SECURING NETWORKS USING SOFTWARE DEFINED NETWORKS AND MACHINE LEARNING

By: Fazeela Mughal

2019-NUST-MS-CS-19 317739

Supervisor: Dr Abdul Wahid

Department of Computing

A thesis submitted in partial fulfillment of the requirements for the degree of Masters of Science in Computer Science (MSCS)

In

School of Electrical Engineering and Computer Science,

National University of Sciences and Technology (NUST),

Islamabad, Pakistan

(April 2022)

THESIS ACCEPTANCE CERTIFICATE

Certified that final copy of MS/MPhil thesis entitled "Securing Networks using SDN and Machine learning" written by FAZEELA MUGHAL, (Registration No 00000317739), of SEECS has been vetted by the undersigned, found complete in all respects as per NUST Statutes/Regulations, is free of plagiarism, errors and mistakes and is accepted as partial fulfillment for award of MS/M Phil degree. It is further certified that necessary amendments as pointed out by GEC members of the scholar have also been incorporated in the said thesis.

Signature:	Durching
Name of Advisor:	Dr. Abdul Wahid
Date:	25-May-2022
HoD/Associate D	ean:
Date:	
Signature (Dean/F	Principal):
Date:	

Approval

It is certified that the contents and form of the thesis entitled "Securing Networks using SDN and Machine learning" submitted by FAZEELA MUGHAL have been found satisfactory for the requirement of the degree

Advisor: Dr. Abdul Wahid

Signature: Annak

Date: 25-May-2022

Committee Member 1: Dr. Muhammad Moazam Fraz Simatura

26-May-2022

Committee Member 2: Prof. Hasan Ali Khattak

Signature:

Date: 26-May-2022

Signature: _____

Date:

Publish Date & Time: Friday, 27 May 2022 , 09:27:01

DEDICATION

This thesis is dedicated to my family especially to my sister, who encouraged me to do MSCS from NUST. Also I would like to dedicate this to my supervisor Dr. Abdul Wahid who guided, appreciated & motivated me in the whole thesis. Moreover, I also want to give credit to my friends; Raisa Suleman, Haris Ahmed & Muhammad Luqman who helped me in resolving every query.

Certificate of Originality

I hereby declare that this submission titled "Securing Networks using SDN and Machine learning" is my own work. To the best of my knowledge it contains no materials previously published or written by another person, nor material which to a substantial extent has been accepted for the award of any degree or diploma at NUST SEECS or at any other educational institute, except where due acknowledgement has been made in the thesis. Any contribution made to the research by others, with whom I have worked at NUST SEECS or elsewhere, is explicitly acknowledged in the thesis. I also declare that the intellectual content of this thesis is the product of my own work, except for the assistance from others in the project's design and conception or in style, presentation and linguistics, which has been acknowledged. I also verified the originality of contents through plagiarism software.

Student Name: FAZEELA MUGHAL

Student Signature:

ACKNOWLEDGEMENT

All praises be to ALLAH: Al-Muizz, Al-Kabeer, Al-Hadi and Al-Fattah

The successful completion of this thesis is accomplished by the devoted participation and cooperation of all guidance committee members. With gratitude and affection, I acknowledge active and guided guidance of my honorable supervisor Ass prof. Dr. Abdul Wahid. He supported me in hours of need and channelized my way in hard times. His motivation, guidance and supervision acted as the driving force that has enabled me to achieve my objective. I also admire and value participation of my respectable committee members; Associate Professor Dr. Moazam Fraz and Professor Dr. Hasan Ali Khattak for their time and advice. I am very grateful for the teachings of faculty members of Computer Science Department that has fueled my sense of continued determination over the years. I appreciate efforts of my all-family members, friends and class fellows who raised my morale and their motivation opened new ways for me. Their prayers and ALLAH's help had enabled me to be the best version of myself

Table of Contents

THESIS APPROVAL CERTIFICATE	i
DEDICATION	ii
CERTIFICATE OF ORIGINALITY	iii
ACKNOWLEDGEMENT	iv
ABBREVIATIONS	vii
LIST OF TABLES	viii
LIST OF FIGURES	viii
ABSTRACT	xi
Chapter 1 Introduction	1
1.1 Motivation	5
1.2 Problem Statement	6
1.3 Thesis Contribution	6
Chapter 2 Literature Review	8
Chapter 3 Methodology	
3.1 Datasets	
3.1.1 Generation of DDoS Dataset	
3.1.2 Available Datasets	
3.2 Tools and Technology	
3.3 Pre-Processing	
3.4 ML Classifiers	
3.5 Best Feature Selection	
Chapter 4 Results	
4.1.1 Results of ToN-IoT Dataset	

4.1.2 Results of Mendeley DDoS Dataset	40
4.1.3 Results of Generated DDoS Dataset in Mininet	44
4.1.4 Results of Generated DDoS Dataset in Packet Sender	49
Chapter 5 Discussion	54
Chapter 6 Conclusion & Future Work	58
6.1 Future Work	58
References	

ABBREVIATIONS

DEFINATION

ABBREVIATIONS

Distributed Denial of Service	DDoS
Denial of Service	DoS
Machine Learning	ML
Intrusion Detection System	IDS
Machine Learning based Intrusion Detection System	ML-IDS
Network Intrusion Detection System	NIDS
Logistic Regression	LR
K-Nearest Neighbor	KNN
Decision Tree	DT
Random Forest	RF
Multi-Layer Perception	MLP
Support Vector Machine	SVM
eXtreme Gradient Boosting	XGB
User Datagram Protocol	UDP
Transmission Control Protocol	ТСР
Packet Sender	PS

LIST OF TABLES

Table 2.1: Related Work for Traditional Networks	9
Table 2.2: Related Work for Other Networks	18
Table 3.1: Description of Features of Generated DDoS Attack in Packet Sender	22
Table 3.2: Description of Features of Mendeley DDoS Dataset	30
Table 4.1: Results of All Datasets	38

LIST OF FIGURES

Figure 1.1: DoS and DDoS Attack02
Figure-1.2: Types of DDoS Attacks03
Figure 1.3: UDP Flood Attack04
Figure 1.4: ICMP Flood Attack05
Figure 1.5: Types of IDS06
Figure 2.1 Software Define Network Architecture10
Figure 3.1: Implementation Flow
Figure 3.2: Classification of DDoS Dataset20
Figure 3.3: Protocol Type and Packet Limit21
Figure 3.4: Simulated Environment of Packet Sender
Figure 3.5: Topology of Generated DDoS Dataset23
Figure 3.6: Topology of SDN24
Figure 3.6: Topology of SDN
Figure 3.6: Topology of SDN
Figure 3.6: Topology of SDN. 24 Figure 3.7: Command for Connecting Remote Controller. 24 Figure 3.8: Adding Links 24 Figure 3.9: Pingall Command. 25
Figure 3.6: Topology of SDN.24Figure 3.7: Command for Connecting Remote Controller24Figure 3.8: Adding Links24Figure 3.9: Pingall Command25Figure 3.10: Ryu Manager25
Figure 3.6: Topology of SDN.24Figure 3.7: Command for Connecting Remote Controller.24Figure 3.8: Adding Links24Figure 3.9: Pingall Command.25Figure 3.10: Ryu Manager25Figure 3.11: Wireshark.25
Figure 3.6: Topology of SDN.24Figure 3.7: Command for Connecting Remote Controller.24Figure 3.8: Adding Links24Figure 3.9: Pingall Command.25Figure 3.10: Ryu Manager25Figure 3.11: Wireshark.25Figure 3.12: Packet Capture Using Wireshark26
Figure 3.6: Topology of SDN.24Figure 3.7: Command for Connecting Remote Controller.24Figure 3.8: Adding Links24Figure 3.9: Pingall Command.25Figure 3.10: Ryu Manager25Figure 3.11: Wireshark.25Figure 3.12: Packet Capture Using Wireshark26Figure 3.13: Scapy Tool.27
Figure 3.6: Topology of SDN.24Figure 3.7: Command for Connecting Remote Controller.24Figure 3.8: Adding Links24Figure 3.9: Pingall Command.25Figure 3.10: Ryu Manager25Figure 3.11: Wireshark.25Figure 3.12: Packet Capture Using Wireshark26Figure 3.13: Scapy Tool.27Figure 3.14: TCP & UDP Attack Command.27
Figure 3.6: Topology of SDN.24Figure 3.7: Command for Connecting Remote Controller.24Figure 3.8: Adding Links24Figure 3.9: Pingall Command.25Figure 3.10: Ryu Manager25Figure 3.11: Wireshark.25Figure 3.12: Packet Capture Using Wireshark26Figure 3.13: Scapy Tool.27Figure 3.14: TCP & UDP Attack Command.27Figure 3.15: Packets in Wireshark27

Figure 3.17: Pre-processing Steps	.32
Figure-3.18: Sudo Code of Standard Scalar and Normalization	. 33
Figure 4.1: Confusion Matrices of All Algorithms	. 36
Figure 5.1: ROC of ToN-IoT:	. 55
Figure 5.1.2: ROC of Mendeley	. 55
Figure 5.1.3: ROC of SDN	. 56
Figure 5.1.4: ROC of Packet Sender	. 56

Abstract

Machine Learning techniques are used in Networks to detect DoS and DDoS attacks and to resolves network security issues. As many researchers done their research either on real time datasets or synthetic datasets on different attacks however in our thesis, we aimed to check the performance of Machine learning algorithms, that which one is giving high accuracy in detection of DDoS attack. For this purpose, we have generated simulated datasets in Mininet and in Packet Sender tool. In addition, two well-known datasets has been chosen in which one of them is real time dataset that is ToN-IoT whereas the other one is synthetic dataset Mendeley DDoS. By applying Machine Learning techniques on these datasets, we investigate seven different algorithms: K-Nearest Neighbor, Decision Tree, Random Forest, Logistic Regression, Multi-Layer Perception, XG-Boost, Support Vector Machine and Ensemble Method, results are produced on the basis of accuracy rate. Results are computed on the basis of best features present in all datasets.

Chapter 1 Introduction

As the usage of internet in the new era is growing day-by-day therefore privacy and security issues are also considered. People prefer that their data should transfer to the destination with secure means. Privacy and security of any data should not be negligible in any system. Confidentiality and integrity of data is important, on internet it is also possible that one user might access the data of other user if there isn't any proper privacy mechanism implemented or we can say that any hacker can access or manipulate private data of other user over internet. Hackers attack on system for many reasons such as:

- To access information or resources.
- To manipulate information.
- To render a system unreliable or unusable.

There are many attacks which damage any computer network system either attacker attack from one particular host to any destination host (DoS) or from many hosts to one particular host (DDoS) [1] as shown in Figure 1.1. DoS attack is basically of two types; one is flooding the server in which large amount of packets are transferred from source host to destination server host and the other one is crashing the server by malicious traffic.

DDoS Attack

Figure 1.1 DoS and DDoS Attack

Distributed Denial of Service (DDoS) attack suspends the online services of a server either on temporary basis or permanently. There are three main categories of DDoS attack [2, 3, & 4]; Volume based attack, Application Layer attack and Protocol layer attack. These categories have sub category type of DDoS attack as shown in Figure 1.2.

Figure 1.2 Types of DDoS Attacks

- **UDP Flood:** UDP Flooding is basically included in volume based flooding, many source hosts targets a single destination host and sends UDP packets as shown in Figure 1.3.
- **Ping of Death:** POD attack is done by many source hosts sending multiple malformed packets or many malicious pings to a destination host [5].
- **ICMP Flood:** It slows down the destination host by sending requests without waiting for any response from server [6] as shown in Figure 1.4.
- Slow Loris: It is an application layer attack which partially looks like HTTP request connection. It opens the connection as long as possible so that the other users might not connect and access the target web server [7].
- SYN Flood: The hosts sends many SYN requests to destination host and destination host sends back SYN-ACK and source hosts ignore the acknowledgement and sends requests again and again which overwhelms the server [8].
- Zero-Day-Attack: All DDoS new and unknown attacks are represented by zero day attack [9].

- **NTP Flood:** It is reflection based Network Time Protocol amplification attack which sends volumetric UDP packets to and overwhelms the server. In NTP Flood an attacker may be spoofed its IP address and send UDP packets [10].
- **HTTP Flood:** Source hosts do not use malformed packets and IP spoofing, it sends legitimate HTTP GET/POST request to a target server which slows down the services of a server [11].

Figure 1.3 UDP Flood

Figure 1.4 ICMP Flood

1.1 Motivation:

Denial of Service (DoS) or Distributed Denial of Service (DDoS) can easily target a system so it is necessary to detect these attacks on time before having major damage to a network system. DDoS is the most common and major attack which can damage any network by massive traffic as the traffic generated from different source hosts to one particular destination host. Intrusion Detection System (IDS) plays an important role in detecting these attacks by analyzing and identifying normal and abnormal traffic in a network [12]. These days Machine learning based IDS are securing networks by detecting attack and doing prevention.

In Networks ML-based IDS are used to detect malicious and abnormal traffic flow [13]. There are two methods to detect malicious traffic as shown in Figure 1.5. First one is signature based detection which detects the threat we know about whereas the second one is known as anomaly based detection whose methodology of detection is change in behavior of traffic

Figure 1.5 Types of IDS

1.2 Problem Statement:

As compare to traditional approaches ML-based IDS is efficient and more accurate for the detection of anomalies. There have been a lot researches on many attacks in networking and detection of anomalies is happened by ML-based IDS [14]. Many authors worked on publically available datasets [14] and few of them generated simulated datasets [16] and showed the results in the form of accuracy and said simulated datasets are better because publically available datasets are not updated regularly without comparing results on both types of datasets, also they concluded few algorithms are performing well.

1.3 Thesis Contribution:

In this thesis, our aim is to check the performance of algorithms in detection of DDoS attacks in different datasets, in addition, our aim is to generate simulated UDP DDoS dataset on Packet Sender tool for traditional networks and TCP, UDP and ICMP DDoS dataset on Mininet for Software Defined Networks to check the performance of algorithms. Different datasets are publically available in which real-time and simulated datasets are included. In our research, two well-known datasets were selected to check the algorithms' performance on both types of

datasets. Necessary data pre-processing is done and seven algorithms has been tested and ensemble methods are applied on top three models which gave high accuracy. Here two datasets were selected and results are produced, there is one real-time dataset; ToN-IoT whereas the other one is simulated dataset; Mendeley DDoS [17].

Thesis report is divided into five major chapters listed below:-

- Chapter 1: Introduction
- Chapter 2: Literature Review
- Chapter 3: Methodology
- Chapter 4: Results
- Chapter 5: Discussion
- Chapter 6: Conclusion & Future Work
- Chapter 7: References

Chapter 2 Literature Review

In network systems, security became an important and challenging factor. In today's networking, cyber security plays an important role by providing security, integrity and confidentiality to users on internet. Intrusion can be in various forms on internet but the most common one is in the form of DoS and DDoS attack and for this Network Intrusion Detection Systems are used.

As in past there were some issues in detection of new attacks in a network system when intrusion is detected by Signature-based IDS, a research has been done to overcome the limitations of Signature-based IDS by the use of Anomaly-based IDS [19]. In many network systems, most uncertain traffic flow is evaluated by selecting limited features which helps in decision making and shows good performance which helps the controller to detect normal and malicious traffic [20].

Xie et al. [21] applied Machine learning techniques to find the optimal algorithms to classify the traffic, predict the Quality of Service or Quality of Experience, for routing optimization and for providing security and resource management. Different algorithms were applied to predict all of the above and for Traffic Classification the optimal algorithms were; Decision Tree, Random Forest, Deep NN, SVM KNN, for QoS/QoE; Decision Tree, KNN, Random Forest, Neural Network and for Resource Management the optimal algorithms were; Naive Bayes, Linear SVM, Radial SVM, Decision Tree and K-NN.

In article [22], authors tried to detect Low-Rate DDoS attack, for this he used CIC-DDoS Dataset and did evaluation on six models to detect DoS and DDoS attacks and got 97% overall accuracy for DDoS attacks but faced problems in finding LR-DDoS so they created simulated environment by using ONOS controller on Mininet Virtual Machine. In simulated environment which was having resemblance with real dataset they found out LR-DDoS

In Table 2.1, different attacks are identified also the type of dataset is mentioned either it is simulated or real-time based dataset.

Authors	Dataset Type	Attacks	Classifiers	Accuracy
			1.SVM	
[16]	Simulated Dataset	UDP Flood	2.Naïve Bayes	97.5%
			3.Logistic	
			Regression	
			4.Decision Tree	
[19]	Real-time Dataset	U2R, R2L Probe	1.ANN	97%
[22]	Real-time Dataset	LR-DDoS	1.J48	97%
			2.Random Forest	
			4.MPL	
			5.SVM	
[23]	Simulated Dataset	DDoS	1.SVM	High accuracy.
[24]	Real-Time Dataset	TCP & SYN	1.Decision Fusion	97%
				KM-IDS
[25]	Real-time Dataset	Warmhole	1. K-mean	achieved 70%
			2.Decision Tree	to 90%
[26]	Simulated Dataset	DDoS	1.SVM 2.Naive Bayes	97.14%
			4.Self Organizing Map	
			ана	

•

DDoS attacks are studied in detail in different network system such as in Traditional Networks, in Software Defined Networks which separates the forwarding plane to control plane by having centralized control plane as shown in Figure 2.1 In Table 2.2, there are some related work shown in which proposed solution and methodology is mentioned.

Fig 2.1 Software Defined Network Architecture

Sr	Title	Year	Journal	Proposed	Methodology	Limitations &
#				Work		Future Work
[27]	A survey on	2019	International	In the given	Authors selected	It is beneficial to
	ML		conference on	paper the	the papers and	extend the
	application		applied	author used	classify them in	analysis of
	for SDN		Cryptography	Machine	following	Machine
	security		& network	Learning	categories:	Learning
			security.	techniques for	Survey.	techniques used
				the security of	Proposal for	in reviewed
				SDN. They	framework.	papers with a
				also introduced	Experiments of	more detailed
				the standard	existing tools.	classification.
				dataset, tools	ML based IDS in	
				and test beds	SDN.	
				for research	ML Techniques:	
				purpose.	• PRM	
					• CNN	
					• ANN	
					• KNN	
					• NEAT	
					Generic	
					NN	
					Naive	
					Baves.	
[28]	Compariso	2020	Wiley Online	One of the	Six Algorithms	The author said
	n for ML		Library	most recent	were used to	that there is a
	Algorithms			solutions to	compare with each	need to pay
	For DDoS			detect a DDoS	other for DDoS	attention on the

	attack				attack is	using	attack o	letecti	on	select	ion of	data
	detection in				machine	abing		Noivo	0111	qualit	v	by
					loorning		•	Davia		quant	y	tho
	SDN.							Bayes		comp	anng	ule
					algorithm	is to	•	Decisi	ion	result	S • • •	OI
					classify	the		Tree.		detect	ion bet	ween
					traffic.		٠	Rando	om	simul	ation d	ataset
					Authors	also		Forest	ī.	and	real	time
					pointed	out	٠	SVM		based	datase	et.
					that the	main	٠	MLP				
					features	that	•	K-Nea	arest			
					identify			Neigh	bours			
					maliciou	S						
					traffic		On th	e bas	is of			
					compared	d to	process	sing ti	me &			
					normal	traffic.	accurac	cy a	author			
					It will n	nake it	found	out	that			
					easier to	build	Naive	Bave	es &			
					a	DDoS	Decisio	on tree	were			
					protectio	n	the m	ost su	itable			
					system v	with a	algorith	nme	intuoie			
					more co	mpact	argonti					
					data-	set,						
					focusing	only						
					on the	data						
					needed.							
[29]	A Flexible	2020	IEEE	Access	In the	given	Achiev	ed	95%	The	aim	of
	SDN based		8		paper,	they	accurac	cy rat	e by	impro	ving	the
	Architectur				designed	and	using	six	ML	perfor	mance	with
	e for				impleme	nted	models	:		newer	ML	. &
	identifying				modular	and	•	J48.		Deep	lea	rning
	&				flexible		•	Rande	m	mode	ls/algor	ithm
1							-	1 canal	/111		0-1	-

	Mitigating			security	Tree.	s.
	Low Rate			architecture to	• REP Tree.	Also in terms of
	DDoS			detect and	Random	scalability it is
	attacks			mitigate LR-	Forest.	important to
	using			DDoS attacks	• MLP.	include a
	Machine			in SDN	• SVM.	selective testing
	Learning.			environments.	By Canadian	mechanism of
				The modularity	Institute of	flows from the
				of the design	Cybersecurity CIC	Intrusion
				allowed one to	-DoS dataset they	Prevention
				easily replace	evaluated their	System to
				any module	performance on	Intrusion
				without	ML models.	Detection System.
				affecting the		
				other modules		
				of the		
				architecture.		
				They also		
				deployed their		
				architecture in		
				real virtualized		
				environment		
				using mininet		
				virtual		
				machine &		
				ONOS		
				controller.		
[21]	A Survey of	2018	IFFF	In the given	The learning	The given article
	MachineIEEELearningCommunicatiTechniquesons		Communicati	paper, authors	models researchers	attempts to briefly
			one Surveye	delivered the	found out that best	explore how ML
			comprehensive	classifiers for:	algorithms work	

Applied to	& Tutorials	analysis on the	QoS/QoE:	and when they
SDN:	21(1).	literature	Decision	should be used to
Research		having ML	Tree	solve problems in
Issues &		techniques	• KNN	SDN. The
Challenges.		which were	Random	significant
		applied on	Forest.	research
		SDN. For the	• Neural	challenges and
		perspective of	Network	future research
		QoS, traffic		directions in ML-
		classification,	Traffic	based SDN,
		QoE	Classification:	including high-
		prediction,	Decision	quality training
		resource	Tree.	datasets,
		management,	Random	distributed multi-
		routing	Forest.	controller
		optimization,	Deep NN	platform,
		& security.	• ML	improving
			Classifier.	network security,
			• SVM	cross-layer
			• KNN	network
			• Semi	optimization, and
			Supervised	incrementally
			Learning	deployed SDN.
			Routing	
			Optimization:	
			Decision	
			Tree	
			Random	
			Forest	
			Regrassion	

								Tree				7
							•	Neural				
								Network				
							Resou	rce				
							Mana	gement:				
							•	Naive				
								Bayes.				
							•	Linear				
								SVM				
							•	Radial				
								SVM				
							•	Decision				
								Tree				
							•	K-NN				
							Securi	ity:				
							•	Decision				
								Tree				
							•	Random				
								Forest				
							•	HMM				
							•	SVM				
							•	Naive				
								Bayes				
							•	Decision				
								Table				
							•	Deep NN				
							•	Bayes Net				
							•	SOM				
[30]	A Nov	el 2020	International	In th	ne	given	Two S	SDN datasets	Limited	type	s of	
	SDN		Conference	paper		they	were c	reated:	attacks	are	used	l

	Dataset for		on Network	handled	In our first SDN	in this paper we
	Intrusion		and Service	normal traffic	dataset number of	can add more.
	Detection		Management	and different	IoT devices	
	in			types of traffic	change time to	
	ІоТ			attacks (DoS,	time (Dynamic IoT	
	Networks			DDoS, Port	environment).	
				Scanning, OS	In second SDN,	
				Fingerprinting	they test the	
				& Fuzzing).	performance of	
				For this	attack detection	
				purpose they	models trained	
				introduced a	using the first	
				novel dataset	dataset in a	
				for IoT	dynamic IoT	
				environments	environment.	
				managed		
				software		
				defined		
				network.		
[20]	Machine-	2017	International	The given	They developed a	The current
	learning		Conference	paper proposed	new method to	proposed
	based		on Computer	threat aware	deal with	framework can be
	Threat-		Communicati	system based	undecided	enhanced by
	aware		ons and	on ML. This	data/alerts given	using following
	System in		Networks	system is	the high resilience	additional
	Software		(ICCCN)	consisted on	of SDN.	advanced
	Defined			the following:	With the help of	techniques:
	Networks			Data pre-	Utility	Multiple
				processing	Assessment they	Classifiers.
				Predictive data	achieve high	Contextual
				modeling for	accuracy.	Knowledge

				Ml and	The proposed	Advance
				anomaly	system reacts to	Sophisticated
				detection	uncertainty in	Response System.
				Decision	SDN by using	
				making for	Reactive Routing.	
				intrusion		
				response in		
				SDN.		
[31]	Machine	2017	International	To detect Flow	By using Pattern	
	Learning		Conference	based anomaly	Recognition of	
	Based		on Emerging	attacks in the	neural networks	
	Intrusion		Security	SDN	they detect almost	
	Detection		Technologies	environment,	all possible	
	System for		(EST)	they proposed	anomaly attacks.	
	Software			machine	For training data	
	Defined			learning	they used NSL-	
	Networks			(Neural	KDD Dataset and	
				Network)	Achieve 97%	
				based intrusion	accuracy rate.	
				detection for		
				SDN.		
[23]	An SVM	2019	International	In this paper,	Following	By improving
	Based		Conference	they	techniques are	feature
	DDoS		on emerging	implement	used to implement	correlation, traffic
	Attack		Networking	DDoS attack	and detect DDoS	generation, and
	Detection		Experiments	on Ryu SDN	attack on SDN:	real-time
	Method for		and	controller	Python based	performance we
	Ryu SDN		Technologies	using Mininet	Open Source	can extend the
	Controller			Emulator. And	Controller Ryu is	current work.
				for detecting	used.	

				DDoS attack	Simulate DDoS	
				SVM is used	attack using	
				and after that	Mininet Emulator.	
				they added	SVM is used to	
				flows in	detect DDoS	
				switches by	attack	
				doing this the	To differentiate	
				percentage of	and train the	
				DDoS attack is	model with normal	
				reduced by	and abnormal	
				36%.	traffic Entropy is	
					used.	
1	1	1	1		1	

Table 2.2 Related Work for other Networks

By extensive literature review, we aimed that to work on real time datasets and on simulated datasets which are publically available to detect DDoS attacks and compare the accuracy results of algorithms. By doing so, optimal algorithms for each dataset can be found either they are tree based algorithms like Decision Tree, Random Forest or Regression Tree based like Logistic Regression. For doing this evaluation four datasets are used in this article to detect DDoS attack.

Chapter 3 Methodology

Over all implementation is divided into datasets, Analysis, Preprocessing, Feature Selection, Machine Learning classifiers and their hyper-parameter tuning. Flow diagram of implementation is given below:

Figure 3.1 Implementation Flow

3.1 Datasets:

Different DDoS datasets are used in our research; we have generated UDP flood dataset in Packet Sender tool for traditional networks whereas for Software Defined Networks we generated TCP, UDP and ICMP DDoS attack dataset in mininet [32], in addition, we have also selected two well-known real-time and synthetic datasets from internet. Classification of datasets is shown in Figure 3.2.

Figure 3.2 Classification of DDoS Datasets

3.1.1 Generation of DDoS Dataset in Packet Sender:

UDP traffic is generated using Packet Sender which is an open source utility that allows sending and receiving of TCP and UDP packets. Packet Sender operates at Network Layer (Layer-3), independent of switch configuration [33]. In Packet Sender tool we can define the limit of malicious traffic and time delay also protocol type can be decided either IPv4 or IPv6 as shown in Figure 3.3. 🚑 Packet Sender Settings

Network Display Smart Responses	
Basic	Additional UDP/TCP/SSL Settings
Enable UDP Servers UDP Server Ports (comma-separated, 0 for random)	IPv4 Only IPv6 Only Bind This: Your IP Cancel Resending after # packets 20000 Attempt Receive Before Send
TCP Server Port (comma-separated, 0 for random) TCP Server Port (comma-separated, 0 for random) TCP Server Port (comma-separated, 0 for random) Set the server port to 0 if you want to up multiple Packat Sender instances	Sou ms delay after connect (slow devices) Persistent TCP Connections Resolve DNS during input (old method)
Set the serve points to thin you want to full multiple naket serve instances. Translate macros when sending Send a basic response with macro support Response Data ASCII	Ignore SSL Errors (Wrong host, expired, self-signed, etc) Im SSL Server may use an internal snake oil cert SSL CA Certificates Path from where to load the CA certificats (lea Browse SSL Local Certificate File path for the client side local certificate Browse SSL Private Key File path for the client side private key
Online Documentation	OK Cancel

 \times

Fig 3.3 Protocol Type & Packet Limit

The dataset is generated in simulated environment (Figure 3.4) in Client-Server Architecture. Delivery of packets is on the basis of logical addressing scheme which ensures the host-to-host delivery.

k Pa	icket Se	ender - IPs	s: 192.168.0	0.102, 192.168.	.17.1, 192.168.12	29.1, 192.16	8.56.1, fe80:	:dcef:5aa	b:593e:9f63%ethernet_32777, fe80::d84e:7614	:6859:2	387%etherr	net_327	75, fe80::cc76:e	e36:3936:2	b59%ethern	et_32776, f	e80::10d:c3:a	820:51d	- 6	ı x
ile	Tools I	Multicast	Help																	
	Jama																			
	SCIT	GET /HT	TR/1.0\rlot	iost: paglacoda	comirinirin															
		47.45.54.2	0.2620.491		20 20 0d 05 49 6	E 70 74 0	0 60 61 67 6		f c 4 c 5 2 c f c 4 0 4 0 = 0 4 0 =									~	Load	Tela
		102.16	0 21 20 40 1	54 54 50 21 51 .	28 30 00 08 48 6	17574382	0 05 01 07 0	C 03 03 0		Dest	90		Decend Delay	0.1				Sand	LUGU Sa	
	Auuress	192.10	38.0.101						<u> </u>	Port	80		Reserve Delay	0.1	•			Send	34	
Sea																	Dele	te Saved Pack	et 🗌 Pe	rsistent TCP
							AS	CII										Hex		
1	\f7\e	3\01\00\0	00\01\00\0	00/00/00/00/00	0\08dannagle\()3com\00\(00\01\00\01					f7	e3 01 00 00 01 (00 00 00 00	00 00 08 64	61 6e 6e 6	1 67 6c 65 03	63 6f 6d 00 00	01 00 01	
2	\91\	86\01\00\	00\01\00\	00\00\00\00\0	0\07example\0)3com\00\0	0\01\00\01						8Ь 01 00 00 01	00 00 00 0	00 00 07 65	5 78 61 6d 1	70 6c 65 03 63	6f 6d 00 00 0	1 00 01	
3	\r\nl	USER anor	nymous\r\	nPASS anony	mous\r\nquit\ı	r∖n						0d	0a 55 53 45 52	20 61 6e 6	6e 79 6d 6f	75 73 0d 0	a 50 41 53 53	20 61 6e 6f 6e	79 6d 6f 7	5 73 0d
4			0\r\nHost	naglecode.co	om\r\n\r\n								45 54 20 2f 20 4	48 54 54 50	2f 31 2e 30	0d 0a 48 61	f 73 74 3a 20	6e 61 67 6c 65	63 6f 64 6	2e 63 f
5	GET	/ HTTP/1.	0\r\nHost	example.com	n\r\n\r\n							47	45 54 20 2f 20 4	18 54 54 50	2f 31 2e 30	0d 0a 48 61	f 73 74 3a 20 (65 78 61 6d 70	6c 65 2e 6	3 6f 6d (
۹ (_	_				
Cle	ar Log (237)													Log Traffi	c Save	Log Sa	ve Traffic Pack	et Copy t	o Clipboard
	Tir	ne 🔻	From IP	From Port	To Address	To Port	Method	Error	ASCII						He					Ê
P	■ 16:4	6:06.481	You	58397	192.168.0.101	80	UDP		GET / HTTP/1.0\r\nHost: naglecode.com\r\r	n\r\n 4	47 45 54 20	2f 20 48	54 54 50 2f 31 2	2e 30 0d 0a	48 6f 73 74	3a 20 6e 6	1 67 6c 65 63	6f 64 65 2e 63	6f 6d 0d 0	a Od Oa
	i 16:4	6:06.381	You	58397	192.168.0.101	80	UDP		GET / HTTP/1.0\r\nHost: naglecode.com\r\r	n\r\n 4	47 45 54 20	2f 20 48	54 54 50 2f 31 2	2e 30 0d 0a	48 6f 73 74	3a 20 6e 6	1 67 6c 65 63	6f 64 65 2e 63	6f 6d 0d 0	a Od Oa
ľ	■ 16:4	6:06.281	You	58397	192.168.0.101	80	UDP		GET / HTTP/1.0\r\nHost: naglecode.com\r\r	n\r\n 4	17 45 54 20	2f 20 48	54 54 50 2f 31 2	2e 30 0d 0a	48 6f 73 74	3a 20 6e 6	1 67 6c 65 63	6f 64 65 2e 63	6f 6d 0d 0	a Od Oa
	i 16:4	6:06.180	You	58397	192.168.0.101	80	UDP		GET / HTTP/1.0\r\nHost: naglecode.com\r\r	n\r\n 4	47 45 54 20	2f 20 48	54 54 50 2f 31 2	2e 30 0d 0a	48 6f 73 74	3a 20 6e 6	1 67 6c 65 63	6f 64 65 2e 63	6f 6d 0d 0	a 0d 0a
	■ 16:4	6:06.080	You	58397	192.168.0.101	80	UDP		GET / HTTP/1.0\r\nHost: naglecode.com\r\r	n\r\n 4	17 45 54 20	2f 20 48	54 54 50 2f 31 2	2e 30 0d 0a	48 6f 73 74	3a 20,6e 6	1 67 6c 65 63	6f 64 65 2e 63	6f 6d 0d 0	a 0d 0a 🔄
• (Go to	o Settings	to activate		
end	d: UDP (Resend) Resending (1)																			

Fig 3.4 Simulated Environment of Packet Sender

Sr #	Features	Description
1	Time	Time in seconds.
2	Source IP	The IP address of device sending the packet.
3	Destination IP	The IP address of device receiving the packet.
4	Source Port	The port of device sending the packet.
5	Destination Port	The port of device receiving the packet.
6	Method	Method represents the protocol type.
7	ASCII	ASCII value which represents Packet Size.
8	Hex Value	Hex value represents the byte count.
9	Attack, Non-Attack	Attack is represented by '1' whereas normal traffic is represented by '0'.

In Packet Sender DDoS dataset there are nine features, which are shown in Table 3.1.

Table 3.1 Description of Features of Generated DDoS Attack in Packet Sender

UDP traffic is generated on the basis of scenario shown by Figure 3.5. The destination victim IP is 192.168.0.101 whereas source IPs of hosts which are targeting destination IP are; 10.0.0.6, 10.0.0.2, 126.0.0.2, 126.0.0.5 and 192.168.1.106. Normal traffic flow is generated by the hosts which are in green having IPs; 126.0.0.3, 126.0.0.4, 126.0.0.6, 10.0.0.3, 10.0.0.7 and 192.168.1.104 towards Destination IP: 192.168.0.101.

Figure 3.5 Topology of Generated DDoS Dataset in Packet Sender

3.1.1 Generation of DDoS Dataset in Mininet:

In mininet, we have generated TCP, UDP and ICMP DDoS attacks with normal traffic flow. There are three hosts; **h1**, **h2**, and **h3** which are attached to a switch **s0** and a central Ryu controller **c0** as shown in Figure 3.6. Host1 and host2 are attacking on host3 by using Scapy tool IP spoofing is done. Normal traffic flow is done by their IPs. Host1 has IP **10.0.0.1**, h2 has **10.0.0.2** whereas h3 has **10.0.0.3** and spoofed IPs is **10.0.0.23**, **126.0.0.1**, **126.0.0.2**, **126.0.0.3**, **192.168.0.1**. To check the configuration of topology following command (Fig 3.7) is used:

Figure 3.6 Topology of SDN

× 🕞 Ubuntu 64-bit 20.04.3 ×	
s 🖻 Terminal 🔻	فروری 15 14:54
Я	rest87321@rest87321-virtual-machine: ~
rest <u>87321@r</u> est87321 <mark>.Mirtu</mark> al-machine:~S	sudo mntopo single,3macswitch ovskcontroller remote

Fig 3.7 Command for Connecting Remote Controller

After this command you can see that (in Fig 3.8) Ryu remote controller is connected 127.0.0.1 with port 6653 and adding the links.

Fig 3.8 Adding Links

To check the reachability/connection used the command **pingall** h1 pings h2 and h3, h2 pings h1 and h3 whereas h3 pings h1 and h2 as shown in Fig 3.9.

Fig 3.9 Pingall Command

Open another terminal by going to home then click on ryu folder again click on another sub-ryu folder now click on apps. In this terminal you can monitor packet flow (as shown in Fig 3.10)

Fig 3.10 Ryu Manager

We cannot capture these packets by ryu manager therefore for packet capturing used Wireshark tool by running the command **sudo wireshark** in another terminal. By running this command wireshark window is opened as shown in Fig 3.11.

Fig 3.11 Wireshark

Now wireshark is capturing packets we run another pingall command which can be seen from Fig 3.12 that h3 sends ICMP request to h2 and h2 replied to h3.

Fig 3.12 Packet Capture using Wireshark

In mininet xterm h1 command open Node: h1 window where we can run scapy command to send malicious packets to other host [32] as shown in Fig 3.13. We can open any host and send malicious traffic also we can set the packet limit and packet type like TCP, UDP and ICMP.

× 🕞 Ubuntu 64-bit 20.04.3 ×					
s 🕺 XTerm 🔫		فروری 15 14:57			
		"Node: h1"			
root@rest87321-virtual-machine:/home/rest87321# sudo scapy INFO: Can't import matplotlib. Won't be able to plot. INFO: Can't import PyX. Won't be able to use psdump() or pdfdump(). MARNING: No route found for IPv6 destination :: (no default route?)					
aSPY//MASa apugug/CV///////Ca sY/////Spcs_scpCY//Pp avprageneedsDP//Pp sy///C avprageneedsDP//Pp sy///C p//Ac sc///a p//Ac sc//// p//Ac sC///A p///Ac sC///A scccccp///SP///Ac sC///A st//Ps/////Cc aC sC//A st//Ps/////Cc aC sC//A st//Ps/////Cc aC sC//A st//Ps//////Cc aC sC//A cagCyag///Aa p///AC st/Ps//////Cc aC sC//A st//Ps//////CC aC sC//A cagCyag///Aa p///AC st//Ps//////CC aC sC//A st//Ps///////CC aC sC//A cagCyag///Aa p///AC st//Ac sC//AC st//AC sC//A	Helcome to Scapy Version 2.4.3 https://github.com/secdev/scapy Have fun! Craft packets before they craft you. Socrate				

Fig 3.13 Scapy Tool

As shown in Fig 3.14 that we have sent 5 TCP packets at destination 10.0.0.3 from spoofed IP 126.0.0.3 and 9 UDP packets from IP 126.0.0.1 here dots are representing the packets.

		"Node: h2"		
root@rest87321-virtual-machine:/home/rest87321# sudo scapy INFO: Can't import matplotlib. Won't be able to plot. INFO: Can't import PyX. Won't be able to use psdump() or pdfdump(). #FRNIMS: No route found for IPv6 destination :: (no default route?)				
aSPY///RSa app.ms/Communication app.ms/Communication app.ms/Communication app.communi	YCa I Y//Pp I Me cY//S I es y//Y I ht yP///Y I ht sC//YA I g///A I 6//A I o p//Y I pa S//P I pY/Ya I aC//Yp I //YSs Sps	lcome to Scapy rsion 2.4.3 tps://github.com/secdev/scapy we fun! craft a packet, you have to be a sket, and learn how to swim in e wires and in the waves. — Jean-Claude Van Damme		
>>>> sendp(Ether(src=RandMAC())/I	using IP(src='126.0.	IPython 7,13,0).3', dst="10.0.0.3")/TCP(sport=135,dport=135), count=5)		
<pre>Sent 5 packets. >>> sendp(Ether(src=RandMAC())/IP(src='126.0.0.1', dst="10.0.0.3")/UDP(sport=135,dport=135), count=9:)</pre>				
Sent 9 packets.				

Fig 3.14 TCP and UDP Attack Command

As the packets are sending from source host to destination host Wireshark is capturing these packets which are shown in Fig 3.15.

_			45:24	45	
5	Wireshark 🔻	فروری 15 15:21 Wireshark 15:21			
	Capturing from s1-eth2				
<u>F</u> ile	<u>Edit View Go</u> Capture <u>A</u> nalyze <u>Statistics</u> T	elephony <u>W</u> ireless <u>T</u> ools <u>H</u>	lelp		
\square	🗖 🖉 📄 📄 🖉 🏹 🔶 🖷	♦ 🖄 春 👱 📃 📕	€, €,		
	Apply a display filter <ctrl-></ctrl->				
No.	Time Source	Destination	Protocol Le	ngtr Info	
→ F	28 422,974160370 126,0,0,3 29 588,535644398 60:00:06_00:06 30 588,538141042 00:00:06_00:00 31 588,558588779 126,0,0,1 32 588,566990127 126,0,0,1 33 588,5669912143 126,0,0,1 34 588,566581406 126,0,0,1 35 588,570711427 126,0,0,1 35 588,575197249 126,0,0,1 37 588,575197249 126,0,0,1 38 588,575197249 126,0,0,1 38 588,575197249 126,0,0,1 38 588,575197349 126,0,0,1 38 588,575197349 126,0,0,1 38 588,575197249 126,0,0,1 38 588,575197249 126,0,0,1 39 588,57519837 126,0,0,1 39 588,577519837 126,0,0,1 30 588,577519837 126,0,0,1 30 588,577519837 126,0,0,1 30 588,577519837 126,0,0,1 30 588,577519837 126,0,0,1 30 588,577519857 126,0,0,1 30 588,577519857 126,0,0,1 30 588,577519857 126,0,0,1 30 588,577519857 126,0,0,1 30 588,577519857 126,0,0,1 30 588,577519857 126,0,0,1 30 588,57751975497 126,0,0,1 30 588,577	10.0.0.3 10.00.00 10.0.0.3 10.0.0.0.3 10.0.0.0.0.3 10.0.0.0.3 10.0.0.0.0.0.0.0.0 10.0.0.0	TCP ARP UDP UDP	34 [TCP Retransmission] 135	
	 Internet Protocol Version 4, Src: 10.0.0.1, Dst: 10.0.0.2 Internet Control Message Protocol 				

Fig 3.15 Packets in Wireshark

In our dataset, we have generated 153240 attacks and 98912 normal traffic. UDP attacks are 77163 where as TCP attacks are 39620 and ICMP attacks are 36457.

3.2.1 Available Datasets:

Following publically available datasets are used in our research:

1. ToN-IoT:

It is collected from several heterogeneous sources from IIoT and IoT sensors and designed at UNSW Canberra at Australian Defence Force Academy. It was gathered in parallel manner to collect many cyber-attacks and normal traffic from a network system. This dataset has 127 features and by these features it can be seen that it is the updated one which comes after BoT-IoT and covers more attacks [34].

2. Mendeley DDoS:

It is generated in simulated environment, it has 24 features and its results are high for Random forests its accuracy rate is 98.8% with minor false rate alarm depending on these features. It is simulated that's why authors said that results are high [35].

Features	Description
Time	Time in seconds
Source_IP	IP address of packet from where it was sent.
Destination_IP	IP address of packet to where it was received.
Frame Length	Length of Packet in Bytes.
Frame Number	Incremental Packet Count.
Source_Port	TCP source port of packet.
Destination_Port	TCP destination port of packet.
АСК	Acknowledgement flag of packet.
SYN	If packet is TCP then SYN flag is zero and if it is empty then it's not TCP packet.

TCP_Protocol	If packet belongs to transport layer IP it is TCP or UDP packet.
TTL	Value of packet's Time to live.
RST	Flag

Table 3.2 Description of Features of Mendeley DDoS Dataset

3.2 Tools and Technology:

Python language is used for the analysis of algorithms, also Jupyter Notebook, Anaconda and Packet Sender Tool is used in our research.

ML-based methods are used to detect DDoS attacks in a dataset [36]. As we have selected the above mentioned datasets which are different from each other on the basis of attack, non-attack, categories, some features have the value as a string whereas some are in the form of 0 (non-attack) and 1 (attack). ToN-IoT, Generated dataset and Mendeley DDoS Datasets are in the form of attack non- attack, and different categories of attacks are involved in it. Exploratory data analysis is done by Jupyter notebook in which loaded all required libraries, dataset and selected required columns. Flow of ML based Detection System is given in Figure 3.16.

Figure 3.16 Flow of ML-based Detection System

3.3 Pre-Processing:

To enhance the performance of algorithms we only required certain features for our research therefore, data pre-processing is done on each dataset. Following data pre-processing steps were performed on datasets as shown in Figure 3.17:

- i Useless columns were dropped in each dataset.
- ii Blank cells were filled by 0 or -1 in some datasets.

- iii As data is in mixed format (integer, objects) so it were converted into int 64 category.
- iv Standard scalar were also applied.
- v For data normalization label encoder is used.

Figure 3.17 Pre-Processing Steps

Feature standardization and normalization can be done by the procedure mentioned in [37] Figure 3.18.

Sudo Code For Standard Scalar and Normalization

- 1. df scalar= StandardScalar()
- 2. scalar.fit()
- 3. normalized_df=scalar.transform(df)
- 4. normalized_df=Convert to Dataframe(normalized_df
- 5. le = Label Encoder()
- 6. for x in columns
- 7. normalized_df[x] = le.fit_transform(normalized_df[x])
- 8. best_feature = normalized_df[all columns]
- 9. target_features = normalized_df[target column]

Figure 3.18 Sudo-Code for Standard Scalar and Normalization

3.4 ML Classifiers:

Seven different ML classifiers were used for learning different patterns. Following classifiers were used in our research:

- **Logistic Regression:** LR is a statistical analysis technique which uses to predict a value on the basis of prior known knowledge of dataset [41].
- **Decision Tree:** In DT the decision is taken by learning simple decision rules.[42]. As it can be seen from its name that for classification it uses tree structure. It gives best classification rates by making small subsets of dataset.
- **Support Vector Machine:** SVM is used for finding hyper-planes which distinguish data points [43].
- **Random Forest:** While growing the trees it adds extra randomness to the classifier. It searches and select best features when splitting any node. It produces good prediction and performs very well in both classification and regression tasks [44].
- **K- Nearest Neighbour:** It is also used for regression and classification tasks. Its learning methodology is simple; it determines the value of a point by analysing its nearest data points [45].

- **Multi-Layer Perception:** MLP can distinguish the data which is not linearly separable. It can find any abnormality by its gesture/behaviour, also it has the ability that how to do tasks on a particular given dataset [46].
- **XGBoost:** It's an implementation of Gradient Boosted Decision Trees .It is used for tabular or structured data, designed for efficient performance and learning speed [47].
- **Ensemble Methods:** It is a technique where various models are combined for better results [48].

3.5 Best Features Selection:

All columns were taken and run Random Forest classifier then results were checked and exclude certain features and order important features. Following total number of features were selected in each dataset which fits best in them for our research purpose.

3.5.1 Features of ToN-IoT:

In ToN-IoT, there are 127 features in total, after pre-processing the selected features are 50 which were useful in our research.

3.5.2 Features of Mendeley DDoS:

Mendeley DDoS is a simulated dataset it has 24 features in it and here we selected 20 features which are highly contributing in it. Feature selection is done by evaluating Random Forest classifier.

3.5.3 Feature Importance of Generated DDoS Dataset in Mininet:

There are total 8 features from which we have used 5 features in our research which are contributing highly. Selected features are; Time, Source, Destination, Protocol and Length.

3.5.4 Feature Importance of Generated DDoS Dataset in Packet Sender:

We generate it in simulated environment in packet sender tool; it has nine features in total and all features are important in detecting DDoS attack.

Chapter 4 Results

In this section, results were produced on the basis of feature selection. First of all, we have selected best features of each dataset by calculating feature importance of given dataset and then we provided the Grid Search CV our desired algorithms and possible hyper-parameters which returned us the best parameters for each specific algorithm, then all the algorithms were trained based on those hyper-parameters and produced results.

It can be seen from Table 4.1 that accuracy rate of different algorithms in every dataset has different. All datasets have high accuracy rate of decision tree and random forest and XGBoost whereas Logistic Regression have least accuracy rate among all datasets. Here the results are on the basis of individual best features of datasets.

Algorithms	Accuracy of ToN-IoT	Accuracy of Mendeley	Accuracy of SDN	Accuracy of Packet Sender
Logistic Regression	90.12%	64.06%	91.64%	62.93%
K-Nearest Neighbor	98.47%	93.71%	99.79%	97.48%
Multi-Layer Perception	95.26%	78.26%	90.52%	65.54%
Decision Tree	97.07%	94.45%	97.53%	100%
Random Forest	99.29%	99.98%	99.66%	100%
XG-Boost	98.44%	99.99%	99.79%	100%
Support Vector Machine	91.50%	73.82%	63.20%	62.98%
Ensemble	99.27%	99.90%	99.23%	100%

 Table 4.1 Results of All Datasets

4.1.1 Results of ToN-IoT Dataset:

In this dataset, the performance of every algorithm is good however RF, XGB and KNN performed very well in less time whereas SVM takes a lot of time. Following are the

confusion matrixes of each algorithm which shows accuracy rate and misclassification rate.

Figure 4.1.1 Confusion Matrix of Decision Tree of ToN-IoT

Figure 4.1.2 Confusion Matrix of K-Nearest Neighbour of ToN-IoT

Figure 4.1.3 Confusion Matrix of Logistic Regression of ToN-IoT

Figure 4.1.4 Confusion Matrix of Random Forest of ToN-IoT

Figure 4.1.5 Confusion Matrix of Multi-Layer Perception of ToN-IoT

Figure 4.1.6 Confusion Matrix of XG-Boost of ToN-IoT

Figure 4.1.7 Confusion Matrix of Support Vector Machine of ToN-IoT

Figure 4.1.8 Confusion Matrix of Ensemble Method of ToN-IoT

Accuracy Bar Graph 4.1.1 of ToN-IoT

4.1.2 **Results of Mendeley DDoS Dataset:**

As this dataset is simulated so we achieved 94.45% accuracy rate of Decision Tree and for Random Forest 99.98% whereas the accuracy of XG-Boost is 99.99%. In this dataset other algorithms such as Logistic Regression achieved 64.06% accuracy rate whereas Multi-Layer Perception achieved 78.26% and Support Vector Machine have 73.82% accuracy rate, overall these algorithms performed well but in comparison of DT, RF and XGB have low accuracy rate. As shown in following confusion matrices:

Figure 4.2.1 Confusion Matrix of Decision Tree of Mendeley

Figure 4.2.2 Confusion Matrix of Logistic Regression of Mendeley

Figure 4.2.3 Confusion Matrix of K-Nearest Neighbour of Mendeley

Figure 4.2.3 Confusion Matrix of Random Forest of Mendeley

Figure 4.2.4 Confusion Matrix of Multi-Layer Perception of Mendeley

Figure 4.2.5 Confusion Matrix of XG-Boost of Mendeley

Figure 4.2.6 Confusion Matrix of Support Vector Machine of Mendeley

Figure 4.2.7 Confusion Matrix of Ensemble Method of Mendeley

Accuracy Bar Graph.4.1.2 Results of Mendeley

4.1.3 Results of Generated DDoS Dataset in Mininet:

The results are on the basis of malicious and normal traffic; every algorithm performs very well in detecting DDoS attack but four algorithms are giving high accuracy rate such as KNN, DT, RF and XGB also ensemble method is applied on DT, RF and XGB algorithms and as a result accuracy of ensemble method is 99.23%. Following are the normalized Confusion Matrices of algorithms:

Figure 4.3.1Confusion Matrix of Logistic Regression of Mininet

Figure 4.3.2 Confusion Matrix of K-Nearest Neighbor of Mininet

Figure 4.3.2 Confusion Matrix of Multi-Layer Perception of Mininet

Figure 4.3.3 Confusion Matrix of Decision Tree of Mininet

Figure 4.3.4 Confusion Matrix of Random Forest of Mininet

Figure 4.3.5 Confusion Matrix of XG-Boost of Mininet

Figure 4.3.6 Confusion Matrix of Support Vector Machine of Mininet

Figure 4.3.7 Confusion Matrix of Ensemble Method of Mininet

Accuracy Bar Graph 4.1.3 of SDN

4.1.4 Results of Generated DDoS Dataset in Packet Sender:

Five algorithms performed very well in this dataset; Decision Tree, Random Forest, XG-Boost and Ensemble Method by giving 100% and KNN gave 97.48% accuracy rate whereas Logistic Regression and SVM didn't perform well by giving accuracy rate of 62.93% and 62.98% respectively. Following are the Confusion Matrices of algorithms:

Figure 4.4.1 Confusion Matrix of Logistic Regression of PS

Figure 4.4.2 Confusion Matrix of K-Nearest Neighbour of PS

Figure 4.4.3 Confusion Matrix of Decision Tree of PS

Figure 4.4.4 Confusion Matrix of Random Forest of PS

Figure 4.4.5 Confusion Matrix of Multi-Layer Perception of PS

Figure 4.4.6 Confusion Matrix of XG-Boost of PS

Figure 4.4.7 Confusion Matrix of Support Vector Machine of PS

Figure 4.4.8 Confusion Matrix of Ensemble Method of PS

Accuracy Bar Graph 4.1.4 of Packet Sender

Chapter 5 Discussion

As many researchers worked on publically available datasets [22, 29] in detection of DDoS attacks whereas few of them generated their own simulated datasets based on UDP attack and concluded that simulated DDoS datasets are better because publically available datasets are not updated regularly [16] without comparing results on both types of datasets, also they concluded few algorithms are performing well.

Considering the problem statement, we have generated simulated DDoS datasets for Traditional Networks in Packet Sender tool whereas for Software Defined Networks in Mininet using Scapy tool. Dataset for traditional networks is based on UDP traffic whereas SDN DDoS dataset is based on TCP, UDP and ICMP traffic. In addition, publically available two datasets were also used for comparative analysis; ToN-IoT (real-time) and Mendeley DDoS (simulated). Seven different algorithms based upon classification, regression and neural network are investigated for detection of DDoS attacks & ensemble method is also applied on top three algorithms for better results.

Evaluation of Datasets by Algorithms:

As it can be seen from the results of both types of datasets; either it is real time based datasets or simulated datasets, in order to achieve maximum performance of any algorithm, feature selection and hyper-parameter tuning matters a lot. As we have selected best features from the datasets individually by evaluating feature importance and then we provided the Grid Search CV our desired algorithms and possible hyper-parameters which returned us the best parameters for each specific algorithm, then all the algorithms were trained based on those hyper-parameters. On investigation of algorithms we found out that Decision Tree, Random Forest, XG-Boost is giving highest accuracy rate in detection of malicious traffic whereas Logistic Regression has less accuracy rate overall as shown in Table 4.1. Other algorithms behave differently in each dataset e.g MLP gave 65.54% accuracy in Packet Sender, in Mendeley its accuracy is 78.26% whereas in SDN and in ToN-IoT the accuracy is in 90s because of the different nature of each dataset generated in particular environment either real-time or simulated and the change in qualitative features of each dataset.

Evaluation of algorithms on the basis of time shows that Support Vector Machine algorithm is not an efficient algorithm in our research because it took many days in training and testing. Although K-Nearest Neighbor is slow learner it took many hours as compare to other algorithms, Logistic Regression and Random Forest took shorter time for training and testing. Decision Tree, Multi-Layer Perception and XG-Boost took an average time for training and testing.

Following are the Receiver Operating Characteristic curves of both types of datasets:

If we look at the ROCs; Random Forest, Decision Tree and XG-Boost have outperformed in most of the datasets and got higher average accuracy than other algorithms. It is mainly due to the reason that tree splits on the basis of entropy.

Comparative Analysis of Real-Time & Simulated Datasets:

To support our research analysis first of all, in general consider strength and weaknesses of realtime based and simulated DDoS datasets that is:

- Real-time based scenarios are more complex than simulated.
- Real-time based datasets has more features than simulated datasets.
- Real-time based datasets generation is expensive than simulated datasets.
- Real-time based datasets took a lot of time in generating and detecting whereas simulated datasets took less time because of fewer features.

As author [16] considered that simulated DDoS datasets are better because publically available real time datasets are not updated regularly. However, in our research we found out that publically available datasets are also good in detection of DDoS attack because ToN-IoT performed very well just like other simulated datasets. Both types of datasets are better in their own ways such as: if we look at the nature of datasets and the criteria of generating attacks in particular environment they directly influence the performance of algorithms. It also depends on the qualitative number of features in each of the dataset that have been taken in the thesis have huge impact on the machine learning algorithms. As the total number of features of ToN-IoT is 127 whereas SDN has 8, Mendeley DDoS 24 and Packet Sender DDoS dataset has 9 features. Therefore, features and feature selection matters a lot in evaluation of algorithms results'. According to our research, simulated datasets took less time for each algorithm for training and testing because of fewer features whereas ToN-IoT took more time however, the accuracy rate of algorithms shows that both datasets are better in detection of DDoS attacks.

Chapter 6 Conclusion & Future Work

In our thesis, we have generated two datasets of DDoS attacks, in addition, we have also selected two well-known real-time and synthetic datasets [ToN-IoT & Mendeley] from internet for accuracy comparison and then applied machine learning techniques for the detection of attacks. In our generated datasets; one is based on traditional networks, generated on Packet Sender Tool whereas the other one is based on SDN generated in Mininet using Scapy tool and captured by Wireshark. We have selected seven different algorithms to investigate the accuracy of datasets as well as to evaluate the algorithms whether which of these are performing well in detection of DDoS attacks. On investigation we found out that every dataset, either it is real time dataset or simulated; Decision Tree, Random Forest and XG-Boost performed well and have highest accuracy rate in detecting DDoS attack whereas the performance of Logistic Regression was not good in most of datasets as compare to other algorithms. Furthermore, Ensemble Method was applied on DT, RF and XGB and after that datasets such as ToN-IoT, Mendeley, SDN and Packet Sender achieved the accuracy rate of 99.27%, 99.90%, 99.23% & 100% respectively. The motive of our thesis was to identify the performance of Machine Learning algorithms on both types of datasets and we found out that three algorithms have got highest accuracy rate among other algorithms and both types of datasets are better in detection process.

6.1 Future work:

In future, if any researcher will take these datasets, the results may differ because of selection of less or more number of features and hyper-parameters. Important Future research works includes prevention of DDoS attacks using machine learning, generation of massive traffic of other attacks such as; TCP SYN flood, Ping of Death attacks & HTTP flood. Researchers may use different software to generate simulated traffic such as Kali Linux, SolarWinds Event Manager (SEM), HULK, LOIC and XOIC. In mitigation process SEM, HULK and XOIC will be beneficial because these all block IPs which do the bombardment of packets and slow the system.

References

[1] Kargl, F., Maier, J., & Weber, M. (2001, April). Protecting web servers from distributed denial of service attacks. In *Proceedings of the 10th international conference on World Wide Web* (pp. 514-524).

[2] Sekar, V., Duffield, N. G., Spatscheck, O., van der Merwe, J. E., & Zhang, H. (2006, June).
 LADS: Large-scale Automated DDoS Detection System. In USENIX Annual Technical Conference, General Track (pp. 171-184).

[3] Ankali, S. B., & Ashoka, D. V. (2011). Detection architecture of application layer DDoS attack for internet. *International Journal of Advanced Networking and Applications*, *3*(1), 984.

[4] Swami, R., Dave, M., & Ranga, V. (2019). Software-defined networking-based DDoS defense mechanisms. *ACM Computing Surveys (CSUR)*, *52*(2), 1-36.

[5] Yihunie, F., Abdelfattah, E., & Odeh, A. (2018, May). Analysis of ping of death DoS and DDoS attacks. In 2018 IEEE Long Island Systems, Applications and Technology Conference (LISAT) (pp. 1-4). IEEE.

[6] Harshita, H. (2017). Detection and prevention of ICMP flood DDOS attack. *International Journal of New Technology and Research*, *3*(3), 263333.

[7] Hong, K., Kim, Y., Choi, H., & Park, J. (2017). SDN-assisted slow HTTP DDoS attack defense method. *IEEE Communications Letters*, 22(4), 688-691.

[8] Swami, R., Dave, M., & Ranga, V. (2021). Detection and analysis of TCP-SYN DDoS attack in software-defined networking. *Wireless Personal Communications*, *118*(4), 2295-2317.

[9] Kumar, V., & Sinha, D. (2021). A robust intelligent zero-day cyber-attack detection technique. *Complex & Intelligent Systems*, 7(5), 2211-2234.

[10] Dobrin, D., & Dimiter, A. (2021, November). DDoS attack identification based on SDN. In 2021 IEEE 20th International Symposium on Network Computing and Applications (NCA) (pp. 1-8). IEEE. [11] Santos, R., Souza, D., Santo, W., Ribeiro, A., & Moreno, E. (2020). Machine learning algorithms to detect DDoS attacks in SDN. *Concurrency and Computation: Practice and Experience*, *32*(16), e5402.

[12] Li, H., Wei, F., & Hu, H. (2019, March). Enabling dynamic network access control with anomaly-based IDS and SDN. In *Proceedings of the ACM International Workshop on Security in Software Defined Networks & Network Function Virtualization* (pp. 13-16).

[13] Dina, A. S., & Manivannan, D. (2021). Intrusion detection based on machine learning techniques in computer networks. *Internet of Things*, *16*, 100462.

[14] Xie, J., Yu, F. R., Huang, T., Xie, R., Liu, J., Wang, C., & Liu, Y. (2018). A survey of machine learning techniques applied to software defined networking (SDN): Research issues and challenges. *IEEE Communications Surveys & Tutorials*, *21*(1), 393-430.

[15] Song, C., Park, Y., Golani, K., Kim, Y., Bhatt, K., & Goswami, K. (2017, July). Machinelearning based threat-aware system in software defined networks. In 2017 26th international conference on computer communication and networks (ICCCN) (pp. 1-9). IEEE.

[16] Ahmad, A., Harjula, E., Ylianttila, M., & Ahmad, I. (2020, December). Evaluation of machine learning techniques for security in SDN. In 2020 IEEE Globecom Workshops (GC Wkshps (pp. 1-6). IEEE.

[17] Ahuja, N., Singal, G., Mukhopadhyay, D., & Kumar, N. (2021). Automated DDOS attack detection in software defined networking. *Journal of Network and Computer Applications*, *187*, 103108.

[18] Erhan, D., & Anarım, E. (2020). Boğaziçi University distributed denial of service dataset. *Data in brief*, *32*, 106187.

[19] Abubakar, A., & Pranggono, B. (2017, September). Machine learning based intrusion detection system for software defined networks. In 2017 seventh international conference on emerging security technologies (EST) (pp. 138-143). IEEE.

59
[20] Song, C., Park, Y., Golani, K., Kim, Y., Bhatt, K., & Goswami, K. (2017, July). Machinelearning based threat-aware system in software defined networks. In 2017 26th international conference on computer communication and networks (ICCCN) (pp. 1-9). IEEE.

[21] Xie, J., Yu, F. R., Huang, T., Xie, R., Liu, J., Wang, C., & Liu, Y. (2018). A survey of machine learning techniques applied to software defined networking (SDN): Research issues and challenges. *IEEE Communications Surveys & Tutorials*, *21*(1), 393-430.

[22] Pérez-Díaz, J. A., Valdovinos, I. A., Choo, K. K. R., & Zhu, D. (2020). A flexible SDNbased architecture for identifying and mitigating low-rate DDoS attacks using machine learning. *IEEE Access*, 8, 155859-155872.

[23] Mehr, S. Y., & Ramamurthy, B. (2019, December). An SVM based DDoS attack detection method for Ryu SDN controller. In *Proceedings of the 15th international conference on emerging networking experiments and technologies* (pp. 72-73).

[24] Al-Nashif, Y., Kumar, A. A., Hariri, S., Luo, Y., Szidarovsky, F., & Qu, G. (2008, June). Multi-level intrusion detection system (ML-IDS). In 2008 International Conference on Autonomic Computing (pp. 131-140). IEEE.

[25] Shukla, P. (2017, September). ML-IDS: A machine learning approach to detect wormhole attacks in Internet of Things. In *2017 Intelligent Systems Conference (IntelliSys)* (pp. 234-240). IEEE.

[26] Yang, L., & Zhao, H. (2018, October). DDoS attack identification and defense using SDN based on machine learning method. In 2018 15th International Symposium on Pervasive Systems, Algorithms and Networks (I-SPAN) (pp. 174-178). IEEE.

[27] Sultana, N., Chilamkurti, N., Peng, W., & Alhadad, R. (2019). Survey on SDN based network intrusion detection system using machine learning approaches. *Peer-to-Peer Networking and Applications*, *12*(2), 493-501.

[28] Suresh, M., & Anitha, R. (2011, July). Evaluating machine learning algorithms for detecting DDoS attacks. In *International Conference on Network Security and Applications* (pp. 441-452).
 Springer, Berlin, Heidelberg.

[29] Perez-Diaz, J. A., Valdovinos, I. A., Choo, K. K. R., & Zhu, D. (2020). A flexible SDNbased architecture for identifying and mitigating low-rate DDoS attacks using machine learning. *IEEE Access*, 8, 155859-155872.

[30] Sarica, A. K., & Angin, P. (2020, November). A Novel SDN Dataset for Intrusion Detection in IoT Networks. In 2020 16th International Conference on Network and Service Management (CNSM) (pp. 1-5). IEEE.

[31] Halimaa, A., & Sundarakantham, K. (2019, April). Machine learning based intrusion detection system. In 2019 3rd International conference on trends in electronics and informatics (ICOEI) (pp. 916-920). IEEE.

[32] Lawal, B. H., & Nuray, A. T. (2018, May). Real-time detection and mitigation of distributed denial of service (DDoS) attacks in software defined networking (SDN). In 2018 26th Signal Processing and Communications Applications Conference (SIU) (pp. 1-4). IEEE.

[33] Nguyen, T., & Zakhor, A. (2004). Multiple sender distributed video streaming. *IEEE transactions on multimedia*, 6(2), 315-326.

[34] Canadian Institute for Cybersecurity. (2019). DDoS Evaluation Dataset (CIC-DDoS2019)35

[35] Moustafa, N., Koroniotis, N., The BoT-IoT Dataset |UNSW Research (2019).

[36] Zhong, S., Zhang, K., Bagheri, M., Burken, J. G., Gu, A., Li, B., ... & Zhang, H. (2021).
Machine learning: new ideas and tools in environmental science and engineering. *Environmental Science & Technology*, 55(19), 12741-12754.

[37] Alam, S., & Yao, N. (2019). The impact of preprocessing steps on the accuracy of machine learning algorithms in sentiment analysis. *Computational and Mathematical Organization Theory*, 25(3), 319-335.

[38] Booij, T. M., Chiscop, I., Meeuwissen, E., Moustafa, N., & den Hartog, F. T. (2021). ToN_IoT: The Role of Heterogeneity and the Need for Standardization of Features and Attack Types in IoT Network Intrusion Datasets. *IEEE Internet of Things Journal*.

[39] Ahuja, N., Singal, G., Mukhopadhyay, D., & Kumar, N. (2021). Automated DDOS attack detection in software defined networking. *Journal of Network and Computer Applications*, *187*, 103108.

[40] Erhan, D., & Anarım, E. (2020). Boğaziçi University distributed denial of service dataset. *Data in brief*, *32*, 106187.

[41] Menard, S. (2002). Applied logistic regression analysis (Vol. 106). Sage.

[42] Safavian, S. R., & Landgrebe, D. (1991). A survey of decision tree classifier methodology. *IEEE transactions on systems, man, and cybernetics*, 21(3), 660-674.

[43] Lin, W., Wu, Z., Lin, L., Wen, A., & Li, J. (2017). An ensemble random forest algorithm for insurance big data analysis. *Ieee access*, *5*, 16568-16575.

[44] Guo, G., Wang, H., Bell, D., Bi, Y., & Greer, K. (2003, November). KNN model-based approach in classification. In *OTM Confederated International Conferences*" *On the Move to Meaningful Internet Systems*" (pp. 986-996). Springer, Berlin, Heidelberg.

[45] Gardner, M. W., & Dorling, S. R. (1998). Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. *Atmospheric environment*, *32*(14-15), 2627-2636.

[46] Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y., Cho, H., & Chen, K. (2015). Xgboost: extreme gradient boosting. *R package version 0.4-2*, *1*(4), 1-4.

[47] Evgeniou, T., & Pontil, M. (1999, July). Support vector machines: Theory and applications. In *Advanced Course on Artificial Intelligence* (pp. 249-257). Springer, Berlin, Heidelberg.

[48] Sun, Z., Song, Q., Zhu, X., Sun, H., Xu, B., & Zhou, Y. (2015). A novel ensemble method for classifying imbalanced data. *Pattern Recognition*, *48*(5), 1623-1637.

[49] Adhikari, A., Tax, D. M., Satta, R., & Faeth, M. (2019, June). LEAFAGE: Example-based and Feature importance-based Explanations for Black-box ML models. In 2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) (pp. 1-7). IEEE.

[50] Agrawal, P. K., Gupta, B. B., Jain, S., & Pattanshetti, M. K. (2011, August). Estimating strength of a DDoS attack in real time using ANN based scheme. In *International Conference on Information Processing* (pp. 301-310). Springer, Berlin, Heidelberg.

[51] Bawany, N. Z., Shamsi, J. A., & Salah, K. (2017). DDoS attack detection and mitigation using SDN: methods, practices, and solutions. *Arabian Journal for Science and Engineering*, 42(2), 425-441.