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ABSTRACT 

The RISE lab at SMME NUST has been continuously working on the research and 

development of robotics since its inception in the early 2000s. One of the major projects 

that has been worked on in the RISE lab has been the building of the concept of a 

humanoid bipedal robot and turning it into a reality. Named NUSTBOT-3, this humanoid 

bipedal robot was the work of one of the student’s (Mr. Zaid Ahsan Shah) master’s 

thesis, who fabricated this to prove his thesis of making a humanoid robot walk from a 

point to another while having its ankles unactuated. This concept is known as 

Decentralized Pattern Generator (DPG) and is one of the first major works done on a 

concept to generation walking patterns for any type of robot other than the commonly 

used Centralized Pattern Generator. 

However, the results in hardware were not as expected and this specific humanoid robot 

did need actuated ankles to function properly and walk seamlessly from a point to 

another. This final year project thesis focuses on the evaluation of NUSTBOT-3, studying 

various actuated ankle and foot designs of different humanoid robots present globally and 

making modifications to allow it to be able to be put on NUSTBOT-3 without making 

significant changes to the lower limbs of the humanoid robot.  
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CHAPTER 1: INTRODUCTION 

 

Motivation 

The motivation behind this project is to develop the current two-legged humanoid robot 

which is present at RISE Lab, SMME so that it could overcome its current deficiencies 

and gets to a state where the humanoid robot can perform its most basic task of walking 

in a straight line without any hiccups.  

Moreover, we wanted to play a role in the development in the ever-growing field of 

robotics especially at NUST so that further work could be carried out at RISE lab, 

making the humanoid robot that we are currently working on an example and an 

inspiration for the future robotics enthusiasts.     

 

Problem Statement 

Study of the existing humanoid robots from which suitable ideas could be taken and 

implemented in an existing humanoid robot by designing and developing it so that the 

issues in the existing humanoid robot could be minimized by the implementation of this 

modification for a better functioning humanoid robot, which could help into further work 

done on it over the upcoming years, benefitting the research community. 
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Objectives 

The objectives that were laid in front of us in order to achieve the end goal of an 

improved humanoid robot are as follows 

1. Analysis of existing humanoid robot structure 

2. Design improvements / modifications 

3. Development of new design 

4. Testing of the designed system 

5. Fabrication of the improved sections of the humanoid robot 

From the start of the civilization, humans have been curious to build a replica of itself. A 

human designed by human who can walk like them and perform tasks like humans do. 

This dream has been turning into a reality step by step with the advancement of science in 

the past few centuries, which saw the development of the concept of “robots”. The closest 

that humans have to build its replicas is in the 20th and the 21st century where the world 

has seen two-legged human-sized robots. 

Since the first model of the humanoid robot was fabricated in the early second half of the 

20th century, the world has seen immense development and research going towards this 

domain, resulting in better and improved human-like robots which can be of varying 

shapes and sizes. 

The most important aspect for a humanoid robot is movement to displace or move from a 

certain point to another, which in literature terms in the field of robotics, is also known as 

legged locomotion. 
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Locomotion is defined as an act of moving from one point to another point. Locomotion 

is found in every object regardless of it being a living or a non-living creature which can 

perform the task as mentioned in the definition. Locomotion can be divided into three 

main types 

 Ground 

 Aerial 

 Underwater 

The focus for the humanoid robots is legged locomotion which lies under the category of 

ground locomotion, along with wheeled and crawling.  

Legged locomotion refers to any kind of motion that is performed with legs. This 

property has been seen in a multitude of biological creatures around us, being done as a 

common task on a daily basis. All of these creatures possesses locomotion up to a certain 

degree and is highly dependent on the shape and size of the leg, the number of joints and 

the position of the body in which the biological creature remains.   

A humanoid robot includes the body shape closely resembling that of individual. This 

causes it to have the headway also control capacities like individual. It is normal that a 

humanoid robot might work or help individuals in the human-focused climate without a 

need to adjust or to alter the climate. 

In this manner numerous researchers and engineers from around the world working at 

different research institutes and universities have put forth extraordinary attempts in this 

field. 

Over the course of a mere few decades, humans have created different versions of the 

humanoid robot each better than the previous model. Examples of humanoid robots 

include ASIMO, WABIAN, HRP, QRIO, KHR, HRP3L-JSK, JOHNNIE, Atlas, THBIP, 

and BHR.  
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CHAPTER 2: LITERATURE REVIEW 

Legged robotics (being a part of mobile robotics) is a field of study that trades data 

between biomechanics, control systems and mechatronics designs. Many of the ideas and 

concepts in legged robotics have been derived from perceptions from the creatures 

around us that can be subjective or quantitative in nature. These ideas and concepts 

require a strong grasp on the previously mentioned fields in order to achieve the end 

goals in this field. 

 

Static vs Dynamic Locomotion 

Static Locomotion Robots are always in a balanced state; their center of gravity always 

lies between the polygon formed by their ground contacts. Whereas in Dynamic 

Locomotion, the robot must always try to keep itself balanced through complex motion 

patterns i.e., gait patterns in case of humanoid robots like NUSTBOT-3. 

Statically stable structures therefore do not require motion at every moment of time to 

maintain their stability. For example, a chair with 4 legs has the square area enclosed by 

its four legs as its support polygon. The chair is stable because the center of mass lies 

completely within this polygon.  

Static stability is completely defined as the center of mass being within the boundaries of 

support polygon and polygon’s area being greater than zero, thus at least three contact 

points are needed to make a closed polygon. Consequently, a statically stable robot needs 

to have four legs, as one leg would need to be in the air for walking 

Bipedal robots need to be dynamically stable as their support polygon is only formed by 

the footprint of their two legs. The feet are usually small, so this polygon almost 

approaches a line during double support phase and even a point during single support 

phase.  
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Centralized Pattern Generator (CPG) and Decentralized Pattern Generator (DPG) 

 

Central pattern generators (CPGs) are neural circuits found in vertebrate and invertebrate 

animals that produce required oscillations for rhythmic movement patterns. When applied 

to robotics, they are often used as building blocks for the generation of walking 

controllers. centralized pattern generators generate the pattern generation by considering 

the entire robot as a single body, unlike in the decentralized pattern generator (DPG) 

where every link gets its pattern generated individually 

centralized pattern generators permit easy adjustment of gait speeds and gait transitions.  

Also, centralized pattern generators allow better recovery from disturbances and an 

accurate model of the robot is often not required 

However a centralized pattern generator-based system becomes unstable or unsolvable at 

certain conditions, two of which are lack of actuation (reduction in number of actuated 

joints) and the zero-moment point moving outside the contact polygon. 

The main aim for the literature review is to study the existing humanoid robot onto which 

the potential deficiencies are noted. Similar humanoid robots have been studied and 

points have been noted which could be applied onto the existing humanoid robot under 

consideration to have an improved version of it. 

The first humanoid robot under consideration is NUSTBOT-3, a humanoid bipedal robot 

present at RISE Lab, NUST. This is the humanoid robot under consideration for finding 

possible deficiencies and improvements.   
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NUSTBOT-3 

This thesis discusses the approach to walking pattern generation for a bipedal humanoid 

robot. The commonly used method is the central pattern generator, but this thesis 

explores and demonstrates the possibility and effectiveness of the relatively not as much 

used method called the decentralized pattern generator. This method is beneficial in 

overcoming two issues which are 

• Underactuated Robots (reduction un the degrees of freedom of the robot) 

• Zero Moment Point moving away from the contact polygon causing instability  

These benefits were the main reason an underactuated robot was manufactured to test out 

in practical means the given theory. The manufactured robot consists of the lower limbs 

with the ankle having no actuation given the lack of motors for the said part.  

The thesis mainly focuses on the formulation of the pattern generation problem as a 

multi-body dynamics problem which is a key part in deriving the decentralized pattern 

generator for under-actuated humanoid robots. 

The construction of the degrees of freedom of the lower limbs of the humanoid robot 

NUSTBOT-3 when fully actuated is mentioned in detail in the below paragraph. 

The hip pitch and roll joints are connected to a cross shaft inside the hip joint. The hip yaw 

joint is inside the thigh of the robot which rotates the knee. The knee joint is connected 

between the knee and the shin of the robot. The ankle joints are connected to the foot through 

a cross shaft inside the ankle of the robot. This is to note that NUSTBOT-3 has no motors or 

gears that make the ankle joint actuated.  

The robot consists of the nine major body parts which are connected together through six or 

eight joints depending upon the reference topology that is used by the person examining the 

humanoid robot. All of the twelve degrees of freedom (DOFs) are actuated through motors 

which are fitted with torque controllers.  
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The (hip) yaw axis is highlighted in purple, the pitch axes are highlighted in blue, and the roll 

axes are highlighted in red as shown in Figure 7. 

NUSTBOT-3 has been created as an underactuated robot which means not all of its joints 

are in a working position. In the case of NUSTBOT-3, it is the ankles which have not 

been actuated.  

A major disadvantage of an underactuated ankle is its inability to keep the feet in a 

horizontal position when the biped robot is in single support phase while walking. This 

inability caused its toe end to be pointed downwards.  

When the foot lands on the ground in this case instead of having the entire foot touching 

the floor at a single time, its toe end will touch the ground first, leading to poor pose 

recovery and maximizes the chances of the biped robot to fall over as the center of mass 

of the robot leaves the stability polygon.   

To overcome this major flaw, it is proposed that the ankle is actuated, meaning that 

motors are attached onto the ankles. This will allow to keep the foot in a horizontal 

position when the biped robot is in the single support system and the issue of not having 

the entire foot on ground at the same time while going to double support system would be 

resolved, allowing better and more stable walking pattern. [1] 
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