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Abstract 

 

Functional Near Infrared Spectroscopy (fNIRS) is a technology that measures changes 

in the oxygenation level of blood present in brain whenever an activity is performed by 

human being. It is a non-invasive technique and uses near infrared light to detect changes 

in the concentration of two chromophores i.e., oxygenated and deoxygenated 

haemoglobin. During the recording, information related to neural activity in fNIRS 

signals gets compromised. This is due to the interference of noises from the environment 

outside as well as inside the human body. External noises can be light in the room and 

powerline noise. Internal noises are physiological noises such as cardiac, respiratory and 

mayer waves. Therefore, during analysis, it is required to remove these noises first and 

then extract main activity signal i.e., hemodynamic signal. Many techniques and methods 

have been proposed and practiced up to this date. Among them the most popular 

technique is General Linear Modelling (GLM). GLM models the signal by breaking it 

down into sum of all components present in the signal along with an error term. Previous 

studies and research that have used GLM for the reconstruction of activity signal used 

single frequency value for each noise but in reality, the frequency for each noise varies 

with the level of activity performed by the subject. This can lead to less accurate 

reconstruction of activity signal. In this study, this problem is kept under consideration 

and a method is developed to keep account for all the values of frequency that can corrupt 

fNIRS signal. Ranges of frequencies are considered instead of single values. These 

frequency ranges are first extracted using Continuous Wavelet Transform (CWT) and 

their possible magnitudes are estimated using Kalman filter. Similarly, activity signal is 

extracted from fNIRS signal using Discrete Wavelet Transform (DWT) and then its 

magnitude is estimated using Kalman filter. Output of these two steps is fed to GLM for 

reconstruction of possible hemodynamic signal. Results from this method are compared 

with the results of conventional GLM and significant improvement is observed both 

visually and statistically. 

Keywords: Functional Near Infrared Spectroscopy (fNIRS), Hemodynamic Response 

Function (HRF), Continuous Wavelet Transform (CWT), Discrete Wavelet Transform 

(DWT), Kalman Filter (KF), General Linear Model (GLM).  
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Chapter 1: Introduction 
 

Brain responds to the application of external stimuli or any change in the environment 

by encompassing various neurochemical reactions. This promotes local neuronal activity 

complemented with increased consumption of oxygen and glucose. This leads to a 

generous inrush of blood locally which is abundant in oxygen bound hemoglobin [1]. 

Mechanism of increased cerebral blood flow (CBF) locally is called neurovascular 

coupling [2]. Within several seconds amount of oxygenated hemoglobin (HbO) 

transported to the region of neuronal activity for utilization exceeds and becomes 

overabundant comparing to its counterpart deoxygenated hemoglobin (HbR) [3]. 

However, in the beginning of neural activity the amount of HbR becomes abundant in 

capillary bed as oxygen is drawn from HbO to meet the metabolization demands of 

glucose. This later feature of hemodynamic response is more difficult to measure than 

the first one [4]. The firm connection of the two properties (extent and locale) of neural 

activity with two properties (magnitude and locale) of the chromophores (HbO and HbR) 

serves as a quantifiable marker for neural activity [5]. Both HbO and HbR possess 

characteristic optical properties in near-infrared light thus, optical methods are used to 

measure changes in their concentration during neurovascular coupling [6]. 

 

1.1 Background 
 

In 1977 Jöbsis first demonstrated and described the optical phenomenon of obtaining 

measurements of blood flow to the human cortex non-invasively [7]. This laid the 

foundation of functional Near Infrared Spectroscopy (fNIRS). Since then, it has been 

emerging in the field of optical imaging and attracting scientists from the fields of Brain 

Computer Interface (BCI), medical imaging and psychology[8]. It is a non-invasive 

technique that uses near infrared light to measure variations in the concentration of oxy-

hemoglobin (HbO) and deoxy-hemoglobin (HbR) to give an effective reflection of 

activity taking place inside brain in response to a task performed by a person [1, 4, 9-13]. 

This optical brain imaging technique detects changes in HbO and HbR using visible (red) 
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and near-infrared light emitted and collected through sensors (source and detector) 

attached to the surface of the head [9]. 

Most biological tissues are transparent to light in the wavelength range of  700 to 1000 

nm [14]. The wavelength for near infrared light used in commercially available fNIRS 

devices ranges from 685 to 850 nm , beyond this water absorbs majority of the photons 

hindering the optical results [15]. In fNIRS source optode incidents photons on the scalp, 

these photons pass through the skull and enter the top cortical regions. During their 

journey through head photons are scattered, reflected and some are absorbed by HbO and 

HbR. Unabsorbed photons are reflected back to the scalp following an elliptical (banana 

shaped) path and are collected by the detector optode.  At the site of neuronal activity, 

the intensity of reflected light decreases with increase in concentration of HbO [16]. This 

happens due to higher absorption of photons by the increasing concentration of HbO in 

the locale of activity. The changes in the concentration of HbO and HbR at the site of 

neuronal activity are quantified using modified Beer-Lambert Law (MBLL) [1, 17-20]. 

 

𝑂𝐷(𝑡, 𝜆) = −𝑙𝑜𝑔10 (
𝐼(𝑡,𝜆)

𝐼𝑜(𝑡,𝜆)
) = ∑ 𝜀𝑖(𝜆)𝑐𝑖(𝑡)𝐷𝑃𝐹(𝜆)𝑑 + 𝐺(𝜆)𝑖  ………..(1) 

Equation 1: Modified Beer-Lambert Law 

 

Where, optical density (𝑂𝐷) is the function of time (𝑡) and wavelength of light (𝜆) being 

used. It is the negative log of  the ratio of  attenuated light intensity (𝐼) to initial light 

intensity (𝐼𝑜). This negative relation is equal to summation of the product of molar 

extinction coefficient (𝜀𝑖), concentration of hemoglobin (𝑐𝑖), differential pathlength 

factor (𝐷𝑃𝐹) and distance between source and detector (𝑑). (i) denotes total number of 

chromophores being investigated. Intensity of light lost due to scattering is represented 

with (𝐺). In addition to optical density (OD) this equation can also be used to determine 

the scattering of light photons. Moreover, taking inverse log of light that has entered from 

source into scalp by the light gather detector optode yields concentration changes [10, 

21].   
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Figure 1:  Graphical illustration for stages of fNIRS data acquisition 

 

fNIRS signal obtained after the application of MBLL needs processing before it is used. 

This signal is raw in nature. The main activity signal is actually contaminated by the 

presence of motion artifacts, instrumental noise and physiological noises including 

cardiac signal, respiratory signal, and low frequency mayer waves. Presence of these 

noises makes hemodynamic signal impossible to be used. Therefore, removal of these 

noises become indispensable before taking any decision regarding brain functional 

activity on the basis of measured signals [22-25].  

Different techniques had been used up to this date for reconstructing and removing 

activity based signal and noise respectively from this amalgam. Out of all these, General  

Linear Modeling (GLM) has a decent reputation and has been used repeatedly [26]. GLM 

is a technique that has been used widely in the field of brain imaging to reconstruct the 

Hemodynamic Response Function (HRF) from fNIRS and functional Magnetic 

Resonance Imaging (fMRI) signals [27]. GLM models brain activity by taking sum of all 



Chapter 1  Introduction 

4 

 

the components of measured signal i.e., noise and functional part of signal [8, 28]. 

Accurate estimation of activity signal relies heavily on the correct estimation of their 

magnitudes and features such as baseline correction and removal of motion artifacts and 

physiological noise. 

In this study, wavelet transform and Kalman filter  based  GLM has been used to model 

fNIRS signal. Continuous Wavelet Transform (CWT) has been used to separate 

physiological noises from the measured signal. Hemodynamic Response Function (HRF) 

depicting brain activity has been modeled using three gamma functions. Discrete Wavelet 

Transform (DWT) has been used to extract most part of the activity signal from the 

measured signal. Kalman filter has been used to estimate the magnitudes of all the 

components that has to be used in GLM. 

 

1.2 Problem statement 
 

The current brain images are made using the General Linear Model. The hemodynamic 

signals and their noises are treated as linear entities. However, the behavior of 

hemodynamics varies with the changing noise. This causes problem in accurate 

estimation of hemodynamic responses that contributes to the formation of brain images. 

An adaptive method is required that can model varying noises and hemodynamic signal. 

 

1.3 Objectives 
 

Given below are the objectives of this study. 

• Extraction of noise from fNIRS signal using continuous wavelet transform. 

• Estimation of varying noise components of fNIRS signal using Kalman estimator. 

• Incorporation of non-linear noise components in General Linear Model (GLM) 

to minimize the noise completely out of desired HRF. 

• Generation of brain activation maps. 

 



Chapter 1  Introduction 

5 

 

1.4 Areas of application 
 

Current study targets the following areas of application. 

• Brain Computer Interface (BCI) 

• Biomedical Industry 

• Diagnosis of brain diseases 

 

1.5 Thesis overview 
 

In this thesis, Chapter 1 is pure introduction about fNIRS signal  and its estimation.  

Chapter 2 covers the literature review regarding the problem statement, and its provided 

solutions in the past. Chapter 3  provides with the methodology proposed in this study 

and how it is performed step by step. Chapter 4 is about results from the proposed 

methodology. Chapter 5 is about conclusions that has been drawn from the whole study 

and also imparts future work.  
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Chapter 2: Literature Review 
 

Raw or unprocessed fNIRS data has several elements of noise such as physiological noise 

(i.e., cardiac waves, respiratory waves and mayer waves), instrumental noise and motion 

artifacts. These noises attenuate the functional part of the cortical signal thus, making it 

hard to discover. Pre-processing aids in the removal of the above mentioned noises. After 

pre-preprocessing, Hemodynamic Response Function (HRF) is acquired from raw data 

using processing techniques. Therefore, this raw data needs to be pre-processed and 

processed before any conclusion is drawn from it regarding task related cortical signal 

[26].  

fNIRS is gaining popularity in the field of research due to its noticeable low cost and 

easy portability as compared to fMRI. Superficial nature of motor cortex and portability 

of fNIRS device have motivated majority of the researchers to keep the focus of their 

studies on motor activities [29-34].  

HRF used in fNIRS studies is quite comparable to blood oxygen level dependent (BOLD) 

model used in functional Magnetic Resonance Imaging (fMRI) [26, 29, 35, 36]. Due to 

this HRF is modeled using two and three gamma functions [37] whose basics are 

borrowed from studies of fMRI. 

Rise in the popularity of fNIRS has caused the proposition of many pre-processing and 

processing techniques. Selection of suitable technique for one’s study has become quite 

challenging [26]. 

Conventional filtering is a popular technique to eliminate physiological noise from 

fNIRS data. Selection of filter and their coefficients vary from case to case. Correct 

selection of filter type is important as it can cause loss of activity signal [23-25]. Finite 

Impulse Response (FIR) and Infinite Impulse Response (IIR) filter are two filters that are 

generally used to remove physiological noise [26, 38].  

In [39-42] physiological noises are removed using low pass filter with a specific cut off 

frequency. Motion artifacts are removed using wavelet motion correction. Remaining 

linear and non-linear noises are removed by fitting a polynomial of order 3 to fNIRS 
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signal and then it is subtracted from main data. In [39] HRF is derived by averaging the 

signal in time domain.  

In [43, 44] Butterworth band pass filter was used to remove the high and low frequency 

noise. Cut off frequency for each trial was set different because the length of all trials 

was not same. Moreover, in [43] a three gamma function has been used to model 

canonical HRF (cHRF).   

In [45-47] physiological artifacts are removed using a fourth order zero phased low-pass 

Butterworth filter. The cutoff frequency used was 0.3 Hz to eliminate high frequency 

artifacts. HRF in [45] has been calculated by taking average spatially. 

In [48] signals underwent the filtration between two frequencies 0.01 and 0.7 Hz. First 

filter was an IIR 9th order Butterworth filter with 0.1 Hz of cutoff frequency. This was 

then convolved with an FIR low- pass filter with cutoff frequency of 0.7 Hz. 

According to  [49, 50]  some of the physiological noises resides in the frequency range 

where activity signal may exist. In such a case applying band pass, high pass and low 

pass filter may become the reason behind the loss of some part of activity signal leading 

to inaccurate estimation of HRF. 

Other than filtering there exist many methods to remove physiological noise and motion 

artifacts from raw fNIRS data. In [51, 52] wavelet coherence was applied to fNIRS 

signals. Physiological noises behaving similarly in all signals are located and masks are 

generated using image processing techniques. Then mask was run over the scalogram of 

wavelet transform of each signal. This suppressed the area under the mask which was 

supposed to be noise and then remaining coefficients were converted back into signals.    

Another effective method for removing physiological noise from raw fNIRS signals is 

short source-detector distance channel (sSD channel) based correction [51, 53-58]. In 

this technique a short source-detector is placed between the long source and detector. 

This short S-D has a distance of almost 0.5 cm to 1.5 cm [59-61]. Due to short distance 

between the source and detector, the near infrared light entering the head is now 

constrained to the superficial layers instead of reaching the cortex. As this signal does 

not reach the cortex thus, it carries no representation of the activity signal, instead it is 

assumed that this signal contains the representation of all the physiological noises in it. 

Therefore, information received from short S-D signal is used to remove the noise from 
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normal source detector channels. Although it is an effective method, yet it has its 

shortcomings. Short S-D is not supported by all fNIRS devices. Moreover, setting this 

up takes some decent amount of time. Ideally it may look like the complete solution, but 

physiological noise is not homogeneously distributed over the scalp which means the 

more short S-D in numbers the better, but channels for fNIRS are usually limited in 

numbers. Therefore, this method still needs optimization [56, 60].  

Another method for removing physiological noise from fNIRS signals is blind source 

separation (BSS) techniques or algorithms. The two main methods that have been used 

widely in fNIRS are principal component analysis (PCA) [62-64] and independent 

component analysis (ICA) [65, 66]. In these two methods fNIRS signal is decomposed 

into its components based on the source from where they can be originating. This is 

performed using assumptions which can be either orthogonal assumption in case of 

(PCA) or statistical independent assumption in (ICA). After this, components are 

expressed in the form of energy densities and their spatial uniformity is checked and on 

the basis of several assumptions about noises they are separated from the signal [67].   

In [64] author used Principle Component Analysis (PCA) to remove physiological 

interference and motion artifacts and block averaging is used to derive HRF. In [68-70] 

independent component analysis (ICA) has been used for the removal of physiological 

interference and motion artifacts.  

In [71] recursive least square estimation (RLSE) has been used for removing 

physiological noise as well as motion artifacts. Usually, fNIRS signal is mathematically 

modeled as a linear summation of different constituents which mostly are activity part of 

fNIRS signal, physiological noises residing in raw signal and a component that helps in 

the modeling of baseline drift in fNIRS signal. RLSE is a method that recursively 

contributes by making an estimate of the amplitudes for the above mentioned components 

on the basis of cost function and a forgetting factor.  

GLM is used to model and remove the activity signal and noise respectively. In GLM, 

signal is modeled as a sum of activity part, physiological noise and an error term. Its 

regressors are estimated by different estimation techniques such as Kalman filter (KF) 

[13, 72], RLSE [73], Extended Kalman Filter (EKF) [8] and Cholesky-decomposition 

based recursive least square [74]. 
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Apart from physiological noise there are motion artifacts in the signals which are caused 

by movement of the head or optode placed on the scalp. This appears as sudden spikes 

or surges in fNIRS signals. Sometimes these artifacts make the signal move away from 

the base line and cause the phenomenon of  baseline drift. There exist many methods to 

remove these artifacts from the signal but the most practiced one is that presented in [75]. 

This method uses wavelet transform to remove motion artifacts. According to that study 

two types of wavelet coefficients were acquired. Type one was those of  activity signal, 

type two; those representing the motion artifacts. It was stated that type one coefficients 

had gaussian distribution with small covariance and if larger covariance was observed 

then those must be type two coefficients i.e., motion artifact coefficients. Type two 

coefficients were suppressed to zero after differentiating them from type one coefficients. 

Then inverse wavelet transform of the remaining coefficients was taken. In this way 

motion artifacts were removed from the fNIRS signal.  

Other than the one discussed in above paragraph, [76] proposed to remove the entire 

segment from the signal that contains motion artifact. This method requires visual 

attention of the one performing experiment to identify the motion artifact in the recorded 

signal.  

Many studies have suggested the use of adaptive filtering [53, 77, 78] for removing 

motion artifacts from the fNIRS signal. These studies have one thing in common and that 

is an auxiliary signal (that needs extra setup) to serve as a reference signal which has 

correlation with motion or physiological nuisance.  
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Chapter 3: Methodology 
 

This chapter focuses on the methodology used to develop the approach. Data was 

collected using fNIRS device. All the pre-processing and processing have been done 

using MATLAB 2018b. Firstly, cHRF is modeled using gamma function, then using 

wavelet transform raw signal is broken down into its constituents. Using previous 

knowledge from literature review, activity signal and noises are separated. Following the 

separation, these signals are used as input for GLM. Regressors for aforementioned 

signals in GLM are estimated using Kalman Filter. After this brain activation maps are 

formed.   

 

3.1  Experimental Setup  
 

3.1.1 Data 

 

The fNIRS data used in proposed study comprises of five healthy subjects. All of them 

were right handed male. The data was collected from motor cortex. Each signal has 3908 

data points. The data was collected at a sampling frequency (Fs) of 15.625 Hz. Data was 

acquired from 16 channels.    

 

3.1.2 Experimental Procedure  

 

Before starting experiment, every subject was seated on a comfortable chair asked to 

relax himself. His hand was rested on a table. In the beginning, subject was asked to stay 

calm and do nothing for 20 seconds. This was initial rest. After that he was asked to tap 

his right hand index finger for 20 seconds and then take rest for 20 seconds. This whole 

procedure was repeated 5 times and after performing task for fifth time there was a rest 

of 50 seconds. Thus, total length of time was 250 seconds. Figure 2 shows the 

experimental paradigm. 
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Figure 2 : Stimulating Paradigm 

 

3.2  Channel Selection 
 

Selecting the active channels and discarding the inactive channels is very important. In 

this study Channels are selected on the basis of t-values. In MATLAB robustfit command 

has been used to calculate t-values and channels with higher t-values are considered i.e., 

channel 3, 10, 11 and 12.  

 

3.3  Canonical HRF (cHRF) 
 

In proposed study HRF has been modeled using three gamma function mentioned in  

[37]. Three gamma function is considered because of its ability to incorporate initial dip. 

Figure 3 shows HRF made using three gamma function. 
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Figure 3 : cHRF using three gamma functions 

 

After the modeling of HRF, it is convolved with a box car function of stimulus i.e., 

stimulating paradigm. This convolution results in the formation of cHRF or Oxy-HRF. 

This relation can be written simply in the form of following equation. 

𝑂 = 𝑔 ∗ 𝑙 … … … … (2) 

Equation 2 : Convolution of cHRF and stimulating paradigm 

 

Where 𝑂 represents HbO, 𝑔 represents three gamma function and 𝑙 represents vector of 

stimulus. Figure 4 shows convolution of HRF and stimulating paradigm. 
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Figure 4 : Convolution between three gamma base HRF and stimulating paradigm 

 

3.4  Frequency extraction 
 

Continuous wavelet transform (CWT) is applied to the raw signal in MATLAB. 

Following that, A two dimensional matrix wt and a column matrix f is obtained. wt 

contains wavelet coefficients for the signal. Each row corresponds to one scale. Column 

matrix f contains the frequencies captured by each scale. Frequencies along with their 

wavelet coefficients are then divided in to seven groups on the basis of frequency ranges. 

Following are the groups of frequencies. 

1. Cardiac frequencies ranging from 0.8 Hz to 1.2 Hz [79]. 

2. Respiratory frequencies ranging from 0.3 Hz to 0.6 Hz [79]. 

3. Mayer wave frequency i.e., 0.1 Hz [79]. 

4. Unknown frequencies group 1 (UG 1) below   0.1 Hz. 

5. Unknown frequencies group 2 (UG 2) ranging from 0.11 Hz to 0.29 Hz. 
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6. Unknown frequencies group 3 (UG 3) ranging from and 0.61 Hz to 0.79 Hz. 

7. Unknown frequencies group 4 (UG 4) above 1.2 Hz. 

Signals for each group of frequencies were reconstructed by taking inverse wavelet 

transform of their wavelet coefficients. After that a single signal is made from each group 

by taking sum of all the signals from that group. 

 

𝑆𝑥 = ∑ 𝑠𝑘  … … … . (3)

𝑛

𝑘=1

 

Equation 3 : Shows summation of reconstructed signals 

 

Where 𝑆𝑥 represents summed up signal, x can be any of these cardiac, respiratory, mayer 

and other frequency group. 𝑠𝑘   represents signal of particular frequency and k represents 

number of signals in the group. 

 

3.5  Extraction of functional part 
 

Discrete wavelet transform (DWT) is applied to raw data for extracting the functional 

part of the hemodynamic signal. In proposed study, discrete wavelet transform is applied 

to raw signals using Wavelet Analyzer  application in MATLAB. Daubechies wavelet of 

order 7 is employed as mother wavelet [80]. DWT decomposes a signal into 

approximated component and detailed components. Lower detailed components capture 

high frequency information while higher detailed components capture low frequency 

information. A level three discrete wavelet transform is shown in Figure : 5. S(t) is signal 

which is decomposed into its approximation a1 and details d1. Then in second level a1 

is decomposed into a2 and d2 and in third level a2 is decomposed into a3 and d3. This is 

an illustration of how levels and then output of discrete wavelet transform are formed. In 

this study, level ten discrete wavelet transform has been used. 
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Figure 5: A level 3 discrete wavelet transform 

 

In our study single task frequency was 0.05 Hz (1/time for single task). Thus, detailed 

components from level 7 to 10 are summed up to form single signal. This signal is our 

activity signal whose magnitude will be estimated.  

 

3.6  Estimation using KF 
 

Kalman Filter is a technique that practices recursive estimation and updates the estimates 

on the basis of  previous state of system [81]. Due to its durable estimation, use of Kalman 

filter is practiced widely in different fields of study [82]. In present study, Kalman filter 

is used to estimate the physiological noise and magnitude of HRF. Instead of doing a 

parallel estimation for all channels, estimation has been done point by point for each 

channel in time series.  

For any given channel equations for state vector, transition and observation can be given  

respectively  
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𝑋(𝑘) = [𝛽1 (𝑘) 𝛽2  (𝑘) … 𝛽𝑛(𝑘)]𝑇 

Equation 4:  State vector 

𝑋(𝑘) = 𝐴𝑋′(𝑘 − 1) + 𝑤(𝑘) 

Equation 5: State equation 

𝑦(𝑘) = 𝐺(𝑘)𝑋(𝑘) + 𝑣(𝑘) 

Equation 6: Observation equation 

Here A is transition matrix, G is matrix for explanatory variables, w is process noise and 

v is observation noise. 

 

3.7  General Linear Modeling (GLM) 
 

In proposed study, hemodynamic signal is modeled using GLM. It takes and explains 

data in a linear combination of variables along with noise. The basic equation explaining 

GLM is as follows  

𝑦(𝑡) = 𝐻 𝛽 +  𝜀  

Equation 7 : GLM 

Here H is the design matrix that contains all the variables to model hemodynamic 

response, 𝛽 is a column matrix of regressors for GLM, ε represents error and y(t) denotes 

measured signal.  

In proposed study, design matrix H is made of following constituents. 

 

𝐻

=  [

𝐻𝑅𝐹 𝛥𝐻𝑅𝐹 𝛥2𝐻𝑅𝐹
⋮ ⋮ ⋮
⋮
⋮

⋮
⋮

⋮
⋮

   𝑠𝑖𝑛2𝜋𝑓𝑐𝑎𝑟𝑡 𝑠𝑖𝑛2𝜋𝑓𝑟𝑒𝑠𝑡 𝑠𝑖𝑛2𝜋𝑓𝑚𝑎𝑦𝑡

⋮ ⋮ ⋮
⋮
⋮

⋮
⋮

⋮
⋮

   𝑠𝑖𝑛2𝜋𝑓1𝑡 ⋯ 𝑠𝑖𝑛2𝜋𝑓𝑛𝑡
⋮ ⋮ ⋮
⋮
⋮

⋮
⋮

⋮
⋮

] 

 

Where, sin πft represents signal of specified frequency ranges.  n this, 

𝑓𝑐𝑎𝑟 = cardiac frequency 

𝑓𝑟𝑒𝑠 = respiratory frequency 
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𝑓𝑚𝑎𝑦 = mayer frequency 

𝑓1 𝑡𝑜 𝑛 = remaining random frequencies 

H F is the activity signal extracted using DWT and KF, Δ H F and Δ2 HRF are first and 

second order derivatives of HRF. 

3.8  Algorithm  
 

CWT

Kalman estimator

GLM

Physiological 

and unknown 

noise

Estimated 

noise

Desired 

Signal

cHRF

Brain 

activation 

map

Raw signal 

S(t)

End

DWT

Kalman estimator

Details 

from level 7 

to 10

Estimated 

magnitude

Activation map generation

Start

 

Figure 6 : Algorithm of proposed study 
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Chapter 4: Results and Discussion 
  

This chapter of thesis provides with the results acquired by implementing the 

methodology proposed and explained in previous chapter. 

 

4.1  Results from CWT  

 

CWT yields column matrix of frequencies and a two dimensional matrix containing 

coefficients for these frequencies. In the figure given below it has been shown coefficents 

of wavelet transform captured by scale. 

 

Figure 7: Absolute wavelet coefficients of raw signal 

 

 



Chapter 4   Results and Discussion 

19 

 

4.2  Results from DWT  

 

Discrete wavelet transform has been applied to the signal for the identification of activity 

signal. The results in Figure: 8 shows eleven graphs for eleven signals. Out of which 

from d1 to d10 are details for the raw fNIRS signal whereas, a10 is the level 10 

approximation. It can be seen that as the level of details increases, the frequency captured 

by it decreases that is why d1 has highest frequency content and d10 has the lowest 

frequency content. 

 

 

 

Figure 8: Result of DWT 

 

4.3  Results from Kalman Filter 

 

Signals from processes of frequency extraction and functional part extraction are now 

introduced to Kalman filter for the estimation of their magnitudes and regressors. 
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Following are the results showing the effect of KF on cardiac, respiratory, mayer and 

other unknown frequency group  signals from channel 3  of  subject 3 as well as functional 

part obtained from DWT.  

 

Figure 9: Cardiac signal before KF (blue) and after KF (orange) 
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Figure 10: Resp. signal before KF (blue) after KF (orange) 

 

In Figure: 10 it can be observed that before undergoing the process of Kalman estimation 

Respiratory signal has different magnitude. Kalman filter estimates the magnitude 

keeping account of the presence of measurement and process noise that can create or 

cause uneven increase or decrease in the magnitude of the signal. Ratio of process noise 

to measurement noise used in the estimation is 1:10. Therefore, estimated magnitude is 

less than the original magnitude. 
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Figure 11: Mayer signal before KF (blue) and after KF (orange) 

 

In Figure: 11 it can be observed that before undergoing the process of Kalman estimation 

raw mayer signal has different magnitude. Kalman filter estimates the magnitude keeping 

account of the presence of measurement and process noise that can create or cause uneven 

increase or decrease in the magnitude of the signal. Ratio of process noise to 

measurement noise  used in the estimation is 1:10. Therefore, estimated is slightly less 

than existing magnitude. 
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Figure 12: UG.1 signal before KF (blue) and after KF (orange) 

 

In Figure: 12 it can be observed that before undergoing the process of Kalman estimation 

UG 1 signal has different magnitude. Kalman filter estimates the magnitude keeping 

account of the presence of measurement and process noise that can create or cause uneven 

increase or decrease in the magnitude of the signal. Ratio of process noise to 

measurement noise  used in the estimation is 1:10. Therefore, magnitude estimated is 

close to the existing one. 
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Figure 13: UG.2 signal before KF (blue) after KF (orange) 

 

In Figure: 13 it can be observed that before undergoing the process of Kalman estimation 

UG 2 signal has different magnitude. Kalman filter estimates the magnitude keeping 

account of the presence of measurement and process noise that can create or cause uneven 

increase or decrease in the magnitude of the signal. Ratio of process noise to 

measurement noise  used in the estimation is 1:10. Therefore estimated magnitude is 

slightly less than the existing one. 
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Figure 14: UG.3 signal before KF (blue) after KF (orange) 

 

In Figure: 14 it can be observed that before undergoing the process of Kalman estimation 

UG 3 signal has different magnitude. Kalman filter estimates the magnitude keeping 

account of the presence of measurement and process noise that can create or cause uneven 

increase or decrease in the magnitude of the signal. Ratio of process noise to 

measurement noise  used in the estimation is 1:10. Therefore magnitude estimated is very 

less than the original one. 
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Figure 15: UG.4 signal before KF (blue) after KF (orange) 

 

In Figure: 15 it can be observed that before undergoing the process of Kalman estimation 

UG 4 signal has different magnitude. Kalman filter estimates the magnitude keeping 

account of the presence of measurement and process noise that can create or cause uneven 

increase or decrease in the magnitude of the signal. Ratio of process noise to 

measurement noise  used in the estimation is 1:10. Therefore, estimated magnitude is 

very less than the original one. 
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Figure 16: Activity signal before KF (blue) and after KF (orange) 

 

In Figure: 16 blue signal is the sum of details from level 7 to level 10 from discrete 

wavelet transform. Kalman filter estimates its magnitude based on the cHRF given as 

input. 
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4.4  Results from GLM 

 

Wk- GLM is wavelet transform and Kalman filter based GLM. Following are the results 

of GLM for four active channels i.e., 3 , 10, 11 and 12. 

 

Figure 17: Results of wk GLM and Original signal for CH 3 

 

Figure 18:Results of GLM for CH 3 
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Figure 19:Results of wk GLM and Original signal for CH 10 

 

 

Figure 20:Results of wk GLM and GLM for CH 10 
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Figure 21:Results of wk GLM and Original Signal for CH 11 

 

Figure 22: Result of GLM and Original Signal for CH 11 
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Figure 23: Result of wk-GLM and Original Signal for CH 12 

 

Figure 24: Result of GLM and Original Signal for CH 12 
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It is evident from the results that wavelet transform and Kalman filter based GLM (wk-

GLM) yields results; smooth and close to canonical hemodynamic response function as 

compared to conventional GLM . 

 

4.5  Brain activation maps for WK- GLM 

 

After applying wavelet transform and Kalman filter based GLM brain activation maps 

are made for estimated signals. Results for Subject 3 are shown below.  

 

Figure 25:Activation map at 1 second 

 

In Figure: 25 no activation is observed as subject was doing rest. 
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Figure 26:Activation map at 18 second 

 

In Figure: 26 dark blue shade can be observed around channel 11 and 12. This dark blue 

shade depicts initial dip. 
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Figure 27: Activation map at 30 seconds 

 

In Figure: 27 yellowish red shade can be observed  around channel 3, 10, 11, and 12 

showing that activity is happening and increase in HbO can be observed. 
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Figure 28:Activation map at 45 second 

 

In Figure: 28 it can be seen that at the end of activity or task dark blue shade has appeared 

again, this shows that signal is now below the zero level and HbR has started to increase. 
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4.6  Brain activation maps for GLM 

 

Brain activation maps for already existing GLM method are shown under this section. 

Results for Subject 3 for finger tapping are shown below. 

 

 

Figure 29: Activation map for GLM at 1st second 

 

In Figure: 29 above activation map for subject 3 at 1st second is shown. It can be seen 

that channel 3, 10, 11, and 12 have dark blue shade around them. This shade theoretically 

tells the limited supply of oxygen in that brain area. This should not be there because at 

1st second subject was in resting state and stayed resting till 20th second. 
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Figure 30: Activation map for GLM at 18th second 

 

In Figure: 30 activation map using GLM for subject 3 is shown. Dark blue shade depicts 

initial dip but in Figure: 29 dark blue shade was already present even at 1st second when 

the subject was in resting state. 
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Figure 31: Activation map for GLM at 30th second 

 

In Figure: 31 it can be seen that all four channels are active and extra dark red shows 

higher magnitude for HbO . This can be due to over estimation of  magnitude because of 

presence of noise.  
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Figure 32 : Activation map for GLM at 45th second 

 

In Figure: 32 activation map for 45th second has been shown. It can be seen that channel 

3 and 12 have dark blue shade which means that both of them have gone below the 

baseline. This behavior is understandable because the resting period has been started till 

this point. Channel 10 is still lit up and this means that signal at this channel has not 

returned to the baseline. It has drifted away from the baseline.    
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4.7  Statistical Significance 

 

Following table shows the comparison between the t-values and signal to noise ratio 

(SNR) between wk-GLM and normal GLM method for subject 3. 

Channel no t-value for  

wk-GLM 

t-value for 

GLM 

SNR for     

wk-GLM  

(dB) 

SNR for      

GLM 

(dB) 

3 28.39 45.72 54.00 6.58 

10 27.426 15.93 18.51 1.25 

11 36.26 25.24 53.86 12.03 

12 46.25 17.21 49.76 10.45 

Table 1: t-values and SNR for subject 3 

 

Channel no t-value for  

wk-GLM 

t-value for 

GLM 

SNR for     

wk-GLM  

(dB) 

SNR for      

GLM 

(dB) 

3 23.92 16.25 34.85 6..05 

10 25.21 13.42 30.62 9.21 

11 31.54 17.70 35.86 12.76 

12 39.46 19.35 37.18 9.83 

Table 2: t-values and SNR for subject 1 

 

From the tables it is evident that proposed method is better than the existing method. 

Only t-value for channel 3 of wk-GLM  is less than the that of GLM.  Values of SNR are 

also better than those acquired from conventional GLM. 
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Chapter 5: Conclusion & Future work 
 

5.1  Conclusion 

 

After observing the results of wavelet transform and Kalman filter based GLM different 

conclusions are drawn. 

 In proposed study, it has been observed that incorporating a range of noises compared 

to taking single discrete values yields results closer to cHRF. Frequency for physiological 

noises varies from person to person and rate of activity that is being performed. Using 

only single discrete value can cause over or under estimation of HRF signal. Moreover, 

taking a range of frequencies and modeling each noise helps in better understanding and 

reconstruction of real fNIRS signal. It also helps in adaptive estimation of signal as 

frequency are being varied in that range and thus, required signal of specific frequency 

at a particular time can be estimated. 

This will help in the formation of more statistically correct brain activation maps which 

in turn aid in the fields of  BCI ,BMI and brain disease diagnosis. 

 

5.2  Future work  

 

In brain computer interface at least six electrodes are required to make an interface. Size 

of each electrode is quite big. Moreover, after some time the neuronal path formed by the 

communication between neuron dies out. Since commands are executed on the basis of 

region of activation thus these two problems can lead to inaccurate communication 

between computer and brain. In such a case proposed method can be tested by using it 

along with BCI to locate the exact area for the activation of brain precisely.  

In the past decade a rapid increase in the application of machine learning has been 

observed. There is not even a single field where machine learning is not involved. 

Machine learning works at its best when the data being used for training the algorithm is 

in refined form. Therefore, proposed study can be used along with ML algorithms in 
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refining the training data for fNIRS studies, and results can be compared with existing 

preprocessing techniques. 

Claiming this work to be complete in all aspects will be misguiding. There is always 

room for improvement. The same process can be implemented using Unscented Kalman 

filters and particle filters.  
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Appendix 
 

Loading the data 

load('E:\Datasets\Authentic\RIFT_Imagent\RIFT_Imagent\FINGER TAP3.mat') 

for i = 1:16 

   oxy_sig(:,i) = nirs_data.oxyData (:,i); 

end 

oxy_sig = oxy_sig'; 

ch_no = input('Please enter the channel no = ') 

siga = (oxy_sig(ch_no,:)); 

fs = 15.625; Q = 0.01; R = 25; 

sig_1 = siga; 

  

Setting up time axis 

time = 1:1/fs:length(siga)/fs; 

t = length(siga)-length(time); 

t_frag = [time(end,end), zeros(1,t-1)]; 

for i =1:t-1 

    t_frag(:,i+1) = t_frag(:,i) + 1/fs; 

end     

time = [time,t_frag]; 

 

Making cHRF 

Parameters = [-0.2 10 -3.6 1.5 6.6 15 0.8 0.8 1]; 

hrf1 = threegamma(Parameters, [0:1/15.625:30]); 

Stim_sig = nirs_data.vector_onset'; 

hrf_convolved_with_stim = (conv(Stim_sig,(hrf1))); 

hcs = 0.9375e-4.*hrf_convolved_with_stim(1:length(siga)); 
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Separation of signals 

  

for j = 1:16 

    sig_1 = oxy_sig(j,:) 

  

% F = Fc/s*delta, where F = equivalent frequency, Fc = center frequency, 

% s = scale and delta = sampling interval 

[wt F] = cwt(siga,fs); 

% for cardiac waves 

FRQ.C = F; nc = 0;    

%for respiratory waves 

FRQ.R = F; nr = 0; 

% for mayer waves  

FRQ.M = F; nm = 0; 

% for the remaining unknown frequencies bleow 0.1 hz 

FRQ.U1 = F; nu1 = 0;  

% for the frequencies between 0.1 hz and 0.3 hz 

FRQ.U2 = F; nu2 = 0; 

% for the frequencies between 0.3 hz and 0.6 hz 

FRQ.U3 = F; nu3 = 0; 

% for the frequencies between 0.1 hz and 0.3 hz 

FRQ.U4 = F; nu4 = 0; 

  

Separation and reconstruction of cardiac signal 

  

for i = 1:length(FRQ.C) 

    if (FRQ.C(i,1) > 0.7999)&(FRQ.C(i,1) < 1.2001) 

        FRQ.C(i,1) = 1; 

    else FRQ.C(i,1) = 0; 

    end 

end 

  

for i = 1:length(F(:,1)) 

     if FRQ.C(i,1)==1 
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         Fr.card (i,:) = F(i,:); 

     else 

         Fr.card (i,:) = 0; 

     end 

end 

Fr.card = nonzeros(Fr.card); 

Fr.card = reshape(Fr.card,[],1); 

  

for i = 1:length(FRQ.C) 

    if FRQ.C(i,1)==1 

        nc = nc+1; 

    end 

end 

  

for i = 1:length(FRQ.C) 

    if FRQ.C(i,1)==1 

        new_wtc(i,:) = wt(i,:); 

    else  

        new_wtc(i,:) = zeros(1,length(wt(i,:))); 

    end 

end 

         

rec.ca = icwt(new_wtc); 

  

Separation and reconstruction of respiratory signal 

  

for i = 1:length(FRQ.R) 

    if (FRQ.R(i,1) > 0.2999)&(FRQ.R(i,1) < 0.6001) 

        FRQ.R(i,1) = 1; 

    else FRQ.R(i,1) = 0; 

    end 

end 

  

for i = 1:length(F(:,1)) 
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     if FRQ.R(i,1)==1 

         Fr.resp (i,:) = F(i,:); 

     else 

         Fr.resp (i,:) = 0; 

     end 

end 

Fr.resp = nonzeros(Fr.resp); 

Fr.resp = reshape(Fr.resp,[],1); 

  

for i = 1:length(FRQ.R) 

    if FRQ.R(i,1)==1 

        nr = nr+1; 

    end 

end 

  

for i = 1:length(FRQ.R) 

    if FRQ.R(i,1)==1 

        new_wtr(i,:) = wt(i,:); 

    else  

        new_wtr(i,:) = zeros(1,length(wt(i,:))); 

    end 

end 

  

rec.re = icwt(new_wtr); 

  

%% Separation and reconstruction of mayer waves signal 

  

for i = 1:length(FRQ.M) 

    if (FRQ.M(i,1) > 0.09)&(FRQ.M(i,1) < 0.104) 

        FRQ.M(i,1) = 1; 

    else FRQ.M(i,1) = 0; 

    end 

end 
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for i = 1:length(F(:,1)) 

     if FRQ.M(i,1)==1 

         Fr.mayer (i,:) = F(i,:); 

     else 

         Fr.mayer (i,:) = 0; 

     end 

end 

Fr.mayer = nonzeros(Fr.mayer); 

Fr.mayer = reshape(Fr.mayer,[],1); 

  

for i = 1:length(FRQ.M) 

    if FRQ.M(i,1)==1 

        nm = nm+1; 

    end 

end 

  

for i = 1:length(FRQ.M) 

    if FRQ.M(i,1)==1 

        new_wtm(i,:) = wt(i,:); 

    else  

        new_wtm(i,:) = zeros(1,length(wt(i,:))); 

    end 

end 

  

rec.m = icwt(new_wtm); 

  

%% Frequencies less than 0.1 hz  

  

for i = 1:length(FRQ.U1) 

    if (FRQ.U1(i,1) < 0.09) 

        FRQ.U1(i,1) = 1; 

    else FRQ.U1(i,1) = 0; 

    end 

end 
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for i = 1:length(F(:,1)) 

     if FRQ.U1(i,1)==1 

         Fr.U1 (i,:) = F(i,:); 

     else 

         Fr.U1 (i,:) = 0; 

     end 

end 

Fr.U1 = nonzeros(Fr.U1); 

Fr.U1 = reshape(Fr.U1,[],1); 

  

for i = 1:length(FRQ.U1) 

    if FRQ.U1(i,1)==1 

        nu1 = nu1+1; 

    end 

end 

  

for i = 1:length(FRQ.U1) 

    if FRQ.U1(i,1)==1 

        new_wtu1(i,:) = wt(i,:); 

    else  

        new_wtu1(i,:) = zeros(1,length(wt(i,:))); 

    end 

end 

  

rec.u1 = icwt(new_wtu1); 

  

%% Frequencies above 0.1 hz and below 0.3 hz  

  

for i = 1:length(FRQ.U2) 

    if (FRQ.U2(i,1) > 0.1)&(FRQ.U2(i,1) < 0.3) 

        FRQ.U2(i,1) = 1; 

    else FRQ.U2(i,1) = 0; 

    end 
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end 

  

for i = 1:length(F(:,1)) 

     if FRQ.U2(i,1)==1 

         Fr.U2 (i,:) = F(i,:); 

     else 

         Fr.U2 (i,:) = 0; 

     end 

end 

Fr.U2 = nonzeros(Fr.U2); 

Fr.U2 = reshape(Fr.U2,[],1); 

  

for i = 1:length(FRQ.U2) 

    if FRQ.U2(i,1)==1 

        nu2 = nu2+1; 

    end 

end 

  

for i = 1:length(FRQ.U2) 

    if FRQ.U2(i,1)==1 

        new_wtu2(i,:) = wt(i,:); 

    else  

        new_wtu2(i,:) = zeros(1,length(wt(i,:))); 

    end 

end 

  

rec.u2 = icwt(new_wtu2); 

  

%% Frequencies between 0.6 hz and 0.79 hz 

  

for i = 1:length(FRQ.U3) 

    if (FRQ.U3(i,1) > 0.6)&(FRQ.U3(i,1) < 0.8) 

        FRQ.U3(i,1) = 1; 

    else FRQ.U3(i,1) = 0; 
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    end 

end 

  

for i = 1:length(F(:,1)) 

     if FRQ.U3(i,1)==1 

         Fr.U3 (i,:) = F(i,:); 

     else 

         Fr.U3 (i,:) = 0; 

     end 

end 

Fr.U3 = nonzeros(Fr.U3); 

Fr.U3 = reshape(Fr.U3,[],1); 

  

for i = 1:length(FRQ.U3) 

    if FRQ.U3(i,1)==1 

        nu3 = nu3+1; 

    end 

end 

  

for i = 1:length(FRQ.U3) 

    if FRQ.U3(i,1)==1 

        new_wtu3(i,:) = wt(i,:); 

    else  

        new_wtu3(i,:) = zeros(1,length(wt(i,:))); 

    end 

end 

  

rec.u3 = icwt(new_wtu3); 

%% Frequencies above 1.2 hz 

  

for i = 1:length(FRQ.U4) 

    if (FRQ.U4(i,1) > 1.2) 

        FRQ.U4(i,1) = 1; 

    else FRQ.U4(i,1) = 0; 
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    end 

end 

  

for i = 1:length(F(:,1)) 

     if FRQ.U4(i,1)==1 

         Fr.U4 (i,:) = F(i,:); 

     else 

         Fr.U4 (i,:) = 0; 

     end 

end 

Fr.U4 = nonzeros(Fr.U4); 

Fr.U4 = reshape(Fr.U4,[],1); 

  

for i = 1:length(FRQ.U4) 

    if FRQ.U4(i,1)==1 

        nu4 = nu4+1; 

    end 

end 

 

for i = 1:length(FRQ.U4) 

    if FRQ.U4(i,1)==1 

        new_wtu4(i,:) = wt(i,:); 

    else  

        new_wtu4(i,:) = zeros(1,length(wt(i,:))); 

    end 

end 

 

rec.u4 = icwt(new_wtu4); 

% recon ={rec.ca;rec.re;rec.m;rec.u1;rec.u2;rec.u3;rec.u4};  

rc(:,j) ={rec.ca;rec.re;rec.m;rec.u1;rec.u2;rec.u3;rec.u4};  

 

end 

  

Creating back signal for every single frequency 



  Appendix 

52 

 

  

for i= 1 : length(wt(:,1)) 

     

    f_sig(i,:) = icwt([wt(i,:);zeros(1,length(wt(1,:)))]); 

     

end 

  

Separating the reconstructed cardiac signals. 

  

for i= 1:length(f_sig(:,1)) 

    if FRQ.C(i,:)==1 

        mat.card(i,:)=f_sig(i,:); 

    else 

        null.card(i,:) = zeros(1,length(f_sig(1,:))); 

    end 

end 

  

mat.card_new = nonzeros(mat.card); 

mat.card_new = reshape(mat.card_new,[],length(f_sig(1,:))); 

  

Separating the reconstructed respiratory signals. 

  

for i= 1:length(f_sig(:,1)) 

    if FRQ.R(i,:)==1 

        mat.resp(i,:)=f_sig(i,:); 

    else 

        null.resp(i,:) = zeros(1,length(f_sig(1,:))); 

    end 

end 

  

mat.resp_new = nonzeros(mat.resp); 

mat.resp_new = reshape(mat.resp_new,[],length(f_sig(1,:))); 

  

Separating the reconstructed mayer  signals. 
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for i= 1:length(f_sig(:,1)) 

    if FRQ.M(i,:)==1 

        mat.mayer(i,:)=f_sig(i,:); 

    else 

        null.mayer(i,:) = zeros(1,length(f_sig(1,:))); 

    end 

end 

  

mat.mayer_new = nonzeros(mat.mayer); 

mat.mayer_new = reshape(mat.mayer_new,[],length(f_sig(1,:))); 

  

Separating the reconstructed Unknown signals Group 1 (F < 0.1 hz) 

  

for i= 1:length(f_sig(:,1)) 

    if FRQ.U1(i,:)==1 

        mat.U1(i,:)=f_sig(i,:); 

    else 

        null.U1(i,:) = zeros(1,length(f_sig(1,:))); 

    end 

end 

  

mat.U1_new = nonzeros(mat.U1); 

mat.U1_new = reshape(mat.U1_new,[],length(f_sig(1,:))); 

  

Separating the reconstructed Unknown signals Group 2 (0.3 hz > F < 0.6 hz) 

  

for i= 1:length(f_sig(:,1)) 

    if FRQ.U2(i,:)==1 

        mat.U2(i,:)=f_sig(i,:); 

    else 

        null.U2(i,:) = zeros(1,length(f_sig(1,:))); 

    end 

end 
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mat.U2_new = nonzeros(mat.U2); 

mat.U2_new = reshape(mat.U2_new,[],length(f_sig(1,:))); 

  

Separating the reconstructed Unknown signals Group 3 (0.6 hz > F < 0.8 hz) 

  

for i= 1:length(f_sig(:,1)) 

    if FRQ.U3(i,:)==1 

        mat.U3(i,:)=f_sig(i,:); 

    else 

        null.U3(i,:) = zeros(1,length(f_sig(1,:))); 

    end 

end 

  

mat.U3_new = nonzeros(mat.U3); 

mat.U3_new = reshape(mat.U3_new,[],length(f_sig(1,:))); 

  

Separating the reconstructed Unknown signals Group 4 (F > 1.2 hz) 

  

for i= 1:length(f_sig(:,1)) 

    if FRQ.U4(i,:)==1 

        mat.U4(i,:)=f_sig(i,:); 

    else 

        null.U4(i,:) = zeros(1,length(f_sig(1,:))); 

    end 

end 

  

mat.U4_new = nonzeros(mat.U4); 

mat.U4_new = reshape(mat.U4_new,[],length(f_sig(1,:))); 
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Generating magnitude of cardiac signals 

 

for i = 1: length(Fr.card(:,1)) 

    freq.card(i,:) = sin(2*pi*Fr.card(i,:)); 

end 

  

for i= 1:length(mat.card_new(:,1)) 

       mag_mat.card(i,:)=  mat.card_new(i,:)/freq.card(i,:); 

end 

  

Generating magnitude of respiratory signal 

  

for i = 1: length(Fr.resp(:,1)) 

    freq.resp(i,:) = sin(2*pi*Fr.resp(i,:)); 

end 

  

for i= 1:length(mat.resp_new(:,1)) 

       mag_mat.resp(i,:)=  mat.resp_new(i,:)/freq.resp(i,:); 

end 

  

 Generating magnitude of mayer signal 

  

for i = 1: length(Fr.mayer(:,1)) 

    freq.mayer(i,:) = sin(2*pi*Fr.mayer(i,:)); 

end 

  

for i= 1:length(mat.mayer_new(:,1)) 

       mag_mat.mayer(i,:)=  mat.mayer_new(i,:)/freq.mayer(i,:); 

end 

  

Generating magnitude of Unknown signal group 1 

  

for i = 1: length(Fr.U1(:,1)) 

    freq.U1(i,:) = sin(2*pi*Fr.U1(i,:)); 
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end 

  

for i= 1:length(mat.U1_new(:,1)) 

       mag_mat.U1(i,:)=  mat.U1_new(i,:)/freq.U1(i,:); 

end 

 

Generating magnitude of Unknown signal group 2 

  

for i = 1: length(Fr.U2(:,1)) 

    freq.U2(i,:) = sin(2*pi*Fr.U2(i,:)); 

end 

  

for i= 1:length(mat.U2_new(:,1)) 

       mag_mat.U2(i,:)=  mat.U2_new(i,:)/freq.U2(i,:); 

end 

  

Generating magnitude of Unknown signal group 3 

  

for i = 1: length(Fr.U3(:,1)) 

    freq.U3(i,:) = sin(2*pi*Fr.U3(i,:)); 

end 

  

for i= 1:length(mat.U3_new(:,1)) 

       mag_mat.U3(i,:)=  mat.U3_new(i,:)/freq.U3(i,:); 

end 

  

Generating magnitude of Unknown signal group 4 

  

for i = 1: length(Fr.U4(:,1)) 

    freq.U4(i,:) = sin(2*pi*Fr.U4(i,:)); 

end 

for i= 1:length(mat.U4_new(:,1)) 

       mag_mat.U4(i,:)=  mat.U4_new(i,:)/freq.U4(i,:); 

end 
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Applying Kalman Filter 

 

KG    =   zeros(1,length(sig_1)); 

EST   =   zeros(1,length(sig_1)); 

Eest  =   1e-4.*(ones(1,length(sig_1))); 

Emea  =   0.25e-6.*(ones(1,length(sig_1)));  

MEA   =   sig_1'; 

  

for i = 1:length(MEA) 

    if i == 1 

        KG(1,i)   = Eest/(Eest + Emea); 

        EST(1,i)  = EST(1,i) + KG(1,i)*(MEA(1,i) - EST(1,i)); 

        Eest      = (1 - KG(1,i))*(Eest); 

    else 

        KG(1,i)   = (Eest)/(Eest + Emea); 

        EST(1,i)  = (1-KG(1,i))*EST(1,i-1) + KG(1,i)*(MEA(1,i)); 

        Eest      = (1 - KG(1,i))*(Eest); 

    end 

end 

 

Applying GLM 

 

siga = oxy_sig(3,:); 

sgnl = zeros(1,length(siga)); 

  

for j = 1:16 

     

    sgnl = zeros(1,length(siga)); 

     

    for i = 1:3 

        sgnl = sgnl + Kal_rc{i, j} ; 

    end 

     

    s_sig = sgnl; 
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    for b = 1:4 

     

        h_rd = KE{b,j}; 

        g_sg(b,:) = h_rd+[diff(h_rd),0]+[diff(diff(h_rd)), 0,0]+s_sig; 

  

    end 

     

    clear b 

    glm(:,j) ={g_sg(1,:);g_sg(2,:);g_sg(3,:);g_sg(4,:)}; 

     

    for b = 1:4 

        err(b,:) = oxy_sig(b,:) - g_sg(b,:); 

    end 

    c_err(:,j) = {err(1,:),err(2,:),err(3,:),err(4,:)}; 

end 
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