
Transfer Learning Autoencoder Neural Networks
For Anomaly Detection In Malware Infected IoT

Devices

By

Unsub Shafiq

Spring-2022-MS-CS 277028 SEECS

Supervisor

Dr. Muhammad Khuram Shahzad

Department of Computing

A thesis submitted in partial fulfillment of the requirements for the degree of Masters

of Science in Computer Science (MS CS)

In

School of Electrical Engineering & Computer Science (SEECS) ,

National University of Sciences and Technology (NUST),

Islamabad, Pakistan.

(April 2022)

THESIS ACCEPTANCE CERTIFICATE

Signature: ________________________________

Name of Advisor: __________________________

Date: ___________________________________

Signature (HOD): __________________________

Date: ___________________________________

Signature (Dean/Principal): __________________

Date: ___________________________________

Online Printing Date & Time: Tuesday, 19 April 2022 00:40:48

Certified that final copy of MS/MPhil thesis entitled "Transfer Learning Autoencoder Neural
Networks for Anomaly Detection in Malware Infected IoT Devices" written by UNSUB
SHAFIQ, (Registration No 00000277028), of SEECS has been vetted by the undersigned,
found complete in all respects as per NUST Statutes/Regulations, is free of plagiarism,
errors and mistakes and is accepted as partial fulfillment for award of MS/M Phil degree. It
is further certified that necessary amendments as pointed out by GEC members of the
scholar have also been incorporated in the said thesis.

15-Apr-2022

Dr. Muhammad Khuram
Shahzad

Publish Date & Time: Monday, 18 April 2022 , 10:37:26PDF4NET evaluation version 4.7.0.0

PDF4NET evaluation version 4.7.0.0

i

Approval

Signature: ______________________

Date: __________________________

Signature: ______________________

Date: _________________________

Signature: ______________________

Date: _________________________

Signature: ______________________

Date: _________________________

Online Printing Date & Time: Tuesday, 19 April 2022 00:44:25

It is certified that the contents and form of the thesis entitled "Transfer Learning
Autoencoder Neural Networks for Anomaly Detection in Malware Infected IoT Devices"
submitted by UNSUB SHAFIQ have been found satisfactory for the requirement of the
degree

Advisor : Dr. Muhammad Khuram
Shahzad

15-Apr-2022

Committee Member 1:Dr. Rabia Irfan

15-Apr-2022

Committee Member 2:Dr. Sidra Sultana

18-Apr-2022

Committee Member 3:Dr. Mehdi Hussain

14-Apr-2022

Publish Date & Time: Monday, 18 April 2022 , 10:37:26PDF4NET evaluation version 4.7.0.0

PDF4NET evaluation version 4.7.0.0

ii

Dedication

To my parents, wife and sisters; their consistent support made juggling work and a

Masters degree a lot easier.

iii

Acknowledgments

Glory be to Allah (S.W.A), the Creator, the Sustainer of the Universe. Who only has

the power to honour whom He please, and to abase whom He please. Verily no one can

do anything without His will.

I am grateful to my supervisor, Dr. Muhammad Khuram Shahzad, for his invaluable

guidance and support throughout the research activity.

Unsub Shafiq

iv

Certificate of Originality

Student Signature: ______________

Online Printing Date & Time: Tuesday, 19 April 2022 00:45:18

I hereby declare that this submission titled "Transfer Learning Autoencoder Neural

Networks for Anomaly Detection in Malware Infected IoT Devices" is my own work. To the

best of my knowledge it contains no materials previously published or written by another

person, nor material which to a substantial extent has been accepted for the award of any

degree or diploma at NUST SEECS or at any other educational institute, except where

due acknowledgement has been made in the thesis. Any contribution made to the

research by others, with whom I have worked at NUST SEECS or elsewhere, is explicitly

acknowledged in the thesis. I also declare that the intellectual content of this thesis is the

product of my own work, except for the assistance from others in the project’s design and

conception or in style, presentation and linguistics, which has been acknowledged. I also

verified the originality of contents through plagiarism software.

Student Name: UNSUB SHAFIQ

Publish Date & Time: Monday, 18 April 2022 , 10:37:26PDF4NET evaluation version 4.7.0.0

PDF4NET evaluation version 4.7.0.0

v

Contents

1 Introduction and Motivation 1

1.1 Introduction . 2

1.2 Motivation . 3

1.3 Contribution . 4

2 Background and Literature Review 6

2.1 Background . 7

2.1.1 Distributed Denial of Services - DDoS 7

2.1.2 Bots and Botnets . 11

2.1.3 Internet of Things . 12

2.1.4 Autoencoders . 13

2.2 Related Work . 14

3 Methodology 18

3.1 Understanding the Datasets . 19

3.1.1 NBaIoT Dataset . 20

3.1.2 CIC-IDS2017 Dataset . 22

3.1.3 Programming Language Libraries 25

3.2 NBaIoT – Anomaly Detection Transfer Learning 26

3.3 CIC-IDS2017 – Anomaly Detection . 32

4 Results and Discussion 35

vi

Contents

4.1 NBaIoT Dataset - Anomaly Detection and Transfer Learning 38

4.1.1 Evaluating Model Accuracy . 38

4.1.2 Evaluating Model Training Time 43

4.1.3 Correlating Static Features with Model Performance 45

4.2 CIC-IDS2017 Dataset - Anomaly Detection 46

5 Conclusion and Future Work 49

5.1 Future Work . 50

vii

List of Abbreviations

Table 1: List of Abbreviations

Abbreviation Description

ACK Acknowledge packet in a TCP handshake

C&C / CC / C2 Command and Control

CAE Convolutional Autoencoder

CERL Computer-based Education Research Laboratory

CIC-DDoS2019 DDoS Evaluation Dataset

CIC-IDS2017 Intrusion Detection Evaluation Dataset

DDoS Distributed Denial of Service

DGA Domain Generation Algorithm

DNS Domain Name Service

DoS Denial of Service

HTTP Hyper Text Transfer Protocol

IoT Internet of Things

IPFIX IP Flow Infromation Export

ISP Internet Service Provider

LDAP Lightweight Directory Access Protocol

LSTM Long Short Term Memory

ML Machine Learning

MSSQL Microsoft Structured Query Language

NBaIoT Network-based Detection of IoT Botnet Attacks Using Deep Autoencoders (dataset)

NETBIOS Network Basic Input/Output System

NTP Network Time Protocol

PCAP Packet Capture

PLATO Programmed Logic for Automatic Teaching Operations

SNMP Simple Network Management Protocol

SSDP Simple Service Discovery Protocol

SYN Synchronize

TCP Tranmission Control Protocol

TFTP Trivial File Transfer Protocol

UDP User Datagram Protocol

VAE Variational Autoencoder

viii

List of Figures

2.1 PLATO system . 7

2.2 DDoS Classification . 8

2.3 Representation of an example botnet topology 12

2.4 AutoEncoder Neural Network Layout . 13

3.1 DDoS Classification . 22

3.2 DDoS Classification . 23

3.3 Autoencoder Pre-Transfer Learning . 30

3.4 Loss Function plot of the IoT device SimpleHome-XCS7-1003-WHT-Security-

Camera for Bashlite and Mira datasets respectively 30

3.5 Autoencoder Post-Transfer Learning . 32

4.1 MIRAI Transfer Learning Results . 39

4.2 BASHLITE Transfer Learning Results 39

4.3 MIRAI to BASHLITE Transfer Learning Results 40

4.4 BASHLITE to MIRAI Transfer Learning Results 40

4.5 Anomaly Detector’s performance change for MIRAI dataset 43

4.6 Model Training times for Mirai dataset 45

4.7 Model Training times for Bashlite dataset 45

4.8 Percentage Feature Overlap of IoT devices 46

4.9 A representation of how some malicious traffic does not have significant

variance in network footprint . 47

ix

List of Figures

4.10 CIC-IDS2017 model performance results 48

4.11 CIC-IDS2017 with different optimization algorithms 48

x

List of Tables

1 List of Abbreviations . viii

3.1 Dataset attributes . 20

3.3 NBaIoT dataset feature description . 21

3.4 A possible discrepancy in the Aggregation time units 22

3.5 CIC-IDS2017 Dataset size . 24

3.6 Representation of the Dataset size and its consumption during training

stages . 31

4.1 Experimental scope against each accuracy matrices 38

4.2 Percentage decrease in model accuracy before and after transfer-learning

(TL) across device . 42

4.3 Percentage decrease in model accuracy before and after transfer-learning

(TL) across device and malware type . 42

4.4 Time saved when transfer-learning on Mirai dataset 44

4.5 Time saved when transfer-learning on Bashlite dataset 44

4.6 IoT Device Feature Distribution in NBaIoT dataset 45

xi

Abstract

Distributed Denial of Service (DDoS) attacks have persisted against defensive measures

with their sheer capability of obscurity and the simplicity of the attack vectors that

they exploit, i.e exhausting the victim’s computing resources. The advent of Internet-

of-Things (IoT) has led to a massive increase in smart internet-connected devices that

often have customized firmware with limited and irregular security patches. This has

made them targets for hosting bot malware and can contribute to traffic in a DDoS

attack. Many researchers have worked on developing anomaly detectors to identify

possible infected hosts and have incorporated ML models within their techniques as

well. However, the ubiquity of IoT devices has made training ML models on a per-

device and per-malware basis impractical.

In this thesis, we focus on the autoencoder neural-network-based anomaly detection

technique and evaluate the efficacy of the transfer-learning technique in reducing the

training time of anomaly models for IoT devices. We base our hypothesis on the intu-

ition that similar IoT devices should have a similar network footprint and therefore, the

latent representation of network footprint should be transferable across devices. The

study bases itself on the NBaIoT [1] dataset, which consists of 115 traffic features of

real IoT devices infected with Mirai and Bashlite. We observe that while the accu-

racy of an anomaly model decreased when tested against data from a new IoT device,

re-training the innermost layers of the autoencoder with at least 10% of the available

dataset restored the anomaly model’s performance. We further evaluate the capability of

autoencoders against the CIC-IDS2017 dataset; consisting of network-flow information

derived from PCAP data, which can be considered more synonymous with IPFIX/Net-

flow record formats prevalent in the industry.

xii

Chapter 1

Introduction and Motivation

Chapter Summary

The internet, since its inception, has led to explosive growth in digital space. However,

with the world increasingly adopting the digital revolution, cyber-attacks are becoming

more frequent. We introduce how botnets and Internet-of-things have contributed to

the rise of DDoS cyberattacks and the challenges of using machine learning in mitigating

them.

1

Chapter 1: Introduction and Motivation

1.1 Introduction

The history of digitization has seen exponential growth in services and products that

are increasingly dependent on computing systems. Composed of increasing computa-

tional capability and faster interconnect mechanisms, we are now in an era where every

information and service across the globe is available instantaneously and is now known

as Cyberspace. Examples to give perspective include monitoring one’s home with smart

cameras while vacationing in another country, offering consultancy services to customers

halfway across the world, and getting things delivered to your doorstep without ever set-

ting foot in a physical store.

We shall limit the scope of discussion to the public internet within this thesis. Un-

derstanding these devices is fundamental since a large part of Cybersecurity deals with

protecting these devices from running malicious software and/or generating unwanted

traffic.

With the adoption of internet-based service offerings, there was a consequent rise in

mechanisms that try to knock any such service offline [2]. A crude but very effective way

to do so is to overwhelm such service with unwanted traffic, so much so that legitimate

traffic does not get served; now known as the Denial-of-Service (DoS) attack. However,

this faced two major problems;

• Generating huge traffic from a single source (device) is not feasible and;

• A single source can be easily identified and blocked without many business impli-

cations.

The concept of bots was not conceived entirely to practice malicious activities; ‘good

bots’ have been and are currently in use in order to make the internet a better experi-

ence. Search engines have widely used bots to traverse the web and index the contents.

However, the achievements of these deployments vastly go unnoticed whereas the disrup-

tive actions of malign botnets gain traction due to their sheer scale and sudden impact

on digital commerce.

The term ‘bots’ refers to computing devices that have been compromised with malicious

code and can be instructed to perform a particular action remotely. Bots eliminate the

need for an attacker to set up systems dedicated to attack generation; masks the true

2

Chapter 1: Introduction and Motivation

attacker and distribute the sources significantly such that it becomes difficult to differ-

entiate between a legitimate source and a compromised source. DoS attacks manifesting

from such diverse sources are thus known as Distributed-Denial-of-Service (DDoS) at-

tacks.

Advancements in anti-malware software have made infecting a computing device in-

creasingly difficult and have impacted the rate of propagation of such malware. But

even these shields have a chink in their armor. The vast majority of them are capable

of running on only full-fledged operating systems and use known signatures to match

malicious code files. This covers only a limited subset of the computing devices, mainly

personal computers, mobile phones/tablets, and to some degree enterprise-grade servers.

One large category that goes unprotected is the Internet-of-Things (IoT). These devices

have proprietary firmware and are designed to execute limited functions while commu-

nicating over the internet.

IoT devices do not have the capacity [3] of running resource-hungry anti-malware soft-

ware and thus cannot be protected via local defense mechanisms. At the same time,

new applications such as high-resolution video surveillance require faster computing

chips and higher-bandwidth connectivity in IoT devices. These two capabilities com-

bine to make them an ideal target to serve as bot hosts. Coupled with irregular firmware

upgrades and easy-to-decipher default-access credentials, such devices are often prone

to vulnerabilities that can be exploited and used for the propagation of bot malware.

IoT-based botnets started appearing more than a decade ago with the likes of Mirai [4]

and Bashlite achieving international fame due to their massive scale. Researchers have

since worked on alternative ways for detecting bot activity in a network, one dimension

of it being anomaly detection. With Machine-Learning (ML) being a hot industry topic

in recent years, many have put efforts into evaluating the efficacy of machine learning

methods in detecting bot behavior and leveraging it for anomaly detection.

1.2 Motivation

DDoS attacks generated by botnets are a persistent threat that is still prevalent today.

The obscurity of Command-and-Control (CC) mechanisms and their distributed nature

are among the major reasons why malign botnets have thrived till now. DDoS attacks

originated by botnets not only cause disruption and losses to their victims but also im-

3

Chapter 1: Introduction and Motivation

pact the hosting ISPs and smaller networks with which the actual compromised devices

reside. Losses caused by having bots in one’s network can be multi-dimensional, all of

which imply business impact. These include;

• A breached perimeter; whereby an attacker already has control over a device on

the private network. And thus can move laterally [5], generating insider attacks

and infecting more hosts.

• Information theft, such as credentials, confidential and private data [6].

• Loss of computation cycles, impacting legitimate services running on the infected

host.

• Degradation in network reputation [2], example IP blacklisting to due malicious

activity originating from it.

Realizing the need for organizations to proactively protect their network infrastructure

from originating malicious traffic, researchers have proposed a variety of ways to de-

tect anomalous behavior. Diverse proposals have been made that attempt to detect

anomalous behavior at a variety of stages; propagation of bot binaries, communication

attempts with CC, and anomalous traffic generation. However, training complex models

as part of priming the anomaly detector suffer from a lack of available data on benign

behavior and high cost and effort in model training and optimization. Coupled with

the increasing variety of IoT devices, training anomaly detectors on a per device basis

is impractical.

1.3 Contribution

In accordance with the historical background and problem statements mentioned above,

we summarize the research objectives and respective contributions of this thesis.

Q-1: While the similarity in traffic patterns of similar IoT devices (manufac-

tured by different vendors) is implied, can this be reflected in the encoder

part of the autoencoder neural network?

Contribution: We trained an autoencoder-based anomaly detection model on a per-

device and per-malware basis and then tested it against the benign and malicious data

4

Chapter 1: Introduction and Motivation

of other IoT devices. Observations on a relative decrease in model accuracy were noted.

Transfer-learning the same anomaly model showed a marked improvement in predic-

tion accuracy, an average of 9.52% for Mirai and 44.59% for Bashlite. Additionally,

we demonstrate that Transfer-learning still holds true for cases in which a model is

transferred across malware of similar nature.

Q-2: Can the static hardware features of IoT devices be co-related to their

expected traffic patterns?

Contribution: Our observations in this regard are partially conclusive. In a majority

of cases, we observed that a model trained on a more feature-rich IoT device generally

performed well against un-seen normal data of an unknown device. We conclude that

enumerating the hardware features of the IoT devices can only be a partial contributor

to predicting the expected benign traffic. Soft features of the firmware/OS may have a

more significant role in this regard.

Q-3: Exploring the capability of autoencoders as anomaly detectors, against

a variety of network data formats.

Contribution: We leverage the CIC-IDS2017 dataset containing network footprints

of a variety of intrusion attempts. While autoencoders show promise in identifying

traffic patterns that vastly differ from the benign behavior (due to a large offset in

reconstruction error); other malicious traffic with a “normal-like” network footprint can

pass through without being flagged. This might be improved by introducing new features

such as IP reputation, whether destination ports are well known or not etc.

5

Chapter 2

Background and Literature

Review

Chapter Summary

This section introduces the growth of Botnets and IoT over the past decades and how

they can combine to deliver some of the most lethal DDoS attacks experienced in recent

years. This challenge has garnered significant research interest, ranging from detecting

botnets on a global scale to placing convenient anomaly detectors in enterprise envi-

ronments in order to detect and block hosts infected with malware. The domain of

machine learning is being actively explored to develop new anomaly detection engines.

We introduce how the autoencoder neural network has been used so far in the battle

against botnets.

6

Chapter 2: Background and Literature Review

2.1 Background

2.1.1 Distributed Denial of Services - DDoS

The objective simplicity of a DoS or DDoS attack is intriguing; it aims to simply knock

a resource “offline”. This does not need to be taken in a literal sense. Any resource

not able to respond to legitimate user requests is deemed “offline”, and this effect can

be achieved simply by engaging a resource with non-productive tasks exhausting its

capacity.

Figure 2.1: PLATO system

The earliest well-known instance of a DoS attack is attributed to David Dennis in 1974

when he “accidentally” found out that running the external command on a PLATO

terminal that had no external devices connected froze the terminal and required a hard

reset to recover. Coupled with the default configuration where this command could

be sent to a remote terminal, David was able to write a program that executed this

command on all terminals at the lab in CERL (Computer-based Education Research

Laboratory), University of Illinois Urbana-Champaign.

This piece of history has quite of few lessons in it for us;

1. It shows the importance of programming logic and how it must be developed keeping

in mind possible abnormal behaviors; in this case, running the external command before

plugging in the external device which is clearly in the wrong order.

2. It shows how capabilities thought of as “features” can be exploited with mal-intent;

in this case, the ability to remotely execute a command on a terminal.

3. it is indicative of the curious and opportunistic nature of attackers. After all, David

Dennis was only 13 years old at the time.

While David Dennis exploited the logic of PLATO system, the early days saw a gener-

7

Chapter 2: Background and Literature Review

ation of bandwidth-based DoS attacks by computing enthusiasts simply to one-up each

other on a variety of platforms. It was not until the late 1990s did the first large-scale

DDoS attacks start surfacing. These network-based DDoS attacks have significantly

grown over time and the notoriety of such attacks has only increased ever since; and are

still a persistent threat today.

Network-based DDoS attacks target the capacity of the network stack of the endpoint or

any in-line network element. Such attacks attempt to exhaust the buffer or session store

capacity of the endpoints or of the network elements through which a particular endpoint

is reachable. Such attacks can be classified as ‘Reflection Attacks’ or ‘Exploitation

Attacks’ [7].

DDoS Attacks

Reflection Attacks Exploitation Attacks

TCP based
attacks

TCP/UDP
based attacks

UDP based
attacks

TCP based
attacks

UDP based
attacks

DNS LDAP NETBIOS

SNMP SYN Flood UDP FloodPORTMAP UDP Lag

MSSQL SSDP CharGen NTPTFTP

Figure 2.2: DDoS Classification

Reflection attacks primarily flood the victim with unwanted responses to the queries the

victim never asked. For example, an attacker may query a DNS server for a particular

record, spoofing the source IP such that when the DNS server responds, it sends the

response to the victim. Now the victim needs to inspect the received packet, identify

that it is not relevant, and then discard it. Flooding the victim with such traffic shall

eventually occupy the victim in discarding unwanted packets rather than serving actual

legitimate requests. Often the response sizes are many-fold larger than the query itself;

hence reflection attacks can not only hide the original attacker but also achieve an

amplification in bandwidth consumed when generating the attack.

Exploitation attacks instead attempt to misuse the algorithmic logic with the intent of

overwhelming the server. For example, the SYN flood attack attempts to exploit the

fact that an endpoint stores the state of a half-open TCP connection while waiting for

8

Chapter 2: Background and Literature Review

the three-way handshake of TCP to complete (i.e SYN, SYN-ACK, ACK). The attacker

in this case initiates a flood of SYN packets forcing the endpoint to exhaust its capacity

of maintaining the state of half-open sessions. A brief description of the attacks listed

in Figure 2.2

REFLECTION ATTACKS

• MSSQL(TCP): This attack manifests by exploiting the Microsoft SQL Server

Resolution Protocol’s responses to the client query. Attackers subject the MSSQL

server with queries containing spoofed IP addresses.

• SSDP(TCP): The Simple Service Discovery Protocol is widely used among Uni-

versal Plug-and-Play devices to advertise their existence in the network. Other

endpoints can then query the UPnP devices the list details of the services they

can offer. This attribute is exploited by attackers who generate a flood of such

requests with spoofed source addresses; such that the responses are sent to the

target victim.

• DNS(TCP/UDP): The Domain Name Service responds to queries of translat-

ing domain names to IP addresses. Responses to DNS queries can vary in size

with some records containing relatively large content (such as public keys in the

DKIM records). Attackers query for such records with spoofed addresses such that

responses are sent to the victim while achieving amplification as well.

• LDAP(TCP/UDP): LDAP (Lightweight Directory Access) is a widely used pro-

tocol for directory access. It is widely used in authentication and maintaining a

registry of users, endpoints, services, etc. Attackers achieve a high amplification

rate when exploiting the LDAP protocol in order to flood the target victims.

• NETBIOS(TCP/UDP): NETBIOS name service is a common presence in en-

vironments running Microsoft’s Windows Operating services. Attackers query the

service with spoofed addresses, thereby flooding the victim with unwanted and

amplified response traffic.

• SNMP(TCP/UDP): The Simple Network Management Protocol is a common

protocol used to collect statistical / performance information from entities such

as switches and routers. SNMPv2 used a “community_name” preshared as an

9

Chapter 2: Background and Literature Review

authentication mechanism that was susceptible to brute-forcing. Responses to

SNMP queries are significantly larger and cause high amplification.

• PORTMAP(TCP/UDP): Portmapper is a mechanism to which Remote Pro-

cedure Call (RPC) services register in order to allow for calls to be made to the

Internet. When a client is looking to find the appropriate service, the Portmapper

is queried to assist. This means, that when it is queried, the response size varies

wildly depending on which RPC services are operating on the host. Attackers can

exploit these large response sizes to generate an amplified DDoS attack on the

victim.

• CharGen(UDP): The Character Generator Protocol runs on UDP port 19 and

is often found to be used by internet-enabled printers and copiers. This protocol

is often used for troubleshooting purposes.

• TFTP(UDP): A Trivial File Transport Protocol exposed to the internet on UDP

port 69 can be used as a reflector and amplifier for generating attacks on victims.

• NTP(UDP): In an NTP (Network Time Protocol) amplification, an attacker

uses a spoofed IP address of the victim’s NTP infrastructure and sends small

NTP requests to servers on the Internet, resulting in a very high volume of NTP

responses.

EXPLOITATION ATTACKS

• SYN Flood(TCP): A SYN Flood, often generated by botnets, is designed to

consume resources of the victim server, such as firewalls or other perimeter defense

elements, in an attempt to overwhelm their capacity limits. The target receives

SYN packets at very high rates which rapidly fill up its connection state table,

resulting in disconnections and dropping of legitimate traffic packets.

• UDP Lag(UDP): UDP Lag is a particularly popular technique among multi-

player gamers where an attacker attempts to induce an artificial lag on the victim

by periodically flooding and consuming its bandwidth. This attack is timed such

that the lag is large enough to cause a disruption in the game but not large enough

to disconnect the victim from the game servers.

10

Chapter 2: Background and Literature Review

• UDP Flood(UDP): In a UDP Flood, attackers send small spoofed UDP packets

at a high rate to random ports on the victim’s system using a large range of source

IPs. This consumes essential network element resources on the victim’s network

which is overwhelmed by a large number of incoming UDP packets.

• HTTP/S Flood(TCP): HTTP and HTTPS is a transport protocol for browser-

based Internet requests, commonly used to load webpages or to send form content

over the Internet. In an HTTP/S flood attack, the attacker exploits seemingly-

legitimate HTTP GET or POST requests to attack a web service or application.

These attacks often utilize many botnets such as infected IoT devices.

• HTTP Slowloris: Unlike the HTTP flood attack, the HTTP slow-loris attack

attempts to hog as many connections to a Web Server as possible. This is done by

utilizing partial HTTP requests and then attempting to keep the HTTP session

active for as long as possible. This method attempts to exhaust the endpoints’

capacity of sessions in a much more subtle way.

2.1.2 Bots and Botnets

The term “Bot” refers to any device containing malware that allows it to be “instructed”

from a remote Command-and-Control (C&C) entity. While in the early days, such

malware was targeted towards Desktop systems; with the proliferation of smart internet-

connected devices, the threat landscape has increased significantly [8]. This is evident

in the many bot malware prevalent today that target Internet-of-Things (IoT) devices.

The pool of Bots under the control of a single CC is referred to as a “botnet”; a term

synonymous with the term “internet”, signifying the medium of connectivity that the

bots and CC have. The protocols of the internet form the various mechanisms for bots

to discover and connected to their CC, and for CC to send instructions to bots. Internet

bots can be traced back to the late 1980s [3], during which the Internet-Relay-Chat

(IRC) formed the medium of choice for connectivity. While some of the initial bots were

seemingly innocuous, such as keeping an IRC chat active so that the server did not close

it due to inactivity; variants quickly emerged that were Trojans or Worms that were

installed onto the client machines and used IRC channels to listen for instructions.

However, not all bots are designed with mal-intent. “Web-Crawler”, created in 1994,

11

Chapter 2: Background and Literature Review

was the first bot created to index the web. “GoogleBot” was created in 1996 and has

since then evolved into the giant we know today.

After the early 2000s, which saw some of the first notable botnets, the prevalence of

botnets has grown. The Storm [5] botnet is estimated to have infected almost 50 million

devices during its lifetime and is suspected to have been used for a variety of crimes

such as identity theft and stock price fraud. Bots have also been used to generate spam

emails, the most notable among these was the Cutwail botnet that notoriously sent out

over 70 billion emails per day. This shows the extent of the negative impact botnets can

have on digital commerce. However, among these, DDoS generating botnets have the

most disastrous impact, although relatively short-lived but capable of causing blackouts

on the internet.

Figure 2.3: Representation of an example botnet topology [6]

2.1.3 Internet of Things

A multitude of factors such as the rapidly decreasing cost of computing hardware and

better software development practices have fueled the exponential digitization of our

world. Newer use-cases require real-time access and control of devices such as sensors

and actuators. As a result, newer components are now capable of connecting to the

12

Chapter 2: Background and Literature Review

internet as well and have led to the growth of the term Internet-of-Things. Devices such

as baby monitors, doorbells, and surveillance cameras connect to the internet in order

to give remote management capabilities as well as serve live feeds.

While the rise of IoT has resulted in an increase in innovative new solutions and services,

it has also developed into a vast attack surface that has become easy prey to botnets. The

proliferation of IoT has had little regard for mechanisms that deliver adequate security

patches. Coupled with poor firmware development practices and easy to identify default

credentials, IoT devices have been susceptible to compromise and integrated into large-

scale botnets.

2.1.4 Autoencoders

Autoencoders are neural networks that force the network to learn about the most im-

portant features of observation, such that the original observation can be re-constructed

from them with minimal error. Autoencoders have been leveraged as compression en-

gines for images and other high-dimensional datasets. Their unique bottleneck shape

makes them very good at learning about a specific set of patterns, a deviation from which

causes a large reconstruction error. This quality has been explored as an indication of

anomaly by many researchers across a variety of domains.

Figure 2.4 contains a representation of a typical autoencoder neural network.

Latent
Representation

Input Output

Encoder Decoder

Figure 2.4: AutoEncoder Neural Network Layout

The loss function of the autoencoder neural network is a representation of the difference

between the original data received on input and the reconstructed data from the latent

13

Chapter 2: Background and Literature Review

representation. The mean-squared error of the two data records is widely used.

L(x, xR) = 1/n
∑

(x − xR)2) (2.1.1)

Here x refers to the original data vector, and xR refers to the vector reconstructed from

the latent representation.

2.2 Related Work

In the previous section, we introduced IoT, botnets, and DDoS since they often go hand-

in-hand in large operations that use DDoS in their attacking arsenal. IoT devices have

become prime targets for bot infection and the ubiquity of IoT devices makes them ideal

sources to generate DoS traffic.

Extensive work on anomaly detection techniques has been undertaken by researchers

over the past two decades. With the popularization of Machine Learning techniques

and their capability of learning how to differentiate between non-linearly distributed

data, researchers have extensively explored various ML models as potential anomaly

detection engines. In particular, efforts have been made on learning the normal and

anomalous behavior in the network as a means of indicating whether a particular end-

point is compromised.

The fundamental nature of botnets, i.e consisting of widely dispersed peers and command-

and-controls across the internet with masked communication methods [9][10], means

that there is no single sure-shot way that may be taken to cease all bot activity without

hampering legitimate traffic.

Khattak et al. [11] have documented an excellent taxonomy of the lifecycle of a botnet.

A botnet’s life cycle starts with the propagation of bot binaries. The propagation phase’s

end objective is to have the bot malware installed into as many systems as possible. And

a variety of mechanisms can be used to this end that may or may not require human

intervention. Bot malware such as Mirai actively scans for vulnerable devices on the

network, looking for devices allowing unauthenticated access or using insecure/default

credentials [12]. Once breached, a small bootstrap code is run that then downloads the

complete binary from the Command-and-Control (CC). Other propagation methods

include the wide use of phishing emails and offerings of freeware in order to dupe users

14

Chapter 2: Background and Literature Review

into installing the malicious bot binary into their systems.

Equally important to the distribution mechanism of the bot binaries is to ensure it by-

passes antivirus software which usually uses signature-based detection methods. Storm

botnet [13] was found to be re-encoding its malware twice every hour for this purpose.

However, botnets targeting IoT devices could conveniently overlook this complexity

since such devices do not have the computing power necessary to run complex anti-virus

software. The next phase after infection constitutes establishing a covert mechanism of

receiving instructions from the CC, often referred to as the rallying phase [14].The prime

objective in this phase is to hide the identity of the CC and to ensure that instructions

passed down to the bots are encrypted. Mechanisms include using a ”fast-flux” method

where the CC server’s addresses are quickly rotated behind a DNS name (Storm); lever-

aging domain-generation-algorithms (DGA) [15][12] where each newly infected machine

attempts resolution of randomly generated domain names in order to discover its CC.

Newer variations have exploited peer-to-peer mode of communication that further ob-

fuscates the CC [11][12].

A large number of infected machines can be used for a number of malpractices [16] that

include spying, stealing personal information, and using available compute resources to

attack other resources/services on the internet in the form of spam, DDoS, etc. The

latter in particular has been used to generate large-sized DDoS attacks and constitutes

a persona easily identifiable in the network. Constant evolution in the techniques of

establishing botnets has kept researchers in a race to identify new mechanisms of iden-

tifying bot activity. Research in this regard has turned to leveraging Machine Learning

techniques to detect bot activity at different stages of bot infection, i.e propagation,

rallying, and post-infection behavior [17].

Kate et al. [18] targeted the identification of bot malware that used Domain-Generation-

Algorithms (DGA) based domain names for finding its respective CC. Such malware

creates anomalous DNS traffic during the rallying phase. They leveraged the determin-

istic nature of such algorithms and trained a deep neural network composed of LSTM,

CNN, and ANN in order to identify whether a particular host was making DNS calls

for domains that were DGA generated. In a similar study, Tu et al.[19] leveraged the

similarity of DNS queries in order to identify bot-infected machines.

Rohan et al. [20] evaluated the detection of DDoS traffic from consumer IoT devices

15

Chapter 2: Background and Literature Review

by various supervised learning models. They found that K-Nearest neighbors, random

forest, and neural-net models were the most effective classifiers of anomalous traffic. In

this case, the model is designed to detect when actual DDoS traffic gets generated.

Autoencoders [21] are a neural network that is trained to reconstruct their input. Their

main purpose is learning in an unsupervised manner an “informative” representation

of the data that can be used for various implications such as clustering. An important

tradeoff in autoencoders is the bias-variance tradeoff. On the one hand, we want the

architecture of the autoencoder to be able to reconstruct the input well (i.e. reduce the

reconstruction error). On the other hand, we want the low representation to generalize

to a meaningful one. Throughout the years, autoencoders have been used for a variety

of use cases, including clustering, dimensionality reduction, and anomaly detection.

In order to deal with the inherent trade-offs required by autoencoders, multiple ap-

proaches have been demonstrated. Researchers have introduced sparsity in the hidden

activation layers of the neural network, hence coining the term "Sparse Autoencoders"

that ensure that the learned representation is not an identity function [22][23]. This

can be done in conjunction with the bottleneck approach or replace it entirely. A major

improvement in the representation capabilities of autoencoders has been achieved by

the Variational Autoencoder Model (VAE). Following the Variational Bayes Inference,

VAE is a generative model that attempts to describe data generation through a proba-

bilistic distribution. An et al. [24] evaluated the performance of a VAE based anomaly

detection approach on the KDD and MNIST dataset.

While Autoencoder [25] neural networks have already established themselves as quite

capable in areas such as image reconstruction and denoising, researchers are now exten-

sively leveraging its capabilities as an anomaly detector in IoT.

Hwang et al. [26][27] in their two papers have demonstrated the use of an autoencoder

for early network anomaly detection and to perform unsupervised malicious IoT traffic

classification, an unsupervised clustering use-case. Their experimentation revealed a

performance of nearly 100% and a very low false-positive rate of 0.83%. Salahuddin

et al. [28] have demonstrated the use of autoencoders on the CIC-IDS2019 [29] and

achieved an F1-Score of 99% for a majority of devices and greater than 95% for all

devices.

Chen et al. [30] demonstrate the application of Convolutional Autoencoder (CAE) to

16

Chapter 2: Background and Literature Review

perform the dimensionality reduction. As the Convolutional Autoencoder has a smaller

number of parameters, it requires less training time compared to the conventional Au-

toencoder. By evaluating on NSL-KDD dataset, the CAE-based network anomaly de-

tection method outperforms other detection methods.

17

Chapter 3

Methodology

Chapter Summary

This section presents a brief on the research methodology; this includes an introduction

to the datasets, the workflow of the machine-learning and transfer-learning implemen-

tations, and a discussion on the rationale for each step.

18

Chapter 3: Methodology

Existing papers [31][11] have used variations of the autoencoder models for the clas-

sification of traffic types using various datasets including the CIC-IDS2017. Many of

the current researchers opt for advanced forms of autoencoders such as variational au-

toencoders (VAR) and sparse autoencoders. While these researchers have demonstrated

good accuracies in detecting intrusion attempts, almost all of them train their neural

networks on known and labeled malicious data. In the scenario for this thesis, we assume

that only benign network behavior is available for a device. Further, while discussions

on transfer learning are flooded with examples on CNN-based models where only the

last classifier layer is changed, we wanted to explore whether this could be done to ANN

models. In this regard, the simplicity of a simple autoencoder neural network helped

build an intuitive sense of the hypothesis.

3.1 Understanding the Datasets

In our selection of datasets, we looked for the availability of the following qualities;

• Fairly recent datasets, representative of modern-day DDoS attack vectors and bot

infection.

• Labelled records representing “benign” traffic on a per device basis. This was

essential since our autoencoder anomaly models were to be trained to perform

extremely well on normal traffic data.

• A dataset where the device was the originator of anomalous traffic.

• A dataset structure that was as close as possible to real-life data.

We chose to use the NBaIoT [1] and CIC-IDS2017 [7][32] datasets for our research. Both

of these datasets were created fairly recently and consisted of labeled “benign” records on

a per device basis. However the datasets also have a few fundamental differences; while

the NBaIoT dataset consists of data on DDoS attacks being generated by a variety of

IoT devices, the CIC-IDS2017 consists of victim endpoints towards which DDoS attacks

are targeted. On the other hand, the CIC-IDS2017 dataset records are network flows

which is a much closer representation of the IPFIX [33] standard used in the industry.

The following table illustrates how each dataset fulfills the above criteria.

19

Chapter 3: Methodology

Index DataSet Name Fairly

Recent

Dataset

Labelled

“benign”

records

Originator

of DDoS

Closeness

to industry

standard

IPFIX

1 NBaIoT ✓ ✓ ✓ ✗

2 CIC-IDS2017 ✓ ✓ ✗ ✓

Table 3.1: Dataset attributes

Another recent dataset specifically tailored to DDoS is the CIC-DdoS2019 [29], however,

this dataset does not contain labeled instances of normal data traffic. Due to this reason,

this dataset did not set well with the objectives of our thesis which aim at learning

the benign behavior of the device and its transfer-ability to other devices of varying

similarity.

3.1.1 NBaIoT Dataset

The NBaIoT dataset [1] was generated in a lab environment consisting of a multitude

of IoT devices. Network traffic data was captured before and after infecting each device

with two very well-known malware, Mirai and Bashlite. This data was passed through

a feature extraction process that created 115 numeric features.

The dataset consists of nine IoT devices with data segregated among three categories,

benign, malicious-Bashlite, and malicious-Mirai. The following table summarises the

dataset size for each device.

The datasets were extracted from a raw packet capture and aggregated first by source-

IP/MAC/port and then by time. Splitting the raw data into smaller chunks allows for

the extraction of statistical attributes such as mean, variance, etc for that duration.

This also allows for the detection of sudden short-lived spikes in malicious traffic and

whether it sustains for a longer period of time or not. The following table summarizes

the first phase of aggregation and its co-relation with the feature extraction.

20

Chapter 3: Methodology

A
gg

re
ga

te
d

B
y

D
en

ot
ed

B
y

St
at

is
ti

c
E

xa
m

pl
e

C
ol

um
n

N
am

e
U

ni
t

So
ur

ce
-I

P
H

m
ea

n
H

_
L5

_
m

ea
n

siz
e

(b
yt

es
)

va
ria

nc
e

H
_

L5
_

va
ria

nc
e

siz
e

(b
yt

es
)

nu
m

be
r

H
_

L5
_

w
ei

gh
t

co
un

t
(in

te
ge

r)

So
ur

ce
-M

A
C

-I
P

M
I

m
ea

n
M

I_
di

r_
L5

_
m

ea
n

siz
e

(b
yt

es
)

va
ria

nc
e

M
I_

di
r_

L5
_

va
ria

nc
e

siz
e

(b
yt

es
)

nu
m

be
r

M
I_

di
r_

L5
_

w
ei

gh
t

co
un

t
(in

te
ge

r)

C
ha

nn
el

H
H

m
ea

n
H

H
_

L5
_

m
ea

n
siz

e
(b

yt
es

)

va
ria

nc
e

H
H

_
L5

_
st

d
siz

e
(b

yt
es

)

nu
m

be
r

H
H

_
L5

_
w

ei
gh

t
co

un
t

(in
te

ge
r)

m
ag

ni
tu

de
H

H
_

L5
_

m
ag

ni
tu

de
siz

e
(b

yt
es

)

ra
di

us
H

H
_

L5
_

ra
di

us
siz

e
(b

yt
es

)

co
va

ria
nc

e
H

H
_

L5
_

co
va

ria
nc

e
siz

e
(b

yt
es

-s
qu

ar
ed

)

C
or

el
at

io
n-

co
effi

ci
en

t
H

H
_

L5
_

pc
c

N
um

be
r

(
b/

w
+

1
an

d
-1

)

C
ha

nn
el

-J
itt

er
H

H
_

jit

m
ea

n
H

H
_

jit
_

L5
_

m
ea

n
tim

e
(m

s)

va
ria

nc
e

H
H

_
jit

_
L5

_
va

ria
nc

e
tim

e
(m

s)

nu
m

be
r

H
H

_
jit

_
L5

_
w

ei
gh

t
co

un
t

(in
te

ge
r)

So
ck

et
H

pH
p

m
ea

n
H

pH
p_

L5
_

m
ea

n
siz

e
(b

yt
es

)

va
ria

nc
e

H
pH

p_
L5

_
st

d
siz

e
(b

yt
es

)

nu
m

be
r

H
pH

p_
L5

_
w

ei
gh

t
co

un
t

(in
te

ge
r)

m
ag

ni
tu

de
H

pH
p_

L5
_

m
ag

ni
tu

de
siz

e
(b

yt
es

)

ra
di

us
H

pH
p_

L5
_

ra
di

us
siz

e
(b

yt
es

)

co
va

ria
nc

e
H

pH
p_

L5
_

co
va

ria
nc

e
siz

e
(b

yt
es

-s
qu

ar
ed

)

C
or

el
at

io
n-

co
effi

ci
en

t
H

pH
p_

L5
_

pc
c

N
um

be
r

(
b/

w
+

1
an

d
-1

)

T
ab

le
3.

3:
N

B
aI

oT
da

ta
se

t
fe

at
ur

e
de

sc
rip

tio
n

21

Chapter 3: Methodology

Assuming that time frames are ones as mentioned in the paper.

Time-frame in data header column As in paper Perceived from naming

L0.01 100ms 10ms 10ms

L0.1 500ms 100ms 100ms

L1 1.5s 1s 1min

L3 10s 3s 3min

L5 1min 5s 5min

Table 3.4: A possible discrepancy in the Aggregation time units

For each feature listed, statistical values are calculated across five-time durations listed

in the following table. While the paper mention these durations as 100ms, 500ms, 1.5s,

10s, and 1min respectively, the abbreviations used in feature names introduce some

doubt. The following table summarizes this. Nevertheless, we were able to reproduce

the results of the original authors’ paper with similar accuracy.

Figure 3.1: DDoS Classification

3.1.2 CIC-IDS2017 Dataset

The CIC-IDS2017 dataset [26] has been created by building a lab environment that

simulates normal traffic originating from systems running common operating systems

22

Chapter 3: Methodology

such as Windows and Ubuntu. The dataset spans a collection period of 5 days, where the

first day consists of only normal traffic, while the remaining days contain periods where

various attacks were generated targeting the above-mentioned systems. The dataset

consists of 85 features, extracted from the raw packet captures of the network traffic.

The original dataset is arranged on a per-day basis. For the purpose of this thesis,

we segregated the traffic records on the basis of the IP addresses of the attack victim

machines. The following table lists the unique IP addresses, names, and the number

of available records for each victim’s machine. We used the benign data records for

“Monday” only.

The authors of the dataset have explained the process of dataset generation in their

paper [12], where each attack was generated using publicly available tools on a Kali

Linux machine. The following figure shows a scatter plot of sample data from the two

servers (192.168.10.50 [Windows Server 16] 192.168.10.51 [Ubuntu Server 12]). The

figure illustrates the stark difference in the values of some of the features belonging to

the malicious dataset.

Figure 3.2: DDoS Classification

23

Chapter 3: Methodology

Name IP Address Record Category Record Label Record

Count

Windows 8.1 192.168.10.5
Benign Benign 62013

Malicious Bot 288

Windows VIsta 192.168.10.8

Benign Benign 33033

Malicious Bot 748

Infiltration 72

Windows 7 Pro 192.168.10.9
Benign Benign 40468

Malicious Bot 372

Ubuntu 16.4 192.168.10.12
Benign Benign 45289

Malicious Bot 2

Windows 10 Pro 192.168.10.14
Benign Benign 38004

Malicious Bot 348

Windows 10 192.168.10.15
Benign Benign 26671

Malicious Bot 580

Ubuntu 14.4 192.168.10.17
Benign Benign 30302

Malicious Bot 7

Web Server 16 192.168.10.50

Benign Benign 11340

Malicious DDoS 128027

DoS-GoldenEye 10293

DoS-Hulk 231073

DoS-Slowhttptest 5499

DoS-slowloris 5796

FTP-Patator 7938

PortScan 158930

SSH-Patator 5897

Web-Attack-Brute-Force 1507

Web-Attack-Sql-Injection 21

Web-Attack-XSS 652

Ubuntu Server 12 192.168.10.51
Benign Benign 28497

Malicious Heartblead 11

Table 3.5: CIC-IDS2017 Dataset size

24

Chapter 3: Methodology

3.1.3 Programming Language Libraries

Implementation of tests against the hypothesis of this work can be broadly divided into

two parts;

• Compilation of datasets into the desired format and directory structure such that

iterating through them programmatically is easier.

• Coding the anomaly model and transfer learning implementations.

Basic compilation and evaluation of the datasets were done using Bash and various

CLI-based tools available in it. This included concatenation or splitting of datasets,

evaluating dataset sizes, verifying the sanity of the dataset, and building a directory

hierarchy. All datasets used were in the comma-separated-values (CSV) format. The

prepared directory structure was then uploaded to the Google Drive account.

For the machine-learning and transfer-learning implementation, all code was written in

Python. Google’s Colab based Jupyter notebooks connected to a simple CPU-based

runtime and formed the underlying infrastructure. The Google CoLab notebook was

connected with the Google Drive account in order to access the datasets for training

and writing out the performance results.

Preprocessing and Metric libraries for scaling, dataset splitting, and performance eval-

uation respectively were used from the SciKitLearn package. Keras was used to create

the autoencoder neural network, and compile and fit it.

Matplotlib was used for the generation of Training/Optimization loss graphs and mean-

squared-error distribution of the Test dataset.

Pandas was used to hold the imported CSV based datasets, while Numpy was used in

order to aid in the intermediate steps of the data preprocessing.

Other generic libraries such as ’time’ and ’os’ etc. were used in order to interact with

the directories containing the datasets and record training time etc.

Libraries:

1. Pandas

2. Numpy

3. Keras

25

Chapter 3: Methodology

4. ScikitLearn

5. Matplotlib

Tools:

1. Bash

2. Python

3. Google Colab Jupyter Notebook

3.2 NBaIoT – Anomaly Detection Transfer Learning

With the NBaIoT dataset, our prime objectives were the following;

1. Evaluating the performance of an existing autoencoder-based anomaly model on

data belonging to other IoT devices with varying degrees of similarity.

2. Evaluating if specific layers of the autoencoders could be retrained with limited new

data, and thereby be “transferred” to a different IoT device with an overlapping

feature set.

3. And how does transfer-learning hold up when done across malware of similar

nature.

The following pseudo-code details the workflow adopted in order to gather data against

our above-mentioned objectives. A recursive loop was run which trained an anomaly

model for a particular IoT device, then evaluated its performance against all other IoT

devices in the dataset before and after transfer learning.

There were four iterations that covered four possible scenarios with the NBaIoT dataset.

These are as follows;

• With a scope limited to the Mirai dataset only; i.e the original model was trained

on the Mirai dataset of one device and then transferred to the Mirai dataset of

the remaining devices.

26

Chapter 3: Methodology

• With a scope limited to the Bashlite dataset only; i.e the original model was

trained on the Bashlite dataset of one device and then transferred to the Bashlite

dataset of the remaining devices.

• With the original model trained on Mirai dataset of a device and then transferred

to the Bashlite dataset of the remaining devices.

• With the original model trained on Bashlite dataset of a device and then trans-

ferred to the Mirai dataset of the remaining devices.

The following pseudo-code presents the sequence of steps performed at a high level. For

the iterations three and four (listed above), the algorithm was slightly modified in steps

18 and 19 such that the dataset loaded for the unknown device was the opposite of

what was loaded for the known device. The complete code can be found on the Github

repository [34]

1 MALWARE_DATASET = [Mirai, Bashlite]

2 LIST_OF_IOT_DEVICES = [...]

3 for each DATASET in MALWARE_DATASET

4 for each IOT_DEVICE in LIST_OF_IOT_DEVICES

5 Define this device as the KNOWN_DEVICE

6 Load BENIGN_DATA

7 Load MALICIOUS_DATA

8 Split BENIGN_DATA into 60/20/20 split for BENIGN_TRAINING,

↪→ BENIGN_OPTIMIZATION, BENIGN_TEST

9 Fit Scaler on the BENIGN_TRAINING data

10 Use the learned function to scale BENIGN_OPTIMIZATION,

↪→ BENIGN_TEST, and MALICIOUS-DATAT datasets

11 Calculate FISHER_SCORE of features and select whether to

↪→ use all or limited features for training

12 Train an autoencoder model for the selected features using

↪→ BENIGN_TRAINING and BENIGN_OPTIMIZATION datasets

13 Use the BENIGN_TEST dataset to define a threshold for

↪→ RECONSTRUCTION_ERROR of the autoencoder. This shall

↪→ be the ANOMALY_THRESHOLD

27

Chapter 3: Methodology

14 Create a new dataset containing a random mix of

↪→ MALICIOUS_DATA and BENIGN_TEST

15 Run this dataset through the autoencoder and use the

↪→ RECONSTRUCTION_ERROR and ANOMALY_THRESHOLD to

↪→ declare whether an instance is anomalous or not

16

17 Select a device from the remaining list of devices and

↪→ define it as the UNKNOWN_DEVICE

18 Load BENIGN_DATASET of the UNKNOWN_DEVICE.

19 Load MALICIOUS_DATASET of the UNKNOWN_DEVICE

20 Scale both datasets using the scaling function learned

↪→ earlier

21 Run the dataset against the anomaly model of KNOWN_DEVICE;

↪→ record the performance impact if any

22

23 Extract randomly 10% of the records from the

↪→ BENIGN_DATASET of UNKNOWN_DEVICE

24 Split BENIGN_DATASET into BENIGN_TRAINING,

↪→ BENIGN_OPTIMIZATION, BENIGN_TEST in a 60/20/20

↪→ fraction

25 Freeze all layers of the autoencoder model except the

↪→ three innermost layers

26 Re-initialize the weights of the innermost layers

27 Run Train cycles on the innermost layers of the

↪→ autoencoder only

28 Use the BENIGN_TEST subset of the data to calculate the

↪→ RECONSTRUCTION_ERROR and redefine the

↪→ ANOMALY_THRESHOLD of the transferred model

29 Create a new dataset containing a random mix of

↪→ MALICIOUS_DATA and TEST_DATA

30 Record model performance

28

Chapter 3: Methodology

Details on the rationale for selected important steps are as follows;

Step-8:

A 60/20/20 split was chosen for training the autoencoder model. Since a majority of

the devices had significantly fewer records for benign data as compared to the malicious

data of Mirai and Bashlite, this split was chosen so that ample data could be presented

to the autoencoder model for training and optimization (80% in total). Smaller subsets

for optimization and testing might have led to insufficient model tuning or insufficiently

randomized test space for performance evaluation of the anomaly model.

Step-9:

The Min-Max Scaler from the ScikitLearn library was used to scale the training data.

The scaling function is learned only on the original KNOWN-DEVICE’S training data

subset. The remaining subsets (Optimization, Test, and Malicious) used this learned

scaling function to normalize the dataset.

Step-11:

The Fisher score was used as a means of evaluating how the model performance would

be impacted by using only the top features with the highest degree of in. Our iterations

included runs consisting of all features as well as with top features selected on the basis

of their Fisher scores only. For the latter, a feature was selected only if the Fisher score

was larger than 0.1. In the runs that used selected feature sets, the consequent transfer

learning used the exact same set of features from the UNKNOWN-DEVICE’S dataset

as well.

Step-12:

The autoencoder model consists of Dense layers, with each layer’s size linearly decreas-

ing until the encoder latent representation is 20% of the size of the selected number of

features. The following diagram presents the layout of the autoencoder model used.

Following model training parameters were used;

Loss Function: Mean Squared Error

Optimizer: Adam. Adam optimization is a stochastic gradient descent method that

is based on the adaptive estimation of first-order and second-order moments. Accord-

ing to Kingma et al [15], the method is "computationally efficient, has little memory

requirement, invariant to diagonal rescaling of gradients, and is well suited for problems

29

Chapter 3: Methodology

Inputs

(x)

Dense

(80%)

Dense

(60%)

Dense

(40%)

Dense

(20%) Dense

(40%) Dense

(60%) Dense

(80%) Output
(x)

Encoder DecoderCompressed
Representation

Figure 3.3: Autoencoder Pre-Transfer Learning

(a) A. Bashlite (b) B. Mirai

Figure 3.4: Loss Function plot of the IoT device SimpleHome-XCS7-1003-WHT-Security-

Camera for Bashlite and Mira datasets respectively

that are large in terms of data/parameters"

Max Epochs: 100

EarlyStopping Patience: 5, If the values of the loss function do not improve for five

consecutive epochs, stopping the model fitting process.

The autoencoder model is trained with an aim to minimize the reconstruction error of

“benign” data records. We calculate the mean-squared loss between the reconstructed

output xR and the original input x for all records in our “Test” subset of the data. The

maximum values of the mean-squared error form the upper boundary of the anomaly

threshold. However, it is entirely possible that the record with the maximum recon-

struction error might itself be an anomalous entry. In order to cater to this possibility,

we extract a list of candidate thresholds by siphoning off the highest mean-squared er-

ror values by percentile. Mean-squared errors in the percentile range of 90 to 100 are

evaluated with increments of 0.05 each. The one that maximizes the accuracy of the

30

Chapter 3: Methodology

model is selected.

D∑
i=1

(xi − xR
i)2 (3.2.1)

Step-17 – 21: Once a model for a particular device is trained, its performance is tested

for datasets of all the remaining IoT devices. In a vast majority of cases, the accuracy

of the model decreased.

Step-24: In order to simulate the case that transfer learning is usually done with a very

limited set of somewhat similar data, we use only 10% of the total benign dataset records.

This sample is further split into 60/20/20 portions for model training, optimization, and

testing. The following table illustrates the number of records used from each IoT device’s

dataset when used as a KNOWN-DEVICE and when used as an UNKNOWN-DEVICE

to which an autoencoder is “transfer-learned”.

Table 3.6: Representation of the Dataset size and its consumption during training stages

Device Abbreviation Total Data
Original Model Training Transfer-Learning

Training Optimization Validation Training Optimization Validation

Danmini Doorbell DAD 49,548 29,729 9,910 9,910 2,973 991 991

Ecobee Thermostat ECT 13,113 7,868 2,623 2,623 787 262 262

Ennio Doorbell END 39,100 23,460 7,820 7,820 2,346 782 782

Philips B120N10 Baby Monitor PBM 175,240 105,144 35,048 35,048 10,514 3,505 3,505

Provision PT 737E Security Camera P737 62,150 37,290 12,430 12,430 3,729 1,243 1,243

Provision PT 838 Security Camera P838 98,514 59,108 19,703 19,703 5,911 1,970 1,970

Samsung SNH 1011 N Webcam SNH 52,150 31,290 10,430 10,430 3,129 1,043 1,043

SimpleHome XCS7 1002 WHT Security Camera S1002 46,581 27,949 9,316 9,316 2,795 932 932

SimpleHome XCS7 1003 WHT Security Camera S1003 19,528 11,717 3,906 3,906 1,172 391 391

Step-25: In over case of transfer learning, the innermost three layers of the autoencoder

are replaced with freshly initialized values, implying that these layers have no memory

of being trained in the previous steps. Keras by default uses GloRotUniform for initial-

izing model weights which were used for the re-initialization as well. The following code

shows how this was done. Further, when retraining the model, all layers were frozen

except the innermost three layers. This was in conjunction with the transfer learning

concept of only retraining the newly introduced layers.

The following code snippet represents how the innermost layers of the autoencoder are

reset, as a way of simulating transfer learning.

31

Chapter 3: Methodology

1 initializer = keras.initializers.GlorotUniform()

2 for layer in transfer_model.layers[3:6]:

3 layer.set_weights([initializer(shape=w.shape) for w in layer.

↪→ get_weights()])

Encoder Frozen Layers Layers retrained
on new data Decoder Frozen Layers

Inputs

(x)

Dense

(80%)

Dense

(60%)

Dense

(40%)

Dense

(20%) Dense

(40%) Dense

(60%) Dense

(80%) Output
(x)

Figure 3.5: Autoencoder Post-Transfer Learning

Step-28: Now that our autoencoder model has changed, the reconstruction error of the

model will have changed as well. We re-calculate the threshold value for our anomaly

detection engine as a percentile of the mean-squared reconstruction errors. We evalu-

ated that the highest accuracy resulted if the error threshold was kept above the 90th

percentile.

3.3 CIC-IDS2017 – Anomaly Detection

We decided to include the CIC-IDS2017 dataset in order to cover a deficiency of the

NBaIoT dataset, i.e its lacking similarity with real-world IP traffic flows, for which

standards such as the IPFIX and NetFlow-v9 / NetFlow-v10 are used.

While the autoencoder-based anomaly model was able to deliver exceptional results

on the NBaIoT dataset, the dataset consisted of unconventional feature attributes that

would require custom data preprocessors in a real-world scenario. With this dataset, our

prime objective was to evaluate the performance of autoencoder-based anomaly models

on traffic flow information which is much more similar to the kind of network flows

available with ISPs and enterprises.

A majority of the CIC-IDS2017 dataset catered to Bot activities such as data theft and

email spamming, however, the dataset also contains malicious traffic records comprising

32

Chapter 3: Methodology

a variety of DoS attacks, Web-based intrusion attempts, and port-scanning. However,

since this dataset only contained a single device against which the above-mentioned

attacks were simulated, transfer learning evaluations could not be made. Nevertheless,

we were able to train an anomaly model on the network flow data and observed a

range of performance accuracy, ranging from a mere 69% to over 90% for 6 of the 11

attacks. The autoencoder-based anomaly model performed significantly better on DoS

and Web-Intrusion attempts as compared to Bot communication.

The following pseudo-code presents the workflow of anomaly detection in the CIC-

IDS2017 dataset.

1 DICTIONARY-OF-DEVICE-IDS-DATA-FILES = {...}

2 for each DEVICE in DICTIONARY-OF-DEVICE-IDS-DATA-FILES

3 for each IDSCATEGORY against DEVICE

4 Load BENIGN-DATA

5 Load MALICIOUS-DATA

6 Data Preprocessing/Cleaning (e.g Fill any empty cells or

↪→ NaN with value 0)

7 Split BENIGN-DATA into 60/20/20 split for BENIGN-TRAINING,

↪→ BENIGN-OPTIMIZATION, BENIGN-TEST

8 Fit Scaler of BENIGN-TRAINING dataset and use the learned

↪→ function to scale remaining BENIGN-OPTIMIZATION,

↪→ BENIGN-TEST, and MALICIOUS-DATA datasets

9 Calculate the FISHERSCORE of features and select whether

↪→ to use all or limited features for training.

10 Train an autoencoder model for the selected features

11 Use the BENIGN-TEST portion of the dataset to define a

↪→ threshold for RECONSTRUCTION-ERROR of the

↪→ autoencoder. This shall be the ANOMALY-THRESHOLD.

12 Create a new dataset containing a random mix of MALICIOUS-

↪→ DATA and BENIGN-TEST datasets.

13 Run this dataset through the autoencoder and use the

↪→ RECONSTRUCTION-ERROR and ANOMALY-THRESHOLD defined

↪→ earlier to declare anomaly if any.

33

Chapter 3: Methodology

The anomaly detection iterations on the CIC-IDS2017 dataset were similar to those

performed on the NBaIoT dataset. This dataset required a few steps for data preparation

such as filling in empty columns with “0” values.

Multiple code runs were made using a variety of optimizer algorithms

Loss Function: Mean Squared Error

Optimizer: A variety of optimization algorithms were tried out, however, we found

“Adam” and “Adamax” to be the better performers.

Max Epochs: 100

EarlyStopping Patience: 5, If the values of the loss function do not improve for five

consecutive epochs, stopping the model fitting process.

34

Chapter 4

Results and Discussion

Chapter Summary

We delve into the details of the model performance for each experimental iteration,

present the process of deriving the performance parameters and comment on the results.

35

Chapter 4: Results and Discussion

A multitude of iterations was run for each dataset. A confusion matrix was built for each

run of the anomaly model. Performance metrics of Accuracy, Precision, Recall, and F1-

Score were extracted from the confusion matrix and tabulated in order to build a visual

representation of the anomaly models’ capability. Additionally, the model training times

were noted as well.

A brief description of each of these metrics is as follows;

True positives (TP): When the model predicts that an observation belongs to a class

and it actually does belong to that class.

True negatives (TN): When the model predicts that observation does not belong to

a class and it actually does not belong to that class.

False positives (FP): When the model predicts that an observation belongs to a class

when in reality it does not.

False negatives (FN): When the model predicts that observation does not belong to

a class when in fact it does.

Accuracy: It is the percentage of correct predictions for the test data and calculated

as follows;

(TP + TN)
(TP + TN + FP + FN) (4.0.1)

Precision: It is the fraction of relevant examples among all of the examples which were

predicted to belong in a certain class. Precision answers the question “How many of the

selected items are relevant?”

TP

(TP + FP) (4.0.2)

Recall: It is the fraction of examples that were predicted to belong to a class with

respect to all of the examples that truly belong in the class. Recall answers the question

“How many of the relevant items were selected?”

TP

(TP + FN) (4.0.3)

F1-Score: The F1 score is a good measure of summarizing the model’s accuracy and

recall into a single value. F1-Score gives an equal bias to both accuracy and precision,

36

Chapter 4: Results and Discussion

hence the value of beta is equal to 1.

Fβ = (1 + β2)precision · recall

(β2)precision + recall
(4.0.4)

F1 = precision · recall

precision + recall
(4.0.5)

37

Chapter 4: Results and Discussion

4.1 NBaIoT Dataset - Anomaly Detection and Transfer

Learning

4.1.1 Evaluating Model Accuracy

For the NBaIoT dataset, a matrix of model accuracy was built as a performance com-

parison before and after transfer learning. A total of 520 iterations of the anomaly

model were run across both categories (Mirai & Bashlite), with and without the fea-

ture selection process based on Fisher-Score. Within these iterations, new autoencoder

models were trained 32 times and transfer-learned 228 times. At each recursion, met-

rics of the confusion matrix, F-1 score, and training time were collected. The accuracy

matrices presented in Figure4.1, 4.2, 4.3 and 4.4 aim to build a visual representation

of the anomaly model’s performance for each iteration on the NBaIoT dataset. Table

4.1 briefly explains the experimental iteration that produced the respective accuracy

matrices in the aforementioned figures.

Table 4.1: Experimental scope against each accuracy matrices

Figure Explanation

4.1 MIRAI Transfer Learning Results The scope is limited to the Mirai dataset of NBaIoT. An anomaly model

is trained on an IoT device and then tested against the dataset of all

remaining IoT devices before and after transfer-learning

4.2 BASHLITE Transfer Learning Re-

sults

The scope is limited to the Bashlite dataset of NBaIoT. An anomaly

model is trained on an IoT device and then tested against the dataset of

all remaining IoT devices before and after transfer-learning

4.3 MIRAI to BASHLITE Transfer

Learning Results

An anomaly model is trained on the Mirai dataset of IoT devices and then

tested against the Bashlite dataset of all remaining IoT devices before and

after transfer-learning

4.4 BASHLITE to MIRAI Transfer

Learning Results

An anomaly model is trained on the Bashlite dataset of IoT devices and

then tested against the Mirai dataset of all remaining IoT devices before

and after transfer-learning

For each matrix, the devices listed in the left-most column are the original “Known”

device on which the anomaly model was trained. The devices listed in the last row

are the “Unknown” devices of varying similarity. The counter diagonal of the matrix

is the accuracy of the model on the same device’s dataset it was trained on, while all

other cells represent the model’s accuracy on the dataset of the “Unknown” device.

For example, the first cell containing an accuracy of 58.306% corresponds to a model

38

Chapter 4: Results and Discussion

trained on Danmini Doorbell and tested against the dataset of Philips Baby Monitor

represents the model performance before transfer-learning. Post-transfer-learning, this

value increases to 99.984%.

Original Device
(on which model

is trained)

Category Name Accuracy Percentage

DoorBell DAD 58.306% 86.088% 91.752% 71.023% 84.586% 95.247% 99.997%

B
efore Transfer Learning

Thermostat ECT 50.060% 83.963% 91.496% 71.409% 82.293% 99.987% 87.848%

Security
Camera

P737 94.265% 91.638% 99.949% 99.964% 99.995% 99.580% 99.990%

P838 94.262% 91.584% 99.368% 99.995% 99.992% 99.771% 99.960%

S1003 90.547% 89.974% 99.987% 76.155% 91.207% 99.314% 99.990%

S1002 91.977% 99.996% 99.846% 92.579% 93.403% 98.360% 100.000%

Baby Monitor PBM 99.997% 93.613% 99.923% 97.274% 96.653% 99.962% 100.000%

DoorBell DAD 99.984% 96.061% 99.166% 100% 99.960% 99.860% 99.997% A
fter Transfer Learning

Thermostat ECT 99.984% 96.583% 98.495% 96.836% 99.938% 99.987% 99.841%

Security
Camera

P737 99.995% 99.200% 99.656% 96.959% 99.995% 99.843% 99.419%

P838 99.984% 99.834% 99.923% 99.995% 99.927% 99.775% 99.686%

S1003 99.947% 98.770% 99.987% 95.839% 99.947% 99.784% 99.471%

S1002 99.991% 99.996% 99.616% 98.991% 99.900% 99.822% 99.412%

Baby Monitor PBM 99.997% 99.329% 99.565% 98.146% 99.904% 99.297% 99.490%

PBM S1002 S1003 PT838 PT737 ECT DAD

B. Monitor Security Camera Thermostat DoorBell

Device on whose data the model's performance is tested on

Figure 4.1: MIRAI Transfer Learning Results

Original Device
(on which model

is trained)

Category Name Accuracy Percentage

DoorBell DAD 90.716% 50.010% 50.034% 50.032% 50.000% 64.567% 73.065% 50.000% 99.743%

B
efore Transfer Learning

Thermostat ECT 54.731% 64.190% 50.009% 53.456% 64.319% 50.822% 50.732% 98.971% 50.020%

Security
Camera

P737 96.522% 51.649% 60.625% 50.075% 50.026% 80.875% 99.735% 50.229% 99.788%

P838 97.558% 51.649% 92.196% 50.000% 50.128% 99.492% 50.000% 50.000% 99.627%

S1003 54.923% 58.150% 94.236% 95.524% 98.989% 65.602% 55.020% 50.953% 50.091%

S1002 56.547% 50.019% 52.568% 99.238% 97.080% 67.668% 81.295% 59.077% 50.061%

Baby Monitor PBM 99.591% 97.124% 99.703% 95.116% 98.822% 88.884% 90.000% 99.695% 99.586%

Webcam SNH 93.734% 98.993% 60.280% 94.472% 67.008% 78.190% 78.190% 91.419% 93.864%

DoorBell END 98.996% 51.707% 50.020% 49.989% 50.026% 69.424% 74.336% 53.242% 99.606%

DoorBell DD 97.575% 99.574% 98.389% 96.762% 96.973% 99.697% 99.632% 99.373% 99.743%

A
fter Transfer Learning

Thermostat ECT 98.134% 99.693% 98.690% 68.225% 95.226% 99.147% 99.394% 98.971% 99.714%

Security
Camera

P737 98.713% 99.631% 99.422% 98.246% 98.253% 98.550% 99.735% 99.856% 99.659%

P838 97.756% 97.484% 99.744% 98.620% 97.790% 99.492% 97.519% 99.343% 99.748%

S1003 97.133% 99.185% 99.617% 99.443% 98.989% 99.617% 98.918% 99.242% 99.878%

S1002 99.244% 99.136% 52.568% 99.238% 98.364% 99.424% 98.920% 98.305% 99.637%

Baby Monitor PBM 99.031% 83.513% 99.703% 84.442% 83.825% 99.133% 98.132% 86.138% 99.645%

Webcam SNH 99.679% 98.993% 99.651% 96.468% 99.266% 99.398% 99.398% 99.356% 99.716%

DoorBell END 98.996% 98.841% 99.047% 99.389% 97.747% 99.675% 98.922% 98.462% 99.840%

END SNH PBM S1002 S1003 PT838 PT737 ECT DAD

DoorBell Webcam B. Monitor Security Camera Thermostat DoorBell

Device on whose data the model's performance is tested on

Figure 4.2: BASHLITE Transfer Learning Results

39

Chapter 4: Results and Discussion

Original
Device's MIRAI

dataset
(on which model

is trained)

Category Name Accuracy Percentage

DoorBell DAD 97.033% 57.450% 50.026% 49.968% 63.704% 54.573% 91.593% 58.314% 99.995%

B
efore Transfer Learning

Thermostat ECT 97.494% 37.507% 50.037% 64.341% 66.265% 56.497% 98.463% 99.981% 99.808%

Security
Camera

P737 67.238% 64.861% 65.547% 64.706% 64.882% 77.393% 99.984% 60.107% 68.803%
P838 67.596% 65.053% 66.857% 65.854% 67.572% 99.995% 89.220% 66.323% 69.409%
S1003 65.908% 63.730% 96.248% 66.423% 99.987% 49.259% 68.600% 54.424% 68.480%
S1002 66.049% 74.803% 64.349% 99.962% 68.007% 52.314% 68.391% 33.333% 68.843%

Baby Monitor PBM 67.174% 98.917% 99.990% 65.522% 67.162% 65.009% 68.190% 67.124% 68.621%

DoorBell DAD 98.964% 98.390% 97.441% 95.037% 95.804% 68.499% 97.730% 67.404% 99.995%

A
fter Transfer Learning

Thermostat ECT 97.786% 99.692% 98.402% 95.537% 98.543% 99.288% 99.280% 99.981% 99.698%

Security
Camera

P737 95.234% 97.718% 99.262% 98.321% 98.575% 99.475% 99.984% 97.369% 99.684%
P838 99.179% 99.508% 99.562% 98.438% 99.343% 99.995% 97.890% 67.501% 99.618%
S1003 98.586% 99.015% 99.049% 96.192% 99.987% 99.391% 99.714% 67.294% 99.710%
S1002 98.225% 97.744% 99.096% 99.962% 96.057% 99.067% 99.314% 99.598% 99.638%

Baby Monitor PBM 97.987% 97.555% 99.990% 95.446% 96.447% 95.000% 98.716% 99.509% 99.617%
END SNH PBM S1002 S1003 PT838 PT737 ECT DAD

DoorBell Webcam B. Monitor Security Camera Thermostat DoorBell

Device on whose BASHLITE dataset the model's performance is tested on and transferred to

Figure 4.3: MIRAI to BASHLITE Transfer Learning Results

Original
Device's

BASHLITE
dataset

(on which model
is trained)

Category Name Accuracy Percentage

DoorBell DD

No Mirai Dataset for

these devices

50.000% 53.617% 50.000% 50.000% 50.000% 50.000% 99.495%

B
efore Transfer Learning

Thermostat ECT 50.000% 72.617% 67.623% 50.000% 74.602% 99.218% 85.446%

Security
Camera

P737 50.000% 73.680% 50.000% 50.000% 97.744% 50.000% 94.661%

P838 50.011% 87.559% 50.282% 99.246% 50.000% 53.242% 99.435%

S1003 50.006% 86.518% 97.990% 50.000% 89.123% 53.204% 99.495%

S1002 50.964% 99.936% 96.081% 56.862% 99.083% 53.089% 99.627%
Baby Monitor PBM 98.984% 96.018% 68.571% 84.347% 99.799% 66.438% 99.889%

Webcam SNH 98.226% 50.009% 88.074% 96.004% 50.000% 98.359% 53.204% 99.546%

DoorBell END 96.240% 50.000% 50.000% 50.026% 50.000% 50.000% 50.000% 50.000%

DoorBell DD

No Mirai Dataset for

these devices

99.989% 99.626% 99.687% 99.969% 99.944% 99.708% 99.495%

A
fter Transfer Learning

Thermostat ECT 99.974% 99.909% 99.650% 99.906% 99.842% 99.218% 99.745%

Security
Camera

P737 99.981% 99.816% 99.903% 99.933% 97.744% 99.208% 99.973%
P838 99.977% 99.864% 99.568% 99.246% 99.881% 99.716% 99.959%
S1003 99.981% 99.936% 97.990% 99.959% 99.956% 99.712% 99.873%
S1002 99.981% 99.936% 97.990% 99.959% 99.956% 99.712% 99.873%

Baby Monitor PBM 98.984% 99.940% 99.912% 99.878% 99.836% 99.424% 99.978%
Webcam SNH 98.226% 99.945% 99.708% 99.644% 99.973% 99.977% 99.229% 99.845%
DoorBell END 96.240% 98.871% 99.696% 99.093% 51.277% 65.616% 89.442% 99.924%

END SNH PBM S1002 S1003 PT838 PT737 ECT DAD

DoorBell Webcam B. Monitor Security Camera Thermostat DoorBell

Device on whose MIRAI dataset the model's performance is tested on and transferred to

Figure 4.4: BASHLITE to MIRAI Transfer Learning Results

40

Chapter 4: Results and Discussion

In general, a significant decrease in the model’s accuracy is noticed when it is tested on

a different “Unknown” IoT device’s data. However, this decrease in model accuracy

is recovered after the process of transfer-learning and re-defining the anomaly thresh-

old. We observed that keeping the anomaly threshold equal to the maximum value

of mean-squared-error of the test dataset started introducing False-Positives; this was

investigated by plotting the mean-squared-error graphs of “benign” data as well as “ma-

licious” data. The minimum and maximum values were found to be overlapping slightly.

This overlap was the root cause of false positives. In order to maximize performance,

the threshold definition had to be such that it minimized the impact of this overlap.

A slightly lower threshold based on the percentile value was found to give a significant

improvement in the anomaly model.

From the model accuracy matrices presented in the figures 4.1, 4.2, 4.3 and 4.4, the

"percentage-accuracy-decrease" was calculated for each model trained on an IoT

device and tested on other devices before and after transfer learning. The following

formula was used.

%AccuracyDecrease =
ModelAccuracyKnownDevice −

∑ ModelAccuracyUnknownDevices

#UnknownDevices

ModelAccuracyKnownDevice
·100

(4.1.1)

Figure 4.1 presents the accuracy matrix of model accuracy across IoT devices within

the Mirai dataset. As shown in Table4.2, the average detection accuracy of an anomaly

model decreased by 8.68% when tested against an "Unknown" device pre-transfer learn-

ing. This reduced to an average of 0.75% post-transfer learning. Anomaly models trained

on the Mirai dataset of the Ecobee Thermostat posted the highest impact on accuracy

at 22.15% pre-transfer learning and 1.37% post-transfer learning.

Figure 4.2 presents the accuracy matrix of model accuracy across IoT devices within the

Bashlite dataset. As compared to the Mirai dataset, the average accuracy decrease on

the Bashlite dataset was much higher, with an average of 30.64% pre-transfer learning

and 2.33% post-transfer learning. In this iteration too, the Ecobee Thermostat posted

the highest impact on model accuracy at 44.65% and 4.24% post-transfer learning.

Details can be perused in Table4.3.

Figure 4.3 and 4.4are accuracy matrices corresponding to the third and fourth iteration

of the experiment. These consist of instances where an anomaly model trained on the

41

Chapter 4: Results and Discussion

Mirai dataset of an IoT device was tested against the Bashlite dataset of all other devices

before & after transfer-learning and vice versa. Table 4.3 summarises the percentage

decrease in model accuracy before and after transfer-learning.

Table 4.2: Percentage decrease in model accuracy before and after transfer-learning (TL) across

device

IoT Device
Mirai (% decrease) Bashlite (% decrease)

Pre-TL Post-TL Pre-TL Post-TL

DAD 18.83 0.82 40.04 1.25

ECT 22.15 1.37 44.65 4.24

P737 2.43 0.82 32.35 0.70

P838 2.51 0.14 32.01 1.00

S1003 8.79 1.03 33.77 -0.14

S1002 3.97 0.37 35.22 6.08

PBM 2.09 0.71 3.61 7.99

SNH - - 17.02 -0.12

END - - 37.07 0.01

Average 8.68 0.75 30.64 2.33

Table 4.3: Percentage decrease in model accuracy before and after transfer-learning (TL) across

device and malware type

IoT Device
MIRAI to BASHLITE (% decrease) BASHLITE to MIRAI (% decrease)

Pre-TL Post-TL Pre-TL Post-TL

DAD 34.66 10.09 49.14 -0.33

ECT 28.68 1.45 32.76 -0.62

P737 33.30 1.78 37.19 -2.11

P838 30.26 4.87 34.42 -0.59

S1003 33.36 5.12 27.14 -1.95

S1002 37.97 1.37 24.00 0.36

PBM 29.03 2.46 13.28 -0.85

SNH - - 22.16 -1.56

END - - 48.04 10.36

Average (%) 32.47 3.88 32.02 0.30

42

Chapter 4: Results and Discussion

(a) S1003’s original model (b) Performance on ECT

(c) Performance on ECT Post-TL

Figure 4.5: Anomaly Detector’s performance change for MIRAI dataset

Figure 4.5 consists of three confusion matrices and presents an example of how the per-

formance of the anomaly model varied through the three stages; i.e model performance

on the same device upon which the model was trained, model performance on a differ-

ent device’s data before transfer-learning, and model performance on a different device’s

data after transfer learning.

4.1.2 Evaluating Model Training Time

Another core aspect of the experimentation included evaluating the amount of time saved

when an anomaly model for an IoT device is transfer-learned as opposed to trained from

scratch.

Model training times were thus noted for each cycle of training and transfer-learning

against the IoT device. These were populated into a matrix similar in structure to the

ones made for model accuracy. Figure 4.6 and 4.7 represent the amount of time taken

to train a model from scratch (denoted by the counter diagonal of the matrix), and to

43

Chapter 4: Results and Discussion

transfer learning onto a different IoT device. These figures correspond to the first two

iterations of the experiment conducted on the Mirai and Bashlite datasets respectively.

Table 4.4 and 4.7summarize the percentage decrease in the time required to train an

anomaly model by transfer-learning as opposed to training from scratch. The Mirai

dataset averaged 47.31% while the Bashlite dataset saved 58.27% of the time when the

anomaly model for an IoT device was transfer-learned instead of being learned from

scratch. This capability of having the time required to train the anomaly model can

have huge benefits in large-scale production environments.

%TimeSaved =
∑ T ransferLearningT imeknowndevice

#ofinstances − TrainingT imeknowndevice

TrainingT imeknowndevice
· 100

(4.1.2)

Table 4.4: Time saved when transfer-learning on Mirai dataset

IoT Device
Average Training Time (seconds)

% decrease
Original Model Transfer Learning

DAD 118.7 67.0 43.50%

ECT 48.5 25.9 46.65%

P737 77.9 50.0 35.79%

P838 159.3 102.5 35.67%

S1003 34.0 25.0 26.47%

S1002 100.9 30.3 70.01%

PBM 348.9 93.8 73.12%

Average 126.9 56.4 47.31%

Table 4.5: Time saved when transfer-learning on Bashlite dataset

IoT Device
Average Training Time (seconds)

% decrease
Original Model Transfer Learning

DAD 120.5 59.1 50.94%

ECT 104.6 30.6 70.78%

P737 149.5 93.6 37.38%

P838 491.4 133.1 72.92%

S1003 60.4 36.0 40.32%

S1002 257.0 49.0 80.92%

PBM 776.7 126.5 83.72%

SNH 205.2 67.2 67.26%

END 83.7 66.8 20.23%

Average 249.9 73.6 58.27%

44

Chapter 4: Results and Discussion

Original Device (on
which model is trained)

Category IoT Device Training Time (seconds)
DoorBell DAD 136.0 44.1 27.3 139.1 46.2 36.6 118.7

Thermostat ECT 139.9 24.9 13.8 141.3 61.8 48.5 82.2

Security Camera

P737 71.9 43.6 25.1 113.9 77.9 41.2 58.8
P838 84.4 21.7 29.0 159.3 68.4 23.5 56.6
S1002 77.1 20.2 34.0 80.9 41.9 16.0 82.2
S1003 53.6 100.9 16.8 52.5 34.6 13.0 82.2

Baby Monitor PBM 348.9 27.1 38.1 87.0 47.3 24.9 40.3
B. Monitor Security Camera Thermostat DoorBell

PBM S1002 S1003 P838 P737 ECT DAD
Device on whose data the model's performance is tested on

Figure 4.6: Model Training times for Mirai dataset

Original Device (on
which model is trained)

Category IoT Device Training Time (seconds)
DoorBell DAD 82.3 90.9 255.6 142.2 33.0 170.4 106.3 33.7 120.5

Thermostat ECT 69.2 64.9 154.8 39.1 24.1 120.1 101.8 104.6 77.7

Security Camera

P737 82.2 142.2 48.3 49.5 21.7 153.5 149.5 41.3 47.0
P838 44.0 92.6 103.3 51.3 36.8 491.4 142.2 41.6 61.1
S1002 59.5 40.5 213.6 24.6 60.4 136.5 64.5 41.3 74.1
S1003 65.8 57.7 87.7 257.0 25.3 95.8 68.1 17.6 70.9

Baby Monitor PBM 48.8 32.7 776.7 43.4 41.4 122.2 48.6 29.0 24.0
Webcam SNH 82.3 205.2 70.6 33.2 23.8 202.3 75.3 29.2 80.2
DoorBell END 83.7 16.1 78.1 55.9 82.2 202.2 142.2 10.9 42.6

DoorBell Webcam B. Monitor Security Camera Thermostat DoorBell
END SNH PBM S1002 S1003 P838 P737 ECT DAD

Device on whose data the model's performance is tested on

Figure 4.7: Model Training times for Bashlite dataset

4.1.3 Correlating Static Features with Model Performance

Table 4.6 lists the static feature sets of the IoT devices. This table was created based

on the listed attributes of the IoT product with the intention of finding any possible

correlation between them and the transfer learning performance. Figure reffig:device-

feature-percentage-overlap reflects the IoT device’s features as a "percentage-overlay".

This matrix was made in order to build an intuitive sense of any co-relation between

the static feature set of IoT devices and the transferability of their anomaly model.

Table 4.6: IoT Device Feature Distribution in NBaIoT dataset

Device Total Features
Network Camera Audio

Display
Sensor

SD Card
WiFi LAN ZigBee Picture Video In TwoWay Record Speaker Thermal Proximity Motion Humidity Noise

DAD 8 1 1 0 1 1 1 1 0 1 0 0 0 1 0 0 0

END 8 1 0 0 1 1 1 1 0 1 1 0 0 1 0 0 0

ECT 7 1 0 1 0 0 0 0 0 0 1 1 1 1 1 0 0

P737 7 1 1 0 0 1 1 1 0 0 0 0 0 1 0 0 1

P838 7 1 1 0 0 1 1 1 0 0 0 0 0 1 0 0 1

S1003 4 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1

S1002 7 1 0 0 0 1 1 1 0 1 0 0 0 1 0 0 1

PBM 9 1 0 0 0 1 1 1 0 1 0 1 0 1 1 1 0

SNH 4 1 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0

A few results pointed towards a possibility of correlation; e.g the Philips Baby Monitor

had the most static features and its anomaly model was the highest performing in

all four iterations. However, other results seemed to contradict this observation; e.g

45

Chapter 4: Results and Discussion

Category Device Name No. of Static
features Percentage Overlap in Static Features

DoorBell
DAD 8 100.00% 75.00% 100.00% 100.00% 100.00% 85.71% 28.57% 87.50% -
END 8 100.00% 75.00% 85.71% 75.00% 71.43% 62.50% 42.86% -

Thermostat ECT 7 50.00% 57.14% 28.57% 50.00% 28.57% 25.00% -

Security
Camera

P737 7 100.00% 71.43% 85.71% 100.00% 100.00% -
P838 7 100.00% 71.43% 85.71% 100.00% -
S1003 4 75.00% 75.00% 100.00% -
S1002 7 75.00% 85.71% -

Baby Monitor PBM 9 75.00% -
Webcam SNH 4 -

4 9 7 4 7 7 7 8 8
SNH PBM S1002 S1003 PT838 PT737 ECT END DAD

Webcam
Baby

Monitor Security Camera
Thermostat

DoorBell

Figure 4.8: Percentage Feature Overlap of IoT devices

the anomaly model of Simple Home Camera 1003 performed exceptionally well on the

dataset of Danmini Doorbell despite having a lower number of static features. We thus

conclude that no significant correlation of the IoT device’s static attribute’s against the

performance of transfer learning could be determined. A major reason for this can be due

to the fact that the presence of the hardware does not necessarily translate proportionally

to its software characteristics; and thereby its network footprint. For example, while

almost all devices have a camera module capable of recording videos, this does not reflect

on whether a device continuously streams video or only runs periodically or when an

event occurs. All of these software behaviors shall result in a different network footprint.

4.2 CIC-IDS2017 Dataset - Anomaly Detection

The CIC-IDS2017 dataset consists of various types of intrusion and DDoS attacks on a

variety of endpoints. We trained the anomaly model on a per-device basis using only

the benign data points. After the model was trained, we evaluated its capability of

detecting the malicious data points.

We observed that for the “Bot” traffic records, the model did not perform sufficiently

well. In order to investigate this further, we plotted sample records of the Benign and

“Bot” data records in order to visualize the distribution.

The following figures show how some data points belonging to the “Bot” category are

very similar to the actual “benign” data. The original paper by the creators of CIC-

IDS2017 mentions “Bot” malicious traffic as being generated using “Ares” which is a

46

Chapter 4: Results and Discussion

Figure 4.9: A representation of how some malicious traffic does not have significant variance

in network footprint

Python-based Botnet that can provide a remote shell, file upload/download, capturing

screenshots, and keylogging. Actions such as keylogging and screenshot capturing are

unlikely to generate a vastly different network footprint and hence are not distinguishable

from a network standpoint.

Figure 4.10 presents the model’s accuracy in successfully detecting the various IDS and

DDoS attempts made in the simulated environment. Since DDoS attacks are attempted

against only a single endpoint, we excluded the transfer-learning part of the experi-

mentation. Our main aim was to evaluate the validity of autoencoder-based anomaly

models against datasets that are more synonymous with the IPFIX [33] format which is

an industry-standard. The relatively simple autoencoder-based anomaly model was able

to detect DDoS variants with an average accuracy of 90.9%. In addition to the DDoS

category, the model performed well on the Web-BruteForce, Web Cross-Site-Scripting,

Heartbleed, and Infiltration attack datasets. Accuracy was relatively low against the

remaining categories. This points to our earlier discussion on autoencoder lacking the

capability of detecting malicious events if clear anomalies are absent in the dataset

records.

For the device Windows Server 16, multiple runs of anomaly detection were made on the

dataset using a variety of optimizers. While the detection accuracy is mildly varied, the

ADAM [35] optimizer and its variants NADAM and ADAMAX had a distinguishably

better performance. Among these NADAM was the top performer. Other optimizers

that were tested included SGD and ADADELTA. Figure

47

Chapter 4: Results and Discussion

Device Name

Accuracy

Bot DDoS DoS
(GoldenEye)

DoS
(Hulk)

DoS
(SlowHttp)

DoS
(slowloris)

FTP
(Patator)

SSH
(Patator) PortScan WebAttack-

BruteForce
WebAttack-
SqlInjection

WebAttack-
XSS Inflitration HeartBleed

Windows 8.1 61.11% - - - - - - - - - - - - -

Web Server 16 - 82.58% 97.66% 85.41% 97.80% 91.07% 69.69% 73.41% 96.91% 92.30% 76.19% 97.70%

Windows VIsta 66.78% - - - - - - - - - - - 93.75%

Ubuntu Server 12 - - - - - - - - - - - - - 100.00%

Windows 7 Pro 60.03% - - - - - - - - - - - - -

Ubuntu 16.4 75.00% - - - - - - - - - - - - -

Windows 10 Pro 59.77% - - - - - - - - - - - - -

Windows 10 50.60% - - - - - - - - - - - - -

Figure 4.10: CIC-IDS2017 model performance results

Device Name Metrics Optimizer DDoS DoS
(GoldenEye)

DoS
(Hulk)

DoS
(SlowHttpTest)

DoS
(slowloris)

FTP
(Patator)

SSH
(Patator) PortScan WebAttack-

BruteForce
WebAttack-
SqlInjection

WebAttack-
XSS

Web Server 16

ACCURACY Adam 82.58% 97.66% 85.41% 97.80% 91.07% 69.69% 73.41% 96.91% 92.30% 76.19% 97.70%
ACCURACY SGD 80.53% 88.96% 84.33% 91.29% 74.58% 49.98% 49.96% 50.07% 52.02% 52.38% 51.07%
ACCURACY NADAM 83.13% 98.28% 84.74% 98.54% 96.67% 49.98% 71.74% 96.45% 92.20% 76.19% 97.70%
ACCURACY Adamax 85.76% 97.09% 84.48% 98.21% 94.91% 49.98% 96.38% 96.38% 92.00% 66.67% 97.70%
ACCURACY Adadelta 82.61% 85.80% 83.40% 60.65% 73.37% 49.89% 49.96% 50.02% 52.12% 54.76% 51.07%

Figure 4.11: CIC-IDS2017 with different optimization algorithms

48

Chapter 5

Conclusion and Future Work

49

Chapter 5: Conclusion and Future Work

Our inclination on testing the viability of transfer-learning autoencoder models of IoT

devices was based on two rationales.

1. The benign behavior of similar IoT devices on the network should be somewhat

similar, and therefore the features learned by the autoencoder model of these IoT devices

should be similar too.

2. Since the behavior of DDoS generating malware such as Mirai and Bashlite does not

change based on device features, the anomaly introduced by them should be similar too.

Our experimentation positively affirmed that an existing autoencoder neural network

can be subjected to transfer learning with limited new data of an unknown IoT device

with good accuracy. However, we did not observe a strong relationship between the

static features of an IoT device and its normal traffic behavior. We hypothesize that

this could be due to the fact that these static features do not adequately represent

the functional properties of the IoT device. For example, simply knowing whether an

IoT device contains a camera only paints a black and white picture. Whereas network

footprint would be impacted by the frequency of the camera’s use, its FPS, megapixels,

etc.

Our experimentation with the IPFIX formatted data has shown that while noisy DDoS

traffic may be detected with fair accuracy, this can be improved further. We conclude

that building the feature dataset has a significant role in impacting the quality of the

learning by the autoencoder. In general, simply focusing on the quantity and size of

packets does not provide enough reference points for the neural network to learn a

holistic picture.

5.1 Future Work

The following can be interesting future directions;

• The conversion of raw packet captures into feature vectors introduces latency which

can undermine the effectiveness of an anomaly detector. Minimizing the role of

middlewares converting raw packet-capture (PCAP) files to feature vectors and

bringing them into real-time can be explored. The IPFIX framework is widely

supported and has the flexibility of configuring custom attributes. This can form

an interesting starting point for building a more holistic feature list.

50

Chapter 5: Conclusion and Future Work

• So far, the anomaly threshold is based on the mean-squared error in the reconstruc-

tion Loss and requires a programming logic external to the autoencoder itself. The

use of RNN/LSTM can be explored to train anomaly detectors on a time-series

input data stream of IoT traffic.

51

Bibliography

[1] Yair Meidan et al. N-BaIoT: Network-based Detection of IoT Botnet Attacks Us-

ing Deep Autoencoders. Mar. 2018. url: https://archive.ics.uci.edu/ml/

datasets/detection_of_IoT_botnet_attacks_N_BaIoT.

[2] Ronierison Maciel et al. “Impact of a DDoS attack on computer systems: An

approach based on an attack tree model”. In: 2018 Annual IEEE International

Systems Conference (SysCon). IEEE. 2018, pp. 1–8.

[3] Zhi-Kai Zhang et al. “IoT security: ongoing challenges and research opportunities”.

In: 2014 IEEE 7th international conference on service-oriented computing and

applications. IEEE. 2014, pp. 230–234.

[4] Guest Author. Inside the infamous Mirai IoT Botnet: A Retrospective Analy-

sis. Sept. 2021. url: https://blog.cloudflare.com/inside- mirai- the-

infamous-iot-botnet-a-retrospective-analysis/#:~:text=its%20offensive%

20capabilities.-,How%20Mirai%20works,and%20control%20(C&C)%20servers..

[5] Ronald Holt et al. “Deep autoencoder neural networks for detecting lateral move-

ment in computer networks”. In: Proceedings on the International Conference on

Artificial Intelligence (ICAI). The Steering Committee of The World Congress in

Computer Science, Computer . . . 2019, pp. 277–283.

[6] Ken Dunham and Jim Melnick. Malicious bots: an inside look into the cyber-

criminal underground of the internet. Auerbach Publications, 2008.

[7] Iman Sharafaldin, Arash Habibi Lashkari, and Ali A Ghorbani. “A detailed analy-

sis of the cicids2017 data set”. In: International conference on information systems

security and privacy. Springer. 2018, pp. 172–188.

52

https://archive.ics.uci.edu/ml/datasets/detection_of_IoT_botnet_attacks_N_BaIoT
https://archive.ics.uci.edu/ml/datasets/detection_of_IoT_botnet_attacks_N_BaIoT
https://blog.cloudflare.com/inside-mirai-the-infamous-iot-botnet-a-retrospective-analysis/#:~:text=its%20offensive%20capabilities.-,How%20Mirai%20works,and%20control%20(C&C)%20servers.
https://blog.cloudflare.com/inside-mirai-the-infamous-iot-botnet-a-retrospective-analysis/#:~:text=its%20offensive%20capabilities.-,How%20Mirai%20works,and%20control%20(C&C)%20servers.
https://blog.cloudflare.com/inside-mirai-the-infamous-iot-botnet-a-retrospective-analysis/#:~:text=its%20offensive%20capabilities.-,How%20Mirai%20works,and%20control%20(C&C)%20servers.

Bibliography

[8] A brief history of bots and how they’ve shaped the internet Today. Feb. 2022. url:

https://abusix.com/resources/botnets/a-brief-history-of-bots-and-

how-theyve-shaped-the-internet-today/.

[9] David Dagon et al. “A taxonomy of botnet structures”. In: Twenty-Third Annual

Computer Security Applications Conference (ACSAC 2007). IEEE. 2007, pp. 325–

339.

[10] Nabil Hachem et al. “Botnets: lifecycle and taxonomy”. In: 2011 Conference on

Network and Information Systems Security. IEEE. 2011, pp. 1–8.

[11] Sheharbano Khattak et al. “A Taxonomy of Botnet Behavior, Detection, and De-

fense”. In: IEEE Communications Surveys Tutorials 16.2 (2014), pp. 898–924.

doi: 10.1109/surv.2013.091213.00134.

[12] Yu Fu et al. “Stealthy domain generation algorithms”. In: IEEE Transactions on

Information Forensics and Security 12.6 (2017), pp. 1430–1443.

[13] B. Smith. “A Storm (Worm) Is Brewing”. In: Computer 41.02 (Feb. 2008), pp. 20–

22. issn: 1558-0814. doi: 10.1109/MC.2008.38.

[14] CO Emmanuel et al. “On the internal workings of botnets: A review”. In: Inter-

national Journal of Computer Applications 138.4 (2020), pp. 39–43.

[15] Yonglin Zhou et al. “DGA-Based Botnet Detection Using DNS Traffic.” In: J.

Internet Serv. Inf. Secur. 3.3/4 (2013), pp. 116–123.

[16] Ben Stock et al. “Walowdac-analysis of a peer-to-peer botnet”. In: 2009 European

Conference on Computer Network Defense. IEEE. 2009, pp. 13–20.

[17] Abdul Hannan, Christian Gruhl, and Bernhard Sick. “Anomaly based Resilient

Network Intrusion Detection using Inferential Autoencoders”. In: 2021 IEEE In-

ternational Conference on Cyber Security and Resilience (CSR). 2021, pp. 1–7.

doi: 10.1109/CSR51186.2021.9527980.

[18] Kate Highnam et al. “Real-Time Detection of Dictionary DGA Network Traffic Us-

ing Deep Learning”. In: SN Computer Science 2.2 (2021). doi: 10.1007/s42979-

021-00507-w.

53

https://abusix.com/resources/botnets/a-brief-history-of-bots-and-how-theyve-shaped-the-internet-today/
https://abusix.com/resources/botnets/a-brief-history-of-bots-and-how-theyve-shaped-the-internet-today/
https://doi.org/10.1109/surv.2013.091213.00134
https://doi.org/10.1109/MC.2008.38
https://doi.org/10.1109/CSR51186.2021.9527980
https://doi.org/10.1007/s42979-021-00507-w
https://doi.org/10.1007/s42979-021-00507-w

Bibliography

[19] Truong Dinh Tu, Cheng Guang, and Liang Yi Xin. “Detecting bot-infected ma-

chines based on analyzing the similar periodic DNS queries”. In: 2015 Inter-

national Conference on Communications, Management and Telecommunications

(ComManTel). IEEE. 2015, pp. 35–40.

[20] Rohan Doshi, Noah Apthorpe, and Nick Feamster. “Machine Learning DDoS De-

tection for Consumer Internet of Things Devices”. In: 2018 IEEE Security and

Privacy Workshops (SPW) (2018). doi: 10.1109/spw.2018.00013.

[21] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal

representations by error propagation. Tech. rep. California Univ San Diego La Jolla

Inst for Cognitive Science, 1985.

[22] Phanindra Reddy Kannari, Noorullah C. Shariff, and Rajkumar L. Biradar. “Net-

work intrusion detection using sparse autoencoder with Swish-Prelu Activation

Model”. In: Journal of Ambient Intelligence and Humanized Computing (2021).

doi: 10.1007/s12652-021-03077-0.

[23] Andrew Ng et al. “Sparse autoencoder”. In: CS294A Lecture notes 72.2011 (2011),

pp. 1–19.

[24] Xianxu Hou et al. “Deep feature consistent variational autoencoder”. In: 2017

IEEE Winter Conference on Applications of Computer Vision (WACV). IEEE.

2017, pp. 1133–1141.

[25] Dor Bank, Noam Koenigstein, and Raja Giryes. “Autoencoders”. In: arXiv preprint

arXiv:2003.05991 (2020).

[26] Ren-Hung Hwang, Min-Chun Peng, and Chien-Wei Huang. “Detecting IoT ma-

licious traffic based on autoencoder and convolutional neural network”. In: 2019

IEEE Globecom Workshops (GC Wkshps). IEEE. 2019, pp. 1–6.

[27] Ren-Hung Hwang et al. “An unsupervised deep learning model for early network

traffic anomaly detection”. In: IEEE Access 8 (2020), pp. 30387–30399.

[28] Mohammad A Salahuddin et al. “Time-based anomaly detection using autoen-

coder”. In: 2020 16th International Conference on Network and Service Manage-

ment (CNSM). IEEE. 2020, pp. 1–9.

54

https://doi.org/10.1109/spw.2018.00013
https://doi.org/10.1007/s12652-021-03077-0

Bibliography

[29] Iman Sharafaldin et al. “Developing realistic distributed denial of service (DDoS)

attack dataset and taxonomy”. In: 2019 International Carnahan Conference on

Security Technology (ICCST). IEEE. 2019, pp. 1–8.

[30] Zhaomin Chen et al. “Autoencoder-based network anomaly detection”. In: 2018

Wireless Telecommunications Symposium (WTS). IEEE. 2018, pp. 1–5.

[31] Jinwon An and Sungzoon Cho. “Variational autoencoder based anomaly detection

using reconstruction probability”. In: Special Lecture on IE 2.1 (2015), pp. 1–18.

[32] Iman Sharafaldin., Arash Habibi Lashkari., and Ali A. Ghorbani. “Toward Gener-

ating a New Intrusion Detection Dataset and Intrusion Traffic Characterization”.

In: Proceedings of the 4th International Conference on Information Systems Se-

curity and Privacy - ICISSP, INSTICC. SciTePress, 2018, pp. 108–116. isbn:

978-989-758-282-0. doi: 10.5220/0006639801080116.

[33] B. Claise, B. Trammell, and P. Aitken. Specification of the IP Flow Information

Export (IPFIX) Protocol for the Exchange of Flow Information. STD 77. http:

/ / www . rfc - editor . org / rfc / rfc7011 . txt. RFC Editor, Sept. 2013. url:

http://www.rfc-editor.org/rfc/rfc7011.txt.

[34] Unsub Shafiq and Transfer Learning AutoEncoder Neural Networks for Anomaly

Detection of DDoS Generating IoT Devices. Transfer Learning AutoEncoder Neu-

ral Networks for Anomaly Detection of DDoS Generating IoT Devices. Version 1.0.

Apr. 2022. url: https://github.com/unsubshafiq/autoencoder-transferlearning.

git.

[35] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”.

In: arXiv preprint arXiv:1412.6980 (2014).

https://doi.org/10.5220/0006639801080116
http://www.rfc-editor.org/rfc/rfc7011.txt
http://www.rfc-editor.org/rfc/rfc7011.txt
http://www.rfc-editor.org/rfc/rfc7011.txt
https://github.com/unsubshafiq/autoencoder-transferlearning.git
https://github.com/unsubshafiq/autoencoder-transferlearning.git

	Introduction and Motivation
	Introduction
	Motivation
	Contribution

	Background and Literature Review
	Background
	Distributed Denial of Services - DDoS
	Bots and Botnets
	Internet of Things
	Autoencoders

	Related Work

	Methodology
	Understanding the Datasets
	NBaIoT Dataset
	CIC-IDS2017 Dataset
	Programming Language Libraries

	NBaIoT – Anomaly Detection Transfer Learning
	CIC-IDS2017 – Anomaly Detection

	Results and Discussion
	NBaIoT Dataset - Anomaly Detection and Transfer Learning
	Evaluating Model Accuracy
	Evaluating Model Training Time
	Correlating Static Features with Model Performance

	CIC-IDS2017 Dataset - Anomaly Detection

	Conclusion and Future Work
	Future Work

