
Test Suite Reduction Using K-means Clustering

By
Jabran Saleem

Fall-2019-MS-CS CMSID 00000318846

Supervisor
Dr. Seema Jehan

Department of Computing

A thesis submitted in partial fulfillment of the requirements for the degree of Masters

of Science in Computer Science (MS CS)

In
School of Electrical Engineering & Computer Science (SEECS) ,

National University of Sciences and Technology (NUST),
Islamabad, Pakistan.

(July 2022)

THESIS ACCEPTANCE CERTIFICATE

Signature: _________________________________

Name of Advisor: ___________________________

Date: _____________________________________

Date: _________________________________

Signature (Dean/Principal): ___________________

Date: ____________________________________

HoD/Associate Dean:________________________

Online Printing Date & Time: Wednesday, 06 July 2022 13:14:38

Certified that final copy of MS/MPhil thesis entitled "Test Suite Reduction using K-means
Clustering" written by JABRAN SALEEM, (Registration No 00000318846), of SEECS has
been vetted by the undersigned, found complete in all respects as per NUST
Statutes/Regulations, is free of plagiarism, errors and mistakes and is accepted as partial
fulfillment for award of MS/M Phil degree. It is further certified that necessary amendments
as pointed out by GEC members of the scholar have also been incorporated in the said
thesis.

21-Feb-2022

Dr. Seema Jehan

Publish Date & Time: Tuesday, 22 February 2022 , 15:46:31PDF4NET evaluation version 4.7.0.0

PDF4NET evaluation version 4.7.0.0

i

Approval

Signature: ______________________

Date: __________________________

Signature: ______________________

Date: _________________________

Signature: ______________________

Date: _________________________

Signature: ______________________

Date: _________________________

Online Printing Date & Time: Wednesday, 06 July 2022 13:14:49

It is certified that the contents and form of the thesis entitled "Test Suite Reduction using
K-means Clustering" submitted by JABRAN SALEEM have been found satisfactory for
the requirement of the degree

Advisor : Dr. Seema Jehan

21-Feb-2022

Committee Member 1:Dr. Omar Arif

22-Feb-2022

Committee Member 2:Dr. Muhammad Ali Tahir

22-Feb-2022

Committee Member 3:Dr. Qaiser Riaz

21-Feb-2022

Publish Date & Time: Tuesday, 22 February 2022 , 15:46:31PDF4NET evaluation version 4.7.0.0

PDF4NET evaluation version 4.7.0.0

ii

Dedication

I would like to dedicate this thesis to my family without whom it was impossible for me

to complete my thesis work.

They always support me throughout this course and motivate me whenever I was down

and lost hope in me. Thanks to their care, love, support and prayers.

iii

Certificate of Originality

Student Signature: ______________

Online Printing Date & Time: Wednesday, 06 July 2022 13:15:09

I hereby declare that this submission titled "Test Suite Reduction using K-means

Clustering" is my own work. To the best of my knowledge it contains no materials

previously published or written by another person, nor material which to a substantial

extent has been accepted for the award of any degree or diploma at NUST SEECS or at

any other educational institute, except where due acknowledgement has been made in the

thesis. Any contribution made to the research by others, with whom I have worked at

NUST SEECS or elsewhere, is explicitly acknowledged in the thesis. I also declare that

the intellectual content of this thesis is the product of my own work, except for the

assistance from others in the project’s design and conception or in style, presentation and

linguistics, which has been acknowledged. I also verified the originality of contents through

plagiarism software.

Student Name:JABRAN SALEEM

Publish Date & Time: Tuesday, 22 February 2022 , 15:46:31PDF4NET evaluation version 4.7.0.0

PDF4NET evaluation version 4.7.0.0

iv

Acknowledgments

First of all, I would like to pay my gratitude to Allah Almighty who give me strength

to conduct this work. I would then like to thank my supervisor Dr. Seema Jehan for

her continuous guidance and encouragement. Last but by no means least, I am truly

thankful to my parents for their endless moral support throughout the period.

Jabran Saleem

v

Contents

1 Introduction 1

1.1 Background . 1

1.2 Research Purpose . 3

1.3 Problem Statement . 3

1.4 Research Questions . 3

2 Preliminaries 5

2.1 Mutation Testing . 7

3 Literature Review 10

3.1 Regression Testing . 10

3.2 Test Suite Reduction . 10

3.2.1 Adequate Test Suite Reduction 11

3.2.2 Inadequate Test Suite Reduction 14

3.2.3 Comparison of Adequate and Inadequate Approaches 16

3.3 Test Case Selection . 21

3.4 Test Case Prioritization . 21

4 Methodology 23

4.1 Proposed Methodology . 23

4.2 Pseudocode of K-means Test Suite Reduction 25

vi

Contents

5 RESULTS & DISCUSSION 29

5.1 Test Data Details . 29

5.2 Results . 30

6 CONCLUSION & FUTURE WORK 40

6.1 Conclusion . 40

6.2 Future Work . 41

A K-means Result Sheets 44

B K-means++ Result Sheets

vii

List of Figures

2.1 Illustration of Mutation Testing [4] . 7

2.2 Mutators and Operations in Mutode [13] 9

3.1 Example Data of Test Cases ti, Requirements REQi, and Related Testing

Sets are Ti [1] . 11

3.2 Testing requirements covered by each test case of a test suite [2] 12

3.3 Fault Detection Loss for the test suite reduction approaches [14] 15

3.4 Comparison of di�erent test suite reduction approaches using branch cov-

erage and mutation score [15] . 16

3.5 Proposed Methodology of K-means clustering test suite reduction using

elbow method [12] . 17

3.6 Graph showing original count of test cases vs reduced count of test cases

[12] . 18

3.7 Boxplots of test suite size reduction for each inadequate TSR approach

(inadequacy level = 95%) [16] . 20

3.8 Boxplots of test suite size reduction for each adequate TSR approach [10] 20

4.1 Flow Chart of the Proposed Algorithm 24

4.2 kmred – K-means Clustering For Test Suite Reduction [15] 26

5.1 Comparison of Test Suite Reduction (– 5 to 25) 37

5.2 Comparison of Test Suite Reduction (– 30 to 50) 37

5.3 Comparison of Fault Detection Loss (– 5 to 25) 38

viii

List of Figures

5.4 Comparison of Fault Detection Loss (– 30 to 50) 38

ix

List of Tables

4.1 Mutation Matrix for some test cases of uuid-3.4.0 package 27

4.2 Feature vectors extracted for some test cases of uuid-3.4.0 package . . . 27

5.1 Node Package Versions and their Usage 30

5.2 NPM Package Versions . 31

5.3 NPM Package Versions Gave Test Suite Reduction For Maximum Number

of Alpha Values . 31

5.4 Test Suite Reduction Using K-means . 33

5.5 Test Suite Reduction Using K-means - Continued 34

5.6 Test Suite Reduction Using K-means++ 35

5.7 Test Suite Reduction Using K-means++ - Continued 36

x

Abstract

Regression testing involves re-execution of test suite whenever a software undergoes any

update. This cost is increased manifolds due to recent continuous integration practices

in software industry. There are many approaches proposed by researchers to reduce the

execution time of test suite. This thesis examines two variants of K-means clustering

algorithm for test suite reduction. The K-means algorithm has been used for group-

ing of various objects based on similar features and data organization. The suggested

algorithms for test suite reduction will cluster those test cases which are testing the

same requirements. For clustering, the Euclidean distance has been used to calculate

the distance between test cases. Once clustered, algorithm will select the one represen-

tative vector or test case from each cluster and add it to reduced test suite. We have

tested this algorithm on 43 versions of seven di�erent NPM packages. Out of these, 20

package versions are giving test suite reduction for all alpha values 5, 10, 15, 20, 25,

30, 35, 40, 45, and 50, whereas other package versions are giving test suite reduction

for some alpha values. The experimental results have shown that both K-means and

K-means++ clustering algorithms produce approximately similar results for test suite

reduction with a slight di�erence in fault detection loss. For some package versions, the

fault detection loss is slightly higher in K-means whereas for other package versions,

the fault detection loss is little bit higher in K-means++. The async package has the

highest test suite reduction which lies between 70% to 80% and fault detection loss lies

between 4% to 30% for alpha values of 5-50. Hence, we can state that these algorithms

can e�ectively reduce the size of test suite while having minimal fault detection capa-

bility loss. However, we cannot generalize the results because the algorithm still needs

to be executed on JavaScript programs with larger test suites. In the future, we plan

to implement this algorithm with other distance metrics such as Hamming distance and

Levenshtein Edit distance.

xi

Chapter 1

Introduction

In this chapter, we will give an overview of test suite reduction and why should we

research in this area? The chapter highlights the problem statement and research ques-

tions.

1.1 Background

Regression testing of large-scale software systems is a time-consuming task since it in-

volves re-execution of all test cases from the previous release after every modification.

This process entails high cost due to continuous integration practices adapted by the

software industry. According to IBM

“Regression testing involves the reuse of all tests to ensure your software experiences no

regression - in other words, to ensure that the repair of one defect doesn’t break some

other feature that worked in the past.”

We need some solution to decrease the execution time of test suite. The reduction

in the execution cost of test suite will result into high-speed deployment and on-going

maintenance of software. This will reduce the time during continuous integration and

continuous testing. There are many approaches proposed by researchers to reduce the

execution cost associated with regression testing. These approaches can be classified into

three types: Test Case Selection, Test Case Prioritization, and Test Suite Reduction.

[16].

Test case selection and test suite reduction both reduced the number of test cases of

test suite in di�erent manners. In test suite reduction, we aim to take out the unused

1

Chapter 1: Introduction

or unnecessary test cases whereas in test case selection, we re-run the set of test cases

which is testing changed features. The last technique is completely di�erent in which

we are prioritizing the test cases’ execution. Those test cases which are covering most

of the source code statements will be executed first.

Test suite reduction approaches can be further categorized into adequate and inadequate

approaches. The adequate approach reduces the number of test cases of the test suite

while keeping the code coverage equal to original test suite’s code coverage. This means

that all the test requirements covered by original test suite will also be covered by

reduced test suite. On the other hand, an inadequate approach reduces the test suite’s

size but allows fault detection capability loss. So, if there is good amount of reduction

in the execution time and size of original test suite, we are allowed to have less code

coverage as compared to code coverage of original test suite but this reduction in code

coverage is allowed up-to some defined inadequacy level.

Out of all the algorithms (2-Optimal, GE, and GRE, Greedy, Delayed Greedy) proposed

for test suite reduction, the clustering algorithm outperformed all of these. Clustering

algorithms greatly reduced the size of the test suite while maintaining the fault detection

capability [14]. More research has been conducted in this area to explore better similar-

ity techniques which can cluster test cases more e�ciently. Normally code coverage is

measured by statement coverage, branch coverage, modified condition or decision cover-

age; there has been another metric proposed by researchers called mutation score [13].

A tool named Mutode is developed to test the JavaScript programs using mutation test-

ing. In mutation testing, the faults are introduced into source program and new files are

created with these faults which we refer to as mutants. Once the mutants are created,

the test suite is executed on each of these mutants to check whether it is able to detect

faults or not. In the end, we got the mutation score of test suite which is calculated by

taking percentage of killed mutants divided by the total number of mutants.

Most of the clustering algorithms for test suite reduction have been implemented with

statement coverage, recently there are authors who implemented K-means clustering

algorithm with mutation testing [15]. They have used the mutation score as their fault

coverage metric. They have implemented the algorithm for Java Programs and showed

that the original test suite is reduced 82.5% by maintaining the original mutation score.

2

Chapter 1: Introduction

1.2 Research Purpose

We aim to generalise whether K-means algorithm reduces the test suite’s size not only

for Java programs but also for other language programs. With the use of K-means for

test suite reduction, we aim to optimize the testing, deployment and maintenance phases

of software development life cycle. We have selected 43 versions of seven NPM packages

for testing and validation. We have chosen these packages because their test suites are

very complex and dynamic in nature. It’s more di�cult to apply test suite reduction

algorithm on these as compared to other frameworks like Java. So, if K-means clustering

for test suite reduction performs well on these test suites, then we can more confidently

generalize its results for other frameworks. The algorithm will cluster similar test cases

based on the Euclidean distance metric. It will reduce the execution cost of regression

testing of NPM packages that are widely used by the freelancer community for software

development.

1.3 Problem Statement

The aim is to reduce the size of NPM test suite using K-means while keeping the fault

detection capability of the reduced test suite within certain threshold.

1.4 Research Questions

In this thesis, we investigate the following research questions:

a) Can we reduce the size of test suite without compromising on fault detection

capability?

b) Can we generalize the results of K-means test suite reduction for JavaScript pro-

grams?

The remaining part of the thesis is organized as follows: first, the terminology required

to understand the discussed thesis, then we put some light on existing work that has

been done in the domain of test suite reduction. After that, we describe the proposed

methodology and implementation of K-means for size reduction of JavaScript programs’

3

Chapter 1: Introduction

test suite. Afterwards, we discuss the experimental results and challenges faced during

implementation. In the end, we describe briefly the outcomes of the thesis and future

research directions.

4

Chapter 2

Preliminaries

In this chapter, we describe some commonly used terms in thesis. It will help in better

understanding of the rest of the thesis.

1. Software Testing: “Software testing is the process of evaluating and verifying

that a software product or application does what it is supposed to do. The benefits

of testing include preventing bugs, reducing development costs and improving

performance.” – IBM. According to Ammann and O�utt software testing is known

as “Evaluating software by observing its execution” [8, p.13]

2. Regression Testing: “Regression testing is performed between two di�erent ver-

sions of software in order to provide confidence that the newly introduced features

of the System Under Test (SUT) do not interfere with the existing features.” [5]

3. Test Case: According to Ammann and O�utt, “A test case is composed of the

test case values, expected results, prefix values, and postfix values necessary for a

complete execution and evaluation of the software under test.” [8, p.15]

4. Test Suite: A test suite consists of a number of test cases.

5. Fault: “A static defect in the software.” [8, p.15]

6. Statement Coverage: It is a measurement of number of source code lines covered

when the test suite is executed.

7. Branch Coverage: This coverage criterion ensures that all possible outcomes of

decision point are covered when the test suite is executed.

5

Chapter 2: Preliminaries

8. Mutation Operator: Mutation operator is “A rule that specifies syntactic vari-

ations of strings generated from a grammar.” [8, p.173]

9. Mutant: Ammann and O�utt describes the mutant as “The result of one appli-

cation of a mutation operator.” [8, p.173]

10. Mutation Testing: Mutation testing create faulty versions of source code and

execute the test suite to identify whether it can detect faults or not. [4] Traditional

mutation testing is based solely on two hypotheses:

a) Competent Programmer Hypothesis: “It states that programmers are

competent, which implies that they tend to develop programs close to the

correct version.” [4]

b) Coupling E�ect: “It states that Test data that distinguishes all programs

di�ering from a correct one by only simple errors is so sensitive that it also

implicitly distinguishes more complex errors.” [4]

11. Mutation Score: It is calculated by taking percentage of killed mutants divided

by the total number of mutants. The formula is given below:

KilledMutants

TotalMutants
◊ 100

12. Killed Mutants: Given program p and mutated program p’, if any test case of

test suite produces di�erent result for p’ and p, then we can state that the mutant

p’ is killed. [4]

13. Survived Mutants: Given program p and mutated program p’, if any test case

of test suite produces same result for p’ and p, then we can state that the mutant

p’ is survived. [4]

14. Clustering: It is stated as “Given a representation of n objects, find K groups

based on a measure of similarity such that the similarities between objects in the

same group are high while the similarities between objects in di�erent groups are

low.” [3]

6

Chapter 2: Preliminaries

2.1 Mutation Testing

“Mutation testing is a technique in which faults (mutants) are inserted into an applica-

tion to assess its test suite e�ectiveness. It works by inserting mutants and running the

application’s test suite’s to identify if the mutants are detected (killed) or not (survived)”

[13]. In 1971, Richard Lipton introduced the mutation testing for the first time in his

paper [4]. Authors have discussed the theory, process, applications, tools of mutation

testing in detail and describe the development timeline of it.

Figure 2.1: Illustration of Mutation Testing [4]

The Figure 2.1 describes the overall process and theory of mutation testing. First, the

original program (P) and test suite (T) is given as an input to mutation testing appli-

cation, the application creates mutants of original program source code, the application

runs the test suite over original program and checks whether it is working as expected,

after that, the application runs test suite over mutated programs and checks whether

mutant are killed or survived. If mutant is killed, then it means that test suite has

identified the fault and if mutant is survived, then it means that test suite has not iden-

tified the fault. The paper [4] showed that mutation testing become a famous testing

technique and there are tools available to apply it on real projects.

One of the tools developed by Diego and Mario for mutation testing over Node.js pro-

grams is known as Mutode [13]. They have used 43 mutation operations grouped into

16 mutators in Mutode to target a variety of JavaScript and Node.js applications. We

can see the mutators in Figure 2.2. In the following code snippet, we can see an example

7

Chapter 2: Preliminaries

of mutant where the original program’s if condition is changed from greater operator to

less than operator.

Program (P) : Mutant (P ’) :

i f (x > 0) i f (x < 0)

{ {

y = 1 y = 1

return f a l s e ; r e turn f a l s e ;

} }

Mutode uses npm test command to avoid extra configurations or plugins installation

to run tests. Moreover, the mutants run parallel to reduce the time and improve CPU

power. The authors have evaluated the performance of Mutode on 12 out of top 20

npm modules. The test suites of these npm packages have received an average mutation

coverage of 70.59%.

8

Chapter 2: Preliminaries

Figure 2.2: Mutators and Operations in Mutode [13]

9

Chapter 3

Literature Review

This chapter discusses di�erent types of regression testing: test suite reduction, test

case selection and test suite prioritization techniques.

3.1 Regression Testing

Regression testing is known as execution of complete test suite after each feature de-

ployment or bugfix. It ensures that software is bug free and work as expected. The

following notation is used for regression testing:

“P be the current version of the program under test, and P’ be the next version of P.

Let S be the current set of specifications for P, and S’ be the set of specifications for P’.

T is the existing test suite.” [5]

As the time passes, the new features are introduced in the software which result into

addition of new test cases in test suite. This increases the re-execution time of test suite

on each new feature deployment or bugfix. This can slow down the software deployment

and maintenance processes. To reduce the regression testing cost, research has been

done in three main categories: Test Case Selection, Test Case Prioritization, and Test

Suite Reduction.

3.2 Test Suite Reduction

“Given: A test suite, T, a set of test requirements {r1,...,rn}, that must be satisfied to

provide the desired ‘adequate’ testing of the program, and subsets of T, T1,...,Tn, one

10

Chapter 3: Literature Review

associated with each of the ri’s such that any one of the test cases tj belonging to Ti can

be used to achieve requirement ri. Problem: Find a representative set, T’, of test cases

from T that satisfies all ri’s.” [5] The problem of test suite reduction is NP complete.

Therefore, we need heuristics to solve the problem. It can be further categorized as

Adequate Test Suite Reduction and Inadequate Test Suite Reduction.

3.2.1 Adequate Test Suite Reduction

In this test suite reduction approach, we take out the unused or unnecessary test cases

while not compromising on the fault detection capability.

HGS Algorithm

M. J. Harrold et al, presented HGS algorithm which finds the reduced test suite based

on testing sets (test cases associated with testing requirements) [1]. This algorithm

falls under adequate approach which means that test requirements covered by reduced

test suite and original test suite remains same. "Given a test suite T having testing

requirements {r1, r2, ...rn} and associated testing sets for each requirement, the algo-

rithm finds the subset of testing sets that cover all the testing requirements by meeting

desired coverage criterion." As this is an NP-hard problem, the authors use heuristics

to approximate the reduced test suite. We can run the HGS on example data in Figure

3.1

Figure 3.1: Example Data of Test Cases ti, Requirements REQi, and Related Testing Sets are

Ti [1]

First the heuristic selects test cases with minimum cardinality and then it keeps on

repeating the process until it reaches the maximum cardinality. If two test cases have

same cardinality, then algorithm continue processing of unmarked testing sets of higher

cardinality. In the above example, first the algorithm selects t5 because there is only one

11

Chapter 3: Literature Review

single element set T2. Test case t5 is added to representative test set. REQ1 and REQ2

will be marked as satisfied. Next, the algorithm considers the unmarked testing sets Ti

of cardinality two (T4, T5, T6). As t1 appears in T5 and T6 whereas t6 appears in T4 and

T6, so there is tie between these testing sets, hence algorithm will continue processing

unmarked testing sets of cardinality three (T3 and T7). As t1 appears in T3, and t6 not

appears in neither of T3 and T7, so algorithm choses T3 and add t1 in the representative

set. Next, the algorithm looks again for T4 as it is the only unmarked testing set with

cardinality two. Again there is a tie between t3 and t6, so algorithm moves to T7 which

has cardinality three and has t3. It is added to representative test suite. After this, all

Ti’s will be marked, so representative test suite becomes {t1, t3, t5}

Delayed Greedy Algorithm

Tallam et al. presents the new algorithm for test suite minimization under adequate

class [2]. They named this algorithm Delayed Greedy Algorithm. This has overcome the

limitations of classical greedy heuristic algorithm for test suite reduction. "Given a test

suite T having test cases {t1, t2, . . . tn} and testing requirements {r1, r2, . . . rm}, the al-

gorithm finds the minimum number of test cases that cover all the testing requirements."

The greedy algorithm follows heuristic which makes the best optimal choice locally at

each stage aiming to get global optimum solution. The authors have demonstrated that

the reduction in the size of test suite can be done using a greedy heuristic algorithm,

but the reduced test suite still contains the redundant or unnecessary test cases and

does not have an optimal reduced test suite.

Figure 3.2: Testing requirements covered by each test case of a test suite [2]

In the Figure 3.2, we can see that when we apply greedy heuristic algorithm, it will

select the t1, t2, t3, t4. By observing we can note that t1 is redundant test case because

it is covering the requirement r1 which is also covered by t2. This happens because

greedy heuristic algorithm made early selection. To resolve this problem, the authors

12

Chapter 3: Literature Review

presented Delayed-Greedy algorithm relied on Concept Analysis Framework. In this

framework, the objects represent the test cases whereas attributes represents the testing

requirements. The coverage information of testing requirements exercised by test cases is

considered as a relation between objects and attributes. The goal is to identify maximal

grouping of test cases and testing requirements. This grouping is known as concepts.

A Concept can be defined as an ordered pair (X, Y) where X equals to subset of test

cases and Y equals to subset of testing requirements. This pair should satisfies the

rule that Y is the maximal set of attributes that are related to all the objects in X

and X is the maximal set of objects that are related to all the attributes in Y. They

have tested their algorithm on the Siemen suite and space program and identified that

algorithm always produced the smaller size or same size test suite as compare to prior

heuristics. Moreover, time performance of delayed greedy algorithm is comparable to

classical greedy heuristic algorithm.

Model-Based Test Suite Reduction

Model-based testing generates test suite for a given system automatically (Emilia et al.)

[6]. This reduces the e�ort required to create test cases but on the other hand it also

comes with a problem of resource constraints such as executing high number of automat-

ically generated test cases. To fix this problem, there are a couple of test suite reduction

methods proposed and tested in the past, however most of those are applied on code

based test cases and not specification based test cases. The code based test cases are

those which are built by developer and written in the form of code in some framework

whereas specification based test cases are those which are generated automatically from

specification of system behavior under model based testing. In this paper, the authors

have suggested a new technique to reduce test suite’s size generated from model-based

testing. The method identifies the similar test cases based on similarity matrix (gener-

ated using distance measuring between two test cases) and creates a reduced test suite

that contains dissimilar test cases which can test most of the testing requirements. The

results showed that the test suite’s size has been reduced significantly while keeping the

fault detection capability equal to original test suite’s fault detection capability.

13

Chapter 3: Literature Review

3.2.2 Inadequate Test Suite Reduction

In this approach, the size of test suite is reduced by removing redundant or unnecessary

test cases while allowing loss in fault detection capability up to some inadequacy level.

FAST-R

Cruciani et al. have proposed similarity-based techniques borrowed from big data do-

main for test suite size reduction [14]. They proposed the FAST-R algorithm family

which includes FAST++ and FAST-CS based on K-means++ and coresets respectively

to perform test suite size reduction. The di�erence between K-means++ and standard

K-means is the initialization of centroids. The standard kmeans can select the centroids

which are far-o� points and as a result we could have centroid with no cluster or more

than one cluster (poor clustering). To overcome this problem, K-means++ is proposed;

first pick the centroid point randomly from data points, then calculate the distance

between each point and previously selected centroid point, the point having maximum

distance from centroid will be selected next. Repeat the step until k centroids have been

selected. Once centroids are selected, then apply the standard kmeans algorithm. After

K-means++, the next interesting approach is coresets in which the aim is to find small

subset of original points which approximates the geometric features of original points.

The FAST approaches used locality-sensitive hashing and minhashing algorithms. They

have increase the scalability of these algorithms by using the random projection tech-

nique to reduce the dimensions of space while keeping the pairwise distances of the

points. For test cases prioritization, they used the FAST-all and FAST-pw to have the

optimal test suite. The authors have tested the FAST-R algorithms on SIR and Defect4J

benchmark programs. For evaluation purposes, they used fault detection loss metric to

measure the quality of the reduced test suite. The formula to calculate fault detection

loss is:

FDL = |F | ≠ |F Õ|
|F | ◊ 100

The F represents the fault detection capability of original test suite whereas F’ repre-

sents the fault detection capability of reduced test suite. The authors have applied the

algorithms on more than five hundred thousand test cases and got promising results.

14

Chapter 3: Literature Review

In the Figure 3.3, we can see that fault detection loss of state-of-the-art techniques is

comparable to Fast-R family algorithms. The only di�erence between these techniques

is reduction time, the Fast-R has algorithm (Fast-CS) which is reducing the test suite

in very less time (10 seconds) as compared to traditional approaches which takes many

hours.

Figure 3.3: Fault Detection Loss for the test suite reduction approaches [14]

K-means Clustering

Chetouane et al. have proposed the machine learning algorithm known as K-means

clustering to reduce the test suite [15]. The algorithm creates the clusters for related

test cases and then adds representative test cases in the reduced test suite. The binary

search is used for selecting the appropriate number of clusters that will not have much

e�ect on the coverage or mutation score. The authors have tested the algorithm for

13 Java programs. The results showed that the test suite has been reduced on average

by 82.5% by maintaining the original code coverage and mutation score. We can see

the results in Figure 3.4. K-means reduction (kmred) is compared with Coverage and

Mutation score based reduction (CM Reduce) and C4.5 based reduction. The coverage

metrics used in the algorithms are fixed branch coverage and mutation score.

A. Pandey, A. K. Malviya et al. reduced the test suite’s size with the help of K-means

15

Chapter 3: Literature Review

Figure 3.4: Comparison of di�erent test suite reduction approaches using branch coverage and

mutation score [15]

algorithm and elbow method [12]. The elbow method helps in determining the value of

k or the number of clusters for a given data set. In elbow method, we run the K-means

algorithm for di�erent values of k on the data set, after that sum of squared errors is

calculated for each value of k and plotted. If the plot forms the arm like line, then the

value on elbow of line arm is the best value for k.

The Figure 3.5 shows the proposed methodology: first the source program and its test

cases are selected. Second, the dataset or vectors are generated from the test cases.

Third, the K-means algorithm is applied on the dataset and the elbow method is used

to get an accurate value of k. At the last, the redundant test cases are removed by

applying specific filters. They performed the experiment on a Java Program called

Triangle and used the WEKA library for K-means clustering. There are three inputs

and one output of the program.

In Figure 3.6, we can observe the notable reduction in the number of test cases. The

algorithm intelligently removed the redundant or similar test cases from the triangle test

suite.

3.2.3 Comparison of Adequate and Inadequate Approaches

C. Coviello, S. Romano and G. Scanniello et al. have compared the adequate and inade-

quate methods for test suite reduction. The algorithms under adequate and inadequate

categories include "Harrold-Gupta-So�a, Greedy, Delayed Greedy, 2-Optimal, Greedy

essential (GE), and Greedy Redundant Essential (GRE)". For comparison, they an-

16

Chapter 3: Literature Review

Figure 3.5: Proposed Methodology of K-means clustering test suite reduction using elbow

method [12]

17

Chapter 3: Literature Review

Figure 3.6: Graph showing original count of test cases vs reduced count of test cases [12]

alyzed two metrics: reduced test suite’s size and fault detection capability loss. For

clustering-based algorithm, the authors used various number of distance and similarity

measures such as Euclidean Distance, Cosine (Dis)similarity, Jaccard-Based Dissimilar-

ity, Hamming Distance, Levenshtein Edit Distance, K-Based Dissimilarity, and String

Kernels-Based Dissimilarity.

Euclidean Distance: It is the distance between two vectors, let a and b be two vectors,

then Euclidean distance of these two vectors is defined as:

d(a, b) =
Ò

(b ≠ a)2

Cosine (Dis)similarity: It can be calculated between two vectors a and b as follows:

d(a, b) = 1 ≠ a.b

|a||b|

Jaccard-Based Dissimilarity: "Let X and Y be two sets, then Jaccard-based dissim-

ilarity between them is equal to one minus the Jaccard co-e�cient":

d(X, Y) = 1 ≠ |X fl Y |
|X fi Y |

Hamming Distance: "Let x and y be two vectors of the same length, the hamming

18

Chapter 3: Literature Review

distance between them is the number of elements in which they di�er. For example,

given x = (1,1,0,1) and y = (0,1,0,0) their hamming distance is two."

Levenshtein Edit Distance: "Let a and b be two sequence of characters (two strings),

the Levenshtein edit distance between them is the minimum number of operations re-

quired to convert a into b. The operations are as follows: add new character, delete a

character, replace one character with another."

K-Based Dissimilarity: "The K-based dissimilarity, namely Cohen’s Kappa index,

measures the degree of agreement between two raters, which classifies items over two or

more categories. Let po be the observed proportion of agreement and pe the agreement

expected just by chance, the K-based dissimilarity is defined as follows:"

k = 1 ≠ p0 ≠ pe

1 ≠ pe

String Kernels-Based Dissimilarity: "The kernel is a function that computes the

inner product of two vectors. A string kernel measures the similarity between two

strings. Let a and b be two strings, the kernel function is given as:"

k(a, b) =
ÿ

sœA+
nums(a)nums(b)⁄s

Among all of the aforementioned distance methods, the results showed that test suite

reduction with clustering method performs well with Euclidean Distance, Hamming

Distance, and Levenshtein Edit Distance. Moreover, the comparison results showed that

inadequate approaches, especially the clustering-based approaches outperform others

with respect to test suite size reduction and keeping the fault detection capability loss

to a minimal level. We can see the test suite size reduction for both adequate and

inadequate approaches in Figures 3.7 and 3.8.

The authors have discussed the di�erence between adequate and inadequate test suite

reduction approaches and developed CUTER (Eclipse Plug-in) [10]. This is based on

an inadequate approach and uses clustering to group the similar test case. They have

identified that test cases are similar if they are covering the same statements of code.

They used the Hierarchical Agglomerative Clustering (HAC) to cluster the same test

cases. Once clusters are formed, CUTER creates a reduced test suite by selecting the

representative from each cluster. The representative is selected based on number of code

coverage. Test case that covers higher code will have high fault detection capability. The

19

Chapter 3: Literature Review

Figure 3.7: Boxplots of test suite size reduction for each inadequate TSR approach (inadequacy

level = 95%) [16]

Figure 3.8: Boxplots of test suite size reduction for each adequate TSR approach [10]

20

Chapter 3: Literature Review

authors have tested their tool on 19 versions of four Java programs. The results showed

that the e�ectiveness of detecting faults in less time has been improved. This is to note

here that all these approaches make use of C and Java programs as test data. So far,

we have seen the test suite reduction approaches. As we mentioned in the start of this

chapter that there is another category where we can reduce the cost of regression testing

and it is known as Test Case Selection.

3.3 Test Case Selection

“Given: The program, P, the modified version of P, P’ and a test suite, T. Problem:

Find a subset of T, T’, with which to test P.” [5]

Test case selection is also used to save time consumed on regression testing. However,

test case selection is limited to modified program, we only perform test case selection

on modified version of program. In this approach, we try to find those test cases which

are more related to modified part of the program and execute only selected test cases

on modified version of program, thus the overall execution time of regression testing is

reduced.

3.4 Test Case Prioritization

“Given: A test suite, T, the set of permutations of T, PT, and a function from PT to

real numbers, f: PT �R. Problem: To find T Õ œ PTsuchthat(’T ÕÕ)(T ÕÕ œ PT)(T ÕÕ ”=

T Õ)[f(T Õ) Ø f(T ÕÕ)].” [5]

In the end, we found rearranged test suite T’ that detects the maximum faults in the

earlier stage. The most common test case prioritization is code coverage based where

those test cases are executed first which covers the maximum number of lines of code.

However, this rearrangement cannot be beneficial every time in detecting faults. To

overcome this problem, Chunrong Fang et al. proposed similarity-based test case prior-

itization using relative execution frequency of program entities which executes the test

case in specific order to identify faults early [7]. They performed the experiment on five

open-source Java programs and observed that their technique has increased the fault

detection rate significantly.

21

Chapter 3: Literature Review

Chen et al. proposed Adaptive Random Sequence approach on clustering algorithms

such as K-means and K-mediods to improve the e�ectiveness and earlier detection of

faults in regression testing [9]. The clustering algorithm is applied on test cases to group

them into clusters. Test cases having the same properties will be grouped together and

they can detect the same type of faults. Once clusters are created, the adaptive random

sequences are generated from developed clusters. These sequences are used to prioritize

test cases. The authors have tested their proposed algorithm on seven open source

programs. The results showed that the fault detection capability has been improved in

less time.

When manual test steps are translated into executable code, it is known as Test Case

Automation [11]. Many researchers have identified similarities in these kinds of auto-

matically generated test steps scripts. In some test cases, there are chances that the

same test steps repeat, so Flemstrom et al. proposed that instead of regenerating the

automated script again for that test step, we should reuse the existing script which

does the same job. Moreover, their solution finds an optimal order of execution of test

steps in such a way that similar scripts do not execute again. They have tested their

method on four projects having 3919 integration test cases with 35180 test steps. The

results showed that their prioritization method reduced the time of integration testing

e�ectively.

22

Chapter 4

Methodology

This chapter describes the methodologies and tools used in the research.

4.1 Proposed Methodology

A variant of K-means suggested by Chetuone et. al is implemented in JavaScript to

reduce the execution cost of node package’s test suite [15]. It works as illustrated in the

Figure 4.1:

23

Chapter 4: Methodology

Figure 4.1: Flow Chart of the Proposed Algorithm

1. Run the Mutode2 (extended version of Mutode) on NPM package. It will return a

mutation matrix. The mutation matrix tells that how many numbers of mutants

are killed by each test case.

2. Run the text parser to get feature vectors from mutation matrix. The parser will

return the 2d vector [X, Y] for each test case where X represents the total count

of killed mutants and Y represents the total count of non-killed mutants for test

cases. The vectors will be returned in JSON format. Each vector contributes to

overall mutation score, the X having higher value and Y having lower value means

that the vector contributes more to mutation score as compared to the one which

has lower value of X and higher value of Y.

3. The feature vectors of each test case are passed to K-means or K-means++ clus-

tering algorithm along with alpha (Inadequacy Level).

a. The K-means algorithm performs clustering by selecting the initial centroids

randomly. The distance between centroids and data points are computed. Once

distance is measured, data points are allocated to nearest centroids (clusters). In

next iteration, the new centroids are calculated by taking the average of all data

24

Chapter 4: Methodology

points belonging to a centroid. The algorithm repeats until there is no change in

centroids.

b. The K-means++ algorithm performs clustering in the same way as done by

K-means, the only di�erence between K-means and K-means++ is initialization of

centroids. In K-means++, initially the centroid points are picked randomly from

data points. Afterwards, calculate the distance between each point and previously

selected centroid point, the point having maximum distance from centroid will be

selected next. Repeat the step until k centroids have been selected. After centroid

selection, the standard K-means algorithm is applied.

4. The representative vector against test case is selected from each cluster. The vector

point that is nearest to the centroid of the cluster has been taken as representative.

5. The new test suite is formed by combining all the representative test cases. We

call this new test suite a reduced test suite.

6. Coverage of the reduced test suite is calculated and compared with the original

test suite’s coverage.

7. The steps from 2-5 will be executed until the step size goes to zero. In the end,

algorithm will return the reduced test suite having fault detection loss within

inadequacy range. If the algorithm is unable to found the reduced test suite, then

it will return zero reduction.

4.2 Pseudocode of K-means Test Suite Reduction

Preprocessing: Run Mutode2 on package to extract the mutation matrix

25

Chapter 4: Methodology

1: procedure kmred(A package �, Mutation Matrix M, – is maximum allowed devia-

tion between mutation score of original TS and mutation score of obtained TS, ‘A’

is an algorithm used for clustering)

2: Execute text-parser on M to get the feature vectors (fv) for each test case.

3: Let covB be max((coverage(M) – –), 0).

4: Let step be Ánumber of test cases
2 Ë.

5: Let k be step.

6: Initialize reduced test suite (TSred = (Test Case, fv)). It is a map containing

key as test case and value as feature vector against that test case. Initialize (TSred)

with all test cases along with their feature vectors.

7: repeat

8: Get feature vectors from (TSred) and store it in fv

9: if A = ‘kmpp’ then

10: Call K-means++ (fv, k) to obtain set of clusters (C).

11: else

12: Call K-means (fv, k) to obtain set of clusters (C).

13: end if

14: Let TS = set of test cases retrieved by choosing a representative vector from

the cluster C.

15: Let cov = coverage (TS).

16: if step = 1 then

17: Let step = 0.

18: else

19: Let step = Á step
2 Ë

20: end if

21: if cov < covB then

22: Let k = k + step.

23: else

24: Let TSred = TS.

25: Let k = k – step.

26: end if

27: if k > number of test cases then

28: Let step = 0.

29: end if

30: until step = 0

31: return TSred

32: end procedure

Figure 4.2: kmred – K-means Clustering For Test Suite Reduction [15]

26

Chapter 4: Methodology

In the above algorithm, we need mutation matrix of package. To do this, we must do

some preprocessing step; execute the Mutode2 on package to get the mutation matrix.

The mutation matrix file contains information of killed/non-killed mutants against each

test case. The example of mutation matrix can be seen in table 4.1 where 0 represents

the killed mutant and 1,-2 represents the non-killed mutants. 1 means that mutant is

survived and -2 means that test cases are taking time to run over mutant, therefore,

resulting into timeout.

Mutant Id Time to Execute 0-nodeRNG 1-mathRNG 2-cryptoRNG 3-sha1 node 4-sha1 browser 5-md5 node
MUTANT 3 1196ms 0 0 0 0 0 0
MUTANT 1 1221ms 0 0 0 1 0 1
MUTANT 4 1323ms 0 1 0 0 0 0
MUTANT 6 1281ms 0 0 1 0 0 0
MUTANT 5 1308ms 0 0 0 0 0 0
MUTANT 7 1381ms 0 0 0 0 1 0
MUTANT 9 1103ms 1 1 1 1 1 1
MUTANT 8 1174ms 1 1 1 1 1 1

MUTANT 10 1145ms 1 1 1 1 1 1
MUTANT 12 1151ms 1 1 0 1 0 1
MUTANT 11 1261ms 1 1 1 1 1 1
MUTANT 13 1257ms 1 0 0 1 1 1
MUTANT 14 1175ms 1 1 1 1 1 1
MUTANT 18 1207ms -2 -2 -2 -2 -2 -2
MUTANT 15 1176ms 1 1 1 1 1 1
MUTANT 16 1229ms 1 1 1 1 1 1
MUTANT 19 1172ms -2 -2 -2 -2 -2 -2
MUTANT 20 1371ms 1 1 1 1 0 1

Table 4.1: Mutation Matrix for some test cases of uuid-3.4.0 package

Once we have mutation matrix, we run our text parser which reads the mutation matrix

and form feature vector [X, Y] where X represent the total count of killed mutants and

Y represents the total count of non-killed mutants. There will be one vector for each

test case. The example can be viewed in table 4.2.

Test Case Feature Vector (X,Y)

0-nodeRNG (6,10)

1-mathRNG (6,10)

2-cryptoRNG (7,9)

3-sha1 node (5,11)

4-sha1 browser (7,9)

5-md5 node (5,9)

Table 4.2: Feature vectors extracted for some test cases of uuid-3.4.0 package

Once vectors are formed, we passed these to K-means or K-means++ algorithm. The

27

Chapter 4: Methodology

algorithm clusters similar vectors and provide it to kmred algorithm. The kmred algo-

rithm selects a representative vector from each cluster. The vector which is nearest to

the centroid of the cluster has been selected as a representative vector. We have used

Euclidean distance to compute the nearest point to centroid. After that, we can get

the actual test cases from these representative vectors and form a reduced test suite.

We will keep reducing the test suite until step size goes to zero. Further, we will apply

coverage criteria like mutation score to ensure that the reduced test suite has minimal

loss in failure detection capability as compared to original test suite. This way, we aim

to reduce the regression testing costs.

28

Chapter 5

RESULTS & DISCUSSION

This chapter discusses the results of the K-means and K-means++ clustering algorithms.

5.1 Test Data Details

The suggested algorithms are tested against 43 package versions of seven NPM packages.

The name of packages are as follows: async, body parser, cheerio, express, passport,

shortid, and uuid. There is short description provided for each package in the Table

5.1. The package versions for each package can be viewed in Table 5.2. Out of these,

20 package versions gave test suite reduction for maximum number of alpha values.

These 20 package versions can be viewed in the Table 5.3. However, we only discuss the

results of those package versions which gives test suite reduction for all alpha values.

This section also highlights the limitations of implemented algorithms.

To perform experiments on NPM packages, we have implemented the kmred in JavaScript

language. We have used tf-kmeans and skmeans node packages. The first package uses

K-means to cluster the vectors based on the Euclidean distance whereas the second

package uses K-means++ for clustering. These packages also have methods to do syn-

chronous or asynchronous clustering. Apart from that, to check the quality of the test

suite, we used a mutation score as a quality measuring metric. For generating mutants,

we used Mutode2: a JavaScript mutation tool. This tool generates the mutation score

and a csv file containing all the information of mutants (Survived or Killed). We have

used this file to generate the mutation score for reduced test cases instead of calling

again the Mutode2 because it’s execution time is quite long for larger test suites. We

29

Chapter 5: RESULTS & DISCUSSION

Name Description

aysnc • It is utility module which provide functions to do

asynchronous JavaScript programming.

cheerio • Parser tool used to parse any HTML and XML

structure

• Use to build web scraping bots

express • It is used to build HTTP public APIs, single page

apps, and hybrid apps

• It reduces the time of web application development

through built-in modules and features

passport • Passport is used to implement authentication sys-

tems in Express-based web applications with only fews

commands

shortid • shortid package is used whenever we want to gen-

erate some unique ids which are url friendly

uuid • It is also used to generate unique ids

body-parser • It is mostly used with the express package to parse

the body of web requests before it is actually processed

by the handler method

Table 5.1: Node Package Versions and their Usage

performed the experiment using a Dell Inspiron 15 3000 laptop having a core i3 with pro-

cessing speed of 2.6 GHz. We have executed each algorithm (K-means and K-means++)

ten times on each package version.

5.2 Results

The experiment showed notable reduction in the test suite’s size while having minimal

e�ect on the fault detection capability. The results can be observed from Tables 5.4,

5.5, 5.6, 5.7 and Figures 5.1, 5.2, 5.3, 5.4.

In the table 5.4, |Tavg| represents average number of test cases in original test suite of

all the node package versions. For example, we have tested against 9 versions of uuid,

30

Chapter 5: RESULTS & DISCUSSION

NPM Package Versions

async async-2.4.0,async-2.5.0,async-2.6.0,async-2.6.1

body parser body-parser-1.16.0,body-parser-1.16.1,body-parser-

1.17.0,body-parser-1.18.0,body-parser-1.18.2

cheerio cheerio-1.0.0

express express-4.15.0,express-4.16.0,express-4.16.1,express-

4.16.2,express-4.16.3

passport passport-0.2.0,passport-0.2.1,passport-0.2.2,passport-

0.3.0,passport-0.3.1,passport-0.3.2,passport-

0.4.0,passport-0.4.1,passport-0.5.0

shortid shortid-2.2.7,shortid-2.2.8,shortid-2.2.9,shortid-

2.2.10,shortid-2.2.11,shortid-2.2.12,shortid-

2.2.13,shortid-2.2.14,shortid-2.2.15,shortid-2.2.16

uuid uuid-3.0.1,uuid-3.1.0,uuid-3.2.0,uuid-3.2.1,uuid-

3.3.0,uuid-3.3.1,uuid-3.3.2,uuid-3.3.3,uuid-3.4.0

Table 5.2: NPM Package Versions

NPM Package Versions

async async-2.4.0

body parser body-parser-1.16.1,body-parser-1.17.0,body-parser-

1.18.0

cheerio cheerio-1.0.0

express express-4.16.0,express-4.16.1,express-4.16.2

passport passport-0.2.0,passport-0.2.1,passport-0.2.2,

passport-0.3.0, passport-0.5.0

shortid shortid-2.2.12,shortid-2.2.14,shortid-2.2.15

uuid uuid-3.2.0,uuid-3.2.1,uuid-3.3.0,uuid-3.3.3

Table 5.3: NPM Package Versions Gave Test Suite Reduction For Maximum Number of Alpha

Values

so |Tavg| will be average number of test cases in original test suite of all uuid package

versions. In addition to that, – shows inadequacy level, |T Õ
avg| is equivalent to average

number of test cases in reduced test suite of all package versions of some particular node

31

Chapter 5: RESULTS & DISCUSSION

package. |Favg| represents average mutation score of original test suite of all package

versions belonging to some particular node package, |F Õ
avg| represents average mutation

score of reduced test suite of all package versions related to some specific node package.

In table 5.4, the row having test suite reduction for body parser against alpha value of 5 is

calculated as follows: First the K-means is executed ten times for each body parser pack-

age version "body-parser-1.16.0, body-parser-1.16.1, body-parser-1.17.0, body-parser-

1.18.0, body-parser-1.18.2". After that, the average of test suite reduction and average

of fault detection loss is calculated against ten executions of each example version. This

is reported in sheet named ’K-means Results Averages’ which has been mentioned in

appendix A. Note that, we have removed "body-parser-1.16.0, body-parser-1.18.2" be-

cause those were not giving test suite reduction for all alpha values (5, 10, 15, 20, 25,

30, 35, 40, 45, 50). In the last, we compute average of |T Õ
avg|, in this case, average of

"body-parser-1.16.1, body-parser-1.17.0, body-parser-1.18.0" and report it in the table

5.4 as our final result. So in the last, we can see that body parser has test suite reduction

of 77.1% against alpha value of 5 for versions "body-parser-1.16.1, body-parser-1.17.0,

body-parser-1.18.0". We have computed the results for K-means++ in the same way.

For K-means++, we have sheets named ’K-means++ Results’ and ’K-means++ Results

Averages’ in appendix B. This can be observed that by increasing alpha value, the test

suite reduction also increased.

32

Chapter 5: RESULTS & DISCUSSION

Test Suite Reduction Fault Detection Loss

Name |Tavg | – |T Õ
avg |

|Tavg|≠|T Õ
avg|

|Tavg| ◊ 100 |Favg | |F Õ
avg |

|Favg|≠|F Õ
avg|

|Favg| ◊ 100

async 477.0 5 125.8 73.63 39.18 37.47 4.36
async 477.0 10 113.7 76.16 39.18 36.87 5.90
async 477.0 15 111.4 76.65 39.18 36.60 6.59
async 477.0 20 109.8 76.98 39.18 36.87 5.90
async 477.0 25 110.6 76.81 39.18 36.77 6.15
async 477.0 30 109.4 77.06 39.18 36.54 6.74
async 477.0 35 112.6 76.39 39.18 35.84 8.52
async 477.0 40 104.7 78.05 39.18 30.52 22.10
async 477.0 45 105.2 77.95 39.18 33.02 15.73
async 477.0 50 102.2 78.57 39.18 27.65 29.42

body parser 209.7 5 77.1 63.21 82.99 81.64 1.63
body parser 209.7 10 74.1 64.65 82.99 78.07 5.92
body parser 209.7 15 71.1 60.23 82.99 76.31 8.70
body parser 209.7 20 68.8 67.17 82.99 74.36 10.39
body parser 209.7 25 69.6 66.78 82.99 73.50 11.43
body parser 209.7 30 67.4 67.83 82.99 71.40 13.96
body parser 209.7 35 64.8 69.10 82.99 67.11 19.14
body parser 209.7 40 56.2 73.17 82.99 63.38 23.63
body parser 209.7 45 49.8 76.26 82.99 55.01 33.72
body parser 209.7 50 50.0 76.14 82.99 54.76 34.01

cheerio 650.0 5 0.0 0.00 83.54 0 0.00
cheerio 650.0 10 0.0 0.00 83.54 0 0.00
cheerio 650.0 15 0.0 0.00 83.54 0 0.00
cheerio 650.0 20 0.0 0.00 83.54 0 0.00
cheerio 650.0 25 186.0 71.38 83.54 64.28 23.05
cheerio 650.0 30 161.0 75.23 83.54 60.7 27.34
cheerio 650.0 35 153.6 76.37 83.54 59.19 29.15
cheerio 650.0 40 155.2 76.12 83.54 60.04 28.13
cheerio 650.0 45 153.4 76.40 83.54 59.02 29.35
cheerio 650.0 50 151.6 76.68 83.54 58.87 29.53
express 859.3 5 277.4 67.72 68.75 66.94 2.63
express 859.3 10 270.9 68.48 68.75 64.59 6.05
express 859.3 15 262.0 69.51 68.75 62.29 9.41
express 859.3 20 251.9 70.68 68.75 59.59 13.33
express 859.3 25 247.8 71.17 68.75 58.20 15.35
express 859.3 30 242.7 71.76 68.75 56.40 17.97
express 859.3 35 233.1 72.88 68.75 54.43 20.83
express 859.3 40 226.0 73.70 68.75 51.98 24.40
express 859.3 45 203.5 76.32 68.75 45.56 33.74
express 859.3 50 197.5 77.02 68.75 42.64 37.98

passport 489.6 5 0.0 0.00 82.61 0.00 0.00
passport 489.6 10 0.0 0.00 82.61 0.00 0.00
passport 489.6 15 0.0 0.00 82.61 0.00 0.00
passport 489.6 20 0.0 0.00 82.61 0.00 0.00
passport 489.6 25 0.0 0.00 82.61 0.00 0.00
passport 489.6 30 0.0 0.00 82.61 0.00 0.00
passport 489.6 35 0.0 0.00 82.61 0.00 0.00
passport 489.6 40 64.7 86.79 82.61 50.02 39.45
passport 489.6 45 57.4 88.28 82.61 48.87 40.84
passport 489.6 50 57.1 88.34 82.61 48.77 40.97

Table 5.4: Test Suite Reduction Using K-means

33

Chapter 5: RESULTS & DISCUSSION

Test Suite Reduction Fault Detection Loss

Name |Tavg | – |T Õ
avg |

|Tavg|≠|T Õ
avg|

|Tavg| ◊ 100 |Favg | |F Õ
avg |

|Favg|≠|F Õ
avg|

|Favg| ◊ 100

shortid 17.0 5 9.8 42.65 48.05 47.57 1.01
shortid 17.0 10 9.4 44.61 48.05 46.62 2.97
shortid 17.0 15 6.4 62.09 48.05 44.05 8.32
shortid 17.0 20 4.8 71.57 48.05 42.43 11.70
shortid 17.0 25 6.7 60.78 48.05 43.87 8.71
shortid 17.0 30 4.7 72.16 48.05 38.04 20.83
shortid 17.0 35 4.7 72.55 48.05 35.36 26.41
shortid 17.0 40 4.0 76.47 48.05 33.76 29.73
shortid 17.0 45 4.0 76.47 48.05 33.76 29.73
shortid 17.0 50 2.0 88.24 48.05 25.19 47.57

uuid 16.3 5 8.8 45.83 91.52 90.71 0.89
uuid 16.3 10 8.6 46.79 91.52 90.66 0.94
uuid 16.3 15 7.7 52.89 91.52 89.58 2.13
uuid 16.3 20 7.5 53.65 91.52 89.01 2.74
uuid 16.3 25 8.2 49.32 91.52 88.99 2.77
uuid 16.3 30 7.8 52.05 91.52 88.43 3.38
uuid 16.3 35 8.1 50.32 91.52 89.15 2.60
uuid 16.3 40 7.7 52.38 91.52 89.09 2.66
uuid 16.3 45 8.8 46.08 91.52 88.95 2.82
uuid 16.3 50 7.9 51.62 91.52 89.06 2.69

Table 5.5: Test Suite Reduction Using K-means - Continued

34

Chapter 5: RESULTS & DISCUSSION

Test Suite Reduction Fault Detection Loss

Name |Tavg | – |T Õ
avg |

|Tavg|≠|T Õ
avg|

|Tavg| ◊ 100 |Favg | |F Õ
avg |

|Favg|≠|F Õ
avg|

|Favg| ◊ 100

async 477.0 5 127.0 73.38 39.18 37.57 4.11
async 477.0 10 111.6 76.60 39.18 36.74 6.23
async 477.0 15 112.4 76.44 39.18 36.53 6.76
async 477.0 20 103.8 78.24 39.18 36.73 6.25
async 477.0 25 112.0 76.52 39.18 36.67 6.42
async 477.0 30 100.5 78.93 39.18 36.10 7.86
async 477.0 35 110.2 76.90 39.18 34.99 10.69
async 477.0 40 105.8 77.83 39.18 33.46 14.61
async 477.0 45 104.5 78.09 39.18 30.48 22.21
async 477.0 50 102.8 78.45 39.18 26.51 32.35

body parser 209.7 5 76.8 63.35 82.99 81.72 1.53
body parser 209.7 10 73.3 65.05 82.99 77.24 6.93
body parser 209.7 15 70.5 66.37 82.99 75.68 8.81
body parser 209.7 20 67.4 67.87 82.99 72.85 12.21
body parser 209.7 25 70.7 66.27 82.99 74.56 10.16
body parser 209.7 30 68.4 67.38 82.99 70.31 15.28
body parser 209.7 35 66.7 68.20 82.99 67.31 18.89
body parser 209.7 40 57.1 72.77 82.99 63.83 23.09
body parser 209.7 45 32.4 84.53 82.99 45.87 44.73
body parser 209.7 50 42.3 79.81 82.99 54.40 34.45

cheerio 650.0 5 0.0 0.00 83.54 0 0.00
cheerio 650.0 10 0.0 0.00 83.54 0 0.00
cheerio 650.0 15 0.0 0.00 83.54 0 0.00
cheerio 650.0 20 0.0 0.00 83.54 0 0.00
cheerio 650.0 25 186.3 71.34 83.54 64.15 23.21
cheerio 650.0 30 161.0 75.23 83.54 61.12 26.84
cheerio 650.0 35 153.8 76.33 83.54 59.43 28.86
cheerio 650.0 40 155.3 76.10 83.54 59.91 28.29
cheerio 650.0 45 154.7 76.20 83.54 59.29 29.03
cheerio 650.0 50 152.4 76.55 83.54 59.11 29.24
express 859.3 5 277.2 67.75 68.75 66.82 2.80
express 859.3 10 272.0 68.35 68.75 64.75 5.82
express 859.3 15 261.8 69.54 68.75 62.51 9.08
express 859.3 20 251.9 70.69 68.75 59.63 13.26
express 859.3 25 246.7 71.29 68.75 58.04 15.58
express 859.3 30 238.6 72.23 68.75 55.12 19.82
express 859.3 35 234.1 72.75 68.75 54.32 20.99
express 859.3 40 224.9 73.82 68.75 52.09 24.23
express 859.3 45 202.5 76.43 68.75 45.87 33.28
express 859.3 50 195.3 77.27 68.75 41.94 39.00

passport 489.6 5 0.0 0.00 82.61 0.00 0.00
passport 489.6 10 0.0 0.00 82.61 0.00 0.00
passport 489.6 15 0.0 0.00 82.61 0.00 0.00
passport 489.6 20 0.0 0.00 82.61 0.00 0.00
passport 489.6 25 0.0 0.00 82.61 0.00 0.00
passport 489.6 30 0.0 0.00 82.61 0.00 0.00
passport 489.6 35 0.0 0.00 82.61 0.00 0.00
passport 489.6 40 68.6 85.99 82.61 50.05 39.41
passport 489.6 45 68.6 85.99 82.61 49.80 39.72
passport 489.6 50 68.6 85.99 82.61 49.84 39.66

Table 5.6: Test Suite Reduction Using K-means++

35

Chapter 5: RESULTS & DISCUSSION

Test Suite Reduction Fault Detection Loss

Name |Tavg | – |T Õ
avg |

|Tavg|≠|T Õ
avg|

|Tavg| ◊ 100 |Favg | |F Õ
avg |

|Favg|≠|F Õ
avg|

|Favg| ◊ 100

shortid 17.0 5 0.0 0.00 48.05 0.00 0.00
shortid 17.0 10 0.0 0.00 48.05 0.00 0.00
shortid 17.0 15 5.5 67.70 48.05 42.09 12.41
shortid 17.0 20 5.0 70.68 48.05 42.00 12.58
shortid 17.0 25 4.9 70.94 48.05 42.09 12.41
shortid 17.0 30 4.1 76.08 48.05 39.08 18.67
shortid 17.0 35 0.0 0.00 48.05 0.00 0.00
shortid 17.0 40 0.0 0.00 48.05 0.00 0.00
shortid 17.0 45 0.0 0.00 48.05 0.00 0.00
shortid 17.0 50 2.0 88.24 48.05 25.10 47.76

uuid 17.0 5 7.3 57.35 92.64 91.98 0.72
uuid 17.0 10 9.9 41.91 92.64 92.03 0.66
uuid 17.0 15 9.3 45.10 92.64 91.98 0.72
uuid 17.0 20 10.8 36.76 92.64 91.98 0.71
uuid 17.0 25 11.0 35.29 92.64 91.98 0.72
uuid 17.0 30 8.6 49.26 92.64 91.47 1.27
uuid 17.0 35 8.7 48.77 92.64 91.98 0.71
uuid 17.0 40 7.3 57.35 92.64 91.98 0.72
uuid 17.0 45 9.1 46.32 92.64 91.76 0.95
uuid 17.0 50 8.1 52.29 92.64 91.64 1.08

Table 5.7: Test Suite Reduction Using K-means++ - Continued

We can observe from Tables 5.4, 5.5, 5.6, 5.7 that both K-means and K-means++ clus-

tering algorithm produces approximately similar results for test suite reduction whereas

results vary slightly in fault detection loss. The K-means algorithm shows better results

for async where the test suite reductions lies between 70% to 80% and fault detection loss

lies between 4% to 30% for alpha values 5-50. On the other hand, K-means++ algorithm

also have good results for async with test suite reduction between 70% to 80% and fault

detection loss between 4% to 30%. Note that, fault detection loss is reduced slightly in

K-means++ for async package. However, in other packages like express, body-parser,

and uuid, we can observe that fault detection loss is slightly higher for K-means++ as

compare to K-means whereas test suite reduction is approximately equal. It is due to

di�erent structure of mutation matrix of test suite. The good clustering happens in

mutation matrix where the data points are more near to centroid points. The other

reason behind these results that algorithm terminates when the step goes to 1. It was

observed during experimental evaluation that the algorithm reduces the test suite size

until step goes to zero. Therefore, the algorithm could found the reduced test suite in

intermediate iterations but did not mark it as final reduced test suite. The algorithm

only returns the reduced test suite within defined inadequacy level upon termination of

algorithm.

36

Chapter 5: RESULTS & DISCUSSION

Figure 5.1: Comparison of Test Suite Re-

duction (– 5 to 25)

Figure 5.2: Comparison of Test Suite Re-

duction (– 30 to 50)

37

Chapter 5: RESULTS & DISCUSSION

Figure 5.3: Comparison of Fault Detec-

tion Loss (– 5 to 25)

Figure 5.4: Comparison of Fault Detec-

tion Loss (– 30 to 50)

38

Chapter 5: RESULTS & DISCUSSION

In addition to this, we noted that test suite reduction increases with increase in alpha

value for both K-means and K-means++ algorithms. As shown in Figures: 5.1, 5.2.

Moreover, We can observe from Figures 5.3, 5.4 that fault detection loss also increases

with the increase in inadequacy level.

We have faced various challenges while implementing the K-means algorithm to reduce

test suite size. First, the node packages test suites have many validation functions (it,

expect, should, assert etc.). In each test suite the validation function varies to validate

expected and actual values. In one test suite, developer has used assert to validate

expected and actual values while in another test suite, the expect or should function

is used. This makes it di�cult to build a generic parser to read the expected and

actual values from test cases. To develop a parser to handle all of the above mentioned

validation functions is one of the challenging parts of this project.

Second most challenging issue was clustering the test cases having di�erent numbers

of parameters. So far, what we have studied in literature is that the function remains

the same for which we want to reduce the test cases. There is a single function having

so many test cases, so the existing algorithm tries to reduce the test cases for that

particular function meaning, the method body and parameters remain the same for all

of the test cases, so it’s easy to apply K-means clustering because the size of vectors

remains same. However, in Node, we have test cases calling di�erent kinds of functions.

So when we converted the test cases inputs and outputs to vectors, the vector size was

not the same.

We overcame the above challenges by taking another approach in which we formed the

test case feature vectors from the mutation matrix. We created 2d vector for each test

case which includes Killed and Non-Killed count of mutants.

39

Chapter 6

CONCLUSION & FUTURE

WORK

This chapter concludes experimental results presented in this work and suggests future

research directions.

6.1 Conclusion

In this thesis, we have implemented K-means and K-means++ clustering algorithm

for test suite reduction of Node packages. We have implemented a parser that reads

the node package’s mutation matrix and retrieves the number of killed and non-killed

mutants of the test case. Further, the parser creates 2d vectors where one component

of vector is killed mutants count and other component is non-killed mutants count. The

K-means or K-means++ clustering algorithm clusters the similar feature vectors (test

cases) based on the distance. The distance is measured using the Euclidean distance

formula. Once clustered, the representative test cases are selected and added to the

reduced test suite. To measure the quality of the reduced test suite, we have used

mutation score. The implemented algorithms have been tested on 43 versions of seven

NPM packages. Out of these, 20 package versions gave test suite reduction for maximum

number of alpha values. We can conclude that both K-means and K-means++ clustering

algorithm produces approximately similar results for test suite reduction. The results

are quite good for async where the test suite reductions lies between 70% to 80% and

fault detection loss lies between 4% to 30% for alpha values of 5-50. For inadequacy

40

Chapter 6: CONCLUSION & FUTURE WORK

level 5, the average reduction for body parser, cheerio, express, passport, shortid, and

uuid is 63.21%, 0%, 67.72%, 0%, 42.65%, and 45.83% respectively. Interestingly, the

fault detection loss in all packages is less than 5% with minimum loss for uuid 0.89% and

maximum loss for async 4.36%. Hence, we can reduce the test suite’s size by having fault

detection loss within range of defined inadequacy level. However, we cannot generalize

the results because the algorithm still needs to be executed on more NPM packages with

larger test suites.

6.2 Future Work

As next, we plan to investigate how we can make improvements in the performance of

algorithm. We aim to use di�erent distance metrics (Hamming distance and Levenshtein

Edit distance) in K-means clustering algorithm for test suite reduction and compare the

results with traditional K-means clustering algorithm using Euclidean distance.

41

Bibliography

[1] M Jean Harrold, Rajiv Gupta, and Mary Lou So�a. “A methodology for control-

ling the size of a test suite”. In: ACM Transactions on Software Engineering and

Methodology (TOSEM) 2.3 (1993), pp. 270–285.

[2] Sriraman Tallam and Neelam Gupta. “A concept analysis inspired greedy algo-

rithm for test suite minimization”. In: ACM SIGSOFT Software Engineering Notes

31.1 (2005), pp. 35–42.

[3] Anil K Jain. “Data clustering: 50 years beyond K-means”. In: Pattern recognition

letters 31.8 (2010), pp. 651–666.

[4] Yue Jia and Mark Harman. “An analysis and survey of the development of muta-

tion testing”. In: IEEE transactions on software engineering 37.5 (2010), pp. 649–

678.

[5] Shin Yoo and Mark Harman. “Regression testing minimization, selection and pri-

oritization: a survey”. In: Software testing, verification and reliability 22.2 (2012),

pp. 67–120.

[6] AEVB Coutinho et al. “Test suite reduction based on similarity of test cases”. In:

7st Brazilian workshop on systematic and automated software testing—CBSoft.

Vol. 2013. 2013.

[7] Chunrong Fang et al. “Similarity-based test case prioritization using ordered se-

quences of program entities”. In: Software Quality Journal 22.2 (2014), pp. 335–

361.

[8] Paul Ammann and Je� O�utt. Introduction to software testing. Cambridge Uni-

versity Press, 2016.

42

Bibliography

[9] Jinfu Chen et al. “Test case prioritization for object-oriented software: An adap-

tive random sequence approach based on clustering”. In: Journal of Systems and

Software 135 (2018), pp. 107–125.

[10] Carmen Coviello, Simone Romano, and Giuseppe Scanniello. “Poster: CUTER:

ClUstering-based TEst suite reduction”. In: 2018 IEEE/ACM 40th International

Conference on Software Engineering: Companion (ICSE-Companion). IEEE. 2018,

pp. 306–307.

[11] Daniel Flemström et al. “Similarity-based prioritization of test case automation”.

In: Software quality journal 26.4 (2018), pp. 1421–1449.

[12] A Pandey and K Malviya. “Enhancing test case reduction by k-means algorithm

and elbow method”. In: International Journal of Computer Sciences and Engi-

neering 6.6 (2018), pp. 299–303.

[13] Diego Rodrıguez-Baquero and Mario Linares-Vásquez. “Mutode: generic javascript

and node. js mutation testing tool”. In: Proceedings of the 27th ACM SIGSOFT

International Symposium on Software Testing and Analysis. 2018, pp. 372–375.

[14] Emilio Cruciani et al. “Scalable approaches for test suite reduction”. In: 2019

IEEE/ACM 41st International Conference on Software Engineering (ICSE). IEEE.

2019, pp. 419–429.

[15] Nour Chetouane et al. “On using k-means clustering for test suite reduction”.

In: 2020 IEEE International Conference on Software Testing, Verification and

Validation Workshops (ICSTW). IEEE. 2020, pp. 380–385.

[16] Carmen Coviello et al. “Adequate vs. inadequate test suite reduction approaches”.

In: Information and Software Technology 119 (2020), p. 106224.

43

Appendix A

K-means Result Sheets

There are two result sheets of K-means as follow:

1. K-means Results

2. K-means Results Averages

44

https://github.com/Jabran-dev/Optimized-Test-Suite/blob/main/results/K-means%20Results.xlsx
https://github.com/Jabran-dev/Optimized-Test-Suite/blob/main/results/K-means%20Results%20Averages.xlsx

Appendix B

K-means++ Result Sheets

There are two result sheets of K-means++ as follow:

1. K-means Results

2. K-means Results Averages

https://github.com/Jabran-dev/Optimized-Test-Suite/blob/main/results/K-means%2B%2B%20Results.xlsx
https://github.com/Jabran-dev/Optimized-Test-Suite/blob/main/results/K-means%2B%2B%20Results%20Averages.xlsx

	Introduction
	Background
	Research Purpose
	Problem Statement
	Research Questions

	Preliminaries
	Mutation Testing

	Literature Review
	Regression Testing
	Test Suite Reduction
	Adequate Test Suite Reduction
	Inadequate Test Suite Reduction
	Comparison of Adequate and Inadequate Approaches

	Test Case Selection
	Test Case Prioritization

	Methodology
	Proposed Methodology
	Pseudocode of K-means Test Suite Reduction

	RESULTS & DISCUSSION
	Test Data Details
	Results

	CONCLUSION & FUTURE WORK
	Conclusion
	Future Work

	K-means Result Sheets
	K-means++ Result Sheets
	537d92fe-807e-41c1-9ed1-8810231a5f53.pdf
	Introduction
	Background
	Research Purpose
	Problem Statement
	Research Questions

	Preliminaries
	Mutation Testing

	Literature Review
	Regression Testing
	Test Suite Reduction
	Adequate Test Suite Reduction
	Inadequate Test Suite Reduction
	Comparison of Adequate and Inadequate Approaches

	Test Case Selection
	Test Case Prioritization

	Methodology
	Proposed Methodology
	Pseudocode of K-means Test Suite Reduction

	RESULTS & DISCUSSION
	Test Data Details
	Results

	CONCLUSION & FUTURE WORK
	Conclusion
	Future Work

	K-means Result Sheets
	K-means++ Result Sheets

	537d92fe-807e-41c1-9ed1-8810231a5f53.pdf
	Introduction
	Background
	Research Purpose
	Problem Statement
	Research Questions

	Preliminaries
	Mutation Testing

	Literature Review
	Regression Testing
	Test Suite Reduction
	Adequate Test Suite Reduction
	Inadequate Test Suite Reduction
	Comparison of Adequate and Inadequate Approaches

	Test Case Selection
	Test Case Prioritization

	Methodology
	Proposed Methodology
	Pseudocode of K-means Test Suite Reduction

	RESULTS & DISCUSSION
	Test Data Details
	Results

	CONCLUSION & FUTURE WORK
	Conclusion
	Future Work

	K-means Result Sheets
	K-means++ Result Sheets
	537d92fe-807e-41c1-9ed1-8810231a5f53.pdf
	Introduction
	Background
	Research Purpose
	Problem Statement
	Research Questions

	Preliminaries
	Mutation Testing

	Literature Review
	Regression Testing
	Test Suite Reduction
	Adequate Test Suite Reduction
	Inadequate Test Suite Reduction
	Comparison of Adequate and Inadequate Approaches

	Test Case Selection
	Test Case Prioritization

	Methodology
	Proposed Methodology
	Pseudocode of K-means Test Suite Reduction

	RESULTS & DISCUSSION
	Test Data Details
	Results

	CONCLUSION & FUTURE WORK
	Conclusion
	Future Work

	K-means Result Sheets
	K-means++ Result Sheets

	537d92fe-807e-41c1-9ed1-8810231a5f53.pdf
	Introduction
	Background
	Research Purpose
	Problem Statement
	Research Questions

	Preliminaries
	Mutation Testing

	Literature Review
	Regression Testing
	Test Suite Reduction
	Adequate Test Suite Reduction
	Inadequate Test Suite Reduction
	Comparison of Adequate and Inadequate Approaches

	Test Case Selection
	Test Case Prioritization

	Methodology
	Proposed Methodology
	Pseudocode of K-means Test Suite Reduction

	RESULTS & DISCUSSION
	Test Data Details
	Results

	CONCLUSION & FUTURE WORK
	Conclusion
	Future Work

	K-means Result Sheets
	K-means++ Result Sheets
	537d92fe-807e-41c1-9ed1-8810231a5f53.pdf
	Introduction
	Background
	Research Purpose
	Problem Statement
	Research Questions

	Preliminaries
	Mutation Testing

	Literature Review
	Regression Testing
	Test Suite Reduction
	Adequate Test Suite Reduction
	Inadequate Test Suite Reduction
	Comparison of Adequate and Inadequate Approaches

	Test Case Selection
	Test Case Prioritization

	Methodology
	Proposed Methodology
	Pseudocode of K-means Test Suite Reduction

	RESULTS & DISCUSSION
	Test Data Details
	Results

	CONCLUSION & FUTURE WORK
	Conclusion
	Future Work

	K-means Result Sheets
	K-means++ Result Sheets

