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ABSTRACT 

 

The maximum dry density (MDD) and optimum moisture content (OMC) are the two 

important compaction parameters that are obtained using proctor tests in the laboratory, but 

they require energy and time. Therefore, extensive work has been done in the literature to 

predict these parameters rather than actually performing the proctor tests in the laboratory but 

either the developed models are applicable to specific soil type, specific compaction energy 

or the performance of the method, in terms of accuracy, is compromised when dealing with 

large dataset.  In this study, three machine learning methods; Gene expression programming 

(GEP), Artificial Neural Network (ANN) and Gaussian Process Regression (GPR), were used 

to develop prediction models for soil compaction parameters; maximum dry density (MDD) 

and optimum moisture content (OMC) with higher accuracy. The database used to develop 

the prediction models was obtained from the literature. The dataset consists of both fine 

grained and coarse-grained soils; soils ranging from low plasticity to high plasticity; and 

compacted using different compaction energies. The performance of the developed models 

was evaluated based on coefficient of determination (R2), mean absolute error (MAE), and 

root mean square error (RMSE) and a comparison was made with the Multi Expression 

Programing (MEP) model from the literature for the same database. It was found that all the 

new prediction models from this study performed better than the MEP model. In terms of R2, 

ANN performed much better as compared to GEP and GPR. All the three developed models, 

in different forms, can be used to predict the compaction parameters for new datasets. 

  



2 

 

TABLE OF CONTENTS 

 

ABSTRACT .............................................................................................................................. 1 

LIST OF FIGURES ................................................................................................................. 4 

LIST OF TABLES ................................................................................................................... 5 

NOTATIONS............................................................................................................................ 6 

1. INTRODUCTION ............................................................................................................ 7 

1.1. General ........................................................................................................................ 7 

1.2. Background and Scope ................................................................................................ 7 

1.3. Problem Statement .................................................................................................... 10 

1.4. Research Scope ......................................................................................................... 11 

2. LITERATURE REVIEW .............................................................................................. 12 

2.1. General ...................................................................................................................... 12 

2.2. Conventional Regression Modeling .......................................................................... 12 

2.3. Machine Learning/Artificial Intelligence Techniques .............................................. 14 

3. METHODOLOGY & RESEARCH WORK ............................................................... 17 

3.1. General Overview Of The Machine Learning Approaches ...................................... 17 

3.1.1. Gene Expression Programming ......................................................................... 17 

3.1.2 Artificial Neural Network (ANN) ...................................................................... 18 

3.1.3 Gaussian Process Regression (GPR) ................................................................. 19 

3.2 Machine Learning (ML) Model Development .......................................................... 22 

3.2.1 Database ............................................................................................................. 22 

3.2.2 Gene Expression Programming ......................................................................... 24 

3.2.3 Artificial Neural Network (ANN) ...................................................................... 29 

3.2.4 Gaussian Process Regression ............................................................................. 31 

4. RESULTS AND DISCUSSION ..................................................................................... 33 

4.1. General ...................................................................................................................... 33 

4.2. Gene Expression Programming ................................................................................. 33 

4.3. Gaussian Process Regression .................................................................................... 34 

4.4. Artificial Neural Network ......................................................................................... 38 

4.5 Sensitivity Analysis ................................................................................................... 39 

4.6 Comparison Of The Machine Learning Methods ..................................................... 42 

5. CONCLUSION AND RECOMMENDATIONS.......................................................... 45 



3 

 

5.1. Conclusion/ Summary ............................................................................................... 45 

5.2. Future Recommendations .......................................................................................... 47 

6. REFERENCES ............................................................................................................... 48 

 

  



4 

 

LIST OF FIGURES 

Figure 1. Standard and modified proctor tests setup.................................................................. 8 

Figure 2. Trimming compacted soil in the standard proctor mold ............................................ 9 

Figure 3. Compaction curve (Standard and Modified) [3] ...................................................... 10 

Figure 4. Expression tree (ET) ................................................................................................. 18 

Figure 5. ANN model architecture ........................................................................................... 19 

Figure 6: ET's for MDD prediction .......................................................................................... 28 

Figure 7: ET's for OMC prediction .......................................................................................... 29 

Figure 8. ANN model architecture for MDD and OMC prediction ........................................ 30 

Figure 9. GPR modeling flowchart for compaction parameter prediction. ............................. 31 

Figure 10. Accuracy of the GEP models for (a) MDD Training, (b) MDD Validation, (c) 

OMC Training and (d) OMC Validation. ................................................................................ 34 

Figure 11. Predicted MDD response of the GPR model vs true response for (a) Training set 

(b) Validation set...................................................................................................................... 35 

Figure 12. Predicted OMC response of the GPR model vs true response for (a) Training set 

(b) Validation set...................................................................................................................... 36 

Figure 13. Minimum MSE plot for OMC (Optimized GPR model)........................................ 37 

Figure 14. Minimum MSE plot for MDD (Optimized GPR Model) ....................................... 37 

Figure 15. ANN model prediction of MDD............................................................................. 38 

Figure 16. ANN model prediction of OMC ............................................................................. 39 

Figure 17. Sensitivity analysis of input parameters for GPR and ANN prediction of (a) MDD 

and (b) OMC ............................................................................................................................ 41 

Figure 18. Comparison of the methods, based on R2, used in this research with the MEP 

model for (a) MDD (b) OMC .................................................................................................. 43 

Figure 19. Comparison of the methods, based on MAE, used in this research with the MEP 

model for (a) MDD (b) OMC .................................................................................................. 43 

Figure 20. Comparison of the methods, based on RMSE, used in this research with the MEP 

model for (a) MDD (b) OMC .................................................................................................. 44 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5 

 

LIST OF TABLES 

Table 1. Statistical properties of the soil parameters ............................................................... 22 

Table 2.Correlation between parameters using Pearson correlation matrix ............................ 24 

Table 3. Parametric setting for GEP algorithm ........................................................................ 25 

Table 4. Parametric setting for ANN model ............................................................................ 30 

Table 5. Accuracy of the GPR models for MDD prediction ................................................... 35 

Table 6. Accuracy of the GPR models for OMC prediction .................................................... 35 

Table 7. Comparison of the machine learning methods .......................................................... 42 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6 

 

NOTATIONS 

 

ML      Machine Learning 

AI            Artificial Intelligence  

ANN        Artificial Neural Network 

GEP         Gene Expression Programming 

GPR          Gaussian Process Regression 

R2       coefficient of determination 

RMSE     Root Mean Square Error 

MAE     Means Absolute Error 

MSE        Mean Squared Error 

MDD       Maximum Dry Density 

OMC        Optimum Moisture Content 

CF            Fine content 

CG            Gravel Content 

CS             Sand Content 

LL             Liquid Limit 

PL             Plastic Limit 

E                Compaction Energy 

 

      

 

 

 



7 

 

 Chapter. 1 

1. INTRODUCTION 

1.1. General 

 The objective of this research is to present machine learning models to predict the soil 

compaction parameters, MDD and OMC, using artificial intelligence techniques i.e ANN, 

GEP and GPR with better accuracy. A compararison of the presented models with the MEP 

model in the literature has also been made for the same database based on the accuracy of the 

prediction of the models.   

1.2. Background and Scope 

 Soil compaction is the densification of loose soil or a soil that has not been densified. 

Compaction of soil is an important process in construction in which the soil is compacted to 

reduce the voids through mechanical effort to improve its properties. Soils, when 

encountered as fill material, are prone to excessive settlements. The compaction process 

reduces the air void and thus densifies the soil. Soil compaction parameters, that are the 

MDD and OMC, are the two important parameters that are required to maintain the long-

term performance of infrastructures i.e., building, roads etc. In the laboratory, the compaction 

parameters are determined by following ASTM D698 [1] for standard proctor energy and 

ASTM D1557 [2] for modified proctor energy. Figure 1 shows the proctor tests setup for the 

determination of compaction parameters. 
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Figure 1. Standard and modified proctor tests setup 

(https://www.utest.com.tr/en/23152/Proctor-Moulds-And-Rammers) 

In the standard proctor test, the soil is compacted in three layers in a mould using a hammer 

that falls from a certain height. The diameter of the mould is 4 in and weight of the hammer 

is 5.5 lb. The hammer falls from a standard height of 12 in. A total of 25 number of blows 

from the hammer is given to each layer. The upper portion of the mold, which is detachable,  

is removed and the extra soil is trimmed and leveled with the mold as shown in Figure 2. 
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Figure 2. Trimming compacted soil in the standard proctor mold 

The necessary calculations are made for the dry density and moisture content of the soil. The 

procedure is repeated by increasing the water content of the soil. A time comes when the 

further increase in the water content will result in no more increase of the dry density. If 

further increased, the water content will result in the decrease of the dry density. For each 

trail, the calculation for dry density and moisture content are made. Finally a graph is 

developed by plotting dry density values on vertical y-axis and their corresponding moisture 

content values on horizontal x-axis. The dot are joined to construct dry density-moisture 

content curve or compaction curve. The projection of summit point of the compaction curve 

on y-axis gives the value of MDD and the projection of summit point of the proctor curve on 

x-axis gives OMC of the soil. Typical compaction curves for standard proctor and modified 

proctor test are shown in Figure 3.  
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Figure 3. Compaction curve (Standard and Modified) [3] 

In the modified proctor test, the compaction effort to carry out the test is more than the 

standard proctor test. The compaction energy is found out using Eq. (28). 

𝐸 = (𝑙 × 𝑏 × ℎ × 𝑓)/𝑉 (1) 

Where, 𝑙 is the number of layers, 𝑏 is the number of blows, ℎ is the weight of the hammer, 𝑓 

is the height of fall, and 𝑉 is the volume of the mold. Compaction energy, basically, is the 

energy consumed to carry out protor tests. Due to the requirement of more effort in modified 

proctor test as compared to standard proctor, it has more compaction energy than standard 

proctor test as shown in Figure 3. In the modified proctor test, the size of mould is 6 in. The 

soil is compacted in this mold in five layers. The number of blows to each layer is 25. The 

weight of the hammer is 10 lb. For each blow, this hammer falls from a height of 18 in. The 

calculation carried out for modified proctor is the same as standard proctor. Finally a 

compaction curve for modified proctor is obtained. The greater the compaction effort, the 

more is the MDD and the lesser is the OMC. 

1.3. Problem Statement  

 The laboratory procedures to find compaction parameters at different compaction 

energies are time-taking and they also require extensive effort to be performed. Therefore, 
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efforts have been made by researchers to present models to get the compaction parameters 

without actually performing the laboratory tests. Work has been done on both the 

conventional regression modeling and machine learning (ML) modeling to develop 

correlations between the index properties of soil and compaction parameters and predict 

these parameters with more accuracy. Lately, the focus has been on two things, the accuracy 

of the models and the types of soil on which the developed models are applicable. In this 

study, the database of soil was obtained from the literature [4]. The database contained 226 

records of the soil properties. Models were developed using the said database and was 

compared with the multi expression programming (MEP) models for the same database in 

the literature. 

1.4. Research Scope 

 The aim of this research is to develop models for the compaction parameters prediction. 

As discussed earlier, the standard laboratory procedures to find compaction parameters require 

both energy and effort. We have to perform proctor test with atleast five trials to construct a 

well defined compaction curve. There must be an easy way to determine theses parameters. 

Also, artificial interlligence (AI) is frequently being used in every field particulary in the 

engineering field. Engineers are confidently adopting the AI techniques in their respective 

fields. In the literaeture, the AI techniques have confidently been used for different 

geotechnical purposes. GPR has been used for the estimation of blast induced vibration, soil 

hydraulic properties, pile bearing capacity, tunnel geomechanical parameters etc. ANN 

techniques has been used for the estimation of UCS of soils, swell potention in clays, bearing 

capacity of soils etc. GEP has been used for the prediction of compression index of soils, 

swell potential, strength (UCS) of soils. So there is a confidence in using these methods, 

ANN, GPR, and GEP,  in this research for MDD and OMC prediction.  
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Chapter. 2 

2. LITERATURE REVIEW 

2.1. General 

  Before the advent of machine learning approaches, work on developing prediction models 

for MDD and OMC were being carried out using conventional regression modeling. 

Conventional modeling refers to simple linear regression or use of excel to develop 

correlation between parameters. Conventional regression modeling has a disadvantage that as 

the number of records in a database increases, the accuracy of the developed models is 

compromised. To cater this, the focus has been on the machine learning approaches lately. 

The reliability on machine learning approaches is more as compared to conventional methods 

when dealing with large dataset and when the accuracy is of prime concern. Research carried 

out on developing prediction models for compaction parameters in the literature is discussed 

below for both the conventional regression modeling as well as the machine leaerning 

approaches.  

2.2. Conventional Regression Modeling  

Bera, A., & Ghosh, A. (2011) [5] 

Bera, A., and Ghosh, A. predicted the compaction parameters of fine-grained soils using log 

linear regression modelling for a total of 5 soil samples. The R2 values of the developed 

equations were 0.98 and 0.95 for MDD and OMC respectively. 

Patra, C., Sivakugan, N., & Das, B. (2010) [6] 

Patra, C., Sivakugan, N., and Das, B correlated the relative density (Dr) and medium grain 

size (D50) using 55 samples of coarse-grained soil against standard proctor and modified 

proctor compaction energies. The R2 values were found to be 0.964 for standard proctor 
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energy and 0.946 for modified proctor energy 

Farooq, K. et al. (2016)  [7] 

Farooq, K. et al. developed correlations between the compaction parameters and consistency 

limits for fine grained soils using 105 soil samples. They used Statistical Product and Service 

Solution (SPSS) software for modeling and achieved R2 values of 0.89 and 0.88 for MDD 

and OMC respectively. 

Blotz, L. R et al. (1998) [8] 

Blotz, L. R et al. predicted the MDD and OMC of fine-grained soil for a total of 22 dataset 

and the R2 values of his models ranged from 0.88 to 1. 

Al-Khafaji (1993) [9] 

Al-Khafaji estimated the compaction parameters of fine-grained soil using Atterberg limits 

with the help of curve fitting method. 

Günaydın, O. (2009) [10] 

Günaydın, O. performed simple regression modeling and multi regression modeling on 126 

datasets of soil, containing both the fine grained soil and coarse grained soil. The accuracy 

(R2) of the presented models ranged from 0.64 to 0.82. 

Mujtaba, H et al. (2013) [11] 

Mujtaba, H et al. developed equations for compaction parameters of sandy soil using 150 

datasets of soil and the accuracy (R2) of the developed models were 0.81 and 0.7 for MDD 

and OMC respectively. 

Gurtug, Y. and Sridharan, A. (2004) [12] 
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Gurtug, Y. and Sridharan, A. used graphical method to develop linear equations for 

compaction parameter on 86 datasets of fine-grained soil. The R2 ranged 0.92 to 0.99 and 

0.75 to 0.99 for MDD and OMC against different compaction energies. 

Di Matteo, L et al. (2009) [13] 

Di Matteo, L et al. performed regression analysis on 71 datasets of fine-grained soil. The 

OMC was best correlated with liquid limit (LL) and specific gravity (Gs), while MDD was 

best correlated with plasticity index (PI) and OMC. 

Sridharan, A., and Nagaraj, H. B. (2005) [14] 

Sridharan, A., and Nagaraj, H. B. developed linear equations for compaction parameters 

using graphical method for fine-grained soils using 64 datasets and achieved accuracy, in 

terms of R2, of 0.93 and 0.99 for MDD and OMC. 

Saikia, A et al. (2017) [15] 

Saikia, A et al. performed single regression analysis and multi regression analysis on a total 

of 40 dataset of fine-grained soils. The R2 values of the presented models ranged from 069 to 

0.90. 

Omar, M. et al. (2003) [16] 

Omar, M. et al. carried out multi regression analysis on 311 datasets of coarse-grained soil. 

The R2 values of the resulting equations were found to be 0.816 and 0.68 for MDD and 

OMC.  

2.3. Machine Learning/Artificial Intelligence Techniques 

Günaydın, O. (2009) [Error! Bookmark not defined.] [10] 

Günaydın, O. used Artificial Neural Network (ANN) to predict the compaction parameters 
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for 126 datasets of soil containing both the fine-grained soil and coarse-grained soil. The R2 

of the best models was found to be 0.836 and 0.893 for MDD and OMC. 

Jalal, F. et al. (2021) [17] 

Jalal, F. et al. predicted the compaction parameters of fine-grained soil for 195 datasets using 

Gene Expression Programming (GEP) and Multi Expression Programming (MEP). GEP 

outperformed the MEP for the MDD and OMC in terms of accuracy (R2). 

Khuntia, S et al. (2015) [18] 

Khuntia, S et al. used three machine learning approaches: Multivariate Adaptive Regression 

Splines (MARS), Artificial Neural Network (ANN) and Least Square Support Vector 

Machine (LS-SVM) for the prediction of compaction parameters for coarse-grained soil on 

110 datasets. MARS performance was the best among the three methods with R2 of 0.88 and 

0.81 for MDD and OMC. 

Sinha, S. K. and Wang, M. C. (2008) [19] 

Sinha, S. K. and Wang, M. C. predicted the compaction parameters using Artificial Neural 

Network (ANN) on 55 datasets containing both fine-grained soil and coarse-grained soil. The 

R2 for the developed models ranged from 0.92 to 0.97. 

Kurnaz, T. F., and Kaya, Y. (2020) [20] 

Kurnaz, T. F., and Kaya, Y. used Group Method of Data Handling (GMDH)–type neural 

network, support vector machine (SVM), Bayesian regularization neural network (BRNN), 

and extreme learning machine (ELM) to predict compaction parameters on 415 datasets on 

soil, both fine-grained and fine-grained. ELM outperformed the rest of the methods with R2 

of 0.89 and 0877 for MDD and OMC respectively. 

Ahangar-Asr, A et al. (2011) [21] 
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Ahangar-Asr, A et al. developed Evolutionary Polynomial Regression (EPR) models for 57 

datasets of coarse grained soil and fine grained soil to predict MDD and OMC. The R2 was 

found to be 0.96 and 0.94 for MDD and OMC. 

Ardakani, A., and Kordnaeij, A. (2019) [22] 

Ardakani, A., and Kordnaeij, A. used Group method of data handling (GMDH)-type neural 

network to predict MDD and OMC for 212 datasets of fine grained soil and coarse grained 

soils. The R2 of MDD was found to be 0.81 and 0.86 for training and testing and that for 

OMC was 0.82 and 0.92 for training and testing respectively. 

Wang, H. L., and Yin, Z. Y. (2020) [4] 

Wang, H. L., and Yin, Z. Y. predicted the compaction parameters using multi expression 

programming (MEP) for a total of 226 datasets. The datasets cover both the fine grained soil 

and coarse grained soil, compacted using different compaction efforts, and soils with low to 

high plasticity. The developed models have the R2 values of 0.872 and 0.858 for MDD 

training and validation, and 0.916 and 0.923 for OMC training and validation. 
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        Chapter. 3 

3. METHODOLOGY & RESEARCH WORK 

3.1. General Overview Of The Machine Learning Approaches 

3.1.1. Gene Expression Programming 

Gene expression programming (GEP) is inspired by biological evolution and is a type of 

evolutionary algorithm that was, for the first time, presented by Candida Ferreira in 2002 

[23]. Just like a living organism, a GEP model learn as it keeps on changing its size and 

shape. GEP is preferred over genetic programming (GP) as it does not preasume any 

relationship [24].  

In GEP, a gene stores the genetic information and the complex trees behave and evolve 

according to the stored genetic information in a gene. GEP is divided into the different parts 

such as; function, terminal , fitiness, control and condition for termination. Chromosomes in 

GEP are of fixed lengths containing genes. Gene in chromosome comprises head and tail. 

These chromosomes evolve into expression trees [25]. Multiple trees are developed with 

varying size and shape and these trees lead to deriving mathematical expression for 

prediction. An expression tree is shown in Figure 4. In the tree, c represents constants 

generated during modeling while d represents the input variables. The function node consists 

of function set while terminal node contact of variables and contstants. The functions connect 

the genes in a GEP chromosome forming complex expression trees and these genes define the 

complexity of the trees [26]. Eq. (2) is the equation derived from the expression tree in Figure 

4. 

𝑌 =
𝑑0 + 𝑐1

𝑑3 + 𝑐2
+ √𝑑2 + √𝑑0 

(2) 
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Figure 4. Expression tree (ET) 

The learning in GEP starts as the chromosomes are created according to the initial population 

that are later on expressed as expression trees. The expression trees are then executed for 

each individual to check the fitness of the population. The reproduction process chooses the 

best individual. Different genetic operator are used for population change. The iterations keep 

going until the optimal solution is achieved. 

3.1.2 Artificial Neural Network (ANN) 

Artificial neural network is a special computing system that works just like a human brain 

and is based on biological neural networks [27]. The ANN comprises of three layers; the 

input, hidden and the output layer [28]. The input layer consists of variables that are used to 

develop the model, hidden layers has neurons and this layer make use of activation function 

to apply weights to inputs and identifies the hidden connection between the input and output 

layers, while the output layer consists of target variables for prediction (Figure 5)[29]. The 

performance of ANN is governed by the type of activation function [30] and it help in the 

non-linear translation of inputs to outputs [31]. The transfer function: sigmoid and hyperbolic 

tangent are used more often while rectified linear unit (ReLU) is the default choice of the 

people working in the field of machine learning [32]. These functions are given in Eq. (3) to 

Eq. (5).  
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Sigmoid: 𝜎(𝑧) =
1

1+𝑒−𝑧
 (3) 

Hyperbolic tangent: 𝜎(𝑧) =
𝑒𝑧−𝑒−𝑧

𝑒𝑧+𝑒−𝑧
     (4) 

Rectified linear unit: 𝜎(𝑧) = 𝑚𝑎𝑥⁡(0, 𝑧) (5) 

 

Jalal, F. et al. (2021) [31] used TRANSIG and PURELIN functions to predict the swelling 

potential and unconfined compressive strength of expansive soils because these functions 

enhance the  statistical indices of training dataset although they lower the validation and 

testing dataset accuracy [33]. 

 

Figure 5. ANN model architecture 

Feed forward neural network (FNN) based on back propagation and recurrent neural network 

are the two types of ANN and the former is observed to perform better as compared to the 

later [34]. Thus, the feed forward neural network was adopted in this research to develop the 

ANN-based prediction model for compaction parameters. 

3.1.3 Gaussian Process Regression (GPR) 

3.1.3.1 Gaussian Process Model 

A Gaussian process (GP) is a non-parametric and stochastic process having a set of random 



20 

 

variables and any finite set of those random variables holds a joint gaussian or normal  

distribution [35]. Gaussian Process (GP) is used to perform classification and regression [36]. 

A GP 𝑡(𝑥) has two functions; mean function 𝑚(𝑥) and covariance/kernel 𝑘(𝑥, 𝑥′) function 

which are defined in the following equations. 

𝑚(𝑥) = 𝐸(𝑡(𝑥)) (6) 

𝐶𝑜𝑣(𝑡(𝑥), 𝑡(𝑥′)) = 𝑘(𝑥, 𝑥′; 𝜃) = 𝐸((𝑡(𝑥) −𝑚(𝑥))(𝑡(𝑥′) − 𝑚(𝑥′)))    (7) 

 

Where 𝜃 represents the hyperparameters of the model. So, a GP is given by the distribution: 

𝑡(𝑥) ∼ 𝐺𝑃(𝑚(𝑥), 𝑘(𝑥, 𝑥′) 

A kernel/covariance function is usually defined as “exponential squares” as given in Eq. (8) 

and the role of a kernel/covariance function is to develop relation between the observations 

[37]. 

𝑘(𝑥, 𝑥′) = 𝜎𝑓
2(
−(𝑥−𝑥′)2

𝑒𝑙2  
(8) 

 

A higher covariance value for the functions ℎ(𝑥) and ℎ(𝑥′)⁡reflects a good correlation 

between the functions and is obtained when 𝑥 ≈ 𝑥′while a lower covariance value shows a 

bad correlation between functions and it happen when 𝑥 and 𝑥′are far from each other [36]. 

3.1.3.2 Gaussian Process Regression 

Gaussian process regression’s (GPR) main function is to perform probability distribution 

over all the observations. It basically is a Bayesian type non-linear regression. The regression 

model developed using GPR results in a Gaussian noise in addition to a function as given in 

Eq. (9). 
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𝑦 = 𝑓(𝑥) + 𝜀     (9) 

 

Where 𝑦⁡is the target output, the function 𝑓(𝑥) has the input variable(s) and ε is the Gaussian 

noise, where 

𝜀 ∼ 𝑁(0, 𝜎𝑛
2) 

Thus, the distribution can be represented as [38]: 

𝑦 ∼ (0, 𝐾𝑓(𝑥, 𝑥) + 𝜎𝑛
2𝐼𝑛) 

Where 𝑦 represents the observation vector[𝑦1, 𝑦2, 𝑦3, … , 𝑦𝑛], the input series 

[𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛] is represented by⁡𝑥, 𝜎𝑛
2𝐼𝑛 is the noise covariance matrix with 𝐼𝑛 being the 

identity matrix and 𝐾𝑓(𝑥, 𝑥) is a symmetric of n dimension given by Eq. (10) and Eq. (11). 

𝐾𝑓(𝑥, 𝑥) = (𝑘𝑖𝑗)𝑛×𝑛 (10) 

                                

𝑘𝑖𝑗 = 𝜎𝑓
2(
−(𝑥−𝑥′)2

𝑒𝑙2  
(11) 

 

The value of⁡𝑘𝑖𝑗, that is any element of the matrix⁡𝐾𝑓(𝑥, 𝑥), depends on 𝑥𝑖 and 𝑥𝑗 as 

discussed earlier. 

Now, let⁡𝑦 is the original output, 𝑥∗ represents a new dataset and 𝑦∗ the model prediction of 

output. The joint prior distribution of 𝑦∗and⁡𝑦 for 𝑥∗ is given by [38]: 

[
𝑦
𝑦∗] ∼ 𝑁[0, [

⁡𝐾𝑓(𝑥, 𝑥) + 𝜎𝑛
2𝐼𝑛 𝐾𝑓(𝑥, 𝑥∗)

𝐾𝑓(𝑥, 𝑥∗)𝑇 𝐾𝑓(𝑥∗, 𝑥∗)
] 

Where 𝑇 is the transpose of the matrix. Further details about the GPR technique can be found 
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in the literature [36]–[38]. 

 

3.2 Machine Learning (ML) Model Development 

3.2.1 Database 

In this research, a comprehensive dataset of soil from the literature [4] was used for 

modelling. The database consists of 226 records of index properties of soils. The database 

includes both the coarse grained and fine grained soils and the soils ranging from low 

plasticity to high plasticity. Table 1 describes the statistical properties of the soil database 

used in this research. 

Table 1. Statistical properties of the soil parameters 

Parameters Maximum Minimum Standard deviation Mean 

CF (%) 100 8.6 29.9 63.1 

CS (%) 89 0 23.3 29.5 

CG (%) 67.1 0 14.5 7.5 

PL (%) 48.3 6.1 7.4 22 

LL (%) 608 16 163.9 108.7 

E (𝐾𝑗/𝑚3⁡) 2755 154.5 733.9 893.8 

MDD (𝑀𝑔/𝑚3) 2.33 1.09 0.2 1.75 

OMC (%) 43.7 5.3 6 17.5 

 

CF is the fine content (%), CS is the sand content (%), CG is the gravel content (%), PL 

represents plastic limit (%), LL represents liquid limit in (%), E is the compaction energy in 

Kj/m3, MDD represents the maximum dry density in Mg/m3⁡and OMC represents the 

optimum moisture content in %. The results of this research are compared with the results of 

multi expression programming (MEP) model in the literature [4] specifically as the authors 
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also used the same database to develop prediction models. The reliability of the presented 

models was checked through determination coefficient (𝑅2), RMSE and MAE values and the 

mathematical functions that are used to determine these values are given in the equations Eq. 

(12) to Eq. (14), respectively. 

𝑅2 = 1 −
∑ (𝑥𝑖 − 𝑦𝑖)

2𝑛
𝑖=1

∑ (𝑥𝑖 − 𝑥𝑖̅)2
𝑛
𝑖=1

 
(12) 

𝑅𝑀𝑆𝐸 = √
∑ (𝑥𝑖 − 𝑦𝑖)2
𝑛
𝑖=1

𝑛
 

(13) 

𝑀𝐴𝐸 =
∑ |𝑥𝑖 − 𝑦𝑖|
𝑛
𝑖=1

𝑛
⁡ 

(14) 

 

In the above equations, x𝑖 is the value of original output for 𝑖th output; y𝑖 is the value of the 

output predicted by the model for 𝑖th output; x𝑖̅ is the average of original outputs and 𝑛 

represents the number of outputs. The value of 𝑅2 lies in the range 0 – 1. The closer the value 

of 𝑅2 to unity, the more accurate the model is and vise-versa. In case of RMSE and MAE, the 

lower value indicates the high accuracy of the models.    

The correlation of individual input parameters with the output parameters must be known so 

that to know how strong or weak is the correlation between them. In this regard, a Person 

correlation matrix was developed (Table 2). Pearson correlation matrix shows the correlation 

of input parameters with each other and with the output parameter. The matrix is basically the 

representation of correlation coefficient or “R”. The lesser the value of R the weaker is the 

correlation and vice versa. The range of R is from -1 to +1. The value “±1” shows that a very 

strong correlation exists between the parameters while “0” shows that no correlation exits at 

all between the parameters. The negative R value is the indication that the parameters are 

inversely related while the positive R value shows a direct relation between the parameters 
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[39].  

Table 2.Correlation between parameters using Pearson correlation matrix 

 CG CS CF LL PL E OMC MDD 

CG 1         

CS 0.208 1        

CF -0.648 -0.88 1       

LL -0.217 0.05 0.067 1      

PL -0.283 -0.113 0.225 0.621 1     

E 0.09 0.117 -0.135 0.361 0.092 1    

OMC -0.513 -0.569 0.692 0.405 0.694 -0.164 1   

MDD 0.553 0.515 -0.67 -0.493 -0.736 0.176 -0.953 1 

 

A good correlation exits between the input parameters CG, CS, CF, LL, PL, and the output 

parameters OMC and MDD. PL has a very strong correlation among the input parameters 

with the OMC and MDD (R=0.694 for OMC and R=-0.736 for MDD).  The correlation of E 

with output parameters is comparatively weak (R=-0.164 for OMC and R=0.176 for MDD). 

Also, CS and E are negatively correlated with the OMC while for MDD negative correlation 

exists for CF, LL, PL, and OMC. The order for is PL>CF>CS>CG>E and for MDD it is 

OMC>PL>CF>CG>CS>E.  

3.2.2 Gene Expression Programming 

The GEP models for soil compaction parameters’ prediction were developed in 

GeneXproTool 5.0 [25]. GeneXproTool is a convenient modelling tool used for multiple 

purposes like regression, logistic regression, classification, time series prediction, and logic 

synthesis. It helps in modelling of large data as well as gives an option to view and access the 
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code of the developed model in several programing languages [40]. Multiple models were 

developed using different parametric setting. The best model was chosen based on the 

accuracy i.e., R2, RMSE and MAE. The optimal parametric setting for the GEP models is 

presented in Table 3.  

Table 3. Parametric setting for GEP algorithm 

GEP parameters GEP settings for MDD and OMC 

General  

Training records 158 

Validation/Testing records 68 

Number of chromosomes 100 

Head size 8 

Number of genes 5 

Linking function Addition 

Function set +, -, ÷, ×, exp,⁡𝑥2 

Numerical constants  

Constants per gene 10 

Data type Floating point 

Ephemeral random constant [-10,10] 

Genetic operators  

Mutation 0.00138 

Inversion rate 0.00138 

IS transposition rate 0.00138 

RIS transposition rate 0.00138 

One-point recombination rate 0.00277 

Two-point recombination rate 0.00277 

Gene recombination rate 0.00277 
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Uniform recombination 0.00755 

 

For modelling, the dataset was partitioned into 70-30; 70% for training and 30% for 

validation. The data was then randomly shuffled. The models were developed individually for 

OMC and MDD with the same setting as shown in the Table 3. The input variables were CF, 

CS, CG, PL, LL, and E while the MDD and OMC were kept as output individually. Gravel 

content is an important parameter affecting different geotechnical properties of soil but it was 

not taken into consideration in the MEP models presented in the literature for the same 

database. Considering the importance of gravel content specially its effect on the soil 

compaction parameters, it was taken as an input parameter in this research. The expression 

trees (ET’s) developed after modeling are presented in Figure 6 and Figure 7. The expression 

trees were later on converted to mathematical functions which are provided in Eq. (15) to Eq. 

(19) for MDD and Eq. (21) to Eq. (25) for OMC. 

MDD: 

ET-1:       ⁡𝑇1 = 𝐶𝐹 + 91.84 (15) 

ET-2:       ⁡𝑇2 = 𝑒
−𝐿𝐿

11.69 + (𝐶𝑆2 + 𝑒5.46) − 7.244 
(16) 

ET-3:       ⁡𝑇3 =
0.146

𝑃𝐿
+ 𝐶𝑆 + 𝐶𝐺 − (𝑒−8.953 × 𝑃𝐿 × 𝐶𝐹) (17) 

ET-4:       ⁡𝑇4 =
−0.627×𝐶𝑆×𝐶𝐹

𝐸
− 𝐿𝐿 − 7.599 (18) 

ET-5:       ⁡𝑇5 = 𝐿𝐿 −
𝐶𝐺

−5.5(𝐶𝐹)2+5.07(𝐶𝐺)
 (19) 

 

Thus                   

𝑀𝐷𝐷 = ⁡𝑇1 + ⁡𝑇2+⁡𝑇3 + ⁡𝑇4+⁡𝑇5 (20) 
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OMC:  

ET-1:       ⁡𝑇1 =
−34.49(𝑃𝐿+𝐶𝑆)

−525−𝐸
−

𝑃𝐿

3.57(𝐶𝑆+1.43)
 (21) 

ET-2:       ⁡𝑇2 =
(7.956×𝐶𝐺+𝐶𝐹)(𝐶𝐹)(𝐿𝐿)

2.06𝐸(𝐸+𝐶𝐺)
 (22) 

ET-3:       ⁡𝑇3 =
𝐶𝑆

(𝐶𝐺+3.235)(𝐶𝐹)
+ 𝐶𝐹 + 8.4 (23) 

ET-4:       ⁡𝑇3 =
𝐶𝐹

𝑃𝐿
−

𝐿𝐿

240.6
− 𝐶𝐹 − 4.25                      (24) 

ET-5:       ⁡𝑇5 =
𝐶𝐹(𝑃𝐿)

𝐶𝐹+𝑃𝐿+38.43
 (25) 

 

Thus  

𝑂𝑀𝐶 = ⁡𝑇1 + ⁡𝑇2+⁡𝑇3 + ⁡𝑇4+⁡𝑇5 (26) 
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Figure 6: ET's for MDD prediction 
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Figure 7: ET's for OMC prediction 

3.2.3 Artificial Neural Network (ANN) 

The ANN models were developed in MATLAB R2021a using Neural Network toolbox. 70% 

of the data was used to train the model while 15% was used for validation and 15% was used 

to test the trained model. The input layer consisted of six nodes, one for each of the input i.e. 

CF, CS, CG, PL, LL, and E. In the hidden layer, the total number of neurons was kept 15. 

MDD and OMC were kept as output in the output layer individually to create ANN models. 

Levenberg-Marquardt algorithm was used for modelling. The developed model architecture 

for MDD and OMC in ANN is shown in Figure 8. The type of network to develop prediction 

model was feed forward neural network with back propagation. The parametric setting of 

ANN models is provided in the Table 4. The model was continuously retrained until a better 

regression plot (R2) and performance (minimum MSE) was achieved. 
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Figure 8. ANN model architecture for MDD and OMC prediction 

Table 4. Parametric setting for ANN model 

Parameter Setting/Value 

Dataset  

Training dataset (70%) 158 

Validation dataset (15%) 34 

Testing dataset (15%) 34 

Network properties  

Network type Feed-forward back-propagation 

Training function TRAINLM 

Adaptation learning function LEARNGMD 

Performance function  MSE 

Data division Random basis 
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Number of layers 2 

No of neurons in layer 1 (Hidden layer) 15 

Transfer function for the hidden layer TANSIG 

Transfer function for the output layer TANSIG 

Training algorithm Levenberg-Marquardt 

Number of epochs 1000 

 

3.2.4 Gaussian Process Regression 

Modelling in GPR follows the flowchart as shown in the Figure 9. The very first step is to 

obtain data. Then the training dataset is employed to develop GPR model according to the 

discussion in 3.1.3. The testing dataset is then used to validate the trained GPR model and to 

check the reliability and performance of the developed GPR model in terms of accuracy. 

 

Figure 9. GPR modeling flowchart for compaction parameter prediction. 
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The hyper-parameters, that are the mean function and covariance function, of the GPR model 

govern the performance of the model. So, the training of these functions is an important part 

of the modeling. The maximum likelihood method, which helps in increasing the log-

likelihood function, can be implemented for hyper-parameter set, 𝛩=[𝜎𝑛, 𝑙, 𝜎𝑓], determination 

[41] and is given in Eq. (27) [38]. 

𝐿 = 𝑙𝑜𝑔𝑝(𝑦|𝑥, 𝛩) = −
1

2
𝑙𝑜𝑔(𝑑𝑒𝑡(𝐾𝑓(𝑥, 𝑥) + 𝜎𝑛

2𝐼𝑛)) −
1

2
𝑦𝑇[𝐾𝑓(𝑥, 𝑥) + 𝜎𝑛

2𝐼𝑛]
−1
𝑦 −

𝑛

2
𝑙𝑜𝑔2𝜋 

(27) 

The conjugate gradient method can be used to enhance the log-likelihood which is based on 

the gradient optimization algorithm and thus optimal solution can be obtained [38], [42]. 

The GPR models were developed using MATLAB R2021a for MDD and OMC. Multiple 

covariance-based GPR models models were developed in MATLAB R2021a i.e., Rational 

quadratic, Exponential, Squared exponential, Matern 5/2 and Optimizable GPR.   

30-fold cross-validation was used for all the GPR model. 70% of the data was used to train 

the models and 30% was used to test the models. The reliability of the models, in terms of 

accuracy, was checked based on the  R2, MSE, MAE, and RMSE values and the model with 

the highest  R2 value was chosen as the representative model of GPR to predict the 

compaction parameters. 
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Chapter. 4 

4. RESULTS AND DISCUSSION 

4.1. General 

This study presents three machine learning (ML) models to predict the soil compaction 

parameters; MDD and OMC. The ML prediction models were developed using two 

softwares; MATLAB R2021a (for ANN and GPR) and Genexprotool 5.0 (for GEP). The 

performance, reliability and accuracy of the developed models, in terms of different error 

functions, will be discussed in this section. 

4.2. Gene Expression Programming 

The equations for MDD and OMC derived from the expression trees are given in the 

equations Eq. 14 to Eq. 25. The accuracy of GEP models is given in Figure 10. The R2 values 

for training dataset and validation dataset of MDD were found to be 0.8946 and 0.9032 

respectively. While for OMC, the R2 values for training dataset and validation dataset were 

found to be 0.9156 and 0.9252. GEP predicted the MDD and OMC with better accuracy.  
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Figure 10. Accuracy of the GEP models for (a) MDD Training, (b) MDD Validation, (c) 

OMC Training and (d) OMC Validation. 

4.3. Gaussian Process Regression  

In training the GPR models, a total of 158 datapoints (70%) were used while the remaining 

68 datapoints (30%) were used to validate the trained models. Multiple GPR models were 

developed based on the covariance function. It was found that the Optimized GPR model 

performed well as compared to the rest of the covariance-based GPR models i.e., Rational 

quadratic, Exponential, Squared exponential, and Matern 5/2. The performance of different 

models based on covariance is summarized in Table 5 and Table 6 in which R2 is the 

coefficient of determination, MSE is the mean squared error, MAE is the mean absolute error 

and RMSE is the root mean square error. The Optimized GPR model outperformed the rest of 

the models based on the aforementioned performance evaluation parameters. Figure 12 

presents the plot of the actual value of the output versus the value of the output predicted by 

the Optimized GPR model exported from MATLAB R2021a.  
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Table 5. Accuracy of the GPR models for MDD prediction 

Model Covariance function R2 MSE MAE RMSE 

Training Validation Training Validation Training Validation Training Validation 

1 Rational quadratic 0.90 0.92 0.00354 0.00355 0.04679 0.04115 0.05950 0.0596 

2 Exponential 0.89 0.93 0.00399 0.00319 0.04951 0.04167 0.06318 0.0565 

3 Squared exponential 0.91 0.92 0.00346 0.00381 0.04619 0.04193 0.05886 0.0617 

4 Matern 5/2 0.90 0.92 0.00349 0.00364 0.04649 0.04089 0.05912 0.0603 

5 Optimized 0.93 0.94 0.00259 0.00260 0.03981 0.03953 0.05090 0.0510 

 

Table 6. Accuracy of the GPR models for OMC prediction 

Model Covariance function R2 MSE MAE RMSE 

Training Validation Training Validation Training Validation Training Validation 

1 Rational quadratic 0.88 0.92 4.2457 2.9119 1.5289 1.2515 2.0605 1.7064 

2 Exponential 0.89 0.91 3.9126 3.396 1.4503 1.3243 1.978 1.8428 

3 Squared exponential 0.87 0.92 4.3441 3.0328 1.551 1.2806 2.0842 1.7415 

4 Matern 5/2 0.88 0.92 4.1691 2.9927 1.5239 1.2655 2.0418 1.7299 

5 Optimized 0.91 0.93 3.2545 2.5014 1.3802 1.1439 1.804 1.5816 

 

 

  

Figure 11. Predicted MDD response of the GPR model vs true response for (a) Training set 

(b) Validation set 

(a) (b) 
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Figure 12. Predicted OMC response of the GPR model vs true response for (a) Training set 

(b) Validation set. 

The minimum mean squared error (MSE) for optimized GPR models is shown in Figure 13 

and Figure 14. The light blue points show the estimated minimum MSE at each iteration. The 

dark blue points represent the observed minimum MSE at each iteration, the squared red 

shape shows the best point hyper-parameters, and the yellow points show minimum error 

hyper-parameters. Bayesian optimizer was used to optimize the models. For OMC prediction 

as shown in Figure 13, the value of sigma was 0.035708 and zero basis function, 

Nonisotropic Matern 3/2 Kernel function, and 50 iterations were used which resulted in lower 

MSE for the prediction. For MDD prediction as shown in Figure 14, the value of sigma 

was 0.00013469 and zero basis function, Nonisotropic Matern 5/2 Kernel function, and 50 

iterations were used which resulted the lower MSE for the prediction. 

 

 

(a) (b) 
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Figure 13. Minimum MSE plot for OMC (Optimized GPR model) 

 

Figure 14. Minimum MSE plot for MDD (Optimized GPR Model) 
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4.4. Artificial Neural Network 

For the prediction of compaction parameters in ANN, 158 datapoints (70%) were used to 

train the models while 34 datapoints (15%) were used to validate the trained models and 34 

datapoints (15%) were used to test the trained models. The plots of the predicted versus the 

actual compaction parameter for ANN models, as exported from MATLAB R2021a are 

illustrated in Figure 16. For MDD prediction in ANN, the R2 was found to be 0.9687, 0.9494, 

0.94239, and 0.9620 for training, validation, testing, and all as shown in Figure 16-(a). For 

OMC prediction in ANN, the R2 was found to be 0.9615, 0.96016, 0.9409, and 0.95619 for 

training, validation, testing, and all as shown in Figure 16-(b).  

 

Figure 15. ANN model prediction of MDD 
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Figure 16. ANN model prediction of OMC 

4.5  Sensitivity Analysis 

To check the robustness of the presented models, and to evaluate the impact of the change in 

certain input parameter on the predicted output parameter, sensitivity analysis is performed. 

The sensitivity analysis shows how the developed model behaves when certain input 

parameter changes and it ranks the input parameters according to their importance with 

respect to the output parameter. The sensitivity analysis (SA) was performed using Eq. (28) 

[4], [22].  
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𝑆𝐴(%) =
∑ (ℎ𝑖𝑘𝑖)
𝑛
𝑖=1

√∑ ℎ𝑖
2 × ∑ 𝑘𝑖

2𝑛
𝑖=1

𝑛
𝑖=1

× 100 
(28) 

Where ℎ𝑖 is the input parameter for which SA is being calculated, 𝑘𝑖 is predicted response of 

the model, 𝑛 is the total number tests or records (226). The value of the sensitivity ranges 

between 0 and 100%. For the SA value nearer to 100% for certain input parameter, the input 

parameter affects the predicted output parameters significantly, while input parameter has the 

least effect on predicted output parameters if the SA value is close to zero. Figure 17 shows 

the sensitivity of input parameter for GEP, GPR and ANN prediction of MDD and OMC, 

respectively.  

In the MDD prediction, the sensitivity of all the input variables is more than 50% in case of 

GEP, GPR, and ANN. While in OMC prediction, the sensitivity of all the input variables, 

except gravel content (CG), is more than 50% in case of GEP, GPR, and ANN. Sensitvity 

analysis for MDD prediction, as in Figure 17-(a) shows that, liquid limit has the least effect 

on the prediction while plastic limit affects the prediction significantly. The sensitivity 

analysis for OMC prediction is given in Figure 17-(b) that indicates that the gravel content 

has the least influence on the prediction while plastic limit is the most sensitive parameter 

and affects the prediction significantly. The ranking of the input parameters for MDD and 

OMC prediction, considering their influence on prediction, would be PL>CF>CS>E>CG>LL 

and PL>CF>E>LL>CS>CG, respectively. 
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(a) 

 

(b) 

Figure 17. Sensitivity analysis of input parameters for GPR and ANN prediction of (a) MDD 

and (b) OMC 
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4.6   Comparison Of The Machine Learning Methods 

The comparison of the methods used in this research is provided in Table 7. For both the 

training and validation, ANN outperformed GEP and GPR. The ranking of the methods, 

based on their accuracy, would be ANN>GPR>GEP. The comparison of the methods used in 

this research with the MEP method is shown in Figure 18, Figure 19, and Figure 20 for R2, 

MAE and RMSE, respectively. 

Table 7. Comparison of the machine learning methods 

  𝑅2 MAE RMSE 

Method Parameter Training  Validation Training Validation Training Validation 

MEP MDD 0.872 0.858 0.050 0.057 0.069 0.077 

 OMC 0.916 0.923 1.206 1.383 1.574 1.78 

GEP MDD 0.8945 0.9032 0.0496 0.04977 0.0618 0.0696 

 OMC 0.9165 0.92519 1.2995 1.3059 1.6873 1.7367 

GPR MDD 0.93 0.94 0.03809 0.03816 0.05336 0.0507 

 OMC 0.91 0.93 1.33 1.1439 1.7341 1.5816 

ANN MDD 0.9687 0.9494 - - - - 

 OMC 0.9615 0.9606 - - - - 
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Figure 18. Comparison of the methods, based on R2, used in this research with the MEP 

model for (a) MDD (b) OMC 

 

Figure 19. Comparison of the methods, based on MAE, used in this research with the MEP 

model for (a) MDD (b) OMC 
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Figure 20. Comparison of the methods, based on RMSE, used in this research with the MEP 

model for (a) MDD (b) OMC 

It can be seen that all the models performed well in term of R2, MAE and RMSE for training 

and validation of MDD. But for OMC, the MAE and RMSE values increased for training and 

decreased for validation for GEP and GPR. The R2 value of GEP for OMC training and 

validation was almost the same as MEP model in the literature and for GPR the training R2 

was slightly less than the MEP model while validation R2 value was slightly more than it. 

ANN outperformed both the GEP and GPR models of this paper and MEP model in the 

literature in term of R2. 
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Chapter. 5 

5. CONCLUSION AND RECOMMENDATIONS 

5.1.  Conclusion/ Summary 

 To save the time and effort of the practioners and engineers, an effort is made in this 

research to provide models to get the MDD and OMC values rather than actually performing 

the laboratory test. In this research, three machine learning approaches were adopted to 

develop models for soil compaction parameters prediction; ANN, GEP, and GPR. The 

database was obtained from the literature where Multi Expression Programming (MEP) 

models have been presented for the same database. The input parameters to develop the 

models were CF in %, CS in %, CG in %, PL in %, LL in %, and E in Kj/m3. The database 

consisted of 226 records of the geotechnical properties of soils. Out of 226 datapoints, 158 

datapoints (70%) were used to training and 68 datapoints (30%) were used to validate the 

trained models for GEP and GPR. For ANN, 70% of the datapoints were used for training, 

15% of the datapoints were used for validation and 15% percent of the datapoints were used 

testing. For ANN, the MDD and OMC were kept as output simultaneously as well as 

individually to develop multiple models. The performance of the developed models was 

checked for accuracy and reliability using R2, MAE and RMSE.  

• It was observed that all the three methods from the current study performed better 

than MEP in the literature.  

• In terms of R2, the performance of ANN was much better than GEP and GPR. The R2 

values were found to be 0.9687 and 0.9494 for training and validation for MDD as an 

output while for OMC as an output, the R2 values were 0.9615 and 0.9606 for 

training and validation. 

• The performance of GPR was better as compared to GEP and MEP with R2 of 0.93 
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and 0.94 for training and validation of MDD and 0.91 and 0.93 for training and 

validation of OMC respectively. 

• In GPR, the MAE values of training set and validation set were 0.03981 and 0.03953 

and the RMSE of training set and validation set 0.0509 and 0.05104, respectively for 

MDD. For OMC, the MAE for training and validation were found to be 1.3802 and 

1.1439 and the RMSE for training and validation were found to be 1.804 and 1.5816. 

So, for the OMC prediction in GPR, the MAE and RMSE for validation was good as 

compared to training while for the MDD prediction, both the MAE and RMSE of 

training and validation were better than the MEP model in the literature.  

• GEP had the prediction accuracy (R2) of 0.8945 and 0.9032 for training and validation 

of MDD, and 0.9165 and 0.92519 for training and validation of OMC. GEP 

outperformed the MEP model for MDD. While for OMC, GEP prediction accuracy 

was almost the same as MEP model with a slight change occurring in the 3rd decimal 

place.  

• For the MAE and RMSE of the training and validation of MDD and OMC, the GEP 

had the same trend as GPR i.e, for training, the MAE and RMSE was good as 

compared to validation in the OMC prediction while in the MDD prediction, both the 

training and validation MAE and RMSE were better as compared to that of MEP 

model in the literature.  

• Sensitivity analysis revealed that the plastic limit and fine contents have significant 

influence on the prediction of compaction parameters, while liquid limit and gravel 

contents have the least influence on the prediction.  
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5.2.  Future Recommendations 

i. There are other index properties of soil that are important, easy to find and can be 

used as input variables for modeling such as specific gravity, unit weight etc. These 

index properties were not considered in this study. 

ii. Feature engineering is the method of creating useful features using the existing 

database and changing your data in such a form that it better relates with your target 

feature and thus improves the accuracy of the machine learning models. Feature 

engineering can be done to add additional variable(s) that can help in improving the 

accuracy of the models. 

iii. The mathematical functions developed using GEP can easily be used for future 

prediction but the prediction of new dataset using ANN and GPR models presented in 

this research require MATLAB software. To make the models user-friendly and easy 

to use for the practitioners, mobile application of the models can be developed where 

the users can make prediction on just one touch.   
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