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ABSTRACT 

Epidemiological studies and clinical evidence suggest an inverse comorbidity between cancer and 

Alzheimer’s Disease (AD).  Several epidemiological studies and biological evidence suggested 

liver cancer (HCC) and Oesophageal cancer (EC) as most related to AD. Gene expression studies 

conducted on microarray platforms have also reported genes and biological pathways as inversely 

regulated between both diseases. However, to best of our knowledge no study has reported 

molecular level association between AD and EC. Therefore, this study conducts meta-differential 

expression analysis to get DEGs and pathways inversely regulated between cancer (Oesophageal 

cancer, Liver cancer) and Alzheimer disease. Two RNA-seq datasets from AD patients and 

controls from similar brain regions and four datasets from two different cancer types were 

subjected to differential expression analysis. Meta-analysis was performed using p-value 

combination method implicated in metaRNASeq. Intersection for inverse genes in each pair was 

calculated and significance of overlap was tested through Fisher exact test. Inversely regulated 

genes were then subjected to pathway analysis.  Both cancer types (EC, LC) showed a significant 

overlap in gene expression deregulation in the opposite direction from AD. Functional enrichment 

comparison revealed several biological pathways which were affected jointly in both diseases, 

including PI3K/AKT/MTOR, GABAergic, Central Carbon Metabolism in Cancer and Metabolic 

pathways. Sixteen pathways were found to be deregulated in opposite direction. These results 

reinforce the previously proposed gene candidates and pathways like PI3K/AKT/MTOR and 

GABAergic synapse as contributing factor towards true inverse association between cancers and 

AD. It also reveals new potential candidates and pathways that can be involved. 
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Chapter 1  

INTRODUCTION 

In this chapter, details about terms and scope, background, general topic, and evaluation of current 

findings will be discussed. This will help in understanding the background, important terms, and 

value of this study. 

1.1 Background 

Inverse comorbidity (IC) occurs when the presence of one disease can prevent the risk of being 

susceptible to another. One such association exists between cancer and Alzheimer’s disease (AD). 

Cancer and AD are among the most age-associated diseases and the leading cause of human death 

worldwide. The very first evidence for this association was surfaced from autopsy studies. Many 

patients with confirmed AD were observed to show a lesser probability of developing incidental 

cancer than non-AD patients. However, with these findings from epidemiological studies, it was 

not obvious if the lower rate of developing the disease than controls is due to some biological link 

between diseases or other factors such as mortality, age, diagnosis, and treatment are involved. 

Strikingly, findings from multiple epidemiological studies were highly consistent. Although there 

are certain treatment and confounding factors that might play a role in these observations. The 

amount of epidemiological evidence was enough to conclude true inverse comorbidity between 

AD and cancer. This finding provided the basis for researchers to analyse both AD and cancer 

from a new perspective. The main cause of AD is neurodegeneration while cancer is caused by 

uncontrolled cell proliferation. In this sense, both diseases are at opposite ends of two extremes of 

cell cycle, so they are considered to share many common genes and biological pathways. Although 

there have not been enough molecular level studies conducted on the subject, some studies have 

successfully identified genes and pathways significantly explaining the association. While 

reviewing cancer and AD association, several epidemiological studies and biological evidence 

suggested liver cancer (HCC) and Oesophageal cancer (EC) as most related to AD. According to 

a review, HCC and EC are associated with 51% and 33% lower risk of AD, respectively. 

Considering this evidence both cancer types were selected for this study.  
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1.2 Alzheimer’s Disease 

Alzheimer’s disease (AD) is a neurological disorder that destroys neuronal cells. The early 

symptoms of AD include memory loss and delayed thinking skills and eventually damages the 

brain’s ability to perform the simplest tasks. In most people, these late-onset symptoms appear in 

mid 60’s. Late-onset AD is the most common type of dementia among the elderly. Another type 

of AD, early-onset AD is very rare and occurs between a person’s 30’s or mid 60’s. The requisite 

disease has been named after Dr Alois Alzheimer. The changes in brain tissues were noticed by 

Dt Alzheimer in 1906 along with the formation of abnormal clumps. The clumps were actual 

extracellular beta amyloid plaques and intracellular neurofibrillary tangles (Tiwari et al., 2019). 

Henceforth, till date extracellular beta amyloid plaques and intracellular neurofibrillary tangles are 

known as primary pathological hallmark of Alzheimer disease. Additionally, the loss of 

connections between neutrons in brain has been found another feature of Alzheimer disease. 

Neuron cells have been functioned for the transformation of message between parts of the brain 

and from brain to the muscles followed by different organs in the body. All above, a lot of other 

complex brain changes have had been found playing role in Alzheimer’s disease. Therefore, the 

part of brain damage involved in memory initially takes place that includes hippocampus and 

entorhinal cortex. Furthermore, in the long term it effects areas of cerebral cortex responsible for 

reasoning, language and social behaviour eventually damaging other areas of the brain.  

1.3 Cancers 

Cancer is known as a disease in which body cells starts an uncontrollable growth which spreads to 

other parts of the body. Cancerous cell might affect any part of the body tissue with trillions of 

abnormal growths of the cells. The normal cell growth of human body is followed by cell division 

by multiplication for the formation of new cells in the body when needed. Therefore, the process 

involves cell growth followed by decay of old cells when become damaged and new cells are 

generated to take place when needed by the body. But every so often, the orderly process fails to 

happen, and damaged cell start growing abnormally, divide and spread abnormally without self-

destructing as programmed to do so. Further, the cells might form tumours called lumps of tissue. 

These tumours can be cancerous and might not, normally known as benign.  
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Furthermore, prevalence of cancer is genetic caused by changes in the gene that are responsible 

for the cell function specifically their growth and division. Moreover, the genetic cause of cancer 

is the error that occurs as cell divide and cause damage to DNA due to harmful environmental 

substances. These include toxic compounds and chemicals found in tobacco smoke and UV rays 

from sun and mutations inherited in the genetic pathway from family. Furthermore, one of the 

reasons of later age cancer has been found as the body eliminates damaged DNA before it turns 

cancerous, but this ability goes down with aging. For this reason, there is a high chance of cancer 

in later life.             

1.4 Two opposite extremes of the same paradigm 

Because of their opposing nature AD and cancer has attracted the imagination of many researchers 

worldwide. The main cause of AD is neurodegeneration while cancer is caused by uncontrolled 

cell proliferation. In this sense, both diseases are at opposite ends of two extremes of cell cycle. In 

the process of cell survival and cell death, there are certain mechanics involved. These can be 

mostly associated with cell cycle regulation machinery, mutations, DNA damage and immune 

system responses. In this regard, they are considered to share many common genes and biological 

pathways. In an attempt to analyse the role of these factors in the inverse comorbidity of cancer 

and AD, many of these genes and pathways were seen to be regulated in opposite directions. While 

there is a plethora of research available for cancer, this is not true in case of AD. However, the 

corelation of both these diseases with each other and involvement of a common primary culprit 

can provide a basis to explore AD from new perspectives. 

 Although the molecular patterns involved in these diseases have been explored individually, there 

has not been enough research carried out in exploring their association. This information makes it 

crucial to explore biological factors responsible for the association. 
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Figure 1-1: Featured hallmarks of cancer and neurodegenerative diseases. Pathophysiological features of two 

representative age-related diseases, cancer and neurodegenerative diseases are shown. Mechanisms are inversely 

undergone in these two diseases to lead to cell survival and cell death in cancer and neurodegenerative diseases, 

respectively. DNA damage, cell cycle aberrations, redox imbalance, inflammation, and immunity are closely 

associatedging shared characteristics between cancer and neurodegenerative diseases [2]. 

1.5 Cell cycle in AD 

In general, every cell in the body goes through mitosis at some point. The cell cycle is being 

regulated constantly in a controlled environment. There are four phases of the cell cycle namely 

G1 which involve cell growth, S phase involves DNA synthesis, G2 involves cell growth and 

eventually M phase also known as the mitotic phase where the cell divides. However, once the 

neuronal cells mature, they do not divide and remain in a dormant state for the rest of their lives. 

The reason behind this is still not fully understood but it has been suggested that a non-canonical 

pathway, mediated by DNA polymerase beta is involved. It was observed that degenerative 

neurons in affected areas of the brain have replicated their DNA, but no similar pattern was 

observed in other healthy parts of the brain. According to a hypothesis, an abnormal re-entry into 

cell cycle is the cause of neurodegeneration. 
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Figure 1-2: Scheme summarizing induced cell cycle re-entry in healthy neurons. The capacity of TAg to inhibit p53 

might help to prevent apoptosis in neurons that undergo cell cycle re-entry, which nevertheless undergoes delayed 

non-apoptotic cell death. Cell cycle re-entry elicits functional changes in neurons, which might contribute to cognitive 

impairment and neuronal death susceptibility as observed in AD. [3] 

1.6 Cell cycle in cancer 

Cell cycle division involves a series of coordinated events, illustrated in Figure 1-3: Molecular 

Aspects of the Mammalian Cell Cycle and Cancer [4]. There are two types of cell cycle control 

mechanisms. One mechanism involves a cascade of protein phosphorylations that programmes 

cells from one stage to another and set checkpoints that regulate the completion of crucial events. 

The proteins involved in regulating the cell cycle mostly belong to the kinase family. These kinase 

proteins usually require association with another protein subunit called cyclin. The cyclin-

dependent kinase (CDK) combines with its cyclin partner and creates an active complex with 

substrate specificity. To ensure well regulation and transition of cell cycle stages, the CDK-cyclin 

complex’s activity is monitored through phosphorylation and dephosphorylation. 

The second type of cell cycle regulation and control is through signals, called cell cycle 

checkpoints. Cell cycle checkpoints detect abnormalities in crucial events as chromosomal 

segregation and DNA replication. When an abnormality is detected through these signals, the 

progression to the next stage is delayed until the effect of mutation or abnormality is averted. As 

compared to CDK’s, the extent of checkpoints signal is not as obvious because they are not 

involved in every cell cycle. 

Since cell cycle machinery controls cell division and proliferation, the relation between cancer and 

the cell cycle is obvious. Interestingly, all cancers exhibit abnormal cell cycle behaviours caused 
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by insensitivity to signals and mutation in regulatory proteins. Almost in all types of cancer, there 

is a combination of two or more faulty regulatory mechanisms. Thus, there can be several genes 

and pathways involved in regulation and signal transduction that leads to cancer. 

 

Figure 1-3: Molecular Aspects of the Mammalian Cell Cycle and Cancer [4]. 

1.7 Gene expression, a fundamental intermediate phenotype 

Gene expression is the fundamental link between DNA sequence and individual-level phenotypes 

such as disease susceptibility. Gene expression quantification techniques are used to measure gene 

expression from mRNA transcripts abundances. There is a plethora of research available to infer 

certain phenotypes by measuring gene expression. 

In the human body, there are approximately 20,000 protein-coding genes as annotated by the 

GENCODE project [5]. A gene is comprised of certain regions such as coding and non-coding 

sequences, regulatory regions such as promoters and other distal regulatory elements such as 

silencers and enhancers[6], [7]. The protein-coding sequences of a gene are responsible for two 

later parts of central dogma, transcription, and translation. In the process of transcription, RNA 

polymerase transcribes the coding or sense strand of the DNA in 5’ to 3’ direction to produce a 
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single strand RNA complement. The sequence of a eukaryotic gene typically consists of exons and 

introns. During post transcription processing introns are spliced out by spliceosome and exons are 

retained, which are the protein-coding parts of a gene. Although a great proportion of the human 

genome does not code for proteins, more than 80% of the genome have assigned biochemical 

functions. These processes are mostly believed to be of regulatory importance. Gene expression is 

a tightly regulated process, it makes certain that genes are expressed in the correct amount in 

certain tissues or cell types at the appropriate developmental stage. Therefore, hidden patterns of 

gene regulation can be of importance when explaining the behaviours of genes. 

1.7.1 Regulation of gene expression 

In the human genome, there are around 20,000 genes. The genetic material of different cell types 

is fundamentally similar, but the expression of genes varies from cell to cell. Moreover, the same 

cell can have a different expression over different developmental stages or different conditions. 

This is because genes are being regulated differently across cells and tissue types. For instance, 

some genes called housekeeping genes that are involved in fundamental cell processes such as 

DNA production enzymes and glycolysis etc, are expressed in almost every cell. On the other 

hand, tissue-specific genes are expressed in certain types of cells and not in others like neurons. 

To understand tissue functions, it is crucial to understand the pattern of gene expression. In 

addition, the role of this spatiotemporal pattern of gene expression is crucial in our understanding 

of cell and tissue behaviour under pathogenesis [8]. Gene regulation is a tightly controlled process 

that determines which gene to turn on and off. There are many cellular and genetic factors involved 

in the regulation process from early developmental stages to the death of an organism. Several 

approaches are being used to understand different gene regulatory patterns. 

Recent advancement in high-throughput gene expression profiling technologies has enabled us to 

understand and study gene expression regulation patterns. The Genotype-Tissue Expression 

(GTEx) project is to date the largest resource to characterise tissue-specific regulation of 

transcriptome (‘Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multi-

tissue gene regulation in humans.’, 2015; Aguet et al., 2017). Gene expression regulation is crucial 

for cellular activities. It prepares cells to respond to external signals as well internal stimuli. It is a 

collection of comprehensive processes at various stages of transcription and translation. For 

example, the production rate of mRNA and proteins can be influenced by chromatin accessibility 
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which can be affected by methylation, histone modification, splicing events, mRNA stability and 

at last post-translational modifications [11].  

Regulatory components can be classified into two types: cis- and trans-regulatory elements, with 

the former being adjacent DNA sequences and the latter being DNA-binding proteins including 

transcription factors (TFs). Typical cis-regulatory elements include promoters and enhancers, and 

their epigenetic modifications (e.g., histone modifications) and binding proteins that affect 

transcription initiation and regulation [12]. TFs can increase or suppress the transcriptional activity 

by binding to cis-regulatory elements of target genes. TFs contain DNA-binding domains that 

target specific DNA sequences on the genome [13]. In addition, genes in the same biochemical 

pathway interact with each other and are often co-regulated, and a network framework can provide 

improved modelling of the relationships among transcripts. Thus, a better understanding of 

regulatory patterns of genes can provide a better insight to study their expression in different tissue 

types. 

 

 Figure 1-4: Each gene has a promoter upstream of the coding sequence. The promoter binds to transcription factors 

and helps RNA polymerase to bind and start transcription. Bottom. Many genes also have upstream enhancers. 

Enhancers bind activators, bend around, and help RNA polymerase start transcription. (Matt. i, no date) 

1.7.2 High-throughput transcriptome data 

A transcriptome is defined as the complete set of RNA transcripts in one or a group of cells, 

including mRNAs and non-coding RNAs. Unlike the genome, which is fixed in an organism, the 
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transcriptome varies, sometimes dramatically, across cell types, developmental stages, and 

external environmental stimuli. Thus, characterising transcriptomes provides insights into the 

function of genes, gene expression variation, and gene regulation under different conditions. Two 

main high-throughput technologies are used to quantify gene expression profiles: hybridisation-

based approaches such as oligonucleotide microarrays and sequence-based approaches such as 

RNA sequencing (RNA-seq) [15], [16]. Microarray gene expressing profiling measures gene 

expression levels by hybridisation between probes attached to specific spots on the array and 

complementary DNA (cDNA) synthesised from mRNA molecules in given samples. Like other 

types of DNA microarrays, probes on the array are designed based on sequences of identified and 

annotated genes. The probe sequences can uniquely match certain gene transcripts. Meanwhile, 

RNA-seq, 10 based on recent deep-sequencing technologies, does not rely on prior knowledge of 

gene sequences. It has advantages in the aspect of, for example, identifying novel gene isoforms 

derived from alternative splicing, as well as allowing for measuring abundances of different gene 

isoforms. RNA-seq can also provide information on allele-specific expression at heterozygous 

sites [17]. Unlike microarrays that are prone to probe saturation, RNA-seq can detect a broader 

range of gene expression levels. Microarrays have been more widely adopted due to the lower cost 

and relatively advanced methods. While both RNA-seq and microarrays are affected by technical 

variations such as batch effects, those affecting microarrays tend to be better understood and can 

be corrected statistically. RNA-seq used to be less affordable compared with microarray platforms; 

however, the cost of RNA-seq is decreasing and it is becoming more widely used in this field. 

1.8 Problem Statement 

Epidemiological studies have suggested an inverse association between Oesophageal cancer and 

Alzheimer’s disease. However, no study has reported this association with respect to inverse gene 

expression. Therefore, this study aims to identify genes and pathways involved in inverse 

comorbidity between AD and cancer using the RNA-seq approach. 

1.9 Aims and objectives. 

1. Identifying differentially expressed genes in AD, EC, and HCC through differential 

expression meta-analysis. 
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2. Identifying inversely expressed genes between AD & cancers. 

3. Testing for significance of true inverse association by fisher exact test. 

4. Elucidating the role/effect of genes and pathways in both phenotypes through gene set 

enrichment analysis. 
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Chapter 2    

LITERATURE REVIEW 

In this chapter, the current knowledge, findings, as well as theoretical and methodological 

contributions which helped in formulating and conducting this study will be discussed.  

2.1 Disease Comorbidity 

Disease Comorbidity is defined as the presence of more than one disease in an individual, it is also 

known as multimorbidity [18]. The comorbid diseases can exist together, or one disease can follow 

the other after a period. In most conditions, these diseases can seem not to be linked but rather 

independent of each other, but comorbid diseases influence each other [19].  

Disease comorbidity has emerged as a major problem in treatment, as treating patients with 

multiple diseases is complicated because it requires certainty in diagnosis and treatment [20], [21]. 

Moreover, patients with comorbid diseases have a higher rate of longer hospitalisation and 

mortality which is time and cost consuming [22]–[24]. Furthermore, if the patient receives multiple 

drug treatments for multiple conditions at the same time, it might cause serious side effects due to 

drug interactions [25], [26]. However, the underlying mechanisms and patterns of disease 

comorbidities are not well studied [27]. Therefore, in recent years, it has emerged as a hot topic in 

scientific research both from the molecular level and clinical observation perspectives. 

Comorbidity can be further divided into two types named as inverse and direct comorbidity. 

2.1.1 Direct Comorbidity 

Direct comorbidity refers to the type of comorbidity in which diseases co-occur in a way that the 

presence of one disease can increase the chance of acquiring the other. For example, an increased 

risk of diabetes mellitus type 2 is associated with an increased risk of cardiac arrest [28]. Direct 

comorbidity was also observed between Alzheimer’s disease (AD) and glioblastoma [29]. 

Although there can be certain biological and non-biological factors contributing to this association, 

direct comorbidities are often observed in age-associated diseases. 
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2.1.2 Inverse Comorbidity 

Inverse comorbidity (IC) refers to the type of comorbidity in which diseases co-occur in a way that 

the presence of one disease can reduce the chances of having the other [30]. This type of relation 

among diseases protects individuals from a condition when they are exposed to the other. The 

paradoxical nature of IC violates common sense thus attracting the attention of many scientists 

and researchers. The concept of IC is based on these two premises: firstly, certain non-biological 

and environmental factors make certain conditions protective of another. Secondly, a type of 

disease such as Alzheimer’s disease (AD) has certain biological aspects (genes, pathways) 

involved, which can protect against another disease such as cancers [30]. Therefore, these factors 

can influence an individual with disease A meanwhile protecting the same individual against 

disease B. 

Several genes have been studied for their inverse role between different diseases. One of such 

examples is DSCR1 (Down’s syndrome candidate region 1) which is involved in Down’s 

syndrome but is protective against solid tumour mechanism. The encoded protein by DSCR1 

suppresses angiogenesis signalling. As angiogenesis is an important mechanism for tumour 

growth, overexpression of DSCR1 in Down’s syndrome can cause suppression of angiogenesis, as 

a result protecting the individual from cancers [31]. 

2.2 Inverse Comorbidity between cancer and Alzheimer’s disease 

2.2.1 Epidemiological evidence 

Cancer and AD are the two most common age-associated diseases. However, little was known 

about their association until recently. The very first evidence for this association was surfaced from 

autopsy studies. Many patients with confirmed AD were observed to show a lesser probability of 

developing incidental cancer than non-AD patients [13],[14]. This was intriguing since there might 

be a higher probability to suffer from an undiagnosed disease for patients who are unable to report 

symptoms, based on the previous disease record. In a study on Japanese atomic bomb survivors 

who are at increased risk of cancer, it was observed that patients who were clinically diagnosed 

with AD had a 70% less prior cancer history than age-matched controls [34]. Several studies were 

conducted carefully following these observations which also confirmed an inverse association 

between AD and cancers. In 2005, a longitudinal study conducted on 6,000 participants over a 
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period of 10 years also confirmed that a history of cancer reduced the risk of AD. Moreover, the 

prevalence of AD was also observed to be associated with a reduced risk of cancer [35]. 

Interestingly, both studies did not find out any such association between AD and vascular dementia 

(VaD). A similar epidemiological study in the United States over a period of 15 years further 

validated this association [36].  

However, with these findings from epidemiological studies, it was not obvious if the lower rate of 

developing the disease than controls is due to some biological link between diseases or other 

factors such as mortality, age, diagnosis, and treatment are involved. In 2011, the Framingham 

heart study with clearly defined cohorts of cancer and AD patients concluded an inverse 

comorbidity rate of 0.67 with a 95% CI (confidence interval) This observation was compared with 

the cohort excluding patients who died before the age of 80 and concluded similar statistics (IC= 

0.67; CI= 95%) [37]. Another study from Italy further validated that the inverse association was 

present both before and after diagnosis as well it is independent of survival and mortality, 

demonstrating that incidence of AD is associated with a 50% lower risk of cancer and a history of 

cancer is associated with 35% lower risk of AD [38]. The inverse association with cancer was also 

reported in other neurodegenerative diseases such as Parkinson’s disease [39], [40]. However, all 

these studies reported no such association between cancers and VaD. A study considered the 

possibility of both direct and inverse comorbidity between cancer and AD. Metanalysis on two 

distinct types of cancers was carried out which concluded findings aligning with previous studies 

that AD is associated with a lower risk of lung cancer but higher risk of glioblastoma [41]. It should 

be noted that glioblastoma was included in that study as a type of brain cancer which in term can 

disrupt the homeostasis of the brain by affecting it directly. Hence, resulting in a direct correlation 

with neurodegenerative diseases such as AD. Several other studies on different ethnic groups also 

produced similar statistics. 

Strikingly, findings from multiple epidemiological studies were highly consistent. Although there 

are certain treatment and confounding factors that might play a role in these observations. The 

amount of epidemiological evidence was enough to conclude true inverse comorbidity between 

AD and cancer. This finding provided the basis for researchers to analyse both AD and cancer 

from a new perspective. Although there have not been enough molecular level studies conducted 

on the subject, some studies have successfully identified genes and pathways significantly 
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explaining the association. A better understanding of the underlying mechanism for inverse 

comorbidity between cancer and AD could help to develop improved treatments. 

2.2.2 Gene Expression and Meta-Analysis studies 

Because of their opposing nature AD and cancer has attracted the imagination of many researchers 

from around the globe. Several hypotheses have surfaced explaining the biological mechanism 

behind this association. Some hypotheses have been mentioned earlier in chapter 1. Moreover, 

some studies have explored genes and pathways deregulated in opposite directions. Also, many 

transcriptomic level studies have explored most types of cancers and AD individually. However, 

there are only a few studies conducted on gene expression analysis to validate inverse comorbidity 

between these two at the molecular level.  

The earliest study in this regard was carried out on gene expression data from these 3 different 

cancer types, Lung (LC), Colorectal (CRC) and Prostate (PC) with 3 different CNS (Central 

Nervous System) disorders AD, PD and SCZ (Schizophrenia) [42]. Microarray expression data for 

all disease types were collected from publicly available datasets and a meta-analyses approach was 

used to measure gene expression across multiple samples. Most of the common genes found 

between CNS disorders and cancers were found to be deregulated in opposite directions. 

Previously reported genes for their role in inverse comorbidity such as PIN1 and P53 expression 

was analysed and confirmed that it was downregulated in AD and PD and upregulated in CRC. 

Another gene that stood out as an indicator of strong inverse association was ATP13A2 gene. 

Previously, loss of functional mutation in ATP13A2 have been linked to early-onset PD and some 

somatic mutations have been seen in the case of cancer [43]. It was also identified to be upregulated 

in all three types of cancer and downregulated in AD and PD. Overall, the study reported 74 genes 

were reported to be downregulated in all CNS disorders and simultaneously upregulated in all 

cancer types. On the other hand, 19 genes were reported as upregulated in CNS disorders but 

downregulated in cancer types. Table 2-1 

 

Table 2-1 DEGs are significantly deregulated in opposite directions in the three CNS disorders and three types of 

Cancer [42]. 
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DEGs significantly upregulated in the three CNS disorders and downregulated in the three 

Cancer types (q-value<0.05). 

“MT2A, MT1X, NFKBIA, AC009469.1, DHRS3, CDKN1A, TNFRSF1A, CRYBG3, IL4R, 

MT1M, FAM107A, ITPKC, MID1, IL11RA, AHNAK, KAT2B, BCL2, PTH1R, NFASC”  

DEGs significantly downregulated in the three CNS disorders and upregulated in the three 

Cancer types (q-value<0.05). 

“(PPIAP11, IARS, GGCT, NME2, GAPDHP1, CDC123, PSMD8, MRPS33, FIBP, OAZ2, 

IARS2, SLC35B1, APOO, TMEM189-UBE2V1, VDAC1, TMED3, SMS, DNM1L, PRPS1, 

SRSF2, TMEM14D, TOMM70A, ATP6V1C1, NUP93, MRPL15, UBA5, PPIH, SMYD3, 

NIT2, SRD5A1, NUDT21, MRPL12, EEF1E1, MRPS7, TTPAL, BZW1P2, RP11-552M11.4, 

TSN, MECR, ZWINT, RPRD1A, UCHL5, NHP2P2, TFB2M, FEN1, CGREF1, IMPAD1, 

ARL1, ACLY, MRPL42, LSM4, KPNA1, TIMM23B, RP11-164O23.5, RP11-762H8.2, 

FARSA, MRPL4, API5, RP3-425P12.4, RFC3, RANBP9, TFCP2, GMDS, CCNB1, 

TMEM177, GUF1, HSPA13, NMD3, GCFC2, TUBGCP5, TBCE, YKT6, PHF14, BRCC3...”) 

 

In order to elucidate the role of these genes on molecular bases pathway enrichment analyses was 

performed. To account for an inverse association, pathways that were being deregulated in 

opposite directions in at least one disease as compared to the 3 in the other group were considered. 

Interestingly, out of 30 pathways, 24 were reported to be deregulated in opposite directions, 

including the p53 signalling pathway [42]. A detailed insight into these pathways resulted in most 

pathways involved in cellular processing, genetic information processing, environmental 

information processing, meta metabolism, organismal systems. Although this study provided 

significant insight and a molecular basis to further explore the behaviour of candidate genes and 

pathways, it is debatable whether the expression changes observed are due to treatment or some 

other environmental factor instead of a true inverse comorbidity role. 
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Figure 2-1 KEGG (Kyoto Encyclopaedia of Genes and Genomes) pathways identified by GSEA (Genome Set 

Enrichment Analysis) as significantly deregulated in cancers and CNS disorders [42]. 

A study conducted on data published by Ibáñez et al [42]  to investigate the role of differential 

gene deregulation with respect to protein formation. The idea was to analyse the physicochemical 

properties of deregulated genes and investigate the possibility to distinguish CNS disorders and 

cancer based on structural disorder. The study concluded that structural disorder is a significant 

factor to differentiate cancer and CNS disorders [44]. 

The most recent gene expression study to investigate inverse comorbidity between AD and cancers 

revealed a considerable number of genes deregulated in opposite directions in AD and lung cancer. 

Transcriptome meta-analyses study investigated AD association with Lung Cancer (LC) and 

Glioblastoma (GBM) [29]. Glioblastomas are the most common type of brain tumours in adults 

[41]. Previously epidemiological studies have reported a direct association between AD and GBM 
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[37], [45]. Similar meta-analyses differential expression techniques were applied to check 

comorbidities between AD & GBM and AD & LC. The results were consistent with 

epidemiological findings as more genes were observed being deregulated in opposite direction in 

the case of AD and LC, whereas most genes were observed being deregulated in the same direction 

in the case of AD & GBM. 

 

Figure 2-2 Significantly differentially expressed genes (sDEG) overlap between AD, GBM and LC. The overlap is 

shown here on deregulation in opposite and similar directions between all three diseases in separate groups [29]. 

 

The molecular significance of inverse comorbidity between AD and cancer is evident from these 

transcriptome expression analysis studies. To further investigate the interesting behaviour of 

involved genes, a more in-depth analysis is required. 

2.3 Motivation 

Advancement in bioinformatics research methods has made it possible to explore gene expression 

data. There are multiple tools and pipelines available for gene expression estimation chapter 1. 

This approach can be implemented to elucidate the role of individual genes and pathways related 
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to a certain phenotype which can also be comparable to gene expression changes directly. Thus, 

an extensive literature review has helped to formulate the following findings which are the core 

motivation of this study. 

•  Epidemiological studies were directed towards finding a correlation between AD and    

Cancers. 

•  Several studies concluded the existence of inverse comorbidity between two diseases. 

• Gene Expression studies targeted to identify inversely expressed genes that might explain 

the biological plausibility of this relationship. 

• There are 3 transcriptome level studies, that were able to identify molecular cause of 

inverse association. However, none of these studies included Oesophageal cancer that is a 

highly correlated cancer with AD. Therefore, this study aims to find molecular cause of 

this association. 
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Chapter 3   

METHODOLOGY 

This chapter describes in detail the materials and methods used in this study to achieve previously 

formulated objectives. The datasets used in this study are all secondary datasets that are publicly 

available on GEO NCBI and ENA (European Nucleotide Archive). The whole analysis was carried 

out on a Linux environment using Ubuntu (18.08). All the methods, tools and pipelines were 

optimized before use. 

 

 

Figure 3-1 Overall workflow of methodology 
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The core objective of this study is to find out SNPs (Single Nucleotide Polymorphism) present in 

inversely regulated genes in cancers and Alzheimer’s disease which might explain the opposite 

regulation of the cell cycle. To achieve this, the first step is to find deferentially expressed genes 

that are being regulated in opposite directions and then perform variant analysis to find and 

compare SNPs present in those genes. Following methods were applied to achieve this objective. 

3.1 Data Acquisition  

All the data used in this study is secondary and downloaded from different online repositories such 

as GEO NCBI, SRA, and ENA. RNA-seq datasets were the major requirement of this study which 

were collected for three different diseases. Apart from RNA-seq datasets, some other necessary 

data files were downloaded. The types of data required, and their properties are described in detail 

in this section. 

3.1.1 RNA-seq Data 

The major purpose of transcriptome level sequencing is to study transcript level changes. However, 

several bioinformatics pipelines have made it possible to analyse variants through RNA-seq data. 

This study was conducted to analyse and identify variants present in inversely expressed genes in 

two different types of disease. RNA-seq data sets were downloaded from online repositories GEO 

and ENA in FastQ format. To limit the false positives and for more accurate variant detection only 

paired-end data was used. Data selection criteria are as follows. 

• Homo Sapiens & RNA seq 

• No cell lines 

• Normal and Disease 

• Not treated and knockdown 

• Age-matched controls 

• Paired end 

• Preferably adjacent normal 

According to this criterion, the following datasets were selected and downloaded. 
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  Accession  No. of samples  Platform  

 Alzheimer’s Disease  GSE53697  
17 (8 N, 9 AD)  Illumina 

HiSeq 2500  

  
GSE95587  30 (11 N, 19 AD)  Illumina 

HiSeq 2500  

 Oesophageal Cancer  GSE130078  
46 (23 N, 23 T)  Illumina 

HiSeq 2000  

  
GSE111011  14 (7 N, 7 T)  Illumina 

HiSeq 2500  

  Liver Cancer  GSE197214  
18 (9 N, 9 T)  Illumina 

HiSeq 2000  

  
GSE105130  50 (25 N, 25 T)  Illumina 

HiSeq 2500  

Table 3-1: RNA-seq Datasets for Alzheimer's Disease, Esophageal Cancer, Liver cancer. Accession number, sample 

number, type and sequencing platform are given. 

 

3.1.2 Reference Genome and Annotation Files 

The human reference genome (also known as reference assembly) is representative of all the genes 

present in a human species. It is a digital nucleic acid sequence database, assembled by researchers 

as a representative example of a human set of genes. Reference genomes of species are freely 

accessible online at various databases, using specified browsers, for example, Ensembl or UCSC 

Genome Browser [46]. The Human Reference genome has different versions but the most recent 

one is hg38 [47]. A genomic feature file used for annotation purposes is a tab-delimited file that 

contains specific information about genome coordinates. Both genome reference file (fasta format) 

and annotation file (GTF format) were downloaded from the ensemble. 

3.1.3 Genomic Variation Files for Variant Analysis 

In response to the general need of cataloguing human genome variation data, several databases 

have been designed that stores variation data from a large set of samples. These databases are then 

used for association studies. One of such projects is the 1000 genome project where they have 
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reconstructed the genomes of 2504 individuals from 26 different populations [48]. Another such 

project specifically was designed to catalogue data for human single nucleotide polymorphism by 

NCBI [49]. The dbsnp database is being widely used for genome variation data specific to SNPs. 

In this study, both were used to access genomic variation data needed for variant analysis. 

3.2 Differential gene expression analysis 

      The selected datasets for this study were subjected to differential gene expression analysis, 

which involves performing statistical analysis on read count data to discover quantitative changes 

in two or more different experimental groups. The workflow for the analysis is given below 

followed by the steps performed during this analysis described in detail. 

 

 

Figure 3-2 Differential Expression Analysis workflow 

 

3.2.1 Quality Control and Pre-Processing 

Data quality assessment is a crucial step when working with any genomic data. Before going into 

further downstream analysis, data quality is evaluated based on certain parameters. Many tools are 

available to check and correct data quality. For high throughput sequencing data, FastQC is one of 

the best and most used quality assessment tools [50]. 
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3.2.1.1 FastQC 

FastQC is designed to detect and highlight problems in a wide variety of high throughput 

sequencing data. It provides a set of analyses that can be used to give a quick assessment of data 

that if it has any problems before going into downstream analysis. FastQC takes a FASTQ, BAM 

or SAM file as input and provides summaries about different quality check matrices. It also 

provides an HTML report to view certain quality check graphs. Among the analysis modules 

provided by FastQC, “per base sequence quality” and “Overrepresented sequences” are the most 

important checks to minimize error rates in downstream analysis. “Per base sequence quality” 

gives insight into the quality score distribution of all bases on each position of a read. Whereas 

“Overrepresented sequence analysis” helps in identifying contaminations. 

 In this study, all the raw FASTQ files were subjected to FastQC by running the following script 

which allows analysis of multiple files. 

Sample command: 

for f in /RawData/*.fastq.gz;  do fastqc $f --outdir /fastqc -p 32  done 

3.2.1.2 Fastp 

Once the quality control step has identified problems with data, the next step is to perform pre-

processing to correct for technical biases detected by FastQC. There can be certain quality check 

fails for which pre-processing can be applied such as adapter sequences, low base quality, over-

represented sequences, duplication level, N bases and poor-quality score distributions.  

Fastp is an ultra-fast all in one pre-processor for problems in FASTQ data. It is a c++ developed 

tool and caters to many FASTQ quality problems in a single scan. It can also use up to 16 multiple 

threads to allow fast processing. Despite it is multiple functionalities, Fastp has proven to be 2-3 

times faster than other pre-processing tools such as Cutadapt and Trimmomatric [51]. Fastp has 

many options to perform analysis, however, it has most of the options enabled by default. To 

disable or enable options depending on the data quality reports user can use certain flags e.g. Over-

representation analysis is disabled by default, in case of the presence of over-represented 
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sequences in data flag -p can be used. In this study. Fastp was installed using GitHub source, 

following command was used to pre-process files individually. 

Once the pre-processing was done, quality control was again applied to the preprocessed file. In 

case of successful pre-processing operation, data were subjected to further analysis. Any failure in 

the quality control step demands more pre-processing. The following command was used to 

process fastq files. 

Sample command: 

fastp -i SRR10066648/SRR10066648_1.fastq.gz -o LCSample2.fastq.gz -I 

SRR10066648/SRR10066648_2.fastq.gz -O LC2sample2.fastq.gz --correction -p -w 16 -z 5 

3.2.2 Mapping  

After quality checking and trimming of sequences, the following step is the sequence alignment to 

the reference genome. HISAT2 was used for RNA-seq read alignment to the reference genome. 

The alignment scheme of HISAT2 allows gaps to give speed, sensitivity, and accuracy across the 

alignment. HISAT2 is a universally used tool for aligning reads to a reference genome at a faster 

rate than STAR with similar accuracy (Kim, Langmead and Salzberg, 2015). HISAT2 is the core 

of the next version of Tophat. This tool also detects novel splice variants. The latest version of 

HISAT2 aligns with genotype variants, achieving higher accuracy. Reduces the cost than STAR 

(<8 GB for mapping to the human genome using default settings). The output files obtained from 

the tool for each dataset were aligned files in BAM format (Binary version of SAM format), and 

text files having the alignment summary. After alignment, the next step is to get a count matrix 

containing the count of each gene. For this reason, the featureCounts tool is used (Stephani, 2011). 

The following command was used to get alignment files in bam format. 

Sample command: 

hisat2 -x alignment/Index/grch38/genome -p 32 --dta --summary-file ADF81SRR545.txt -1 

SRR5305545_1.fastq.gz -2 SRR5305545_2.fastq.gz | samtools view -bs -> ADF81SRR545.bam 
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3.2.3 Quantification 

Feature Counts tool is the same as HTseq but much faster. The output is a little bit changed due to 

varying expression assignment approaches (Kim, Langmead and Salzberg, 2015). This tool takes 

SAM or BAM files as input and counts reads for each genomic feature. For this purpose, it requires 

a human reference genome annotation file along with SAM files. The output is a simple tab-

delimited text file containing counts of all genes and featureCounts summary files (Stephani, 

2011). The following command was used to get count files for one of the AD datasets. 

Sample command: 

featureCounts -T 32 -p -t exon -g gene_name -s 1 -a Homo_sapiens.GRCh38.84.gtf -o 

coungenets.txt ADF81SRR545.sorted.bam ADF85SRR515.sorted.bam 

ADF85SRR527.sorted.bam ADF86SRR531.sorted.bam ADF88SRR512.sorted.bam 

ADF89SRR541.sorted.bam ADF91SRR537.sorted.bam ADF91SRR538.sorted.bam 

ADF91SRR566.sorted.bam ADF92SRR517.sorted.bam ADM82SRR567.sorted.bam 

ADM85SRR562.sorted.bam ADM87SRR581.sorted.bam ADM89SRR568.sorted.bam 

ADF91SRR540.sorted.bam ADM77SRR580.sorted.bam ADM82SRR557.sorted.bam 

ADF82SRR586.sorted.bam ConF91SRR513.sorted.bam ConF78SRR542.sorted.bam 

ConF87SRR525.sorted.bam ConF90SRR575.sorted.bam ConF97SRR576.sorted.bam 

ConM80SRR556.sorted.bam ConM81SRR582.sorted.bam ConM81SRR593.sorted.bam 

ConM86SRR530.sorted.bam ConM87SRR554.sorted.bam ConM93SRR543.sorted.bam 

3.2.4 Differential Expression Analysis 

FeatureCounts outputs a tabular file containing gene counts per sample. This file can be used 

to check differential expression between two conditions. Differential expression analysis was 

performed on all three cancer types and AD. DESeq2 is an R Bioconductor implemented method 

used to detect differentially expressed genes. It uses the Wald test method to test for differential 

expression. 

Null and alternative hypotheses are: 

Ho: There is no differential expression of mRNAs  

Ha: There is a differential expression of mRNAs 
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3.2.4.1 DESeq2 

Deseq2 is one of the most used R Bioconductor packages [52]. It takes un-normalized count 

matrices as input to find differentially expressed genes under different conditions [53]. Like edgeR, 

it is also based on the negative binomial method and applies Fisher exact test to find DE genes. 

The normalization method used in DESeq2 is different from edgeR. It normalizes the data using 

the median of ratios of all gene counts in each sample over the geometric mean. Differential 

expression analysis by DESeq2 is done in these steps. 

• Modelling raw counts for each gene: 

• Estimate size factors (accounts for differences in library size). 

• Estimate dispersions. 

• GLM (Generalized Linear Model) fit for each gene. 

• Testing for differential expression (Wald test). 

Typically, the output of DESeq2 contains 7 columns and rows corresponding to genes in 

the experiment. The columns which are used to extract differentially expressed genes are usually 

the pvalue, padj and log2FoldChange. The DESeq2 R code used in this study comes with other 

functionalities such as annotating gene information, normalization, transformation, and visualizing 

data in different plots. Biomart was used to convert gene IDs into gene symbols. Transcripts and 

genes were selected with the significance level <0.05 and a fold change value of 0.5 for both up 

and down-regulation. DESeq2 R code outputs a differential expression file, a normalized count 

file and plots for graphical visualization of data. 

3.2.5 Meta Differential Expression Analysis 

Meta-analysis for studying gene expression is a common technique, previously used for microarray 

studies. However, in most cases, the methods used for microarray expression analysis are not 

applicable for RNA-seq. Although, the importance of integrating multiple RNA-seq studies is 

much more crucial given the lower number of replicates in HTS experiments. In this study, to 

mitigate the effect of cross-sample variation in similar experiments, a meta differential expression 

analysis was performed. To perform this analysis an R package metaRNASeq available at CRAN 

(http://cran.r-project.org/web/packages/metaRNASeq), was used [54]. 

http://cran.r-project.org/web/packages/metaRNASeq
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MetaRNASeq implies two p-value combination methods, fisher and inverse normal. However, for 

biological relevance, the p-value combination methods are built on the fact that both experimental 

results are obtained by using the same test-statistic method. In this case, DESeq2 was applied 

which implements Welch’s test and was true for all studies. The p-values obtained from the 

DESeq2 method were subjected to metaRNASeq for meta differential expression analysis. 

The code used for metaRNASeq is attached in supplementary. The final output of the tool is up-

regulated and down-regulated genes in a disease that passed the p-value criteria for meta-analysis 

tests.  

3.2.6 Genes with Inverse Expression 

After differential expression analysis has been performed, the next step is to find out genes that 

are being regulated in opposite direction. For this purpose, FC (fold change) was used as criteria 

to define up and down-regulation. All the common differentially expressed genes were collected 

by using the Excel VLOOKUP function, then the same function was applied by using FC>0.5 as 

upregulated and FC<-0.5 as downregulated genes to get inversely expressed genes between both 

phenotypes. 

3.2.7 Fisher-exact test for significance of the overlap 

To account for true biological overlap between cancer and AD, the fisher-exact test was applied 

to calculate the significance of the overlap between AD and cancer. The significance was 

compared between cancers, AD and cancers, and self-overlap for each disease. R package 

GeneOverlap was used [55]. It tests two gene sets and calculates the significance of their 

intersection given a random number of background genes. The code is attached in supplementary. 

3.2.8 Ranking based on disease association 

The inverse regulated genes list was then subject to disease association analysis. GeneCard suit is 

an online web application platform that provides several tools to interpret genetic information 

without the need of installing and using many other expert bioinformatics tools. To extract a ranked 

list of genes for further downstream analysis, results obtained from metaRNASeq was submitted 

to the GeneCards VarElect tool [56]. The VarElect tool gives insight into extensive disease-gene 

relationship data. It gives both direct and indirect relationships of a gene to a given phenotype. In 
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our case, cancer and AD were selected as phenotypes of interest and inverse analysis gene list was 

given as input. 

3.2.9 Gene Set Enrichment Analysis  

After getting inversely expressed genes, the next step is the gene set enrichment analysis, 

abbreviated as GSEA. GSEA is a statistical method that describes the statistical significance of the 

genes to specific Gene Ontology (GO), KEGG (Kyoto Encyclopedia of Genes and Genomes) 

pathways Reactome, Biocarta and many other pathway analyses. GSEA identifies the set of 

enriched genes in a particular dataset compared to control. Enrichment analysis is performed using 

the clusterprofiler R package.  

GSEA computes enrichment analysis based on Enrichment score (ES) and Nominal P-value. ES 

determines which gene set is over-represented in the top and bottom of the ranked correlated gene 

list. Positive enrichment score (ES) shows gene set enriched at the top of the list, whereas negative 

ES shows gene set enriched at the bottom. The nominal P-value evaluates the statistical 

significance of ES, showing the likelihood that this gene set is enriched in a pathway. 

A list of ranked genes based on disease association obtained from GeneCards was subjected to 

GSEA. Gene ontologies (GO) and KEGG pathways databases were used to obtain functional 

categories of genes. R package clusterprofiler and fgsea were used to get GSEA results. 
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Chapter 4  

RESULTS AND DISCUSSION 

In this chapter, results from all major steps of this study will be reported. A thorough discussion 

on these results will be conducted to answer the research questions formulated during this study.  

4.1 Differential Expression 

The first objective of this study was to identify differentially expressed genes in individual 

diseases. To perform this analysis a detailed methodology has been described in Chapter 3. Before 

performing the differential expression analysis, pre-processing, and mapping of individual samples 

were performed. Mapping results are attached in the Appendix. 

4.1.1 Alzheimer’s Disease 

Dataset search was a crucial step for this study. After extensive literature and repositories 

(ArrayExpress and GEO) search, only two datasets of AD matched our pre-defined criteria. Results 

of RNA-Seq analysis performed on Alzheimer’s datasets are described below. 

➢ GSE53697 

This dataset downloaded from ENA (PRJNA232669) is a part of the super series GSE53699. 

Tissue samples from the frozen human brain were obtained from Mount Sinai Brain Bank. 

According to data description from the primary publisher, brains was dissected along with 

Brodmann areas. A total of 9 samples were extracted from the dorsolateral prefrontal cortex from 

AD affected advanced stage brains (between 4 and 5). Eight age and gender-matched controls were 

selected. RNA was extracted from all samples and prepared for sequencing, following the Illumina 

high-throughput sequencing guidelines. A detailed description of samples is attached in Appendix. 

The first step was to perform a quality check using FastQC. All samples passed the quality filters 

and were subjected to mapping using HISAT2. The alignment rates of each sample are attached in 

Appendix. Next, feataureCount was used to quantify expression using the FPKM approach. The 

count files for all samples were next used to perform differential expression analysis. 
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R package DESeq2 was used to perform differential expression analysis. (“GEO Accession 

viewer”) Different plots were generated to visualize data and results. Figure 4-1 shows the PCA 

plot which is a dimension reduction technique used to cluster data based on phenotypes. Normal 

and diseased samples formed distinct clusters, explaining variation in data based on condition. 

This can also be observed in the case of the heatmap shown in Figure. The heatmap represents 

sample to sample distance. The darker colour represents a smaller distance which means that the 

samples are closely related. The lighter the colour the more distant are the samples. As it can be 

seen in Figure 4-1, diseased samples are clustered together and are distant from the control group 

cluster.  

Figure 4-1 shows a volcano plot representing differentially expressed genes. The threshold applied 

for significance can also be seen. The x-axis represents log2FoldChange which is a measure for 

the difference of expression between two phenotypes for a given gene.  

FoldChange = Counts(Treatment) / Counts(Control) 

Here, a FoldChange equal to 1 means no difference, and a FoldChange value greater or lesser 

than 1 means that gene is up or downregulated, respectively. The minimum threshold for a gene 

to be considered differentially expressed is if it has at least 50% change. Therefore, FoldChange 

value 1.5 is considered as an appropriate threshold and the log2FoldChange value corresponding 

to it is 0.5.  The Y-axis represents the statistical significance of calculated FoldChange values 

across samples. The hypothesis to be tested in this case is. 

H0   Genes are not differentially expressed > G1(Treatment/ G1 (control) = 1 

HA  Genes are differentially expressed > G1(Treatment/ G1 (control) ≠ 1 

Deseq2 uses a Wald-test to calculate test statistics and p-value. P-value threshold 0.05 is used 

which represents a false positive rate of 5%. All the genes which passed both thresholds are 

represented in coloured dots.  
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 A total of 1032 genes passed both criteria and were found to be differentially expressed in 

GSE53697. 

 

 

➢ GSE95587 

Another RNA-seq dataset was downloaded from ENA. This dataset contains a total of 117 samples 

(33 control, 84 AD) extracted from fusiform gyrus tissue. The AD progression stages in this dataset 

are ranged between 2 to 6. For minimizing confounding factors between 2 datasets, only samples 

belonging to stage 4 were selected. This filter returned a total of 30 samples (11 Normal, 19 AD). 

Figure 4-1 PCA plot representing sample in clusters. B) Heatmap showing samples correlation and distances. c) Volcano plot showing 

differentially expressed genes. x-axis on volcano plot represents Log2FoldChange, y-axis represents p values. The dots in volcano plots 

represents genes, dotted line represents cut-offs.   
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All samples were pre-processed, and quality checked. One sample (accession) failed quality 

criteria and was excluded from this study. Next, alignment to human reference was performed. 

The alignment rates are provided in supplementary. 

Figure 4-2 shows the PCA plot for this dataset. PCA explains percentage variability in the data 

based on selected phenotype. Samples were not clustered distinctively based on phenotype, which 

means there is not much variability based on disease and control conditions. However, PC1 was 

able to explain 30% of the variability. The volcano plot shows differentially expressed genes. A 

total of 5647 genes were found to be significantly differentially expressed.   

 

Figure 4-2 PCA plot showing distinct clusters based on disease and healthy phenotypes. The blue colour represents a 

normal sample, and the red colour represents cancer samples. PC1 and PC2 are plotted to give a two-dimensional 

representation of multi-dimensional data. 



Chapter 4  Results and Discussion 

48 

 

Figure 4-3  A) Heatmap representing sample distances. Most samples were clustered based on normal and cancer 

phenotypes. In sample names C represents cancer and N represents Normal samples. B) Volcano plot showing 

differentially expression. Red dots represent up-regulated genes, blue dots represent down-regulated genes. 

 

 

 

 

 

4.1.2 Liver Cancer (HCC) 

While reviewing cancer and AD association, several epidemiological studies and biological 

evidence suggested liver cancer or hepatocellular carcinoma (HCC) as most related to AD. 

According to a review, liver cancer is associated with a 51% lower risk of AD. Considering this 

evidence liver cancer was selected for this study [57].  

➢ GSE105103 

This dataset was downloaded from ENA. Total RNA-Seq was performed on tissue samples 

extracted from 25 HCC tumour tissues and 25 adjacent normal tissues. Most of these patients were 

HCC stages 1, 2 and 3. Clinical data can be viewed here. 

Quality check and alignment was performed. All samples produced >90% alignment rate and were 

further subjected to quantification. Quantification produced a total of 9163 genes as expressed, out 

of which 1398 genes were found to be significantly differentially expressed.  

 

A 
B 
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Figure 4-4 PCA plot showing distinct clusters based on disease and healthy phenotypes. The blue colour represents a 

normal sample, and the red colour represents cancer samples. PC1 and PC2 are plotted to give a two-dimensional 

representation of multi-dimensional data. B) Heatmap representing sample distances. Most samples were clustered 

based on normal and cancer phenotypes. In sample names even numbers represent cancer and odd numbers represent 

Normal samples. C) Volcano plot showing differential expression. Red dots represent up-regulated genes, blue dots 

represent down-regulated genes. 

A 

B 
C 
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➢ GSE97214 

Another dataset of HCC was analysed in this study. Total RNA-seq was performed on 9 tumour 

tissues and 9 adjacent normals. Sequencing was performed on Illumina HiSeq 2500 sequencer with 

125 bp paired end reads. The tumour samples were extracted based on differentiation stages as 

high, moderate, and low. 

Raw sequencing read was quality filtered and adapters were removed. Alignment was performed 

according to the methods described in chapter 3. All samples produced more than a 90% alignment 

rate. PCA plot in Figure 4-5 shows poorly formed clusters based on phenotypes. Although PC1 

was able to explain 38% variability. Heatmap in Figure 4-6 shows most diseased samplers 

clustered together. A total of 963 genes were found to be differentially expressed. The volcano 

plot in Figure 4-6 represents DEGs that passed both p-value and log2FoldChange cut-offs.  

 

Figure 4-5 PCA plot showing distinct clusters based on disease and healthy phenotypes. The blue colour represents a 

normal sample, and the red colour represents cancer samples. PC1 and PC2 are plotted to give a two-dimensional 

representation of multi-dimensional data. 
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4.1.3 Oesophageal Cancer (EC) 

While reviewing the cancer and AD association, several epidemiological studies and biological 

evidence suggested Oesophageal cancer (EC) as one of the most related cancers to AD. According 

to a review, EC is associated with a 33% lower risk of AD. Considering this evidence EC was 

selected for this study [58].  

➢ GSE130078 

This dataset is part of an experimental series “HERES, a lncRNA that regulates canonical and 

noncanonical Wnt signalling pathways via interaction with EZH2” [59]. High throughput RNA 

sequencing (RNA-seq) was performed on 23 Korean EC patients with matched normals.  

The raw RNA-seq data in fastq format were subjected to quality filtration, adapters were removed 

and all samples passing the quality control parameters were subjected to alignment. All 46 samples 

were mapped to GRCH38 and resulted in a more than 90% alignment rate. After quantifying 

expression from mapped files with featureCounts, differential expression was performed. Figure 

Figure 4-6 A) Heatmap representing sample distances. Most samples were clustered based on normal and cancer 

phenotypes. In sample names C represents cancer and N represents Normal samples. B) Volcano plot showing 

differentially expression. Red dots represent up-regulated genes, blue dots represent down-regulated genes. 
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4-7 shows the PCA plot. Based on disease and healthy phenotypes samples were able to form 

distinct clusters with PC1 explaining 54% variability in data. A heatmap is also shown in Figure 

4-8 representing samples forming clusters with a similar phenotype. 

A total of 6839 genes were found to be differentially expressed, out of those 3992 were down-

regulated and 2847 were up-regulated. Figure 4-8 shows a volcano plot of differentially expressed 

genes. P-value cut-off of 0.05 and log2foldchange cut-off of 0.5 was applied. All genes passing 

these criteria were labelled as differentially expressed. 

 

 

Figure 4-7 PCA plot of GSE130078 showing distinct clusters based on disease and healthy phenotypes. The blue 

colour represents a normal sample, and the red colour represents cancer samples. PC1 and PC2 are plotted to give a 

two-dimensional representation of multi-dimensional data. 
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➢ GSE111011  

Another dataset was obtained from NCBI GEO containing 14 samples (7 tumours and 7 matched 

normal). The RNA-Seq dataset was obtained with Illumina HiSeq 2500. Quality control and 

filtration were applied, adapters, low-quality reads and ambiguous reads were removed. Then the 

reads were mapped and aligned to the human reference genome (GRCH38).  

After quantification with featureCounts, 58828 features were extracted which were then subjected 

to differential expression using DESEeq2. A total of 7160 genes were found to be differentially 

expressed, out of these 3998 were down-regulated and 3162 were up-regulated. Figure 4-9 shows 

a PCA plot representing samples forming distinct clusters based on cancer and normal phenotypes. 

Two EC samples formed a separate cluster distant from both healthy and cancer clusters. 

Nonetheless, PC1 was able to explain 94% variability within these clusters. There is also a heatmap 

shown in Figure 4-9, odd numbers in sample names represents normal and even numbers represent 

cancer samples. It is evident from the heatmap that samples were clustered together based on 

phenotypes and we expect many genes affected. The volcano plot in Figure 4-9 shows differential 

Figure 4-8 A) Heatmap representing sample distances. Most samples were clustered based on normal and cancer phenotypes. 

In sample names C represents cancer and N represents Normal samples. B) Volcano plot showing differentially expression. 

Red dots represent up-regulated genes, blue dots represent down-regulated genes. 
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expression. P-value cut-off of 0.05 and log2foldchange cut-off of 0.5 was applied. All genes 

passing these criteria were labelled as differentially expressed. 

 

 

Figure 4-9  A) PCA plot showing distinct clusters based on disease and healthy phenotypes. Blue colour represents normal 

sample and red colour represents cancer samples. PC1 and PC2 are plotted to give a two-dimensional representation of multi-

dimensional data. B) Heatmap representing sample distances. Most samples were clustered based on normal and cancer 

phenotypes. In sample names even numbers represent cancer and odd numbers represent Normal samples. C) Volcano plot 

showing differentially expression. Red dots represent up-regulated genes; blue dots represent down-regulated genes. 
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4.2 Meta-Analysis 

To compare results generated from differential expression analysis, results for each disease were 

subjected to meta-analysis. Different p-value combination methods were applied for meta 

differential expression analysis. Both p-value combinations were able to detect a greater number 

of genes than the conservative approach of the global comparison method. In addition, many genes 

were found to be common between Fisher p-value and invnorm methods. The Venn diagrams 

presented in Figure 4-10 compare the list of differentially expressed genes resulting from the 

different methods for all 3 diseases. More results for the individual disease are described below.  

 

Figure 4-10 Comparison of results from differential analyses of AD(A), HCC(B) and EC(C). Venn diagram presents 

the results of the differential analysis for the two meta-analysis methods (Fisher and inverse normal), the global 

analysis (DESeq (study)), and the intersection of individual per-study analyses (Individual). Figure made using the 

VennDiagram package. 

A B 

C 
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4.2.1 AD differential gene expression meta-analysis  

A total of 1032 and 5647 genes were found to be differentially expressed in GSE53697 and 

GSE95587, respectively. These DEGs were subjected to metanalysis which resulted in 1474 

DEGs. Out of these, 1039 genes were up-regulated and 435 were down-regulated. These 

observations were made on genes passing both p-value combination methods to avoid any errors. 

Full AD differential expression and meta-analysis results are available in supplementary.   

4.2.2 Cancer differential gene expression meta-analysis  

A high number of genes were found to be differentially expressed in cancer datasets. A total of 

1398 and 963 genes were found to be differentially expressed in HCC datasets (GSE105103, 

GSE97214 respectively). Meta-analysis resulted in a total of 2490 DEGs in HCC. Out of these, 

1263 genes were up-regulated and 1327 were down-regulated. On the other hand, 7160 and 6839 

genes were found to be differentially expressed in EC datasets (GSE111011, GSE130078). A total 

of 7676 genes were extracted as differentially expressed as the result of the meta-analysis. A 

substantial proportion of genes 6006 was up-regulated, whereas 1670 genes were found to be 

down-regulated. These observations were made on genes passing both p-value combination 

methods to avoid any errors. Full HCC and EC differential expression and meta-analysis results 

are available in supplementary.   

4.3 Genes regulated in opposite directions between cancer and AD 

To investigate whether differentially expressed genes in AD are deregulated in opposite directions 

in cancer, all possible AD and cancer pairs were subjected to the intersection as follow.  

1: Genes upregulated in AD but downregulated in at least one cancer type  

2: Gene downregulated in AD but upregulated in at least one cancer type  

3: Genes deregulated between AD and all cancer types 

Following results were observed.  
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1: 154 DEGs that were up-regulated in AD were found down-regulated in EC, and 23 DEGs that 

were down-regulated in AD were found to be up-regulated in EC.  

2: In the case of HCC, 72 genes down-regulated in HCC were up-regulated in AD, and 29 genes 

up-regulated in HCC were down-regulated in AD.  

3: Collectively, 242 genes were found deregulated in opposite direction between AD and both 

types of cancers.  

Figure 4-11 shows the overall intersection between all possible AD and cancer pairs. There was a 

significant inverse overlap observed between AD and cancers. The overlap was more between AD-

up and cancer-down. However, a significance test will be more appropriate to explain this overlap. 

 

Figure 4-11 Venn Diagrams representing the number of genes common between AD, HCC, and EC up and down-

regulation profiles. (a) and (b) represents the inverse overlap between cancers and AD. (c) and (d) represents the direct 

overlap between AD and cancers. 
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Figure 4-12 Line plot showing genes deregulated in opposite directions between HCC and AD. 

 

Figure 4-13 Line plot showing genes deregulated in opposite directions between EC and AD. 
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Figure 4-14 Line plot showing genes deregulated in opposite directions between cancers and AD. 

 

4.3.1 Significance of Overlap 

To determine the statistical significance of this overlap, a fisher t-test was applied using the 

“GeneOverlap” R package. The overlap was tested for each cancer type individually. P-value cut-

off 0f 0.05 was considered for significance. Any association below the threshold was considered 

non-significant (N.S). There was a significant association between AD-UP & EC-DOWN, AD-

UP & HCC-Down, AD-Down & EC-up, and AD-Down & HCC-up. No other significant 

association was observed. To further investigate the occurrence of a true inverse association, 

cancer types were compared to each other on the same parameters. There was a significant 

association between HCC-up and EC-up, EC-down, and HCC-down also showed significant 

association. However, the p-value was not significant enough to account for an inverse association 

between cancers. 

Figure 4-15 represents the heatmap for the significance of overlap. The darker colour represents 

a more significant association, while the lighter colour represents lesser significance.  



Chapter 4  Results and Discussion 

60 

 

 

Figure 4-15 Heatmaps showing the significance of the overlap between all possiblepairspackage "GeneOverlap" was 

used for testing significance. A P-value of greater than 0.05 is labelled as N.S(Non-Significant). (A) Gene overlap test 

between AD and EC (B) Gene Overlap test between AD and HCC. (C) Gene Overlap test between HCC and ECC. 

(D) Cancers between and self overlap. 

 

4.3.2 Ranking genes based on their association with disease 

Inversely expressed genes were next subjected to functional analysis. First, genes were listed 

according to their disease association with the disease as reported by GeneCard suit. Two hundred 

and twenty-four genes were found to be directly related to either cancer or AD or both. Six genes 

were reported as indirectly associated with AD and cancer through 19 different genes. Genes were 

ranked according to their association score. The top 10 inversely regulated genes are given in the 

table.  
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Table 4-1 List of inversely expressed genes was given to GeneCards suit and disease association scores were obtained. 

The table represents genes associated with both phenotypes and their scores. 

Symbol  Description  Matched 

Phenotypes  

Matched 

Phenotypes  

count  

Global 

Rank 

(Total 

Genes 

26634)  

-LOG10(P)  Score  Average Disease-

Causing Likelihood  

MSH2  MutS Homolog 2    Alzheimer, 

Cancer  

2  9  3.45  118.04  65.16%  

RAD51C  RAD51 Paralog C    Alzheimer, 

Cancer  

2  34  2.88  75.66  64.31%  

RET  Ret Proto-

Oncogene  
  Alzheimer, 

Cancer  

2  39  2.82  71.70  55.50%  

MAP2K1  Mitogen-Activated 

Protein 

Kinase Kinase 1  

  Alzheimer, 

Cancer  

2  78  2.51  51.68  85.87%  

FH  Fumarate 

Hydratase  
  Alzheimer, 

Cancer  

2  125  2.31  42.50  78.01%  

SDHA  Succinate 

Dehydrogenase 

Complex 

Flavoprotein 

Subunit A  

  Alzheimer, 

Cancer  

2  192  2.12  34.78  52.33%  

ATR  ATR 

Serine/Threonine 

Kinase  

  Alzheimer, 

Cancer  

2  362  1.85  25.21  62.28%  

NOS2  Nitric Oxide 

Synthase 2  
  Alzheimer, 

Cancer  

2  423  1.78  22.98  46.59%  

ROS1  ROS Proto-

Oncogene 1, 

Receptor Tyrosine 

Kinase  

  Cancer  1  228  2.05  22.66  22.31%  

ENO2  Enolase 2    Alzheimer, 

Cancer  

2  599  1.63  17.99  86.64%  
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4.4 Gene-Set Enrichment Analysis (GSEA) 

4.4.1 Alzheimer’s Disease 

Gene set enrichment analysis suggested that genes upregulated in AD are mostly associated with 

Metabolic pathways, GABAergic synapse, Glutamatergic synapse, Neuroactive ligand-receptor 

interaction, synaptic signaling, cell regulation and Neuroactive ligand-receptor interaction. 

Nicotine addiction and Morphine addiction were also among the top up-regulated pathways. Genes 

downregulated in AD samples were majorly associated with negative regulation of cellular 

processes and epithelial migration, NFKB signaling and PI3K-Akt signaling pathway. Full AD 

GSEA enrichment results can be found in supplementary.  

 

 

Figure 4-16 Top KEGG pathways found to be regulated in AD. A ranked gene list was given to GSEA. The size of 

dot is proportional to gene set size. Pathways with a positive NES score are activated and with a negative NES score 

are supressed.  
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4.4.2 Cancers 

Enrichment analysis showed that processes related to DNA replication, cell cycle, and mitotic 

division were up regulated. Also, pathways like cytokine-cytokine receptor ligation, PI3K-Akt 

signalling pathway and TNF signalling pathway were up-regulated in both cancer types. On the 

other hand, KEGG pathways like Neuroactive ligand-receptor interaction, Bile secretion, 

Nucleocytoplasmic transport, Spinocerebellar ataxia were commonly down-regulated in cancers. 

Pathways downregulated in EC were mostly related to neurodegeneration. Figure 4-17 Top KEGG 

pathways found to be regulated in cancers. A ranked gene list was given to GSEA. The size of dot 

is proportional to gene set size. Pathways with a positive NES score are activated and with a 

negative NES score are supressed. represents dot plot of top pathways found to be regulated in 

both cancers.  

 

Figure 4-17 Top KEGG pathways found to be regulated in cancers. A ranked gene list was given to GSEA. The size 

of dot is proportional to gene set size. Pathways with a positive NES score are activated and with a negative NES 

score are supressed. 
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4.4.3 AD and Cancer Pathways comparison  

To sketch the landscape of inversely deregulated pathways between AD and cancer, GSEA KEGG 

results from individual studies were compared. Metabolic pathways, Glycolysis and oxidative 

phosphorylation were found to be up regulated in both diseases. Protein production pathways such 

as ribosomes were found to be deregulated in opposite directions in both diseases. Most of the 

pathways upregulated in cancer were found to be downregulated in AD. Pathways associated with 

cancer like the TGF-beta signalling pathway, Hepatocellular carcinoma and PI3K-Akt signalling 

pathway were upregulated in cancer but downregulated in AD. On the other hand, Neuronal 

pathways like GABAergic synapse, Neuroactive ligand-receptor interaction, Retrograde 

endocannabinoid signalling, Glutamatergic synapse, Synaptic vesicle cycle and Spinocerebellar 

ataxia were up-regulated in AD but downregulated in cancers. A total of sixteen pathways were 

found to be deregulated in opposite directions between AD and cancer.  
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Figure 4-18 KEGG pathways inversely regulated between cancer and AD. A) shows regulation of pathways in AD. 

B) shows regulation of pathways in cancers. The size of circle is proportional to number of genes and NES represents 

enrichment score. 



Chapter 4  Results and Discussion 

66 

 

4.5 Discussion 

To the best of our knowledge, this is the first study to include EC for studying the molecular 

association between AD and cancer. Among other cancers, EC has been previously reported as 

one of the most comorbid cancers with AD. We found a positive pattern of association between 

both types of cancers in this study and a negative pattern of association between AD and both types 

of cancers. This observation is in an agreement with previous expression studies and 

epidemiological studies reporting decreased risk of AD in cancer patients and vice versa.  

The differential expression results reported genes in AD that have been previously linked to cancer. 

For example, CDKN2C (Cyclin-dependent kinase inhibitor 2C) is a gene that encodes for a protein 

involved in cell cycle regulation, was found to be down-regulated in AD. Furthermore, MAP2K1, 

the gene coding for primary protein in RAS/MAPK pathways which is involved in the growth and 

division of cells, was also found up-regulated in AD. Genes like CCNYL2 and NWD2 which are 

directly linked to cancer genes TP53 and MTOR respectively were also found inversely expressed. 

Mutations in the MSH2 (MutS homolog2) gene have been associated with several types of cancers. 

It is involved in DNA replication and required for DNA mismatch repair recognition. This kind of 

mismatch repair is also associated with the risks of AD. Many other cancers associated genes were 

found deregulated in opposite direction in AD. The p-value to test for the deregulation of these 

genes was also found to be significant. Thus, a molecular interpretation for inverse comorbidity 

that downregulation of certain genes reducing the risk of cancer would increase the risk of 

developing AD, while the upregulation of other genes which is increasing the risk of cancer would 

be decreasing the risk of developing AD.  

Most commonalities between cancer and AD surrounds cell cycle related mechanisms. While AD 

pathophysiology is mostly described by beta amyloid deposition and neurofibrillary tangles, it is 

often explained by two hit cell cycle theory [60]. The two-hit theory demonstrates cell cycle re-

entry as an important hallmark for AD and a commonality with cancer. According to this theory, 

for a normal cell to become AD it must first go through cell cycle re-entry process. Normally a 

mitogenic stimuli can cause neuronal cell to re-enter G2 phase of cell cycle, however, this effect 

is mitigated through apoptosis process. However, due to oxidative stress in aged brain tissues as a 
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second hit, the apoptosis process is avoided resulting in proliferation of neuronal cells and AB 

deposition. 

The initiation of abnormal cell response correlates with oxidative stress that is usually triggered 

by the overexpression of ROS gene. Our result demonstrates ROS1 upregulation in AD. Several 

cell signalling associated pathways that malfunction in oxidative stress were also found to be 

deregulated in AD and cancer. 

4.5.1 MAPK signalling pathway 

The MAPKs are serine /threonine kinases that are involved in many cellular processes in diverse 

cell types. ERK1/2 are members a subfamily of MAPKs that are particular to extracellular signal 

regulated kinases [61]. ERK1/2 are well studied in mice for their protective role in stress 

conditions. Under stress conditions, MEK (mitogen activated kinase) phosphorylates ERK1/2 for 

their activation. Once activated ERK1/2 can bind with many substrates. Interaction with different 

substrates leads to dual nature of their action [61]. For example, MEK1/2 and ERK are both 

associated with upregulation of matrix metalloproteinase (MMP) and protecting cancer cells. In 

addition, ERK correlates with regulating pro-apoptic genes. 

FoxO (Forkeahead box O) is a subfamily of transcription factors involved in cell fate decision and 

their function is also reported as tumor suppressors in a wide range of cancers. FoxOs are involved 

in a variety of cellular function such as apoptosis, differentiation, proliferation, and oxidative stress 

[62]. Activation of FoxO is tightly regulated by phosphorylation, acetylation and ubiquitination. 

FoxOs are activated by phosphorylation by several kinases such as PI3k (Phosphoinositide 3-

kinases) and ERK1/2 (extracellular signal-regulated kinase 1 and 2) [63]. The role of 

Raf/MEK/ERK pathway in cell proliferation, apoptosis, and survival is documented.  

Our results demonstrate over-expression of MEK1/2 gene in cancers which directly 

phosphorylates ERK1/2 which in turn hyper phosphorylate FoxO proteins. Hyper phosphorylation 

of FoxO protein through ERK1/2 leads to activation MDM2 gene and downregulation of pro-

apoptic gene BIM. The GSEA analysis also resulted in activation of FoxO signalling pathway 

through MEK/ERK cascade. The initiation of apoptosis through FoxO proteins correlates with 
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oxidative stress. Paradoxically, MAPK signalling pathway is supressed in case of AD which would 

lead to activation of pro-apoptic genes causing cell death [64].  

 

Figure 4-19 ERK1/2 promoting tumorigenesis by phosphorylating BIM, and thereby inhibiting apoptosis. 

Moreover, activation of FOXO3a facilitates its interaction with MDM2 that enhances cell survival [1]. 

4.5.2 PI3K/AKT/MTOR signalling Pathway 

The PI3K/AKT/mTOR signalling pathway is an important target for molecular abnormalities 

between AD and cancer, which makes it a good comorbid candidate associating both diseases. 

Previously, it has been discussed as a potential candidate in terms of explaining cancer and AD 
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comorbidity. It is one of the most frequently affected pathways in human cancers and is involved 

in several key regulatory events. Our results showed that PI3K/AKT/MTOR is being 

downregulated in AD but upregulated in cancer.  

4.5.3 GABAergic synapse   

GABA (γ-aminobutyric acid) is the principal inhibitory neurotransmitter in the mammalian 

nervous system. It has been demonstrated that neurons with GABA receptors are resistant to AD 

pathology. Furthermore, some studies demonstrated that upregulation of the GABAA receptor 

increases the intracellular calcium levels and is involved in the activation of mitogen-activated 

protein kinase/extracellular signal-regulated kinase (MAPK/ERK) cascade which is another 

important hallmark of cancer. Our results showed downregulation of GABAergic synapse in AD 

and up-regulation in cancer.  

Some other pathways like TGF-beta signalling, Central Carbon Metabolism in Cancer also showed 

a similar pattern. PI3K/AKT/mTOR has been previously studied regarding AD and cancer 

comorbidity and our findings align with previous transcriptome level studies. However, 

GABAergic synapse plays a vital role in AD and cancer comorbidity but have not been explored 

in this regard.  

4.6 Limitations  

Although this study presents novel insights into AD and cancer comorbidity, it has its limitations. 

Firstly, this study relied on publicly available transcriptomic data and the number of available 

datasets for AD is scarce. This fact undermines the statistical significance of meta-analysis. 

Furthermore, it lacks the necessary experimental information to adjust for batch effects. Also, this 

study does not include any counter diseases to account for a different comorbid scenario. Finally, 

based on previous studies on the subject, we conclude that including more datasets and diseases 

would not only increase the statistical significance of the findings but also strengthen the biological 

interpretations.  
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Chapter 5  

CONCLUSION 

A substantial amount of epidemiologic and scientific evidence suggests inverse comorbidity 

between cancer and Alzheimer’s disease. Implication of both direct and indirect association 

depending on types of cancer has been explored. The relationship between AD and cancer is 

complex and involvement of many pathways and genes was observed. Among other, deregulation 

of the cell cycle can be considered as one of the primary and common culprits between two 

diseases. In this study, patterns of deregulation of common pathways were observed. There was a 

significant overlap between genes deregulated in the opposite direction between cancer and AD. 

In conclusion, deregulation of cell cycle as a result of activated PI3K/AKT/mTOR pathway can 

be considered as a trigger for neurodegeneration in AD and can be considered as an overlapping 

link between AD and cancer. GABAergic synapse is being studied for its involvement in cancers, 

our results demonstrate its involvement in inverse comorbidity between AD and cancer. Although 

many other common pathologies are yet to be explored, cell cycle related mechanisms may provide 

new insights in understanding either diseases or both. Additionally, future studies are required to 

investigate epigenetic factors involved in gene regulation that can serve as biomarkers of risk for 

both diseases, as well as repurposing use of existing cancer biomarkers towards AD treatment and 

diagnosis. 
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Pathways in AD 

 

 

ID Description setSize enrichmentScoreNES pvalue

hsa04310 Wnt signaling pathway 3 0.848507 1.408121 0.046078

hsa05017 Spinocerebellar ataxia 5 0.734132 1.389109 0.075004

hsa05022 Pathways of neurodegeneration - multiple diseases 9 0.607389 1.333081 0.112974

hsa04010 MAPK signaling pathway 3 -0.7919 -1.41051 0.115909

hsa04370 VEGF signaling pathway 3 -0.7919 -1.41051 0.115909

hsa04080 Neuroactive ligand-receptor interaction 6 0.665448 1.319028 0.125125

hsa05166 Human T-cell leukemia virus 1 infection 4 -0.61966 -1.20767 0.250535

hsa04934 Cushing syndrome 4 0.640673 1.144486 0.284887

hsa05010 Alzheimer disease 7 0.558045 1.152025 0.28754

hsa04068 FoxO signaling pathway 3 0.684053 1.135206 0.297118

hsa04666 Fc gamma R-mediated phagocytosis 3 -0.62553 -1.11417 0.32983

hsa05205 Proteoglycans in cancer 3 0.669111 1.110409 0.330714

hsa05014 Amyotrophic lateral sclerosis 6 0.560804 1.111607 0.337437

hsa04218 Cellular senescence 3 -0.61702 -1.09902 0.342045

hsa05033 Nicotine addiction 3 0.659894 1.095113 0.352597

hsa05200 Pathways in cancer 8 0.510273 1.089601 0.370304

hsa04270 Vascular smooth muscle contraction 3 0.652253 1.082432 0.372785

hsa04071 Sphingolipid signaling pathway 5 -0.48574 -1.01396 0.410158

hsa01100 Metabolic pathways 21 0.395725 1.051812 0.415373

hsa04020 Calcium signaling pathway 3 0.617484 1.024733 0.458622
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Pathways in Cancers 

 

 

 

ID Description setSize enrichmentScoreNES pvalue

hsa04360 Axon guidance 4 0.863248 1.816262 0.010076

hsa04934 Cushing syndrome 4 -0.83116 -1.43924 0.032136

hsa05205 Proteoglycans in cancer 3 -0.85212 -1.38019 0.050443

hsa04390 Hippo signaling pathway 3 -0.83466 -1.35191 0.07116

hsa04010 MAPK signaling pathway 3 0.75415 1.419202 0.100448

hsa04370 VEGF signaling pathway 3 0.75415 1.419202 0.100448

hsa04080 Neuroactive ligand-receptor interaction 6 -0.69334 -1.31621 0.115946

hsa04310 Wnt signaling pathway 3 -0.79148 -1.28197 0.133313

hsa04727 GABAergic synapse 6 -0.67738 -1.28591 0.140349

hsa05010 Alzheimer disease 7 -0.65326 -1.28353 0.15195

hsa04071 Sphingolipid signaling pathway 5 0.566524 1.299016 0.161471

hsa05033 Nicotine addiction 3 -0.77021 -1.24752 0.173848

hsa05165 Human papillomavirus infection 5 -0.68167 -1.24591 0.183467

hsa04723 Retrograde endocannabinoid signaling 4 -0.70966 -1.22885 0.197727

hsa05032 Morphine addiction 4 -0.70966 -1.22885 0.197727

hsa04380 Osteoclast differentiation 3 0.617021 1.161146 0.274738

hsa05022 Pathways of neurodegeneration - multiple diseases 9 -0.55781 -1.1529 0.293045
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