
Android Malware Detection and
Categorization using Machine

Learning

By

Mudassar Waheed

Fall 2018-MS(IS) - 00000276640

Supervisor

Dr. Sana Qadir

Department of Computing

A thesis submitted in partial fulfillment of the requirements for the degree

of Masters of Science in Information Security (MS IS)

In

School of Electrical Engineering and Computer Science,

National University of Sciences and Technology (NUST),

Islamabad, Pakistan.

(June 2022)

THESIS ACCEPTANCE CERTIFICATE

Signature: _________________________________

Name of Advisor: ___________________________

Date: _____________________________________

Date: _________________________________

Signature (Dean/Principal): ___________________

Date: ____________________________________

HoD/Associate Dean:________________________

Online Printing Date & Time: Tuesday, 05 July 2022 10:52:17

Certified that final copy of MS/MPhil thesis entitled "Android malware detection and
identification" written by Mudassar Waheed, (Registration No 00000276640), of SEECS
has been vetted by the undersigned, found complete in all respects as per NUST
Statutes/Regulations, is free of plagiarism, errors and mistakes and is accepted as partial
fulfillment for award of MS/M Phil degree. It is further certified that necessary amendments
as pointed out by GEC members of the scholar have also been incorporated in the said
thesis.

02-Jul-2022

Dr. Sana Qadir

Publish Date & Time: Monday, 04 July 2022 , 09:55:22PDF4NET evaluation version 4.7.0.0

PDF4NET evaluation version 4.7.0.0

Nasir Mahmood
i

Approval

Signature: ______________________

Date: __________________________

Signature: ______________________

Date: _________________________

Signature: ______________________

Date: _________________________

Signature: ______________________

Date: _________________________

Online Printing Date & Time: Tuesday, 05 July 2022 10:52:19

It is certified that the contents and form of the thesis entitled "Android malware detection
and identification" submitted by Mudassar Waheed have been found satisfactory for the
requirement of the degree

Advisor : Dr. Sana Qadir

02-Jul-2022

Committee Member 1:Dr. Dr Hasan Tahir

03-Jul-2022

Committee Member 2:Dr. Razi Arshad

02-Jul-2022

Publish Date & Time: Monday, 04 July 2022 , 09:55:22PDF4NET evaluation version 4.7.0.0

PDF4NET evaluation version 4.7.0.0

Nasir Mahmood
ii

Dedication

I dedicate this research to my family and parents, who have made so many

sacrifices for me during my life, believed in my choices, and allowed me the

opportunity to live my own life.

iii

Certificate of Originality

Student Signature: ______________

Online Printing Date & Time: Tuesday, 05 July 2022 10:52:26

I hereby declare that this submission titled "Android malware detection and identification"

is my own work. To the best of my knowledge it contains no materials previously

published or written by another person, nor material which to a substantial extent has

been accepted for the award of any degree or diploma at NUST SEECS or at any other

educational institute, except where due acknowledgement has been made in the thesis.

Any contribution made to the research by others, with whom I have worked at NUST

SEECS or elsewhere, is explicitly acknowledged in the thesis. I also declare that the

intellectual content of this thesis is the product of my own work, except for the assistance

from others in the project’s design and conception or in style, presentation and linguistics,

which has been acknowledged. I also verified the originality of contents through plagiarism

software.

Student Name:Mudassar Waheed

Publish Date & Time: Monday, 04 July 2022 , 09:55:22PDF4NET evaluation version 4.7.0.0

PDF4NET evaluation version 4.7.0.0

iv

Acknowledgment

First of all, I am very grateful to Allah S.W.T for granting me the ability,

skills and willpower to conclude this research work. After that, I want to

thank my supervisor, Dr. Sana Qadir, for having confidence in me and

providing me with constant direction and support from the beginning to the

end of this work. Without her, this effort would not have been possible. I am

also grateful to Dr. Hasan Tahir and Dr. Razi Arshad from my Guidance

and Evaluation Committee for their important observations and valuable

suggestions throughout this research project.

Finally, I also want to express my gratitude to my parents, family, and

friends, who not only persistently prayed for me but also encouraged and

supported me during my research.

v

Table of Contents

1 Introduction 1

1.1 Android Operating System Framework 2

1.1.1 Application Layer . 4

1.1.2 API Framework . 4

1.1.3 Libraries . 5

1.1.4 Hardware Abstraction Layer 5

1.1.5 Linux Kernel . 6

1.2 Problem Statement . 6

1.3 Research Objective . 7

1.4 Thesis Motivation . 8

1.5 Thesis Organization . 8

2 Literature Review 10

2.1 Introduction to Malware . 10

2.2 Malware Insertion Process in Android 14

2.3 Malware Detection Technique 15

2.3.1 Static Malware Detection 16

2.3.2 Dynamic Malware Detection 16

vi

TABLE OF CONTENTS

2.3.3 Hybrid Malware Detection 17

2.3.4 Comparison of Detection Techniques 18

2.4 Machine Learning (ML) . 18

2.4.1 Random Forest (RF) 20

2.4.2 Decision Tree (DT) . 20

2.4.3 K-Nearest Neighbour Algorithm (KNN) 21

2.4.4 Support Vector Machine (SVM) 21

2.5 Related work . 22

2.5.1 Studies based on Static Malware Detection Approach . 22

2.5.2 Studies based on Dynamic Malware Detection Approach 23

2.5.3 Studies based on Hybrid Malware Detection Approach 25

2.5.4 Discussion . 25

2.6 Summary . 26

3 Research Methodology 28

3.1 Research Methodology . 29

3.1.1 Data Acquisition . 29

3.1.2 Data Preprocessing/Feature Engineering 30

3.1.3 Feature Selection . 32

3.1.4 Model Training . 32

3.1.5 Model Evaluation and Tuning 33

3.2 Tools and Technology . 33

3.3 Summary . 35

4 Data Acquisition & Preprocessing 36

4.1 Data Acquisition . 36

vii

TABLE OF CONTENTS

4.2 Data Preprocessing . 37

4.2.1 Exploratory Data Analysis (EDA) 37

4.2.2 Data Cleaning & Integration 39

4.2.3 Data Labeling . 41

4.2.4 Data Normalization/Scaling 43

5 Feature Selection & Model Training 45

5.1 Feature Selection . 45

5.2 Model Training . 50

5.3 Summary . 51

6 Model Evaluation & Tuning 52

6.1 Evaluation Metrics . 52

6.1.1 Accuracy . 54

6.1.2 Precision . 56

6.1.3 Recall . 56

6.1.4 F-1 Score . 56

6.2 Results and Evaluation . 56

6.2.1 Initial Results . 57

6.2.2 Model Tuning & Final Results 59

6.3 K-Fold Cross Validation for Results Validation 63

6.4 Comparison with Existing Work 65

6.5 Summary . 67

7 Conclusion & Future Work 69

7.1 Conclusion . 69

viii

TABLE OF CONTENTS

7.2 Thesis Contribution . 71

7.3 Future Work . 71

7.3.1 Adding more Balanced number of Categories 71

7.3.2 Improvement in Categories Classification 72

7.3.3 Performing Malware Family Classification 72

Bibliography 73

ix

List of Tables

2.1 Malware categories and families [48] 11

2.2 Comparison of malware detection techniques 18

3.1 Tools & Technologies used during this research work 34

5.1 Listing of 12 generated features set 47

5.2 Top50 features using ExtraTree classifier for Level 1 Classifi-

cation . 48

5.3 Top50 features using ExtraTree classifier for Level 2 Classifi-

cation . 49

5.4 Malware categories with number of samples 51

6.1 Level 1 Binary Detection results(Accuracy) using ExtraTree

classifier . 58

6.2 Level 1 Binary Detection results (Accuracy) using Mutual In-

formation . 58

6.3 Level 2 Categories Classification results(Accuracy) using Ex-

traTree classifier . 58

x

LIST OF TABLES

6.4 Level 2 Categories Classification results(Accuracy) using Mu-

tual Information . 59

6.5 Final results of Binary Detection 60

6.6 Final results (Average) of Category Classification 60

6.7 Comparison with existing work 67

6.8 Comparison with existing work part 2 67

xi

List of Figures

1.1 Android Architecture [3] . 3

2.1 Malware Detection Techniques [54] 15

3.1 Research Methodology (process flow chart) [56] 29

4.1 Exploratory analysis of data using different metrics 38

4.2 Checking missing values and showing dataset shape 39

4.3 Data Scaling / Normalization view 44

6.1 Confusion matrix for malware detection 55

6.2 Confusion matrix of RF for Binary Detection 61

6.3 Category classification Random Forest final results 62

6.4 K-Fold Cross Validation [61] for K = 5 64

6.5 K-Fold Cross Validation for Binary Detection 64

6.6 K-Fold Cross Validation for Categories Classification 65

xii

Abstract

Android became one of the most widely used mobile operating system, and

the amount of malware targeting it is increasing at an alarming rate. Despite

the fact that notable studies on malware detection and classification have

been conducted in academia and industry, but a robust and efficient solution

for detection of all types of Android malwares is still a challenge. Existing

solutions do not adequately consider factors like concept drift and are often

not based on a hybrid approach. Also they have been designed using infor-

mation collected by running malware samples on virtual environment (and

not on a real device). Thus, they are not able to detect sophisticated or new

malwares. In this research work we have studied existing solutions and after

finding their limitations we have proposed an effective and efficient hybrid

Android malware detection solution based on machine learning to detect and

categorize existing, emerging and behaviour evolving Android malwares.

xiii

Chapter 1

Introduction

In the past few years smart devices e.g smart phones has become the major

source for digital information transfer and internet usage. There are differ-

ent smart devices operating systems available for these devices which include

Android, IOS, Blackberry, Windows etc. In the current era of technology

people are using these smart phones as their one in all gadget for digital

purposes. These smart devices are being used to perform Sensitive Bank-

ing Transaction, Secret and Private Communications, and to store Personal

and Private Data of user’s like Credit/Debit Card Numbers, Social Secu-

rity Number, Passwords, Personal & Private Pictures and Personal/Business

emails. If any of these data goes into unauthorized hands it can cause severe

problems for the users. According to current stats [1] Android Holds 69.74%

of market share’s while IOS being the second market competitor hold 25.49%

of market shares. Remaining 0.77% of market shares are held by other op-

erating systems like Blackberry, Windows, Symbian etc. Recent stats show

that new Android malwares are amounted 482,579 per month [2]. It is due

1

CHAPTER 1. INTRODUCTION

to Android being open source, user friendly nature and being market leader

is smart devices. There are three basic approaches for detecting Android

malware: static malware detection, dynamic malware detection, and hybrid

malware detection. Static approach uses different features extracted from

applications without executing applications, while dynamic malware detec-

tion uses different features of applications obtained by running applications

in emulated environment or on real devices. Hybrid malware detection uses

features obtained in both static and dynamic detection stages. These all

solutions have different advantages and limitations which will be discussed

in chapter 2. To understand the malicious behaviour of malwares within

Android platform it is essential to know the deep down working of different

components of Android operating system. To achieve this objective, we shall

briefly discuss the Android Operating System’s platform architecture and

important components.

1.1 Android Operating System Framework

Android is built and defined in layered architecture [3]. It has five layers and

Linux kernel is baseline of it. All other layers are architectured on the top

of Linux Kernel. Every layer in Android architecture has different level of

abstraction in performing its tasks. Figure 1.1 shows the architecture of the

Android platform.

2

CHAPTER 1. INTRODUCTION

Figure 1.1: Android Architecture [3]

3

CHAPTER 1. INTRODUCTION

1.1.1 Application Layer

The application layer is the initial and fundamental layer of Android ar-

chitecture. Application Layer is primarily accessible to end user’s also by

communication through Android Debug Bridge(ADB). There are two types

of Applications in this layer: System applications and Third Party applica-

tions. System apps are those which are pre-installed in device by the Original

Equipment Manufacturer(OEM) while the third party apps are those which

are installed by user’s from different available third party store’s and websites.

Android has few extra controls over system applications as these applications

cannot be removed by end user’s , but can only be disabled. In security sensi-

tive devices enterprises equip their devices with their applications as system

applications. System applications are also less vulnerable and exploitable to

malwares as compared to third-party application in different aspects.

1.1.2 API Framework

As applications in Android reside on top layer and those applications need

to communicate to Linux Kernel to perform different activities. Linux Ker-

nel is the building block of Android operating system. This API Framework

provides different set of APIs and services to allow applications to perform

their activities and to utilize and communicate with underlying Linux Ker-

nel. API Framework provides services (background processes), Activities

Manager, Intent Filters and Content provider’s. These all components have

different key tasks in Android OS. Malwares also target the API Framework

to obtain access to application data, hence malware detection and prevention

4

CHAPTER 1. INTRODUCTION

are required.

1.1.3 Libraries

This layer provide set of libraries to facilitate the communication between

API Framework and lower layer’s. It include different libraries like OpenGL

for graphics, Web-kit for web interactions etc. This layer is mainly catego-

rized into two sub categories.

• Native C/C++ Libraries: Native libraries includes core C/C++

libraries along with their Java wrappers which simplifies their calls

from top layers. These libraries include Web-kit(for internet surfing),

SSL(for Secure Communication), SQLite(for Data Storage and Man-

agement) and different other libraries which facilitate specific features.

• Android Runtime: Applications run in this layer and their execu-

tion and some of services execution takes place using Android Run-

time. ART executes Dalvik execute-able format and Dex byte code by

running multiple virtual machines. Since Android 5.0 ART runs each

application into its own process with its own instance.

1.1.4 Hardware Abstraction Layer

Hardware Abstraction Layer is the separating point between Linux Kernel

and Android Framework other layers. It reveals device hardware resources

to the Java API Framework through an interface. HAL has several library

modules, each with its own interface for that certain sort of hardware compo-

nent, for example WIFI Card, Camera etc. Applications in Android access

5

CHAPTER 1. INTRODUCTION

hardware by invoking a call through Framework API to the libraries of a

specific module of a specific hardware.

1.1.5 Linux Kernel

Linux kernel is main building block of Android OS. All other layers are built

on top of it. Linux Kernel is an open source kernel and it has its own secu-

rity and privacy controls built in it. Apps sanboxing and resource isolation

in Android is also managed by Linux Kernel. Linux Kernel manages re-

source access, power management, memory management and Network stack

for Android Runtime(ART). ART also depends on Linux Kernel for some of

tasks like low level memory management and threading. Developing hard-

ware driver’s for Linux Kernel is also a plus point far device manufacturer

as it is a well known kernel. Some of the key security features of Linux

kernel Include user’s based permissions model and process isolation. These

key security features play important role in maintaining data security when

a device gets infected with some malware.

1.2 Problem Statement

As discussed above Android is main target of malwares and malicious ap-

plications due to its open nature framework and open source code. Android

applications use different static and dynamic features to accomplish their key

task. Malicious applications also use similar features but in different manner

and amount. There are different existing solutions proposed and provided

by both industry and research domain to detect and categorize malicious

6

CHAPTER 1. INTRODUCTION

applications which are using these static (static malware detection) and dy-

namic features (dynamic malware detection) from benign applications. Both

type of these solutions do not detect different type of malwares like static

solutions [4], [5] are weak at detection of behavior changing malwares while

dynamic detection [6], [7] has limitations when working on emulated environ-

ment. As the malwares are advancing therefore new emerging and behaviour

evolving (concept drift) malwares are bypassing these solutions. There is

very limited work done on hybrid detection using real devices. Therefore

there is a dire need for an efficient solution to detect and categorize all type

of malwares specifically including evolving malwares. We have proposed a

solution to cater these behaviour changing malwares in Android using hybrid

malware detection on real devices.

1.3 Research Objective

This research proposes a robust and efficient solution to handle all type of

evolving malwares. Main objectives of the research are:

• Machine learning based Android malware detection solution using hy-

brid features.

• Machine learning based Android malware identification and categoriza-

tion using hybrid features.

• Generation of high accuracy model to be able to be used by the industry

and end-users.

7

CHAPTER 1. INTRODUCTION

1.4 Thesis Motivation

As it is highlighted in 1 malwares targeting Android are increasing rapidly.

An example of it reported by zdnet [53] is a most notorious Android malware

flubot which is active since November 2020. It steals passwords, bank details

and other sensitive information from infected smart devices. Other than

this it has ability to spread itself like a worm by accessing the contacts

of infected devices and sending sms. This proves that cost associated to

these malwares threat is much more then the cost associated with detection

solutions. When a malware breach a device it not only harm the device but

also obtain sensitive and private data of user. Early detection of malwares

can prevent from these infections and safeguard the sensitive and personal

data of users. Security experts also advice early detection and prevention of

malwares. Therefore the motivation behind this research work is to provide

an effective and efficient Android malware detection solution by covering the

major highlighted limitations of existing solutions to limit and control the

existing and upcoming threats of Android malwares.

1.5 Thesis Organization

Thesis organization is presented in following outline. Chapter 2 provides

details of literature review by explaining about malware, malware insertion

process, malware detection techniques, existing work on these techniques and

their limitations. Chapter 3 provides proposed and implemented research

methodology along with techniques and tools used. Whole experimental

8

CHAPTER 1. INTRODUCTION

setup including data preprocessing/feature engineering, feature selection and

model training process is discussed in Chapter 5. Chapter 6 continues the

experimental setup by further explaining model evaluation and tuning. This

chapter further explains results validation process and comparison of our

work with existing similar published research work. Lastly, in Chapter 7, we

wrap up this study and highlight possible future work that could be carried

out on basis of the findings.

9

Chapter 2

Literature Review

All of the important research work mainly related to this study are discussed

in this chapter. Main focus was put the cover the closely related and recent

studies. In addition to that some extra focus has been put on incorporating

additional studies to help the reader have a better understanding of the

proposed technique as they read through this thesis.

2.1 Introduction to Malware

Malware-bytes define malware as [8] ”Malware, or “malicious software,”is

a general phrase used to denote any malicious software or dangerous com-

puter code”. Mainly malware is short-term of malicious software which is

any invasive program/softwaris a general phrase used to denote any mali-

cious software or dangerous computer code.e developed by cyber-criminals

for malicious intentions like to gain access to unauthorized devices and to

steal data and to damage or destroy those computing devices. It is a collec-

10

CHAPTER 2. LITERATURE REVIEW

tive name of different malicious software’s including viruses, worms, trojans,

ransomwares, adwares, and spywares etc. There are different categories and

families of malwares. Some of most common categories and families are listed

in table 2.1. Malwares are created for all type of devices but as discussed in

first chapter Android is main target of malwares.

Table 2.1: Malware categories and families [48]

Categories Definition Families

Adware It is a type of malware which shows intru-

sive advertisements while using web appli-

cations

Families include

gexin, ewind,

pandaad etc

Backdoor It is a sort of malware that enters a device

without being detected and maintains re-

mote access to the device

Families are

fobus, kmin and

droidkungfu etc

Scareware It is a malware which tricks mobile users

by scaring them into visiting malware in-

serted websites

Example of fam-

ilies include av-

pass and fakeapp

PUA These applications may pose a significant

risk or have a negative impact on the se-

curity and privacy of users. These ap-

plications also consume computational re-

sources without any necessary need.

Families are

apptrack,youmi,

cauly etc

11

CHAPTER 2. LITERATURE REVIEW

Continuation of Table 2.1

Categories Definition Families

File Infector File infectors infect files in device to

spread to others devices, removeable

drives and networks.

Families inlude

leech, tachi and

many others.

Riskware Riskware is basically a non malicious pro-

gram/app but its installation and execu-

tion has risk associated with it due to

some vulnerability or incompatibility.

List of families

inlcude triada,

skymobi, sms-

pay and many

others

Ransomware This malware takes complete control of

device or users data and asks ransom to

leave the control

Some famous

families include

slocker, congur

and masnu.

Trojan Trojans are a type of malware that car-

icature trustworthy programmes, files, or

applications in order to deceive users into

installing it and allowing it unrequested

access to their devices. .

List of common

families include

lotoor, robtes

and hqwar

Trojan-SMS These Malware send and intercept mes-

sages via a mobile device’s SMS (text)

messaging services. In most cases, the

user is completely oblivious of the activity.

Some common

families are

opfake,plankton

and boxer

12

CHAPTER 2. LITERATURE REVIEW

Continuation of Table 2.1

Categories Definition Families

Trojan-SPY It is a sort of malware that has a wide

range of functions, such as keystroke log-

ging, spying operation of a device, and

stealing data from stored files.

Trojan-

Banker

Trojan-Banker malwares are programmed

to snatch data from clients’ credit cards,

online banking, and e-payments.

Example of

families are

bankbot, fake-

token and

minimob

Trojan-

Dropper

Trojan dropper is a program that drops

and install another programme into a

computer or device, typically a malicious

one. Basically it is a carrier for a mali-

cious payload which it drops on targeted

device for harmful actions.

Its families

include cnzz,

rooter and some

other families

Trojan/

Riskware

This category is basically those malwares

which lie in both categories of torjans and

riskware.

It has families of

both categories

13

CHAPTER 2. LITERATURE REVIEW

Continuation of Table 2.1

Categories Definition Families

Spyware It is a sort of malware which resides in

your computing machine or mobile device,

executes different tasks and gathers sen-

sitive data , monetary information, user-

names and passwords, and other individ-

ual data.

End of Table

2.2 Malware Insertion Process in Android

Malwares are mainly injected intentionally by applications developers or

hacker’s. They develop malicious applications and publish them on the play-

store or other app stores. Another way of malware insertion [9] into Android

market is through repackaging of applications. Cyber criminals download ex-

isting applications, decode them using different tools like APKTool, DextoJar

etc, insert their malicious code into applications and then republish them to

different apps store’s. These application store’s already have implemented

different prevention and detection techniques for application publishers but

cyber criminals still bypass these techniques using different strategies like

code obfuscation. The third way of malwares insertion is when a developer

or owner sell and application, the new owner infect it with malicious code

and republish it to apps store’s.

14

CHAPTER 2. LITERATURE REVIEW

Figure 2.1: Malware Detection Techniques [54]

2.3 Malware Detection Technique

There are three different common techniques of malware detection : Dynamic

Malware Detection, Static Malware Detection and Hybrid Malware Detection

as shown in figure 2.1. These techniques have different advantages and

disadvantages. We will discuss these techniques and existing work on them

one by one.

15

CHAPTER 2. LITERATURE REVIEW

2.3.1 Static Malware Detection

In this techniques malware detection and classification is performed without

running malicious applications [10]. Features are collected without running

the application using different tools like Apktool [11], Dex2Jar, and Andro-

guard [12]. Android applications are compressed as zip files in apk format.

These application are first decompressed using above mentioned tools and

then their features like permissions, intents, services, and APIs are extracted

to perform static analysis. Static analysis marks an application as benign

or malicious based on proportion and usage of these features. Static anal-

ysis is rapid detection solution and less resource consumption process when

compared with dynamic and hybrid solutions but previous research showed

that it does not work well on all type of malwares [13]. As this analysis

marks an application malicious on the basis of usage of different features of

Android operating system, so a new malware can change the proportion of

usage of those features. New malwares can attack with different signatures so

they can bypass static malware detection techniques implemented using old

signature. Other than this behaviour changing and sophisticated malwares

can also bypass static analysis detection techniques. These malwares execute

their malicious behaviour after getting installed on the targeted device.

2.3.2 Dynamic Malware Detection

In the process of dynamic malware detection malware behaviours are ana-

lyzed by running it on emulated environment or real devices [6]. Dynamic

features are extracted during this process. This analysis is performed with

16

CHAPTER 2. LITERATURE REVIEW

some human interaction or by using some automated scripts to capture the

real-time behaviour of malicious applications and collect dynamic informa-

tion like system calls, network activities, kernel calls and process execution.

This collected information shows the exact behaviour and intentions of under

observation Android applications. Dynamic malware analysis requires exces-

sive resource utilization along with increased time as compared to static

analysis. Dynamic analysis also has limitations if performed on emulators

then sophisticated and advance malwares can detect emulated environment

and do not execute in that environment.If dynamic analysis is performed on

real devices it provides superior results as all type of malwares execute on

real devices.

2.3.3 Hybrid Malware Detection

Hybrid detection is a mixture of both dynamic and static detection. In this

method both dynamic and static extracted features are used to detect and

classify malicious applications. Hybrid analysis is most comprehensive anal-

ysis of Android applications as it involves both static features and run-time

behaviour of applications. It yields superior accuracy compared to previous

techniques and detects advanced and sophisticated malwares including sig-

nature based (static features like permissions) as well behaviour changing

malwares(which bypass signature based detection techniques).

17

CHAPTER 2. LITERATURE REVIEW

2.3.4 Comparison of Detection Techniques

All of these three techniques have their advantages and disadvantages but

according to their results hybrid malware detection is considered as the best

technique of detection as it give superior accuracy then other two techniques

and also proves better in detection of sophisticated and advanced malwares.

Comparison of malware detection techniques is carried out in table 2.2.

Malware
Detection
Technique

Advantages Disadvantages

Static Detection
• Time Efficient

• Resource Efficient

• Not effective against behaviour
changing malwares

• Average Detection results

• Not effective against new mal-
wares

Dynamic Detection

• Effective against behaviour
changing malwares

• Efficient against new and ad-
vanced malwares

• High resource consumption

• Not time efficient

• Emulated environment can be de-
tected by advanced malwares

Hybrid Detection

• Effective against signature based
and behaviours based malwares

• Yields high accuracy

• Requires more resource and time

Table 2.2: Comparison of malware detection techniques

2.4 Machine Learning (ML)

Machine Learning is defined by SAS institute [55] as” machine learning is

a method of data analysis that automates analytical model building. It is

a branch of artificial intelligence based on the idea that systems can learn

18

CHAPTER 2. LITERATURE REVIEW

from data, identify patterns and make decisions with minimal human inter-

vention.” Machine learning handles two types of problems classification and

regression. In classification problem the predicted variable is discrete vari-

ables and usually called labels or categories. A classification model predicts

the test input to a specific label or category. While in regression problems

the predicted variable is continuous real value like integer or floating point.

These values are usually in quantities like amount and sizes. Malware de-

tection is a binary classification problem as its either classify a sample into

benign or malicious sample and malware category classification is a multi

class classification problem as it classify different malwares into different

categories. Machine Learning has important role in malware detection and

categorization. There has been lot wide range of research efforts on malware

detection using machine learning. Different malware detection solutions has

been proposed by many researchers using different machine learning spec-

ifiers. Machine learning is classified into three types [14]: supervised, un-

supervised and reinforced learning. In supervised learning before training

to model, data must be labeled while in unsupervised learning data is not

labeled. However, supervised learning produces greater results than unsu-

pervised learning. Machine learning pipeline/process involve different steps

to solve the any type of ML problem. These steps are data collection/data

acquisition, data preprocessing/feature engineering (data cleaning, labeling,

scaling), features selection, model training and evaluation. This whole pro-

cess of machine learning is described in details in chapter 3. We have used

supervised learning with most common algorithms in our proposed solution

as our dataset was labeled in level 1 classification. We will give an overview

19

CHAPTER 2. LITERATURE REVIEW

of most popular supervised machine learning algorithm which we have also

used in our proposed malware detection approach.

2.4.1 Random Forest (RF)

This is a supervised machine learning algorithm that is commonly employed

in various classification and regression approaches. RF makes decision trees

on different samples. It uses majority voting for the prediction of classifica-

tion and uses average for the regression problems. It does not rely on one tree

instead it takes prediction from all the trees and then make its final results

based on those all predictions. RF utilizes decision trees as root classifier [15].

In random forest as the number of trees increase, accuracy increases and also

it prevents the problem of over fitting. The ability of RF to handle both cat-

egorical and continuous data in both classification and regression problems

is one of its most major characteristics. Generally random forest achieves

superior results for classification problems.

2.4.2 Decision Tree (DT)

This is a supervised learning technique that can be applied to both classifi-

cation and regression. DT resembles a tree because it starts like a root of

the tree and then develops branches to form a tree. Decision rules in DT are

represented as branches, outputs as leaf nodes, and internal nodes as dataset

features [16]. There are two different types of nodes in it: decision nodes,

which are used to make decisions, and leaf nodes, which are the outcome of

decision nodes. Decision nodes can contain further branches but leaf nodes

20

CHAPTER 2. LITERATURE REVIEW

can’t.

2.4.3 K-Nearest Neighbour Algorithm (KNN)

It is the widely used supervised machine learning algorithm. Based on the

votes given through its K nearest neighbours during the testing phase and

the similarity distance of the available instance that was used in the training

phase, KNN classifies new instances. [17]. It is used for both regression and

classification problem. Its also called lazy learner algorithm as it does not

instantly learn from training data, rather its store that data and during the

classification time it perform required actions on it. Since KNN just stores

data, whenever it receives new data during the testing phase, it classifies it

into a very similar type of stored data.

2.4.4 Support Vector Machine (SVM)

It is another well-known supervised machine learning algorithm. It is also

used in both classification and regression but mainly it is used for classifi-

cation problems. Malware based datasets are scattered and large [18] which

create issues for classifying data using SVM. However it can be tuned to

perform better and give better results. The primary objective of the SVM

algorithm is to find the optimal line or decision boundary which can split

n-dimensional space into classes such that subsequent data points could be

easily placed in the relevant category. The best choice boundary is referred

to as a hyperplane.

21

CHAPTER 2. LITERATURE REVIEW

2.5 Related work

Other researchers have made efforts to detect Android malware utilising

Static malware detection, Dynamic malware detection, and Hybrid malware

detection.. These efforts are described below one by one.

2.5.1 Studies based on Static Malware Detection Ap-

proach

H. Bai et al. [19] performed static malware detection and family classifi-

cation by using permissions and intents with the help of Cat-Boost as the

algorithm. For benign apps, they used the Drebin dataset, while for mali-

cious applications, they generated their own dataset. They obtained 97.40

percent accuracy in malware detection and 97.38 percent accuracy in family

classifications. They were not getting good results on Linux-Looter family of

ransomwares. Despite good results advanced malwares can bypass their so-

lution as static detection is used as the detection technique. Similarly Abeer

Rahali et.al. [20] did static malware detection categorization using deep image

learning. They have used Activities, Services, Broadcast receivers/providers,

Intent actions, Permissions, Metadata as static features. For the process of

features selection they utilized ExtraTree Classifier as the algorithm. Their

main contribution also include generation of large dataset CCS CICAND-

MAL 2020 which have 200K malicious applications. This dataset has 12

malware categories and 191 malware families. Their results showed an ac-

curacy of 93% and also good accuracy on categories classification. But this

approach have similar above mentioned problem. Arora et.al [10] used per-

22

CHAPTER 2. LITERATURE REVIEW

missions pairs extracted from Android applications manifest files to construct

the graph of malicious and benign applications. They were successful in de-

tecting malwares with an accuracy of 95.44% but as they have only used

permission pairs, malwares can use other features and bypass this technique

to perform malicious actions. Tao et al [21] examined permissions, APIs, and

the connections between them to identify malware. They formed a dataset

of around 30K benign apps and 15K malicious apps. First of all their dataset

was imbalanced secondly their dataset is old(2015). Third limitation is the

signature based detection can only detect applications using signature. Cen

et al. [22] used a probabilistic discriminative model to detect malicious sam-

ples using decompiled source code and permissions. Their final analysis in-

volved a dataset with around 11K samples with 9% of malicious sample.

First of all their dataset is small, imbalanced and very old. Secondly this

research work have used decompiled source code and permissions so if a ma-

licious application is using byte code encryption or obfuscation this solution

will not work.

2.5.2 Studies based on Dynamic Malware Detection

Approach

Entropylyzer [6] is a dynamic analysis technique employed using Shanon en-

tropy for feature’s ranking and to analyze behavioural changes of malwares

using six classes of features. Later they used Machine Learning algorithms

to find out malwares categories and families. This analysis used CCS-CIC-

AndMal2020 dataset which had 12 malware categories and 191 malware fam-

23

CHAPTER 2. LITERATURE REVIEW

ilies. This analysis was performed on emulators in sandbox environment.

They used 141 dynamic features for this malware analysis. Although they

achieved good results on malware category and family identification but some

of samples were not executed during this analysis. It emphasises the need of

implementing dynamic analysis on real-mobile devices. Mahdavifar et al. [7]

suggested a semi-supervised learning deep neural network approach for dy-

namic malware category categorization. They had used Copper Droid VMI

based system which is also an emulated dynamic malware analysis platform.

They used system calls, binder calls and composite behaviours as dynamic

features. Their research work have only five malware categories. Further

more analysis was performed so there is possibility that some malwares have

not executed their malicious behaviour after detecting emulated environ-

ment. In conclusion, Droidbox [24], DroidMat [25], and AMAT [26], were

presented as more advanced approaches to developing an emulator or sand-

box. These techniques have used permissions, intents and API calls as the

features set for their analysis process. All of these techniques, although signif-

icant, were shown to be unsatisfactory for dealing with anti-emulation com-

pletely. Several anti-emulation techniques have been described in subsequent

works. According to Vidas and Nicolas [27] emulators are detected by many

other applications by taking advantage of Android API . An example is when

the API of the Telephony Manager methodTelephonyManager.getDeviceId()

reply with 000000000000000, it indicates the execution is being done on em-

ulated environment rather than of a real device. It indicates that dynamic

analysis needs to be performed on real devices to achieve satisfactory results.

24

CHAPTER 2. LITERATURE REVIEW

2.5.3 Studies based on Hybrid Malware Detection Ap-

proach

There were research efforts carried out in hybrid malware detection but most

of them performed dynamic detection part on emulators. A hybrid mal-

ware classification technique utilising pseudo label stacking auto encoders

has been proposed by mahdavifar et.al [28] . To extract both system and dy-

namic features, they utilized a Virtual Machine Introspection (VMI)-based

system. Their model could detect and classify malware with an accuracy of

98.28% but their dataset was small and also they have limited number of

five categories only. They VMI based system is also emulator based environ-

ment which have similar problem mentioned in previous section of dynamic

malware detection. Several research indicates that hybrid-based analysis sig-

nificantly increases detection. Ali-Gombe and colleagues use both static and

dynamic approaches. To identify resource misuse and look into questionable

behaviour, which is then dynamically analyzed, it utilises byte code instru-

mentation [29]. Surendran et al. offered a novel hybrid technique for malware

detection based on conditional interdependence between dynamic and static

features (API calls, permissions, and system calls) employed in their machine

learning classifiers [30]. Besides that, this research is still having performance

problems since there are so many parameters that need to be evaluated.

2.5.4 Discussion

All of the above mentioned previous research work have used different tech-

niques including static, dynamic, and hybrid malware detection. These all

25

CHAPTER 2. LITERATURE REVIEW

techniques have some limitations and all are weak at detection of advance

Android malwares. Therefore there is a dire need of a hybrid malware de-

tection solution on real devices. It will solve problem of behaviour changing

malwares, and anti emulator problem. Further if a complete and comprehen-

sive dataset having malware sample’s of all years with increase number of

categories and families is used then it will also strengthen malware detection

against those malwares which change their behaviour and working techniques

over time. This behaviour of malwares changing with time is also known as

concept drift. Concept drift is a machine learning terminology which is de-

fined as change in relationship of input and target variable over time. This

change negatively impact the accuracy of trained model. For example in case

of Android malwares change their attacking techniques continuously. When

a malware gets detected by an antivirus or anti malware solution it changes

its signature or attacking behaviour to infect the devices without getting

caught. This changing behaviour of malwares is called as concept drift. To

handle the issue of concept drift in machine learning dataset should be ex-

tensive. We have proposed a malware detection solution with a complete,

comprehensive and latest dataset using machine learning and real devices to

fix all of above mentioned shortcomings of malware detection solutions.

2.6 Summary

In this section, we have discussed malwares, malware insertion process in

Android and malware detection techniques.Other than this we have high-

lighted the existing research work done on malware detection using different

26

CHAPTER 2. LITERATURE REVIEW

techniques. At the completion of this section of this section we discussed

the shortcomings of published research work in malware detection solutions

and suggested the improvements needed to provide a more advanced and

robust malware detection solution. In the coming chapter we will discuss the

research methodology used during this research work.

27

Chapter 3

Research Methodology

This section describes the methodology used throughout this research study.

We will go over the steps that were taken in order to achieve the desired re-

sults. As this is a machine learning classification problem, the steps involved

include all of the processes involved in a typical machine learning process,

such as data collection, data cleaning and labeling, exploratory data anal-

ysis (EDA), data normalization, feature engineering, model evaluation and

tuning. Whole process is illustrated in Figure fig 3.1 Following the process

description, this section will also highlight the tools and technologies that

are used in this research.

28

CHAPTER 3. RESEARCH METHODOLOGY

3.1 Research Methodology

Figure 3.1: Research Methodology (process flow chart) [56]

3.1.1 Data Acquisition

There are two ways of data acquisition: Collecting samples from different

sources and generating a dataset for the research, or using an existing dataset

published by some other research to perform intended research activities. In

29

CHAPTER 3. RESEARCH METHODOLOGY

our case we will be using existing dataset published by another research to

perform our proposed solution of hybrid malware detection.

3.1.2 Data Preprocessing/Feature Engineering

Data preprocessing is also called feature engineering and it has different steps,

which are discussed one by one below.

Exploratory Data Analysis (EDA)

In machine learning datasets come in raw form and contain large number

of samples and similarly those samples include large number of features or

attributes. As a result, it is difficult to determine data characteristics by

looking at a column of numbers or an entire spreadsheet. Also datasets are

not easy to understand in their raw form. Exploratory data analysis is a

technique for making judgments and gaining insights from data [57]. In this

research phase, data is transformed into different graphical and statistical

depictions that better represent the state of dataset. This research phase is

generally carried out according to the data being used because datasets can

only be represented according to applicable exploratory analysis techniques.

To get an idea of the values within the data attributes, statistical methods

– for example mean, median, standard deviation, and such are applied to

numerical datasets. In addition, to visually inspect the data, researchers use

various graphical presentation such as histograms, bar graphs, scatter plots,

frequency distributions, and word clouds. Understanding of data, features

and exploring it in details for further pre-processing is the primary objective

30

CHAPTER 3. RESEARCH METHODOLOGY

of this approach.

Data Cleaning & Labeling

Throughout this process, data is cleaned to ensure that it is clean from

outliers and observations which could lead to inaccurate results. This process

employs a variety of techniques, including the removal of null, empty and

duplicate records. After data cleaning, data labeling begins in which data

is labelled across its entries. In our case, we performed data cleaning and

data labeling respectively according to the our proposed solution. Data was

already labelled as benign and malicious data but in the second step of

categories classification we performed data labeling.

Data Normalization/Scaling

It is a subpart of feature engineering stage in which attributes of dataset

are converted in fine grained range to ease the process of feature engineering

and model training for algorithms. The process of improving clean data is

known as data normalisation. However, data normalisation is important for

two reasons:

• Data normalisation is the process of transforming the data such that

it looks the same across all records and fields

• It enhances entry type cohesiveness, which leads to data cleaning, lead

creation, categorization, and greater data quality.

This step is not mandatory but it is very significant for some algorithms and

improves the accuracy and detection rate impressively.

31

CHAPTER 3. RESEARCH METHODOLOGY

3.1.3 Feature Selection

Feature Selection is a machine learning technique which uses data to high-

light features that were not known as the most impacting features. It has the

potential to bring out most important features for both supervised and un-

supervised learning, with the objective of facilitating and speeding up model

performance also while improving model accuracy. Typically, exploratory

data analysis, data normalisation and feature selection co - exist. The fea-

tures upon which model is trained and the results are obtained are engineered

based on information obtained in the previous two steps. This is a loop, as

illustrated in the figure 3.1, in which researchers must switch between ex-

ploratory data analysis, data normalisation and feature selection steps. The

main aim of these three steps is to create features that produce model with

best results.

3.1.4 Model Training

The most important step in machine learning is training. During this step

machine learning chosen model is trained with selected features set for getting

the expected results. We input prepared data to a machine learning model

during training, that searches for patterns and makes predictions. As a

consequence, the model learns from the dataset and can predict outcomes

for test data. The model improves at predicting over time as it is trained. In

this step model is trained with chosen machine learning algorithm. Different

algorithms perform differently on same features set. So before model training

selection of right algorithm is also an important step.

32

CHAPTER 3. RESEARCH METHODOLOGY

3.1.5 Model Evaluation and Tuning

This is the final step of machine learning pipeline. After training your model,

you must evaluate its performance. A machine learning model’s evaluation

is performed against the expected outcome or previously published similar

work using the testing/unseen data. The testing set which divided data

into earlier is the unseen data used. While performing testing make sure

it is not on the same data that was used for training, if it is, it will not

give accurate results since the model is already familiar with the information

and finds the same patterns in it that it did before. This will provide with

a biased high level of accuracy. By using the testing data, model gives

precise results with justifiable performance and accuracy. If the results do

not meet the evaluation metrics, the model is tuned. This model tuning is

performed by using the right parameters of the selected algorithm. We can

test different parameters on model and select the best parameters for model

training. It will not only increase the performance of model but also enhance

the detection results.

3.2 Tools and Technology

During the whole process of this research work we have used different tools

and technologies. Since we are using an existing dataset published by [31]

therefore it was not need to run and test the samples on real devices. This

has already been done on the used dataset. We used machine learning on

the available dataset to train the models for malware detection. Table 3.1

lists all of the tools and technologies used during this research.

33

CHAPTER 3. RESEARCH METHODOLOGY

Tools / Technology Usage in Implementation and Research

Python [32]
Python programming language was used
for writing different scripts of cleaning,
labeling and compiling dataset.

Virustotal [33]
Virus total online repository was used
for labeling malware categories.

Fsecure [34]
Fsecure online repository was used
for labeling malware categories.

Fortiguard [35]
Fortiguard online repository was used
for labeling malware categories.

Numpy [36]
Python library numpy is used for
performing all mathematical operations.
needed in the research.

Pandas [37]
Pandas is also a python library
Its was used for all of data processing.

Matplotlib [38]
This python library was used for drawing
different graphical representations e.g
bar-graph, and confusion matrix.

Scikit-learn [39]
This python library was used for
whole machine learning implementations.

Jupyter [40]
It is a web-based interactive computing
platform and we have used it
for the machine learning section.

Google Colab [41]
Google Colab is similar to jupyter but is an
online environment and it was used to run
jupyter notebooks machine learning tasks.

Pycharm [42]
It is a IDE for the development
of python related tasks.

Latex [43]
Its is project by overleaf and
an online type-setting system
It was used for the whole write-up process .

Table 3.1: Tools & Technologies used during this research work

34

CHAPTER 3. RESEARCH METHODOLOGY

3.3 Summary

Under this section, we described a graphical and textual overview of the en-

tire research methodology used to conduct this research. All of the tools and

technologies that have been used during this research work are also high-

lighted with the explanation for using each of those tools and technologies.

35

Chapter 4

Data Acquisition &

Preprocessing

In this chapter process of data acquisition and preprocessing/feature engi-

neering is explained. This chapter describes the in-depth details of all steps

of data preprocessing stage.

4.1 Data Acquisition

Android applications include different set of features/attributes in them for

performing the intended actions. These features include different static fea-

tures like permissions, intent filters, strings, services, activities, dalvik op-

codes, metadata and dynamic features like system calls, binders calls, API

calls, network features, battery features and memory features. These fea-

tures are key elements during the malware detection process. Therefore it is

very important to select the right set of features while performing malware

36

CHAPTER 4. DATA ACQUISITION & PREPROCESSING

detection. There are different Android malware datasets are published online

by different research groups and individuals. These datasets differ in terms

of the samples, the number of attributes, and the dates of sample publica-

tion and collection. Hence it is also important to choose the right dataset

for providing better solution of malware detection. We choose real-devices

subset of Kronodroid [44] malware dataset published by Alejandro et. al [31].

It is a comprehensive dataset that includes samples throughout all years of

Android history between 2008 to 2020. This dataset has 200 static and 289

dynamic features making it more strong for malware detection due to these

hybrid features. Static features include intents, permissions, files, services

and timestamps while dynamic features include System calls. Furthermore,

as claimed by the datasets creator, and to the best of our knowledge, this is

the first dataset to take time variable/concept drift into account in malware

identification. This dataset has 78137 of total real devices samples divide

into 41382 malware sample’s and 36755 benign samples. Other than benign

and malware categorization this dataset has also further classified malware

samples into their families,but malwares categories of the samples were not

identified in this dataset.

4.2 Data Preprocessing

4.2.1 Exploratory Data Analysis (EDA)

EDA is an important step of data preprocessing/feature engineering phase.

In this phase basically data is checked in more detailed. Data is checked on

37

CHAPTER 4. DATA ACQUISITION & PREPROCESSING

number of samples, number of features and values of those features to better

understand the structure of data and to highlight the important attributes

of dataset. Different studies have used different EDA techniques and there

are many python libraries to perform EDA on the data. We have used some

of those libraries and inspected our dataset. We have first checked what is

in data by using python libraries and then we checked the weightage and

impact of attributes/features by using min, max and standard deviation etc.

After this we checked for missing values, outliers etc. This helped us in data

cleaning, data labeling, data scaling and feature selection phase. Figure 4.1

illustrates the weightage of different attributes of dataset on different mathe-

matical scales and figure 4.2 shows the depiction of missing values and shape

of dataset by displaying count of number of samples and features.

Figure 4.1: Exploratory analysis of data using different metrics

38

CHAPTER 4. DATA ACQUISITION & PREPROCESSING

Figure 4.2: Checking missing values and showing dataset shape

4.2.2 Data Cleaning & Integration

This is the another needed step after data collection/data acquisition. In

this step we have handled selected dataset for missing values and null values.

There were some null values in the dataset which were causing problem for

malware detection. We wrote some python scripts to remove and replace null

39

CHAPTER 4. DATA ACQUISITION & PREPROCESSING

values in different attributes/features of dataset. This dataset was two differ-

ent files of malware and benign samples. After data cleaning we merged them

to make a final cleaned dataset having both malware and benign samples.

Number of samples was still equivalent to original number of samples but

features with missing or null values were fixed. Python library pandas [37]

data-frame was used for merging and generating a finalized version of cleaned

dataset. A little view of data cleaning code is shown below.

{

#Merging_dataset_as_consolidated_dataset

df_final=pd.concat([df_malware,␣df_legitimate])

#merging_String_values_to_Binary_values

df_final["Activities"].replace({"None":␣0},␣inplace=True)

df_final["NrIntServices"].replace({"None":␣0},␣inplace=True)

df_final["NrIntServicesActions"].replace({"None":␣0},␣inplace=True)

df_final["NrIntActivities"].replace({"None":␣0},inplace=True)

df_final["NrIntActivitiesActions"].replace({"None":␣0},inplace=True)

df_final["NrIntReceivers"].replace({"None":␣0},inplace=True)

df_final["NrIntReceiversActions"].replace({"None":␣0},inplace=True)

df_final["TotalIntentFilters"].replace({"None":␣0},␣inplace=True)

df_final["NrServices"].replace({"None":␣0},␣inplace=True)

#Saving_after_removing_none␣values&merging

df_final.to_csv(’/content/drive/My␣Drive/Android_Malware_Detection

_Work/Output_CSVs/Whole_BD_leg_mal_clean_v3.csv’,␣index=False)

df_final.shape

}

40

CHAPTER 4. DATA ACQUISITION & PREPROCESSING

4.2.3 Data Labeling

This dataset came with different malware and benign samples and with fur-

ther details of describing malware families names across malicious samples.

But this dataset was missing malware categories names. As our proposed

solution was generating a machine learning model for detection of Android

malwares and further classification of malwares into their categories to limit

and understand the level of threat. Therefore it was needed to add mal-

ware categories across each of the malicious sample. We have used Virusto-

tal [33], Fsecure [34], Fortigaurd [35] online malware detection and classifica-

tion repositories to add malware categories name’s across each of malicious

sample. We have achieved this using hash of malicious sample and their fam-

ily name. After finding their categories we have labeled malicious samples

with their categories name’s using python and machine learning scripts on

jupyter notebook. In this process there was over lapping in some categories

with each other. Like some of samples were classified as Riskware by one

Antivirus and Adware by other Antivirus. We solved this issue by first cross

checking the categories of those samples from other published datasets and

in case category or sample was not found it was labelled to that category to

which it was identified by most number of Antiviruses. At this stage our data

labeling was completed with 70% of confirmed categories labeling. There are

30% samples which still need confirmation in categories and it is included

in future work of this study. After labeling malicious samples were assigned

their respective categories. Below is a glimpse of data labeling with code.

{

41

CHAPTER 4. DATA ACQUISITION & PREPROCESSING

#Adding_categories_across_families

csv_input["Categories"].replace({"LinuxLotoor":␣"Trojan"}

,␣inplace=True)

csv_input["Categories"].replace({"Hqwar":␣"Trojan"}

,␣inplace=True)

csv_input["Categories"].replace({"Robtes":␣"Trojan"}

,␣inplace=True)

csv_input["Categories"].replace({"Hiddad":␣"Backdoor"}

,␣inplace=True)

csv_input["Categories"].replace({"Fobus":␣"Backdoor"}

,␣inplace=True)

csv_input["Categories"].replace({"Kmin":␣"Backdoor"}

,␣inplace=True)

csv_input["Categories"].replace({"DroidKungFu":␣"Backdoor"}

,␣inplace=True)

csv_input["Categories"].replace({"FakeApp":␣"Scareware"}

,␣inplace=True)

csv_input["Categories"].replace({"DroidRooter":␣"Trojan-Dropper"}

,␣inplace=True)

csv_input["Categories"].replace({"BeanBot":␣"Trojan-SMS"}

,␣inplace=True)

csv_input["Categories"].replace({"Biige":␣"Trojan-SMS"

},␣inplace=True)

csv_input["Categories"].replace({"FakeNotify":␣"Trojan-SMS"}

,␣inplace=True)

42

CHAPTER 4. DATA ACQUISITION & PREPROCESSING

csv_input["Categories"].replace({"Leech":␣"File-Infector"}

,␣inplace=True)

csv_input["Categories"].replace({"Jifake":␣"Trojan-SMS"}

,␣inplace=True)

csv_input["Categories"].replace({"Nandrobox":␣"Trojan-SMS"}

,␣inplace=True)

csv_input["Categories"].replace({"Viser/Vserv":␣"Adware"}

,␣inplace=True)

csv_input["Categories"].replace({"Lovetrap/Luvrtrap":␣"Trojan"}

,␣inplace=True)

#---------------Replacing_Nan_Values--------------------------#

csv_input["Categories"].replace({np.nan:␣"Blank-Cat"}

,␣inplace=True)

#---------Saving_After_Adding_categories_names-------#

csv_input.to_csv(’real_malware_after_Cat_fixing_v3.0.csv’

,␣index=False)

}

4.2.4 Data Normalization/Scaling

Data normalization/scaling is an optional but important step in machine

learning pipeline. It not only increase the accuracy of algorithms but also

boosts their performance. This research work have used MinMax Scaling [45]

43

CHAPTER 4. DATA ACQUISITION & PREPROCESSING

as data normalization/scaling technique after getting inspired from the Imtiaz

et. al [46] work as by using same technique they achieved good results. We

have tested our solution with and without data normalization. We trained

our models on selected algorithms by first feeding the non scaled features

and noted the results. After that we performed data scaling/normalization

and then feed algorithms again with those features. There was significant

improvements in results in some algorithms. Therefore we have selected nor-

malized data and then applied feature selection to generate our final feature

set for the development of malware detection model. Figure 4.3. shows the

section of dataset before and after data normalization.

Figure 4.3: Data Scaling / Normalization view

44

Chapter 5

Feature Selection & Model

Training

Feature selection is basically the selection of most related features for al-

gorithm to obtain finest results and also minimize the computational cost.

This also improves the performance of algorithms by removing irrelevant or

very low impact features. As mentioned in previous phase we have applied

data scaling before final features selection but we have also tested feature’s

selected without applying data scaling. We will describe whole process of

features selection phase carried out in our research work.

5.1 Feature Selection

There are different techniques for features selection but they are mainly di-

vided into three techniques: Filter methods, wrapper methods and embed-

ded methods. Wrapper and embedded methods are computationally ex-

45

CHAPTER 5. FEATURE SELECTION & MODEL TRAINING

pensive [58] and these methods are not suggested to use when data set is

large and has wide dimensions. Therefore we choose filter methods for fea-

tures selection. From filtering methods we have used ExtraTreeClassifier and

Mutual-Information algorithms as our features selection algorithms. These

algorithms were selected on the basis of good malware detection results of

Abir et.al [47] and El Fiky et. al [48] research work obtained by using same

algorithms. Features selected using both techniques showed good results but

ExtraTreeClassifier’s selected features outperformed Mutual Information’s

selected features. We have tried different types of features set to test that on

which features set selected algorithm are giving best results with also mini-

mizing the computational head. We select six types of features set through

each of feature selection algorithm totaling in 12 different group/set of fea-

tures. As we are performing malware detection and categories classification

therefore 12 different group of features were selected for detection phase and

similarly 12 different group of features were selected for categories classifica-

tion phase. These group/set of features are listed in table 5.1.

In final selection we choose best 50 features selected using ExtraTreeClas-

sifier on normalized data in both phases of malware detection and malware

category classification. Table 5.2 describes the Top50 features selected by

ExtraTree Classifier in detection phase. Similarly Top50 features for cate-

gory classification phase selected using ExtraTree Classifier are listed in table

5.3.

46

CHAPTER 5. FEATURE SELECTION & MODEL TRAINING

No of Features Feature Selection Algorithm

Top30 ExtraTree Classifier

Top30 minmax Normalization and ExtraTree Classifier

Top50 ExtraTree Classifier

Top50 minmax Normalization and ExtraTree Classifier

Top100 ExtraTree Classifier

Top100 minmax Normalization and ExtraTree Classifier

Top30 Mutual Information

Top30 minmax Normalization and Mutual Information

Top50 Mutual Information

Top50 minmax Normalization and Mutual Information

Top100 Mutual Information

Top100 minmax Normalization and Mutual Information

Table 5.1: Listing of 12 generated features set

47

CHAPTER 5. FEATURE SELECTION & MODEL TRAINING

Feature Name Feature Type

455 (WRITE VOICEMAIL) Permission

461 (nr custom) Number of Custom Permissions

457 (normal) Normal permissions

399 (READ PHONE NUMBERS) Permission

48 (msync) System Call

456 (nr permissions) Number of Permissions

470 (NrIntReceivers) Number of intent receivers

472 (TotalIntentFilters) Total Intent Filters

37 (acct) System Call

235 (SYS 316) System Call

132 (clock adjtime) System Call

228 (SYS 309) System Call

32 (chroot) System Call

298 (ACESS NOTIFICATION POLICY) Permission

38 (read) System Call

55 (mincore) System Call

420 (SEND RESPOND VIA MESSAGE) Permission

96 (fadvise64 64) System Call

233 (SYS 314) System Call

23 (getrusage) System Call

251 (SYS 332) System Call

202 (gettimeofday) System Call

471 (NrIntReceiversActions) Number of Intent Receivers Actions

170 (getcpu) System Call

49 (mprotect) System Call

254 (SYS 335) System Call

151 (setsockopt) System Call

224 (SYS 305) System Call

458 (dangerous) Dangerous permissions

229 (SYS 310) System Call

93 (truncate64) System Call

223 (SYS 304) System Call

87 (iseek) System Call

57 (readv) System Call

61 (fchmod) System Call

43 (pwritev) System Call

288 (SYS 369) System Call

406 (REBOOT) Permission

1 (execv) System Call

213 (pread) System Call

203 (clone) System Call

408 (RECEIVE MMS) Permission

86 (utimensat) System Call

146 (getpeername) System Call

449 (WRITE CONTACTS) Permission

150 (shutdown) System Call

64 (dup3) System Call

26 (ugetrlimit) System Call

247 (SYS 328) System Call

200 (set thread area) System Call

Table 5.2: Top50 features using ExtraTree classifier for Level 1 Classification

48

CHAPTER 5. FEATURE SELECTION & MODEL TRAINING

Feature Name Feature Type

420 (SEND SMS) Permission

408 (RECEIVE SMS) Permission

292 (ACCESS COARSE LOCATION) Permission

296 (ACCESS NETWORK STATE) Permission

406 (RECEIVE BOOT COMPLETED) Permission

401 (READ SMS) Permission

293 (ACCESS FINE LOCATION) Permission

459 (custom yes) System Call

298 (ACCESS WIFI STATE) Permission

343 (CALL PHONE) Permission

351 (CHANGE WIFI STATE) Permission

451 (WRITE SECURE SETTINGS) Permission

395 (READ EXTERNAL STORAGE) Permission

461 (total perm) Total Permissions

457 (dangerous) Dangerous permissions

384 (MOUNT UNMOUNT FILESYSTEMS) Permission

365 (GET TASKS) Permission

362 (GET ACCOUNTS) Permission

456 (normal) Normal Permissions

435 (SYSTEM ALERT WINDOW) Permission

455 (nr permissions) Number of Permission

176 (sysinfo) System Call

470 (NrIntReceiversActions) Number of Intent receiver actions

462 (FilesInsideAPK) Total Files inside APK

443 (VIBRATE) Permission

407 (RECEIVE MMS) Permission

258 (SYS 340) System Call

399 (READ PHONE STATE) Permission

444 (WAKE LOCK) Permission

460 (nr custom) Number of custom features

472 (NrServices) Number of Services

314 (BIND DEVICE ADMIN) Permission

339 (BROADCAST SMS) Permission

458 (signature) Signature permissions

394 (READ CONTACTS) Permission

348 (CHANGE CONFIGURATION) Permission

464 (Activities) Number of Activities

418 (RESTART PACKAGES) Permission

349 (CHANGE NETWORK STATE) Permission

251 (SYS 333) System Call

340 (BROADCAST STICKY) Permission

55 (ioctl) System Call

288 (SYS 362) System Call

213 (getrlimit) System Call

26 (setrlimit) System Call

257 (SYS 339) System Call

200 (clock gettime) System Call

397 (READ LOGS) Permission

452 (WRITE SETTINGS) Permission

449 (WRITE EXTERNAL STORAGE) Permission

Table 5.3: Top50 features using ExtraTree classifier for Level 2 Classification

49

CHAPTER 5. FEATURE SELECTION & MODEL TRAINING

5.2 Model Training

This is another crucial step of machine learning pipeline. In this step, we

choose machine learning algorithm and then input it selected features to train

the model. We chose four popular supervised learning algorithms: Random

Forest, Decision Tree, K-Nearest Neighbour and State Vector Machine which

were discussed in chapter 3. We split our dataset into two parts: 70% for

training and 30% for testing. We trained each of the algorithm with 12 of

each feature group/set. KNN and SVM take little longer but their perfor-

mance is also good like other two algorithms. In initial phase of malware

detection we had total samples of 78137 including 36755 benign and

41382 malicious samples. But in the second stage of categories classifica-

tion we only had 41382 malicious samples as the objective of this phase

was further classification of malicious samples into their categories. These all

malicious samples had different set of samples of each category of malwares.

We trained all algorithms with the features of all of these samples. We had

14 categories of malwares and 1 Unknown/Blank category. Number of

samples of each category and all different categories are shown in table 5.4 .

50

CHAPTER 5. FEATURE SELECTION & MODEL TRAINING

Malware Category No of Sample’s

Adware 11185

Trojan 6690

Trojan-SMS 6475

Riskware 5340

Trojan-Spy 4281

Ransomware 1964

Trojan-Banker 1681

Backdoor 1095

Scareware 1036

PUA 657

File-Infector 436

Spyware 260

Trojan-Dropper 62

Trojan/Riskware 54

Blank-Category 166

Table 5.4: Malware categories with number of samples

5.3 Summary

In this chapter we have explained all steps of feature selection and model

training. We have also described algorithms used for features selection and

model training. In table of top features we have highlighted top features

along with their type. In upcoming chapter we will discuss evaluation results

and evaluation metrics used for testing and results collection.

51

Chapter 6

Model Evaluation & Tuning

This chapter will be detailing about the trained model’s evaluation/testing

and further about improving the results by optimization of algorithms. Model

evaluation is performed across different evaluation metrics which will also be

described in this chapter. At the end we will discuss obtained results and

compare these results with other similar existing research works. Lets start

with evaluation process step by step.

6.1 Evaluation Metrics

As the evaluation process is critical so the evaluation metrics are. We chose

below mentioned evaluation metrics but accuracy is our main targeted eval-

uation metric:

• Accuracy

• Precision

52

CHAPTER 6. MODEL EVALUATION & TUNING

• F1-Score

• Recall

These metrics with their formulas are defined [59] below but before that

we need to understand some of abbreviations and important elements of these

metrics. Following are the different metrics with their abbreviations.

• True Positive= TP

• False Positive= FP

• True Negative= TN

• False Negative= FN

Before defining these parameters lets consider malware = negative and

benign = positive

True Positive

True positive is the equivalence/match of actual value with the predicted

value. In case of malware true positive is: The actual value was benign and

model predicted benign.

True Negative

True negative is the equivalence/match of actual value with the predicted

value. In case of malware true negative is: The actual value was malware

and model also predicted malware.

53

CHAPTER 6. MODEL EVALUATION & TUNING

False Positive

False positive is defined as the expected value was incorrectly predicted. In

case of malware false positive is: The actual value was malware but the model

predicted benign.

False Negative

False negative is defined as the expected value was incorrectly predicted. In

case of malware false negative is: The actual value was benign and model

predicted malware.

Confusion Matrix

Confusion matrix is c*c matrix used for the evaluation of machine learning

model where c is number of classes. This matrix compares predicted values

of ML model with actual values. The confusion matrix formed for malware

detection is shown in figure 6.1.

6.1.1 Accuracy

Accuracy is best described as the quality of measurement or data of being

true, correct, or exact and freedom from mistakes and errors. Formula of

accuracy is given below:

Accuracy(Acc) =
TP + TN

TP + TN + FP + FN

54

CHAPTER 6. MODEL EVALUATION & TUNING

Figure 6.1: Confusion matrix for malware detection

55

CHAPTER 6. MODEL EVALUATION & TUNING

6.1.2 Precision

Precision is termed as the percentage of correct positive predictions.

Precision =
TP

TP + FP

6.1.3 Recall

Recall is what percentage of actual positives were correctly classified.

Recall =
TP

TP + FN

6.1.4 F-1 Score

The F1-score computes a single score by taking the harmonic mean of a

classifier’s precision and recall. It is usually used to make a comparison of

the performance of two classifiers. Assume classifier A has more recall and

classifier B has greater precision. Then in this scenario F1-scores of both

classifiers will be used to determine whichever classifier outperforms in this

scenario.

F1 = 2 ∗ Precision ∗Recall

Precision+Recall

6.2 Results and Evaluation

As we have discussed in chapter 2 our selected machine learning algorithms

for model training and now we will discuss their results.

56

CHAPTER 6. MODEL EVALUATION & TUNING

6.2.1 Initial Results

As mentioned in chapter 5 we split data into 70/30 and trained the Random

Forest (RF), Decision Tree (DT) , K-Nearest Neighbour (KNN) and Sup-

port Vector Machines (SVM) classifiers with the 70% of the training data.

Remaining 30% was used for the evaluation (testing) of trained models. As

we choose 6 different group/set of features for using each of feature selection

algorithms (ExtraTree Classifier and Mutual Information), we evaluated re-

sults of all features set. From the evaluation we observed that Top50 features

selected using ExtraTree Classifier is giving best accuracy, Therefore we chose

Top50 features selected using ExtraTree Classifier on normalized

data. In comparison of different classifiers model trained using Random

forest outperformed other classifiers by giving an accuracy of 97.98% in

malware detection and 87.24% accuracy on malware category classification.

Other classifiers also performed with good results.

Table 6.1 summarizes results on accuracy metric of binary malware de-

tection using ExtraTree Classifier as feature selection algorithm and Random

forest(RF), Decision Tree(DT), K-Nearest Neighbour(KNN) and State Vec-

tor Machine (SVM) as machine learning classifier’s on different set/group

of features while table 6.2 summarizes same accuracy metric results using

Mutual Information as feature engineering algorithm. Similarly results on

accuracy metric of category classifications using ExtraTree classifier and Mu-

tual Information as feature selection algorithm are listed in table 6.3 and 6.4

respectively.

57

CHAPTER 6. MODEL EVALUATION & TUNING

Features RF DT KNN SVM

Top30 95.99% 96.82% 91.53% 84.28%

Top30 Minmax 96.33% 95.58% 95.62% 95.25%

Top50 97.72% 95.88% 86.66% 68.66%

Top50 Minmax 97.98% 96.44% 96.78% 95.26%

Top100 97.72% 95.58% 89.90% 69.17%

Top100 Minmax 97.73% 96.10% 96.85% 95.47%

Table 6.1: Level 1 Binary Detection results(Accuracy) using ExtraTree clas-
sifier

Features RF DT KNN SVM

Top30 96.57% 94.88% 90.47% 82.03%

Top30 Minmax 96.63% 94.94% 95.28% 91.06%

Top50 96.85% 95.14% 88.97% 73.08%

Top50 Minmax 96.84% 95.21% 95.66% 92.03%

Top100 97.51% 81.78% 89.66 % 74.14%

Top100 Minmax 97.55% 82.55% 96.77% 95.54%

Table 6.2: Level 1 Binary Detection results (Accuracy) using Mutual Infor-
mation

Features RF DT KNN SVM

Top30 85.13% 82.55% 77.47% 43.53%

Top30 Minmax 85.67% 83.48% 82.95% 79.35%

Top50 87.06% 81.78% 68.28% 39.91%

Top50 Minmax 87.24% 82.47% 84.29% 81.10%

Top100 86.99% 81.78% 72.36% 41.18%

Top100 Minmax 86.79% 82.55% 84.72% 80.78%

Table 6.3: Level 2 Categories Classification results(Accuracy) using Extra-
Tree classifier

58

CHAPTER 6. MODEL EVALUATION & TUNING

Features RF DT KNN SVM

Top30 83.89% 77.87% 71.92% 40.93%

Top30 Minmax 84.01% 77.78% 79.75% 60.53%

Top50 85.71% 79.64% 72.62% 41.19%

Top50 Minmax 85.70% 80.35% 81.69% 61.48%

Top100 86.54% 81.49% 72.40% 40.71%

Top100 Minmax 86.81% 82.35% 83.70% 77.30%

Table 6.4: Level 2 Categories Classification results(Accuracy) using Mutual
Information

6.2.2 Model Tuning & Final Results

Random forest produced satisfactory results but there was gap in results

improvements which could be filled by a process in machine learning called

hyper-parameters tuning. Hyper parameters [60] are classifier specific pa-

rameters that control the learning rate during training and are set before

the model is trained. Initially we trained all of machine learning classifiers

with default parameters and obtained results. For final results selection we

applied hyper parameter tuning using GridSearchCV [49]. It is a python

library which facilitate the process of selecting best parameters for any ma-

chine learning algorithm. There are also other techniques like random search

and brute force method but GridSearchCV performs better as it selects grid

of hyper parameter values and compares them to get the best set of grid. Af-

ter applying hyper-parameter tuning on Top50 features selected using extra-

tree classifier on normalized data our final results improved on all machine

learning classifiers. Table 6.5 lists the final results of all classifiers with hyper-

parameter tuning in binary detection phase on different evaluation metrics

59

CHAPTER 6. MODEL EVALUATION & TUNING

while figure 6.2 shows the confusion matrix of RF for binary detection phase.

For the category classification phase we also tested hyper-parameter tuning

on all classifiers and their results also improved, but Random Forest was still

giving best results. Figure 6.3 shows the final results of Random Forest al-

gorithm on different metrics with an average accuracy of 87.56% and table

6.6 shows the final results of all classifiers in category classification phase. It

shows that most of categories are classified correctly.

Algorithm Accuracy Precision Recall F1-Score

RF 98.03% 98.51% 97.73 % 98.12%

DT 96.60% 97.12% 96.45% 96.78%

KNN 97.16% 97.24% 97.44% 97.34%

SVM 96.39% 97.65% 95.54% 96.58%

Table 6.5: Final results of Binary Detection

Algorithm Accuracy Precision Recall F1-Score

RF 87.56% 90.14% 74.20 % 81.39%

DT 83.09% 74.14 % 70.87 % 72.47%

KNN 84.92% 77.27 % 73.67% 75.20%

SVM 84.78% 78.40% 71.34 % 74.70%

Table 6.6: Final results (Average) of Category Classification

60

CHAPTER 6. MODEL EVALUATION & TUNING

Figure 6.2: Confusion matrix of RF for Binary Detection

61

CHAPTER 6. MODEL EVALUATION & TUNING

Figure 6.3: Category classification Random Forest final results

62

CHAPTER 6. MODEL EVALUATION & TUNING

6.3 K-Fold Cross Validation for Results Val-

idation

We tested the effectiveness of our proposed research work using several ma-

chine learning classifiers. Although these classifiers have produced good re-

sults but to eradicate the problem of over-fitting and to showcase the stability

of final model we had to validate the results. We used the K-Fold Cross Val-

idation approach to accomplish this. The K-Fold Cross-Validation method

divides the data for training into K folds, with one fold acting as the test set

and the other k-1 folds serving as the training set. This cycle is continued K

times until each fold in the validation set has played a role. The results of all

folds are then averaged. An example of 5-Fold Cross Validation is depicted

in Figure 6.4.

We have applied K-Fold cross validation with k=5 value in both stages of

binary detection and category classification on all selected machine learning

classifiers and on Top50 features selected using ExtraTree Classifier. The

validation results of level 1 classification (binary detection) of all classifiers

are depicted in figure 6.5 Similarly validation results of level 2 classification

(category classification) are shown in figure 6.6 . These results show that our

models are accurate and even applied in production environment our final

model will produce similar detection and classification results.

63

CHAPTER 6. MODEL EVALUATION & TUNING

Figure 6.4: K-Fold Cross Validation [61] for K = 5

Figure 6.5: K-Fold Cross Validation for Binary Detection

64

CHAPTER 6. MODEL EVALUATION & TUNING

Figure 6.6: K-Fold Cross Validation for Categories Classification

6.4 Comparison with Existing Work

In the research domain, there has been substantial progress in malware detec-

tion. Several researchers have proposed various malware detection solutions

based on machine learning, deep learning, and other approaches. When it

comes to using any technique of malware detection, selection of appropriate

and quality dataset is very important. We have listed research works closely

related to our proposed solution with their results in table 6.7 and table

6.8. From all Several researchers have proposed various malware detection

solutions based on machine learning, deep learning, and other approaches.of

these research work most of the researchers have performed dynamic analysis

on emulators which cannot prevent advanced and sophisticated malwares to

bypass the malware detection solution developed on the basis of emulated

65

CHAPTER 6. MODEL EVALUATION & TUNING

analysis process because those malwares can detect emulated environment

and do not execute their malicious behaviours or intents. Only DL-Droid [52]

have performed dynamic analysis on real devices and they got good results on

malware detection using deep learning. Their dataset has 30000 total samples

and it did not include time-effect/time-frame of malware samples. Therefore

this solution will not be very effective against those malwares which change

their behaviour with time which is also called concept drift. Our proposed

solution has used Kronodroid [31] dataset which is almost balanced by having

41382 malware samples and 36735 benign samples. Moreover it has samples

from complete Android history from 2008-2020 making it effective against

concept-drift which is the change in malwares behaviour over time. Further

more this dataset has performed dynamic analysis on both emulators and

real devices and we choose dataset of real devices as it has been noted in

their analysis that some malwares did not execute in emulated environment.

These all inclusion of Kronodroid dataset make it efficient for the detection

of all type of malwares. To the best of our knowledge currently no malware

detection solution has used this dataset. Our solution have used machine

learning on Kronodroid dataset by carefully and thoroughly implementing

process of machine learning. So to the best of author’s knowledge all most

relevant and latest research work have above highlighted gaps in malware

detection which we have tried to fill in our research work.

66

CHAPTER 6. MODEL EVALUATION & TUNING

Research
work

Detection Approach
and algorithm

Dataset & Year Features Type Time
Frame

Atzeni
et.al [50]

Semi Supervised
Learning

Dataset creation
2016

Hybrid(Dynamic
on emulator)

N/A

DeepAmd
[4]

Deep Artificial Neural
Network

CICANDMAL2019% Static & Dynamic
on real device

N/A

Aktas et
al [51]

Machine Learning Updroid Hybrid (Dynamic
on Emulator)

2014-18

DL-
Droid
[52]

Deep Learning DL Driod Dataset
2019

Hybrid (Dynamic
on real devices)

N/A

Mahdavifar
et .al [7]

Deep Neural Network
with psuedo label

CICMALDroid2020 Dynamic(Emulator) 2017-18

EntropLyzer
[23]

Machine Learning CCCS-CIC-
AndMal2020

Dynamic (Emula-
tor)

N/A

PLSAE
[28]

Deep Neural Network
with Psuedo Label
Stack Auto Encoder

CICMALDroid2020 Hybrid (Dynamic
on Emulator)

2017-18

Our Ap-
proach

Machine Learning KronoDroid 2020 Hybrid Dynamic
on real devices

2008-
2020

Table 6.7: Comparison with existing work

Research
work

Binary Detection
Results

Categorization Results

Atzeni
et.al [50]

91.23% Accuracy Family classification 95%
Homogenity score

DeepAmd [4] Static: 93.40%
Accuracy

Static 92.5% Accuracy,
Dynamic 80.3% Accuracy,
4 Categories

Aktas et
al [51]

Detection as cate-
gorization

96.37% Accuracy

DL-Droid
[52]

98.5% Accuracy N/A

Mahdavifar et
.al [7]

Detection as cate-
gorization

97.8% f1 score on 5 cate-
gories

EntropLyzer
[23]

Detection as cate-
gorization

98.4% Precision on 12 cat-
egories

PLSAE [28] 98.28% Accuracy 5 Categories

Our Ap-
proach

98.03% on detec-
tion

87.56% on 15 categories

Table 6.8: Comparison with existing work part 2

6.5 Summary

This chapter details the process of malware detection model evaluation and

tuning. This chapter first described the evaluation metrics and then discussed

the initial and final results in details along with model tuning. Lastly k-fold

cross validation results has been discussed along with comparison of proposed

67

CHAPTER 6. MODEL EVALUATION & TUNING

research work with existing closely related studies.

68

Chapter 7

Conclusion & Future Work

7.1 Conclusion

As it has been pointed out that Android is market leader in smart devices

meanwhile it is the main target of malwares. Android malwares are not only

security threat to smart devices using Android operating system but its also

a severe danger to its users because users store their personal, private and

commercial data on these devices. Despite many efforts in malware detec-

tion there are still loop holes for malwares. There is a dire need of more

efficient solution to fill the gap in the domain of malware detection. In this

research work we have highlighted all deficiencies and proposed a more effi-

cient Android malware detection solution which will work against different

type of advanced and behaviour evolving malwares. We have provided a

malware detection and categorization solution using Kronodroid dataset on

different classifiers of supervised machine learning including random forest,

decision tree, k-nearest neighbour and state vector machine. Kronodroid

69

CHAPTER 7. CONCLUSION & FUTURE WORK

dataset is latest, large, balanced, has include malware samples from all of

Android history and has collected dynamic features on real devices. This

dataset does not included malware categories. We have first added malware

categories in dataset by using different online anti-malware repositories and

then performed malware detection and categories classification using ma-

chine learning. Our final model yields good results in malware detection

with an accuracy of 98.03% and an accuracy of 87.56% in malware category

classification through random forest with only top50 features selected us-

ing ExtraTree classifier. This selection of best minimal number of features

not only enhanced our results but also reduced the computational overhead.

Other machine learning classifiers also yield good results in both phases.

We have also checked precision, recall and f1-Score in both phases of mal-

ware detection and category classifications. Lastly we have performed K-fold

cross validation to validate the results of final model. K-fold cross validation

also gave almost similar results on average of 5-folds using different classi-

fiers. This makes our solution efficient against all type of malwares either

using signature or using behaviour based techniques. Hence this research

work provides a machine learning based malware detection and categoriza-

tion model which can be used in production environment. Novel contribution

of this research work are described below.

70

CHAPTER 7. CONCLUSION & FUTURE WORK

7.2 Thesis Contribution

This research work makes the following novel contributions:

• Machine learning based hybrid malware detection solution. This Mal-

ware detection solution is using a comprehensive data-set which has

following advantages:

– Handling concept-drift as it have malware samples from 2008 to

2021.

– Captured dynamic features on real devices.

• Labeling of dataset by adding malware categories.

• Classification of malwares into their categories.

• Reducing computational overhead by choosing best minimal number of

features (top50)

7.3 Future Work

There are still some improvements which could be made in this research work

in malware categorization and further family classification.

7.3.1 Adding more Balanced number of Categories

As balanced dataset gives more accurate results and it has been highlighted

in table 5.4 that number of samples of categories are not balanced in dataset

used in this research work. It shows that Adware have 11185 samples while

71

CHAPTER 7. CONCLUSION & FUTURE WORK

Trojan have 6690 samples. This impacts accuracy of the model which could

be significantly improved by add more balanced number of samples for all

categories.

7.3.2 Improvement in Categories Classification

We have labeled kronodroid dataset of real devices with different malware

categories. These malware categories were added by scanning samples on dif-

ferent online repositories. There were some malware categories which were

over lapping with each other. Like some of samples were classified as Trojan

by one Antivirus and Riskware by other Antivirus. We have confirmed cat-

egories of around 70% malware samples. Remaining 30% samples categories

still needs a more detailed look. As stated above we are getting 87.56%

accuracy on categories classification we believe that this could be improve

significantly by validating remaining 30% samples of categories.

7.3.3 Performing Malware Family Classification

Malwares families classification is another next step in malware detection

process. This step enhances the malware detection solutions by identifying

malwares of similar families. We have not implemented this in our research

work due to limited time. We plan to make this step of malware identification

part of our research work in near future. We believe that malware detection,

malware categories classification and malware family identification gives a

complete picture of robust malware detection solution.

72

Bibliography

[1] “Android Global Market Shares.” https://www.statista.com/statistics/272698/global-

market-share-held-by-mobile-operating-systems-since-2009/ (accessed

April. 24, 2022).

[2] “Development of new Android Malware Per Month”

https://www.statista.com/statistics/680705/global-android-malware-

volume/ (accessed May. 05, 2022).

[3] “Android Platform Architecture” https://developer.android.com/guide/platform

(accessed May. 09, 2022).

[4] Imtiaz, Syed Ibrahim, et al. ”DeepAMD: Detection and identification

of Android malware using high-efficient Deep Artificial Neural Network.”

Future Generation computer systems 115 (2021): 844-856.

[5] Rahali, Abir, et al. ”DIDroid: android Malware classification and char-

acterization using deep image learning.” 2020 the 10th International Con-

ference on Communication and Network Security. 2020.

[6] Keyes, David Sean, et al. ”EntropLyzer: Android Malware Classifica-

tion and Characterization Using Entropy Analysis of Dynamic Character-

73

BIBLIOGRAPHY

istics.” 2021 Reconciling Data Analytics, Automation, Privacy, and Secu-

rity: A Big Data Challenge (RDAAPS). IEEE, 2021.

[7] Mahdavifar, Samaneh, et al. ”Dynamic android malware category clas-

sification using semi-supervised deep learning.” 2020 IEEE Intl Conf

on Dependable, Autonomic and Secure Computing, Intl Conf on Per-

vasive Intelligence and Computing, Intl Conf on Cloud and Big Data

Computing, Intl Conf on Cyber Science and Technology Congress

(DASC/PiCom/CBDCom/CyberSciTech). IEEE, 2020.

[8] “Malware Definition By Malware Bytes”

https://www.malwarebytes.com/malware (accessed May. 12, 2022).

[9] “Malware insertion process” https://theconversation.com/explainer-how-

malware-gets-inside-your-apps-79485 (accessed May. 12, 2022).

[10] Arora, Anshul, Sateesh K. Peddoju, and Mauro Conti. ”Permpair: An-

droid malware detection using permission pairs.” IEEE Transactions on

Information Forensics and Security 15 (2019): 1968-1982.

[11] apktool; A tool for reverse engineering Android Apks

https://ibotpeaches.github.io/Apktool/ (Accessed December 23, 2021),

[12] Androguard: Reverse engineering, Malware analysis of Android appli-

cations. https://github.com/androguard/androguard (Accessed December

23, 2021)

74

BIBLIOGRAPHY

[13] K. Tam, A. Feizollah, N. B. Anuar, R. Salleh, and L. Cavallaro, “The

evolution of android malware and android analysis techniques,” ACM

Computing Surveys (CSUR), vol. 49, no. 4, p. 76, 2017.

[14] S. Das and M. J. Nene, ”A survey on types of machine learning tech-

niques in intrusion prevention systems,” 2017 International Conference

on Wireless Communications, Signal Processing and Networking (WiSP-

NET), 2017, pp. 2296-2299, doi: 10.1109/WiSPNET.2017.8300169.

[15] Zhu, H. J., Jiang, T. H., Ma, B., You, Z. H., Shi, W. L.,

& Cheng, L. (2018).HEMD: a highly efficient random forest-based

malware detection framework for Android. Neural Computing and

Applications.”https://doi.org/10.1007/s00521-017-2914-y”

[16] Nikola Milosevic, Ali Dehghantanha, Kim-Kwang Raymond

Choo,Machine learning aided Android malware classification, Com-

puters & Electrical Engineering, Volume 61, 2017, Pages 266-274, ISSN

0045-7906, https://doi.org/10.1016/j.compeleceng.2017.02.013.

[17] G. Baldini and D. Geneiatakis, ”A Performance Evaluation on Distance

Measures in KNN for Mobile Malware Detection,” 2019 6th International

Conference on Control, Decision and Information Technologies (CoDIT),

2019, pp. 193-198, doi: 10.1109/CoDIT.2019.8820510.

[18] T. Ban, T. Takahashi, S. Guo, D. Inoue and K. Nakao, ”Integration of

Multi-modal Features for Android Malware Detection Using Linear SVM,”

2016 11th Asia Joint Conference on Information Security (AsiaJCIS), 2016,

pp. 141-146, doi: 10.1109/AsiaJCIS.2016.29.

75

BIBLIOGRAPHY

[19] H. Bai, N. Xie, X. Di and Q. Ye, ”FAMD: A Fast Multifeature Android

Malware Detection Framework, Design, and Implementation,” in IEEE Ac-

cess, vol. 8, pp. 194729-194740, 2020, doi: 10.1109/ACCESS.2020.3033026.

[20] Abir Rahali, Arash Habibi Lashkari, Gurdip Kaur, Laya Taheri, FRAN-

COIS GAGNON, and Frédéric Massicotte. 2020. DIDroid: Android Mal-

ware Classification and Characterization Using Deep Image Learning. In

2020 the 10th International Conference on Communication and Network

Security (ICCNS 2020). Association for Computing Machinery, New York,

NY, USA, 70–82. https://doi.org/10.1145/3442520.3442522

[21] G. Tao, Z. Zheng, Z. Guo, and M. Lyu, MalPat: Mining Patterns of

Malicious and Benign Android Apps via Permission-Related APIs, IEEE

TRANSACTIONS ON RELIABILITY, 67(1), 355-369, 201

[22] L. Cen, C. Gates, L. Si, and N. Li, A Probabilistic Discriminative

Model for Android Malware Detection with Decompiled Source Code,

IEEE Transactions On Dependable And Secure Computing, 12(4), 400-

412, 2015

[23] D. S. Keyes, B. Li, G. Kaur, A. H. Lashkari, F. Gagnon

and F. Massicotte, ”EntropLyzer: Android Malware Classification

and Characterization Using Entropy Analysis of Dynamic Charac-

teristics,” 2021 Reconciling Data Analytics, Automation, Privacy,

and Security: A Big Data Challenge (RDAAPS), 2021, pp. 1-12,

doi:10.1109/RDAAPS48126.2021.9452002.

76

BIBLIOGRAPHY

[24] A. Desnos and P. Lantz. Droidbox: An android application sandbox for

dynamic analysis. Lund Univ., Lund, Sweden, Tech. Rep, 2011.

[25] D.-J. Wu, C.-H. Mao, T.-E. Wei, H.-M. Lee, and K.- P. Wu. Droid-

mat: Android malware detection through manifest and api calls tracing.

In 2012 Seventh Asia Joint Conference on Information Security, pages

62–69. IEEE, 2012.

[26] Android malware toolkit. http://dunkelheit.com.br/amat/analysis/index

en.php, accessed Mar, 2018.

[27] F. Wei, Y. Li, S. Roy, X. Ou, and W. Zhou. Deep ground truth analysis

of current android malware. In International Conference on Detection of

Intrusions and Malware, and Vulnerability Assessment, pages 252–276.

Springer, 2017

[28] Mahdavifar, Samaneh, Dima Alhadidi, and Ali Ghorbani. ”Effective

and Efficient Hybrid Android Malware Classification Using Pseudo-Label

Stacked Auto-Encoder.” Journal of Network and Systems Management

30.1 (2022): 1-34.

[29] Ali-Gombe, Aisha I., et al. ”Toward a more dependable hybrid analy-

sis of android malware using aspect-oriented programming.” computers &

security 73 (2018): 235-248.

[30] Surendran, Roopak, Tony Thomas, and Sabu Emmanuel. ”A TAN based

hybrid model for android malware detection.” Journal of Information Se-

curity and Applications 54 (2020): 102483

77

BIBLIOGRAPHY

[31] Alejandro Guerra-Manzanares, Hayretdin Bahsi, Sven Nõmm,

KronoDroid: Time-based Hybrid-featured Dataset for Effec-

tive Android Malware Detection and Characterization, Com-

puters & Security, Volume 110, 2021, 102399, ISSN 0167-4048,

https://doi.org/10.1016/j.cose.2021.102399.

[32] “Welcome to Python.org.” https://www.python.org/ (accessed May,10,

2022).

[33] “Virus Total.” https://www.virustotal.com/gui/home/search (accessed

May,10, 2022).

[34] “Fsecure.” https://www.f-secure.com/v-descs/virus.shtml/ (accessed

May,10, 2022).

[35] “Fortiguard.” https://www.fortiguard.com/search?q=TrojanSMS.Stealer&engine=1

/ (accessed May,10, 2022).

[36] “NumPy.” https://numpy.org/ (accessed May,10, 2022).

[37] “Pandas - Python Data Analysis Library.” https://pandas.pydata.org/

(accessed May,10, 2022).

[38] “Matplotlib: Python plotting — Matplotlib 3.4.3 documentation.”

https://matplotlib.org/ (accessed May,10, 2022).

[39] “Scikit-learn: machine learning in Python — scikit-learn 1.0.1 documen-

tation.” https://scikit-learn.org/stable/ (accessed May,10, 2022).

[40] “Project Jupyter — Home.” https://jupyter.org/ (accessed May,10,

2022).

78

BIBLIOGRAPHY

[41] “Welcome to Colaboratory - Colaboratory.”

https://colab.research.google.com/ (accessed May,10, 2022).

[42] “PyCharm: the Python IDE for Professional Developers by JetBrains.”

https://www.jetbrains.com/pycharm/ (accessed May,10, 2022).

[43] “Latex by overleaf” https://www.overleaf.com/ (accessed May,10,

2022).

[44] “Latex by overleaf” https://github.com/aleguma/kronodroid/tree/main/realdevice/

(accessed May,10, 2022).

[45] “MinMax Scaling By Scikit-Learn” https://scikit-

learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html

(accessed May,12, 2022).

[46] Imtiaz, Syed Ibrahim et al. “DeepAMD: Detection and identification

of Android malware using high-efficient Deep Artificial Neural Network.”

Future Gener. Comput. Syst. 115 (2021): 844-856.

[47] Abir Rahali, Arash Habibi Lashkari, Gurdip Kaur, Laya Taheri, FRAN-

COIS GAGNON, and Frédéric Massicotte. 2020. DIDroid: Android Mal-

ware Classification and Characterization Using Deep Image Learning. In

2020 the 10th International Conference on Communication and Network

Security (ICCNS 2020). Association for Computing Machinery, New York,

NY, USA, 70–82. https://doi.org/10.1145/3442520.3442522

79

BIBLIOGRAPHY

[48] El Fiky, Ahmed & Elshenawy Elsefy, Ayman & Madkour, Mohamed.

(2021). Android Malware Category and Family Detection and Identifica-

tion using Machine Learning.

[49] “GridSearchCV ” https://scikitlearn.org/stable/modules/generated/sklearn.model selection.GridSearchCV.html

(accessed May,13, 2022).

[50] A. Atzeni, F. Dı́az, A. Marcelli, A. Sánchez, G. Squillero and A. Tonda,

”Countering Android Malware:A Scalable SemiSupervised Approach for

FamilySignature Generation,” in IEEE Access,vol. 6, pp. 5954059556,

2018, doi: 10.1109/ACCESS.2018.2874502.

[51] Aktas, K., Sen, S.2018. UpDroid: Updated Android Malware and Its

Familial Classification. In: Gruschka, N. eds Secure IT Systems. NordSec

2018. Lecture Notes in Computer Science(), vol 11252. Springer, Cham.

https://doi.org/10.1007/9783030036386 22

[52] Mohammed K. Alzaylaee, Suleiman Y. Yerima, Sakir Sezer,DL-

Droid: Deep learning based android malware detection using real de-

vices, Computers & Security,Volume 89,2020,101663,ISSN 0167-4048,

https://doi.org/10.1016/j.cose.2019.101663.

[53] “Flubot ” https://www.zdnet.com/article/passwordstealingandroid-

malwaretricksyouintodownloadingitbyclaimingyourphoneinalready-

infected/ (accessed May,25, 2022).

[54] W. Wang et al., ”Constructing Features for Detecting Android Malicious

Applications: Issues, Taxonomy and Directions,” in IEEE Access, vol. 7,

pp. 67602-67631, 2019, doi: 10.1109/ACCESS.2019.2918139.

80

BIBLIOGRAPHY

[55] “Machine Learning Definition ” https://www.sas.com/en us/insights/analytics/machine-

learning.html (accessed May,25, 2022).

[56] Mohammed K. Alzaylaee, Suleiman Y. Yerima, and Sakir Sezer.

2017. EMULATOR vs REAL PHONE: Android Malware Detection

Using Machine Learning. In Proceedings of the 3rd ACM on Inter-

national Workshop on Security And Privacy Analytics (IWSPA ’17).

Association for Computing Machinery, New York, NY, USA, 65–72.

https://doi.org/10.1145/3041008.3041010

[57] “Exploratory Data Analysis and ML process ”

https://www.analyticsvidhya.com/blog/2020/12/understandmachine-

learninganditsendtoendprocess/ (accessed May,25, 2022).

[58] Biswas, Saroj,et al. ”Review on Feature Selection and Classification

using Neuro-Fuzzy Approaches.” IJAEC vol.7, no.4 2016: pp.28-44.

http://doi.org/10.4018/IJAEC.2016100102

[59] “Confusion Matrix ” https://towardsdatascience.com/understanding-

confusionmatrix-a9ad42dcfd62 (accessed May,27, 2022).

[60] “Hyper Parameters Tuning ” https://scikit-

learn.org/stable/modules/grid search.html (accessed May,27, 2022).

[61] “K Fold Cross Validation ” https://scikit-

learn.org/stable/modules/cross validation.html?highlight=kfold%20cross%20validation

(accessed May,27, 2022).

81

