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ABSTRACT 

Compressive strength of high early strength is related non-linear with its components. In order 

to effectively utilize the high early strength concrete, compressive strength estimation is 

necessary. Nowadays, compressive strength prediction is done by a lot of researchers using 

machine learning tools with acceptable accuracy and performance. Therefore, in this research, 

an integrated framework of genetic algorithms and artificial neural networks was proposed. 

The compiled data consisting of eleven input and one output variable was used to train the 

model. The developed model has shown a high accuracy with a correlation coefficient of 

around 0.98 and a mean absolute error close to 3. Feature importance demonstrated that cement 

and water-binder ratio are the top two candidates contributing to the model whereas partial 

dependence plot analysis showed output variation with inputs. The comparison with other in-

practiced machine learning techniques showed that the developed model has the highest 

performance. In addition, the lab-scale experiments further provided an evaluation of the model 

and displayed those results from the model and actual are close to the 5 percent error. 

 

Key Words:  

Compressive Strength, Machine Learning, Optimization, High Early Strength Concrete
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Chapter 1  

INTRODUCTION 

1.1 General 

The most widely applied construction material is concrete in buildings, bridges, and structures. 

The main ingredient of concrete consists of aggregate, water, and cement. Research has been 

focused on alternative cementitious materials due to a huge portion of the carbon dioxide 

released in the production of cement. Around 5-8 percent of global CO2 emitted come from the 

cement industry [1]. In addition, normal concrete is not considered good for special properties 

like higher abrasion resistance, higher initial strength, higher flowability, greater ultimate 

strength, and higher durability [2]. In this regard, high-performance concrete (HPC) is playing 

a key role to decrease the environmental impact of cement which also have better properties as 

well which are prepared using additional cementitious materials. According to their properties, 

these concretes are divided into many categories. Furthermore, normally, superplasticizers are 

utilized to diminish the effect of the low water to cement ratio [3]. 

 

1.2 High Early Strength Concrete 

High early strength concrete is a type of high-performance concrete that achieves its designated 

compressive strength before time. It is also famous for fast-track construction and a minimum 

one-day specified strength is usually 17 MPa. High early strength is attributed to both high 

early and high strength concrete. [3-5]. High initial strength is utilized by designers to design 

efficient structures. Both normal and special concrete components are utilized to prepare 

HESC. There are several advantages of HESC, but most notable are higher early compressive 

strength, fast cast-in-place construction, speedy paving, enhanced precast elements production, 

fast-track repairing of pavements, accelerated usage of formwork and concreting in cold 

weather areas [3]. 

Furthermore, the COVID-19 calamity has affected all of the important sectors like agriculture, 

education, transportation, health, construction, etc. In order to minimize the effects of COVID-

19, infrastructure development became a prime concern at every level, particularly those 

infrastructures which deal with the medication and health like hospitals, quarantine centers, 

medical facilities, etc. In this regard, there are many techniques applied for this purpose but in 
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concrete construction, HESC has a high perspective to fulfill these mentioned challenges, 

especially in those projects which demand immediate requirements of buildings, transportation, 

and medical infrastructure. Because of the application of sustainable supplementary 

cementitious materials, will not only satisfy the need for early infrastructure operations but also 

reduce the determinantal effects of cement production [6]. 

 

Figure 1 Applications of HESC 

High early strength concrete can be prepared using various techniques, methods, and materials. 

Regarding materials variation, mostly high early strength cement, decreased water-binder ratio, 

increased cement quantity, and special types of cement are used. Additionally, mineral 

admixtures are also used either in combination with others or alone [3]. 

Many different types of cement are used to get high early strength, nevertheless, the usage of 

high early strength and calcium Sulpho aluminate cement are high due to their availability and 

good performance [7]. High early strength cement is designed to achieve early strength in 

comparison to normal Portland cement, but it has some drawbacks which include high 

shrinkage and increased generation of cement heat [8-10]. In addition, normally, normal 

strength cement 42.5 and normal strength cement 52.5 is used along with mineral admixtures 

to enhance the early strength because these are easily available and environmental friendly [11, 

12].  

In the same way, there is another key property of mixtures that plays an important role in the 

high early strength which is known as the water to binder ratio. In order to achieve high early 

strength, normally its value is set low which is why in most cases superplasticizers become a 

key part of the HESC mixtures in order to control heat production and slump reduction [13-

    restressed  o  rete      st  r     o stru tio  o     ridge
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15]. Moreover, high early strength is also affected by changes in both the type and quantity of 

mineral admixtures. Fly ash and silica fume are the two most widely used mineral admixtures 

due to their ease of availability and less cost. Many advantages are associated with the use of 

fly ash which include low permeability, high workability, and reduced heat generation which 

is effective in controlling decreased slump values because of reduced water binder ratio [16, 

17]. Silica fume usage is also wide due to its contribution in both the early and final strength. 

Silica fume causes pore refinement due to its micro size which enhances the strength of 

concrete [18]. Likewise, many other mineral admixtures have also been employed to increase 

the early strength while keeping the environmental challenges low [4, 5, 19].  

Different mineral admixtures have also been utilized while combining with others recently in 

order to increase the early strength. For instance, improved mechanical properties specifically 

compressive strength have been observed when slag is used in combination with the silica 

fume. This is due to the reason that slag caters to the low slump issue while silica fume 

compensated for the reduced early strength [18, 20]. Furthermore, nowadays, nano materials 

have also been extensively applied to enhance the early compressive strength of concrete either 

separately or while combining with other mineral admixtures. These increase compressive 

strength and durability because of pore refinement of concrete skeleton due to their nano size 

[13, 21]. This is shown in various experiments that improved early compressive strength along 

with the enhanced durability and mechanical properties obtained when different nano materials 

are used in concrete [22, 23]. The most widely employed nano material for enhanced properties 

of concrete is nano-silica and several researchers have applied it to improve the early 

compressive strength [15, 24]. 
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Chapter 2  

REVIEW OF LITERATURE 

2.1 Applications of Machine Learning in Civil Engineering 

Even though high early strength concrete has been prepared with a variety of materials and a 

lot of experimental research has been done on it, the experimental procedure adopted for this 

is highly resource and time-consuming. The experimentation also takes a lot of iteration 

which generates a lot of waste materials and makes this process costly. Due to these 

limitations, the use of HESC has been limited. Consequently, there is a great need for a soft 

tool that can give an accurate estimate of the HESC compressive strength without going 

through this labor-intensive and costly experimentation.  

Machine learning which is a subgroup of artificial intelligence (AI) has emerged as a 

breakthrough for the prediction of properties for various engineering materials based on past 

data. These data-driven ML models are also playing a key role in the concrete industry for 

estimating a variety of concrete properties like flexural strength [25], tensile strength [26], 

modulus of elasticity [26, 27], slump [28], and split tensile strength [29]. Similarly, 

compressive strength of different kinds of concrete has also been modeled using a variety of 

ML tools techniques which include but are not limited to support vector machine, decision 

tree, multilinear regression, artificial fuzzy neural network, random forest, gaussian process 

regression,  artificial neural network, genetic programming [30-34].  

 

2.2 Modelling Methods 

A lot of research has been carried out to find the most important parameter of High-

Performance Concrete which is compressive strength. Yeh et al. (1998) [35] were the first to 

use artificial neural networks to build models for the compressive strength prediction of 

concretes containing fly ash and blast furnace slag. The correlation values obtained between 

predicted and actual values were strong with the best R = 0.96. Following that, a slew of 

subsequent studies used Yeh's data to build compressive strength models using various 

methodologies. In this regard several researchers for example Han et al., Kaloop et al., Anyaoha 

et al., Chakraborty et al., and Hameed et al. all used the same data to construct unique modeling 
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methods in this area. Han et al. (2019) [36] utilized 5 input variables built as a result of a 

difficult variable combination, to develop the random forest algorithm for strength prediction. 

The high correlation coefficient (R = 0.97) indicates that the developed method was robust and 

error-free. 

Anyaoha et al. (2020) [37] introduced a novel boosting smooth transition regression tree 

(BooST) model and a comparison with other existing models has also been performed. With a 

regression coefficient of 0.95, the model's results demonstrated that the proposed model 

outperformed all others in terms of regression coefficients and error indices. Furthermore, 

Kaloop et al. (2020) [38] investigated the gradient tree boosting machine (GBM) model for 

improved predictability of HPC compressive strength by employing 8 distinctive variables. 

Figure 2 depicts the overall’s technique, in which data is first standardized and then trained 

using several models. With a high coefficient of correlation and small error, the results showed 

that prediction accuracy was good. 

 

 

Figure 2 Kaloop et al. [38] overall methodology followed 

 

Chakraborty et al. in 2021 [39] used an extreme gradient boosting strategy to estimate 

compressive strength using six input variables. Figure 3 depicts the innovative approach used 

by Chakraborty et al., which shows that feature selection, as well as hyperparameter 

optimization, were undertaken for improved model performance. With a model correlation 
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coefficient of 0.97, the model offers the most accurate predictions when compared to 

previously published models. 

 

 

Figure 3 Process of feature selection and optimization by Chakraborty et al. [39] 

 

Similarly, in 2021, Hameed et al. [40] developed the ANN model, which uses 8 input variables 

and integrates principal component analysis (PCA). The variables are recreated before model 

training using the PCA, as illustrated in Figure 4, to increase the model's efficiency. The output 

of the model showed a high level of agreement between expected and actual values (R = 0.96). 
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Figure 4 Framework adopted by Hameed et al. [40] 

Only a few studies have created datasets that can be used for predictive modeling. Hoang et 

al. [41], for example, used the gaussian process regression to simulate the compressive 

strength of high-performance concrete (GPR). The study employed 239 data points from the 

experimental testing of HPC samples with 7 important influencing parameters. In terms of 

prediction, the proposed model had superior performance (R = 0.94) when compared with 

support vector machine and neural network models. 

Moreover, just a few academics have used optimization methods to improve machine 

learning systems' prediction abilities. Yu et al. [42], for example, created an expert approach 

for improving model performance by combining a support vector machine with enhanced cat 

swarm optimization (ECSO). The proposed optimized support vector machine model 

outperformed other conventional models in terms of predictive ability and accuracy. 

Furthermore, Bui et al. [43] produced an artificial neural network model that was improved 

using a novel and adaptive firefly algorithm, and the model's performance was excellent (R = 

0.95). Between 2020 and 2022, Golfashani et al. [2, 44] presented two new techniques. The 
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grey wolf optimizer (GWO) was combined with an efficient neural network type i.e., ANFIS 

and ANN, in the first approach to improve the models' prediction capacity. While Harris 

hawk's optimization was hybridized with radial basis and multi-layer networks, in the second 

approach. Both methodologies were capable to establish significant predictability based on 

statistical metrics and can be used to accurately estimate the compressive strength of high-

performance concrete. 

To the author’s knowledge, no study has focused to anticipate High Early Strength Concrete’s 

compressive strength. Furthermore, the majority of investigations have not given consideration 

to many categories that may influence compressive strength. Furthermore, no Genetic 

Algorithm has been combined with an Artificial Neural Network to improve the prediction 

efficiency of ANN. Finally, in the previous papers, experimental verification of presented 

models was mostly overlooked. 

An efficient ANN-GA model in this study is created as a result of the aforementioned gaps. 

GA has been used to pick the best architecture for the ANN model. Several performance 

evaluation parameters have also been determined, which are not limited to root mean squared 

error (RMSE), and mean absolute error (MAE) but also include correlation coefficient (R), and 

coefficient of determination (R2). Feature importance analysis is used to establish the influence 

of various features, and the model's variation is determined through a sensitivity analysis of the 

most important features. Moreover, other in-practiced machine learning techniques such as 

multilinear regression, Gaussian process regression, support vector machine, gene expression 

programming, and ensemble tree. Furthermore, lab-scale testing was carried out to validate the 

performance and results of our model. Finally, a graphical user interface (GUI) has been 

designed to make the suggested model easier to use. 
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2.3 Objectives 

To close the research gap, the following research objectives have been established: 

▪ Using Genetic Algorithms (GA), and Artificial Neural Networks (ANN) create a unique 

predictive model for compressive strength of High Early Strength Concrete (HESC) 

(GA) 

▪ To compare the outcomes of the ANN-GA hybrid model with those of other in-

practiced machine learning models 

▪ The developed hybrid model validation through lab-scale testing 

 

2.4 Structure of Report 

There are six chapters in this thesis.  

• Chapter, 1; Introduction: The introduction is the first chapter of this study, and it 

contains a broad introduction to concrete along with high early strength concrete.  

• Chapter, 2; Literature Review: The literature study in Chapter 2 covers a thorough 

examination of applications of artificial intelligence tools in the field of civil 

engineering, particularly focusing on high-performance concrete. Moreover, this 

chapter also contains the objectives of this study.  

• Chapter, 3; Modelling Methods: The third chapter examines modeling methods in-

depth while giving particular attention to our utilized optimization and regression 

methods. 

• Chapter, 4; Methodology: The full schematic followed along with the methods of this 

study are described in Chapter 4. 

• Chapter, 5; Results and Discussion: The outcomes are presented and discussed in 

Chapter 5. Conclusions and future proposals are presented in the final chapter.  
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Chapter 3 

DATA-DRIVEN MODELS 

3.1 Neural Networks (NN) 

3.1.1 General 

Neural networks often famous as artificial neural networks are a family of machine learning 

technology that uses layers in a closed network to interpret data. The name of these networks 

originated from their similarity to the brains of humans. These aren't an ideal duplicate of 

brain processing, but they do mirror how neurons in the human mind work. For instance, the 

brain consists of the composition of interlinked neurons that receive information through 

dendrites. As shown in Figure 5, the neuron by the axon receives signals and distributes them 

to nearby neurons through terminals. While interconnected decision functions and layers 

compose artificial neural networks via axon-like edges and communicate with one another 

[45]. 

 

Figure 5 Structure of a Neuron in the Human Brain 

 

3.1.2 Artificial Neural Network Types 

In the domain of artificial intelligence, artificial neural networks (ANN) are among the most 

popular and widely used data processing approaches. These methods are easy to use and 

provide good performance at a minimal computing cost. the two most common forms of ANNs 

consists of single-layer networks (SLN) and multi-layer networks (MLN). SLNs are simpler to 

use and compute, whereas MLNs are better at addressing non-linear problems. They've been 
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used in a wide variety of engineering projects. MLNNs can be applied to a variety of regression 

situations [46]. The MLNN has input, output, and hidden layers, as depicted in Figure 6. 

 

 

Figure 6 Different Layers of ANN 

 

Multiple neurons are connected in a layer by weights in a sequential fashion. In the feed-

forward stage, the network's output is predicted. Neurons convey data from the input set to the 

input layer, which is then sent to the hidden layer and finally to the output layer's neurons. This 

output is the model's forecast, which is derived using hidden and output layer calculations. 

Figure 7 depicts the process in one neuron. It is demonstrated that the inputs and their 

associated weights are used to construct the initial weighted sum of input data. To alter the 

output, which is generally a constant number, a biased value is additionally added. The 

weighted sum is calculated by  

y=(x1×w1)+(x2×w2)+(x3×w3)+b [1] 

where x1, x2, and x3 denotes signals from input layers, and w1, w2, and w3, respectively, are 

matching weights. In this equation, b is the biased value. Figure 7 shows how the node's 

summed weighted input is converted to an output that is delivered to the succeeding hidden 

layer. Moreover, activation functions are used to perform this task. The pure linear was utilized 

in the output layer whereas hyperbolic tangent sigmoid activation functions was utilized in the 

hidden layer, respectively which are commonly famous due to their robustness [47]. The 

transfer function equations are presented by 



12 

 

f1= tansig (t) = (
2

1+e-2t
) -1 [2] 

f2= lin(t) = t [3] 

The optimization techniques are then used to optimize the weights and biases. The change of 

weights and biases is repeated in this stage to decrease the prediction error. Resilient 

Backpropagation (RB), Conjugate Gradient (CG), Gradient Descent with Momentum (GDM), 

Levenberg-Marquardt (LM), and Gradient Descent (GD) are some of the most famous 

optimization methods utilized in ANN (LM) [48]. The Levenberg-Marquardt (LM) technique 

is a well-known and successful conventional optimization procedure that was applied in this 

study. After a defined number of generations, it intersects on the best vector of biases  and 

initial weights [2, 46].  

 

 

Figure 7 Processing of a Neuron in Artificial Network Structure 
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3.2 Evolutionary Optimization Method 

3.2.1 Genetic Algorithm 

A Genetic Algorithm (GA) is utilized in this work to choose the best ANN network. In 1975, 

J.H. Holland proposed the genetic algorithm initially and it is considered to be one of the 

efficient and most widely used algorithms that have a biological evolutionary basis. The 

underlying idea of GA is Darwin's hypothesis of survivance of the fittest [49]. The chromosome 

description consisting of genes, measurement of fitness values, and biological evolution 

through operators are thought of as key functions in the process of genetic algorithm. Figure 8 

represents the GA workflow in its entirety. Many scholars have utilized GAs to analyze 

complex mix design optimization solutions [50, 51]. GA starts by generating a set of potential 

solutions, which are then compared to the objective function. To evolve successive generations, 

selection, crossover, and mutation operators are used. The chromosomes are chosen in the 

selection stage based on fitness values, whereas children are formed in the crossover step by 

randomly changing sequences. Finally, the bits of the chromosome are flipped at random using 

a probability value. This newly evolved population repeats the process until the required 

criteria are met [52]. 

When compared to traditional optimization methods, genetic algorithms have numerous 

advantages. The ability to deal with complexity and operate in parallel is the most impressive 

of these. These algorithms can handle a variety of fitness functions, which are not limited to 

stationary, continuous, linear, and random, but also include nonlinear, and dynamic fitness 

functions. Because each individual operates separately, the variables in the algorithm solution 

can investigate in different directions. This property makes it ideal for parallelizing algorithms 

in preparation for employment. It has the ability to change a variety of factors as well as groups 

of programmed chains. 
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Figure 8 Process followed in GA 

 

3.2.2 Parameters of GA 

(a) Search Space or Primary Population 

The encoding scheme (i.e., the process of encoding data into a specific format) is crucial in 

most computer tasks. The information provided is coded using a specific bit string. Several 

encoding methodologies are utilized depending on the issue domain: value-based, binary, 

permutation, hexadecimal, tree, and octal are all well-known encoding techniques [36]. Binary 

encoding is the most widely used strategy for encoding. One and zero strings are used to display 

every gene in a chromosome. Each bit in binary encoding represents a property of the answer. 

It speeds up the creation of crossover and mutation operators [52]. 

 

(b) Selection of best chromosome 

Selection is also a vital phase in GA since it controls whether or not a string will be employed 

in the further reproduction. The selecting procedure is commonly called reproduction 

operation. The selection pressure determines the rate of convergence of GA. The most well-

known selection procedures are not limited to tournament, roulette wheel, and Boltzmann, but 

also incorporate rank, and stochastic universal sampling [52]. The tournament selection is used 
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in this study which was first developed by Brindle (1983). Based on their fitness scores, the 

top individuals were selected from the roulette wheel. Following selection, individuals with 

higher fitness values are introduced to the following generation's pool. In this process of 

selection, everyone is compared to everyone else till the specified maximum value of the 

population is reached [36, 52]. Figure 9 demonstrated the tournament selection procedure. 

 

 

Figure 9 Best Chromosome Selection Thorough Tournament 

 

(c) Crossover Techniques 

To create new children, the genetic information of two or more parents is combined. Single-

point crossover, uniform crossover, cycles crossover, shuffle crossover, k-point crossover, 

partially matched, and the reduced surrogate is all well-known crossover types [52]. In this 

study, a single-point crossover is used. The method followed by a single point is that first an 

arbitrary crossing point is chosen, and the chromosomes are exchanged at that point. Figure 10 

shows the changed information of genes after it has been switched in one place. The one 

chromosome tail gets swapped by the head to make new children in this example. 
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Figure 10 Swapping of Genetic Information after Single Point Crossover 

 

(d) Techniques of Mutation 

Mutation is a process that ensures that genetic variety is maintained from one generation to the 

next. Simple inversion, displacement, and scramble mutation are three popular mutation 

operators. The DM mutation moves a component of a string within a single solution. In addition 

to random displacement mutation, the place for displacement is picked at random from the 

supplied substring which causes a perfect solution. Two DM variations include insertion 

mutation and exchange mutation. In insertion and exchange mutations, a segment of the 

individual is either moved to a different site or swapped with other portions [36]. The mutation 

working for a single chromosome is illustrated in Figure 11. 

 

 

Figure 11 Change in Genes after Mutation Process 

 

(e) Criteria of Stoppage for GA 

Duration restriction, fitness limit, number of generations, number of stall generation, and stall 

time limit are just a few of the stopping criteria that can be utilized to end the GA. The 
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maximum number of generations is used as the halting criteria in this investigation. GA's 

pseudo-code is depicted in Figure 12. The genetic algorithm iterates as many times as possible 

until the global optimum solution is found, as seen in this pseudocode.  

 

 

Figure 12 GA Pseudocode [52] 
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3.3 Additional Methods in Machine Learning 

3.3.1 Multi-Linear Regression 

An approach for establishing the linear type of relationship among parameters and outputs is 

commonly known as linear regression which is statistical in nature. When there is just one input 

variable, simple linear regression is employed; when there are numerous input features, 

multiple linear regression is utilized (MLR). 

y = β0 + β1x1 + β2x2 + ⋯ + βnxn [4] 

The number of input variables is specified by xi (i = 1, 2...n), the term indicates the equation's 

coefficient, and y represents the model's output. The main purpose of MLR is to identify the 

best coefficient value [38].  

 

3.3.2 Gene Expression Programming 

Ferreira et al. [40] were the first who put forward the theory of a novel type of genetic 

programming widely known as Gene expression programming (GEP). The basic technique 

starts with the chromosomes that were randomly generated in the initial population. 

Afterwards, the chromosomes are revealed, and magnitude of fitness for each individual is 

calculated using criteria specified. After that, the change in fitness is established for all the 

chromosomes. Fitness-oriented individuals are passed down to the next generation. This 

procedure is repeated until the desired outcomes are achieved [41]. GEP has demonstrated good 

accuracy in predicting the compressive strength of geopolymer concrete, waste sand foundry 

concrete, high-performance concrete, and recycled concrete types as compared to other models 

[53, 54]. Gepsoft XProTools, which features the interface seen in Figure 13, uses GEP. 
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Figure 13 Classical Interface of GepSoft Xpro Tools 

 

For the GEP model, the following parameters were chosen. The prediction procedure in GEP 

involves numerous iterations. The results of an analysis are checked every time when it is 

performed and compared. Variables such as the linking function, tail size, head size, and 

chromosomes amount will be altered in the next iteration until the program reaches to an 

optimum value of solution. Table 1 shows the optimal parameter settings. The optimal genes 

determined was three (3), tail size was eleven (11) and head size was (10) along with 

chromosome value of eighty (80). In addition, to avoid overfitting the solution, the function for 

linkage employed in this investigation was addition (+), and no changes are made in the rest of 

variables.  
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Table 1 Important Parameter Values used in GEP Program 

General Settings 

Linking Function: Addition 

Fitness Function: MAE 

Genes: 3 

Gene Size: 70 

Chromosomes: 80 

Dc Size: 11 

Tail Size: 11 

Head Size: 10 

Genetic operators 

Rate of Mutation: 0.00137 

Rate of Inversion: 0.00546 

Rate of Gene Transposition: 0.00277 

Rate of Gene Recombination: 0.00277 

Rate of Recombination: 0.00277 

Rate of Transposition: 0.00546 

Numerical 

Per Gene: 12 

Type of Data: Floating number 

Bound lower: -12 

Bound Upper: 12 

 

3.3.5 Ensemble of Decision Trees 

An ensemble of the tree (ET) is a type of decision tree graph for making decisions that looks 

like a tree. Regression and classification trees are two different forms of ensemble trees that 

produce numeric and categorical values in output, respectively. The approach of the ensemble 

of regression consists of numerous regression trees combined in a weighted combination, 

which is subsequently used for predictive modeling. An ensemble tree's prediction performance 

is improved by combining many regression trees. These are most suitable due to their speed 

and comparative stability in complex problems. As a result, it is frequently possible to achieve 

synergy among different types of trees in a numerical problem. A typical method for enhancing 

diversity in the prediction of ensemble trees is to utilize trees that select features based on the 

random distribution of data. Figure 14 depicts a simple decision tree that can be used for 

regression. 
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Figure 14 Simple Illustration of Ensemble Tree 

 

3.3.2 Support Vector Machine 

Support vector machines are supervised machine learning models that are commonly used to 

solve regression and classification issues. In both classification and regression tasks, the SVM 

uses the kernel function to create the correspondence between input and output data. In 

complex circumstances including dynamic nonlinearity, the kernel function is quite useful. 

Inseparable variables are translated into high dimensionality, which is impossible to achieve in 

lesser dimensionality [38]. Because of its high robustness, the cubic kernel function was 

utilized in this investigation. The typical form of support vector algorithm is depicted in Figure 

15. A hyperplane is employed to distinguish between two groups of solutions in this diagram. 

Two types of support vectors are depicted by the blue and green points. 
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Figure 15 Support Vectors and Planes used in SVM 

 

3.3.3 Gaussian Process Regression 

The Gaussian process is a set of variables that produce a Gaussian distribution. It's also 

commonly utilized to solve regression issues which are also famous as a distributional function 

because it consists of average function m (y) and function of covariance k (y,y′). The average 

function m (y), which indicates the value of function on value of x specified by Equation (5). 

It is the mean of functions calculated in the given range of x.The covariance function k (y,y′) 

is defined by Eq (6), and it illustrates the relationship for each input pair (y,y′) function value. 

Consequently, Equation (5) demonstrated a GP, while Equation (6) denotes a function (7) [39]. 

m (y)= E[f (y)] [5] 

k (y, y')= E [(f (y)- m(y)) (f (y')- m(y'))] [6] 

f (y)∼ GP (m(y), k(y, y')) [7] 

The kernel function must be properly designed to produce an effective GP regression model. 

As previously stated, the kernel function quantifies the dependencies between output values 

and their input values. In other words, the values of inputs reflects the expected output values' 

similarity. The distance between input values is frequently used to represent similarity in this 

situation. Figure 16 displays a gaussian process for prediction, with the blue line representing 
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the GPR function and the dots representing the datapoints. There are various distinct kernel 

functions described in the literature, including the rational quadratic, squared exponential, non-

iso tropic mattern class of kernels, and many others [39]. The kernel function employed in the 

development of the model after much research is non-isotropic Mattern.  

 

 

Figure 16 Predictive Modelling using GPR Model 
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Chapter 4 

RESEARCH METHODOLOGY 

4.1 Overall Scheme 

Figure 17 depicts the general flowchart used in this study, which is divided into three phases 

and each phase is equally important for the proposed study. Phase-1 consists of data handling, 

whereas phase-2 comprises model development, and in phase-3 validation of the proposed 

model is performed. Phase 1 consists of data handling in which first data collection from 

literature is done and after that data importing into MATLAB was done. Data preprocessing 

was performed before the Artificial Neural Network (ANN) Model Development in Phase-2. 

In this phase, first ANN optimal Architecture is selected through GA which is then used in 

ANN Model Development. To evaluate the model behavior feature Importance and partial 

dependence plots are plotted. In the final Phase-3, Model Validation is done using comparison 

with other Machine Learning Models along with Experimental Verification and development 

of Graphical User Interface (GUI). 

 

 

Figure 17 Proposed Workflow of this Study 
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4.2 Pre-Processing along with Data Collection 

Using various keywords (early strength development, rapid hardening concrete, high early 

strength concrete, compressive strength), a detailed literature review was conducted to obtain 

lab results of experiments on the compressive strength of HESC. Google Scholar and Science 

Direct were used to search for published papers. From 39 internationally published studies, 869 

experimental results values comprising cylinders and cubes testing were compiled for the 

compressive strength of HESC [4, 5, 7, 8, 10-20, 24, 55-72]. Eleven input variables were 

chosen based on the availability of data and their impact on HESC compressive strength. There 

were eight numerical variables and three category variables in this study. Dataset compilation 

was the core basis for further model design and development, as demonstrated in the schematic 

phases of this study in Figure 17. Table 2 shows the results of the statistical analysis of the 

obtained databases. 

 

Table 2 Important Statistical Parameters for Data Collected 

Variable Full-Form Unit Type Minimum Maximum SD 

Age Age days numerical 1 28 10.56 

C Cement kg/m3 numerical 80 863.2 167.23 

CA Coarse Aggregate  kg/m3 numerical 0 2120 413.58 

FA Fine Aggregate kg/m3 numerical 0 1712 271.85 

MA-1 
Mineral 

Admixture-1 
kg/m3 numerical 0 380.93 99.78 

MA-2 
Mineral 

Admixture-2 
kg/m3 numerical 0 200 29.97 

SP Super-plasticizer kg/m3 numerical 0 21.6 6.99 

W/B Water-Binder - numerical 0.18 0.75 0.12 

C_Type Types of Cement - categorical CSA 
CEM I 

42.5 N 
- 

MA-

1_Type 

Mineral 

Admixture-1 Type 
- categorical PIA FAF - 

MA-

2_Type 

Mineral 

Admixture-2 Type 
- categorical BEP NULL - 
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The variables chosen for the model development based on the compressive strength influence 

include cement type (C) and quantity, mineral admixture-1 type (MA-1) and quantity, mineral 

admixture-2 (MA-2) type, and quantity. MA-2 mostly comprises different types of 

nanomaterials that are used nowadays in the enhancement of concrete properties especially 

fresh and early age characteristics. In addition, amounts of coarse (CA) and fine aggregate (FA) 

are also selected along with water to binder ratio (W/B) to check their impact on the HESC 

strength. It is also noted that compressive strength is a factor in the specimen curing period 

which made it necessary to include the age of the concrete. In this study, the collected data 

varies from 1-day to 28-days of testing for both cylinders and cubes. To address outliers and 

missing data points, the acquired data were preprocessed, and statistical analysis was 

performed before model building. The histograms of various input variables are displayed in 

Figure 18, while pie charts of categorical variables are demonstrated in Figure 19. 

 

 

Figure 18 Historical Distribution of (a) Age, (b) W/B, (c) C, (d) FA, (e) CA, (f) MA-1, (g) 

SP, (h) MA-2, (i) fc 
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Figure 19 Categorical Distribution of (a) Cement Types, (b) Mineral Admixture-1 Types, (c) 

Mineral Admixture-2 Types 

 

4.3 Experimentation of HESC 

Experiments in the lab have been carried out to further validate our model. Two cement types 

and two mineral additive types were employed in this experiment. CEM I 42.5N and CEM I 

52.5N types of cement are utilized, with N referring to typical early strength and meeting the 

regulatory standards [73]. Fly ash class F and silica fume are the two mineral admixtures used 

in this study. The chemical compositions of cement types and fly ash-F are shown in Table 3. 

Silica fume meet ASTM C1240 criteria whereas fly ash meet ASTM C618 criteria [74, 75]. 
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Table 3 Oxide Composition for Fly Ash-F, CEM I 52.5N, and CEM I 42.5N 

Chemical Composition Fly Ash-F % 
CEM I 52.5N 

% 
CEM I 42.5N % 

SiO2 47.2 20.44 20.35 

Al2O3 25.44 4.88 4.87 

CaO 3.38 63.25 63.5 

Fe2O3 2 3.4 3.26 

MgO 1.4 2.24 2.41 

SO3 0.57 2.71 2.71 

K2O - 0.57 0.58 

NA2O3 - 0.07 - 

Loss on Ignition 3.9 3.72 1.83 

Chloride Content - 0.01 - 

 

Gravel and margalla sand were used as coarse and fine aggregates, respectively. To assess the 

aggregate characteristics, preliminary testing was undertaken on the aggregates before the 

formation of the mixture. These features help determine the appropriate mix proportion for the 

desired strength. The tests include water absorption, fineness modulus, gradation test, and 

specific gravity. The physical parameters of the raw material are listed in Table 4 and are in 

accordance with ASTM standards [76, 77]. To obtain good workability, a poly carboxylic-

based super-plasticizer was utilized, and water from the tap was used for mixing.  

 

Table 4 Summary of Properties for Fine Aggregate, Coarse Aggregate, and Silica Fume 

Material Specific Gravity Fineness Modulus Absorption 

Silica Fume 2.24 - - 

Coarse Aggregate 2.65 2.55 0.73 

Fine Aggregate 2.68 2.89 2.16 
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The volumetric approach is used to proportion the concrete mixture. The range of water to 

binder was from 0.23 to 0.32 by weight for the proposed mixtures and the ACI mix design 

method was used to create four recipes [78]. The mixed design of recipes is shown in Table 5. 

Mixes are made with cylindrical specimens measuring 100 mm x 200 mm. ASTM C 192 is 

used to make the mixtures. The dry mixing of aggregates is done by hand first, then the cement 

and mineral additives are added. The pan mixer was used to do the wet mixing after the dry 

mixing. The superplasticizer was applied during the wet mixing process according to ASTM 

specifications. The cylinders were cleaned and oiled before being filled with concrete. Concrete 

is poured in three layers, and examples are tamped using a mechanical vibrator. After one day 

of air curing, the concrete samples are demolded and placed in lime water for the requisite 

testing duration. To avoid any variations in strength due to surface roughness, specimens are 

properly caped prior to testing. Figure 20 depicts concrete samples after they have been poured, 

whereas Figure 21 depicts the concrete casting and testing procedure. 

Table 5 Proportions of Mixtures per Cubic Meter of HESC 

Mix ID I-1 I-2 I-3 I-4 

Cement Type 
CEM I 

42.5N 

CEM I 

52.5N 

CEM I 

52.5N 

CEM I 

52.5N 

Mineral Admixture-1 

Type 
Fly Ash-F Fly Ash-F Silica Fume Fly Ash-F 

Mineral Admixture-2 

Type 
NULL NULL NULL Silica Fume 

Cement 400 400 320 500 

Coarse Aggregate 842 842 674 851 

Fine Aggregate 551 551 446 602 

Mineral Admixture-1 80 80 48 80 

Mineral Admixture-2 0 0 0 42 

Superplasticizer 2.0 2.0 12.7 5.6 

Water-Binder Ratio 0.28 0.28 0.25 0.24 
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Figure 20 Samples for Compressive Strength 

 

 

Figure 21 Schematic Flow of Testing from Casting to Final Results 
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Chapter 5 

RESULTS WITH DISCUSSION 

5.1 Developed Framework for the Model 

This study proposes an integrated model of Artificial Neural Networks and Genetic 

Algorithms. The most common way for choosing an ANN design is hit and trial [46, 79]. This 

is a difficult task that wastes a lot of time and may also result in the model underfitting or 

overfitting [80]. A genetic algorithm (GA), which presents an evolutionary technique to handle 

such challenges, is the most robust approach for the optimal architecture of ANN. As a result, 

in this research, GA is employed to determine the best layers and their associated neurons for 

ANN.  

For model development, the MATLAB R2021b is employed. The data is divided into 3 datasets 

at random: training (seventy percent), validation (fifteen percent), and testing (fifteen percent). 

The model is trained using the training part while the testing portion is employed to evaluate 

its validity. When over-fitting occurs, the validation data is used to stop the training. The 

Levenberg-Marquardt technique was used to train the ANN model using the data acquired, and 

the multilayer neural network was trained with the feed-forward type of neural network. 

Whereas the model had only one output and errors were optimized using the backpropagation 

technique. The eleven variables were supplied into the model as inputs, and the model's output 

was compressive strength. To choose the optimal hidden layers and number of neurons of the 

population, the type of genetic algorithm approach used was single-objective which was set as 

the mean-squared error (MSE). 

Figure 22 depicts the integrated approach's overall framework. The imported data is split into 

two groups. The training and validation part make up the first set, while testing data make up 

the second. Following that, a sample of the initial search space consisting of hidden layers and 

neurons is created and further evaluation is done on this initial population with the help of 

fitness function. Following that, GA operators are used to construct the following generations. 

This method is repeated until a certain number of generations has been reached. The ideal ANN 

design chosen by GA comprises two hidden layers, as seen in fig. As indicated in Figure 22, 

the amount of neurons in the first and second layers were nineteen (19) and twenty (20), 

respectively. 
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Figure 22 GA Selection of ANN Framework and Selected Optimal Architecture 

 

5.2 Performance of Developed Hybrid System 

The commonly used performance metric is the coefficient of correlation (R) in most of the 

previous studies, however, because of its sensitivity to multiplication and division function by 

a predetermined value, R cannot be utilized as the sole parameter for assessment of the model. 

As a result, the study calculates the coefficient of determination (R2), root-mean-square error 

(RMSE), and mean absolute error (MAE). The model's performance will be evaluated using 

these parameters. The equations of performance parameters used are given below 
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R2 = 1-
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2n

i
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[9] 
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e-xi)2

n

i

[10] 

 

MAE = ∑|xi
e-xi|

n

i

[11] 

Where, xi= predicted value, xi
e = experiment value, xavg

e  = average of experiment values, 

xi
avg

 = average of predicted values. 

 

The small circles in brown color in Figure 23 show the forecasted and experimental values for 

fc in MPa obtained from the hybrid ANN model shown. The fit lines in the linear form for the 

training, validation, and testing data are shown in blue, green, and red, respectively. The 

discrepancy between predicted and experimental values is quite small for all datasets (training 

and testing), as shown in Figure 23. In addition, the overall R-graph shows that very a much 

smaller number of data points deviated from the linear fit line. A model with a coefficient of 

correlation (R) near one is considered good. Our overall R-value is 0.983, indicating that the 

model is performing well.  
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Figure 23 Performance of the Model with Regression Coefficients for different datasets 

 

The performance matrices calculated for the developed model are listed in Table 6 which 

consists of MAE and RMSE along with correlation and determination coefficients for the 

testing and training stages. In the testing phase, the model shown a comparatively less error 

values (MAE = 3.14, RMSE = 4.06), as compared to training phase (MAE = 3.51, RMSE = 

5.06). Similar performance was observed for the correlation and determination values which 

were higher in the testing phase (R = 0.987, R2 = 0.975) and comparatively lower in training 

stage (R = 0.981,  R2 = 0.962) as shown in Table 6. The least mean absolute error value was 

noted as 3.14 while the greatest R for the testing set shown by modal was 0.987. The statistical 

measures in Table 6 reveal that the proposed model (Hybrid ANN-GA) performs well with an 
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efficient ability to predict the compressive strength of HESC at all ages including early (1,3 

days) and final strength (28 days). 

Table 6 Training and Testing Dataset Performance Indices 

Statistic Parameter Testing Training 

Mean Absolute Error MAE 3.14 3.513 

Root Mean Square Error RMSE 4.05 5.068 

Coefficient of Correlation R 0.987 0.981 

Coefficient of Determination R2 0.975 0.962 

 

The proposed model's error histogram is shown in Figure 24. It compares the optimized ANN-

GA prediction model's error distribution, which is calculated by taking the difference between 

predicted and experimental values. The projected error of the developed hybrid ANN model 

demonstrated Gaussian distribution where the error lies evenly on both sides of peak values. 

The concentration of error noted was in the [-6, 6] area for all considered values. Figure 24 

shows that the suggested hybrid model is robust and delivers accurate experimental value 

predictions. 

 

Figure 24 ANN Hybrid Model Error Distribution Showing Normal Distribution 

 

  

   

   

   

   

   

 
  
 
 
 
 
 
 

  
 
  

  
 
  

  
 
  

  
 
  

  
 
  

  
 
  

  
  

  
  

  
  

 
  

 
  

 
  

 
  

 
 
  

 
 
  

 
 
  

 
 
  

 
 
  

 
 
  

 
 
  

                                

        

          

    

          



36 

 

5.3 Model Validation Through Other Machine Learning Techniques 

MATLAB 2021b inbuilt programs were used to evaluate the performance of the ANN-GA 

model with various in-practiced machine learning techniques including support vector machine 

(SVM), and Gaussian process regression (GPR) along with ensemble tree (ET) and multi-linear 

regressions (MLR). In addition, a relatively new technique known as gene expression 

programming (GEP) used in several studies has also been employed in order to compare the 

performance. Table 7 shows the performance indices of the models under consideration. 

The investigation shows that the other developed models are capable of predicting compressive 

strength at all phases, however, the performance regarding R and R2 was highest for the hybrid 

ANN model among all. The ANN-GA model has the excellent coefficient values both in 

training (R = 0.981, R2 = 0.962), and testing stages (R = 0.987, R2= 0.975). The GPR model 

was the second best with an R-value of 0.954, and an R2-value of 0.910 in the training and in 

testing these were 0.976 and 0.954 respectively. Furthermore, the SVM and ET models both 

performed well and had similar performance matrices in training, with R and R2 values that 

were near to one other, but they differed slightly in testing. The remaining two models, MLR 

and GEP, produced acceptable outcomes but were less accurate than previous others, as 

evidenced by their R-values of 0.911, and 0.9 in training respectively. In addition, their fitness 

in the testing phase was 0.925 and 0.918, respectively also demonstrating their low 

predictability. The MLR model performs the worst in terms of determination coefficient values 

with a 0.83 value. 

The assessment of the developed models has also been carried out for the error indices where 

low error values were an indication of superior performance. In both the training and testing 

stages, the hybrid ANN model beat all other models with a mean absolute error of 3.51, a root-

mean-square error of 5.068 in the training stage, and a mean absolute error of 3.14, and a root-

mean-square error of 4.05 in the training stage. Other models performed relatively low when 

compared with the ANN model, with MLR having the worst performance in both training 

(MAE = 8.60, RMSE = 11.97) and testing (MAE = 8.67, RMSE = 12.2). MLR's poor 

performance when compared to the remaining models is due to the non-linear connection of 

compressive strength with the variables.  

To summarize, different machine learning models were built and tested for the compressive 

strength prediction of HESC, including MLR, RF, SVM, and ET. Most of the developed 

model’s accuracy was good while considering the non-linearity of input parameters. The hybrid 
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ANN model demonstrated the highest efficiency for regression coefficients (R, R2) as 

compared with others (SVM, ET, GPR, and GEP). When compared to the other models, the 

MLR model fared badly during both training and testing. For training the hierarchy of 

performance followed was ANN-GA > GPR > SVM = ET > GEP > MLR and for testing the 

pattern shown was ANN-GA > GPR > SVM > ET > GEP > MLR. At the end, the outcomes of 

the developed models were assessed in error terms also, which showed the same patterns. Thus, 

most of the developed models have good prediction accuracy, but the proposed model with 

hybridization (ANN-GA) surpasses remaining and may be employed to anticipate compressive 

strength while eliminating the requirement for tests in the labs whereby preserving resources 

and efficiency. 

 

Table 7 Comparative Analysis of Performance Matrices for Different Developed Models 

  
R R2 RMSE MAE 

Model Training Testing Training Testing Training Testing Training Testing 

ANN-

GA 
0.981 0.987 0.962 0.975 5.068 4.050 3.513 3.140 

GPR 0.954 0.976 0.910 0.954 8.103 6.301 5.499 4.519 

SVM 0.927 0.955 0.860 0.907 10.378 8.960 7.500 6.960 

ET 0.927 0.947 0.860 0.879 10.129 9.800 7.420 7.100 

GEP 0.911 0.925 0.83 0.856 11.135 11.24 8.560 8.61 

MLR 0.900 0.918 0.810 0.843 11.974 12.200 8.606 8.670 

MLR = Multi Linear Regression, GEP = Gene Expression Programming, EN = Ensemble Tree, 

SVM = Support Vector Machine, GPR = Gaussian Process Regression, ANN-GA = Artificial 

Neural Network-Genetic Algorithm  
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5.3 Knowledge Extraction and Model Explainability 

In the modern era of explainable machine learning, feature importance and sensitivity analysis 

are useful to deepen the knowledge of the model. Figure 25 depicts the proposed model's 

feature importance. As seen in Figure 25, practically all parameters contribute to HESC's 

compressive strength but the quantity of cement and the water-binder ratio were the top 

candidates. The amount of cement used is critical because an increase in cement quantity has 

been shown in earlier research to alter early and 28-day strength [44]. Along with these two 

variables, the concrete's age, W/B, and super-plasticizer all also have an impact on HESC's 

compressive strength, as these factors play a role in strength development. The kind of mineral 

admixture-2, which contains mostly nanomaterials, was found to be the least important 

parameter. The fact that the type of nanomaterial has a smaller impact on compressive strength 

than its quantity backs this up [22, 23].  

 

 

Figure 25 Relative Importance of Input Parameters on the Model 
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Partial dependence plot (PDP) analysis is being employed on the proposed hybrid ANN model 

to analyze the input parameters' influence on predictability. The compressive strength behavior 

of HESC is evaluated by utilizing the ANN model by changing one parameter in the suitable 

range while maintaining all others fixed [81]. Figure 26  depicts the PDP graphs of the five 

most critical input parameters.  

PDP plots of the important influencing variables are shown in Figure 26 (a, b, c, d, and e). The 

influence of coarse aggregate content on compressive strength is seen in Figure 26 (a). CA 

content has a generally positive relationship with compressive strength. This trend was in line 

with a prior study, which revealed that when CA increases, so does HPC concrete strength. 

This is because greater CA leads to a more compact structure, which improves load-bearing 

capability and limits material deterioration [82-84]. Figure 26 (b) shows how compressive 

strength improves as cement content increases. This positive relationship between cement 

quantity and compressive strength is logical since higher C content causes greater binding due 

to enhanced cement component reactivity, although durability can be reduced, which can be 

managed by adding supplemental cementitious materials. Golfashani et al. investigation 

yielded similar results [44]. Concrete with a lower water-binder ratio will impart high strength, 

which is a universal requirement for all concrete types. The rationale behind this is that the 

higher value of W/B will introduce more air voids whereby less compact the concrete skeleton 

will form, decreasing the strength [82, 85]. In Figure 26 (c), we see a similar pattern in our 

optimized ANN-GA model.  

Figure 26 (d) demonstrates the variation in compressive strength with concrete age, which 

indicates a positive connection. Figure 26 (e) depicts the relationship between strength and 

super-plasticizer amount. Although increasing the superplasticizer dosage may improve 

compressive strength, the amount used should be controlled since overdosing on SP will result 

in segregation and bleeding, which will impair compressive strength. Overloading the amount 

of SP will also influence concrete cohesiveness and homogeneity [86, 87]. 
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Figure 26 Partial Dependence Plot for (a) CA [kg/m3], (b) C [kg/m3], (c) W/B [kg/m3], (d) 

Age [days], (e) SP [kg/m3] 

 

                    

              

  

  

  

  

  

  

  

  

   

   

   

 
 
  
 
 
 
 

                            

             

  

  

  

  

  

  

  

  

   

 
 
  
 
 
 
 

                        

       

 

  

  

  

  

   

   

 
 
  
 
 
 
 

            

              

  

  

  

  

  

  

  

  

  

  

 
 
  
 
 
 
 

          

              

  

  

  

  

  

  

  

  

  

 
 
  
 
 
 
 



41 

 

5.4 Validation of Model Via Experiments 

Concrete mixture cylindrical specimens were examined according to the test method defined 

in ASTM C39 [88]. The samples are cured in water for 1, 3, 7, 14, and 28 days which are then 

taken out for testing. At each age, three samples were evaluated, and the average was used to 

determine the mean compressive strength (fc). As capping of samples is necessary to smoothen 

the surface and to have uniform load application, therefore it was done using lime before 

testing. The tests were performed under compression testing was performed (CTM) and all the 

samples centered appropriately in the machine before applying load. Each mix design is tested 

for the required curing period, and 20 compressive strength values at different ages were 

obtained for the model prediction comparison. 

Their testing results are shown in Table 8. Following the experimentation, the findings of the 

experiments are compared to the proposed model. Table 8 displays experimental test results, 

the model projected values and error values. Along with the specimen Id, I-1, the specimen's 

testing age is indicated where 1 refers to specimen I-1, which was evaluated 1 day after curing. 

The findings are presented using a scatter plot, as shown in Table 8, with the x-axis representing 

the data points and the y-axis representing the error values. The error is dispersed, as seen by 

the scatter figure, and the error range is 5 MPa. 
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Table 8 Comparison of Values Obtained from Experiment and Model 

Sr # Mix ID Experimental ANN-GA Model Error (MPa) 

1 I-1.1 21.5 20.93 0.57 

2 I-1.3 29.1 31.48 -2.38 

3 I-1.7 47.4 45.16 2.24 

4 I-1.14 54.3 56.2 -1.9 

5 I-1.28 62.8 60.71 2.09 

6 I-2.1 26.9 25.75 1.15 

7 I-2.3 31.6 33.9 -2.3 

8 I-2.7 43.3 41.72 1.58 

9 I-2.14 52.5 46.92 5.58 

10 I-2.28 70.8 68.83 1.97 

11 I-3.1 31.2 35.33 -4.13 

12 I-3.3 38.7 40.91 -2.21 

13 I-3.7 45.7 45.17 0.53 

14 I-3.14 53.4 46.66 6.74 

15 I-3.28 66.2 67.95 -1.75 

16 I-4.1 14.9 12.24 2.66 

17 I-4.3 22.3 24.34 -2.04 

18 I-4.7 36.7 37.9 -1.2 

19 I-4.14 52.4 55.97 -3.57 

20 I-4.28 68.5 67.23 1.27 
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Figure 27 Error Distribution Plot of the Datapoints 
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5.5 Computer Software Package 

Finally, utilizing the hybrid model (ANN-GA) a simple but convenient tool in the form of a 

graphical user interface (GUI) is developed in MATLAB. This GUI can be used for the 

estimation of HESC compressive strength. This will make it easier to use the ANN-GA model 

in practice. In order to obtain the predicted values of compressive strength, the user would only 

require giving inputs of parameters in the GUI as shown in Figure 28. A help button has been 

introduced to instruct the users on how to use the GUI (Figure 29). 

 

Figure 28 User-Friendly Graphical User Interface for the ANN-GA Model 

 

 

Figure 29 Interface of Help Button for User Convenience 
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Chapter 6 

CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions 

The need for HESC has increased in the wake of the COVID-19 pandemic. Time and money 

can be saved by using accurate and trustworthy models to forecast the compressive strength of 

HESC. This study aims to develop a machine learning model utilizing ANN, for the HESC 

compressive strength prediction comprising various supplementary cementitious materials. 

The genetic algorithm was combined with the ANN approach to improving it, with GA 

selecting the best ANN architecture. Various input parameters have been selected for the model 

development which includes both numeric and categorical types. Two categories of mineral 

admixtures and cement types are used as categorical while the rest are used s numeric which 

include the amount of cement, superplasticizer, mineral admixture, coarse, fine aggregate, and 

water-binder ratio. The only output parameter was HESC's compressive strength. 

The results of this study showed that the created model is effective at representing the highly 

nonlinear compressive strength response, as evidenced by high R = 0.987, R2 = 0.975, and low 

values of RMSE = 4.05, and MAE = 3.14. The generated model’s performance was the best 

among the developed machine learning models, demonstrating that the combination of GA and 

ANN produces the best results in terms of performance indices. The most critical criteria were 

cement quantity and water to binder ratio, with the mineral admixture-2 type being the least 

important. ANN-GA model performance is good with parameter variation, according to PDP 

analysis. The model's performance in real-time testing was tested during experimental 

validation. As a result, the created model can be utilized to forecast the compressive strength 

of HESC accurately using various parameters, thereby saving time and money. 

 

6.2 Recommendations 

The following are some of the research study recommendations. 

▪ Other forms of concretes, such as ultra-high-performance concrete and fiber reinforced 

concrete, can be predicted using the suggested framework. 

▪ Other properties of concrete, such as modulus of elasticity and tensile strength, can also 

be predicted using this framework.  
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