
Dynamically Stable and Impact controlled

Humanoid Kick

By

Saifullah 201200561

Supervised By

Dr. Yasar Ayaz

School of Mechanical and Manufacturing Engineering

National University of Sciences and Technology (NUST)

Islamabad, Pakistan

June, 2016

Dynamically Stable and Impact controlled

Humanoid Kick

By

Saifullah 201200561

Supervised By

Dr. Yasar Ayaz

A thesis submitted in partial fulfillment of the requirements for the

degree of Bachelors of Engineering in Mechanical Engineering

School of Mechanical and Manufacturing Engineering

National University of Sciences and Technology (NUST)

Islamabad, Pakistan

National University of Sciences & Technology

FINAL YEAR PROJECT REPORT
We hereby recommend that the dissertation prepared under our

supervision by: Saifullah NUST01200561 Titled: “Dynamically Stable

and Impact controlled Humanoid Kick” be accepted in partial

fulfillment of the requirements for the award of Bachelors of

Engineering in Mechanical Engineering degree with (grade)

English and format checked by Ms Aamna Hassan,

Signature: _________________

Guidance Committee Members

1. Name:

Signature:_________________

2. Name: Signature:_________________

3. Name:

Signature:_________________

Supervisor’s Name: Signature:_________________

 Date:__________________

 Head of Department

Date

COUNTERSIGNED

Date:_______________

Dean/Principal

Declaration

I declare that this project report entitled “Dynamically Stable and Impact

controlled Humanoid Kick”, submitted as a requirement for the award of BE

(ME) degree, does not contain any material previously submitted for a degree

in any university; and that to the best of my knowledge it does not contain

any material previously published or written by another person except where

due reference is made in the text.

Saifullah

NUST201200561

Copyright Statement

1. Copyright in text of this thesis rests with the student author. Copies (by

any process) either in full, or of extracts, may be only in accordance with

the instructions given by author and lodged in the Library of SMME,

NUST. Details may be obtained by the librarian. This page must be part

of any such copies made. Further copies (by any process) of copies made

in accordance with such instructions may not be made without the

permission (in writing) of the author.

2. The ownership of any intellectual property rights which may be

described in this thesis is vested in SMME, NUST, subject to any prior

agreement to the contrary, and may not be made available for use of

third parties without the written permission of SMME, NUST which will

describe the terms and conditions of any such agreement.

3. Further information on the conditions under which disclosure and

exploitation may take place is available from the library of SMME,

NUST, Islamabad.

Acknowledgement

I am very thankful to my Almighty Allah for giving me a lot of courage to

choose such an immense project and for completing it with great dignity and

grace. Lots of people have played a significant role in the completion of this

project.

I am extremely grateful to Mr. Yasar Ayaz and Mr. Fahad Islam for their

valuable suggestions and their support to perform such a valuable research

and implementation work and study in the field of Robotics and Artificial

Intelligence. I truly admire their dedication to my project and for all the help

and guidance that they have offered. A great deal of our project has been

possible because of both of them.

I am very thankful to all of my teachers who had been guiding me throughout

my project work. Their knowledge, guidance and training enables me to carry

out this research work more efficiently.

I would like to thank all my friends, colleagues for fiving me fruitful

suggestions about increasing the efficiency of my project. They are too many

in number that I cannot thank implicitly. God bless them! Ameen.

Saifullah

Abstract

Research in the field of Robotics and Artificial Intelligence has become very

popular, specifically in the area of multi-degree of freedom articulated robots

such as humanoids. These robots are mostly preferred due to their capability

to perform human-like complicated tasks. There are many complex

humanoid dynamic motions that are required in RoboCup robot soccer

competition such as walking, kicking and static and dynamic balancing, but

to execute these tasks, all the environment parameters have to be modelled

and accounted for during the planning phase. This thesis studies the

problems of kick motion generation for the Aldebaran NAO humanoid robot

and for the first time includes the model for dynamic impact control. The

proposed model is made possible by using the principals of effective mass

and applying the momentum conservation theories on the impact.

Furthermore, to provide the stability or balance to the robot during the

motion, zero moment point (ZMP) stability criteria is used with an optimal

controller designed for its implementation. The thesis has been successfully

implemented to create robust and strong kick motions on a real robot and

verified through various experiments. The resulting product is currently

being used as a kick engine for the team-NUST competing in Standard

Platform League (SPL) of the RoboCup 2016 competition.

Table of Contents

Table of Contents .. 8

List of Figures ..12

List of Tables ..14

Chapter 1 .. 15

Introduction... 15

1.1 Background ... 15

1.2 Aims and Objectives ...16

1.3 Thesis Contribution .. 17

1.4 Thesis Outline ...19

Chapter 2 .. 20

Literature Review ... 20

2.1 RoboCup .. 20

2.1.1 Standard Platform League ...21

2.1.2 Team-NUST .. 22

2.2 NAO Humanoid Robot ... 23

2.3 Robot Kinematics .. 24

2.3.1 Kinematic Chain ... 25

2.3.2 Forward Kinematics ... 28

2.3.3 Inverse Kinematics ... 29

2.3.4 Denavit-Hartenberg (DH) Parameters .. 29

2.3.5 Instantaneous Kinematics: ... 31

2.4 Robot Dynamics .. 33

2.4.1 Lagrangian Formulation: ... 34

2.4.2 Newton-Euler Formulation: .. 37

2.4.3 Effective Mass .. 39

2.5 Humanoid Stability ... 40

2.5.1 Static stability ... 40

2.5.2 Dynamic stability ..41

2.6 Collision Models ... 43

2.6.1 Elastic and Inelastic Collisions ... 43

2.6.2 Collision Dimensionality .. 43

2.6.3 Coefficient of Restitution ... 44

Chapter 3 .. 45

Methodology ... 45

3.1 Robot Specifications .. 45

3.2 Kinematic Model ... 52

3.2.1 Head Kinematics: ... 52

3.2.2 Right Arm Kinematics: ... 54

3.2.3 Left Arm Kinematics: ... 55

3.2.4 Right Leg Kinematics: .. 56

3.2.5 Left Leg Kinematics:... 57

3.2.6 Inverse Kinematics Solver .. 59

3.3 Dynamics and Control .. 60

3.3.1 Inertial Parameters: .. 60

3.3.2 Leg Dynamics: .. 63

3.3.3 Virtual Mass Analysis ... 66

3.3.4 Whole Body Dynamics: .. 67

3.3.5 ZMP Controller Design... 70

3.5 C++ Algorithm: ... 73

3.5.1 Motion Planner: .. 73

3.5.2 Ball Dynamics: ... 76

3.5.3 Virtual Mass: .. 78

3.5.4 Impact Consideration: ... 78

3.5.5 Trajectory planner: ... 79

3.5.6 Trajectory Generator: ... 81

3.5.7 Stability Module: .. 82

3.5.8 Execution: .. 83

Chapter 4 .. 84

Code Compilation ... 84

4.1 Working with NaoQi ... 84

4.2 Programming .. 84

4.2.1 Necessary Build Packages ... 84

4.2.2 NaoQi SDK ... 85

4.2.3 Cross Toolchain .. 85

5.2.4 Build and Compilation ... 86

4.2.5 Running the Code ... 87

Chapter 5 .. 88

Results and Discussion ... 88

5.1 Joint Trajectory Output ... 88

5.2 Impact Results .. 90

5.3 Kick Results ... 93

5.4 Stability Results .. 94

5.5 Issues ... 95

Chapter 6 .. 96

Conclusion .. 96

References .. 97

List of Figures

Figure 1.1 Schematic of the kick engine design .. 18

Figure 2.1 2014 RoboCup SPL Pool D: rUNSWift vs HULKs21

Figure 2.2 Field Dimensions from RoboCup Rulebook 2016 22

Figure 2.3 Humanoid NAO .. 23

Figure 2.4 Forward Kinematics of a standard 6 DOF Robot 28

Figure 2.5 DH Parameters defined for the transformation from joint i-1 to i

 .. 30

Figure 2.6 Forces and torques at the end-points and at the center of mass of

a single link are shown ... 38

Figure 2.7 Static Balance .. 40

Figure 2.8 Forces and ZMP Position on Foot ... 42

Figure 2.9 Elastic and Inelastic Collisions ... 43

Figure 2.10 Head on and Oblique Collisions .. 44

Figure 3.1 NAO Robot Joint Arrangement ... 46

Figure 3.2 NAO Link Specifications ... 47

Figure 3.3 Upper Body Joints Description ... 48

Figure 3.4 Lower Body Joints Description ... 49

Figure 3.5 NAO in StandZero Pose... 52

Figure 3.6 Virtual Mass Analysis .. 66

file:///C:/Users/Survive/Desktop/Final%20Thesis.docx%23_Toc454167053
file:///C:/Users/Survive/Desktop/Final%20Thesis.docx%23_Toc454167057
file:///C:/Users/Survive/Desktop/Final%20Thesis.docx%23_Toc454167061

Figure 3.7 Whole Body Dynamics Solution .. 69

Figure 3.8 Inverted Cart-table Model .. 70

Figure 3.9 Preview Control Block Diagram .. 72

Figure 3.10 Schematic of Kick Algorithm integrated with RoboCup Team

Code .. 73

Figure 3.11 Optimum kicking range ... 74

Figure 3.12 Motion planning .. 74

Figure 3.13 Foot Contour .. 75

Figure 3.14 Ball Motion Phases .. 76

Figure 3.15 Impact Analysis ... 79

Figure 5.1 Actual and Desired Joint Trajectories ... 89

Figure 5.2 Experimental Setup for Impact Verification91

Figure 5.3 6-meter kick 60 fps frames just before and after the kick91

Figure 5.4 Actual and Desired Ball Velocity ... 92

Figure 5.5 Measured Distances of the ball ... 93

Figure 5.6 ZMP Movement Throughout the 6-meter kick 94

List of Tables

Table 3.1 Joint Masses and Center of Mass Coordinates 50

Table 3.2 Joint Inertia Matrices .. 51

Table 5.1 SEM between measured and desired ball distances 93

file:///C:/Users/Survive/Desktop/Final%20Thesis.docx%23_Toc454164778

Chapter 1

Introduction

1.1 Background

With the recent advancements in the field of robotics and artificial

intelligence, research in the area of multi-degree of freedom articulated

robots, such as humanoids, has gained immense popularity. Humanoids are

generally getting more attention because of their capabilities to perform the

intricate human-like motions that cannot be performed by other kinds of

robots such as walking up the stairs, opening a valve, kicking a ball, etc. To

make this research more appealing, an organization called “RoboCup

Federation” has introduced a robot soccer competition called “RoboCup”,

which is held every year and welcomes all to demonstrate the newest research

advancements in the field of humanoids in the form of a competition. The

competition organizes various leagues with different rules and environments.

This thesis is focused on the Standard Platform League (SPL), in which

all the teams compete against each other using the standard Aldebaran NAO

humanoid robot. NAO is a mid-sized humanoid which shows a wide range of

capabilities in terms of its task execution. For the purpose of competing in a

SPL, every team has to create an autonomous humanoid team to play a soccer

match in which different skills such as walking, kicking, dribbling, etc. are

required. Almost every team has designed their own motion generation

engines for these complex tasks, and since our team from NUST is taking part

in this year’s competition, there was a need to design a kick engine for our

team.

1.2 Aims and Objectives

The aim of this research is to design a new kick engine for “team-NUST” for

which the kicks used before were based on simple predefined key-frame

motions without any control on the velocity or direction. Kick engines

designed by other teams have allowed the robot to kick the ball at various

speeds and in several directions while allowing the robot to stay dynamically

stable during the entire motion but as of yet, the impact of the kick with the

ball has never been modelled or controlled by any of the teams or research

groups and it has also been a big challenge before to be able to send the ball

at required distances. By modelling the impact, we can not only send the ball

at the required speeds but also gain the ability to maximize its effect and thus

bring out best output from the kick. Further integration of the model with

ball dynamics can shift the dependency of the kick engine input from the

desired foot velocity to desired displacement of the ball and in this way it acts

as a criteria for providing the artificial intelligence to the robot for the

decision making during its kick.

The major improvements that have been made as compared to previous

kick motions used for ROBOCUP team include:

1. Multidirectional kick motions (0 – 30o angle kicks and sidekicks).

2. More powerful (longer distances of ball) and stable kicks.

3. Intelligent trajectory planning which creates continuous and smooth

trajectories in any direction.

4. Controlled impact using the concept of effective mass and momentum

control which can be used to give the desired velocity to the ball after

impact.

5. Addition of ball dynamics and effects of friction for accurate ball

distances.

6. The total time of the kicks have been decreased by 50%

1.3 Thesis Contribution

This thesis provides a complete solution for the generation of dynamically

stable kick motions on the Aldebaran NAO humanoid and provides the

necessary kinematic, dynamic and control analysis required for the execution

of this task while taking into account all the constraints on the robot.

The solution requires the kinematic analysis of the whole humanoid by

dividing it into separate chains (Head, arms and legs). For the motion

planning of the leg chain manipulators, iterative inverse kinematics

algorithms are used and then smooth and continuously differentiable

trajectories are used for trajectory generation. Dynamic analysis is performed

for both legs and the resultant mass matrices are used to find the effective

mass at the final configuration. Using the effective mass in combination with

the momentum conservation principles, the impact situation is controlled.

Finally the ball dynamics and floor friction models are introduced in the

algorithm to cater for the desired ball displacements.

Figure 1.1 Schematic of the kick engine design

To provide the balance to the robot while it is performing the kick, a

zero-moment point (ZMP) based criteria has been used. The criteria requires

the control of the movement of the robot’s ZMP and the implementation of a

preview controller to control it. As a requirement for the preview controller,

the previews of the ZMP movement are determined its projected movement

during the kick trajectory using the whole body dynamics solution.

Furthermore, results through real-time implementation of the

algorithm on the robot and several MATLAB codes used for debugging are

provided and explained for our teams that will be participating in the coming

years. The thesis will also contribute towards the implementation, compiling

and building of the C++ source codes and various problems that arise while

interfacing with NaoQi software on the robot.

1.4 Thesis Outline

Chapter 1 Introduction

This chapter gives the background introduction and describes the objectives

of the research.

Chapter 2 Literature Review

This chapter summarizes all the literature that has been reviewed and

identified that has be relevant to this research.

Chapter 3 Methodology:

This chapter provides the overall scheme and analysis that has been carried

out for this research. The chapter has several sections explaining in detail the

methods and concepts used throughout the research.

Chapter 4 Code Compilation:

This chapter provides a detailed information about the software architecture

and the coding issues. It also lists the necessary steps to be able to

successfully compile our code for execution.

Chapter 5 Results and Discussion

This chapter provides the results from all the experiments that were carried

out to verify our research and discusses the problems that were faced.

Chapter 6 Conclusion

This chapter presents the conclusion of the conducted research along with

future recommendations.

Chapter 2

Literature Review

2.1 RoboCup

The idea of autonomous robot soccer was first mentioned by Professor Alan

Mackworth (University of British Columbia, Canada) in 1992. Later on, a group of

Japanese researchers organized a robotic competition named J-League which by

gaining international attention resulted in the formation of RoboCup Federation,

“RoboCup” for short. The competition has a challenging mission: “By 2050, a team

of fully autonomous humanoid robot soccer players shall win a soccer game against

the winner of the most recent World Cup.” Therefore, the goal of the competition is

provide a publicly appealing platform for the advancement in research on Robotics.

Every year, the competition provides certain challenges related to different modules

(perception, motion, planning, etc.) and expects from the participating teams to give

solutions to those challenges. All the modules of RoboCup (RoboCup@Home,

RoboRescue, etc.) are designed such that the proposed solutions from various teams

can be tested in real-time. So far, the participating teams have made considerable

http://people.cs.ubc.ca/~mack/
http://people.cs.ubc.ca/~mack/
https://en.wiktionary.org/wiki/Autonomy
https://en.wikipedia.org/wiki/Humanoid
https://en.wikipedia.org/wiki/Robot
https://en.wikipedia.org/wiki/Soccer
https://en.wikipedia.org/wiki/Soccer
https://en.wikipedia.org/wiki/FIFA_World_Cup
https://en.wikipedia.org/wiki/RoboCup

progress in solving the real-world problems that show up in the various RoboCup

leagues.

Figure 2.1 2014 RoboCup SPL Pool D: rUNSWift vs HULKs

2.1.1 Standard Platform League

The Standard Platform League (SPL) is one of the major leagues of RoboCup.

In this league all the teams are required to use a standard robot, which is

chosen to be Aldebaran NAO humanoid robot, and the focus of the teams is

only on the algorithm design and software architecture development for this

robot. For this reason, it is prohibited for any team to make any modifications

to the hardware of the robot. During the gameplay, the robots are completely

autonomous and no human intervention from team members is permissible.

The robots interact with the environment through their software and the

reception of any kind of data from the outside world is through the Game

Controller. Game Controller is a computer that broadcasts the information

about the state of the game (time, score, penalties, etc.).

Figure 2.2 Field Dimensions from RoboCup Rulebook 2016

Currently, the field dimensions for the SPL gameplay are 4m×6m

(Figure 2.2). It consists of a green carpet marked with white lines and two

white goals. The ball is a spotted black and white ball similar to a real football.

During the match, each team consists of four robots and each robot carries a

colored waist band (blue or pink) that differentiates the teams. Total time for

the match is 20 minutes with 10 minutes for each half.

2.1.2 Team-NUST

Team-NUST is the RoboCup team of the National University of Sciences and

Technology (NUST). The team was founded in 2014 and is looking forward

to participate in RoboCup ‘16 SPL competition. The team has been

developing its own software for NAO robots since 2014. The software

includes a graphical interface, a perception framework for object recognition

and state estimation, localization, and a behavior execution architecture. This

year’s team consists of four postgraduate students and one undergraduate

student.

2.2 NAO Humanoid Robot

NAO is a medium-sized humanoid robot developed by Aldebaran Robotics in

Paris, France. It officially substituted Sony’s AIBO quadruped robot in the

RoboCup SPL in August 2007.

NAO (version V3.3) is a 58cm, 5kg humanoid

robot. It carries a fully capable on-board computer

with an AMD Geode processor at 500 MHz, 256 MB

SDRAM, and 2 GB flash memory running an

Embedded Linux distribution. Power is provided by a

6-cell Lithium-Ion battery which allows about half an

hour of continuous operation and the communication

of the robot is made possible via IEEE 802.11g

wireless or a wired ethernet link.

NAO has a total of 22 degrees of freedom; 2 in the head, 5 in each arm,

5 in each leg and 1 in the pelvis (the two pelvis joints are joined together on a

single servo motor and cannot move independently). It also consists of a

variety of sensors. Each servo motor is accompanied by a magnetic rotary

Figure 2.3 Humanoid NAO

encoder with an accuracy of ±1o which records the actual values of all joints

and continuously updates it in the robot memory. It has two cameras

mounted on the head in vertical alignment providing the views of the lower

and distant frontal areas. Each camera is a 640×480 resolution device

operating at 30fps. Four sonars (two emitters and two receivers) on the chest

allow NAO to sense obstacles in front of it. One of the most promising is the

inertial unit, with a 3-axis accelerometer and a 2-axis gyroscope in the torso

which can instantaneously provide real-time information about its body. Two

bumpers located at the front of each foot are simple switches and can provide

information about collisions of the feet with obstacles. Last of all, four force

sensitive resistors are provided on each foot to deliver the feedback of the

forces applied on the feet.

2.3 Robot Kinematics

A humanoid is typically defined as a combination of ‘n’ number of articulated

manipulators joined together on a single base link which is usually the main

body or torso of the robot. An articulated manipulator is defined by a

kinematic chain, which is a set of links subsequently joined together by a

certain type of joint of which the final operational point is called an end

effector. Generally, two types of joints are used in articulated manipulators,

prismatic (translational motion) or revolute (rotational motion) while in case

of NAO, only revolute joints will be considered. The number of joints in the

chain defines the number of degrees of freedom (DOF). Depending upon the

DOFs the mobility and redundancy of the chain is described. If an analysis of

the whole robot is required then each of the ‘n’ chains have to be analyzed

separately and then combined at the base link thus the total degrees of

freedom of the robot are equal to the sum of degrees of freedom of the

individual kinematic chains.

The kinematics analysis of the robot means to study and define the

relationship between the movement of the links and the joints for each of the

kinematic chains. In particular, this analysis defines a mapping from the joint

space to the Cartesian space or vice versa. This analysis is not only needed for

the positioning and trajectory planning of the manipulator but also to

construct the mathematical model of the robot.

2.3.1 Kinematic Chain

A kinematic chain with ‘n’ number of joints is defined by a set of ‘n’ frames

subsequently attached to each joint. The relationship between a pair of

frames is defined by the relative rotation or translation of those two frames

with respect to one another, whereas it is modelled in the form of a

transformation matrix. A transformation matrix is defined as a mapping that

transforms points, vectors or frames from one space to another all while

preserving the distance ratios.

 For an n-dimensional space, the matrix defining the transformation

from one frame to another is defined as an (𝑛 + 1) × (𝑛 + 1) matrix of the

form:

𝑇 = [
𝑅 𝐴

[0,0,0] 1
]

 Where 𝑅 is a (n×n) rotation matrix defining the rotation between the

two frames, 𝐴 is a (n×1) translation vector and the last line of 𝑇 contains (n−1)

zeros followed by a 1. For a series of transformations, the transformation

matrices can be multiplied subsequently to get a single resultant

transformation:

T = T3T2T1 = [
𝑅3 𝐴3

[0,0,0] 1
] × [

𝑅2 𝐴2

[0,0,0] 1
] × [

𝑅1 𝐴1

[0,0,0] 1
]

2.3.1.1 Translation:

If we need to translate a frame or a point with respect to a reference frame in

three dimensional space, we can simply define a (4x4) transformation matrix

of the form:

𝐴 = [

1 0
0 1

0 𝑑𝑥

0 𝑑𝑦

0 0
0 0

1 𝑑𝑧

0 1

]

Where dx, dy, and dz define the distance of translation along the x, y, and

z axis respectively. To translate a column vector (p1, p2,..., pn)T along the

distances dx, dy, and dz, the translation matrix is just pre-multiplied by a

vector (p1, p2, ..., pn, 1)T.

[

𝑃1
′

𝑃2
′

𝑃3
′

1

] =[

1 0
0 1

0 𝑑𝑥

0 𝑑𝑦

0 0
0 0

1 𝑑𝑧

0 1

] [

𝑃1

𝑃2

𝑃3

1

]

2.3.1.2 Rotation:

If we need to rotate a frame about a given axis with respect to a reference frame in

any n-dimensional space then a rotation matrix is described as an (n×n) orthogonal

matrix R:

𝑅𝑇 = 𝑅−1 𝑅𝑅𝑇 = 𝑅𝑇𝑅 = 𝐼

In the 3D Cartesian space there are generally three most important

rotations, each of which performs a rotation of θx, θy, θz about the x, y, z axis

respectively, assuming a right-handed coordinate system:

Rx = [
1 0 0
0 𝑐𝑜𝑠θ𝑥 −𝑠𝑖𝑛θ𝑥

0 𝑠𝑖𝑛θ𝑥 𝑐𝑜𝑠θ𝑥

] Ry = [
𝑐𝑜𝑠θ𝑦 0 𝑠𝑖𝑛θ𝑦

0 1 0
𝑠𝑖𝑛θ𝑦 0 𝑐𝑜𝑠θ𝑦

] Rx = [
𝑐𝑜𝑠θ𝑧 −𝑠𝑖𝑛θ𝑧 0

𝑠𝑖𝑛θ𝑧 𝑐𝑜𝑠θ𝑧 0
0 0 1

]

As an example, the rotation matrix that rotates a vector or a frame first

about the x axis, then about the y axis, and then about the z axis will be

defined as following:

𝑅 = R𝑧R𝑦R𝑥

The resultant form of the above matrix will be:

R = [

𝑐𝑜𝑠θ𝑦𝑐𝑜𝑠θ𝑥 −𝑐𝑜𝑠θ𝑥𝑠𝑖𝑛θ𝑧 + 𝑠𝑖𝑛θ𝑥𝑠𝑖𝑛θ𝑦𝑐𝑜𝑠θ𝑧 𝑠𝑖𝑛θ𝑥𝑠𝑖𝑛θ𝑧 + 𝑐𝑜𝑠θ𝑥𝑠𝑖𝑛θ𝑦𝑐𝑜𝑠θ𝑧

𝑐𝑜𝑠θ𝑦𝑠𝑖𝑛θ𝑥 𝑐𝑜𝑠θ𝑥𝑐𝑜𝑠θ𝑧 +𝑠𝑖𝑛θ𝑥𝑠𝑖𝑛θ𝑦𝑠𝑖𝑛θ𝑧 −𝑠𝑖𝑛θ𝑥𝑐𝑜𝑠θ𝑧 + 𝑐𝑜𝑠θ𝑥𝑠𝑖𝑛θ𝑦𝑠𝑖𝑛θ𝑧

−𝑠𝑖𝑛θ𝑦 𝑠𝑖𝑛θ𝑥𝑐𝑜𝑠θ𝑦 𝑐𝑜𝑠θ𝑥𝑐𝑜𝑠θ𝑦

]

Finally, this rotation matrix can be substituted in the transformation matrix:

𝑇 =

[

𝑐𝑜𝑠θ𝑦𝑐𝑜𝑠θ𝑥 −𝑐𝑜𝑠θ𝑥𝑠𝑖𝑛θ𝑧 + 𝑠𝑖𝑛θ𝑥𝑠𝑖𝑛θ𝑦𝑐𝑜𝑠θ𝑧 𝑠𝑖𝑛θ𝑥𝑠𝑖𝑛θ𝑧 + 𝑐𝑜𝑠θ𝑥𝑠𝑖𝑛θ𝑦𝑐𝑜𝑠θ𝑧

𝑐𝑜𝑠θ𝑦𝑠𝑖𝑛θ𝑥 𝑐𝑜𝑠θ𝑥𝑐𝑜𝑠θ𝑧 + 𝑠𝑖𝑛θ𝑥𝑠𝑖𝑛θ𝑦𝑠𝑖𝑛θ𝑧 −𝑠𝑖𝑛θ𝑥𝑐𝑜𝑠θ𝑧 + 𝑐𝑜𝑠θ𝑥𝑠𝑖𝑛θ𝑦𝑠𝑖𝑛θ𝑧

−𝑠𝑖𝑛θ𝑦 𝑠𝑖𝑛θ𝑥𝑐𝑜𝑠θ𝑦 𝑐𝑜𝑠θ𝑥𝑐𝑜𝑠θ𝑦

0
0
0

[0,0,0] 1]

2.3.2 Forward Kinematics

The forward kinematics gives a transformation from the joint space to the 3D

Cartesian space. For a certain kinematic chain with ‘n’ number of joints and

a group of joint values (θ1, θ2,…,θn), the forward kinematics can be used to

find the position (px ,py, pz) and the orientation (ax, ay, az) of the final

operational point or end effector of the kinematic chain in the X-Y-Z -

Cartesian space. Forward kinematics can be solved for any simple or complex

kinematic chain resulting in a closed-form, analytical solution.

Figure 2.4 Forward Kinematics of a standard 6 DOF Robot

2.3.3 Inverse Kinematics

The end effectors of robotic manipulators are usually needed to reach certain

target points or follow predefined trajectories in the 3D Cartesian space. To

do that, a set of suitable values for the joints of the kinematic chain are

needed. More specifically, the inverse kinematics defines a relationship

between position (px, py, pz) and orientation (ax, ay, az) of the end effector in

the three-dimensional space and the joint positions (θ1, θ2,...,θn) in the joint

space of a kinematic chain with ‘n’ joints. The problem with the inverse

kinematics is that it is that a single configuration of the end effector can be

achieved through multiple sets of the joint positions. This lack of uniqueness

in the solution denies the direct transformation of Cartesian configuration

(px, py, pz, ax, ay, az) into joint space configurations (θ1, θ2,...,θn). Therefore the

solution to the inverse kinematics problem can be achieved either through a

numerical, iterative approach or a closed-form analytical method with

certain constraints.

2.3.4 Denavit-Hartenberg (DH) Parameters

Denavit and Hartenberg have introduced a simple and effective method for

investigating the kinematics of a manipulator. They concluded that we can

fully define a relationship between any two coordinate frames attached to

different joints of a manipulator by using only four parameters, known as

Denavit-Hartenberg (DH) parameters: a, α, d, and θ (Figure 2.5)

Figure 2.5 DH Parameters defined for the transformation from joint i-1 to i

To define these parameters, first we need to define the axis of rotation

or translation of the concerned joint. This is taken as the Z axis of the joint

frame. Once the individual joint axis 𝑖 and 𝑖 -1 are determined, a

perpendicular is drawn from the axis 𝑖 -1 to 𝑖. Then we attach the coordinate

frames with Z axes of the frames along the previously defined joint axes and

the X axis of the frame 𝑖 is defined along the perpendicular. Finally, the DH

parameters for the propagation from frame 𝑖 -1 to frame 𝑖 are defined as

following:

1. ai : distance (Zi, Zi+1) along Xi

2. αi : angle (Zi, Zi+1) along Xi

3. di : distance (Xi-1,Xi) along Zi

4. θ i : angle (Xi-1,Xi) about Zi

For the first frame, an initial reference frame is required to define it

while for the last frame, an additional frame is required to which it is

propagated. Finally, the relation between a pair of links is defined on the basis

of a transformation matrix:

𝑇𝑖
𝑖−1 = [

𝑐𝑜𝑠θ𝑖 −𝑠𝑖𝑛θ𝑖 0
𝑠𝑖𝑛θ𝑖𝑐𝑜𝑠α𝑖−1 𝑐𝑜𝑠θ𝑖𝑐𝑜𝑠α𝑖−1 −𝑠𝑖𝑛α𝑖−1

𝑠𝑖𝑛θ𝑖𝑠𝑖𝑛α𝑖−1 𝑐𝑜𝑠θ𝑖𝑠𝑖𝑛α𝑖−1 𝑐𝑜𝑠α𝑖−1

𝑎𝑖−1

−𝑑𝑖𝑠𝑖𝑛α𝑖−1

𝑑𝑖𝑐𝑜𝑠α𝑖−1

[0,0,0] 1

]

In this way, a whole kinematic chain can be defined by choosing

appropriate DH parameters between each link based on the transformation

matrices.

2.3.5 Instantaneous Kinematics:

By this point, we have determined the position of the subsequent link frames

with respect to the base frame but to delve into the dynamic analysis of the

robot, we first need to take into account the motion of each link. As described,

each link is connected by the previous link by a joint. To determine the effect

of instantaneous movement of that joint (rotation for revolute and

translation for prismatic) on the following kinematic chain, we need to define

a relationship that transforms the velocities of the joint movements

(θ̇1, θ̇2, … , θ̇𝑛) in the joint space into the linear and angular velocities

(𝑥̇1, 𝑥̇2, … , 𝑥̇𝑚) of the link in Cartesian space. The required relationship is

defined on the basis of a matrix 𝐽:

𝑑𝑋 = 𝐽𝑑θ 𝑜𝑟 𝑋̇ = 𝐽θ̇

Where 𝐽 is called the Jacobian matrix which is an (𝑚 × 𝑛) matrix defined as,

𝐽 =

(

𝜕𝑥1

𝜕θ1
⋯

𝜕𝑥1

𝜕θ𝑛

⋮ ⋱ ⋮
𝜕𝑥𝑚

𝜕θ1

⋯
𝜕𝑥𝑚

𝜕θ𝑛)

To define the linear and angular velocities (𝑥̇, 𝑦̇, 𝑧̇, wx, wy, wz)of a point

in Cartesian space, we can divide J into two parts; linear Jacobian Jv and

angular Jacobian Jw which are defined as:

𝐽𝑣 =

(

𝜕𝑥

𝜕θ1
⋯

𝜕𝑥

𝜕θ𝑛

𝜕𝑦

𝜕θ1

…
𝜕𝑦

𝜕θ𝑛

𝜕𝑧

𝜕θ1

⋯
𝜕𝑧

𝜕θ𝑛)

 𝐽𝑤 =

(

𝜕𝑎𝑥

𝜕θ1
⋯

𝜕𝑎𝑥

𝜕θ𝑛

𝜕𝑎𝑦

𝜕θ𝑛

…
𝜕𝑎𝑦

𝜕θ𝑛

𝜕𝑎𝑧

𝜕θ𝑛

⋯
𝜕𝑎𝑧

𝜕θ𝑛)

Therefore, to find the total Jacobian, we first need to determine the

Cartesian space position (x, y, z) and orientation (ax, ay, az) of the operational

point in terms of joint space coordinates (θ1, θ2, … , θ𝑛) which is achieved by

the kinematic analysis. Then, by differentiating the parameters with respect

to the joint space parameters as shown above, we can find the linear and

angular Jacobians. Finally the total Jacobian J is given by:

𝐽 = [
𝐽𝑣
𝐽𝑤

]

2.4 Robot Dynamics

In the last section, we saw how to describe the effect of motion of the joints

on the motion of the manipulator chains that make up the robot. In that

section, we did not talk about the effects of the inertial properties, external

forces or the forces arising from the individual joint accelerations or

velocities on the manipulator. In this chapter, we will look more closely at the

effects of dynamics on execution of manipulator trajectories and how the

trajectories are closely followed by applying control principles.

Generally, two approaches are used for obtaining the dynamic model of

a robotic manipulator; Langrangian formulation and Newtom-Euler

Formulation. Both of these methods result in a dynamic equation:

Г = 𝑀(Ө)Ӫ + 𝑉(Ө, Ө̇) + 𝐺(Ө)

Where 𝑀(Ө) is the mass matrix which defines the mass distribution of the

robot for any joint angles configuration (θ1, θ2, … , θ𝑛). 𝑉(Ө, Ө̇) is the term

defining the centrifugal and Coriolis forces. The term 𝐺(Ө) defines the gravity

forces while Г is the vector for resultant joint torques.

The difference between the two methods is that the Langrangian

formulation provides an explicit form for the dynamic equation in terms of

the joint positions, velocities and accelerations while Newton-Euler approach

is solved recursively and directly gives the resultant joint torques. A brief

explanation is provided for both of these approaches below.

2.4.1 Lagrangian Formulation:

This approach is based on the well-known Lagrange equation of motion:

𝑑

𝑑𝑡

𝜕𝐿

𝜕𝑞̇𝑖

 −
𝜕𝐿

𝜕𝑞𝑖

 = Г𝑖

Where L is the ‘lagrangian’ which is defined as the difference of kinetic and

potential energies:

𝐿 = 𝐾. 𝐸 – 𝑃. 𝐸

For the kinetic energy calculation of a serial manipulator with 𝑛 joints,

the kinetic energy of each link is found and then added to find the total. To

find the individual link kinetic energy, its center of mass velocity is needed

with respect to the base frame in terms of joint space coordinates. Thus for

this purpose, we need to find the center of mass linear and angular velocity

jacobians for the transformation. For any link 𝑖 in serial chain a center of

mass vector in its own frame is given by:

𝑃𝑐𝑖 = (𝑐𝑥𝑖, 𝑐𝑦𝑖 , 𝑐𝑧𝑖)
𝑇

A transformation 𝑇𝑖
𝐵𝑎𝑠𝑒is found through the kinematic analysis to

convert the vector from frame 𝑖 to the base frame:

𝑃𝑐𝑖𝐵𝑎𝑠𝑒 = 𝑇𝑖
𝐵𝑎𝑠𝑒𝑃𝑐𝑖

Similarly, the orientation 𝐴𝑖 of the link 𝑖 can be transformed into the

base frame coordinates by:

𝐴𝑖𝐵𝑎𝑠𝑒 = 𝑇𝑖
𝐵𝑎𝑠𝑒𝐴𝑖

Using the center of mass position 𝑃𝑐𝑖𝐵𝑎𝑠𝑒 and orientation 𝐴𝑖𝐵𝑎𝑠𝑒 of the

link 𝑖, the linear and angular jacobian matrices for the center of mass

velocities can be found by:

𝐽𝑣𝑖 = [
𝜕𝑃𝑐𝑖

Ө1

𝜕𝑃𝑐𝑖

Ө2

𝜕𝑃𝑐𝑖

Ө3

 0 … 0]

𝐽𝑤𝑖 = [
𝜕𝐴

𝜕θ1

𝜕𝐴

𝜕θ2

𝜕𝐴

𝜕θ𝑖

 0 … 0]

The kinetic energy of the center of mass of link 𝑖 in Cartesian space (in

matrix form) resulting from the linear and angular motions is defined by the

following equation:

𝐾. 𝐸𝑖(𝑋, 𝑋̇) =
1

2
(𝑚𝑖𝑣𝑐𝑖

𝑇 𝑣𝑐𝑖 + 𝑤𝑐𝑖
𝑇 𝐼𝑐𝑖𝑤𝑐𝑖)

Where 𝑚𝑖 is the mass of the link 𝑖 and 𝐼𝑐𝑖 is its inertia tensor defined at

the center of mass. 𝑣𝑐𝑖 and 𝑤𝑐𝑖 are the center of mass linear and angular

velocities. For the kinetic energy in joint space, following substitutions are

made:

𝑣𝑐𝑖 = 𝐽𝑣𝑖 𝜃̇

𝑤𝑐𝑖 = 𝐽𝑤𝑖 𝜃̇

Thus, 𝐾. 𝐸𝑖(Ө, Ө̇) =
1

2
(𝑚𝑐𝑖𝜃̇

𝑇𝐽𝑣𝑖
𝑇𝐽𝑣𝑖 𝜃̇ + 𝜃̇𝑇𝐽𝑤𝑖

𝑇𝐼𝑐𝑖𝐽𝑤𝑖 𝜃̇)

 𝐾. 𝐸𝑖(Ө, Ө̇) =
1

2
𝜃̇𝑇(𝑚𝑐𝑖𝐽𝑣𝑖

𝑇𝐽𝑣𝑖 + 𝐽𝑤𝑖
𝑇𝐼𝑐𝑖𝐽𝑤𝑖)𝜃̇

Or, 𝐾. 𝐸𝑖(Ө, Ө̇) =
1

2
𝜃̇𝑇𝑀(Ө)𝑖𝜃̇

Where 𝑀(Ө)𝑖 is the generalized inertia matrix for the link 𝑖. The total

kinetic energy can now be written as:

𝐾. 𝐸(Ө, Ө̇) = ∑ 𝐾. 𝐸𝑖
𝑛
𝑖 (Ө, Ө̇) =

1

2
𝜃̇𝑇𝑀(Ө)𝜃̇

The manipulator inertia matrix:

𝑀(Ө) = ∑(𝑚𝑐𝑖𝐽𝑣𝑖
𝑇𝐽𝑣𝑖 + 𝐽𝑤𝑖

𝑇𝐼𝑐𝑖𝐽𝑤𝑖)

𝑛

𝑖

To complete the lagrangian formulation, we also need to find the

potential energy of each link of the manipulator. If hi(Ө) is the height of the

center of mass of link 𝑖 defined by the z-component of 𝑃𝑐𝑖𝐵𝑎𝑠𝑒, then the

potential energy of link 𝑖 is defined as:

𝑃. 𝐸𝑖(Ө) = 𝑚𝑖𝑔ℎ𝑖(Ө)

𝑃. 𝐸(Ө) = ∑ 𝑃. 𝐸𝑖
𝑛
𝑖 (Ө) = ∑ 𝑚𝑖𝑔ℎ𝑖

𝑛
𝑖 (Ө)

Thus, the langrangian is,

𝐿(Ө, Ө̇) =
1

2
𝜃̇𝑇𝑀(Ө)𝜃̇ − 𝑃. 𝐸(Ө)

The lagrangian 𝐿(Ө, Ө̇) is then substituted into the lagrange equation of

motion with joint parameters (θ1, θ2, … , θ𝑛) to find the resultant joint toques.

𝑑

𝑑𝑡

𝜕𝐿(Ө, Ө̇)

𝜕Ө̇𝑖

 −
𝜕𝐿(Ө, Ө̇)

𝜕Ө𝑖
 = Г𝑖

2.4.2 Newton-Euler Formulation:

For the derivation of this method, two fundamental physical relationships are

used, namely, Newton’s Equation and Euler’s Equation:

𝐹 = 𝑚𝑣̇𝑐

𝑁 = 𝐼𝑐𝑤̇ + 𝑤 × 𝐼𝑐. 𝑤

The method is made up of two parts: A forward recursion and a

backward recursion. In the first part, the velocities and accelerations (linear

and angular) are computed for each joint. In case of rotational joints, the

velocities and accelerations for the joint 𝑖+1 are given by:

𝑤𝑖+1
𝑖+1 = 𝑅𝑖

𝑖+1 . 𝑤𝑖
𝑖 + Ө̇𝑖+1. 𝑍𝑖+1

𝑖+1

𝑤̇𝑖+1
𝑖+1 = 𝑅𝑖

𝑖+1 . 𝑤̇𝑖
𝑖 + 𝑅𝑖

𝑖+1 . w𝑖
𝑖 × Ө̇𝑖+1. 𝑍𝑖+1

𝑖+1 + Ӫ𝑖+1. 𝑍𝑖+1
𝑖+1

The linear accelerations,

𝑣̇𝑖+1
𝑖+1 = 𝑅(𝑖

𝑖+1 𝑤̇𝑖
𝑖 × 𝑃𝑖+1

𝑖 + w𝑖
𝑖 × (w𝑖

𝑖 × 𝑃𝑖+1
𝑖) + 𝑣̇𝑖

𝑖)

It is necessary to find the accelerations of the center of masses of each

link which is given by:

𝑣̇ 𝑖
𝑖

𝑐 = 𝑤̇𝑖
𝑖 × 𝑃𝑖

𝑖
𝑐 + w𝑖

𝑖 × (w𝑖
𝑖 × 𝑃𝑖

𝑖
𝑐) + 𝑣̇𝑖

𝑖

The next step is to find forces and moments being applied at the center

of mass of each link from the accelerations and velocities being produced.

𝐹𝑖
𝑖 = 𝑚𝑖 . 𝑣̇ 𝑖

𝑖
𝑐

𝑁 = 𝐼𝑖
𝑖

𝑐. 𝑤̇𝑖
𝑖 + 𝑤𝑖

𝑖 × 𝐼𝑖
𝑖

𝑐. 𝑤𝑖
𝑖

Finally, the backward recursion is applied for finding the forces and

moments on the joints of the robot

𝑓𝑖
𝑖 = 𝑅𝑖+1

𝑖 . 𝑓𝑖+1
𝑖+1 + 𝐹𝑖

𝑖

𝑛𝑖
𝑖 = 𝑁𝑖

𝑖 + Ri+1
i . ni+1

i+1 + 𝑃𝑖
𝑖

𝑐 × 𝐹𝑖
𝑖 + Pi+1

i × Ri+1
i . 𝑓𝑖+1

𝑖+1

Finally, the values of Г𝑖 are computed as Г𝑖 = 𝑛𝑖
𝑖 𝑇. 𝑍𝑖

𝑖 .

Figure 2.6 Forces and torques at the end-points and at the center of mass of

a single link are shown

2.4.3 Effective Mass

For the analysis of inertial properties of the articulated robot manipulators,

two types of tasks are generally studied; operational point translational task

and operational point rotational tasks. Given the manipulator redundancy

with respect to the required task, the dynamic behaviour of the operational

point end-effect can be described in the form of a matrix:

𝑀(Ө)𝑜𝑝 = 𝐽−𝑇(Ө) 𝑀(Ө) 𝐽−1(Ө)

Where 𝑀(Ө)𝑜𝑝 is the operational space kinetic energy matrix with the

kinetic energy defined by ‘
1

2
𝑥̇𝑇𝑀(Ө)𝑜𝑝𝑥̇’.

Let us consider a task of positioning an end-effector with only its linear

velocity under consideration. The Jacobian in this case is the matrix

𝐽(Ө)𝑣 associated with the linear velocity at the operational point. The inverse

of 𝑀(Ө)𝑜𝑝 is then defined by:

𝑀(Ө)−1
𝑜𝑝 = 𝐽𝑣(Ө) 𝑀(Ө)−1 𝐽𝑣(Ө)𝑇

The matrix 𝑀(Ө)−1
𝑜𝑝 is called the pseudo kinetic energy matrix and

provides a description of the end-effector translational response to a force.

For instance, if the response of the end-effector is considered along the

direction specified by a unit vector 𝒖, the response is perceived as:

1

𝑚𝑒𝑓𝑓

= 𝒖𝑇𝑀(Ө)−1
𝑜𝑝𝒖

Where, the term 𝑚𝑒𝑓𝑓 is the effective mass of the operational point in

the direction 𝒖 while its inverse represents the component of linear

acceleration which results in response to a unit force applied along 𝒖.

2.5 Humanoid Stability

Unlike most of the articulated robots with a fixed base, a humanoid is self-

contained and thus it has no support by any means. The robot needs to

maintain its balance while performing complicated tasks and therefore it

requires some kind of criteria on the basis of which we can define its stability.

The stability of a body is generally defined in two types:

1. Static stability

2. Dynamic stability

2.5.1 Static stability

Static stability of a body is usually defined on the basis

of the position of the center of mass (COM) of the body

with respect to the body’s support polygon. The support

polygon is an area defined by the contact points of the

body with the ground. For example, a robot standing on

one feet as shown in Figure 2.7, the support polygon will

be defined as contour of the footprint on the ground.

Finally, when a body is under static equilibrium such

that there is no acceleration at the center of mass

(COM), the body remains in balance as long as the COM

is positioned inside the support polygon.

Figure 2.7 Static Balance

2.5.2 Dynamic stability

To perform complicated human-like motions, a humanoid is sometimes

needed to be in acceleration. In such cases, the dynamic counter part of the

center of mass, namely, zero moment point (ZMP) is used to define the

stability.

Zero Moment Point:

The ZMP is a point where the total torque acting on the body is zero. The

position of the ZMP can be defined by a point in Cartesian space (X, Y, Z).

Since we are only interested in the positioning of ZMP in the support polygon

on the ground plane, let us assume that Z = 0. To facilitate the analysis, let us

consider the foot of a robot (Figure2.8) under the action of a force FA and

moment MA. While, the weight of the foot acts at the center of gravity (G).

The foot is also experiencing the ground reaction at P, which is keeping the

whole body under equilibrium.

By analysing the situation, we can see that the ground reaction has three

components of the force R (Rx, Ry, Rz) and moment M (Mx, My and Mz). For

the foot to be at rest, the components of the force FA and moment MA (MAz)

that act in the horizontal plane will be balanced by the frictional forces. This

friction is represented by the horizontal reaction forces (Rx, Ry) and the

vertical reaction moment (Mz). Thus, with the assumption that the foot-floor

contact is not undergoing sliding motion, the friction components (Rx, RY,

MAZ) will cancel out the horizontal force components (FAx, Ay) and the vertical

torque component (MAz). Therefore, only the vertical component Rz of the

reaction force is left to balance the vertical forces and the moments acting

along the horizontal axis (MAx, MAy). As the force is in upward direction, the

moments can be balanced out by changing the position of the reaction force

component RZ within the support polygon. However, if the support polygon

is not large enough to compensate for the acting moments on the body, the

position of the reaction force component will move towards the edge of the

foot and the part of the moment (MAx, MAy) which is left unbalanced will

overturn the body about the edge of the foot. Therefore, it can be said that the

necessary condition for the body to stay in dynamic stability is that the total

moment acting at the point P on the ground is zero, that is,

𝑀𝑥 = 0, 𝑀𝑦 = 0

Thus this point with zero moments in both directions is the zero

moment point (ZMP). With the origin of the coordinate system placed at

point P, the necessary conditions for finding out the ZMP are then defined

by:

𝑅 + 𝐹𝐴 + 𝑚𝑓𝑜𝑜𝑡𝑔 = 0 𝑂𝑃 × 𝑅 + 𝑂𝐺 × 𝑚𝑓𝑜𝑜𝑡𝑔 + 𝑀𝐴 + 𝑂𝐴 × 𝐹𝐴 = 0

Figure 2.8 Forces and ZMP Position on Foot

2.6 Collision Models

An event in which two or more bodies exert forces on each other for relatively

small time is called collision. In collisions, momentum is always conserved

but kinetic energy may or may not be conserved.

2.6.1 Elastic and Inelastic Collisions

There are two different types of collision, elastic in which they conserve both

kinetic energy and momentum while inelastic collision is when they conserve

momentum but no kinetic energy. Inelastic collision is also sometimes

referred as plastic collision.

Figure 2.9 Elastic and Inelastic Collisions

2.6.2 Collision Dimensionality

There can be different types of collisions between two bodies. A Head on

collisions also known as one-dimensional collisions is the one in which the

velocity of each body is along the line of impact before the impact. Other type

is non-head on collisions, oblique collisions or two-dimensional collisions in

which the velocity of each body is not along the line of impact before the

impact.

(a) Oblique Collision (b) Head-on Collision

Figure 2.10 Head on and Oblique Collisions

2.6.3 Coefficient of Restitution

The amount to which a collision is elastic or inelastic is defined by the

coefficient of restitution. This value ranges between zero and one. A perfectly

elastic collision has a coefficient of restitution of one and a perfectly inelastic

collision has a coefficient of restitution of zero.

Chapter 3

Methodology

3.1 Robot Specifications

The version of the robot we worked on is NAO H25 with 23 DOFs. The robot

has two DOFs in the head, five DOFs in each arm, five DOFs in each leg, and

one DOF in the pelvis, which is shared between the two legs. The five

kinematic chains and their joints are the following:

1. Head: HeadYaw, HeadPitch

2. Left Arm: LShoulderPitch, LShoulderRoll, LElbowYaw, LElbowRoll,

LWristYaw

3. Right Arm: RShoulderPitch, RShoulderRoll, RElbowYaw, RElbowRoll,

LWristYaw

4. Left Leg: LHipYawPitch, LHipRoll, LHipPitch, LKneePitch,

LAnklePitch, LAnkleRoll

5. Right Leg:RHipYawPitch, RHipRoll, RHipPitch, RKneePitch,

RAnklePitch, RAnkleRoll

The joints LHipYawPitch and RHipYawPitch are just different names for the

shared (common) joint (HipYawPitch) between the two legs. Figure 3.1 shows

the whole body joint arrangement.

To fully specify the joints of the robot, we have provided the links lengths

(Table 3.2), the operational range in degrees of the upper body (Figure 3.3)

and lower body joints (Figure 3.4), the mass and center of mass (Table 3.1)

and the intertial properties (Table 3.2) of each joint. All these values have

been taken from the NaoQi 2-1 Documentation provided by Aldebaran

Robotics.

Figure 3.1 NAO Robot Joint Arrangement

Figure 3.2 NAO Link Specifications

 (a) Head (b) Torso

(c) Right Arm (d) Left Arm

Figure 3.3 Upper Body Joints Description

(a) Left Leg

(b) Right Leg

Figure 3.4 Lower Body Joints Description

Mass properties for NAO H25

Frame of Reference Mass (kg) COMx (m) COMy (m) COMz (m)

Torso 1.0496 -0.00413 0 0.04342

HeadYaw 0.07842 -1e-5 0 -0.02742

HeadPitch 0.60533 -0.00112 0 0.05258

RShoulderPitch 0.09304 -0.00165 0.02663 0.00014

RShoulderRoll 0.15777 0.02455 -0.00563 0.0033

RElbowYaw 0.06483 -0.02744 0 -0.00014

RElbowRoll 0.07761 0.02556 -0.00281 0.00076

RWristYaw 0.18533 0.03434 0.00088 0.00308

LShoulderPitch 0.09304 -0.00165 -0.02663 0.00014

LShoulderRoll 0.15777 0.02455 0.00563 0.0033

LElbowYaw 0.06483 -0.02744 0 -0.00014

LElbowRoll 0.007761 0.02556 0.00281 0.00076

LWristYaw 0.18533 0.03434 -0.00088 0.00308

RHipYawPitch 0.06981 -0.00781 0.01114 0.02661

RHipRoll 0.14053 -0.01549 -0.00029 -0.00515

RHipPitch 0.38968 0.00138 -0.00221 -0.05373

RKneePitch 0.30142 0.00453 -0.00225 -0.04936

RAnklePitch 0.13416 0.00045 -0.00029 0.00685

RAnkleRoll 0.17184 0.02542 -0.0033 -0.03239

LHipYawPitch 0.06981 -0.00781 -0.01114 0.02661

LHipRoll 0.14053 -0.01549 0.00029 -0.00515

LHipPitch 0.38968 0.00138 0.00221 -0.05373

LKneePitch 0.30142 0.00453 0.00225 -0.04936

LAnklePitch 0.13416 0.00045 0.00029 0.00685

LAnkleRoll 0.17184 0.02542 0.0033 -0.03239

Table 3.1 Joint Masses and Center of Mass Coordinates

Inertial matrix properties for NAO H25

Frame of Reference Ixx Iyy Izz Ixy Ixz Iyz

Torso 0.00506 0.00488 0.00161 1.43e-5 0.00015 -2.7e-5

HeadYaw 7.49e-5 7.59e-5 5.53e-6 1.57e-9 -1.83e-8 -5.29e-8

HeadPitch 0.00263 0.00249 0.000985 8.78e-6 4.09e-5 -2.99e-5

RShoulderPitch 8.428e-5 1.4155e-5 8.64e-5 2.028e-6 2.338e-8 1.971e-8

RShoulderRoll 0.00011 0.000367 0.000354 7.66e-5 -2.6e-5 1.209e-5

RElbowYaw 5.597e-6 7.54e-5 7.64e-5 4.209e-9 4.318e-8 -1.84e-9

RElbowRoll 2.539e-5 8.922e-5 8.72e-5 2.33e-6 -6.011e-7 2.69e-8

RWristYaw 7.05e-5 0.000356 0.000351 5.715e-6 -2.247e-5 3.177e-6

LShoulderPitch 8.428e-5 1.4155e-5 8.64e-5 -2.028e-6 2.338e-8 -1.971e-8

LShoulderRoll 9.389e-5 0.0003715 0.000341 -4.714e-5 -2.699e-5 -2.4599e-5

LElbowYaw 5.597e-6 7.54e-5 7.64e-5 4.209e-9 4.318e-8 -1.84e-9

LElbowRoll 2.5332e-5 8.913e-5 8.7287e-5 2.342e-6 7.458e-8 2.654e-8

LWristYaw 7.05e-5 0.000356 0.000351 5.715e-6 -2.247e-5 3.177e-6

RHipYawPitch 8.99e-5 0.0001055 6.6887e- 5.002e-6 1.273e-5 -2.77e-5

RHipRoll 2.7586e-5 9.826e-5 8.8103e-5 -1.919e-8 -4.108e-6 2.5099e-9

RHipPitch 0.001637 0.001592 0.000303 -8.395e-7 8.588e-5 -3.917e-5

RKneePitch 0.00118 0.001128 0.000191 -8.965e-7 2.799e-5 -3.84e-5

RAnklePitch 3.85e-5 7.43e-5 5.491e-5 6.433e-8 3.87e-6 -4.57e-9

RAnkleRoll 0.000269 0.0006434 0.000525 5.875e-6 0.000139 -1.884e-5

LHipYawPitch 8.15e-5 0.0001013 6.2623e- -4.99e-6 1.2748e-5 2.345e-5

LHipRoll 2.7586e-5 9.826e-5 8.8099e- -2.23e-8 -4.081e-6 -4.189e-9

LHipPitch 0.00163 0.00159 0.000303 9245e-7 8.53e-5 3.836e-5

LKneePitch 0.00118 0.001128 0.000191 6.336e-7 3.64e-5 -3.94e-5

LAnklePitch 3.85e-5 7.42e-5 5.486e-5 -2.634e-8 3.86e-6 1.833e-9

LAnkleRoll 0.000269 0.000644 0.000525 -5.69e-6 0.0001393 1.874e-5

Table 3.2 Joint Inertia Matrices

3.2 Kinematic Model

The kinematic model of the robot is based on the five kinematic chains as

described in section 3.1. As we need to solve the model both for dynamic

stability and for kick motion generation, the center of mass positioning for

each link becomes necessary. Therefore, we will consider the center of masses

of each link to be the end effector while solving the kinematic chain. For all

the kinematics calculations, the base pose is the ‘StandZero’ pose in which all

the angles of NAO are at zero degrees and the base frame is the X-Y-Z

coordinate frame called the ‘TorsoFrame’ as shown in Figure 3.5.

Figure 3.5 NAO in StandZero Pose

3.2.1 Head Kinematics:

The head is the simplest kinematic chain of the robot with only two joints;

HeadPitch and HeadYaw. Keeping our base frame at the center of the NAO

torso where the “TorsoFrame" is defined, the kinematic chain for the head

joints can be constructed in the form of Denavit-Hartenberg parameters as

explained in the previous chapter. The DH parameters for the head chain are

defined as follows:

The resulting transformation matrices can then be used to find out the frame

of end effector (Center of mass frames) in terms of the torso frame as

following:

𝑇1COM
Base = 𝑇0

Base𝑇1
0𝑇1COM

1 = 𝑇0
Base𝑇1

0𝐴(𝐻𝑌𝐶𝑋,𝐻𝑌𝐶𝑌,𝐻𝑌𝐶𝑍)

𝑇2COM
Base = 𝑇0

Base𝑇1
0𝑇2

1𝑅𝑥(
𝜋

2
) 𝐴(𝐻𝑃𝐶𝑋,𝐻𝑃𝐶𝑌,𝐻𝑃𝐶𝑍)

Where 𝑇1
0 and 𝑇2

1 are the transformation matrices of the joints (HeadYaw,

HeadPitch). The terms 𝐴(𝐻𝑌𝐶𝑋,𝐻𝑌𝐶𝑌,𝐻𝑌𝐶𝑍) and 𝐴(𝐻𝑃𝐶𝑋,𝐻𝑃𝐶𝑌,𝐻𝑃𝐶𝑍) are the

translation matrices defining the translation of the joint frame towards the

center of mass based on the center of mass position vectors HY and HP.

Frame (𝑇𝑖
𝑖−1) ai-1 αi-1 𝐝i Өi

HeadBasetoTorso (𝑇0
𝐵𝑎𝑠𝑒) 0 0 NeckOffsetZ 0

HeadYawtoBase (𝑇1
0) 0 0 0 Ө1

HeadYawCOM (𝑇1𝐶𝑂𝑀
1) 𝐴(𝐻𝑌𝐶𝑋,𝐻𝑌𝐶𝑌,𝐻𝑌𝐶𝑍)

HeadPitchtoYaw (𝑇2
1) 0 −

𝜋

2
 0 Ө2

HeadPitchCOM (𝑇2𝐶𝑂𝑀
2) 𝑅𝑥(

𝜋

2
) 𝐴(𝐻𝑃𝐶𝑋,𝐻𝑃𝐶𝑌,𝐻𝑃𝐶𝑍)

3.2.2 Right Arm Kinematics:

The right arm chain consists of 5 joints therefore we need five sets of DH

parameters to construct the whole kinematic chain. To define the chain

starting from the torso frame, we first define the translation from the torso

to the base of the right shoulder in terms of a translation matrix in the y and

z directions. From the base towards the wrist we make following DH

parameters to define the kinematic chain:

Similar to the case in head chain, the right arm chains are then constructed

for finding the center of mass frames in terms of the torso frames:

Frame (𝑇𝑖
𝑖−1) ai-1 αi-1 di Өi

ArmBasetoTorso (𝑇0
𝐵𝑎𝑠𝑒) A(0,-ShoulderOffsetY,ShoulderOffsetZ)

RSPtoBase (𝑇1
0) 0 −

𝜋

2
 0 Ө1

RSPCOM (𝑇1𝐶𝑂𝑀
1) 𝑅𝑥(

𝜋

2
) 𝐴(𝑅𝑆𝑃𝐶𝑋,𝑅𝑆𝑃𝐶𝑌,𝑅𝑆𝑃𝐶𝑍)

RSRtoRSP (𝑇2
1) 0 +

𝜋

2
 0 Ө2 +

𝜋

2

RSRCOM (𝑇2𝐶𝑂𝑀
2) 𝑅𝑧(−

𝜋

2
) 𝐴(𝑅𝑆𝑅𝐶𝑋,𝑅𝑆𝑅𝐶𝑌,𝑅𝑆𝑅𝐶𝑍)

REYtoRSR (𝑇3
2) -ElbowOffsetY +

𝜋

2

UpperArmLength Ө3

REYCOM(𝑇3𝐶𝑂𝑀
3) 𝑅𝑦(−

𝜋

2
) 𝑅𝑥(−

𝜋

2
) 𝐴(𝑅𝐸𝑌𝐶𝑋,𝑅𝐸𝑌𝐶𝑌,𝑅𝐸𝑌𝐶𝑍)

RERtoREY (𝑇4
3) 0 −

𝜋

2

0 Ө4

RERCOM(𝑇4𝐶𝑂𝑀
4) 𝑅𝑍(−

𝜋

2
)𝐴(𝑅𝐸𝑅𝐶𝑋,𝑅𝐸𝑅𝐶𝑌,𝑅𝐸𝑅𝐶𝑍)

RWYtoRER (𝑇5
4) 𝑅𝑍 (−

𝜋

2
) 𝐴(𝐿𝑜𝑤𝑒𝑟𝐴𝑟𝑚𝐿𝑒𝑛𝑔𝑡ℎ,0,0)

𝑇1COM
Base = 𝑇0

Base𝑇1
0𝑇1COM

1 𝑇2COM
Base = 𝑇0

Base𝑇1
0𝑇2

1𝑇2COM
2

𝑇3COM
Base = 𝑇0

Base𝑇1
0𝑇2

1𝑇3
2𝑇3COM

3 𝑇4COM
Base = 𝑇0

Base𝑇1
0𝑇2

1𝑇3
2𝑇4

3𝑇4COM
4

𝑇5COM
Base = 𝑇0

Base𝑇1
0𝑇2

1𝑇3
2𝑇4

3𝑇5
4𝐴(𝑅𝑊𝑌𝐶𝑋,𝑅𝑊𝑌𝐶𝑌,𝑅𝑊𝑌𝐶𝑍)

3.2.3 Left Arm Kinematics:

The left arm chain is nearly identical to the right arm chain with the joints

LShoulderPitch, LShoulderRoll, LElbowYaw, LElbowRoll and LWristYaw.

The base frame is again defined at the torso frame and we first define a

translation from the torso to the base of the left shoulder in terms of a

translation matrix. From the base of the left arm towards the wrist the

following DH parameters are used to define the kinematic chain:

Frame (𝑇𝑖
𝑖−1) ai-1 αi-1 𝐝i Өi

ArmBasetoTorso (𝑇0
𝐵𝑎𝑠𝑒) A(0,ShoulderOffsetY,ShoulderOffsetZ)

LSPtoBase (𝑇1
0) 0 −

𝜋

2
 0 Ө1

LSPCOM (𝑇1𝐶𝑂𝑀
1) 𝑅𝑥(

𝜋

2
) 𝐴(𝐿𝑆𝑃𝐶𝑋,𝐿𝑆𝑃𝐶𝑌,𝐿𝑆𝑃𝐶𝑍)

LSRtoLSP (𝑇2
1) 0 +

𝜋

2
 0 Ө2 +

𝜋

2

LSRCOM (𝑇2𝐶𝑂𝑀
2) 𝑅𝑧(−

𝜋

2
) 𝐴(𝐿𝑆𝑅𝐶𝑋,𝐿𝑆𝑅𝐶𝑌,𝐿𝑆𝑅𝐶𝑍)

LEYtoLSR (𝑇3
2) ElbowOffsetY +

𝜋

2

UpperArmLength Ө3

LEYCOM(𝑇3𝐶𝑂𝑀
3) 𝑅𝑦(−

𝜋

2
) 𝑅𝑥(−

𝜋

2
) 𝐴(𝐿𝐸𝑌𝐶𝑋,𝐿𝐸𝑌𝐶𝑌,𝐿𝐸𝑌𝐶𝑍)

LERtoLEY (𝑇4
3) 0 −

𝜋

2

0 Ө4

The center of masses of each link are then defined by the following recursive

transformations:

𝑇1COM
Base = 𝑇0

Base𝑇1
0𝑇1COM

1 𝑇2COM
Base = 𝑇0

Base𝑇1
0𝑇2

1𝑇2COM
2

𝑇3COM
Base = 𝑇0

Base𝑇1
0𝑇2

1𝑇3
2𝑇3COM

3 𝑇4COM
Base = 𝑇0

Base𝑇1
0𝑇2

1𝑇3
2𝑇4

3𝑇4COM
4

𝑇5COM
Base = 𝑇0

Base𝑇1
0𝑇2

1𝑇3
2𝑇4

3𝑇5
4𝐴(𝑅𝑊𝑌𝐶𝑋,𝑅𝑊𝑌𝐶𝑌,𝑅𝑊𝑌𝐶𝑍)

3.2.4 Right Leg Kinematics:

The kinematic chain for the right leg is the longest chain in the robot and has

six joints. The DH parameters for the right leg joints are given below:

LERCOM(𝑇4𝐶𝑂𝑀
4) 𝑅𝑍(−

𝜋

2
)𝐴(𝐿𝐸𝑅𝐶𝑋,𝐿𝐸𝑅𝐶𝑌,𝐿𝐸𝑅𝐶𝑍)

LWYtoLER (𝑇5
4) 𝑅𝑍 (−

𝜋

2
) 𝐴(𝐿𝑜𝑤𝑒𝑟𝐴𝑟𝑚𝐿𝑒𝑛𝑔𝑡ℎ,0,0)

Frame (𝑇𝑖
𝑖−1) ai-1 αi-1 di Өi

RLegBasetoTorso (𝑇0
𝐵𝑎𝑠𝑒) A(0,-HipOffsetY,-HipOffsetZ)

RHYPtoBase (𝑇1
0) 0 −

𝜋

4
 0 Ө1 −

𝜋

2

RHYPCOM (𝑇1𝐶𝑂𝑀
1) 𝑅𝑦(

𝜋

4
)𝑅𝑧(−

𝜋

2
) 𝐴(𝑅𝑆𝑃𝐶𝑋,𝑅𝑆𝑃𝐶𝑌,𝑅𝑆𝑃𝐶𝑍)

RHRtoRHYP (𝑇2
1) 0 −

𝜋

2
 0 Ө2 -

𝜋

4

RHRCOM (𝑇2𝐶𝑂𝑀
2) 𝑅𝑦(

𝜋

2
) 𝑅𝑧(𝜋)𝐴(𝑅𝑆𝑅𝐶𝑋,𝑅𝑆𝑅𝐶𝑌,𝑅𝑆𝑅𝐶𝑍)

RHPtoRHR (𝑇3
2) 0 +

𝜋

2

0 Ө3 + 𝜋

RHPCOM(𝑇3𝐶𝑂𝑀
3) 𝑅𝑦(−

𝜋

2
) 𝑅𝑧(−

𝜋

2
) 𝐴(𝑅𝐸𝑌𝐶𝑋,𝑅𝐸𝑌𝐶𝑌,𝑅𝐸𝑌𝐶𝑍)

RKPtoRHP (𝑇4
3) ThighLength 0 0 Ө4

The kinematic chains for each center of mass frame with respect to the torso

frame is then found out by recursively multiplying the transformations

defined above:

𝑇1COM
Base = 𝑇0

Base𝑇1
0𝑇1COM

1 𝑇2COM
Base = 𝑇0

Base𝑇1
0𝑇2

1𝑇2COM
2

𝑇3COM
Base = 𝑇0

Base𝑇1
0𝑇2

1𝑇3
2𝑇3COM

3 𝑇4COM
Base = 𝑇0

Base𝑇1
0𝑇2

1𝑇3
2𝑇4

3𝑇4COM
4

𝑇5COM
Base = 𝑇0

Base𝑇1
0𝑇2

1𝑇3
2𝑇4

3𝑇5
4𝑇5COM

5 𝑇6COM
Base = 𝑇0

Base𝑇1
0𝑇2

1𝑇3
2𝑇4

3𝑇5
4𝑇6

5𝑇6COM
6

3.2.5 Left Leg Kinematics:

Identical to the right leg, the left leg parameters are defined as:

RKPCOM(𝑇4𝐶𝑂𝑀
4) 𝑅𝑦(−

𝜋

2
) 𝑅𝑧(−

𝜋

2
)𝐴(𝑅𝐸𝑅𝐶𝑋,𝑅𝐸𝑅𝐶𝑌,𝑅𝐸𝑅𝐶𝑍)

RAPtoRKP (𝑇5
4) TibiaLength 0 0 Ө5

RAPCOM (𝑇5𝐶𝑂𝑀
5) 𝑅𝑦(−

𝜋

2
) 𝑅𝑧(−

𝜋

2
)𝐴(𝑅𝐴𝑃𝐶𝑋,𝑅𝐴𝑃𝐶𝑌,𝑅𝐴𝑃𝐶𝑍)

RARtoRAP (𝑇6
5) 0 +

𝜋

2

0 Ө6

RARCOM (𝑇6𝐶𝑂𝑀
6) 𝑅𝑦(−

𝜋

2
) 𝐴(𝑅𝐴𝑅𝐶𝑋,𝑅𝐴𝑅𝐶𝑌,𝑅𝐴𝑅𝐶𝑍)

Frame (𝑇𝑖
𝑖−1) ai-1 αi-1 di Өi

LLegBasetoTorso (𝑇0
𝐵𝑎𝑠𝑒) A(0,HipOffsetY,-HipOffsetZ)

LHYPtoBase (𝑇1
0) 0 𝜋

4
 0 Ө1 +

𝜋

2

LHYPCOM (𝑇1𝐶𝑂𝑀
1) 𝑅𝑦(

𝜋

4
)𝑅𝑧(−

𝜋

2
) 𝐴(𝐿𝑆𝑃𝐶𝑋,𝐿𝑆𝑃𝐶𝑌,𝐿𝑆𝑃𝐶𝑍)

LHRtoLHYP (𝑇2
1) 0 𝜋

2
 0 Ө2 +

𝜋

4

LHRCOM (𝑇2𝐶𝑂𝑀
2) 𝑅𝑦(

𝜋

2
) 𝑅𝑧(𝜋)𝐴(𝐿𝑆𝑅𝐶𝑋,𝐿𝑆𝑅𝐶𝑌,𝐿𝑆𝑅𝐶𝑍)

Similar to other cases, the center of mass for each link is then defined in terms

of the torso frame as following:

𝑇1COM
Base = 𝑇0

Base𝑇1
0𝑇1COM

1 𝑇2COM
Base = 𝑇0

Base𝑇1
0𝑇2

1𝑇2COM
2

𝑇3COM
Base = 𝑇0

Base𝑇1
0𝑇2

1𝑇3
2𝑇3COM

3 𝑇4COM
Base = 𝑇0

Base𝑇1
0𝑇2

1𝑇3
2𝑇4

3𝑇4COM
4

𝑇5COM
Base = 𝑇0

Base𝑇1
0𝑇2

1𝑇3
2𝑇4

3𝑇5
4𝑇5COM

5 𝑇6COM
Base = 𝑇0

Base𝑇1
0𝑇2

1𝑇3
2𝑇4

3𝑇5
4𝑇6

5𝑇6COM
6

LHPtoLHR (𝑇3
2) 0 +

𝜋

2

0 Ө3 + 𝜋

LHPCOM(𝑇3𝐶𝑂𝑀
3) 𝑅𝑦(−

𝜋

2
) 𝑅𝑧(−

𝜋

2
) 𝐴(𝐿𝐸𝑌𝐶𝑋,𝐿𝐸𝑌𝐶𝑌,𝐿𝐸𝑌𝐶𝑍)

LKPtoLHP (𝑇4
3) ThighLength 0 0 Ө4

LKPCOM(𝑇4𝐶𝑂𝑀
4) 𝑅𝑦(−

𝜋

2
) 𝑅𝑧(−

𝜋

2
)𝐴(𝐿𝐸𝑅𝐶𝑋,𝐿𝐸𝑅𝐶𝑌,𝐿𝐸𝑅𝐶𝑍)

LAPtoLKP (𝑇5
4) TibiaLength 0 0 Ө5

LAPCOM (𝑇5𝐶𝑂𝑀
5) 𝑅𝑦(−

𝜋

2
) 𝑅𝑧(−

𝜋

2
)𝐴(𝐿𝐴𝑃𝐶𝑋,𝐿𝐴𝑃𝐶𝑌,𝐿𝐴𝑃𝐶𝑍)

LARtoLAP (𝑇6
5) 0 +

𝜋

2

0 Ө6

LARCOM (𝑇6𝐶𝑂𝑀
6) 𝑅𝑦(−

𝜋

2
) 𝐴(𝐿𝐴𝑅𝐶𝑋,𝐿𝐴𝑅𝐶𝑌,𝐿𝐴𝑅𝐶𝑍)

3.2.6 Inverse Kinematics Solver

To solve the inverse kinematics problem, we need to find the solution to the

equation:

∆Ө = 𝐽−1∆𝑥

Where Ө represents the joint space coordinates while 𝑥 represents the

Cartesian coordinates.

As the Jacobian J, in our case is a 5 × 6 matrix, it cannot be inverted through

normal means. As we cannot find its inverse, we will find a pseudo-inverse

instead. That is, we set

∆Ө = 𝐽+𝑒

Where the n × m matrix 𝐽+ is the pseudo inverse of 𝐽, also called the Moore-

Penrose inverse of 𝐽. It is defined as,

𝐽+ = 𝐽𝑇(𝐽𝐽𝑇)−1

Now as the matrix 𝐽𝐽𝑇 is always invertible, the pseudo-inverse of the Jacobian

can be easily found but it is only valid for a small change 𝑒 thus we need to

reach the final position iteratively using the following equation,

Өi+1 = 𝐽+𝑒 + Өi

To avoid invalid configurations, maximum ranges of the joint space

coordiantes are checked in each iteration and if the max value is reached, that

particular coordinate is set to max.

3.3 Dynamics and Control

The dynamics of the robot has been solved twice, once for the whole body and

once for the legs. The dynamic model for the legs is found by using the

langrangian formulation and in this case only the kinetic energy matrix or

mass matrix is considered so that the effective mass can be found for the

impact. Whereas, the whole body dynamics model is found by using the

newton-euler formulation and it is generally focused on the determination of

zero-moment point for robot stability during the motion generation. The

newton-euler approach is preferred in this case because of its computational

ease and simplicity for solving the dynamics for a large number of DOFs.

Before we move on to the detailed analysis of the robot dynamics, we first

need to define the inertial parameters with respect to the required frames.

3.3.1 Inertial Parameters:

The inertial parameters consist of mass and moment of inertia of each link.

When solving the dynamics of the robot, it is necessary to find the inertial

matrix at the center of mass of each link. The inertial matrix properties (Ixx,

Iyy, Izz, Ixy, Izy, Ixz) in section 3.1 are defined with respect to the base frame of

each joint. For the dynamic analysis, we need to transformation the inertia

matrix of each link to its center of mass. The necessary transformations for

the inertial matrices of each kinematic chain are defined below.

3.3.1.1 Head:

The head chain has two inertial frames, therefore we need two

transformations. First, we need to rotate the inertial matrix from its frame

defined in section 3.1 to our joint coordinate frame. The frame of the first

joint collides with the base frame, therefore it does not require a rotation. The

rotation for the second joint (HeadPitch) is given as:

𝐼𝐻𝑃
𝐽𝑜𝑖𝑛𝑡 = 𝑅𝑥(

𝜋

2
) 𝐼𝐻𝑃

𝐵𝑎𝑠𝑒𝑅𝑥(
𝜋

2
)𝑇

The resulting inertial matrices in our coordinate frames are then translated

to the center of mass of the link by using the 3-dimensional parallel-axis

theorem. The inertial matrices at the center of masses are given as:

𝐼𝐻𝑌
𝐶𝑂𝑀 = 𝐼𝐻𝑌

𝐽𝑜𝑖𝑛𝑡 - 𝑚𝑎𝑠𝑠𝐻𝑌 [𝑃𝑐𝑜𝑚𝐻𝑌
𝑇𝑃𝑐𝑜𝑚𝐻𝑌𝐼𝑑(3) − 𝑃𝑐𝑜𝑚𝐻𝑌𝑃𝑐𝑜𝑚𝐻𝑌

𝑇]

𝐼𝐻𝑃
𝐶𝑂𝑀 = 𝐼𝐻𝑃

𝐽𝑜𝑖𝑛𝑡 - 𝑚𝑎𝑠𝑠𝐻𝑃 [𝑃𝑐𝑜𝑚𝐻𝑃
𝑇𝑃𝑐𝑜𝑚𝐻𝑃𝐼𝑑(3) − 𝑃𝑐𝑜𝑚𝐻𝑃𝑃𝑐𝑜𝑚𝐻𝑃

𝑇]

Where 𝑃𝑐𝑜𝑚𝑗 is the position vector to the center of mass of the joint ‘j’ and

Id(3) is a 3x3 identity matrix.

3.3.1.2 Arms:

Similar to the head chain, the transformations are defined for the right and

left arms. The rotations in this case are identical for both arms.

Rotations:

𝐼𝑅/𝐿𝑆𝑃
𝐽𝑜𝑖𝑛𝑡 = 𝑅𝑥 (

𝜋

2
) 𝐼𝑅/𝐿𝑆𝑃

𝐵𝑎𝑠𝑒𝑅𝑥 (
𝜋

2
)

𝑇

𝐼𝑅/𝐿𝑆𝑅
𝐽𝑜𝑖𝑛𝑡 = 𝑅𝑧(−

𝜋

2
) 𝐼𝑅/𝐿𝑆𝑅

𝐵𝑎𝑠𝑒𝑅𝑧(−
𝜋

2
)𝑇

𝐼𝑅/𝐿𝐸𝑌
𝐽𝑜𝑖𝑛𝑡 = 𝑅𝑦 (−

𝜋

2
) 𝑅𝑥 (−

𝜋

2
) 𝐼𝑅/𝐿𝐸𝑌

𝐵𝑎𝑠𝑒 [𝑅𝑦 (−
𝜋

2
) 𝑅𝑥 (−

𝜋

2
)]

𝑇

𝐼𝑅/𝐿𝐸𝑅
𝐽𝑜𝑖𝑛𝑡 = 𝑅𝑦(−

𝜋

2
) 𝑅𝑧(−

𝜋

2
) 𝐼𝑅/𝐿𝐸𝑅

𝐵𝑎𝑠𝑒 [𝑅𝑦(−
𝜋

2
) 𝑅𝑧(−

𝜋

2
)]

𝑇

𝐼𝑅/𝐿𝑊𝑌
𝐽𝑜𝑖𝑛𝑡 = 𝐼𝑅/𝐿𝑊𝑌

𝐵𝑎𝑠𝑒

Translations:

The inertial matrix of the link ‘𝑖’ is then translated to the center of mass as

following:

𝐼𝑖
𝐶𝑂𝑀 = 𝐼𝑖

𝐽𝑜𝑖𝑛𝑡 - 𝑚𝑎𝑠𝑠𝑖 [𝑃𝑐𝑜𝑚𝑖
𝑇𝑃𝑐𝑜𝑚𝑖𝐼𝑑(3) − 𝑃𝑐𝑜𝑚𝑖𝑃𝑐𝑜𝑚𝑖

𝑇]

3.3.1.3 Legs:

The rotations for the base frames to our joint coordinate frames for both legs

are also identical.

Rotations:

𝐼𝐿/𝑅𝐻𝑌𝑃
𝐽𝑜𝑖𝑛𝑡 = 𝑅𝑦 (

𝜋

4
) 𝑅𝑧 (−

𝜋

2
) 𝐼𝐿/𝑅𝐻𝑌𝑃

𝐵𝑎𝑠𝑒 [𝑅𝑦 (
𝜋

4
) 𝑅𝑧 (−

𝜋

2
)]

𝑇

𝐼𝐿/𝑅𝐻𝑅
𝐽𝑜𝑖𝑛𝑡 = 𝑅𝑦 (

𝜋

2
) 𝑅𝑧 (

𝜋

2
) 𝐼𝐿/𝑅𝐻𝑅

𝐵𝑎𝑠𝑒 [𝑅𝑦 (
𝜋

2
) 𝑅𝑧 (

𝜋

2
)]

𝑇

𝐼𝐿/𝑅𝐻𝑃
𝐽𝑜𝑖𝑛𝑡 = 𝑅𝑦 (−

𝜋

2
) 𝑅𝑧 (−

𝜋

2
) 𝐼𝐿/𝑅𝐻𝑃

𝐵𝑎𝑠𝑒 [𝑅𝑦 (−
𝜋

2
) 𝑅𝑧 (−

𝜋

2
)]

𝑇

𝐼𝐿/𝑅𝐾𝑃
𝐽𝑜𝑖𝑛𝑡 = 𝑅𝑦 (−

𝜋

2
) 𝑅𝑧 (−

𝜋

2
) 𝐼𝐿/𝑅𝐾𝑃

𝐵𝑎𝑠𝑒 [𝑅𝑦 (−
𝜋

2
) 𝑅𝑧 (−

𝜋

2
)]

𝑇

𝐼𝐿/𝑅𝐴𝑃
𝐽𝑜𝑖𝑛𝑡 = 𝑅𝑦 (−

𝜋

2
) 𝑅𝑧 (−

𝜋

2
) 𝐼𝐿/𝑅𝐴𝑃

𝐵𝑎𝑠𝑒 [𝑅𝑦 (−
𝜋

2
) 𝑅𝑧 (−

𝜋

2
)]

𝑇

𝐼𝐿/𝑅𝐴𝑅
𝐽𝑜𝑖𝑛𝑡 = 𝑅𝑦 (−

𝜋

2
) 𝐼𝐿/𝑅𝐴𝑅

𝐵𝑎𝑠𝑒 [𝑅𝑦 (−
𝜋

2
)]

𝑇

Translations:

Similarly, the translation for inertia matrix of link ‘𝑖’ of each leg to the center

of mass is given by:

𝐼𝑖
𝐶𝑂𝑀 = 𝐼𝑖

𝐽𝑜𝑖𝑛𝑡 - 𝑚𝑎𝑠𝑠𝑖 [𝑃𝑐𝑜𝑚𝑖
𝑇𝑃𝑐𝑜𝑚𝑖𝐼𝑑(3) − 𝑃𝑐𝑜𝑚𝑖𝑃𝑐𝑜𝑚𝑖

𝑇]

3.3.2 Leg Dynamics:

As mentioned above, the necessary dynamics of the leg have been solved by

the Langrangian approach. In this section, the necessary steps and

calculations for the finding the mass matrix of the NAO robot legs will be

shown. As described in chapter 2, the mass matrix of an articulated robot

manipulator is given by:

𝑀(Ө) = ∑(𝑚𝑐𝑖𝐽𝑣𝑖
𝑇𝐽𝑣𝑖 + 𝐽𝑤𝑖

𝑇𝐼𝑐𝑖𝐽𝑤𝑖)

𝑛

𝑖

Therefore, we need to find the center of mass Jacobians Jv and Jw, the mass

and the inertial matrix defined at the center of mass for each link ‘𝑖’. The

masses and the inertial matrices have already been defined at the center of

mass of each link in the previous section, therefore, we now need to find the

linear and angular velocity Jacobians from the robot kinematic equations. As

the two legs are identical, let us consider one of the two legs, say the right leg.

For the sake of simplicity, we will not consider the HipYawPitch joint in our

dynamic model because of its complexity and shared mechanism between the

legs. The joints considered in the analysis are RhipRoll, RHipPitch,

RKneePitch, RAnklePitch and RAnkleRoll. We first find the positions of the

center of masses of each link with respect to the base of the right leg using the

forward kinematics as described in section 3.2. The transformations defining

the center of masses of links 1-5 are given below:

𝑇2COM
Base = 𝑇0

Base𝑇1
0𝑇2

1𝑇2COM
2

𝑇3COM
Base = 𝑇0

Base𝑇1
0𝑇2

1𝑇3
2𝑇3COM

3

𝑇4COM
Base = 𝑇0

Base𝑇1
0𝑇2

1𝑇3
2𝑇4

3𝑇4COM
4

𝑇5COM
Base = 𝑇0

Base𝑇1
0𝑇2

1𝑇3
2𝑇4

3𝑇5
4𝑇5COM

5

𝑇6COM
Base = 𝑇0

Base𝑇1
0𝑇2

1𝑇3
2𝑇4

3𝑇5
4𝑇6

5𝑇6COM
6

Where the position of each center of mass is defined by the fourth column of

the transformation matrix. Let each transformation matrix T be defined by

the notation:

𝑇([𝑟𝑜𝑤𝑠]𝑥[𝑐𝑜𝑙𝑢𝑚𝑛𝑠])

Then the linear and angular jacobians for each link can be defined as:

𝐽𝑣2 = [
𝜕𝑇2COM

Base ([1,2,3], 4)

Ө2
0 0 0 0]

𝐽𝑤2 = [𝑇2COM
Base ([1,2,3],3) 0 0 0 0]

𝐽𝑣3 = [
𝜕𝑇3COM

Base ([1,2,3],4)

Ө2

𝜕𝑇3COM
Base ([1,2,3],4)

Ө3
0 0 0]

𝐽𝑤3 = [𝑇2COM
Base ([1,2,3],3) 𝑇3COM

Base ([1,2,3],3) 0 0 0]

𝐽𝑣4 = [
𝜕𝑇4COM

Base ([1,2,3],4)

Ө2

𝜕𝑇4COM
Base ([1,2,3],4)

Ө3

𝜕𝑇4COM
Base ([1,2,3],4)

Ө4

 0 0]

𝐽𝑤4 = [𝑇2COM
Base ([1,2,3],3) 𝑇3COM

Base ([1,2,3],3) 𝑇4COM
Base ([1,2,3],3) 0 0]

𝐽𝑣5 = [
𝜕𝑇5COM

Base ([1,2,3],4)

Ө2

𝜕𝑇5COM
Base ([1,2,3],4)

Ө3

𝜕𝑇5COM
Base ([1,2,3],4)

Ө4

𝜕𝑇5COM

Base ([1,2,3],4)

Ө5
0]

𝐽𝑤5 = [𝑇2COM
Base ([1,2,3],3) 𝑇3COM

Base ([1,2,3],3) 𝑇4COM
Base ([1,2,3],3) 𝑇5COM

Base ([1,2,3],3) 0]

𝐽𝑣6 = [
𝜕𝑇6COM

Base ([1,2,3],4)

Ө2

𝜕𝑇6COM
Base ([1,2,3],4)

Ө3

𝜕𝑇6COM
Base ([1,2,3],4)

Ө4

𝜕𝑇6COM

Base ([1,2,3],4)

Ө5

𝜕𝑇6COM
Base ([1,2,3],4)

Ө6

]

𝐽𝑤6 = [𝑇2COM
Base ([1,2,3],3) 𝑇3COM

Base ([1,2,3],3) 𝑇4COM
Base ([1,2,3],3) 𝑇5COM

Base ([1,2,3],3) 𝑇6COM
Base ([1,2,3],3)]

The mass matrix for the link ‘𝑖’ is then defined as:

𝑀𝑖(Ө) = 𝑚𝑐𝑖𝐽𝑣𝑖
𝑇𝐽𝑣𝑖 + 𝐽𝑤𝑖

𝑇𝐼𝑐𝑖𝐽𝑤𝑖

Finally the total kinetic energy matrix is found to be:

𝑀(Ө) = ∑𝑀𝑖(Ө)

𝑛

𝑖

3.3.3 Virtual Mass Analysis

To find the virtual mass at the end effector point EE (Figure 3),, we first need

to find the inverse inertia matrix at that point. As we are only concerned with

the linear velocity of the foot, therefore we will use the linear jacobian of the

end effector point given by:

𝐽𝑣𝐸𝐸 = [
𝜕𝑇EE

Base([1,2,3],4)

Ө2

𝜕𝑇EE
Base([1,2,3],4)

Ө3

𝜕𝑇EE
Base([1,2,3],4)

Ө4

𝜕𝑇EE

Base([1,2,3],4)

Ө5

𝜕𝑇EE
Base([1,2,3],4)

Ө6

]

Then, the cartesian space inertia matrix is given by:

𝑀(Ө)𝐸𝐸 = 𝐽
𝑣𝐸𝐸

−𝑇(Ө) 𝑀(Ө) 𝐽
𝑣𝐸𝐸

−1(Ө)

The pseudo kinetic energy matrix is then defined by:

𝑀(Ө)−1
𝐸𝐸 = 𝐽𝑣𝐸𝐸(Ө) 𝑀(Ө)−1 𝐽𝑣𝐸𝐸(Ө)𝑇

Finally, the effective mass of the end effector is found in the direction

specified by the desired unit vector 𝒖,

1

𝑚𝑒𝑓𝑓

= 𝒖𝑇𝑀(Ө)−1
𝐸𝐸𝒖 𝑚𝑒𝑓𝑓 =

1

𝒖𝑇𝑀(Ө)−1
𝐸𝐸𝒖

Figure 3.6 Virtual Mass Analysis

3.3.4 Whole Body Dynamics:

The recursive Newton-Euler algorithm (RNEA) is generally preferred to get

the direction solution to the desired forces/torques instead of the creation of

explicit equations to find the dynamic model. Thus, the direct solution

requires the knowledge of joint positions, velocities and accelerations at the

desired time and results in the values of forces and torques acting on point

on the body given that the transformation to that point is available. Our goal

here is to model the whole robot so that we can find the forces and torques at

the support foot of the robot when its other leg is in motion. Thus, having

prior knowledge about the torques and forces at the support foot, we can find

the projected movement of the zero-moment point during the motion

generation.

3.3.4.1 Analysis:

To solve the dynamics, we first assumed that the whole body is attached at

the support foot ankle which is acting as a fixed support. From that point

onwards, a new kinematic chain was constructed which started from the

ankle and reached the torso as the final end effector. The force/moment

effects applied by head, left arm, right arm and kicking leg chains on the torso

are found separately by considering each chain as a fixed end manipulator.

The forward and backward recursion gives a resultant force ‘𝑓𝑖’ and moment

‘𝑚𝑖’ for each chain ‘𝑖’. These forces/moment effects are then superimposed on

the torso chain as external forces/moments. The new kinematic chain that

was constructed for the two legs is defined by the joints AnkleRoll,

AnklePitch, KneePitch, HipPitch, HipRoll, HipYawPitch in the respective

order. The DH parameters and the center of mass transformations for the

support leg chain are:

Finally, this support leg kinematic chain is then solved by RNEA, first by

forward recursion to find the velocities and accelerations and then by the

backward recursion with external forces/moments on the torso included

from the previous analysis. At the end we find the total resultant force and

moment applied at the ankle given by FAnkle and MAnkle.

Frame (𝑇𝑖
𝑖−1) ai-1 αi-1 di Өi

Rotation 𝑅𝑦(
𝜋

2
)

ARtoAP (𝑇1
0) 0 0 0 Ө1

APCOM (𝑇1𝐶𝑂𝑀
1) 𝑅𝑦(−

𝜋

2
) 𝐴(𝐴𝑃𝐶𝑋,𝐴𝑃𝐶𝑌,𝐴𝑃𝐶𝑍)

KPtoAP (𝑇2
1) 0 𝜋

2
 0 Ө2

KPCOM (𝑇2𝐶𝑂𝑀
2) 𝑅𝑦(−

𝜋

2
) 𝑅𝑧(

𝜋

2
) 𝐴(𝐾𝑃𝐶𝑋,𝐾𝑃𝐶𝑌,𝐾𝑃𝐶𝑍)

HPtoKP (𝑇3
2) -TibiaLength 0 0 Ө3

HPCOM(𝑇3𝐶𝑂𝑀
3) 𝑅𝑦(−

𝜋

2
) 𝑅𝑧(

𝜋

2
) 𝐴(𝐻𝑃𝐶𝑋,𝐻𝑃𝐶𝑌,𝐻𝑃𝐶𝑍)

HRtoHP (𝑇4
3) -ThighLength 0 0 Ө4

HRCOM(𝑇4𝐶𝑂𝑀
4) 𝑅𝑦(−

𝜋

2
) 𝑅𝑧(

𝜋

2
) 𝐴(𝐻𝑅𝐶𝑋,𝐻𝑅𝐶𝑌,𝐻𝑅𝐶𝑍)

HYPtoHR (𝑇5
4) 0 −

𝜋

2

0 Ө5+
𝜋

4

HYPCOM (𝑇5𝐶𝑂𝑀
5) 𝑅𝑧(−

𝜋

4
) 𝑅𝑦(−

𝜋

2
) 𝐴(𝐻𝑌𝑃𝐶𝑋,𝐻𝑌𝑃𝐶𝑌,𝐻𝑌𝑃𝐶𝑍)

TorsotoHYP (𝑇6
5) 0 −

𝜋

2

0 Ө6

TorsoCOM (𝑇6𝐶𝑂𝑀
6) 𝑅𝑦(−

𝜋

4
) 𝑅𝑧(−

𝜋

2
) 𝐴(𝑇𝑜𝑟𝑠𝑜𝐶𝑋,𝑇𝑜𝑟𝑠𝑜𝐶𝑌,𝑇𝑜𝑟𝑠𝑜𝐶𝑍)

Figure 3.7 Whole Body Dynamics Solution

3.3.4.2 ZMP Calculation:

Substituting the resultant force FAnkle and moment MAnkle in the equations

defined in section 2.5.3, the reaction force is found by

𝑅 + 𝐹𝐴𝑛𝑘𝑙𝑒 + 𝑚𝑎𝑛𝑘𝑙𝑒𝑔 = 0

And the ZMP x and y coordinates are given by:

𝑂𝑃 × 𝑅 + 𝑂𝐺 × 𝑚𝑓𝑜𝑜𝑡𝑔 + 𝑀𝐴𝑛𝑘𝑙𝑒 + 𝑂𝐴 × 𝐹𝐴 = 0

3.3.5 ZMP Controller Design

For the ZMP controller design, the inverted cart-table model was chosen

according to which the zero-moment point for the humanoid can be

expressed for both x and y directions in terms of the its center of mass as

following:

𝑃𝑥 = 𝑥 –
𝐻

𝑔
𝑥̈

𝑃𝑦 = 𝑦 –
𝐻

𝑔
𝑦̈

where 𝑥̈ and 𝑦̈ are the center of mass accelerations in x and y directions, H is

the height of the center of mass which is kept constant at the starting height

when the controller is initiate and g is the gravitational acceleration.

Figure 3.8 Inverted Cart-table Model

As the two equations are same for both directions, a controller with same

parameters can be used. Therefore, the specifications of the controller will

now be described with respect to x direction. The above mentioned equation

can be described in the form of a state-space model,

𝑑

𝑑𝑡
(
𝑥
𝑥̇
𝑥̈
)= (

0 1 0
0 0 1
0 0 0

)(
𝑥
𝑥̇
𝑥̈
) + (

0
0
1
)𝑢

𝑃 = (1 0 − 𝐻/𝑔) (
𝑥
𝑥̇
𝑥̈
)

As the robot operations are carried out in discrete space in real-time, a digital

controller model can be described in terms of the sampling rate ‘𝑇’,

𝑥(𝑘 + 1) = 𝐴𝑋(𝑘) + 𝐵𝑢(𝑘)

𝑃(𝑘) = 𝐶𝑋(𝑘)

𝐴 = (
1 𝑡 𝑡2/2
0 1 𝑡
0 0 1

) B = (
𝑡3/6

𝑡2/2
𝑡

) 𝐶 = (1 0 − 𝐻/𝑔)

By assuming the incremental state ∆𝑋(𝑘) = 𝑋(𝑘) − 𝑋(𝑘 − 1), the state can be

augmented as 𝑋𝐴𝑢𝑔(𝑘) = [
𝑝(𝑘)

∆𝑋(𝑘)
], and therefore the above equation can be

rewritten as,

𝑋𝐴𝑢𝑔(𝑘 + 1) = 𝐴𝐴𝑢𝑔𝑋𝐴𝑢𝑔(𝑘) + 𝐵𝐴𝑢𝑔𝑢(𝑘)

𝑃(𝑘) = 𝐶𝐴𝑢𝑔𝑋𝐴𝑢𝑔(𝑘)

Where

𝐴𝐴𝑢𝑔 = [
1 𝐶𝐴
0 𝐴

] 𝐵𝐴𝑢𝑔 = [
𝐶𝐵
𝐵

] 𝐶𝐴𝑢𝑔 = [1 0 0 0]

In this case, the control input 𝑢 can be define as,

𝑢(𝑘) = −𝐺𝑖 ∑𝑒(𝑖) − 𝐺𝑥𝑥(𝑘)

𝑘

𝑖=0

− ∑𝐺𝑝𝑃𝑑𝑒𝑠(𝑘 + 𝑗)

𝑁

𝑗=1

Here, Gi and Gx are ZMP tracking error gain and the state feedback gain

respectively. The ZMP tracking error is 𝑒i = 𝑃 − 𝑃des and k is the kth sample

time. The third term consists of the planned ZMP reference trajectory up to

N samples in future. Since this controller uses future information, it is called

a preview controller and the gain Gp is called the preview gain. The parameter

N can be calculated based on the incremental time step as,

𝑁 = 1/𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 = 1/𝑡

The gain parameters Gi and Gx must be found using the discrete algebraic

Riccati equation,

P = AT PA - AT PB(R + BT PB) BT PA + Q

Figure 3.9 Preview Control Block Diagram

3.5 C++ Algorithm:

The C++ algorithm designed for the whole kick module is explained in the

following sections:

Figure 3.10 Schematic of Kick Algorithm integrated with RoboCup Team

Code

3.5.1 Motion Planner:

The kick module starts with the motion planner, which takes the input

regarding the position of the ball and the goal in terms of their x-y

coordinates. Depending upon the position of the ball, the planner checks

whether the ball is within the range to kick. The total kicking range is

manually defined as shown in the figure:

Figure 3.11 Optimum kicking range

If the ball is in the range, the planner then selects the kicking leg depending

upon the ball position and goal direction. The kick selecting criteria is also

manually defined by taking into account the reachable space of each leg and

if the kick is infeasible, the kick module stops and returns to the footsteps

planning. Once the kick leg is selected, the planner moves onto finding the

end effector point on the foot.

Figure 3.12 Motion planning

Let the position vectors for the ball and the goal be ‘𝑷⃑⃑ 𝑩𝒂𝒍𝒍’ and ‘𝑷⃑⃑ 𝑮𝒐𝒂𝒍’. Based

on the position vectors ‘𝑷⃑⃑ 𝑩𝒂𝒍𝒍’ and ‘𝑷⃑⃑ 𝑮𝒐𝒂𝒍’ the distance ‘𝑆’ and the direction

unit vector ‘𝒏̂’ are found as follows:

𝑆 = |𝑷⃑⃑ 𝑮𝒐𝒂𝒍 − 𝑷⃑⃑ 𝑩𝒂𝒍𝒍|

𝒏̂ = (𝑷⃑⃑ 𝑮𝒐𝒂𝒍 − 𝑷⃑⃑ 𝑩𝒂𝒍𝒍)/ |𝑷⃑⃑ 𝑮𝒐𝒂𝒍 − 𝑷⃑⃑ 𝑩𝒂𝒍𝒍|

The unit vector ‘𝒏̂’ is used to find the point on the foot contour which is

perpendicular to the direction. This is achieved by finding the solution to the

equation:

𝒏̂. 𝐶 𝑓𝑜𝑜𝑡 = 0

Where 𝐶 𝑓𝑜𝑜𝑡 is the foot contour defined by two continuous bezier curves as

shown (Figure 3.12).

Figure 3.13 Foot Contour

EE

The resulting point on the foot contour is chosen as the final end effector ‘𝐸𝐸’

which is supposed to have the impact with the ball.

3.5.2 Ball Dynamics:

The ball dynamics and friction analysis is required for the calculation of

desired ball velocity for the required distance. The ball during the motion

goes through two phases, sliding and rolling (Figure 3.13).

Figure 3.14 Ball Motion Phases

During the sliding motion, ball is affected by kinetic friction ‘𝑢𝑘’ and the force

of friction is given by:

𝐹𝑘 = 𝑢𝑘𝑚𝑔

Which can be related with ball velocity ‘𝑣’ as:

𝐹𝑘 = 𝑚 (
𝑑𝑣

𝑑𝑡
) – (1)

The moment applied on the ball by the friction force is:

𝑀 = 𝐼𝛼

In our case, 𝐼 =
2

5
𝑚𝑅2 for the spherical ball and ‘𝛼’ the angular acceleration

can be written in the form of rate of change of angular velocity ‘𝑤’. The above

equation can then be written as:

 𝐹𝑘𝑅 =
2

5
𝑚𝑅2 (

𝑑𝑤

𝑑𝑡
)

Or 𝐹𝑘 =
2

5
𝑚𝑅 (

𝑑𝑤

𝑑𝑡
) – (2)

Combining (1) and (2):

(
𝑑𝑣

𝑑𝑡
) =

2𝑅

5
(
𝑑𝑤

𝑑𝑡
)

Integrating the above equation and considering the fact that the increase in

angular velocity is caused by the decrease in linear velocity of the ball:

 𝑣𝑓 – 𝑣𝑖 = −
2𝑅

5
(𝑤𝑓 − 𝑤𝑖)

This equation defines the relationship between the two phases the ball

undergoes; the sliding phase with linear velocity and the rolling phase with

angular velocity. In our case, the ball starts with an initial velocity ‘𝑣𝑖’ and

ends with a rolling velocity 𝑣𝑟 after which rolling phase starts. Using the

relation 𝑣𝑟 = 𝑤𝑟:

𝑣𝑟 – 𝑣𝑖 = −
2𝑅

5
(
𝑣𝑟

𝑅
 − 0) – (3)

𝑣𝑟 =
5

7
𝑣𝑖

Thus the ball starts with 𝑣𝑖 and moves against the force 𝐹𝑘 until it starts to

roll where it encounters the rolling friction 𝐹𝑟. Therefore, using the equations

of motions we can find out the distance ′𝑆′ for an initial velocity of the ball as

follows:

𝑆 = 𝑆1 + 𝑆2

𝑆 =
(
5
7

 𝑣𝑖)
2

 − 𝑣𝑖
2

−2𝑢𝑘𝑔
+

0 − (
5
7

 𝑣𝑖)
2

−2𝑢𝑟𝑔

The required ball velocity is then found in terms of ‘𝑆’ as follows:

𝑣𝑖 = √𝑆/(
(
5
7)

2
 − 12

−2𝑢𝑘𝑔
+

−(
5
7)

2

−2𝑢𝑟𝑔
)

3.5.3 Virtual Mass:

The virtual mass of the end effector point ‘𝐸𝐸’ is needed to analyse the impact.

To find it, the projected final configuration of the foot is taken where the

impact is perceived and inverse kinematics is used to find the joint angles.

Using the resulting joint angles of the kicking leg, the mass matrix of the leg

and the linear Jacobian of the point ‘𝐸𝐸’ is found as explained in section 3.3.3.

Then the effective mass 𝑚𝑒𝑓𝑓is found in the direction of the vector 𝒏̂ as

described in section 3.3.3.

3.5.4 Impact Consideration:

As the foot contour is almost spherical, the contact of the foot with the ball is

almost linearly elastic and so a linear elastic collision model is used for impact

analysis. The virtual mass of the ‘𝐸𝐸’, ball mass, and the required ball velocity

𝑣𝑖 are used with momentum and kinetic energy conservation principles to

find the required end effector velocity at the final position ‘𝐹𝑃’.

𝑣𝐸𝐸
𝐹𝑃 = 𝑣𝑖 ∗ (𝑚𝑒𝑓𝑓 + 𝑚𝑏𝑎𝑙𝑙)/(2𝑚𝑒𝑓𝑓)

𝑣 𝐸𝐸
𝐹𝑃

 = 𝑣𝐸𝐸
𝐹𝑃𝒏̂ = 𝑣𝐸𝐸

𝐹𝑃 [

𝑛𝑥

𝑛𝑦

𝑛𝑧

]

Figure 3.15 Impact Analysis

3.5.5 Trajectory planner:

The trajectory planner takes into account four via points:

1. Initial position of the end effector ‘𝐼𝑃’.

2. The swing back point or retraction point ‘𝑅𝑃’.

3. The ball hit point or final position ‘𝐹𝑃’

4. The upswing point ‘𝑈𝑃’.

3.5.5.1 Initial Position (IP)

The initial position of the end effector ‘𝐸𝐸’ is found by the forward kinematics

using the joint angle values from the position sensors.

3.5.5.2 Retraction Point (RP)

The retraction point is found by extending the direction vector 𝒏̂ in the

opposite direction and intersecting it with the circle of radius ‘𝑟’, where r is

manually set according to the reachable space and the required speed of the

foot.

Figure 3.16 Retraction Point

The maximum angle for the position of the retraction point is set to 20o.

3.5.5.3 Final Position (FP)

The final position of the foot is found with respect to the position of the ball

by:

𝐹𝑃⃑⃑⃑⃑ ⃑ = 𝑷⃑⃑ 𝑩𝒂𝒍𝒍 – 𝑏𝑎𝑙𝑙𝑟𝑎𝑑𝑖𝑢𝑠. 𝒏̂

3.5.5.4 The upswing point (UP)

The upswing point is the final point set after the ball is hit so that all of the

energy from the foot is passed into the ball. The upswing point is found by

the following equation:

𝑈𝑃⃑⃑ ⃑⃑ ⃑ = 𝐹𝑃⃑⃑⃑⃑ ⃑ + 𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡. 𝒏̂

After finding all the via points, the inverse kinematics is to find the joint

angles at each of the end effector positions.

3.5.6 Trajectory Generator:

The joint position configurations found in trajectory planning phase are now

used to create the smooth trajectory splines with required velocity outputs.

The Cartesian velocities for the points IP, UP, and RP are set to zero, whereas

the velocity at the FP is 𝑣 𝐸𝐸
𝐹𝑃

 found from the impact analysis. The velocities

are then converted from the Cartesian space into joint space velocities using

the relation:

𝜃̇ = 𝐽−1𝑣

The joint accelerations at each of the points are set to zero and the coefficients

of each quintic curve are found with coinciding boundary conditions between

the successive curves. The coefficients of each curve defined by the time

interval 𝑇 = [𝑇𝑖 𝑇𝑓] are given by the simultaneous equations in the form:

[

𝑎
𝑏
𝑐
𝑑
𝑒
𝑓]

 =

[

 1 𝑇𝑖 𝑇𝑖

2

0 1 2𝑇𝑖

0 0 2

𝑇𝑖
3 𝑇𝑖

4 𝑇𝑖
5

3𝑇𝑖
2 4𝑇𝑖

3 5𝑇𝑖
4

6𝑇𝑖 12𝑇𝑖
2 20𝑇𝑖

3

1 𝑇𝑓 𝑇𝑓
2

0 1 𝑇𝑓

0 0 2

𝑇𝑓
3 𝑇𝑓

4 𝑇𝑓
5

3𝑇𝑓
2 4𝑇𝑓

3 5𝑇𝑓
4

6𝑇𝑓 12𝑇𝑓
2 20𝑇𝑓

3
]

[

𝜃𝑖

𝜃̇𝑖

𝜃̈𝑖

𝜃𝑓

𝜃̇𝑓

𝜃̈𝑓]

Where the time interval for the curves IP-RP and RP-FP is 0.25 seconds and

0.1 seconds for the final curve from FP-UP. The total time for the kick

trajectory is then 0.6 seconds. The individual curves are generated by the

following 5-degree polynomial:

𝐹(𝑥) = 𝑎𝑥^5 + 𝑏𝑥^4 + 𝑐𝑥^3 + 𝑑𝑥^2 + 𝑒𝑥 + 𝑓

3.5.7 Stability Module:

The stability module of the robot first shifts all the mass of the robot on the

support leg and lifts the kicking leg to an initial height. It then takes as input

the trajectory of each joint of the kicking leg from the trajectory planner and

using the whole body dynamics solution as described in section 3.3.4, it finds

the projected movement of the zero-moment point (ZMP) in x and y

directions. Using the projected movement during the kicking, it finds the

necessary previews of ZMP throughout the trajectory for the preview

controller. The required tracking of the center of mass (COM) trajectory is

accomplished by the two support leg joints, namely, HipPitch and HipRoll.

Two preview controllers are used in parallel, for x and y directions. The

HipPitch joint provides the trajectory tracking in x direction while the

HipRoll joint is used for y direction.

3.5.8 Execution:

The execution phase of the algorithm, initiates the stability module in one

thread and executes the kick trajectory in another. The two threads run side

by side and the kick trajectory is constantly updated accordingly. The kick is

executed and the robot is shifted back to its initial standing position.

Chapter 4

Code Compilation

4.1 Working with NaoQi

Aldebaran Robotics have provided a built-in software architecture “NaoQi”

for NAO which runs and controls the robot. Therefore, to program the robot,

we need to interface with the NaoQi framework. This framework controls the

communication between different modules (audio, video, and motion), the

programming and the memory of the robot. The framework is cross-platform

and cross-language therefore it is possible to develop with it on Windows,

Linux or Mac and it works with C++ and Python.

4.2 Programming

To develop advanced programming codes on NAO according to our

requirements, C++ is preferred. For our coding purposes, we have used Linux

OS. Linux is generally preferred because of its simplicity, ease of debugging

the codes and advanced code handling utilities.

4.2.1 Necessary Build Packages

The code has various dependencies which are required for building,

compiling and running the code on NAO:

1. build-essential

2. cmake

3. git-core, gitk

4. python2.7-dev

5. qt4-dev-tools

6. libboost-all-dev

7. qibuid

These packages can be obtained by adding the following command in the

Linux terminal:

$> sudo apt-get install <package-name>

4.2.2 NaoQi SDK

The NaoQi C++ SDK is required for code compilation and building to run the

codes on Linux (programs built by this won’t run on actual NAO). Get the

latest SDK “naoqi-sdk-[version]-tar.gz.” from the Aldebaran website. Extract

the SDK into some folder:

$> tar -xvzf naoqi-sdk-[version]-tar.gz.

4.2.3 Cross Toolchain

The Cross toolchain is required to compile the code for running on real NAO.

NAO has the Atom system image and therefore to run the code compiled on

Linux, we need cross-compilation. This helps in running the code on both the

platforms. Get the latest atom toolchain “ctc-atom-[version]-tar.gz.” from the

Aldebaran website. Extract the toolchain into another folder:

$> tar -xvzf ctc-atom-[version]-tar.gz.

5.2.4 Build and Compilation

To build the code, you will need to initiate the qibuild in a directory:

$> qibuild init

Then make a toolchain (Cross toolchain or SDK toolchain) by using the

following command:

$> qitoolchain create [TOOLCHAINNAME] /path/to/SDK/toolchain.xml

Or,

$> qitoolchain create [TOOLCHAINNAME] /path/to/ctc/toolchain.xml

Once the toolchain is created, you will need to add its configs to your qibuild

worktree. Use the following command:

$> qitoolchain add-config [TOOLCHAINNAME] –t [TOOLCHAINNAME]

To configure and build the project:

$> qibuild configure [ProjectName] –c [TOOLCHAINNAME]

$> qibuild make [ProjectName] –c [TOOLCHAINNAME]

The project will build in toolchain-build/sdk/bin or toolchain-build/sdk/lib

folder according to your cmake config. To modify your cmake config, the

necessary changes can be made in cmakelists.txt file.

4.2.5 Running the Code

The code compiled by using C++ SDK toolchain will only run on virtual

robots. A virtual robot can be initiated by using running naoqi-executable in

/path/to/SDK/ folder. To run the program on virtual nao, go to toolchain-

build/sdk/bin and run the project executable. To run the code on real nao,

just connect the nao on a private network with you PC and run the same

executable with ip address,

./ProjectName.exe –pip [robot-ip] –pport [robot-port][Default = 9559]

Chapter 5

Results and Discussion

5.1 Joint Trajectory Output

The commanded trajectories that are made by the trajectory generator for

each joint and the actual trajectory angles taken from the position sensors for

a 6-meter straight kick are shown. The trajectory for joint 5 also distinguishes

the separate regions of three curves.

Figure 5.1 Actual and Desired Joint Trajectories

The trajectory planning algorithms that have been used here have provided

us with smooth and continuous curves which is not only necessary for getting

better results but also for the purpose of making our motions harmless for

the motors, links and other parts of the humanoid. Sudden and jerky motions

could result in damaging of motors which was one of the major problems

faced in the beginning when the cubic splines interpolation was used instead

of quintic splines. As our trajectories are fast and need a sudden velocity at

the final point, cubic splines gave us the provision to define the velocities, but

due to their high values, the resulting acceleration values seemed to be much

higher than expected. High values of acceleration also needed higher torques

and therefore our trajectories were far slower than expected. The problem

was that to follow that trajectory, we needed much high torques, which was

not possible and the Device Communication Manager (DCM) of NAO which

controls the PID control loop limited the trajectory at the max power and

torque available. To solve this problem, we moved on to the use of quintic

splines, and defined zero accelerations at each end point of the curves, which

resulted in splines that were continuous and differentiable up to second order

(smooth acceleration curves). Moreover, we can see that the trajectories are

also being tracked quite precisely by the DCM.

5.2 Impact Results

To verify our system model, we performed an experiment to find out the

actual ball velocity after the impact. In this experiment, we fixed a FireFly MV

60 fps camera over the robot and recorded the video of its kicks (Figure 5.2).

After getting the data for all the kicks, we ran the videos through matlab

image processing tools. We checked for the movement of the ball between the

two frames just before and after the impact (Figure 5.3). Let the movement

of the ball and diameter in pixels in between the frames be sp and dp then by

assuming constant height for two frames, the displacement of the ball in

meters can be found from the equation,

𝑠𝑚 = 𝑠𝑝 ∗ 𝑑𝑚/𝑑𝑝

Where dm= 0.065m. Then the velocity can be found as

𝑣 = 𝑠𝑚 × 60

Figure 5.2 Experimental Setup for Impact Verification

Figure 5.3 6-meter kick 60 fps frames just before and after the kick

The results of the experimental setup for the verifications of impact velocities

is shown.

Figure 5.4 Actual and Desired Ball Velocity

The impact results experiment was necessary for the purpose of

understanding the outcomes of our research. It was also very crucial in

finding out the problems that were occurring related to our trajectory

planning, because in our first batch of experiments, the speed of the ball was

far lower than expected. This initially gave us the idea that maybe our virtual

mass calculations and dynamics of the body have not been properly solved,

but when we looked at the movement of the foot, we found out that the foot

is not reaching the desired velocities and thus the problem of trajectory

planning was identified. Once that problem was solved, we ran the second

batch of experiments which resulted in very precise results as shown in

Figure 5.2.

5.3 Kick Results

The results of the experiment for the verifications of friction model and ball

dynamics is shown. The graph shows the results of different straight kicks

with desired distances (1m, 2m, 3m, 4m, 5m, 6m).

Figure 5.5 Measured Distances of the ball

Table 5.1 SEM between measured and desired ball distances

Distance (m) Standard error mean

1 6.8%

2 6.1 %

3 2.01 %

4 5.39 %

5 3.57 %

6 4.73 %

As we can see from the Table 5.1, the results of our desired distances are also

quite accurate having the error range within ~7%, but even though these

results were accurate and commendable, we could not achieve the same in

directional kicks. The main problem in directional kicks was that the foot

contour of the robot is not as spherical from all sides, and only forms a

conservative collision model up to the 10 degrees on both side from the

middle. From that point onwards, its shape has sudden corners because of

which the collision model does not apply as expected. Another problem was

that in our iterative inverse kinematics solution the threshold is set to +-5

mm otherwise the solution does not converge. Due to this, our foot

positioning was not as accurate as desired.

5.4 Stability Results

The movement of the ZMP in x and y directions during the kick trajectory is

shown.

Figure 5.6 ZMP Movement Throughout the 6-meter kick

As we can see from the figure (5.4), the zero-moment point of the robot stays

well within the support polygon and therefore, our robot is highly stable

during the kick trajectory generation.

5.5 Issues

A few other problems that we came through were related to the integration

of our program with NaoQi software. One of the problems was that NaoQi

does not allow us to make changes to the PID control loop because of which

the trajectories that were not being followed with desired ones as accurately

as expected. Another problem was the interruption caused by the

autonomous life module of the robot. The autonomous life robot has its own

modules running in parallel and increases processing time for kick module

which needs to be completely removed.

Chapter 6

Conclusion

As have been discussed and presented in the previous sections, despite the

issues, the results of our research have been very precise and accurate for

straight kicks within the angle range of 0~10o on both sides. To further

increase the capability of our kick module, following work is suggested:

1. The trajectory planner of our kick module is constrained within the

position and velocity ranges but it is not yet optimized with respect to

any parameter such as distance, speed and if the optimization of the

current planner can be performed for maximum effective mass and

velocity, we can achieve the highest possible distances with increased

accuracy.

2. Another very useful research that can be done is to include the

coefficient of restitution in the impact model to get better accuracy for

both multidirectional kicks.

3. As the kick module has infinite outcomes and the results are very

precise, it is recommended that machine learning algorithms be applied

to train the robot according to different environments.

4. The iterative inverse kinematics algorithms are time consuming and

therefore it is recommended that they be replaced by an analytical

solution.

References

[1] Teppei Tsujita, Atsushi Konno, Shunsuke Komuzunai, Yuki Nomura,

Tomoya Myojin, Yasar Ayaz and Masaru Uchiyama, “Humanoid Robot

Motion Generation Scheme for Tasks Utilizing Impulsive Force,”

International Journal of Humanoid Robotics (IJHR), World Scientific

Publishing Company, Vol. 9, No. 2, pp. 1250008-1 to 1250008-23, 2012.

[2] Teppei Tsujita, Atsushi Konno, Shunsuke Komizunai, Yuki Nomura,

Takuya Owa, Tomoya Myojin, Yasar Ayaz and Masaru Uchiyama,

"Analysis of Nailing Task Motion for a Humanoid Robot," Proceedings of

IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), pp. 1570-1575, France, September 2008.

[3] Teppei Tsujita, Atsushi Konno, Shunsuke Komizunai, Yuki Nomura,

Takuya Owa, Tomoya Myojin, Yasar Ayaz and Masaru Uchiyama,

"Humanoid Robot Motion Generation for Nailing Task," Proceedings of

IEEE/ASME International Conference on Advanced Intelligent

Mechatronics (AIM), pp. 1024-1029, China, July 2008.

[4] Felix Wenk and R¨ofer, T.: Online Generated Kick Motions for the NAO

Balanced Using Inverse Dynamics: In RoboCup 2013: Robot World Cup

XVII. Volume 8371 of the series Lecture Notes in Computer Science pp

25-36

[5] Inge Becht, Maarten de Jonge, and Richard Pronk. A Dynamic Kick for

the Nao Robot. Project report (Universiteit van Amsterdam, 26 July

2012).

http://link.springer.com/book/10.1007/978-3-662-44468-9
http://link.springer.com/book/10.1007/978-3-662-44468-9
http://link.springer.com/bookseries/558
http://staff.fnwi.uva.nl/a.visser/education/nao/dynamic_kick_project.pdf
http://staff.fnwi.uva.nl/a.visser/education/nao/dynamic_kick_project.pdf

[6]Raul rojas, Mark simon: Like a rolling ball

[7] Shuuji KAJITA, Fumio KANEHIRO, Kenji KANEKO, Kiyoshi

FUJIWARA, Kensuke HARADA, Kazuhito YOKOI and Hirohisa

HIRUKAWA, Biped Walking Pattern Generation by using Preview

Control of Zero-Moment Point

[8] Nikolaos Kofinas, Forward and Inverse Kinematics for the NAO

Humanoid Robot

[9] Nima Shafii , Abbas Abdolmaleki , Rui Ferreira, Nuno Lau, Luis Paulo

Reis, Omnidirectional Walking and Active Balance for Soccer Humanoid

Robot

[10] MIOMIR VUKOBRATOVIC, ZERO-MOMENT POINT — THIRTY FIVE

YEARS OF ITS LIFE

[11] Oussama Khatib, Inertial Properties in Robotic Manipulation: An

Object-Level Framework

[12] M¨uller, J., Laue, T., R¨ofer, T.: Kicking a Ball – Modeling Complex

Dynamic Motions for Humanoid Robots. In: del Solar, J.R., Chown, E.,

Ploeger, P.G. (eds.) RoboCup 2010: Robot Soccer World Cup XIV.

Lecture Notes in Artificial Intelligence, vol. 6556, pp. 109–120. Springer

(2011)

https://www.google.com.pk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwiYuJLiu7XNAhVqCsAKHYabCk0QFggcMAA&url=http%3A%2F%2Fwww.robotic.dlr.de%2Ffileadmin%2Frobotic%2Falbu%2FKhatib_IJRR95.pdf&usg=AFQjCNGmvoQ8nYKkTbwQY_YAFdw-ewiRJg&sig2=YoPqhITgmWWVo2cyElXBZg&bvm=bv.124817099,d.ZGg&cad=rja
https://www.google.com.pk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwiYuJLiu7XNAhVqCsAKHYabCk0QFggcMAA&url=http%3A%2F%2Fwww.robotic.dlr.de%2Ffileadmin%2Frobotic%2Falbu%2FKhatib_IJRR95.pdf&usg=AFQjCNGmvoQ8nYKkTbwQY_YAFdw-ewiRJg&sig2=YoPqhITgmWWVo2cyElXBZg&bvm=bv.124817099,d.ZGg&cad=rja

