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Abstract

In this thesis, the Mei symmetries for the Lagrangian corresponding to an axially

symmetric metric are examined. For this purpose, the Kerr metric is considered. Using

the Mei symmetries criteria, we determined four Mei symmetries for the Lagrangian

of Kerr metric. Furthermore, the Lie point symmetries and Noether symmetries for

the same Lagrangian are reviewed. The results reveal that, in the case of the Kerr

metric, the Noether symmetry set is a subset of the Mei symmetry set and that Mei

symmetries are same as that of Lie point symmetries. In the end, the obtained Mei

symmetries are also verified.
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Chapter 1

Introduction

The background of DEs is reviewed in this chapter. A brief history of symmetries of

ODEs and PDEs along with some examples is also discussed. Fundamental concepts,

definitions, and notations of the Lie point symmetries, Noether symmetries, and Mei

symmetries are given here. The procedure for finding these symmetries is discussed in

detail and some examples are also given.

1.1 A Brief History

It is difficult to trace back the origin of DEs but after much deliberation on the topic,

historians have marked 1693 as the origin year of DEs. Sir Isaac Newton’s first-ever

work on calculus "the method of fluxions and infinite series" [1] was not published

until 1671. He was not officially credited for his commendable work until 1693 when

Gottfried Leibniz solved the first DE. This is why, 1693 holds a special place in the

history of mathematics, and Newton and Leibniz were declared the founding titans

of DEs. Expanding on the basis provided by these two geniuses, Jacob Bernoulli and

Johann Bernoulli created Bernoulli’s equation in 1695, a new form of an ODE..

In 10 years, another well-known scientist came to the surface with his extraordinary

work in the field of mathematics, Leonhard Euler. He reached a pedestal for his work in
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infinitesimal calculus, trigonometry, algebra, geometry, and number theory. He paved

way for thousands of other mathematics to reach newer horizons in this field. In solving

DEs, it is seen that in most of his work, he has extensively used the Euler’s identity

and formula. Last but not the least, he developed the calculus of variations.

With time, scientists kept digging deeper into this vast and at the same time,

astonishing field. Scientists such as Joseph Louise Lagrange, Pierre Simon Laplace,

Adrien-Marie Legendre, and Joseph Fourier came forth with concepts of the Lagrangian

multiplier, Legendre transformations, Laplace’s equations, Legendre polynomials, and

Fourier series.

Taking the work of Daniel Bernoulli, a step further, Friedrich Bessel generalized

Bessel functions. Meanwhile, Augustin Louis Cauchy brought forward the concept of

solutions. The list of these great names does not end here. It will be remiss to not

mention all the great mathematicians such as Rudolf Lipchitz, Bernhard Riemann,

Carl Friedrich Gauss, Emmy Noether and George David Birkhoff. All these names

have a solid reputation is taking DEs to a new level [2].

Evariste Galois marked his place in history by using group theory to solve poly-

nomial equations. Whereas, a Norwegian mathematician, named Marius Sophus Lie

used groups to solve DEs. He suggested that to obtain solutions, one can use groups of

symmetries in standard techniques. Comprehending symmetries require that one must

explore transformations and particular generators.

1.2 Lie Point Transformations and Infinitesimal Gen-
erators

A Lie point transformation is a transformation that transforms a point (x, y) into a

new point (x∗, y∗)

x∗ = x∗(x, y), y∗ = y∗(x, y), (1.1)
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where x is independent variable and y is dependent variable. Point transformations

that are dependent on at least one parameter must be considered in the context of

symmetries.

1.2.1 1-Parameter Groups of Lie Point Transformations

1-parameter group of Lie point transformations are the transformations that depends

on at least 1-parameter ε ∈ R,

x∗ = x∗(x, y, ε), y∗ = y∗(x, y, ε), (1.2)

with the group properties of closure, inverse and identity being satisfied. Setting ε = 0

yields the identity transformation,

x∗(x, y, 0) = x, y∗(x, y, 0) = y. (1.3)

Consider the translations

x∗ = x, y∗ = y + ε. (1.4)

After deciding on a value ε for the parameter, a second transformation of the group,

corresponding to the value ε1, is

x∗1 = x∗, y∗1 = y∗ + ε1. (1.5)

The outcome of the two’s sequential performances is

x∗1 = x, y∗1 = y + ε+ ε1, (1.6)

which is another translation of the set, with ε + ε1 as the parameter value. At ε = 0,

translation group gets the identity, and at ε = −ε, the inverse transformation. As a

result, all translations of type (1.4) form a group.

Another example, the rotations

x∗ = xcosε− ysinε, y∗ = xsinε+ ycosε, (1.7)
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represent a 1-parameter group of Lie point transformations, since they depend on only

1-parameter and satisfy all Lie group axioms.

Scaling is also included in the 1-parameter group, e.g.

x∗ = eεx, x∗ = eεy. (1.8)

In contrast to this, the reflection

x∗ = −x, y∗ = −y, (1.9)

does not belong to a 1-parameter group of Lie point transformations, but it is still a

point transformation [3].

It is also a symmetry transformation if you translate one solution of a DE to another

while preserving its structure. If we take the ODE

U = (x, y, y′, ...., y(n)) = 0, (1.10)

and apply a Lie point transform equation (1.1) to it, we get

U = (x∗, y∗, y∗
′
, ...., y∗(n)) = 0. (1.11)

This Lie point transformation is symmetric since it does not change the equation.

1.2.2 Infinitesimal Generator

Applying the Taylor series on equation (1.2) about ε = 0 gives an infinitesimal repre-

sentation of Lie point transformation [3]

x∗ = x+ ε

(
∂x∗

∂ε

)∣∣∣∣
ε=0

+O(ε2), ŷ = y + ε

(
∂y∗

∂ε

)∣∣∣∣
ε=0

+O(ε2), (1.12)

where the coefficients of infinitesimal transformations are set to be the functions

∂x∗

∂ε

∣∣∣∣
ε=0

= ξ(x, y),
∂y∗

∂ε

∣∣∣∣
ε=0

= η(x, y). (1.13)
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As a result, an infinitesimal generator of transformation is established as

X = ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y
. (1.14)

Consider the following examples to demonstrate transformations and their generators.

For a translational group,

x∗ = x, y∗ = y + ε, (1.15)

we have,

ξ(x, y) =
∂x∗

∂ε

∣∣∣∣
ε=0

= 0, η(x, y) =
∂y∗

∂ε

∣∣∣∣
ε=0

= 1, (1.16)

and the generator is

X =
∂

∂y
. (1.17)

An infinitesimal generator can be tranformed into new coordinates by

X = (Xmµ)
∂

∂mµ
= (Xmµ′)

∂

∂mµ′
, µ = 1, ...., N, (1.18)

where mµ′ represents the new coordinates and mµ′ = ∂zµ
′

∂zµ
mµ represents the new com-

ponents of tangent vector X.

1.2.3 n-Parameter Group of Lie Point Transformations

Lie point transformations may be influenced by multiple parameters. This means that,

in contrast to equation (1.2), the following can be written:

x∗ = x∗(x, y, εn), y∗ = y∗(x, y, εn), n = 1, ....., n. (1.19)

If all these parameters satisfy all axioms of the group, and if they do not depend on

each other, then these Lie point transformations form a n-parameter group (Gn) [5].

For each parameter εn of the n-parameter Lie point transformation group, an infinites-

imal generator can be constructed as

Xn = ξn
∂

∂x
+ ηn

∂

∂y
, (1.20)
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where the infinitesimals are

ξn(x, y) =
∂x∗

∂εn

∣∣∣∣
εn=0

, (1.21)

ηn(x, y) =
∂y∗

∂εn

∣∣∣∣
εn=0

. (1.22)

Example

Consider a 3-parameter group of Lie point transformations [6],

x∗ = xcosε1 − ysinε1 + ε2, (1.23)

y∗ = xsinε1 + ycosε1 + ε3. (1.24)

Application of equation (1.21) on equation (1.23) for each parameter εn (n = 1, 2, 3.)

provides

ξ1 = −y, ξ2 = 1, ξ3 = 0. (1.25)

Similarly, application of equation (1.22) on equation (1.24) for each parameter εn (n =

1, 2, 3.) provides

η1 = x, η2 = 0, η3 = 1. (1.26)

Hence, the infinitesimal generators can be listed as

X1 = −y ∂
∂x

+ x
∂

∂y
, (1.27)

X2 =
∂

∂x
, (1.28)

X3 =
∂

∂y
. (1.29)

1.2.4 Prolonged Lie Point Transformations and Generators

Consider the DE (1.10). If we want to apply a Lie point transformation (1.2) to equaton

(1.10), we have to prolong this transformation to its derivatives y(m), m = 1, 2, ...n.
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Recursively compute y∗(m) [3]

y∗(m) =
dŷ

dx∗(m)
=
dx∗(m−1)

dx∗
=
Dx(y

∗(m−1))

Dx(x∗)
, (1.30)

here Dx is the total derivative

Dx =
d

dx
=

∂

∂x
+ y′

∂

∂y
+ y′′

∂

∂y′
+ y′′′

∂

∂y′′
+ ......... (1.31)

As suggested by equation (1.12)

x∗ = x+ εξ(x, y) +O(ε2),

y∗ = y + εη(x, y) +O(ε2),

y∗
′
= y′ + εη(1)(x, y, y′) +O(ε2),

...

y∗(n) = yn + εη(n)(x, y, y′, ......., y(n)) +O(ε2),

(1.32)

where

η(1) =
∂y∗

′

∂ε

∣∣∣∣
ε=0

, η(2) =
∂y∗

′′

∂ε

∣∣∣∣
ε=0

, ...., η(n) =
∂y∗(n)

∂ε

∣∣∣∣
ε=0

. (1.33)

By putting equation (1.32) in equation (1.10), we get

y∗
′
=
Dx(y

∗)

Dx(x∗)
=
dy + εdη + .......

dx+ εdξ + .......
,

= y′ + ε((dη/dx)− y′(dξ/dx)) + ......

(1.34)

On comparing y∗′ from equation (1.34) to y∗′ from equation (1.32) , we get

η(1) = Dxη − y′Dxξ, (1.35)

where Dx is defined by equation (1.31).

Likewise, for y∗(n), we get

y∗(n) = y(n) + ε

(
dη(n−1)

dx
− yn dξ

dx

)
+O(ε2). (1.36)
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In addition, when we compare y∗(n) from equation (1.36) to y∗(n) from equation (1.32),

we get

η(n) = Dxη
(n−1) − y(n)Dxξ. (1.37)

As a result, we can generalize it to

η(k) = Dxη
(k−1) − y(k)Dxξ, k = 1, ....., n (1.38)

where η(k) is the kth-prolongation and Dx is defined by equation (1.31). We can also

compute the prolongation of η by substituting equation (1.31) in equation (1.38) as

the first two prolongations are

η(1) = ηx + y′(ηy − ξx)− y′2ηy, (1.39)

η(2) = ηxx + y′(2ηxy − ξxx) + y′2(ηyy − 2ξxy)− y′3ξyy + y′′(ηy − 2ξx− 3y′ξy). (1.40)

The infinitesimal transformations are expressed as

x∗ = x+ εXx+O(ε2),

y∗ = y + εXy +O(ε2),

y∗
′
= y′ + εXy′ +O(ε2),

...

y∗(n) = yn + εXy(n) +O(ε2),

(1.41)

and the prolongation of an infinitesimal generator is as follows

X [n] = X + η(1)
∂

∂y′
+ .......+ η(n)

∂

∂y(n)
. (1.42)

Example

Consider following generator

X = −x ∂
∂x
− 3y

∂

∂y
. (1.43)
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Now we will find its second order extended generator, i.e. η(1) and η(2) are required to

find. We can deduce from equation (1.43) that

ξ = −x, η = −3y. (1.44)

Using equation (1.38), we can calculate prolongation co-efficients as follows

η(1) = −2y′. (1.45)

η(2) = −y′′. (1.46)

As a result, the prolonged generator is obtained as

X [2] = −x ∂
∂x
− 3y

∂

∂y
− 2y′

∂

∂y′
− y′′ ∂

∂y′′
. (1.47)

1.3 Lie Point Symmetries of ODEs

Consider a set of symmetric transformations that are dependent on at least one param-

eter, then this symmetry is called Lie point symmetry, named after the Norwegian

mathematician Sophus Lie [3].

Consider the following ordinary differential equation (ODE) (1.10), which admits a

group of symmetries with generator X if and only if

X [n]U |U = 0, (1.48)

holds.

Where X [n] is the nth prolongation of an infinitesimal generator given by equation

(1.42).

Example

Assume we have a DE

y′ =
y + 1

x
+
y2

x3
, (1.49)
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admitting a generator

X = x2
∂

∂x
+ xy

∂

∂y
. (1.50)

From equation (1.50), we obtain

ξ = x2, η = xy. (1.51)

Using definition (1.38), we now find the prolongation co-efficient as follows:

η(1) = y − xy′. (1.52)

So the first prolonged generator is obtained as

X [1] = x2
∂

∂x
+ xy

∂

∂y
+ (y − xy′) ∂

∂y′
. (1.53)

This implies that

X [1]U
∣∣
U=0

=

(
x2

∂

∂x
+ xy

∂

∂y
+ (y − xy′) ∂

∂y′

)(
y′ − y + 1

x
− y2

x3

)
= 0. (1.54)

So the given ODE (1.49) admits the symmetry.

Example

Suppose we have a DE

y′′ − x−5y2 = 0, (1.55)

admitting a generator

X = −x2 ∂
∂x
− xy ∂

∂y
. (1.56)

From equation (1.56), we obtain

ξ = −x2, η = −xy. (1.57)

Using definition (1.38), we now find the prolongation co-efficients

η(1) = xy′ − y, η(2) = 3xy′′. (1.58)

10



So the second prolonged generator is obtained as

X [2] = −x2 ∂
∂x
− xy ∂

∂y
+ (xy′ − y)

∂

∂y′
+ 3xy′′

∂

∂y′′
. (1.59)

This implies that

X [2]U
∣∣
U=0

= (−x2 ∂
∂x
− xy ∂

∂y
+ (xy′ − y)

∂

∂y′
+ 3xy′′

∂

∂y′′
)(y′′ − x−5y2) = 0. (1.60)

So the given ODE (1.55) admits the symmetry.

1.3.1 General Procedure of Finding Lie Point Symmetry

Finding the Lie point symmetries of the DE (1.10) to get ξ and η only. To ensure the

regularity of DE (1.10), and because many DEs naturally originate as linear equations

with the highest derivative, we choose to begin with the y(n) = ω(x, y, y′, y′′..., y(n−1))

form of DE. Since the symmetry condition [3] is

X [n]ω =

(
X + η′

∂

∂y′
+ η′′

∂

∂y′′
+ .......+ η(n−1)

∂

∂y(n−1)

)
ω = η(n), (1.61)

where X is given by an equation (1.14), η(k) is defined by an equation (1.38) and y(n)

in η(n) must be replaced by ω.

Case1: 1st Order ODE

Consider a 1st order ODE

y′ = ω(x, y). (1.62)

The associated PDE is
A =

∂

∂x
+ y′

∂

∂y
,

=
∂

∂x
+ ω

∂

∂y
.

(1.63)

The symmetry condition (1.61) is as follows

Xω =

(
ξ
∂

∂x
+ η

∂

∂y

)
ω = η(1), (1.64)
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using the definition of η(1) from equation (1.39) in equation (1.64) yields [3]

ξωx + ξxω + ξyω
2 = ηx + ηyω − ηωy. (1.65)

The function ω(x, y) is given, this PDE (1.65) always have non zero solutions ξ(x, y)

and η(x, y). In fact, one may prescribe η (or ξ) and then deduce ξ (or η) from equation

(1.65). In this scenario, a 1st order DE has an infinite number of symmetries, but there

is no symmetric way to find them.

Example

Consider 1st order ODE

y′ = x2y, (1.66)

here

ω = x2y. (1.67)

Equation (1.65) contains two unknowns, ξ and η. To find ξ, we assume η = 0 and vice

versa. So, the equation (1.65) becomes

ξωx + ξxω + ξyω
2 = 0. (1.68)

This implies that

ξ(2xy) +
∂ξ

∂x
(x2y) +

∂ξ

∂y
(x4y2) = 0. (1.69)

The characterstic equation of equation (1.69) is

dx

x2y
=

dy

(x4y2)
=

dξ

ξ(2xy)
. (1.70)

Solving equation (1.70) gives

ξ =
1

x2
. (1.71)

Hence, the symmetry generator is

X =
1

x2
∂

∂x
. (1.72)

Using the condition XU |U=0 = 0, we can say X is symmetric.

12



Case2: 2nd Order ODE

In the following example, we show how this procedure is used to find symmetries for

2nd order DE.

Example

Consider a 2nd order DE [7]

y′′ = 4
y′2

y
. (1.73)

Now we use the condition (1.61) to find the symmetries of 2nd order DE (1.73)

η(2) = X [2]ω. (1.74)

Using equation (1.40) in equation (1.74), we have

ηxx + y′(2ηxy − ξxx) + y′2(ηyy − 2ξxy)− y′3ξyy + y′′(ηy − 2ξx− 3y′ξy) = −4η
y′2

y2
+ 8η(1)

y′

y
.

(1.75)

Putthing y′′ = 4y
′2

y
from equation (1.73) and η(1) fron equation (1.39), we get

ηxx + y′(2ηxy − ξxx) + y′2(ηyy − 2ξxy)− y′3ξyy + 4
y′2

y
(ηy − 2ξx − 3y′ξy) + 4η

y′2

y2

− 8
y′

y
(ηx + y′(ηy − ξx)− y′2ηy) = 0.

(1.76)

Comparing the co-efficients of y′ and solving it further yields

ξ(x, y) = 3c1x
2 + c2x+ c3, (1.77)

η(x, y) = −c1xy + c4y + c5y
4 + c6xy

4. (1.78)

In this case, cl, l = 1, 2, .., 6 are arbitrary constants. As a result of equation (1.77)

and equation (1.78), the infinitesimal generator of 1-parameter Lie point symmetries

of equation (1.73) established as

X =
(
3c1x

2 + c2x+ c3
) ∂
∂x

+
(
− c1xy + c4y + c5y

4 + c6xy
4
) ∂
∂y
. (1.79)
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and for each ci = 1, cj = 0, we get following six symmetries

X1 = 3x2
∂

∂x
− xy ∂

∂y
, X2 = x

∂

∂x
,

X3 =
∂

∂x
, X4 = y

∂

∂y
,

X5 = y4
∂

∂y
, X6 = xy4

∂

∂y
.

(1.80)

A 2nd order DE can accept a maximum of eight symmetries. It is important to mention

that every 2nd order linear homogeneous DE is transformed into y′′ = 0, and hence

admits eight symmetries. To understand this consider a 2nd order linear homogeneous

DE [3]

y′′ + p(x)y′ + q(x)y = 0. (1.81)

The general solution of equation (1.81) is

y = c1y1(x) + c2y2(x), (1.82)

where y1 and y2 are linearly indepedent solution of equation (1.81). Now dividing y2

on both sides of equation (1.82)

y

y2
= c1

y1
y2

+ c2. (1.83)

Let

y∗ =
y

y2
, x∗ =

y1
y2
, (1.84)

then transformed equation is

y∗ = c1x
∗ + c2, (1.85)

this implies that

y∗
′′

= 0. (1.86)

So, there are 8 symmetries.
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Case3: Higher Order DE

Consider a 3rd order DE [6]

y′′′ = −xy. (1.87)

Now we use the condition (1.61) to find the symmetries of 3rd order DE (1.87).

η(3) = X [3]ω. (1.88)

Solving equation (1.88), we have

η(3) + ξy + ηx = 0. (1.89)

Putthing value of η(3) in equation (1.89) , we get

ηxxx + y′(3ηxxy − ξxxx) + 3y′2(ηxyy − ξxxy)− y′3(ηyyy − 3ξxyy)− y′4ξyyy+

3y′′[ηxy − ξxx + y′(ηyy − 3ξxy)− 2y′2ξyy]− 3y′′2ξy − xy[ηy − 3ξx − 4y′ξy]

+ ξy + ηx = 0.

(1.90)

Comparing coefficients provides PDE

(constant) : ηxxx − xy(ηy − 3ξx) + ξy + ηx = 0,

(y′) : 3ηxxy − ξxxx + 4xyξy = 0,

(y′2) : 3(ηxyy − ξxxy) = 0,

(y′3) : ηyyy − 3ξxyy = 0,

(y′4) : ξyyy = 0, (1.91)

(y′′) : 3(ηxy − ξxx) = 0,

(y′y′′) : 3(ηyy − 3ξxy) = 0,

(y′2y′′) : − 2ξyy = 0,

(y′′2) : ξy = 0.
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Solving the system (1.91), yields

ξ(x, y) = c3x
2 + c4x+ c5, (1.92)

η(x, y) = y(c1x+c2)+c3(
5

48
x4y− x

4

24
)−c4

x4y

6
−c2

x4y

24
+c5

x3y

6
+c6

x2

2
+c7x+c8. (1.93)

In this case, cl, l = 1, 2, .., 8 are constants. Thus, the infinitesimal generator of 1-

parameter Lie point symmetries of DE (1.87) is established as

X =
(
c3x

2 + c4x+ c5
) ∂
∂x

+
(
y(c1x+ c2) + c3(

5

48
x4y − x4

24
)− c4

x4y

6
− c2

x4y

24

+ c5
x3y

6
+ c6

x2

2
+ c7x+ c8

) ∂
∂y
,

(1.94)

and for each ci = 1, cj = 0, we get following eight symmetries

X1 = xy
∂

∂y
, X2 =

(
y − x4y

24

)
∂

∂y
,

X3 = x2
∂

∂x
+

(
5

48
x4y − x4

24

)
∂

∂y
, X4 = x

∂

∂x
− x4y

6

∂

∂y
,

X5 =
∂

∂x
+
x3y

6

∂

∂y
, X6 =

x2

2

∂

∂y
,

X7 = x
∂

∂y
, X8 =

∂

∂y
.

(1.95)

A DE of order n ≥ 3 admits at most (n+ 4)-parameter group of Lie point symmetries.

The Lie point symmetry method is used to solve a variety of DE systems [8–10].

1.4 Lie Algebras and Lie Brackets

Before delving into the details of Lie algebra, we must first define Lie group [5].

Lie Group

A Lie group is a group and a finite-dimensional real smooth manifold in which the

group operations of multiplication and inversion are smooth maps. Lie groups were

introduced by a Norwegian mathematician Sophus Lie who formulated the theory of
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continuous transformation groups in order to model the continuous symmetries.

A Lie algebra, which entirely determines the local structure of the Lie group, can be

associated with any Lie group. The definition of Lie algebra is

Lie Algebra

The Lie algebra L is a vector space defined on a field R together with an operation

known as the Lie bracket that fulfils the properties [5]

1. Bilinearity : [X, fY + gZ] = [X, fY ] + [X,+gZ], ∀X,Y ,Z ∈ L and f, g ∈ R.

2. Skew symmetry : [X,Y ] = −[Y ,X], ∀X,Y ∈ L.

3. Jaccobi identity : [[X,Y ],Z] + [[Z,X],Y ] + [[Z,Y ],X] = 0, ∀X,Y ,Z ∈ L.

.

We can deduce [X,X] = 0 from a skew-symmetry property whereas the Lie algebra is

called abelian when [X,Y ] = 0. The commutator relation of XK ,XL ∈ L is

[XK ,XL] = CM
KLXM , (1.96)

where CM
KL is the structure constant.

Example

The generators of the Lie algebra with 3-parameters εN are

X1 =
∂

∂x
, X2 =

∂

∂y
, X3 = x

∂

∂x
+ y

∂

∂x
. (1.97)

and the corresponding Lie algebra is

[X1,X2] = 0,

[X1,X3] =
∂

∂x
= X1 = C1

13X1,

[X2,X3] =
∂

∂y
= X2 = C2

23X2.

(1.98)

The structure constants are C1
13 = 1 and C2

23 = 1. Due to skew-symmetric property of

structure constants C1
13 = −1, C2

23 = −1.
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Example

The generators of the Lie algebra with 6-parameters εN are

X1 =
∂

∂x
, X2 =

∂

∂y
, X3 =

∂

∂v
, X4 = y

∂

∂v
,

X5 = x
∂

∂x
+ 3v

∂

∂v
, X6 = y

∂

∂y
− 2v

∂

∂v
.

(1.99)

and the corresponding Lie algebra is

[X1,X2] = 0, [X1,X3] = 0, [X1,X4] = 0, [X1,X5] =
∂

∂x
= C1

15X1,

[X1,X6] = 0, [X2,X3] = 0, [X2,X4] = 0, [X2,X6] =
∂

∂y
= C2

26X2,

[X3,X4] = 0, [X3,X5] = 3
∂

∂u
= C3

35X3, [X3,X6] = −2
∂

∂u
= C3

36X3,

[X4,X5] = 3y
∂

∂u
= C4

45X4, [X4,X6] = −2y
∂

∂u
= C4

46X4, [X5,X6] = 0.

(1.100)

The structure constants are C1
15 = 1, C2

26 = 1, C3
35 = 3, C3

36 = −2, C4
45 = 3 and C4

46 =

−2. Due to skew-symmetric property of structure constants C1
15 = −1, C2

26 = −1,

C3
35 = −3, C3

36 = 2, C4
45 = −3 and C4

46 = 2.

For detailed discussion one may refer to [11–13]

1.5 Lagrangian-Based Systems

Classical mechanics is primarily made up of systems of second order DEs. In classical

mechanics, the concept q̇i = dqi

dt
is frequently used, where time t is independent variable

and generalised coordinates qi are dependent variables. The system of 2nd order DEs

can be written as [3]

q̈i = ωi(t, qj, q̇j), i, j = 1, ..., N (1.101)

which corresponds to the linear PDE

Af =

(
∂

∂t
+ q̇i

∂

∂qi
+ ωi(t, qj, q̇j)

∂

∂q̇i

)
f = 0. (1.102)
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The solutions φi of equation (1.102) translate into the 2N first integrals of equation

(1.101), just as they do in case of ODEs. Taking infinitesimal transformation of time

t and generalised coordinates into account

t∗ = t+ εξ(t, q, q∗), q∗i = qi + εηi(t, q, q∗). (1.103)

In this coordinate system, the generator and its prolongation can be written as

X = ξ(t, qj)
∂

∂t
+ ηi(t, qj)

∂

∂qi
,

X [1] = X + η̇i(t, qj, q̇j)
∂

∂q̇i
,

(1.104)

where η̇i is denoted by

η̇i =
dηi

dt
− q̇idξ

dt
. (1.105)

By recursion, successive prolongation X [n] of X can be obtained (if convenient, write

X for the prolongations as well) and system symmetries can be deduced if

[X,A] = λA (1.106)

holds.

Once the symmetries are known, the first integral corresponding to each symmetry can

be found using the Lagrangian of the system. Lagrangian, on the other hand, is just

the kinetic energy T minus potential energy V

L(t, qj, q̇j) = T − V. (1.107)

This correspondence between symmetries and first integrals cannot be established for

symmetries less than 2N, but it is possible if the system can be deduced from an action

N =

∫ tb

ta

L(t, qi, q̇i)dt. (1.108)

The expression N leads to Lagrange (geodesic) equation

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0. (1.109)
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1.5.1 The Noether Symmetries

Noether symmetries are those infinitesimal symmetry generators that leave a La-

grangian L(t, qj, q̇j) invariant. A generator of infinitesimal transformations X is said

to be Noether symmetry if it satisfies

X [1]L+ LAξ = AV (t, qi), (1.110)

where V (t, qi) is a gauge function, A is an operator defined by

A =
∂

∂t
+ q̇i

∂

∂qi
(1.111)

and X [1] is the first prolonged generator defined by equation (1.144). When V (t, qi) =

0, the Noether symmetries lead to variational symmetries [14].

1.5.2 The Relationship between Lie and Noether symmetries

To illustrate the relationship between Noether symmetries and first integrals corre-

sponding to each Noether symmetry, a conserved quantity [15]

φ = ξ[q̇αLq̇α − L]− ηαLq̇α + V (t, qβ), (1.112)

satisfying Xφ = 0 may be found. Noether symmetries are always form a subalgebra

of Lie point symmetries.

For a more in-depth discussion, see [16] and [17].

Example

Consider the Lagrangian

L = ẋ2 + ẏ2. (1.113)

From Lagrange equation (1.109), we get

ẍ = 0, ÿ = 0. (1.114)
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By inserting values, equation (1.110) becomes

2ẋ[η1t + ẋ(η1x − ξt) + ẏη1y − ẋ2ξx − ẋẏξy] + 2ẏ[η2t + ẋη2x + ẏ(η2y − ξt)− ẋẏξx − ẏ2ξy]

+ [ẋ2 + ẏ2(ξt + ẋξx + ẏ2ξy)] = Vt + ẋVx + ẏVy.
(1.115)

Through the comparison of coefficients

(ẋ) : 2η1t = Vx,

(ẋ2) : 2η1x − ξxt = 0,

(ẋẏ) : 2η1y + 2η1x = 0,

(ẋ3) : ξx = 0,

(ẋ2ẏ) : ξy = 0,

(ẏ) : 2η2t = Vy,

(ẏ2) : 2η2y − ξt = 0,

constant : Vt = 0.

(1.116)

Now from the equations (ẋ3) and (ẋẏ) we get

ξ = ξ(t). (1.117)

From the equation Vt = 0 yields

V = (x, y). (1.118)

Differentiating equation (ẋ) w.r.t. t, we get

η1 = ta1(x, y) + a2(x, y). (1.119)

Differentiating equation (ẋ2) w.r.t. x, yields

a1 = xb1(y) + b2(y),

a2 = xb3(y) + b4(y).
(1.120)

Equation (1.119) imples that

η1 = t(xb1 + b2) + xb3 + b4. (1.121)
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Differentiating equation (ẏ) w.r.t. t, we get

η2 = ta3(x, y) + a4(x, y). (1.122)

Differentiating equation (ẏ2) w.r.t. y, we get

a3 = yd1(x) + d2(x),

a4 = yd3(x) + d4(x).
(1.123)

Equation (1.122) imples that

η2 = t(yd1 + d2) + yd3 + d4. (1.124)

From the equation (ẋẏ), we get

b1 = c1, b2 = c5y + c6, b3 = c2, b4 = c8y + c9,

d1 = c3, d2 = −c5x+ c7, d3 = c4, d4 = −c8x+ c10.
(1.125)

This implies that equation (1.121) and equation (1.124) becomes

η1 = t(c1x+ c5y + c6) + c2x+ c8y + c9, (1.126)

η2 = t(c3y − c5x+ c7) + c4y − c8x+ c10. (1.127)

Now from equation (ẋ2), we get

ξ = c1t
2 + c2t+ c3, (1.128)

and from equation (ẋ), we get

V = c1x
2 + 2c5cy + 2c6x. (1.129)

As a result, the symmetry generator looks like this:

X = (c1t
2 + c2t+ c3)

∂

∂t
+ (t(c1x+ c5y + c6) + c2x+ c8y + c9)

∂

∂x

+ t(c3y − c5x+ c7) + c4y − c8x+ c10
∂

∂y
,

(1.130)
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and for each ck = 1, cl = 0, we get the following Noether symmetries

X1 = t2
∂

∂t
+ tx

∂

∂x
, X2 = t

∂

∂t
+ x

∂

∂x
,

X3 =
∂

∂t
+ ty

∂

∂y
, X4 = y

∂

∂y
,

X5 = ty
∂

∂x
− tx ∂

∂y
, X6 = t

∂

∂x
,

X7 = t
∂

∂y
, X8 = y

∂

∂x
− x ∂

∂y
,

X9 =
∂

∂x
, X10 =

∂

∂y
.

(1.131)

Mei symmetry is another intriguing symmetry.

1.5.3 The Mei Symmetries

In the year 2000, Mei proposed a new symmetry called form invariance. Form in-

variance, also known as Mei symmetry. It states that the dynamical functions (such

as Lagrangian etc.) appearing in the mechanical system’s dynamical equations still

fulfil the original equations after the infinitesimal transformation. Mei symmetry, like

Noether symmetry, admits first integrals known as Mei conserved quantities.

To be able to find Mei symmetries, we must first define and implement a method for

finding them [18].

Assume we have a Lagrangian

L = L(t, qi, q̇i), (1.132)

Consider the infinitesimal transfirmation group with a 1-parameter.

t∗ = t+ εξ(t, qj),

q∗i = qi + εηi(t, qj),
(1.133)

where i, j = 1, ...., n and ε ∈ R. The associated infinitesimal generator is

X = ξ
∂

∂t
+ ηi

∂

∂qi
. (1.134)
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As a result of the transformation (1.133), the Lagrangian (1.132) becomes

L∗ = L∗(t∗, q∗i, q̇∗i),

= L̂

(
t+ εξ, qi + εηi,

q̇i + εη̇i

1 + εξ̇

)
.

(1.135)

The Taylor series expansion of equation (1.135) about ε = 0 yields

L∗ = L(t, qi, q̇i) + εX [1]L+O(ε2), (1.136)

where

X [1] = X + (η̇i − ξ̇q̇i) ∂
∂q̇i

, (1.137)

is the first prolongation of the infinitesimal generator X.

The Euler-Lagrange equation is written as

Ei(L) = 0, (1.138)

where Ei denotes the Euler operator

Ei =
d

dt

∂

∂q̇i
− ∂

∂qi
. (1.139)

If equation (1.138) remains unchanged when the new Lagrangian L̂ from equation

(1.136) is substituted in place of the Lagrangian, i.e.

Ei(L
∗) = 0, (1.140)

this invariance is known as the Mei symmetries corresponding to the Lagrangian. As

a result, we can present the method for determining Mei symmetries [19–22].

Method for Determining Mei Symmetries

If the infinitesimals ξ and η satisfy

Ei[X
[1]L] = 0, i = 1, ..., n. (1.141)
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then the corresponding invariance is the Mei symmetry for the Lagrangian.

Before using this method to find Mei symmetries, we should investigate the relationship

between Mei symmetries and Noether symmetries, as it is crucial in determining Mei

conserved quantities and Noether conserved quantities.

1.5.4 The Relationship of Noether and Mei Symmetries

To begin, we will present an important theorem [23].

Theorem

If the Mei symmetry of the system (1.132) and the infinitesimals ξ and ηi of the gauge

function g(t, qi, q̇i) admit

X [1]Lξ̇ + X [1](X [1]L) + z(t)
∂(X [1]L)

∂qi
q̇iξ̇ + ġ = 0, (1.142)

then the Mei symmetry can lead to new conserved quantity

φ1 =
∂(X [1]L)

∂q̇
ηi + (X [1]L− ∂(X [1]L)

∂q̇
q̇ − z(t)

∂(X [1]L)

∂t
)ξ + g. (1.143)

This theorem aids in the construction of a relationship between the Noether and Mei

symmetries.

Consider the integral function

S(q) =

∫ t2

t1

X [1]L(L(t, qi(t), q̇i(t)))dt, (1.144)

with boundary conditions qi(t)|t=a = qi(a) and qi(t)|t=b = qi(b) where i = 1, .., n.

The same form as equation (1.141) can be deduced from Lagrange equations of equation

(1.144). Furthermore, we know that Noether symmetry refers to action invariance, so

if

S∗(q∗) = S(q) (1.145)
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remains true under infinitesimal transformations, the invariance is known as Noether

Symmetry. There exists a boundary function g(t, qi, q̇i) for ξ and η, such that

∂(X [1]L)

∂t
ξ +

∂(X [1]L)

∂qi
ηi +

∂(X [1]L)

∂q̇i
(η̇i − q̇iξ̇) + X [1]Lξ̇ = −ġ. (1.146)

We get the same equation as in equation (1.142), and this is known as the Noether

identity for the problem (1.144). We can deduce the Noether first integral or Noether

conserved quantity from this, which is the same as equation (1.143). From equations

(1.141) and (1.146), it is clear that Mei symmetry differs from Noether symmetry in

general.

The Lie point symmetry method and the Noether symmetry method have evolved

significantly over time and are now used to solve various problems. On the contrary,

much work and research on Mei symmetries remains unfinished, and they are still on

their way to being applied to a variety of problems. Our primary goal is to find Mei

symmetries for a specific Lagrangian presented in Section 2. More detailed discussion

is given in [24].

26



Chapter 2

Mei Symmetries for the Lagrangian of
Kerr Metric

Before finding the Mei symmetries for the Lagrangian of Kerr metric, a brief introduc-

tion of the Kerr metric is presented.

2.1 The Kerr Metric

The Kerr metric, discovered by Roy Kerr, describes the geometry of an empty spacetime

in the vicinity of a spinning uncharged axisymmetric black hole. The Kerr metric is

one of the well-known solutions to Einstein’s field equations. The nonlinearity of these

equations makes precise solutions extremely difficult to obtain..

In Boyer-Lindquist coordinates, the metric [25] is given by

ds2 = −c2dτ 2,

=
ρ2

∆
dr2 + ρ2dθ2 +

sin2 θ

ρ2
[adt− (r2 + a2)dφ]

2 − ∆

ρ2
(dt− a sin2 θdφ)2,

(2.1)

where

ρ2 = r2 + a2cos2θ, ∆ = r2 + a2 − 2mr, (2.2)

m is the mass of the rotational object, a is the spin parameter or specific angular

momentum and is related to the angular momentum J by a = J
m
. This spacetime
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admits two isometries or Killing vectors ∂
∂t

and ∂
∂φ
. Thus, the only conserved quantities

in this spacetime are energy and angular momentum.

2.2 Review of the Noether and Lie Point Symmetries
for the Lagrangian of Kerr Metric

In this section, we review the approximate Noether symmetries of the geodesic equa-

tions for the charged-Kerr spacetime and rescaling of energy. Ibrar Hussain, Fazal

M. Mahomed and Asghar Qadir [26]:

To begin, we write the Lagrangian of Kerr metric as

L = −
(

1− 2mr

ρ2

)
ṫ2 +

ρ2

∆
ṙ2 + ρ2θ̇2 +

sin2 θ

ρ2
Σφ̇2 − 4mar sin2 θ

ρ2
ṫφ̇, (2.3)

where

Σ =
[
(r2 + a2)2 − a2 sin2 θ∆

]
(2.4)

According to [26], equation (1.110) can be solved to get Noether symmetries for the

Lagrangian of Kerr metric given by equation (2.3). The obtained Noether symmetries

are

X1 =
∂

∂s
, X2 =

∂

∂t
, X3 =

∂

∂φ
. (2.5)

We can infer from this that the isometries are a subalgebra of the Noether symmetries.

Furthermore, the geodesic equations (1.139) for Lagrangian given by equation (2.3) are

ẗ = −2m(r2 + a2)Ω

ρ4∆
ṫṙ +

4ma2r sin θ cos θ

ρ4
ṫθ̇ − 4ma3r sin3 θ cos θ

ρ4
θ̇φ̇

+
2ma sin2 θ[(r2 + a2)Ω + 2rρ2]

ρ4∆
ṙφ̇, (2.6)

r̈ =
mΩ− a2r sin2 θ

ρ2∆
ṙ2 +

2a2 sin θ cos θ

ρ2
ṙθ̇ − m∆Ω

ρ6
ṫ2 +

2ma sin2 θ∆Ω

ρ6
ṫφ̇

− [ma2 sin4 θ∆Ω− r sin2 θ∆ρ4]

ρ6
φ̇2 +

r∆

ρ2
θ̇2, (2.7)
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θ̈ =
a2 sin θ cos θ

ρ2
θ̇2 +

2ma2r sin θ cos θ

ρ6
ṫ2 − 4mar sin θ cos θ(r2 + a2)

ρ6
ṫφ̇

− a2 sin θ cos θ

ρ2∆
ṙ2 +

sin θ cos θ[(r2 + a2)Σ− a2 sin2 θ∆ρ2]

ρ6
φ̇2 − 2r

ρ2
ṙθ̇, (2.8)

φ̈ = −2maΩ

ρ4∆
ṫṙ +

4mar cot θ

ρ4
ṫθ̇ +

2ma2 sin2 θΩ + 2r(−ρ2 + 2mr)ρ2

ρ4∆
ṙφ̇

− 2 cot θρ4 + 4ma2r sin θ cos θ

ρ4
θ̇φ̇, (2.9)

where

Ω = (r2 − a2 cos2 θ). (2.10)

Applying the condition (1.48) for the Lie point symmetries of ODEs on these equations

(2.6)-(2.9) yields the exact or Lie point symmetries corresponding to Kerr metric. The

obtained Lie point symmetries are

X1 =
∂

∂s
, X2 = s

∂

∂s
, X3 =

∂

∂t
, X4 =

∂

∂φ
. (2.11)

In addition to the previously described Noether symmetries, one additional Lie point

symmetry s∂/∂s is obtained. The set of Noether symmetry is thus said to be a subset

of the set of Lie point symmetry.

Next, we compute the Mei symmetries for the same Lagrangian as in equation to

examine how they compare to the Lie and Noether symmetries.

2.3 The Kerr metric’s Mei Symmetry

Considering the method for the Mei symmetries as

Ei[X
[1]L] = 0. (2.12)

Here L is the Lagrangian, whereas Ei = d
ds

∂
∂q̇i
− ∂

∂qi
is the Euler operator and X [1] =

ξ ∂
∂s

+ ηi ∂
∂qi

+ (η̇i − q̇iξ̇) ∂
∂q̇i

is the first extended infinitesimal generator.
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Applying first prolonged generator on the Lagrangian given in (2.3) yields

X [1]L = (η̇1 − ṫξ̇)
[
− 2(1− 2mr

ρ2
)ṫ− 4mar sin2 θ

ρ2
φ̇

]
+ η2

[
− 2mΩ

ρ4
ṫ2

− 2mΩ− a2r sin2 θ

∆2
ṙ2 + 2rθ̇2 − 2ma2 sin4 θΩ− 2r sin2 θ

ρ4
φ̇2

+
4ma sin2 θΩ

ρ4
ṫφ̇

]
+ (η̇2 − ṙξ̇)

[
2ρ2

∆
ṙ

]
+ η3

[
− 2a2 sin θ cos θ

∆
ṙ2

+
4ma2r sin θ cos θ

ρ4
ṫ2 +

8mar sin θ cos θ(r2 + a2)

ρ4
ṫφ̇+ 2 sin θ

cos θ[(r2 + a2)Σ− a2 sin2 θ∆ρ2]

ρ4
φ̇2 − 2a2 sin θ cos θθ̇2

]
+
(
η̇3

− θ̇ξ̇
)[

2ρ2θ̇

]
+ (η̇4 − φ̇ξ̇)

[
2 sin2 θ

ρ2
Σφ̇− 4mar sin2 θ

ρ2
ṫ

]
. (2.13)

For q1 = t, equation (2.12) yields[
d

ds

∂

∂ṫ
− ∂

∂t

][
X [1]L

]
= 0. (2.14)

Using equation (2.13) in equation (2.14) and substituting equations (2.6) to (2.9).

Simplifying it further and then powers of (ṫ, ṙ, θ̇, φ̇) are compared to get system of

determining equations as follows:

(constant) : (−ρ2 + 2mr)η1ss − 2mar sin2 θη4ss = 0, (2.15a)

(ṫ) : (−ρ2 + 2mr)ξss − (−ρ2 + 2mr)η1st + 2mar sin2 θη4ss

+
mΩ

ρ2
η2s −

2ma2r sin θ cos θ

ρ2
η3s = 0, (2.15b)

(ṙ) : (−ρ2 + 2mr)η1sr − 2mar sin2 θη4sr −
ma sin2 θΩ

ρ2
η4s

− mΩ

ρ2
η1s = 0, (2.15c)

(θ̇) : (−ρ2 + 2mr)η1sθ − 2mar sin2 θη4sθ +
2ma2r sin θ cos θ

ρ2
η1s

− 2mar sin θ cos θ(r2 + a2)

ρ2
η4s = 0, (2.15d)

(φ̇) : (2mar sin2 θ)ξss + (−ρ2 + 2mr)η1sφ − 2mar sin2 θη4sφ
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+
ma sin2 θΩ

ρ2
η2s −

2mar sin θ cos θ(r2 + a2)

ρ2
η3s = 0, (2.15e)

(ṫ2) : 4(−ρ2 + 2mr)ξst − (−ρ2 + 2mr)η1tt + 2mar sin2 θη4tt+

∆
m(−ρ2 + 2mr)Ω

ρ6
η1r −

2ma2r sin θ cos θ(−ρ2 + 2mr)

ρ6
η1θ

+
2mΩ

ρ2
η2t −

4ma2r sin θ cos θ

ρ2
η3t −

2m2ar sin2 θ∆Ω

ρ6
η4r

+
4ma2a3r2 sin3 θ cos θ

ρ6
η4θ = 0, (2.15f)

(ṙ2) : (−ρ2 + 2mr)η1rr − 2mar sin2 θη4rr +
(−ρ2 + 2mr)

ρ2∆[
mΩ− a2r sin2 θ

]
η1r −

2mΩ

ρ2
η1r −

a2 sin θ cos θ

ρ2∆

(
− ρ2

+ 2mr
)
η1θ +

2ma3r sin3 θ cos θ

ρ2∆
η4θ +

2ma sin2 θΩ

ρ2
η4r

− 2mar sin2 θ[mΩ− a2r sin2 θ]

ρ2∆
η4r = 0, (2.15g)

(θ̇2) : (−ρ2 + 2mr)η1θθ +
2a2 sin θ cos θ(−ρ2 + 4mr)

ρ2
η1θ +

r∆

ρ2(
− ρ2 + 2mr

)
η1r −

4mar sin θ cos θ(r2 + a2)

ρ2
η4θ − 2ma3r

[sin3 θ cos θ(−ρ2 + 2mr)

ρ2
]
η4θ −

2mar2 sin2 θ∆

ρ2
η4r − 2mar

sin2 θη4θθ = 0, (2.15h)

(φ̇2) : (8mar sin2 θ)ξsφ +
2ma sin2 θΩ

ρ2
η2φ − 2mar sin2 θη4φφ+

(−ρ2 + 2mr)

ρ6
[

sin θ cos θ(r2 + a2)Σ− a2 sin3 θ cos θ∆ρ2
]
η1θ

− (−ρ2 + 2mr)∆

ρ6
[
ma2 sin4 θΩ− r sin2 θρ4

]
η1r −

2mar

ρ6

sin2 θ
[

sin θ cos θ(r2 + a2)Σ− a2 sin3 θ cos θ∆ρ2
]
η4θ + ∆

(2mar sin2 θ)

ρ6
[
ma2 sin4 θΩ− r sin2 θρ4

]
η4r +

(
− ρ2 + 2

mr
)
η1φφ −

4mar sin θ cos θ(r2 + a2)

ρ2
η3φ = 0, (2.15i)

(ṫṙ) : (−ρ2 + 2mr)ξsr − (−ρ2 + 2mr)η1tr + 2mar sin2 θη4tr

31



+
mΩ

ρ2
η1t +

(−ρ2 + 2mr)

ρ4∆

[
m(r2 + a2)Ω

]
η1t +

(−ρ2 + 2mr)

ρ4∆[
maΩ

]
η1φ +

mΩ

ρ2
η2r −

2mr

ρ4
[
− 3a2 cos2 θ + r2

]
η2 − 2m2Ω2

ρ4∆
η2

− 2ma2r
[sin θ cos θ

ρ2
]
η3r −

[2mr(r2 + a2)

ρ2∆
+ 1
][ma sin2 θΩ

ρ2
]

η4t −
2m2a2r sin2 θΩ

ρ4∆
η4φ +

2ma2 sin θ cos θ(3r2 − a2 cos2 θ)

ρ4
η3

= 0, (2.15j)

(ṫθ̇) : 2(−ρ2 + 2mr)ξsθ − (−ρ2 + 2mr)η1tθ + 2mar sin2 θη4tθ + 2

mar cot θ
(−ρ2 + 2mr)

ρ4
η1φ −

4m2a2r sin θ cos θ

ρ4
η1t +

m

ρ2
Ωη2θ

− 2ma2r sin θ cos θ

ρ2
η3θ +

2ma2r cos2 θ
(
4mrρ2 − 1

)
ρ2

η3 + 2

(
ma2r sin2 θΩ

ρ4
)η3 +

2mar sin θcosθ(r2 + a2)

ρ2
η4t +

4m2a3r2

ρ4

(sin3 θ cos θ)η4t +
4m2a2r2 sin θ cos θ

ρ4
η4φ −

2ma2 sin θ cos θ

ρ4(
3r2 − a2 cos2 θ

)
η2 = 0, (2.15k)

(ṫφ̇) : (−ρ2 + 2mr)η1tφ +
ma sin2 θΩ

ρ2
η2t +

(−ρ2 + 2mr)

ρ6
[
ma∆

sin2 θΩ
]
η1r −

(−ρ2 + 2mr)

ρ6
[
2mar sin θ cos θ(r2 + a2)

]
η1θ

− mΩ

ρ2
η2φ −

2mar sin θ cos θ(r2 + a2)

ρ2
η3t + 4mar sin2 θξst

+
2ma2r sin θ cos θ

ρ2
η3φ −

2m2a2r sin4 θ∆Ω

ρ6
η4r − 2

(
− ρ2

+ 2mr
)
ξsφ +

4m2a2r2 sin3 θ cos θ(r2 + a2)

ρ6
η4θ + 2mar

sin2 θη4tφ = 0, (2.15l)

(ṙθ̇) : (−ρ2 + 2mr)η1rθ − 2mar sin2 θη4rθ − 2mar sin θ cos θη4r

+
a2 sin θ cos θ(−ρ2 + 4mr)

ρ2
η1r −

1

ρ2
[
mΩ + r

(
− ρ2 + 2

mr
)]
η1θ +

ma sin2 θΩ + 2mar2 sin2 θ

ρ2
η4θ = 0, (2.15m)
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(ṙφ̇) : +4mar sin2 θξsr + (−ρ2 + 2mr)η1rφ − 2mar sin2 θη4rφ

+
ma sin2 θΩ

ρ2
η2r +

ma sin2 θ(−ρ2 + 2mr)

ρ4∆

[
(r2 + a2)Ω

+ 2r2ρ2
]
η1t +

2mar sin θ cos θ(r2 + a2)

ρ2
η3r −

mΩ

ρ2
η1φ

+
(−ρ2 + 2mr)

ρ4∆

[
ma2 sin2 θΩ + r(−ρ2 + 2mr)ρ2

]
η1φ

+
8ma3 sin θ cos θΩ

ρ4
η3 − 2m2a2r sin4 θ

ρ4∆

[
(r2 + a2)Ω

+ 2r2ρ2
]
η4t −

(2mar sin2 θ)

ρ4∆

[
ma2 sin2 θΩ + r

(
− ρ2

+ 2mr
)
ρ2
]
η4φ −

2ma sin2 θΩ

ρ4∆
[mΩ + rρ2]η2 − 2mar

ρ4

sin2 θ
(
r2 − 3a2 cos2 θ

)
η2 +

ma sin2 θΩ

ρ2
η4φ +

(
r2 + a2

)
2mar sin θ cos θ

ρ2
η3r = 0, (2.15n)

(θ̇φ̇) : 4mar sin2 θξsθ +
(
− ρ2 + 2mr

)
η1θφ − 2mar sin2 θη4tθ

− (
cot θρ4 − 2ma2r sin θ cos θ

ρ4
)
(
− ρ2 + 2mr

)
η1φ + 2

ma2r sin θ cos θ

ρ2
η1φ −

2ma3r sin3 θ cos θ(−ρ2 + 2mr)

ρ4
η1t

+
ma sin2 θΩ

ρ2
η2θ +

4ma3r2 sin3 θ cos θ

ρ4
η2 + 2mar sin2 θ

(r2 − 3a2 cos2 θ)

ρ4
η3 +

8m2a3r2 sin2 θ cos2 θ

ρ4
η3 + 2mar

cos2 θ(r2 + a2)

ρ2
η3 − 2mar sin θcosθ(r2 + a2)

ρ2
η3θ + 4m2

a4r2 sin5 θ cos θ

ρ4
η4t +

2ma3r sin3 θ cos θ(−ρ2 + 2mr)

ρ2
η4φ

= 0, (2.15o)

(ṫ2ṙ) : ξtt −
m∆Ω

ρ6
ξr +

2ma2r sin θ cos θ

ρ6
ξθ = 0, (2.15p)

(ṙ3) : ξrr +
mΩ− a2r sin2 θ

ρ2∆
ξr −

a2 sin θ cos θ

ρ2∆
ξθ = 0, (2.15q)
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(ṙθ̇2) : ξθθ +
r∆

ρ2
ξr +

a2 sin θ cos θ

ρ2
ξθ = 0, (2.15r)

(ṙφ̇2) : +ξφφ +
sin θ cos θ[(r2 + a2)Σ− a2 sin2 θ∆ρ2]

ρ6
ξθ

− ∆[ma2 sin4 θΩ− r sin2 θρ4]

ρ6
ξr = 0, (2.15s)

(ṫṙ2) : ξtr −
m(r2 + a2)Ω

ρ4∆
ξt −

maΩ

ρ4∆
ξφ = 0, (2.15t)

(ṫṙθ̇) : ξtθ +
2ma2r sin θ cos θ

ρ4
ξt +

2mar cot θ

ρ4
ξφ = 0, (2.15u)

(ṫṙφ̇) : ξtφ +
ma sin2 θ∆Ω

ρ6
ξr −

2mar sin θ cos θ(r2 + a2)

ρ6
ξθ = 0, (2.15v)

(ṙ2θ̇) : ξrθ +
a2 sin θ cos θ

ρ2
ξr −

r

ρ2
ξθ = 0, (2.15w)

(ṙ2φ̇) : ξrφ +
ma sin2 θ[(r2 + a2)Ω + 2r2ρ2]

ρ4∆
ξt

+
[ma2 sin2 θΩ + r(−ρ2 + 2mr)ρ2]

ρ4∆
ξφ = 0, (2.15x)

(ṙθ̇φ̇) : ξθφ −
2ma3r sin3 θ cos θ

ρ4
ξt −

[cot θρ4 − 2ma2r sin θ cos θ]

ρ4
ξφ

= 0. (2.15y)

When q2 = r is substituted into equation (2.12), we get[
d

ds

∂

∂ṙ
− ∂

∂r

][
X [1]L

]
= 0. (2.16)

Again, using equation (2.13) in equation (2.16), further simplification after substitut-

ing equations (2.6) to (2.9), as well as the coefficients of (ṫ, ṙ, θ̇, φ̇) and their powers’

comparison, yields some identical equations as subequations ((2.15p)-(2.15y)) and the

remaining ones are listed as

(constant) : η2ss = 0, (2.17a)

(ṫ) : η2st +
m∆Ω

ρ6
η1s +

ma sin2 θ∆Ω

ρ6
η4s = 0, (2.17b)

(ṙ) : ξss − η2sr +
mΩ− a2r sin2 θ

ρ2∆
η2s +

a2 sin θ cos θ

ρ2
η3s = 0, (2.17c)
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(θ̇) : η2sθ −
a2 sin θ cos θ

ρ2
η2s −

r∆

ρ2
η3s = 0, (2.17d)

(φ̇) : η2sφ + ∆
ma2 sin4 θΩ− r sin2 θρ4

ρ6
η4s −ma sin2 θ

∆Ω

ρ6
η1s = 0, (2.17e)

(ṫ2) : η2tt +
2m∆Ω

ρ6
η1t −

2m∆Ω

ρ6
η2r +

2mΩ[mΩ− a2r sin2 θ]

ρ8
η2 − 2

[m∆(r2 − 3a2 cos2 θ)

ρ8
]
η2 +

4ma2 sin θ cos θ∆(2r2 − a2 cos2 θ)

ρ6
η3

+
2ma2r sin θ cos θ

ρ6
η2θ −

2ma sin2 θ∆Ω

ρ2
η4t = 0, (2.17f)

(ṙ2) : 4ξsr − η2rr +
mΩ− a2r sin2 θ

ρ2∆
η2r +

a2 sin θ cos θ

ρ2∆
η2θ +

2a2

ρ2

sin θ cos θη3r −
(2r − 2m)[mΩ− a2r sin2 θ]

ρ2∆
η2 − a2 sin θ cos θ

ρ2∆[
2r − 2m

]
η3 +

a2 sin θΩ + 4ma2r cos2 θ

ρ2∆
η2 +

2a2 sin θ cos θ

ρ4∆[
mΩ− a2r sin2 θ

]
η3 = 0, (2.17g)

(θ̇2) : η2θθ +
r∆

ρ2
η2r −

a2 sin θ cos θ

ρ2
η2θ −

2r∆

ρ2
η3θ −

2a2r sin θ cos θ∆

ρ4
η3

− 2r[mΩ− a2r sin2 θ] + ∆ρ2

ρ4
η2 = 0, (2.17h)

(φ̇2) : η2φφ −
∆[ma2 sin4 θΩ− r sin2 θρ4]

ρ6
η2r +

sin θ cos θ

ρ6
[
(r2 + a2)

Σ− a2 sin2 θ∆ρ2
]
η2θ −

2ma2 sin2 θ∆Ω

ρ6
η1φ −

4mar sin θ cos θ

ρ2

(r2 + a2)η3φ +
2[mΩ− a2r sin2 θ]

ρ8
[
ma2 sin4 θΩ− r sin2 θρ4

]
η2

+
2∆[ma2 sin4 θΩ− r sin2 θρ4]

ρ6
η4φ +

2 cot θ∆(r2 + a2)

ρ8
[
ma2

sin4 θΩ− r sin2 θρ4
]
η3 − 2ma2 sin3 θ∆

ρ8
[

cos θ
[
ρ4 − a2 sin2 θ

Ω
]]
η3 +

2a2r sin2 θΣ

ρ8
η3 − 2ma2r sin4 θ

[(r2 − 3a2 cos2 θ)

ρ8
+

sin2 θ∆

ρ2
]
η2 = 0, (2.17i)

(ṫṙ) : ξst − η2tr −
m∆Ω

ρ6
η1r +

m(r2 + a2)Ω

ρ4∆
η2t +

mΩ− a2r sin2 θ

ρ2∆
η2t
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+
maΩ

ρ4∆
η2φ +

a2 sin θ cos θ

ρ2
η3t +

ma sin2 θ∆Ω

ρ6
η4r = 0, (2.17j)

(ṫθ̇) : η2tθ +
m∆Ω

ρ6
η1θ +

a2 sin θ cos θ(−ρ2 + 2mr)

ρ2
η2t −

r∆

ρ2
η3t

− 2mar cot θ

ρ4
η2φ −

ma sin2 θ∆Ω

ρ6
η4θ = 0, (2.17k)

(ṫφ̇) : η2tφ −
ma sin2 θ∆Ω

ρ6
η1t +

m∆Ω

ρ6
η1φ +

∆

ρ6
[
ma2 sin4 θΩ− r

sin2 θρ4
]
η4t −

2mar sin θ cos θ(r2 + a2)

ρ6
η2θ −

2ma sin2 θ∆

ρ8[
− r(r2 − 3a2 cos2 θ) + Ω

(
mΩ− a2r sin2 θ

)]
η2 − 8mar

sin θ∆ cos θ
[(r2 + a2)Ω

ρ8
]
η3 − 2ma3r sin3 θ cos2 θ∆

Ω

ρ8
η3

+
ma sin2 θ∆Ω

ρ6
η2r −ma∆

sin2 θΩ

ρ6
η4φ = 0, (2.17l)

(ṙθ̇) : 2ξsθ − η2rθ −
r

ρ2
η2θ +

mΩ− a2r sin2 θ

ρ2
η1θ +

a2 sin θ cos θ

ρ2
η3θ

− a2 sin θ cos θ(2r − 2m)

ρ2∆
η2 − a sin2 θΩ− a2 cos2 θρ2

ρ4
η3 − r

∆

ρ2
η3r = 0, (2.17m)

(ṙφ̇) : 2ξsφ − η2rφ +
ma sin2 θ∆Ω

ρ6
η1r +

mΩ− a2r sin2 θ

ρ2∆
η2φ + a2

sin θ cos θ

ρ2
η3φ −

ma2 sin2 θΩ + r(−ρ2 + 2mr)ρ2

ρ4∆
η2φ −

∆

ρ6

[ma2 sin2 θΩ− r sin2 θρ4]η4r −
ma sin2 θ

ρ4∆

(
(r2 + a2)Ω + 2

r2ρ2
)
η2t = 0, (2.17n)

(θ̇φ̇) : η2θφ −
ma sin2 θ∆Ω

ρ6
η1θ −

2ma3r sin3 θ cos θ

ρ4
η2φ +

∆

ρ6
[
ma2

sin4 θΩ− r sin2 θρ4
]
η4θ +

cot θρ4 − 2ma2r sin θ cos θ − r∆ρ2

ρ4

η3φ = 0. (2.17o)
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When q3 = θ is substituted into equation (2.12), it becomes[
d

ds

∂

∂θ̇
− ∂

∂θ

][
X [1]L

]
= 0. (2.18)

Now, by using equation (2.13) in equation (2.18) and substituting equations (2.6) to

(2.9), it is further simplified, which provides some similar equations ((2.15p)-(2.15y))

are written above. The determining equations are

(constant) : η3ss = 0, (2.19a)

(ṫ) : η3st −
2ma2r sin θ cos θ

ρ6
η1s +

2mar sin θ cos θ(r2 + a2)

ρ6
η4s = 0, (2.19b)

(ṙ) : η3sr +
a2 sin θ cos θ

ρ2∆
η2s +

r

ρ2
η3s = 0, (2.19c)

(θ̇) : ξss − η3sθ −
r

ρ2
η2s +

a2 sin θ cos θ

ρ2
η3s = 0, (2.19d)

(φ̇) : η3sφ +
2mar sin θ cos θ(r2 + a2)

ρ6
η1s −

sin θ cos θ

ρ6
[
(r2 + a2)Σ

− a2 sin2 θ∆ρ2
]
η4s = 0, (2.19e)

(ṫ2) : −4ma2r sin θ cos θ

ρ6
η1t −

m∆Ω

ρ6
η3r +

2ma2r

ρ6
sin θ cos θη3θ

+
4mar sin θ cos θ(r2 + a2)

ρ2
η4t +

2ma2 sin θ cos θ

ρ8
(
5r2−

a2 cos2 θ
)
η2 +

2ma2r[sin2 θ(r2 − 5a2 cos2 θ)− cos2 θρ2]

ρ8
η3

+ η3tt = 0, (2.19f)

(ṙ2) :
2a2 sin θ cos θ

ρ2∆
η2r −

a2 sin θ cos θ[2r∆ + (2r − 2m)ρ2]

ρ4∆2
η2

+
[mΩ− a2r sin2 θ] + 2r∆

ρ2∆
η3r −

a2 sin θ cos θ

ρ2∆
η3θ + η3rr

+
a2ρ2(cos2 θ − sin2 θ) + 2a4 sin2 θ cos2 θ

ρ2∆
η3 = 0, (2.19g)

(θ̇2) : −η3θθ −
2r

ρ2
η2θ −

r∆

ρ2
η3r +

a2 sin θ cos θ

ρ2
η3θ −

2a2r sin θ cos θ

ρ4
η2

+
a2ρ2(cos2 θ − sin2 θ) + 2a4 sin2 θ cos2 θ

ρ4
η3 + 4ξsθ = 0, (2.19h)
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(φ̇2) : η3φφ −
∆[ma2 sin4 θΩ− r sin2 θρ4]

ρ6
η3r +

sin θ cos θ

ρ6
[
(r2 + a2)

Σ− a2 sin2 θ∆ρ2
]
η3θ −

2 sin θ cos θ

ρ6
[
(r2 + a2)Σ− a2 sin2 θ∆

ρ2
]
η4φ +

2r sin θ cos θ[(r2 + a2)Σ− a2 sin2 θ∆ρ2]

ρ8
η2 + 2 sin θ

cos θ

ρ8
[
− rρ6 + 2ma sin2 θ(r2 + a2)Ω +ma3 sin4 θ

]
η2 + sin θ

(r2 − 5a2 cos2 θ)

ρ6
[
− a2 sin2 θ∆ρ2 + (r2 + a2)Σ

]
η3 − cos2 θ

ρ6[[
(r2 + a2)Σ− a2 sin2 θ∆ρ2

]
− 4a2 sin2 θ∆ρ2

]
η3 + 4mar sin θ

cos θ(r2 + a2)

ρ4
η1φ = 0, (2.19i)

(ṫṙ) : η3tr −
2ma2r sin θ cos θ

ρ6
η1r +

m(r2 + a2)Ω− rρ2∆
ρ4∆

η3t +
maΩ

ρ4∆

η3φ +
2a2 sin θ cos θ

ρ2∆
η2t +

2mar sin θ(r2 + a2)

ρ6
cos θη4r = 0, (2.19j)

(ṫθ̇) : 2ξst − η3tθ +
2ma2r sin θ cos θ

ρ6
η1θ −

r

ρ2
η2t −

2mar cot θ

ρ4
η3φ

− a2 sin θ cos θ(−ρ2 + 2mr)

ρ2
η3t −

2mar sin θ cos θ(r2 + a2)

ρ6
η4θ

= 0, (2.19k)

(ṫφ̇) : η3tφ +
2mar sin θ cos θ(r2 + a2)

ρ6
η1t −

2ma2r sin θ cos θ

ρ6
η1φ

− 2mar sin θ cos θ(r2 + a2)

ρ6
η3θ +

2mar sin θ cos θ(r2 + a2)

ρ6
η4φ

− sin θ(r2 − 5a2 cos2 θ)

ρ6
[
(r2 + a2)Σ− a2 sin2 θ∆ρ2

]
η4t − 2

ma sin θ cos θ

ρ8
[
2a2r2 sin2 θ + (r2 + a2)(3r2 − a2 cos2 θρ2)

]
η2

− 2mar

ρ8
[
− cos2 θ(r2 + a2) + sin2 θ(r2 + a2)

(
r2 − 5a2 cos2 θ)]

η3 = 0, (2.19l)

(ṙθ̇) : 2ξsr − η3rθ −
2a2r sin θ cos θ

ρ4
η3 +

Ω

ρ4
η2 +

ma sin2 θ∆Ω

ρ6
η3r

− r

ρ2
η3θ −

a2 sin θ cos θ

ρ2∆
η2θ = 0, (2.19m)
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(ṙφ̇) :
2mar sin θ cos θ(r2 + a2)

ρ6
η1r +

a2 sin θ cos θ

ρ2∆
η2φ +

r(ρ2 + 2mr)

∆
η3φ

+ η3rφ −
sin θ cos θ[(r2 + a2)Σ− a2 sin2 θ∆ρ2]

ρ6
η4r +

1

ρ4∆

[
ma sin2 θ

[(r2 + a2)Ω] + 2r2ρ2
]
η3t = 0, (2.19n)

(θ̇φ̇) : +2ξsφ −
2mar sin θ cos θ(r2 + a2)

ρ6
η1θ −

2ma3r sin3 θ cos θ

ρ4
η3t

− r

ρ2
η2φ − η3θφ −

sin θ cos θ[(r2 + a2)Σ− a2 sin2 θ∆ρ2]

ρ6
η4t

+
cot θ(r2 + a2)ρ2 + 2ma2r sin θ cos θ

ρ4
η3φ = 0. (2.19o)

For last variable q4 = φ, equation (2.12) returns[
d

ds

∂

∂φ̇
− ∂

∂φ

][
X [1]L

]
= 0. (2.20)

It is simplified by using equation (2.13) in equation (2.20) and substituting equations

(2.6) to (2.9), then equating to zero the coefficients of (ṫ, ṙ, θ̇, φ̇) and their powers

produce some similar equations ((2.15p)-(2.15y)). The remaining equations are

(constant) : 2mar sin2 θη1ss − sin2 θΣη4ss = 0, (2.21a)

(ṫ) : 2mar sin2 θξss − 2mar sin2 θη1st + sin2 θΣη4ss +
ma sin2 θΩ

ρ2
η2s

− 2mar sin θ cos θ(r2 + a2)

ρ2
η3s = 0, (2.21b)

(ṙ) : 2mar sin2 θη1sr +
ma2 sin4 θΩ− r sin2 θρ4

ρ2
η4s −

ma sin2 θΩ

ρ2
η1s

− sin2 θΣη4sr = 0, (2.21c)

(θ̇) : +2mar sin2 θη1sθ − sin2 θΣη4sθ +
2mar sin θ cos θ(r2 + a2)

ρ2
η1s

− sin θ cos θ[(r2 + a2)Σ− a2 sin2 θρ2]

ρ2
η4s = 0, (2.21d)

(φ̇) : sin2 θΣξss − sin2 θΣη4sφ +
ma2 sin4 θΩ− r sin2 θρ4

ρ2
η2s + 2mar

sin2 θη1sφ −
sin θ cos θ[(r2 + a2)Σ− a2 sin2 θ∆ρ2]

ρ2
η3s = 0, (2.21e)
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(ṫ2) : −2mar sin2 θη1tt + 8mar sin2 θξst + sin2 θΣη4tt +
2ma sin2 θΩ

ρ2
η2t

+
2mar sin2 θ∆(−ρ2 + 2mr)Ω

ρ6
η1r −

4m2a3r2 sin3 θ cos θ

ρ6
η1θ − 4m

(
ar sin θ cos θ(r2 + a2)

ρ2
)η3t −

m sin2 θ∆ΩΣ

ρ6
η4r +

2ma2r sin3 θ cos θ

ρ6

Ση4θ = 0, (2.21f)

(ṙ2) : −2ma3r sin3 θ cos θ

ρ2∆
η1θ +

2mar sin2 θ[mΩ− a2r sin2 θ]

ρ2∆
η1r + 2m

ar sin2 θη1rr −
2ma sin2 θΩ

ρ2
η1r −

sin2 θ

ρ2∆

[
Σ
(
mΩ− a2r sin2 θ

)]
η4r

+
2ma2 sin4 θΩ− 2r sin2 θρ4

ρ2
η4r +

a2 sin3 θ

ρ2∆

[
cos θΣ

]
η4θ = 0, (2.21g)

(θ̇2) : 2mar sin2 θη1θθ +
2a2 sin θ cos θ(−ρ2 + 2mr +mar sin2 θ)

ρ2
η1θ

+
2mar2 sin2 θ∆

ρ2
η1r −

sin θ cos θΣ[2(r2 + a2) + a2 sin2 θ]

ρ2
η4θ

− r sin2 θ∆Σ

ρ2
η4r − sin2 θΣη4θθ = 0, (2.21h)

(φ̇2) : 4 sin2 θΣξsφ + 2mar sin2 θη1φφ +
2ma2 sin4 θΩ− 2r sin2 θρ4

ρ2
η2φ

− sin2 θΣη4φφ −
2mar sin2 θ∆[ma2 sin4 θΩ− r sin2 θρ4]

ρ6
η1r + 2

(
mar sin2 θ cos θ

ρ6
)
[
(r2 + a2)Σ− a2 sin2 θ∆ρ2

]
η1θ −

2 sin θ cos θ

ρ2[
− a2 sin2 θ∆ρ2 + (r2 + a2)Σ

]
η3φ +

∆ sin2 θΣ

ρ6
[
ma2 sin4 θΩ

− r sin2 θρ4
]
η4r −

[
(r2 + a2)Σ− a2 sin2 θ∆ρ2

]
(
sin3 θ cos θΣ

ρ6
)η4θ

= 0, (2.21i)

(ṫṙ) : 4mar sin2 θξsr −
2mar sin2 θ(r2 − 3a2 cos2 θ)

ρ4
η2 − 2mar

sin2 θη1tr +
ma sin2 θΩ[ρ2∆ + 2mr(r2 + a2)]

ρ2
η1t +

ma sin2 θΩ

ρ2
η2r

+
2m2a2r sin2 θΩ

ρ4∆
η1φ − 2ma sin2 θ

[Ω[mΩ− ρ2]
ρ4∆

]
η2 + 2ma2
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sin θ cos θ
[3r2 − a2 cos2 θ

ρ4
]
η3 − 2ma sin θ cos θΩ

ρ4
η3 − 2mar

[sin θ cos θ(r2 + a2)

ρ2
]
η3r − (

Ω− r sin2 θρ4

ρ2
)ma2 sin4 θη4t − ΩΣ

m sin2 θ(r2 + a2)

ρ4∆
η4t −

ma sin2 θΩΣ

ρ4∆
η4φ + sin2 θΣη4tr = 0, (2.21j)

(ṫθ̇) : 4mar sin2 θξsθ − 2mar sin2 θη1tθ + sin2 θΣη4tθ +
ma sin2 θΩ

ρ2
η2θ

− 2mar sin θ cos θ[ρ2(r2 + a2) + 2ma2r sin2 θ]

ρ4
η1t − (

4m2a2r2

ρ4
)

sin θ cos θη1φ +
2ma sin θ cos θ(r2 + a2)(3r2 − a2 cos2 θ)

ρ4
η2 + 2

mar sin2 θ[(r2 + a2)(r2 − 3a2 cos2 θ) + 4ma2r cos2 θ]

ρ4
η3 − 2ma

r sin θcosθ(r2 + a2)

ρ2
η3θ +

sin θcosθ[(r2 + a2)Σ− a2 sin2 θ∆ρ2]

ρ2
η4t

+
2ma2r2 sin3 θ cos θΣ

ρ4
η4t +

2mar cos2 θ(r2 + a2)

ρ2
η3 + 2mar

sin θ cos θΣη4φ = 0, (2.21k)

(ṫφ̇) : 4mar sin2 θξsφ − 2 sin2 θΣξst + sin2 θΣη4tφ − 2mar sin2 θη1tφ

− 2m2a2r sin4 θ∆Ω

ρ6
η1r + 4m2a2r2 cos θ(

sin3 θ(r2 + a2)

ρ6
)η1θ

− 2mar sin θ cos θ(r2 + a2)

ρ2
η3φ −

ma2 sin4 θΩ− r sin2 θρ4

ρ2
η2t

+
sin θ cos θ[(r2 + a2)Σ− a2 sin2 θ∆ρ2]

ρ2
η3t +

ma sin4 θ∆ΩΣ

ρ6
η4r

− 2mar
[sin3 θ cos θ(r2 + a2)Σ

ρ6
]
η4θ +ma sin2 θ

Ω

ρ2
η2φ = 0, (2.21l)

(ṙθ̇) : 2mar sin2 θη1rθ +
2mar sin θ cos θ(r2 + a2)

ρ2
η1r −

ma sin2 θΩ

ρ2
η1θ

− sin2 θΣη4rθ +
2ma3r sin3 θ cos θ

ρ2
η1r −

a2 sin3 θΣ

ρ2
η4r − sin θ cos θ

[(r2 + a2)Σ− a2 sin2 θ∆ρ2]

ρ2
η4r +

ma2 sin4 θΩ− r sin2 θρ4

ρ2
η4θ

+
r sin2 θΣ

ρ2
η4θ = 0, (2.21m)
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(ṙφ̇) : 2 sin2 θΣξsr + 2mar sin2 θη1rφ − sin2 θΣη4tr −
ma sin2 θΩ

ρ2
η1φ

+
2mar sin2 θ[ma2 sin2 θΩ + r(−ρ2 + 2mr)ρ2]

ρ4∆
η1φ − sin θ cos θ

[(r2 + a2)Σ− a2 sin2 θ∆ρ2]

ρ2
η3r +

2a2 sin3 θ cos θ

ρ4
[
rΣ +mρ2

(−ρ2 + 2mr)
]
η3 − ma sin4 θΣ

ρ4∆
[(r2 + a2)Ω + 2r2ρ2]η4t +

Σ

ρ4∆[
ma2 sin4 θΩ + rρ2 sin2 θ(−ρ2 + 2mr)

]
η4φ −

2ma2 sin4 θΩ

ρ4∆

[
rρ2

+mΩ
]
η2 − 2ma2r sin4 θ(r2 − 3a2 cos2 θ) + sin2 θρ6

ρ4
η2 +ma2r

sin4 θ

ρ2
[
(r2 + a2)Ω + 2r2ρ2

]
η2r +

2m2a3r

ρ4∆

[
sin4 θ(r2 + a2)Ω + 2r2

sin4 θρ2
]
η1t −ma2 sin4 θ(

Ω + r sin2 θρ4

ρ4∆
)η4φ = 0, (2.21n)

(θ̇φ̇) : 2 sin2 θΣξsθ + 2mar sin2 θη1θφ − sin2 θΣη4tθ +
sin θ cos θΣ

ρ2
[(
r2

+ a2
)

+ (−ρ2 + 2mr)a2 sin2 θ
]
η4φ −

sin θ cos θ

ρ2
[
(r2 + a2)Σ−

a2 sin2 θ∆ρ2
]
η4φ −

4m2a4r2 sin5 θ cos θ

ρ4
η1t −

2ma3r sin3 θ cos θ

ρ4

(−ρ2 + 2mr)η1φ +
ma2 sin4 θΩ− r sin2 θρ4

ρ2
η2θ +

2ma3r sin5 θ

ρ4

cos θΣη4t −
2 sin θ cos θ[ma2 sin2 θ(r2 − a2) + rρ4]

ρ2
η2 − sin θ

cos θ[(r2 + a2)Σ− a2 sin2 θ∆ρ2]

ρ2
η3θ +

sin2 θ(r2 − 3a2 cos2 θ)

ρ4[
(r2 + a2)Σ− a2 sin2 θ∆ρ2

]
η3 +

2a2 sin2 θ cos2 θ∆

ρ4
(
ρ4 + 2ma2

r sin2 θ
)
η3 = 0. (2.21o)

We now solve the above system of PDEs to determine values of ξ, η1, η2, η3 and η4.

Differentiating equation (2.15v) w.r.t. t and differentiating equation (2.15p) w.r.t. φ,

42



and when we solve them, we get the equation

2mar sin2 θξt − (−ρ2 + 2mr)ξφ = 0, (2.22)

and by differentiating equation (2.15s) w.r.t. t and equation (2.15v) w.r.t. φ, we get

the equation

(r2 + a2)ξt − aξφ = 0. (2.23)

By solving equations (2.22), (2.23) simultaneously, we get

ξt = 0, (2.24)

and

ξφ = 0. (2.25)

Differentiate equation (2.15t) w.r.t. t, we get the equation

ξttr −
mΩ2

ρ8
ξr = 0. (2.26)

Using equations (2.24),(2.25), and (2.15t) yields

ξtr = 0. (2.27)

Now from equation (2.26), we get the result

ξr = 0. (2.28)

Similarly, by differentiating equation (2.15u) w.r.t. t, we get the equation

ξttθ +
4m2a2r2 cos2 θ

ρ8
ξθ = 0. (2.29)

Using equations (2.24),(2.25), and (2.15u) yields

ξtθ = 0. (2.30)
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Now from equation (2.29), we get the result

ξθ = 0. (2.31)

From equations (2.24),(2.25),(2.28) and (2.31) we know that ξ is a function of s only

i.e.

ξ = ξ(s). (2.32)

Now by solving equation (2.15a) and equation (2.21a) simultaneously, yields

η1ss = 0, (2.33)

and

η4ss = 0, (2.34)

If we differentiate equation (2.15b) w.r.t. s and making use of equations (2.33),(2.17a),

(2.19a) and (2.34), we get

ξsss = 0. (2.35)

By integrating above equation (2.38), gives

ξ = c1s
2 + c2s+ c3. (2.36)

Now from equation (2.33), we can write η1 as

η1 = a1(t, r, θ, φ)s+ a2(t, r, θ, φ), (2.37)

where a1, a2 are arbitrary functions of mentioned arguments.

Differentiating equation (2.15b) w.r.t. φ and equation (2.15e) w.r.t. t, results

η4s = 0, (2.38)

and differentiating equation (2.21b) w.r.t. φ and equation (2.21e) w.r.t. t, results

η1s = 0. (2.39)
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Using equations (2.38), (2.39) in equations (2.15c), (2.21c) and solving it further yields

η1sr = 0, (2.40)

and

η4sr = 0. (2.41)

Similarly, using equations (2.38), (2.39) in equations (2.15d), (2.21d) and solving them

yields

η1sθ = 0, (2.42)

and

η4sθ = 0. (2.43)

From equations (2.40),(2.42), equation (2.37) implies

η1 = a1(t, φ)s+ a2(t, r, θ, φ), (2.44)

differentiating equation (2.15b) w.r.t. φ and equation (2.21e) w.r.t. t, results

η1s = 0. (2.45)

This implies that a1(t, φ) must be zero. Therefore,

η1 = a2(t, r, θ, φ). (2.46)

Solving equation (2.15n) and equation (2.21j), we get

η3s = 0, (2.47)

and similarly, by solving equation (2.15o) and equation (2.21k), we get

η2s = 0. (2.48)

Since η1s = η2s = η3s = η4s = 0, equation (2.15b) becomes

(−ρ2 + 2mr)ξss = 0. (2.49)
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Either (−ρ2+2mr) = 0 or ξss = 0. In our case, we considered ξss = 0 and (−ρ2+2mr) 6=

0. This implies that equation (2.49) becomes

ξss = 0. (2.50)

Therefore,

ξ = c1s+ c2. (2.51)

From equation (2.17a) η2 can be written as

η2 = b1(t, r, θ, φ)s+ b2(t, r, θ, φ). (2.52)

Since η2s = 0, equation (2.52) becomes

η2 = b2(t, r, θ, φ). (2.53)

Solving equation (2.19a) gives

η3 = d1(t, r, θ, φ)s+ d2(t, r, θ, φ). (2.54)

Since η3s = 0, equation (2.54) becomes

η3 = d2(t, r, θ, φ). (2.55)

Equation (2.21a) can be solved to get η4 as

η4 = e1(t, r, θ, φ)s+ e2(t, r, θ, φ). (2.56)

Since η4s = 0, equation (2.56) becomes

η4 = e2(t, r, θ, φ). (2.57)

Differentiating equation (2.15i) w.r.t. t and differentiating equation (2.15l) w.r.t. φ,

we get

(−ρ2 + 2mr)(2mar sin2 θ)η1t − (−ρ2 + 2mr)2η1φ − (2mar sin2 θ)2η4t

+ (−ρ2 + 2mr)(2mar sin2 θ)η4φ = 0.
(2.58)

46



Similarly, differentiating equation (2.15f) w.r.t. φ and equation (2.15l) w.r.t. t, we get.

(−ρ2 + 2mr)(r2 + a2)η1t − a(−ρ2 + 2mr)η1φ − (2mar sin2 θ)(r2 + a2)η4t

+ 2ma2r sin2 θη4φ = 0.
(2.59)

On the other hand, differentiating equation (2.21i) w.r.t. t and DE (2.21l) w.r.t. φ, we

get

(2mar sin2 θ)2η1t − (−ρ2 + 2mr)(2mar sin2 θ)η1φ − 2mar sin3 θ

Ση4t + sin2 θ(−ρ2 + 2mr)Ση4φ = 0.
(2.60)

Similarly, by differentiating equation (2.21f) w.r.t. φ and equation (2.21l) w.r.t. t, we

get
(2mar sin2 θ)(r2 + a2)η1t − a(2mar sin2 θ)η1φ − sin2 θ(r2 + a2)

Ση4t + a sin2 θΣη4φ = 0.
(2.61)

Equation (2.58) and equation (2.60), yields

2mar sin2 θη1t − (−ρ2 + 2mr)η1φ = 0, (2.62)

2mar sin2 θη4t − (−ρ2 + 2mr)η4φ = 0. (2.63)

Similarly, equation (2.59) and equation (2.61), yields

(r2 + a2)η1t − aη1φ = 0, (2.64)

(r2 + a2)η4t − aη4φ = 0. (2.65)

By solving equation (2.63) and equation (2.64), we get

η1t = 0, and η1φ = 0. (2.66)

Similarly, by solving equation (2.62) and equation (2.65), we get

η4t = 0, and η4φ = 0. (2.67)
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Differentiate equation (2.15j) w.r.t. t and equation (2.21j) w.r.t. t we get

mΩ2(−ρ2 + 2mr)

ρ8
η1r −

2m2ar sin2 θΩ2

ρ8
η4r = 0, (2.68)

2m2ar sin2 θΩ2

ρ8
η1r −

m sin2 θΩ2Σ

ρ8
η4r = 0. (2.69)

Solving equation (2.68) and equation (2.69), yields

η1r = 0, and η4r = 0. (2.70)

Similarly, by differentiating equation (2.15k) w.r.t. t and equation (2.21k) w.r.t. t we

get

4m2a2r2 cos2 θ(−ρ2 + 2mr)

ρ8
η1θ −

8m3a3r3 cos2 θ sin2 θ

ρ8
η4θ = 0, (2.71)

8m3a3r3 cos2 θ sin2 θ

ρ8
η1r −

4m2a2r2 cos2 θ sin2 θΣ

ρ8
η4r = 0. (2.72)

Solving equation (2.71) and equation (2.3), yields

η1θ = 0, and η4θ = 0. (2.73)

Since η1t = η1r = η1θ = η1φ = 0 equation (2.46) becomes

η1 = c4, (2.74)

where c4 is an arbitrary constant.

Since η4t = η4r = η4θ = η4φ = 0 equation (2.57) becomes

η4 = c5, (2.75)

where c5 is an arbitrary constant.

Using the results from equations (2.66), (2.67) in equations (2.15o), (2.21k) and solving

them yields

η2 = 0. (2.76)
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Similarly, when we use the results in equation (2.15n) and equation (2.21j) we get

η3 = 0. (2.77)

Differentiating equation (2.17l) w.r.t. t and differentiating equation (2.17f) w.r.t. φ,

we get

2mar sin2 θη2t − (−ρ2 + 2mr)η2φ = 0, (2.78)

and by differentiating equation (2.17i) w.r.t. t and differentiating equation (2.17l) w.r.t.

φ, we get

(r2 + a2)η2t − aη2φ = 0. (2.79)

Solving equation (2.78) and equation (2.79) simultaneously, yields

η2t = 0, and η2φ = 0. (2.80)

Similarly, differentiating equation (2.19l) w.r.t. t and differentiating equation (2.19f)

w.r.t. φ, when we solve them, we get

2mar sin2 θη3t − (−ρ2 + 2mr)η3φ = 0, (2.81)

and by differentiating equation (2.19i) w.r.t. t and differentiating equation (2.19l) w.r.t.

φ, we get

(r2 + a2)η3t − aη3φ = 0. (2.82)

Solving equation (2.81) and equation (2.82) simultaneously, yields

η3t = 0, and η3φ = 0. (2.83)

Solving equation (2.17f) and equation (2.17l) by using above results, we get

m∆Ω

ρ6
η2r −

2ma2r sin θ cos θ

ρ6
η2θ = 0,

ma sin2 θ∆Ω

ρ6
η2r −

2mar sin θ cos θ(r2 + a2)

ρ6
η2θ = 0. (2.84)
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Solving the system (2.84), we get

η2r = 0, and η2θ = 0. (2.85)

Likewise, using the above results in equation (2.19f) and equation (2.19l), we get

η3r = 0, and η3θ = 0. (2.86)

So we have found all of the necessary infinitesimals, and if we assume (c1, c2, c4, c5) =

(C1, C2, C3, C4), we can write

ξ = C1 + sC2, η1 = C3,

η2 = 0, η3 = 0, and η4 = C4.
(2.87)

Hence, the generator can be written as

X [1] = (C1 + sC2)
∂

∂s
+ C3

∂

∂t
+ C4

∂

∂φ
. (2.88)

For Ck = 0 where k = 1, 2, 3, 4, we get four symmetries

X1 =
∂

∂s
, X2 = s

∂

∂s
,

X3 =
∂

∂t
, X4 =

∂

∂φ
.

(2.89)

These four symmetries are the required Mei symmetries.

We can see that three of the four Mei symmetries, X1,X3, and X4, are identical to

the Noether symmetries given in equation (2.5), which correspond to the Lagrangian

provided by equation (2.3). However, these three symmetries satisfy equation (1.146),

and X2 does not satisfy equation (1.146), so it is not a Noether symmetry. Thus,

Noether symmetries form a sub-algebra of the Mei symmetries. One can also observe

that all the four Mei symmetries are also Lie point symmetries of the system of equa-

tions of motion given by equations (2.6) to (2.9).

The obtained Mei symmetries satisfy the Lie algebra
[X1,X2] = X1, [X1,X3] = 0,

[X1,X4] = 0, [X2,X3] = 0,

[X2,X4] = 0, [X3,X4] = 0.

(2.90)
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2.4 Mei Symmetries’ Verification:

One may verify to see whether the resulting symmetries satisfy the Mei symmetries

condition given by equation (2.12). Using the acquired values of infinitesimals, we

write X [1]L as

X [1]L = C1

[
2(1− 2mr

ρ2
)ṫ2 +

4mar sin2 θ

ρ2
ṫφ̇

]
− C1

[
2ρ2

∆
ṙ2
]
− C1

[
2ρ2θ̇2

]
− C1

[
2 sin2 θ

ρ2
Σφ̇2 − 4mar sin2 θ

ρ2
ṫφ̇

]
. (2.91)

As required by the condition stated in equation (2.12), we apply the Euler operator for

each dependent variable one by one.

Condition (2.12) for q1 = t yields(
d

ds

∂

∂ṫ
− ∂

∂t

)
[X [1]L] = 0. (2.92)

Equation (2.91) yields the left-hand side of equation (2.92)

d

ds

(
4C1(1−

2mr

ρ2
)ṫ+ C1

8mar sin2 θ

ρ2
φ̇

)
=

8mΩ

ρ4
C1ṫṙ −

8mΩ

ρ4
C1ṫṙ

− 16ma2r sin θ cos θ

ρ4
C1ṫθ̇ +

16ma2r sin θ cos θ

ρ4
C1ṫθ̇ −

8ma sin2 θΩ

ρ4

C1ṙφ̇+
8ma sin2 θΩ

ρ4
C1ṙφ̇+

16mar sin θ cos θ(r2 + a2)

ρ4
C1θ̇φ̇− 16m

ar sin θ cos θ(r2 + a2)

ρ4
C1θ̇φ̇ = 0. (2.93)

This signifies that the condition (2.12) is valid for q1 = t.

Condition (2.12) for q2 = r gives(
d

ds

∂

∂ṙ
− ∂

∂r

)
[X [1]L] = 0. (2.94)

When we substitute equation (2.91) into equation (2.94), we obtain

d

ds

[
− 4ρ2

∆
C1ṙ

]
−
[

4mΩ

ρ4
C1ṫ

2 − 8ma sin2 θΩ

ρ4
C1ṫφ̇− 4rC1θ̇

2
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+
4[mΩ− a2r sin2 θ]

ρ4
C1ṙ

2 +
4[ma2 sin4 θΩ− r sin2 θρ4]

ρ4
C1φ̇

2

]
=

4[mΩ− a2r sin2 θ]

∆2
C1ṙ

2 +
8a2 sin θ cos θ

∆
C1ṙθ̇ −

8a2 sin θ cos θ

∆

C1ṙθ̇ +
4mΩ

ρ4
C1ṫ

2 +
4[ma2 sin4 θΩ− r sin2 θρ4]

ρ4
C1φ̇

2 − 8ma sin2 θ

ρ4

ΩC1ṫφ̇− 4rC1θ̇
2 −

[
4mΩ

ρ4
C1ṫ

2 − 8ma sin2 θΩ

ρ4
C1ṫφ̇− 4rC1θ̇

2

+
4[mΩ− a2r sin2 θ]

ρ4
C1ṙ

2 +
4[ma2 sin4 θΩ− r sin2 θρ4]

ρ4
C1

φ̇2

]
= 0, (2.95)

it goes to zero and therefore condition (2.12) holds for q2 = r.

For q3 = θ condition (2.12) becomes(
d

ds

∂

∂θ̇
− ∂

∂θ

)
[X [1]L] = 0. (2.96)

Solving left hand side we obtain

d

ds

[
− 4ρ2C1θ̇

]
−
[
− 8ma2r sin θ cos θ

ρ4
C1ṫ

2 + 4a2 sin θ cos θC1θ̇
2

+
16mar sin θ cos θ(r2 + a2)

ρ4
C1ṫφ̇+

4a2 sin θ cos θ

∆
C1ṙ

2 − 4 sin θ

cos θ[(r2 + a2)Σ− a2 sin2 θ∆ρ2]

ρ4
C1φ̇

2

]
= 4a2 sin θ cos θC1θ̇

2 − 8ma2r sin θ cos θ

ρ4
C1ṫ

2 +
4a2 sin θ cos θ

∆

C1ṙ
2 +

16mar sin θ cos θ(r2 + a2)

ρ4
C1ṫφ̇−

4 sin θ cos θ

ρ4
C1φ̇

2
[(
r2

+ a2
)
Σ− a2 sin2 θ∆ρ2

]
−
[
− 8ma2r sin θ cos θ

ρ4
C1ṫ

2 + 16mar

sin θ cos θ(r2 + a2)

ρ4
C1ṫφ̇−

4 sin θ cos θ[(r2 + a2)Σ− a2 sin2 θ∆ρ2]

ρ4

C1φ̇
2 +

4a2 sin θ cos θ

∆
C1ṙ

2 + 4a2 sin θ cos θC1θ̇
2

]
= 0. (2.97)
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As a result, condition (2.12) also holds for q3 = θ.

Similarly for q4 = φ condition (2.12) becomes(
d

ds

∂

∂φ̇
− ∂

∂φ

)
[X [1]L] = 0. (2.98)

Left hand side gives

d

ds

(
8mar sin2 θ

ρ2
C1ṫ+

4 sin2 θ

ρ2
ΣC1φ̇

)
= −8ma sin2 θΩ

ρ4
C1ṫṙ

+
8ma sin2 θΩ

ρ4
C1ṫṙ +

8[ma2 sin4 θΩ− r sin2 θρ4]

ρ4
C1ṙφ̇

− 8[ma2 sin4 θΩ− r sin2 θρ4]

ρ4
C1ṙφ̇−

16mar sin θ cos θ(r2 + a2)

ρ4

C1ṫθ̇ +
8 sin θ cos θ[(r2 + a2)Σ− a2 sin2 θ∆ρ2]

ρ4
C1θ̇φ̇− 8 sin θ cos θ

[(r2 + a2)Σ− a2 sin2 θ∆ρ2]

ρ4
C1θ̇φ̇

16mar sin θ cos θ(r2 + a2)

ρ4
C1ṫθ̇

= 0, (2.99)

As a result, condition (2.12) holds true for q4 = φ as well. Hence, equation (2.89)

presents four Mei symmetries for the Lagrangian corresponding to the Kerr metric.
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Chapter 3

Summary

In mathematics and mechanics, the study of symmetry and conserved quantity is ex-

tremely significant. Noether symmetries are the modern way of determining a me-

chanical system’s conserved quantities. The Noether symmetry is an invariance of the

Lagrange equation under infinitesimal transformations. In the last decade, several sig-

nificant results in study of the Lie point symmetry [27] and the Noether symmetry [28]

have been obtained. Mei introduced a new symmetry known as Mei symmetry or form

invariance which varies from the Lie point symmetry or Noether symmetry [17]. Mei

symmetry states that the dynamical functions (such as Lagrangian etc.) appearing in

the mechanical system’s dynamical equations still fulfil the original equations after the

infinitesimal transformation.

Recently Mei symmetries for the Lagrangian corresponding to the Schwarzschild

metric [29], which is the spherically symmetric, static, homogenous, and isotropic

gravitational field has been studied. In this thesis Mei symmetries for the Lagrangian

corresponding to the Kerr metric are obtained. Kerr black hole is a more realistic

scenario that represents an uncharged revolving black hole and is no longer spherically

symmetric. The Kerr metric is one of the well-known solutions to Einstein’s field equa-

tions. The nonlinearity of these equations makes precise solutions extremely difficult

to obtain.
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In this thesis, important breakthroughs in DEs over time are briefly addressed from

the vast history of DEs. The dynamic research naturally encompasses both ODEs and

PDEs. The definition of symmetry groups of point transformations and infinitesimal

generators is discussed in detail. The method of Lie point symmetry is analysed and

used in several well-known DEs. The Lie algebras and Lie brackets of the basic sym-

metry generators are evaluated. Following the definition of the Lagrangian, Noether

symmetries and Mei symmetries are defined along with their conditions. Relationship

between Lie symmetry and Noether symmetry [15], and relationship between Noether

symmetry and Mei symmetry [23] are established using historical facts.

The second chapter focuses on Mei symmetries for the Lagrangian of rotating un-

charged axially symmetric metric. The Kerr metric is considered in this case. This

chapter contains a review of the Noether and Lie point symmetries for the Lagrangian

corresponding to the Kerr metric from the research paper [26]. The Lagrangian of Kerr

metric is provided. First, the Noether symmetries for the Lagrangian of Kerr metric

obtained are presented. Second, the geodesic equations for the four Boyer-Lindquist co-

ordinates (t, r, θ, φ) are then compiled one by one. The Lie point symmetries obtained

for the Kerr metric are provided using the definition of the Lie point symmetries of

ODEs on the Lagrange equations [26]. Following that, the main task of obtaining Mei

symmetries corresponding to the Lagrangian of the Kerr metric is executed. Using

the Mei symmetries criteria, the infinitesimal generator is extended and the system of

determining equations for all dependent variables is achieved. After that, the system

is solved to determine the values of the infinitesimals (ξ, η1, η2, η3, η4). Two of them

are determined to be zero while the remaining three are dependent on four arbitrary

constants for which we obtained four Mei symmetries.

Lie point symmetries, Noether symmetries, and Mei symmetries of the Kerr metric

are listed as
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Lie point symmetries ∂
∂s
, s ∂

∂s
, ∂
∂t
, ∂
∂φ
.

Noether symmetries ∂
∂s
, ∂
∂t
, ∂
∂φ
.

Mei symmetries ∂
∂s
, s ∂

∂s
, ∂
∂t
, ∂
∂φ
.

Table 3.1: Lie point symmetries, Noether symmetries and Mei symmetries of the Kerr
metric.

The results reveal that, in the case of the Kerr metric, the Noether symmetries are

subset of the Mei symmetries and that Mei symmetries are same as that of Lie point

symmetries. Finally, the obtained Mei symmetries are verified.
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