 

Test the number of occurrences of 

specified target strings that have 

already been defined 

Random Non 

Random 

8. Non-

overlapping 

Template 

Matching Test 

Identify generators that produce large 

occurrences of a given non-periodic 

(aperiodic) m-bit pattern 

Random Random 

9. Maurer’s 

“Universal 

Statistical” Test 

Detect if the sequence could be 

considerably compressed without 

causing any loss of information. 

Non 

Random 

Non 

Random 

10. Linear 

Complexity Test 

Detect if sequence is complex 

enough so it can be considered as 

random 

Random Non 

Random 

11. Approximate 

Entropy Test 

Compare the frequency of 

occurrence of two consecutive 

overlapping blocks of adjacent 

lengths (x and x+1). It is tested 

against the result that expected for a 

random sequence 

Random Random 

12 Cumulative 

Sums (Cusum) 

Test (forward 

Checks the cumulative Sum of the 

partial sequences in the given 

sequence. It checks if it is too large 

Non 

Random 

Random 
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and reverse) or too small relative to the expected 

behavior required for random 

sequences 

13 Serial Test Checks the number of the 2m m-bit 

overlapping patterns, and determines 

if it is almost the same as would 

occur in a random sequence. 

Random Random 

14 Random 

Excursions 

Variant Test 

The purpose of this test is to detect if 

the expected number of visits to 

various states in the random walk 

exists or otherwise 

Random Random 

15 Random 

Excursions Test 

Checks the number of visits to a 

particular state within a cycle. It 

checks if that visits are different from 

that occurring in a random sequence 

Random Random 

  

The tests where the result of our code differ from that of AES may explored from the 

prospects of detecting a backdoor. 

The screenshot of results displayed by running these tests on AES are shown in Figure 5.1 

and on our code are shown in Figure 5.2 
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Figure 5.1 Result of NIST Statistical Test Results when run on AES 
 

 

Figure 5.2 Result of NIST Statistical Test Results when run on our Code  
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5.3  Security Analysis of the Backdoor 

5.3.1  Undetectability 

An entity should not be able to distinguish between an instance of LowMC-M that does not 

contain a backdoor from an instance that is embedded with a backdoor. If we recall our 

code, the instance of LowMC-M that contains a backdoor will have embedded differential 

characteristics that are generated round by round by specially designed linear layer matrices 

using the distinct tweak pairs. The Linear Layer matrices, therefore, are the only difference 

between the two instances. 

We have also discussed earlier that while extending the differentials from one round to the 

next, we create a set of linear equations and try to look for some solution. We have also 

highlighted in the previous chapter that these parameters are dependent on the tweak pair 

and the sub-tweak differences. Now, in order for the backdoor to be embedded in LowMC-

M undetected, a tweak pair used for constructing differential characteristics is not 

recommended to be used again. The backdoor, therefore, is undetectable, provided the 

tweak pairs are not reused.  

5.3.2  Practicability 

As far this property is concerned, once the designer is aware of the backdoor, only a little 

data and computation effort will be needed to launch a comprehensive key recovery attack. 

In this case, the backdoor is claimed to practical by its designers. 

5.3.3  Untraceability 

The user can detect the malicious tweaks while querying using the chosen-tweaks attack 

model. Since the designer would need to make a few queries before launching an attack, a 
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user can also find out the malicious tweak pair by brute forcing the queries. The backdoor, 

therefore, is traceable. 

 

5.3.4  Undiscovereability 

Undiscoverability is the inability of an attacker to recover the backdoor. However, in this 

case, the backdoor i.e. the tweak pair, tweak difference, sub-tweak differences and tweak 

differentials are fully protected by the XOF (SHAKE128). Recovering the tweak pair or the 

other deterministic tweak differentials should be as difficult as recovering the Key by brute 

force. The backdoor, therefore, is undiscoverable. 

 

5.3  Conclusion 

Our design within the LowMC-M Framework provides a practical and efficient approach to 

embedding a backdoor in an AES-like Tweakable Block Cipher.   
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Chapter 6 

Conclusion 
 

LowMC-M is a Framework for embedding Malicious Backdoor in a Block Cipher. The 

framework is based on LowMC (Low Multiplicative Complexity) variants of Tweakable 

Block Ciphers. The designers of this framework proposed a mathematical backdoor and 

claimed its effectiveness and practicability by embedding deterministic differential 

characteristics in cipher rounds and recovering the secret key by differential cryptanalysis. 

However, the limitation with the framework was its practical manifestation. The designers 

of the framework kept it generic, instantiating it with random values every time the code 

was run, so that any suspicion of a backdoor could be averted. 

In this thesis, we designed an AES-like tweakable block cipher based on the LowMC-M 

framework. The cipher performed encryption and decryption operations successfully and 

was subjected to NIST statistical test suite for testing randomness. The Cipher exhibited 

behavior similar to AES and the results of the test were found comparable to AES. 

Embedding a backdoor in a block cipher is a challenging task when it comes to 

incorporating a backdoor in its design. On the other hand, protocol level implementation is 

easy but discoverable. Our Backdoor is a mathematical backdoor which is embedded in the 

design of the cipher and is based on the LowMC-M framework which allows key recovery 

using the Differential Cryptanalysis.  
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Appendix 
 

Main.py 

import numpy as np 
from pyfinite import ffield 
import BitVector 
 
 
def sub3(num): 
    ###### Substitution. Kindly Check Image Attached 
    if num == 0: 
        return np.array([1,1,1]) 
    elif num == 1: 
        return np.array([1,0,0]) 
    elif num == 2: 
        return np.array([0,1,1]) 
    elif num == 3: 
        return np.array([0,1,0]) 
    elif num == 4: 
        return np.array([0,0,0]) 
    elif num == 5: 
        return np.array([0,0,1]) 
    elif num == 6: 
        return np.array([1,0,1]) 
    else: 
        return np.array([1,1,0]) 
 
def sBox(arr): 
    ####### Checks and converts Inserted Array to 16 Bits 
     
     
    ####### Slices the Least Significant 9 bits for 3 bit Byte 
Substitution   
                                                                                 
# FAWAD, this needs to be changed 
    l1 = arr[0:3] 
    l2 = arr[3:6] 
    l3 = arr[6:9] 
    rem = arr[9:]     
    ####### Converts to Decimal 
    l1 = int("".join(str(x) for x in l1), 2) 
    l2 = int("".join(str(x) for x in l2), 2) 
    l3 = int("".join(str(x) for x in l3), 2) 
    ####### Calls Sub 3 method in Line 4. Returns 3 bit numpy Array 
    l1 = sub3(l1) 
    l2 = sub3(l2) 
    l3 = sub3(l3) 
    ####### Appends and substituted bits and unchanged 7 bits 
    rem = np.append([l1,l2,l3],rem) 
    return rem 
     
     
def ECipher(pt, key, rounds, blocksize, LMatrices, roundkey_matrices, 
constants, tweakdifferences, nonLsize): 



 
 

60 
 

     
    #print('PT = :') 
    #print(pt) 
    ###### Retrieves Whitening Data From Data Class 
    wk = np.array(roundkey_matrices[0])    
    ###### Matrix Multiplication of Whitening Key and Key 
    wk = np.mod(np.dot(wk,key),2) 
    #print('WK = :') 
    #print(wk) 
    ###### Retrieves tweak diff From Data Class 
    wt = np.array(tweakdifferences[0][0])   
     
    #pt = pt^wt^wk 
     
    wk = int("".join(str(x) for x in wk), 2) 
    wt = int("".join(str(x) for x in wt), 2) 
    pt = int("".join(str(x) for x in pt), 2) 
     
    pt = pt^wt^wk 
    pt = np.array([int(x) for x in bin(pt)[2:].zfill(blocksize)]) 
     
    for i in range(rounds):             
         
        ####### SBox Subsitution. Go to Line 22 
        #print(pt) 
        pt = sBox(pt) 
        #print(pt) 
        #pt = np.array([int(x) for x in bin(pt)[2:].zfill(32)]) 
         
        ####### Retrieves Data Per Round 
        LLM = np.array(LMatrices[i]) 
        RK = np.array(roundkey_matrices[i+1]) 
        RC = np.array(constants[i]) 
        RT = np.array(tweakdifferences[0][i+1]) 
        #print(LLM) 
        #print(RK) 
        
        ####### LLM Matrix Multiplication with Altered Plain Text 
        # FADDI  
        pt = np.mod(np.dot(LLM,pt),2)          
         
         

   ####### Converting 9x16 Round Key to 9x1 Round Key with Key    
   Matrix Mul 

        RK = np.mod(np.dot(RK,key),2) 
        #print(pt) 
        #print(RT) 
        #print(RC) 
        #print('Round Key = :') 
        #print(RK) 
        #Aux = np.bitwise_xor(Aux,RT) 
         
        apt = pt[0:9] 
        rem = pt[9:]       
        xr =  RK ^ RC ^ RT  
        apt = int("".join(str(x) for x in apt), 2) 
        xr = int("".join(str(x) for x in xr), 2) 
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        apt = apt ^ xr 
        apt = np.array([int(x) for x in bin(apt)[2:].zfill(nonLsize)])  
        pt = np.append(apt,rem) 
      
         
    return pt 
 
    def invsub3(num): 
    ###### Substitution. Kindly Check Image Attached 
    if num == 0: 
    return np.array([1,0,0]) 
    elif num == 1: 
    return np.array([1,0,1]) 
    elif num == 2: 
    return np.array([0,1,1]) 
    elif num == 3: 
    return np.array([0,1,0]) 
    elif num == 4: 
    return np.array([0,0,1]) 
    elif num == 5: 
    return np.array([1,1,0]) 
    elif num == 6: 
    return np.array([1,1,1]) 
    else: 
    return np.array([0,0,0]) 
 

def invsBox(arr): 
####### Slices the Least Significant 9 bits for 3 bit Byte 
Substitution 

    l1 = arr[0:3] 
    l2 = arr[3:6] 
    l3 = arr[6:9] 
    rem = arr[9:] 
     
    ####### Converts to Decimal 
    l1 = int("".join(str(x) for x in l1), 2) 
    l2 = int("".join(str(x) for x in l2), 2) 
    l3 = int("".join(str(x) for x in l3), 2) 
    ####### Calls Inverse Sub 3 method in Line 4. Returns 3 bit numpy     
    Array 
    l1 = invsub3(l1) 
    l2 = invsub3(l2) 
    l3 = invsub3(l3) 
    ####### Appends and substituted bits and unchanged 7 bits 
    rem = np.append([l1,l2,l3],rem) 
    return rem 
    def __invert_lin_matrix(LLM, blocksize): 
    mat = LLM 
    inv_mat = [] 
    for i in range(blocksize): 
    temp_bv = BitVector.BitVector(intVal=0, size=blocksize) 
    temp_bv[i] = 1 
    inv_mat.append(temp_bv) 
    # Transform to upper triangular matrix 
    row = 0 
    for col in range(blocksize): 
    if (not mat[row][col]): 
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    r = row + 1 
    while ((r < blocksize) and (not mat[r][col])): 
    r += 1 
    if (r >= blocksize): 
     continue 
     else: 
     temp = mat[row] 
                mat[row] = mat[r] 
                mat[r] = temp 
                temp = inv_mat[row] 
                inv_mat[row] = inv_mat[r] 
                inv_mat[r] = temp 
        for i in range(row + 1, blocksize): 
            if (mat[i][col]): 
                mat[i] = mat[i] ^ mat[row] 
                inv_mat[i] = inv_mat[i] ^ inv_mat[row] 
        row += 1 
 
            # Transform to inverse matrix 
    for col in range(blocksize, 0, -1): 
        for r in range(col - 1): 
            if (mat[r][col - 1]): 
                mat[r] = mat[r] ^ mat[col - 1] 
                inv_mat[r] = inv_mat[r] ^ inv_mat[col - 1] 
 
    return inv_mat 
 
 
def DCipher(pt, key, rounds, blocksize, LMatrices, roundkey_matrices, 
constants, tweakdifferences, nonLsize): 
    gf = ffield.FField(rounds) 
    #key = np.array([int(x) for x in bin(key)[2:]]) 
    #key = key.transpose() 
    for i in range(rounds, 0,-1): 
         
         
        RK = roundkey_matrices[i] 
        RC = constants[i-1] 
        RT = tweakdifferences[0][i] 
        LLM = np.array(LMatrices[i-1])                           # 
Compute its inverse (Invertable matrix Remaining) 
        RK = np.mod(np.dot(RK,key),2) 
         
        apt = pt[0:9] 
        rem = pt[9:]       
        xr =  RK ^ RC ^ RT  
        apt = int("".join(str(x) for x in apt), 2) 
        xr = int("".join(str(x) for x in xr), 2) 
        apt = apt ^ xr 
        apt = np.array([int(x) for x in bin(apt)[2:].zfill(nonLsize)])   
# fills values to the left as desired, can be cross checked as well 
        pt = np.append(apt,rem) 
         
         
        bv = [] 
        #LLM = np.linalg.inv(LLM) 
        #LLM = np.mod(LLM,2) 
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        #LLM = LLM.astype(int) 
         
        # FADDI 
         
        #LLM = inverseMatrix(LLM, blocksize) 
        #print(LLM) 
         
        for vec in range(blocksize): 
            bv.append(BitVector.BitVector(bitlist = LLM[vec].tolist())) 
        LLM = __invert_lin_matrix(bv,blocksize)     
        pt = np.mod(np.dot(LLM,pt),2) 
        
         
        ####### Inverse S Box 
        pt = invsBox(pt) 
 
    wk = np.array(roundkey_matrices[0]) 
    wk = np.mod(np.dot(wk,key),2) 
    wt = np.array(tweakdifferences[0][0]) 
    
     
    wk = int("".join(str(x) for x in wk), 2) 
    wt = int("".join(str(x) for x in wt), 2) 
    pt = int("".join(str(x) for x in pt), 2) 
     
    pt = pt^wt^wk 
    pt = np.array([int(x) for x in bin(pt)[2:].zfill(blocksize)]) 
  
    return pt 
 

 

lowmc_mc.py 

''' 

This program generates an instance of LowMC-M. Since SHAKE128 is 
considered, so the key size is fixed to 128 bits for security concern. 

''' 

from sage.all import * 

from SHAKE128 import * 

from Main import * 

import numpy as np #numpy is a library 

import pickle 

 

blocksize = 16 

keysize = 16 

tweaksize = 16 

sboxsize = 3               # sbox size 
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m = 3                      # number of sboxes 

nonLsize = sboxsize*m      # non-linear size 

rounds = 14                # number of rounds 

num_dc = 1                # number of differential characteristics to be 
embedded 

 

def generate_Kmatrix(): 

    roundkey_matrices = [] #has been defined empty 

    #Generate the whitening key 

    while True:  # loop till the time it is true 

        mat = np.random.randint(0,2,size = (blocksize,keysize))  

# Generates a random number 01001 matrix ... size  (128, 128) 

        Mat = matrix(GF(2),mat)     # 

        if rank(Mat) == min(blocksize,keysize):    

# what does this mean 

            break # break loop if condition is met 

    roundkey_matrices.append(mat.tolist()) 

    np.shape(round)  

 

#Generate the round keys 

    for r in range(rounds): 

        while True: 

            mat = np.random.randint(0,2,size = (nonLsize,keysize)) # 
size (9, 128)  Generates it for 70 rounds 

            Mat = matrix(GF(2),mat) 

            if rank(Mat) == min(nonLsize,keysize): 

                break 

        roundkey_matrices.append(mat.tolist()) 

    return roundkey_matrices                                             

     

def generate_constants(): 

    cons = [] 

    for r in range(rounds): 

        con = np.random.randint(0,2,size = nonLsize) # Round constant 
will only have one row of size = nonLsize 
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        cons.append(con.tolist()) 

    return cons  

 

def generate_tweakdifferences(): 

    subtweakdiff_set = [] 

    tweak_set = [] 

    for i in range(num_dc): 

        subtweaks1 = [0] * (rounds+1) # generate row of 71 x 0 = [0 0 0 
0 ....] 

        subtweaks2 = [0] * (rounds+1) 

 

#*************TWEAK GENERATION************** 

# It can be chosen by the user alternatively, both size and value 

 

        tweak1 = list(np.random.randint(0,2,size=tweaksize))                
# one row of size 128 

        tweak2 = list(np.random.randint(0,2,size=tweaksize)) 

#******************************************* 

        tstring1 = shake128(tweak1, blocksize+rounds*nonLsize)              
# one row of size 758 

        tstring2 = shake128(tweak2, blocksize+rounds*nonLsize)          

        subtweaks1[0] = tstring1[:blocksize]                                
# one row of size 128 extracted from above 758 

        subtweaks2[0] = tstring2[:blocksize] 

        for r in range(rounds): 

            subtweaks1[r+1] = 
tstring1[blocksize+r*nonLsize:blocksize+(r+1)*nonLsize]  

# for every round, 9 next bits are extracted from above 

            subtweaks2[r+1] = 
tstring2[blocksize+r*nonLsize:blocksize+(r+1)*nonLsize] 

                                                                                    
# 758 - 128 - (70*9) = 0  

        subtweak_differences = [] 

        for r in range(rounds+1): 

            subtweak_differences.append([subtweaks1[r][j] ^ 
subtweaks2[r][j] for j in range(len(subtweaks1[r]))]) # bitwise XoR 
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# Subtweaks XoR for 70 rounds not including 128 bit first key 

         subtweakdiff_set.append(subtweak_differences) 

        tweak_set.append([tweak1,tweak2]) 

    return subtweakdiff_set, tweak_set 

 

def generate_Lmatrix(differences, tweakdiff, r):   # Function called in 
line 148 and 152 

    Length = len(differences) 

    Nonzero = [0]*sboxsize 

 

    # This is to ensure that an i-round deterministic differential 
characteristic will active all the Sboxes in round i+1 

    if r >= (rounds-1-num_dc): 

        for i in range(m): 

            while True: 

                Nonzero[i] = np.random.randint(0,2,size=m) 

                if sum([Nonzero[i][j]^tweakdiff[Length-1][r+1][j+m*i] for 
j in range(sboxsize)]) != 0: 

                    break 

 

    Set = [] 

    for t in range(nonLsize): 

        extra_column = [] 

        for i in range(Length): 

            extra_column.append([tweakdiff[i][r+1][t]]) 

         

        if r >= (rounds-1-num_dc): 

            extra_column[-1][0] = Nonzero[t//m][t%m] 

 

        augmented_mat = (np.append(differences, extra_column, 
axis=1)).tolist() 

        Mat = matrix(GF(2),augmented_mat) 

        Set.append(Mat.right_kernel().basis_matrix()) 

 

    while True:  
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        Matrice = [] 

        # Generate the first (nonLsize) rows 

        for t in range(nonLsize): 

            while True: 

                tmpvec = random_vector(GF(2),len(list(Set[t]))) 

                if (tmpvec*Set[t])[-1] == 1: 

                    Matrice.append(list((tmpvec*Set[t])[:-1])) 

                    break 

     # Generate the left (blocksize-nonLsize) rows                

# Last non-linear rows after 9th row 

        for i in range(blocksize-m*sboxsize): 

            Matrice.append(list(np.random.randint(0,2,size=blocksize))) 

        mat = matrix(GF(2),Matrice) 

        if rank(mat) == blocksize: 

            return Matrice 

  

def generate_DC():      

    roundkey_matrices = generate_Kmatrix()  #Generate key matrices 

    constants = generate_constants()    #Generate round constants 

 

    tweakdifferences, tweak_set = generate_tweakdifferences()   #Generate 
tweak pairs and its corresponding sub-tweak differences 

    BS_differences = [[] for _ in range(rounds)] # Difference before Sbox 
transformation in each round 

    AM_differences = [[] for _ in range(rounds)] # Difference after 
matrix multiplication in each round 

    LMatrices = []  # Linear matrices 

    plaintext_differences = []  # The plaintext difference is input 
difference of the differential characteristic to be embedded, it can be 
chosen by the user along with the first sub-tweak difference. 

     

    for i in range(num_dc): # Generate plaintext difference 

        plaintext_differences.append(tweakdifferences[i][0][:nonLsize] + 
list(np.random.randint(0,2,size=blocksize-nonLsize))) 

            # For 14 number of differentials, it generates PT difference 
as: tweakdifferences from 0 to 9 + list (119 values) 
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    for i in range(num_dc): # Compute the difference between the 
plaintext difference and the first sub-tweak difference 

        BS_differences[0].append([plaintext_differences[i][j] ^ 
tweakdifferences[i][0][j] for j in range(blocksize)]) 

            # Fawad xor of plaintext_differences and tweakdifferecnes --> 
Ctrl + F tweakdifferences 

 

    #*************GENERATE ROUND DIFFERENCE************** 

    # Building (num_dc) differential characteristics, the number of 
rounds ranges from (rounds-1) to (rounds-1-num_dc+1) 

     

    # For round 69 to round 55 - 56 seen from file generated. 

    #**************************************************** 

 

    for r in range(rounds-1):                  # 1 to 69 

        if r <= (rounds-1-num_dc):             # if r <= 55 

            
LMatrices.append(generate_Lmatrix(BS_differences[r],tweakdifferences,r)) 
# Generate linear matrix 

        current_num_dc = num_dc 

        elif r > (rounds-1-num_dc): 

            LMatrices.append(generate_Lmatrix(BS_differences[r][:-
1],tweakdifferences,r))   # Generate linear matrix 

 current_num_dc = rounds-r-1 

 for i in range(current_num_dc):        # For remaining I guess  

 AM_differences[r].append(list(matrix(GF(2),LMatrices[r]) *      
vector(GF(2),BS_differences[r][i]))) 

BS_differences[r+1].append([AM_differences[r][i][j] + 
tweakdifferences[i][r+1][j] for j in range(nonLsize)] + \ 
AM_differences[r][i][nonLsize:]) 

     

    # Generate the last linear matrix 

    while True: 

        mat = np.random.randint(0,2,size = (blocksize,blocksize)) 

        Mat = matrix(GF(2),mat) 

        if rank(Mat) == blocksize: 

            break 
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    LMatrices.append(mat.tolist()) 

    with open('matrices_and_constants.txt', 'w') as matfile: 

        s = 'Linear layer matrices\n\n' 

        for r in range(rounds): 

            s += '\nround ' + str(r) + ':\n' 

            for row in LMatrices[r]: 

                s += str(row) + '\n' 

 

        s += '\nKey matrices\n\n' 

        for r in range(rounds+1): 

            s += 'round ' + str(r) + ":\n" 

            for row in roundkey_matrices[r]: 

                s += str(row) + "\n" 

        s += '\nRound constants\n\n' 

        for r in range(rounds): 

            s += str(constants[r]) + '\n' 

        s += '\nRound-Tweaks\n' 

        s += str(tweakdifferences) + '\n' 

             

        matfile.write(s) 

    with open('Differential Characteristics.txt','w') as dcfile: 

        s = 'Differential Characteristics\n\n\n'         

        for i in range(num_dc): 

            s += '\ndifferential ' + str(i+1) + ':\n' 

            s += 'length: {} rounds\n'.format(rounds-i-1)  

            s += 'tweak pair:\n' 

            s += str(tweak_set[i][0]) + '\n'  

            s += str(tweak_set[i][1]) + '\n' 

            s += 'plaintext difference:\n' 

            s += str(plaintext_differences[i]) + '\n' 

            s +=  'differences before SB:\n' 

            for r in range(rounds-i): 

                s += 'round {:3} '.format(r+1) + 
str(BS_differences[r][i]) + '\n' 
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        dcfile.write(s) 

     return LMatrices, roundkey_matrices, constants, tweakdifferences 

def main(): 

    #If you would like to generate new values then UNCOMMENT the 
Creqation BLock of Code. Otherwise this will work on the same values. 

#Creation Block START 

#    PT = np.random.randint(0,2,size=blocksize) 

#    Key = np.random.randint(0,2,size=blocksize) 

#    print('PT :') 

#    print(PT) 

#    LMatrices, roundkey_matrices, constants, tweakdifferences = 
generate_DC() 

#    with open('items.pkl','wb') as f: 

#        pickle.dump([rounds, blocksize, LMatrices, roundkey_matrices, 
constants, tweakdifferences, nonLsize],f) 

#    f.close() 

    #Creation Block END 

    analysis() 

 

if __name__ == "__main__": 

    main() 

generate.py 

#def main(): 
   
 #   for i in range(100): 
        #PT = np.array([0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1]) 
        #Key =np.array([1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1]) 
  #     PT = np.random.randint(0,2,size=blocksize) 
  #      Key = np.random.randint(0,2,size=blocksize) 
        #print('PT :') 
        #print(PT) 
    #    LMatrices, roundkey_matrices, constants, tweakdifferences = 
generate_DC() 
     #   CT= ECipher(PT,Key, rounds, blocksize, LMatrices, 
roundkey_matrices, constants, tweakdifferences, nonLsize) 
        #print('CT') 
      #  print(CT) 
        #res= DCipher(CT,Key, rounds, blocksize, LMatrices, 
roundkey_matrices, constants, tweakdifferences, nonLsize) 
        #print('PT') 
        #print(res) 
if __name__ == "__main__": 
    main() 
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